Sample records for phosphotransferases

  1. 40 CFR 174.526 - Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Hygromycin B phosphotransferase (APH4... the Hygromycin B phosphotransferase (APH4) enzyme in all plants are exempt from the requirement of a... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.526 Hygromycin B...

  2. 40 CFR 174.526 - Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Hygromycin B phosphotransferase (APH4... the Hygromycin B phosphotransferase (APH4) enzyme in all plants are exempt from the requirement of a... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.526 Hygromycin B...

  3. 40 CFR 174.526 - Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Hygromycin B phosphotransferase (APH4... the Hygromycin B phosphotransferase (APH4) enzyme in all plants are exempt from the requirement of a... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.526 Hygromycin B...

  4. 40 CFR 174.526 - Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. 174.526 Section 174.526... phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. Residues of...

  5. 40 CFR 174.526 - Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. 174.526 Section 174.526... phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. Residues of...

  6. The detection of diverse aminoglycoside phosphotransferases within natural populations of actinomycetes.

    PubMed

    Anderson, A S; Clark, D J; Gibbons, P H; Sigmund, J M

    2002-08-01

    The conserved nature of the genes that code for actinomycete secondary metabolite biosynthetic pathways suggests a common evolutionary ancestor and incidences of lateral gene transfer. Resistance genes associated with these biosynthetic pathways also display a high degree of similarity. Actinomycete aminoglycoside phosphotransferase antibiotic resistance enzymes (APH) are coded for by such genes and are therefore good targets for evaluating the bioactive potential of actinomycetes. A set of universal PCR primers for APH encoding genes was used to probe genomic DNA from three collections of actinomycetes to determine the utility of molecular screening. An additional monitoring of populations for the predominance of specific classes of enzymes to predict the potential of environmental sites for providing isolates with interesting metabolic profiles. Approximately one-fifth of all isolates screened gave a positive result by PCR. The PCR products obtained were sequenced and compared to existing APH family members. Sequence analysis resolved the family into nine groups of which six had recognizable phenotypes: 6'-phosphotransferase (APH(6)), 3'-phosphotransferase (APH(3)), hydroxyurea phosphotransferase (HUR), peptide phosphotransferase, hygromycin B phosphotransferase (APH(7")) and oxidoreductase. The actinomycetes screened fell into seven groups, including three novel groups with unknown phenotypes. The strains clustered according to the environmental site from where they were obtained, providing evidence for the movement of these genes within populations. The value of this as a method for obtaining novel compounds and the significance to the ecology of antibiotic biosynthesis are discussed.

  7. Physiological desensitization of carbohydrate permeases and adenylate cyclase to regulation by the phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium. Involvement of adenosine cyclic 3',5'-phosphate and inducer.

    PubMed

    Saier, M H; Keeler, D K; Feucht, B U

    1982-03-10

    Adenylate cyclase and a number of carbohydrate transport systems are subject to regulation by the phosphoenolpyruvate:sugar phosphotransferase system. These sensitive carbohydrate transport systems are desensitized to regulation by the phosphotransferase system, and adenylate cyclase is deactivated when cells are grown in medium containing cyclic AMP. These effects are specific for cyclic AMP and are potentiated by the genetic loss of cyclic AMP phosphodiesterase. Inclusion in the growth medium of an inducer of a sensitive transport system also promotes desensitization of that particular transport system. Inducer-promoted desensitization is specific for the particular target transport system, while cyclic AMP-promoted desensitization is general and affects several systems. Desensitization of the permeases to regulation, and inactivation of adenylate cyclase, are slow processes which are blocked by chloramphenicol and are therefore presumably dependent on protein synthesis. Several sugar substrates of the phosphotransferase system are capable of regulating the sensitive carbohydrate transport systems. The evidence suggests that desensitization to this regulation does not result from a direct effect on the functioning of Enzyme I, a small heat-stable protein of the phosphotransferase system, HPr, or an Enzyme II of the phosphotransferase system, but specifically uncouples the permease systems from regulation.

  8. Isolation of a gene encoding a novel spectinomycin phosphotransferase from Legionella pneumophila.

    PubMed

    Suter, T M; Viswanathan, V K; Cianciotto, N P

    1997-06-01

    A gene capable of conferring spectinomycin resistance was isolated from Legionella pneumophila, the agent of Legionnaires' disease. The gene (aph) encoded a 36-kDa protein which has similarity to aminoglycoside phosphotransferases. Biochemical analysis confirmed that aph encodes a phosphotransferase which modifies spectinomycin but not hygromycin, kanamycin, or streptomycin. The strain that was the source of aph demonstrated resistance to spectinomycin, and Southern hybridizations determined that aph also exists in other legionellae.

  9. Isolation of a gene encoding a novel spectinomycin phosphotransferase from Legionella pneumophila.

    PubMed Central

    Suter, T M; Viswanathan, V K; Cianciotto, N P

    1997-01-01

    A gene capable of conferring spectinomycin resistance was isolated from Legionella pneumophila, the agent of Legionnaires' disease. The gene (aph) encoded a 36-kDa protein which has similarity to aminoglycoside phosphotransferases. Biochemical analysis confirmed that aph encodes a phosphotransferase which modifies spectinomycin but not hygromycin, kanamycin, or streptomycin. The strain that was the source of aph demonstrated resistance to spectinomycin, and Southern hybridizations determined that aph also exists in other legionellae. PMID:9174205

  10. Phosphoenolpyruvate-dependent sucrose phosphotransferase activity in five serotypes of Streptococcus mutans.

    PubMed

    Slee, A M; Tanzer, J M

    1979-11-01

    An inducible phosphoenolpyruvate-dependent sucrose phosphotransferase system has been demonstrated in decryptified cell suspensions of the various common serotypes of the cariogenic microorganism Streptococcus mutans.

  11. Structural characterization of the novel aminoglycoside phosphotransferase AphVIII from Streptomyces rimosus with enzymatic activity modulated by phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyko, Konstantin M., E-mail: kmb@inbi.ras.ru; National Research Center “Kurchatov Institute”, Kurchatov Complex of NBICS-technologies, Akad. Kurchatova sqr., 1, Moscow, 123182; Gorbacheva, Marina A.

    2016-09-02

    Aminoglycoside phosphotransferases represent a broad class of enzymes that promote bacterial resistance to aminoglycoside antibiotics via the phosphorylation of hydroxyl groups in the latter. Here we report the spatial structure of the 3′-aminoglycoside phosphotransferase of novel VIII class (AphVIII) solved by X-ray diffraction method with a resolution of 2.15 Å. Deep analysis of APHVIII structure and its comparison with known structures of aminoglycoside phosphotransferases of various types reveals that AphVIII has a typical two-domain fold and, however, possesses some unique characteristics that distinguish the enzyme from its known homologues. The most important difference is the presence of the activation loop withmore » unique Ser146 residue. We demonstrate that in the apo-state of the enzyme the activation loop does not interact with other parts of the enzyme and seems to adopt catalytically competent state only after substrate binding. - Highlights: • 3D structure of the novel aminoglycoside phosphotransferase AphVIII was obtained. • AphVIII activation loop is clearly identified in the electron density. • AphVIII has some unique structural features in its substrate C-ring binding pocket.« less

  12. Expression of the hygromycin B phosphotransferase gene confers tolerance to the herbicide glyphosate.

    PubMed

    Peñaloza-Vázquez, A; Oropeza, A; Mena, G L; Bailey, A M

    1995-05-01

    Escherichia coli cells and tobacco (cv. Xanthi) plants transformed with the hygromycin B phosphotransferase gene were able to grow in culture medium containing glyphosate at 2.0 mM. The growth of tobacco calli in media containing increasing glyphosate concentrations was measured. The ID50 for glyphosate was 1.70±0.03 mM for hygromycin-B resistant plants, and 0.45±0.02 mM for control plants. Regenerated plants and progeny selected for resistance to hygromycin B were tested for glyphosate tolerance by spraying them with Faena herbicide (formulated glyphosate with surfactant) at a dose equal to 0.24 kg/ha. This was two times the dose required to kill 100 percent of the control plants. Phosphotransferase activity was measured in the extracts of the transformed leaves by the incorporation of (32)P from [γ(-32)P]ATP and it was observed that hygromycin B phosphotransferase was able to recognize the molecule of glyphosate as substrate.

  13. Measurement of hygromycin B phosphotransferase activity in crude mammalian cell extracts by a simple dot-blot assay.

    PubMed

    Sørensen, M S; Duch, M; Paludan, K; Jørgensen, P; Pedersen, F S

    1992-03-15

    Hygromycin B (Hy) resistance, encoded by the prokaryotic gene hph, is commonly used as a dominant selectable marker for gene transfer experiments in mammalian cells. We describe a simple, quantitative dot-blot assay for measuring the activity in crude mammalian cell extracts of Hy phosphotransferase, the product of the hph gene. The assay shows no cross interference with substrates for neomycin phosphotransferase II, the product of the commonly used marker gene neo; hph and neo may thus be useful as a set of two non-interfering selectable marker and reporter genes for gene transfer experiments in mammalian cells.

  14. Purification and characterization of a hygromycin B phosphotransferase from Streptomyces hygroscopicus.

    PubMed

    Zalacain, M; Pardo, J M; Jiménez, A

    1987-01-15

    A hygromycin B phosphotransferase activity from Streptomyces hygroscopicus has been highly purified by ammonium sulphate fractionation followed by affinity column chromatography through Sepharose-6B-hygromycin-B. The combined active fractions showed a single protein band (41 kDa) when subjected to polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. When gel electrophoresis was performed under non-denaturing conditions, the single protein band promoted in situ phosphorylation of hygromycin B, indicating that this protein corresponded to the purified hygromycin B phosphotransferase. The enzyme has been purified 236-fold and approximate Km values of 0.56 microM for hygromycin B and ATP, respectively, were deduced.

  15. AglH, a thermophilic UDP-N-acetylglucosamine-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase initiating protein N-glycosylation pathway in Sulfolobus acidocaldarius, is capable of complementing the eukaryal Alg7.

    PubMed

    Meyer, Benjamin H; Shams-Eldin, Hosam; Albers, Sonja-Verena

    2017-01-01

    AglH, a predicted UDP-GlcNAc-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase, is initiating the protein N-glycosylation pathway in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. AglH successfully replaced the endogenous GlcNAc-1-phosphotransferase activity of Alg7 in a conditional lethal Saccharomyces cerevisiae strain, in which the first step of the eukaryal protein N-glycosylation process was repressed. This study is one of the few examples of cross-domain complementation demonstrating a conserved polyprenyl phosphate transferase reaction within the eukaryal and archaeal domain like it was demonstrated for Methanococcus voltae (Shams-Eldin et al. 2008). The topology prediction and the alignment of the AglH membrane protein with GlcNAc-1-phosphotransferases from the three domains of life show significant conservation of amino acids within the different proposed cytoplasmic loops. Alanine mutations of selected conserved amino acids in the putative cytoplasmic loops II (D 100 ), IV (F 220 ) and V (F 264 ) demonstrated the importance of these amino acids for cross-domain AlgH activity in in vitro complementation assays in S. cerevisiae. Furthermore, antibiotic treatment interfering directly with the activity of dolichyl phosphate GlcNAc-1-phosphotransferases confirmed the essentiality of N-glycosylation for cell survival.

  16. Streptomyces griseus streptomycin phosphotransferase: expression of its gene in Escherichia coli and sequence homology with other antibiotic phosphotransferases and with eukaryotic protein kinases.

    PubMed

    Lim, C K; Smith, M C; Petty, J; Baumberg, S; Wootton, J C

    1989-12-01

    The aphD gene of Streptomyces griseus, encoding a streptomycin 6-phosphotransferase (SPH), was sub-cloned in the pBR322-based expression vector pRK9 (which contains the Serratia marcescens trp promoter) with selection for expression of streptomycin resistance in Escherichia coli. Two hybrid plasmids, pCKL631 and pCKL711, were isolated which conferred resistance. Both contained a approximately 2 kbp fragment already suspected to include aphD. The properties of in vitro deletion derivatives of these plasmids were consistent with the presumed location of aphD. In vitro deletion of a sequence including most of the trp promoter largely, but not quite completely, abolished the ability of the plasmid to confer streptomycin resistance, confirming that expression was indeed principally from the trp promoter. A polypeptide of approximately 34.5 kDa was present in minicells containing plasmids that conferred streptomycin resistance, but was absent when the plasmids contained in vitro deletions removing streptomycin resistance. Part of the fragment was sequenced and an open reading frame corresponding to aphD identified. A computer-assisted comparison of the deduced SPH sequence with those of other antibiotic phosphotransferases suggested a common structure A-B-C-D-E, where B and D were conserved between all sequences compared while A, C and E divided between the streptomycin and hygromycin B phosphotransferases on one hand and kanamycin/neomycin ones on the other. A composite sequence data base was searched for homologues to consensus matrices constructed from five approximately 12-residue subsequences within blocks B and D. For one subsequence, corresponding to the N-terminal portion of block D, those sequences from the database that yielded the highest homology scores comprised almost entirely either antibiotic phosphotransferases or eukaryotic protein kinases. Possible evolutionary implications of this homology, previously described by other groups, are discussed.

  17. [Methods of hygromycin B phosphotransferase activity assay in transgenic plant].

    PubMed

    Zhuo, Qin; Yang, Xiaoguang

    2004-07-01

    Hygromycin B phosphotransferase (HPT) is a widely used selectable marker protein of transgenic plant. Detection of its activity is critical to studies on the development of various transgenic plants, silence of inserted gene, marker-free system development and safety assessment of transgenic food. In this paper, several methods for detecting the activity of this enzyme were reviewed.

  18. Recombinant organisms capable of fermenting cellobiose

    DOEpatents

    Ingram, Lonnie O.; Lai, Xiaokuang; Moniruzzaman, Mohammed; York, Sean W.

    2000-01-01

    This invention relates to a recombinant microorganism which expresses pyruvate decarboxylase, alcohol dehydrogenase, Klebsiella phospho-.beta.-glucosidase and Klebsiella (phosphoenolpyruvate-dependent phosphotransferase system) cellobiose-utilizing Enzyme II, wherein said phospho-.beta.-glucosidase and said (phosphoenolpyruvate-dependent phosphotransferase) cellobiose-utilizing Enzyme II are heterologous to said microorganism and wherein said microorganism is capable of utilizing both hemicellulose and cellulose, including cellobiose, in the production of ethanol.

  19. Dominant positive and negative selection using a hygromycin phosphotransferase-thymidine kinase fusion gene.

    PubMed

    Lupton, S D; Brunton, L L; Kalberg, V A; Overell, R W

    1991-06-01

    The hygromycin phosphotransferase gene was fused in-frame with the herpes simplex virus type 1 thymidine kinase gene. The resulting fusion gene (termed HyTK) confers hygromycin B resistance for dominant positive selection and ganciclovir sensitivity for negative selection and provides a means by which these selectable phenotypes may be expressed and regulated as a single genetic entity.

  20. Ceramide Phosphoethanolamine Biosynthesis in Drosophila Is Mediated by a Unique Ethanolamine Phosphotransferase in the Golgi Lumen♦

    PubMed Central

    Vacaru, Ana M.; van den Dikkenberg, Joep; Ternes, Philipp; Holthuis, Joost C. M.

    2013-01-01

    Sphingomyelin (SM) is a vital component of mammalian membranes, providing mechanical stability and a structural framework for plasma membrane organization. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase in the Golgi lumen. Drosophila lacks SM and instead synthesizes the SM analogue ceramide phosphoethanolamine (CPE) as the principal membrane sphingolipid. The corresponding CPE synthase shares mechanistic features with enzymes mediating phospholipid biosynthesis via the Kennedy pathway. Using a functional cloning strategy, we here identified a CDP-ethanolamine:ceramide ethanolamine phosphotransferase as the enzyme responsible for CPE production in Drosophila. CPE synthase constitutes a new branch within the CDP-alcohol phosphotransferase superfamily with homologues in Arthropoda (insects, spiders, mites, scorpions), Cnidaria (Hydra, sea anemones), and Mollusca (oysters) but not in most other animal phyla. The enzyme resides in the Golgi complex with its active site facing the lumen, contrary to the membrane topology of other CDP-alcohol phosphotransferases. Our findings open up an important new avenue to address the biological role of CPE, an enigmatic membrane constituent of a wide variety of invertebrate and marine organisms. PMID:23449981

  1. Engineering of GlcNAc-1-Phosphotransferase for Production of Highly Phosphorylated Lysosomal Enzymes for Enzyme Replacement Therapy.

    PubMed

    Liu, Lin; Lee, Wang-Sik; Doray, Balraj; Kornfeld, Stuart

    2017-06-16

    Several lysosomal enzymes currently used for enzyme replacement therapy in patients with lysosomal storage diseases contain very low levels of mannose 6-phosphate, limiting their uptake via mannose 6-phosphate receptors on the surface of the deficient cells. These enzymes are produced at high levels by mammalian cells and depend on endogenous GlcNAc-1-phosphotransferase α/β precursor to phosphorylate the mannose residues on their glycan chains. We show that co-expression of an engineered truncated GlcNAc-1-phosphotransferase α/β precursor and the lysosomal enzyme of interest in the producing cells resulted in markedly increased phosphorylation and cellular uptake of the secreted lysosomal enzyme. This method also results in the production of highly phosphorylated acid β-glucocerebrosidase, a lysosomal enzyme that normally has just trace amounts of this modification.

  2. Hygromycin B phosphotransferase as a selectable marker for DNA transfer experiments with higher eucaryotic cells.

    PubMed

    Blochlinger, K; Diggelmann, H

    1984-12-01

    The DNA coding sequence for the hygromycin B phosphotransferase gene was placed under the control of the regulatory sequences of a cloned long terminal repeat of Moloney sarcoma virus. This construction allowed direct selection for hygromycin B resistance after transfection of eucaryotic cell lines not naturally resistant to this antibiotic, thus providing another dominant marker for DNA transfer in eucaryotic cells.

  3. Hygromycin B phosphotransferase as a selectable marker for DNA transfer experiments with higher eucaryotic cells.

    PubMed Central

    Blochlinger, K; Diggelmann, H

    1984-01-01

    The DNA coding sequence for the hygromycin B phosphotransferase gene was placed under the control of the regulatory sequences of a cloned long terminal repeat of Moloney sarcoma virus. This construction allowed direct selection for hygromycin B resistance after transfection of eucaryotic cell lines not naturally resistant to this antibiotic, thus providing another dominant marker for DNA transfer in eucaryotic cells. Images PMID:6098829

  4. Cloning and expression in Escherichia coli of a hygromycin B phosphotransferase gene from Streptomyces hygroscopicus.

    PubMed

    Zalacain, M; Malpartida, F; Pulido, D; Jiménez, A

    1987-01-15

    The Streptomyces hygroscopicus hyg gene encoding a hygromycin B phosphotransferase has been introduced into different sites of both the Escherichia coli plasmid pBR322 and the Escherichia coli-Saccharomyces cerevisiae shuttle vector YRp7. When this gene was inserted into the BamHI site of pBR322 and then cloned in E. coli phosphorylating activity was not detected, indicating that the hyg gene promoter was not functional in this bacterium. However, when the hyg gene was inserted into either the unique PstI site of pBR322 or into each of the two PstI sites of YRp7, phosphotransferase activity was observed. Analysis of the translation products from these constructions by coupled in vitro transcription-translation systems suggested that in all cases transcrition was regulated by a promoter not provided by the inserted hyg gene and that the synthesized polypeptide was identical to that present in S. hygroscopicus.

  5. Purification, Crystallization And Preliminary X-Ray Analysis of Aminoglycoside-2 ''-Phosphotransferase-Ic [APH(2 '')-Ic] From Enterococcus Gallinarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrnes, L.J.; /SLAC, SSRL; Badarau, A.

    2009-04-30

    Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2{double_prime}-phosphotransferase-Ic [APH(2{double_prime})-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and three mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2{double_prime})-Ic variants were crystallized in the presence of 14-20%(w/v) PEG 4000, 0.25 M MgCl{sub 2}, 0.1 M Tris-HClmore » pH 8.5 and 1 mM Mg{sub 2}GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 {angstrom}, {beta} = 108.8{sup o}. X-ray diffraction data were collected to approximately 2.15 {angstrom} resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA.« less

  6. Overexpression and Initial Characterization of the Chromosomal Aminoglycoside 3′-O-Phosphotransferase APH(3′)-IIb from Pseudomonas aeruginosa▿†

    PubMed Central

    Hainrichson, Mariana; Yaniv, Orit; Cherniavsky, Marina; Nudelman, Igor; Shallom-Shezifi, Dalia; Yaron, Sima; Baasov, Timor

    2007-01-01

    The chromosomal gene aph(3′)-IIb, encoding an aminoglycoside 3′-phosphotransferase in Pseudomonas aeruginosa, was cloned and overexpressed in Escherichia coli. The APH(3′)-IIb enzyme was purified as a monomer in a two-step procedure and was shown to phosphorylate its substrates at the C-3′-OH position, with kcat/Km values of 0.4 × 104 to 36 × 104 M−1 s−1. PMID:17088479

  7. Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants.

    PubMed

    Walters, D A; Vetsch, C S; Potts, D E; Lundquist, R C

    1992-01-01

    Embryogenic maize (Zea mays L.) callus cultures were transformed by microprojectile bombardment with a chimeric hygromycin phosphotransferase (HPT) gene and three transformed lines were obtained by selecting for hygromycin resistance. All lines contained one or a few copies of the intact HPT coding sequence. Fertile, transgenic plants were regenerated and the transmission of the chimeric gene was demonstrated through two complete generations. One line inherited the gene in the manner expected for a single, dominant locus, whereas two did not.

  8. Selective Chemosensitization of Rb Mutant Cells

    DTIC Science & Technology

    2001-07-01

    MA). pLPC-12S coexpresses an E1A 12S cDNA with puromycin phosphotransferase (puro) and pWZL-12S coexpresses E1A with hygromycin phospho...expressing puromycin phosphotransferase (puro); LPC-12S, a 12S El A cDNA in LPC (McCurrach et al. 1997); LPC-12S.AN and LPC-12S.ACR2, El A mutants that...2, -3, conserved regions 1, 2, and 3; MEF, mouse embryonic fibroblast; puro, puromycin; hygro, hygromycin . To whom reprint requests should be

  9. Action of nucleotide phosphotransferase of Escherichia coli on nicotinamide riboside and nicotinamide mononucleotide.

    PubMed Central

    Brunngraber, E F; Chargaff, E

    1977-01-01

    The action of the nucleotide phosphotransferase of Escherichia coli on nicotinamide riboside and on its 5'-phosphate results in the addition of one phosphate moiety to each of the substrates. Although the proof is not conclusive, it is likely that the phosphate group is transferred to the 3'-hydroxyl of the ribose. This is in contrast to the behavior of the enzyme toward NAD in which only the adenylic acid portion is phosphorylated enzymically. PMID:144913

  10. Crystallization and preliminary crystallographic analysis of hygromycin B phosphotransferase from Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iino, Daisuke; Takakura, Yasuaki; Kuroiwa, Mika

    2007-08-01

    The crystallization and preliminary X-ray studies of the aminoglycoside antibiotic-modifying enzyme hygromycin B phosphotransferase from E. coli are reported. Aminoglycoside antibiotics, such as hygromycin, kanamycin, neomycin, spectinomycin and streptomycin, inhibit protein synthesis by acting on bacterial and eukaryotic ribosomes. Hygromycin B phosphotransferase (Hph; EC 2.7.1.119) converts hygromycin B to 7′′-O-phosphohygromycin using a phosphate moiety from ATP, resulting in the loss of its cell-killing activity. The Hph protein has been crystallized for the first time using a thermostable mutant and the hanging-drop vapour-diffusion method. The crystal provided diffraction data to a resolution of 2.1 Å and belongs to space group P3{submore » 2}21, with unit-cell parameters a = b = 71.0, c = 125.0 Å. Crystals of complexes of Hph with hygromycin B and AMP-PNP or ADP have also been obtained in the same crystal form as that of the apoprotein.« less

  11. Method for construction of bacterial strains with increased succinic acid production

    DOEpatents

    Donnelly, Mark I.; Sanville-Millard, Cynthia; Chatterjee, Ranjini

    2000-01-01

    A fermentation process for producing succinic acid is provided comprising selecting a bacterial strain that does not produce succinic acid in high yield, disrupting the normal regulation of sugar metabolism of said bacterial strain, and combining the mutant bacterial strain and selected sugar in anaerobic conditions to facilitate production of succinic acid. Also provided is a method for changing low yield succinic acid producing bacteria to high yield succinic acid producing bacteria comprising selecting a bacterial strain having a phosphotransferase system and altering the phosphotransferase system so as to allow the bacterial strain to simultaneously metabolize different sugars.

  12. Revisiting the Nucleotide and Aminoglycoside Substrate Specificity of the Bifunctional Aminoglycoside Acetyltransferase(6′)-Ie/Aminoglycoside Phosphotransferase(2″)-Ia Enzyme*

    PubMed Central

    Frase, Hilary; Toth, Marta; Vakulenko, Sergei B.

    2012-01-01

    The bifunctional aminoglycoside-modifying enzyme aminoglycoside acetyltransferase(6′)-Ie/aminoglycoside phosphotransferase(2″)-Ia, or AAC(6′)-Ie/APH(2″)-Ia, is the major source of aminoglycoside resistance in Gram-positive bacterial pathogens. In previous studies, using ATP as the cosubstrate, it was reported that the APH(2″)-Ia domain of this enzyme is unique among aminoglycoside phosphotransferases, having the ability to inactivate an unusually broad spectrum of aminoglycosides, including 4,6- and 4,5-disubstituted and atypical. We recently demonstrated that GTP, and not ATP, is the preferred cosubstrate of this enzyme. We now show, using competition assays between ATP and GTP, that GTP is the exclusive phosphate donor at intracellular nucleotide levels. In light of these findings, we reevaluated the substrate profile of the phosphotransferase domain of this clinically important enzyme. Steady-state kinetic characterization using the phosphate donor GTP demonstrates that AAC(6′)-Ie/APH(2″)-Ia phosphorylates 4,6-disubstituted aminoglycosides with high efficiency (kcat/Km = 105-107 m−1 s−1). Despite this proficiency, no resistance is conferred to some of these antibiotics by the enzyme in vivo. We now show that phosphorylation of 4,5-disubstituted and atypical aminoglycosides are negligible and thus these antibiotics are not substrates. Instead, these aminoglycosides tend to stimulate an intrinsic GTPase activity of the enzyme. Taken together, our data show that the bifunctional enzyme efficiently phosphorylates only 4,6-disubstituted antibiotics; however, phosphorylation does not necessarily result in bacterial resistance. Hence, the APH(2″)-Ia domain of the bifunctional AAC(6′)-Ie/APH(2″)-Ia enzyme is a bona fide GTP-dependent kinase with a narrow substrate profile, including only 4,6-disubstituted aminoglycosides. PMID:23115238

  13. Molecular cloning and expression in streptomyces lividans of a hygromycin B phosphotransferase gene from Streptomyces hygroscopicus.

    PubMed

    Malpartida, F; Zalacaín, M; Jiménez, A; Davies, J

    1983-11-30

    The gene encoding the phosphotransferase enzyme that modifies hygromycin B in its producing organism Streptomyces hygroscopicus, has been cloned in the Streptomyces vector pIJ41. Two plasmids, pFM4 and pFM6, containing 2.1 and 19.6 kb inserts of Streptomyces hygroscopicus DNA, respectively, which express the modifying enzyme, have been isolated. A 3.1 kb PstI restriction fragment from pFM4 was inserted in the Streptomyces vector pIJ350 and the resulting plasmids, pMZ11.1 and pMZ11.2, express the hygromycin B-resistance phenotype. The utility of this dominant marker for cloning experiments is discussed in the text.

  14. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae.

    PubMed

    Gritz, L; Davies, J

    1983-11-01

    The plasmid-borne gene hph coding for hygromycin B phosphotransferase (HPH) in Escherichia coli has been identified and its nucleotide sequence determined. The hph gene is 1026 nucleotides long, coding for a protein with a predicted Mr of 39 000. The hph gene was placed in a shuttle plasmid vector, downstream from the promoter region of the cyc 1 gene of Saccharomyces cerevisiae, and an hph construction containing a single AUG in the 5' noncoding region allowed direct selection following transformation in yeast and in E. coli. Thus the hph gene can be used in cloning vectors for both pro- and eukaryotes.

  15. Aminoglycoside acetyltransferase 3-IV (aacC4) and hygromycin B 4-I phosphotransferase (hphB) in bacteria isolated from human and animal sources.

    PubMed

    Salauze, D; Otal, I; Gomez-Lus, R; Davies, J

    1990-10-01

    Members of the family Enterobacteriaceae harboring an enzyme of the aminoglycoside acetyltransferase 3 class (AAC-3-IV) (apramycin and gentamicin resistance) and hygromycin B phosphotransferase 4 (HPH-4-I) (hygromycin B resistance) have been isolated from human clinical sources in Europe. A cluster of genes containing IS140, aacC4, and hphB was found in these strains. We demonstrate by Southern hybridization that this cluster is identical to the operon found in animals that also contains insertion sequences belonging to the ISO family. This provides another example of presumptive transfer of antibiotic resistance genes between bacteria of animal and human origin.

  16. Selective accumulation of cytosol CDP-choline as an isolated erythrocyte defect in chronic hemolysis.

    PubMed Central

    Paglia, D E; Valentine, W N; Nakatani, M; Rauth, B J

    1983-01-01

    Erythrocytes from a young woman with chronic hemolytic anemia were found to contain 0.31-0.45 mM CDP-choline, concentrations that are 15-25 times those in normal erythrocytes and equivalent to 20-30% of the total adenine nucleotide content. Accumulation of CDP-choline has been reported only in erythrocytes from subjects with severe (homozygous) pyrimidine nucleotidase deficiency. In the latter syndrome, however, pyrimidine nucleotidase activity is very low and a spectrum of uridine- and cytidine-containing nucleotides is present along with epiphenomena involving glutathione and ribosephosphate pyrophosphokinase. By contrast, selective accumulation of CDP-choline was the only abnormality demonstrable in proband erythrocytes. Membrane phospholipids were quantitatively and qualitatively normal, compatible with the observation that mature erythrocytes maintain membrane phospholipids largely by passive exchange with plasma components or by acylation of lysophospholipids. Although the presence of small amounts of other CDP-containing cofactors, such as CDP-ethanolamine, could not be entirely excluded, the cytidine/choline ratio closely approximated 1:1 in all studies. These data are compatible with the view that choline phosphotransferase and ethanolamine phosphotransferase are separate enzymes in erythroid cells. Selective accumulation of CDP-choline in proband erythrocytes is also compatible with an inherited deficiency of choline phosphotransferase in erythroid precursors, though this hypothesis remains unproved. PMID:6574471

  17. Efficient transformation and regeneration of transgenic cassava using the neomycin phosphotransferase gene as aminoglycoside resistance marker gene.

    PubMed

    Niklaus, Michael; Gruissem, Wilhelm; Vanderschuren, Hervé

    2011-01-01

    Cassava is one of the most important crops in the tropics. Its industrial use for starch and biofuel production is also increasing its importance for agricultural production in tropical countries. In the last decade cassava biotechnology has emerged as a valuable alternative to the breeding constraints of this highly heterozygous crop for improved trait development of cassava germplasm. Cassava transformation remains difficult and time-consuming because of limitations in selecting transgenic tissues and regeneration of transgenic plantlets. We have recently reported an efficient and robust cassava transformation protocol using the hygromycin phosphotransferase II (hptII) gene as selection marker and the aminoglycoside hygromycin at optimal concentrations to maximize the regeneration of transgenic plantlets. In the present work, we expanded the transformation protocol to the use of the neomycin phosphotransferase II (nptII) gene as selection marker. Several aminoglycosides compatible with the use of nptII were tested and optimal concentrations for cassava transformation were determined. Given its efficiency equivalent to hptII as selection marker with the described protocol, the use of nptII opens new possibilities to engineer transgenic cassava lines with multiple T-DNA insertions and to produce transgenic cassava with a resistance marker gene that is already deregulated in several commercial transgenic crops.

  18. Characterization of suppressible mutations in the viomycin phosphotransferase gene of the Streptomyces enteric plasmid pVE138.

    PubMed Central

    Paradiso, M J; Roberts, G; Streicher, S L; Goldberg, R B

    1987-01-01

    The viomycin phosphotransferase gene (vph) is expressed and confers resistance to viomycin in both Streptomyces spp. and members of the family Enterobacteriaceae. We report the isolation of UGA (opal) and UAG (amber) mutations in the vph gene of shuttle plasmid pVE138. We found that the five UGA mutations in vph resulted in a temperature-sensitive phenotype in Salmonella typhimurium. Su- strains are Vior at 28 degrees C and Vios at 37 degrees C, whereas Su+UGA strains are Vior at both 28 and 37 degrees C. The single amber mutation isolated was not temperature sensitive and resulted in the expected Vios phenotype in Su- strains and Vior in Su+UAG strains. PMID:3029035

  19. From Cytosol to the Apoplast: The Hygromycin Phosphotransferase (HYG(R)) Model in Arabidopsis.

    PubMed

    Zhang, Haiyan; Li, Jinjin

    2016-01-01

    The process by which proteins are secreted via endoplasmic reticulum (ER)/Golgi-independent mechanism is conveniently called unconventional protein secretion. Recent studies have revealed that unconventional protein secretion operates in plants, but little is known about its underlying mechanism and function. This chapter provides methods we have used to analyze unconventional character of hygromycin phosphotransferase (HYG(R)) secretion in plant cells. Following isolation of protoplasts from HYG (R) -GFP-transgenic plants and incubation with brefeldin A (BFA), an inhibitor of conventional secretory pathway, we easily obtain protein extracts from protoplasts and culture medium separately. These proteins are separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by Western blot analysis with anti-GFP antibodies.

  20. Expression of Hygromycin Phosphotransferase Alters Virulence of Histoplasma capsulatum▿

    PubMed Central

    Smulian, A. George; Gibbons, Reta S.; Demland, Jeffery A.; Spaulding, Deborah T.; Deepe, George S.

    2007-01-01

    The Escherichia coli hygromycin phosphotransferase (hph) gene, which confers hygromycin resistance, is commonly used as a dominant selectable marker in genetically modified bacteria, fungi, plants, insects, and mammalian cells. Expression of the hph gene has rarely been reported to induce effects other than those expected. Hygromycin B is the most common dominant selectable marker used in the molecular manipulation of Histoplasma capsulatum in the generation of knockout strains of H. capsulatum or as a marker in mutant strains. hph-expressing organisms appear to have no defect in long-term in vitro growth and survival and have been successfully used to exploit host-parasite interaction in short-term cell culture systems and animal experiments. We introduced the hph gene as a selectable marker together with the gene encoding green fluorescent protein into wild-type strains of H. capsulatum. Infection of mice with hph-expressing H. capsulatum yeast cells at sublethal doses resulted in lethality. The lethality was not attributable to the site of integration of the hph construct into the genomes or to the method of integration and was not H. capsulatum strain related. Death of mice was not caused by altered cytokine profiles or an overwhelming fungal burden. The lethality was dependent on the kinase activity of hygromycin phosphotransferase. These results should raise awareness of the potential detrimental effects of the hph gene. PMID:17873086

  1. Expression of hygromycin phosphotransferase alters virulence of Histoplasma capsulatum.

    PubMed

    Smulian, A George; Gibbons, Reta S; Demland, Jeffery A; Spaulding, Deborah T; Deepe, George S

    2007-11-01

    The Escherichia coli hygromycin phosphotransferase (hph) gene, which confers hygromycin resistance, is commonly used as a dominant selectable marker in genetically modified bacteria, fungi, plants, insects, and mammalian cells. Expression of the hph gene has rarely been reported to induce effects other than those expected. Hygromycin B is the most common dominant selectable marker used in the molecular manipulation of Histoplasma capsulatum in the generation of knockout strains of H. capsulatum or as a marker in mutant strains. hph-expressing organisms appear to have no defect in long-term in vitro growth and survival and have been successfully used to exploit host-parasite interaction in short-term cell culture systems and animal experiments. We introduced the hph gene as a selectable marker together with the gene encoding green fluorescent protein into wild-type strains of H. capsulatum. Infection of mice with hph-expressing H. capsulatum yeast cells at sublethal doses resulted in lethality. The lethality was not attributable to the site of integration of the hph construct into the genomes or to the method of integration and was not H. capsulatum strain related. Death of mice was not caused by altered cytokine profiles or an overwhelming fungal burden. The lethality was dependent on the kinase activity of hygromycin phosphotransferase. These results should raise awareness of the potential detrimental effects of the hph gene.

  2. Prokaryotic expression and allergenicity assessment of hygromycin B phosphotransferase protein derived from genetically modified plants.

    PubMed

    Lu, Y; Xu, W; Kang, A; Luo, Y; Guo, F; Yang, R; Zhang, J; Huang, K

    2007-09-01

    The hygromycin B phosphotransferase gene (hpt) has been widely used in the process of plant genetic engineering to produce plants that can secrete the HPT protein. As part of a safety assessment, sufficient quantities of the protein were produced in Escherichia coli to conduct in vitro digestibility and animal studies. Western blotting analysis showed that the HPT protein was digested by simulated gastric fluid within 40 s. ELISA demonstrated that the protein did not induce detectable levels of specific IgE antibodies or histamine in test animals. Alignment of the amino acid sequence of HPT with those of known allergens did not produce evidence of sequence similarities between these allergens and the HPT protein. We conclude that HPT has a low probability to induce allergenicity.

  3. Virulence and the presence of aminoglycoside resistance genes of Staphylococcus haemolyticus strains isolated from clinical specimens.

    PubMed

    Krzymińska, Sylwia; Szczuka, Ewa; Dudzińska, Kinga; Kaznowski, Adam

    2015-04-01

    We examined thirty methicillin-resistant Staphylococcus haemolyticus isolates cultured from clinical specimens for antibiotic resistance, various important interactions of the bacteria with epithelial cells and putative virulence determinants. All strains were resistant to oxacillin and carried the mecA gene. Aminocyclitol-3'-phosphotransferase (aph(3')-IIIa) gene encoding nucleotidyltransferases was detected in 43 %, aminocyclitol-6'-acetyltransferase-aminocyclitol-2″-phosphotransferase (aac(6')/aph(2″)) gene encoding bifunctional acetyltransferases/phosphotransferases in 33 %, aminocyclitol-4'-adenylyltransferase (ant(4')-Ia) gene encoding phosphotransferases in 20 %. The coexistence of resistance to methicillin and aminoglycosides was investigated in multi-resistant strains. Coexisting (aac(6')/aph(2″)) and (aph(3')-IIIa) genes were detected in 33 % of isolates, whereas 63 % of isolates had at least one of these genes. All strains revealed adherence ability and most of them (63 %) were invasive to epithelial cells. Electron microscopy revealed that the bacteria were found in vacuoles inside the cells. We observed that the contact of the bacteria with host epithelial cells is a prerequisite to their cytotoxicity at 5 h-incubation. Culture supernatant of the strains induced a low effect of cytotoxicity at the same time of incubation. Cell-free supernatant of all isolates expressed cytotoxic activity which caused destruction of HEp-2 cells at 24 h. None of the strains was cytotonic towards CHO cells. Among thirty strains, 27 % revealed lipolytic activity, 43 % produced lecithinase and 20 % were positive for proteinase activity. Analyses of cellular morphology and DNA fragmentation exhibited typical characteristic features of those undergoing apoptosis. The Pearson linear test revealed positive correlations between the apoptotic index at 24 h and percentage of cytotoxicity. Our results provided new insights into the mechanisms contributing to the development of S. haemolyticus-associated infections. The bacteria adhered and invaded to non-professional phagocytes. The invasion of epithelial cells by S. haemolyticus could be similar to phagocytosis that requires polymerization of the actin cytoskeleton. The process is inhibited by cytochalasin D. Moreover, they survived within the cells by residing in membrane bound compartments and induced apoptotic cell death.

  4. 21 CFR 173.170 - Aminoglycoside 3′-phospho-trans-ferase II.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme... is the enzyme aminoglycoside 3′-phosphotransferase II (CAS Reg. No. 58943-39-8) which catalyzes the...

  5. 21 CFR 173.170 - Aminoglycoside 3′-phospho-trans-ferase II.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.170 Aminoglycoside 3′-phospho-trans... prescribed conditions: (a) The food additive is the enzyme aminoglycoside 3′-phosphotransferase II (CAS Reg...

  6. [Transformation of Chlamydomonas reinhardtii CW-15 with the hygromycin phosphotransferase gene as a selective marker].

    PubMed

    Ladygin, V G; Butanaev, A M

    2002-09-01

    To transform Chlamydomonas reinhardtii Dang. Cells, plasmid pCTVHyg was constructed with the use of the Escherichia coli hygromycin phosphotransferase gene (hpt) controlled by the SV40 early promoter. Cells of the CW-15 mutant strain were transformed by electroporation, with the yield reaching 10(3) hygromycin-resistant (HygR) clones per 10(6) recipient cells. The exogenous DNA integrated in the Ch. reinhardtii nuclear genome showed stable transmission for approximately 350 cell generations, while hygromycin resistance was expressed as an unstable character. Codon usage was compared for the hpt gene and Ch. reinhardtii nuclear genes. The results testified that codon usage bias, which is characteristic of Ch. reinhardtii, is not the major factor affecting foreign gene expression. The advantages of the selective system for studying Ch. reinhardtii transformation with heterologous genes are discussed.

  7. Crystallization and preliminary crystallographic analysis of hygromycin B phosphotransferase from Escherichia coli.

    PubMed

    Iino, Daisuke; Takakura, Yasuaki; Kuroiwa, Mika; Kawakami, Ryouta; Sasaki, Yasuyuki; Hoshino, Takayuki; Ohsawa, Kanju; Nakamura, Akira; Yajima, Shunsuke

    2007-08-01

    Aminoglycoside antibiotics, such as hygromycin, kanamycin, neomycin, spectinomycin and streptomycin, inhibit protein synthesis by acting on bacterial and eukaryotic ribosomes. Hygromycin B phosphotransferase (Hph; EC 2.7.1.119) converts hygromycin B to 7''-O-phosphohygromycin using a phosphate moiety from ATP, resulting in the loss of its cell-killing activity. The Hph protein has been crystallized for the first time using a thermostable mutant and the hanging-drop vapour-diffusion method. The crystal provided diffraction data to a resolution of 2.1 A and belongs to space group P3(2)21, with unit-cell parameters a = b = 71.0, c = 125.0 A. Crystals of complexes of Hph with hygromycin B and AMP-PNP or ADP have also been obtained in the same crystal form as that of the apoprotein.

  8. Crystallization and preliminary crystallographic analysis of hygromycin B phosphotransferase from Escherichia coli

    PubMed Central

    Iino, Daisuke; Takakura, Yasuaki; Kuroiwa, Mika; Kawakami, Ryouta; Sasaki, Yasuyuki; Hoshino, Takayuki; Ohsawa, Kanju; Nakamura, Akira; Yajima, Shunsuke

    2007-01-01

    Aminoglycoside antibiotics, such as hygromycin, kanamycin, neomycin, spectinomycin and streptomycin, inhibit protein synthesis by acting on bacterial and eukaryotic ribosomes. Hygromycin B phosphotransferase (Hph; EC 2.7.1.119) converts hygromycin B to 7′′-O-phosphohygromycin using a phosphate moiety from ATP, resulting in the loss of its cell-killing activity. The Hph protein has been crystallized for the first time using a thermostable mutant and the hanging-drop vapour-diffusion method. The crystal provided diffraction data to a resolution of 2.1 Å and belongs to space group P3221, with unit-cell parameters a = b = 71.0, c = 125.0 Å. Crystals of complexes of Hph with hygromycin B and AMP-PNP or ADP have also been obtained in the same crystal form as that of the apoprotein. PMID:17671368

  9. Structure, dynamics and biophysics of the cytoplasmic protein–protein complexes of the bacterial phosphoenolpyruvate: Sugar phosphotransferase system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clore, G. Marius; Venditti, Vincenzo

    2013-10-01

    The bacterial phosphotransferase system (PTS) couples phosphoryl transfer, via a series of bimolecular protein–protein interactions, to sugar transport across the membrane. The multitude of complexes in the PTS provides a paradigm for studying protein interactions, and for understanding how the same binding surface can specifically recognize a diverse array of targets. Fifteen years of work aimed at solving the solution structures of all soluble protein–protein complexes of the PTS has served as a test bed for developing NMR and integrated hybrid approaches to study larger complexes in solution and to probe transient, spectroscopically invisible states, including encounter complexes. We reviewmore » these approaches, highlighting the problems that can be tackled with these methods, and summarize the current findings on protein interactions.« less

  10. 21 CFR 173.170 - Aminoglycoside 3′-phospho-trans-ferase II.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.170 Aminoglycoside 3′-phospho... prescribed conditions: (a) The food additive is the enzyme aminoglycoside 3′-phosphotransferase II (CAS Reg...

  11. 21 CFR 173.170 - Aminoglycoside 3′-phospho-trans-ferase II.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.170 Aminoglycoside 3′-phospho... prescribed conditions: (a) The food additive is the enzyme aminoglycoside 3′-phosphotransferase II (CAS Reg...

  12. 21 CFR 173.170 - Aminoglycoside 3′-phospho-trans-ferase II.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.170 Aminoglycoside 3′-phospho... prescribed conditions: (a) The food additive is the enzyme aminoglycoside 3′-phosphotransferase II (CAS Reg...

  13. The phosphoenolpyruvate:sugar phosphotransferase system is involved in sensitivity to the glucosylated bacteriocin sublancin.

    PubMed

    Garcia De Gonzalo, C V; Denham, E L; Mars, R A T; Stülke, J; van der Donk, W A; van Dijl, J M

    2015-11-01

    The mode of action of a group of glycosylated antimicrobial peptides known as glycocins remains to be elucidated. In the current study of one glycocin, sublancin, we identified the phosphoenolpyruvate:sugar phosphotransferase system (PTS) of Bacillus species as a key player in bacterial sensitivity. Sublancin kills several Gram-positive bacteria, such as Bacillus species and Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA). Unlike other classes of bacteriocins for which the PTS is involved in their mechanism of action, we show that the addition of PTS-requiring sugars leads to increased resistance rather than increased sensitivity, suggesting that sublancin has a distinct mechanism of action. Collectively, our present mutagenesis and genomic studies demonstrate that the histidine-containing phosphocarrier protein (HPr) and domain A of enzyme II (PtsG) in particular are critical determinants for bacterial sensitivity to sublancin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Rifampin phosphotransferase is an unusual antibiotic resistance kinase

    PubMed Central

    Stogios, Peter J.; Cox, Georgina; Spanogiannopoulos, Peter; Pillon, Monica C.; Waglechner, Nicholas; Skarina, Tatiana; Koteva, Kalinka; Guarné, Alba; Savchenko, Alexei; Wright, Gerard D.

    2016-01-01

    Rifampin (RIF) phosphotransferase (RPH) confers antibiotic resistance by conversion of RIF and ATP, to inactive phospho-RIF, AMP and Pi. Here we present the crystal structure of RPH from Listeria monocytogenes (RPH-Lm), which reveals that the enzyme is comprised of three domains: two substrate-binding domains (ATP-grasp and RIF-binding domains); and a smaller phosphate-carrying His swivel domain. Using solution small-angle X-ray scattering and mutagenesis, we reveal a mechanism where the swivel domain transits between the spatially distinct substrate-binding sites during catalysis. RPHs are previously uncharacterized dikinases that are widespread in environmental and pathogenic bacteria. These enzymes are members of a large unexplored group of bacterial enzymes with substrate affinities that have yet to be fully explored. Such an enzymatically complex mechanism of antibiotic resistance augments the spectrum of strategies used by bacteria to evade antimicrobial compounds. PMID:27103605

  15. [Use of the hygromycin phosphotransferase gene as the dominant selective marker for Chlamydomonas reinhardtii transformation].

    PubMed

    Butanaev, A M

    1994-01-01

    The hygromycin phosphotransferase gene (hpt) from E. coli under the control of the SV40 early promoter was used as a dominant selectable marker for transformation of Chlamydomonas reinhardtii. Cells were transformed by electroporation (pulse length, 2 ms, field strength, 1 kV/cm). The culture growth phase was a crucial parameter for transformation (optimal density approximately 10(6) cells/ml). It was possible to obtain approximately 10(3) Hyg-resistant colonies under these conditions. Foreign DNA integrated into the Chlamydomonas genome was maintained for at least 8 months but the Hyg-resistant phenotype of the transformed clones was unstable. The frequency of codon usage in the hpt gene was compared with the one in Chlamydomonas nuclear genes. It is supposed that highly biased codon usage in Chlamydomonas does not preclude expression. Advantages of this selection system for studying Chlamydomonas transformation by heterologous genes are discussed.

  16. Agrobacterium-mediated transformation of protocorm-like bodies in Cymbidium.

    PubMed

    Chin, Dong Poh; Mishiba, Kei-ichiro; Mii, Masahiro

    2007-06-01

    Genetically transformed plants of Cymbidium were regenerated after cocultivating protocorm-like bodies (PLB) with Agrobacterium tumefaciens strain EHA101 (pIG121Hm) that harbored genes for beta-glucuronidase (gus), hygromycin phosphotransferase (hpt) and neomycin phosphotransferase II (nptII). PLB of three genotypes maintained in liquid new Dogashima medium (NDM), were subjected to transformation experiments. The PLB inoculated with Agrobacterium produced secondary PLB, 4 weeks after transfer onto 2.5 g L(-1) gellan gum-solidified NDM containing 10 g L(-1) sucrose, 20 mg L(-1) hygromycin and 40 mg L(-1) meropenem. Transformation efficiency was affected by genotype and the presence of acetosyringone during cocultivation. The highest transformation efficiency was obtained when PLB from the genotype L4 were infected and cocultivated with Agrobacterium on medium containing 100 muM acetosyringone. Transformation of the hygromycin-resistant plantlets regenerated from different sites of inoculated PLB was confirmed by histochemical GUS assay, PCR analysis and Southern blot hybridization.

  17. Enzyme II/sup Mtl/ of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: identification of the activity-linked cysteine on the mannitol carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pas, H.H.; Robillard, G.T.

    1988-07-26

    The cysteine of the membrane-bound mannitol-specific enzyme II (EII/sup Mtl/) of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system have been labeled with 4-vinylpyridine. After proteolytic breakdown and reversed-phase HPLC, the peptides containing cysteines 110, 384, and 571 could be identified. N-Ethylmaleimide (NEM) treatment of the native unphosphorylated enzyme results in incorporation of one NEM label per molecule and loss of enzymatic activity. NEM treatment and inactivation prevented 4-vinylpyridine incorporation into the Cys-384-containing peptide, identifying this residue as the activity-linked cysteine. Both oxidation and phosphorylation of the native enzyme protected the enzyme against NEM labeling of Cys-384. Positive identification of the activity-linkedmore » cysteine was accomplished by inactivation with (/sup 14/C)iodoacetamide, proteolytic fragmentation, isolation of the peptide, and amino acid sequencing.« less

  18. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia.

    PubMed

    Smith, Clyde A; Toth, Marta; Bhattacharya, Monolekha; Frase, Hilary; Vakulenko, Sergei B

    2014-06-01

    The bifunctional acetyltransferase(6')-Ie-phosphotransferase(2'')-Ia [AAC(6')-Ie-APH(2'')-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2'')-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2'')-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2'')-IIa and APH(2'')-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2'')-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2'')-IIIa enzyme. In APH(2'')-Ia this GTP selectivity is governed by the presence of a `gatekeeper' residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2'')-Ia into a dual-specificity enzyme.

  19. A bifunctional aminoglycoside acetyltransferase/phosphotransferase conferring tobramycin resistance provides an efficient selectable marker for plastid transformation.

    PubMed

    Tabatabaei, Iman; Ruf, Stephanie; Bock, Ralph

    2017-02-01

    A new selectable marker gene for stable transformation of the plastid genome was developed that is similarly efficient as the aadA, and produces no background of spontaneous resistance mutants. More than 25 years after its development for Chlamydomonas and tobacco, the transformation of the chloroplast genome still represents a challenging technology that is available only in a handful of species. The vast majority of chloroplast transformation experiments conducted thus far have relied on a single selectable marker gene, the spectinomycin resistance gene aadA. Although a few alternative markers have been reported, the aadA has remained unrivalled in efficiency and is, therefore, nearly exclusively used. The development of new marker genes for plastid transformation is of crucial importance to all efforts towards extending the species range of the technology as well as to those applications in basic research, biotechnology and synthetic biology that involve the multistep engineering of plastid genomes. Here, we have tested a bifunctional resistance gene for its suitability as a selectable marker for chloroplast transformation. The bacterial enzyme aminoglycoside acetyltransferase(6')-Ie/aminoglycoside phosphotransferase(2″)-Ia possesses an N-terminal acetyltransferase domain and a C-terminal phosphotransferase domain that can act synergistically and detoxify aminoglycoside antibiotics highly efficiently. We report that, in combination with selection for resistance to the aminoglycoside tobramycin, the aac(6')-Ie/aph(2″)-Ia gene represents an efficient marker for plastid transformation in that it produces similar numbers of transplastomic lines as the spectinomycin resistance gene aadA. Importantly, no spontaneous antibiotic resistance mutants appear under tobramycin selection.

  20. New enzymes from environmental cassette arrays: Functional attributes of a phosphotransferase and an RNA-methyltransferase

    PubMed Central

    Nield, Blair S.; Willows, Robert D.; Torda, Andrew E.; Gillings, Michael R.; Holmes, Andrew J.; Nevalainen, K.M. Helena; Stokes, H.W.; Mabbutt, Bridget C.

    2004-01-01

    By targeting gene cassettes by polymerase chain reaction (PCR) directly from environmentally derived DNA, we are able to amplify entire open reading frames (ORFs) independently of prior sequence knowledge. Approximately 10% of the mobile genes recovered by these means can be attributed to known protein families. Here we describe the characterization of two ORFs which show moderate homology to known proteins: (1) an aminoglycoside phosphotransferase displaying 25% sequence identity with APH(7″) from Streptomyces hygroscopicus, and (2) an RNA methyltransferase sharing 25%–28% identity with a group of recently defined bacterial RNA methyltransferases distinct from the SpoU enzyme family. Our novel genes were expressed as recombinant products and assayed for appropriate enzyme activity. The aminoglycoside phosphotransferase displayed ATPase activity, consistent with the presence of characteristic Mg2+-binding residues. Unlike related APH(4) or APH(7″) enzymes, however, this activity was not enhanced by hygromycin B or kanamycin, suggesting the normal substrate to be a different aminoglycoside. The RNA methyltransferase contains sequence motifs of the RNA methyltransferase superfamily, and our recombinant version showed methyltransferase activity with RNA. Our data confirm that gene cassettes present in the environment encode folded enzymes with novel sequence variation and demonstrable catalytic activity. Our PCR approach (cassette PCR) may be used to identify a diverse range of ORFs from any environmental sample, as well as to directly access the gene pool found in mobile gene cassettes commonly associated with integrons. This gene pool can be accessed from both cultured and uncultured microbial samples as a source of new enzymes and proteins. PMID:15152095

  1. New enzymes from environmental cassette arrays: functional attributes of a phosphotransferase and an RNA-methyltransferase.

    PubMed

    Nield, Blair S; Willows, Robert D; Torda, Andrew E; Gillings, Michael R; Holmes, Andrew J; Nevalainen, K M Helena; Stokes, H W; Mabbutt, Bridget C

    2004-06-01

    By targeting gene cassettes by polymerase chain reaction (PCR) directly from environmentally derived DNA, we are able to amplify entire open reading frames (ORFs) independently of prior sequence knowledge. Approximately 10% of the mobile genes recovered by these means can be attributed to known protein families. Here we describe the characterization of two ORFs which show moderate homology to known proteins: (1) an aminoglycoside phosphotransferase displaying 25% sequence identity with APH(7") from Streptomyces hygroscopicus, and (2) an RNA methyltransferase sharing 25%-28% identity with a group of recently defined bacterial RNA methyltransferases distinct from the SpoU enzyme family. Our novel genes were expressed as recombinant products and assayed for appropriate enzyme activity. The aminoglycoside phosphotransferase displayed ATPase activity, consistent with the presence of characteristic Mg(2+)-binding residues. Unlike related APH(4) or APH(7") enzymes, however, this activity was not enhanced by hygromycin B or kanamycin, suggesting the normal substrate to be a different aminoglycoside. The RNA methyltransferase contains sequence motifs of the RNA methyltransferase superfamily, and our recombinant version showed methyltransferase activity with RNA. Our data confirm that gene cassettes present in the environment encode folded enzymes with novel sequence variation and demonstrable catalytic activity. Our PCR approach (cassette PCR) may be used to identify a diverse range of ORFs from any environmental sample, as well as to directly access the gene pool found in mobile gene cassettes commonly associated with integrons. This gene pool can be accessed from both cultured and uncultured microbial samples as a source of new enzymes and proteins.

  2. Phosphoenolpyruvate-dependent maltose:phosphotransferase activity in Fusobacterium mortiferum ATCC 25557: specificity, inducibility, and product analysis.

    PubMed Central

    Robrish, S A; Fales, H M; Gentry-Weeks, C; Thompson, J

    1994-01-01

    Phosphoenolypyruvate-dependent maltose:phosphotransferase activity was induced in cells of Fusobacterium mortiferum ATCC 25557 during growth on maltose. The disaccharide was rapidly metabolized by washed cells maintained under anaerobic conditions, but fermentation ceased immediately upon exposure of the cell suspension to air. Coincidentally, high levels of a phosphorylated derivative accumulated within the cells. Chemical and enzymatic analyses, in conjunction with data from 1H, 13C, and 31P nuclear magnetic resonance spectroscopy, established the structure of the purified compound as 6-O-phosphoryl-alpha-D-glucopyranosyl-(1-4)-D-glucose (maltose 6-phosphate). A method for the preparation of substrate amounts of this commercially unavailable disaccharide phosphate is described. Permeabilized cells of F. mortiferum catalyzed the phosphoenolpyruvate-dependent phosphorylation of maltose under aerobic conditions. However, the hydrolysis of maltose 6-phosphate (to glucose 6-phosphate and glucose) by permeabilized cells or cell-free preparations required either an anaerobic environment or addition of dithiothreitol to aerobic reaction mixtures. The first step in dissimilation of the phosphorylated disaccharide appears to be catalyzed by an oxygen-sensitive maltose 6-phosphate hydrolase. Cells of F. mortiferum, grown previously on maltose, fermented a variety of alpha-linked glucosides, including maltose, turanose, palatinose, maltitol, alpha-methylglucoside, trehalose, and isomaltose. Conversely, cells grown on the separate alpha-glucosides also metabolized maltose. For this anaerobic pathogen, we suggest that the maltose:phosphotransferase and maltose 6-phosphate hydrolase catalyze the phosphorylative translocation and cleavage not only of maltose but also of structurally analogous alpha-linked glucosides. Images PMID:8195080

  3. Lactose metabolism by Streptococcus mutans: evidence for induction of the tagatose 6-phosphate pathway.

    PubMed Central

    Hamilton, I R; Lebtag, H

    1979-01-01

    Growth on lactose by strains of Streptococcus mutans resulted in the induction of the lactose-phosphoenolpyruvate-phosphotransferase system, phospho-beta-galactosidase, and the enzymes of the tagatose 6-phosphate pathway. PMID:230175

  4. Agrobacterium-mediated transformation of Fraxinus pennsylvanica hypocotyls and plant regeneration

    Treesearch

    Ningxia Du; Paula M. Pijut

    2009-01-01

    A genetic transformation protocol for green ash (Fraxinus pennsylvanica) hypocotyl explants was developed. Green ash hypocotyls were transformed using Agrobacterium tumefaciens strain EHA105 harboring binary vector pq35GR containing the neomycin phosphotransferase (nptII) and β-glucuronidase (GUS) fusion...

  5. Dominant selectable markers for Penicillium spp. transformation and gene function studies

    USDA-ARS?s Scientific Manuscript database

    Penicillium spp. has been genetically manipulated and gene function studies have utilized single gene deletion strains for phenotypic analysis. Fungal transformation experiments have relied on hygromycin and hygromycin phosphotransferase (hph) as the main dominant selectable marker (DSM) system in P...

  6. Both IIC and IID Components of Mannose Phosphotransferase System Are Involved in the Specific Recognition between Immunity Protein PedB and Bacteriocin-Receptor Complex.

    PubMed

    Zhou, Wanli; Wang, Guohong; Wang, Chunmei; Ren, Fazheng; Hao, Yanling

    2016-01-01

    Upon exposure to exogenous pediocin-like bacteriocins, immunity proteins specifically bind to the target receptor of the mannose phosphotransferase system components (man-PTS IIC and IID), therefore preventing bacterial cell death. However, the specific recognition of immunity proteins and its associated target receptors remains poorly understood. In this study, we constructed hybrid receptors to identify the domains of IIC and/or IID recognized by the immunity protein PedB, which confers immunity to pediocin PA-1. Using Lactobacillus plantarum man-PTS EII mutant W903, the IICD components of four pediocin PA-1-sensitive strains (L. plantarum WQ0815, Leuconostoc mesenteroides 05-43, Lactobacillus salivarius REN and Lactobacillus acidophilus 05-172) were respectively co-expressed with the immunity protein PedB. Well-diffusions assays showed that only the complex formed by LpIICD from L. plantarum WQ0815 with pediocin PA-1 could be recognized by PedB. In addition, a two-step PCR approach was used to construct hybrid receptors by combining LpIIC or LpIID recognized by PedB with the other three heterologous IID or IIC compounds unrecognized by PedB, respectively. The results showed that all six hybrid receptors were recognized by pediocin PA-1. However, when IIC or IID of L. plantarum WQ0815 was replaced with any corresponding IIC or IID component from L. mesenteroides 05-43, L. salivarius REN and L. acidophilus 05-172, all the hybrid receptors could not be recognized by PedB. Taken altogether, we concluded that both IIC and IID components of the mannose phosphotransferase system play an important role in the specific recognition between the bacteriocin-receptor complex and the immunity protein PedB.

  7. Fructose Degradation in the Haloarchaeon Haloferax volcanii Involves a Bacterial Type Phosphoenolpyruvate-Dependent Phosphotransferase System, Fructose-1-Phosphate Kinase, and Class II Fructose-1,6-Bisphosphate Aldolase

    PubMed Central

    Pickl, Andreas; Johnsen, Ulrike

    2012-01-01

    The halophilic archaeon Haloferax volcanii utilizes fructose as a sole carbon and energy source. Genes and enzymes involved in fructose uptake and degradation were identified by transcriptional analyses, deletion mutant experiments, and enzyme characterization. During growth on fructose, the gene cluster HVO_1495 to HVO_1499, encoding homologs of the five bacterial phosphotransferase system (PTS) components enzyme IIB (EIIB), enzyme I (EI), histidine protein (HPr), EIIA, and EIIC, was highly upregulated as a cotranscript. The in-frame deletion of HVO_1499, designated ptfC (ptf stands for phosphotransferase system for fructose) and encoding the putative fructose-specific membrane component EIIC, resulted in a loss of growth on fructose, which could be recovered by complementation in trans. Transcripts of HVO_1500 (pfkB) and HVO_1494 (fba), encoding putative fructose-1-phosphate kinase (1-PFK) and fructose-1,6-bisphosphate aldolase (FBA), respectively, as well as 1-PFK and FBA activities were specifically upregulated in fructose-grown cells. pfkB and fba knockout mutants did not grow on fructose, whereas growth on glucose was not inhibited, indicating the functional involvement of both enzymes in fructose catabolism. Recombinant 1-PFK and FBA obtained after homologous overexpression were characterized as having kinetic properties indicative of functional 1-PFK and a class II type FBA. From these data, we conclude that fructose uptake in H. volcanii involves a fructose-specific PTS generating fructose-1-phosphate, which is further converted via fructose-1,6-bisphosphate to triose phosphates by 1-PFK and FBA. This is the first report of the functional involvement of a bacterial-like PTS and of class II FBA in the sugar metabolism of archaea. PMID:22493022

  8. Solution structure of the phosphoryl transfer complex between the cytoplasmic A domain of the mannitol transporter IIMannitol and HPr of the Escherichia coli phosphotransferase system.

    PubMed

    Cornilescu, Gabriel; Lee, Byeong Ryong; Cornilescu, Claudia C; Wang, Guangshun; Peterkofsky, Alan; Clore, G Marius

    2002-11-01

    The solution structure of the complex between the cytoplasmic A domain (IIA(Mtl)) of the mannitol transporter II(Mannitol) and the histidine-containing phosphocarrier protein (HPr) of the Escherichia coli phosphotransferase system has been solved by NMR, including the use of conjoined rigid body/torsion angle dynamics, and residual dipolar couplings, coupled with cross-validation, to permit accurate orientation of the two proteins. A convex surface on HPr, formed by helices 1 and 2, interacts with a complementary concave depression on the surface of IIA(Mtl) formed by helix 3, portions of helices 2 and 4, and beta-strands 2 and 3. The majority of intermolecular contacts are hydrophobic, with a small number of electrostatic interactions at the periphery of the interface. The active site histidines, His-15 of HPr and His-65 of IIA(Mtl), are in close spatial proximity, and a pentacoordinate phosphoryl transition state can be readily accommodated with no change in protein-protein orientation and only minimal perturbations of the backbone immediately adjacent to the histidines. Comparison with two previously solved structures of complexes of HPr with partner proteins of the phosphotransferase system, the N-terminal domain of enzyme I (EIN) and enzyme IIA(Glucose) (IIA(Glc)), reveals a number of common features despite the fact that EIN, IIA(Glc), and IIA(Mtl) bear no structural resemblance to one another. Thus, entirely different underlying structural elements can form binding surfaces for HPr that are similar in terms of both shape and residue composition. These structural comparisons illustrate the roles of surface and residue complementarity, redundancy, incremental build-up of specificity and conformational side chain plasticity in the formation of transient specific protein-protein complexes in signal transduction pathways.

  9. An O-Phosphotransferase Catalyzes Phosphorylation of Hygromycin A in the Antibiotic-Producing Organism Streptomyces hygroscopicus▿

    PubMed Central

    Dhote, Vidya; Gupta, Shuchi; Reynolds, Kevin A.

    2008-01-01

    The antibiotic hygromycin A (HA) binds to the 50S ribosomal subunit and inhibits protein synthesis in gram-positive and gram-negative bacteria. The HA biosynthetic gene cluster in Streptomyces hygroscopicus NRRL 2388 contains 29 open reading frames, which have been assigned putative roles in biosynthesis, pathway regulation, and self-resistance. The hyg21 gene encodes an O-phosphotransferase with a proposed role in self-resistance. We observed that insertional inactivation of hyg21 in S. hygroscopicus leads to a greater than 90% decrease in HA production. The wild type and the hyg21 mutant were comparably resistant to HA. Using Escherichia coli as a heterologous host, we expressed and purified Hyg21. Kinetic analyses revealed that the recombinant protein catalyzes phosphorylation of HA (Km = 30 ± 4 μM) at the C-2‴ position of the fucofuranose ring in the presence of ATP (Km = 200 ± 20 μM) or GTP (Km = 350 ± 60 μM) with a kcat of 2.2 ± 0.1 min−1. The phosphorylated HA is inactive against HA-sensitive ΔtolC E. coli and Streptomyces lividans. Hyg21 also phosphorylates methoxyhygromycin A and desmethylenehygromycin A with kcat and Km values similar to those observed with HA. Phosphorylation of the naturally occurring isomers of 5‴-dihydrohygromycin A and 5‴-dihydromethoxyhygromycin A was about 12 times slower than for the corresponding non-natural isomers. These studies demonstrate that Hyg21 is an O-phosphotransferase with broad substrate specificity, tolerating changes in the aminocyclitol moiety more than in the fucofuranose moiety, and that phosphorylation by Hyg21 is one of several possible mechanisms of self-resistance in S. hygroscopicus NRRL 2388. PMID:18644964

  10. An O-phosphotransferase catalyzes phosphorylation of hygromycin A in the antibiotic-producing organism Streptomyces hygroscopicus.

    PubMed

    Dhote, Vidya; Gupta, Shuchi; Reynolds, Kevin A

    2008-10-01

    The antibiotic hygromycin A (HA) binds to the 50S ribosomal subunit and inhibits protein synthesis in gram-positive and gram-negative bacteria. The HA biosynthetic gene cluster in Streptomyces hygroscopicus NRRL 2388 contains 29 open reading frames, which have been assigned putative roles in biosynthesis, pathway regulation, and self-resistance. The hyg21 gene encodes an O-phosphotransferase with a proposed role in self-resistance. We observed that insertional inactivation of hyg21 in S. hygroscopicus leads to a greater than 90% decrease in HA production. The wild type and the hyg21 mutant were comparably resistant to HA. Using Escherichia coli as a heterologous host, we expressed and purified Hyg21. Kinetic analyses revealed that the recombinant protein catalyzes phosphorylation of HA (K(m) = 30 +/- 4 microM) at the C-2''' position of the fucofuranose ring in the presence of ATP (K(m) = 200 +/- 20 microM) or GTP (K(m) = 350 +/- 60 microM) with a k(cat) of 2.2 +/- 0.1 min(-1). The phosphorylated HA is inactive against HA-sensitive Delta tolC E. coli and Streptomyces lividans. Hyg21 also phosphorylates methoxyhygromycin A and desmethylenehygromycin A with k(cat) and K(m) values similar to those observed with HA. Phosphorylation of the naturally occurring isomers of 5'''-dihydrohygromycin A and 5'''-dihydromethoxyhygromycin A was about 12 times slower than for the corresponding non-natural isomers. These studies demonstrate that Hyg21 is an O-phosphotransferase with broad substrate specificity, tolerating changes in the aminocyclitol moiety more than in the fucofuranose moiety, and that phosphorylation by Hyg21 is one of several possible mechanisms of self-resistance in S. hygroscopicus NRRL 2388.

  11. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: purification and characterization of the mannitol-specific enzyme III/sup mtl/ of Staphylococcus aureus and Staphylococcus carnosus and homology with the enzyme II/sup mtl/ of Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiche, B.; Frank, R.; Deutscher, J.

    1988-08-23

    Enzyme III/sup mtl/ is part of the mannitol phosphotransferase system of Staphylococcus aureus and Staphylococcus carnosus and is phosphorylated by phosphoenolpyruvate in a reaction sequence requiring enzyme I (phosphoenolpyruvate-protein phosphotransferase) and the histidine-containing protein HPr. In this paper, the authors report the isolation of III/sup mtl/ from both S. aureus and S. carnosus and the characterization of the active center. After phosphorylation of III/sup mtl/ with (/sup 32/P)PEP, enzyme I, and HPr, the phosphorylated protein was cleaved with endoproteinase GLu(C). The amino acid sequence of the S. aureus peptide carrying the phosphoryl group was found to be Gln-Val-Val-Ser-Thr-Phe-Met-Gly-Asn-Gly-Leu-Ala-Ile-Pro-His-Gly-Thr-Asp-Asp. The correspondingmore » peptide from S. carnosus shows an equal sequence except that the first residue is Ala instead of Gln. These peptides both contain a single histidyl residue which they assume to carry the phosphoryl group. All proteins of the PTS so far investigated indeed carry the phosphoryl group attached to a histidyl residue. According to sodium dodecyl sulfate gels, the molecular weight of the III/sup mtl/ proteins was found to be 15,000. They have also determined the N-terminal sequence of both proteins. Comparison of the III/sup mtl/ peptide sequences and the C-terminal part of the enzyme II/sup mtl/ of Escherichia coli reveals considerable sequence homology, which supports the suggestion that II/sup mtl/ of E. coli is a fusion protein of a soluble III protein with a membrane-bound enzyme II.« less

  12. Phosphatidylinositol-specific phospholipase C from Bacillus cereus combines intrinsic phosphotransferase and cyclic phosphodiesterase activities: A sup 31 P NMR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shashidhar, M.S.; Kuppe, A.; Volwerk, J.J.

    1990-09-04

    The inositol phosphate products formed during the cleavage of phosphatidylinositol by phosphatidylinositol-specific phospholipase C from Bacillus cereus were analyzed by {sup 31}P NMR. {sup 31}P NMR spectroscopy can distinguish between the inositol phosphate species and phosphatidylinositol. Chemical shift values (with reference to phosphoric acid) observed are {minus}0.41, 3.62, 4.45, and 16.30 ppm for phosphatidylinositol, myo-inositol 1-monophosphate, myo-inositol 2-monophosphate, and myo-inositol 1,2-cyclic monophosphate, respectively. It is shown that under a variety of experimental conditions this phospholipase C cleaves phosphatidylinositol via an intramolecular phosphotransfer reaction producing diacylglycerol and D-myo-inositol 1,2-cyclic monophosphate. The authors also report the new and unexpected observation that themore » phosphatidylinositol-specific phospholipase C from B. cereus is able to hydrolyze the inositol cyclic phosphate to form D-myo-inositol 1-monophosphate. The enzyme, therefore, possesses phosphotransferase and cyclic phosphodiesterase activities. The second reaction requires thousandfold higher enzyme concentrations to be observed by {sup 31}P NMR. This reaction was shown to be regiospecific in that only the 1-phosphate was produced and stereospecific in that only D-myo-inositol 1,2-cyclic monophosphate was hydrolyzed. Inhibition with a monoclonal antibody specific for the B.cereus phospholipase C showed that the cyclic phosphodiesterase activity is intrinsic to the bacterial enzyme. They propose a two-step mechanism for the phosphatidyl-inositol-specific phospholipase C from B. cereus involving sequential phosphotransferase and cyclic phosphodiesterase activities. This mechanism bears a resemblance to the well-known two-step mechanism of pancreatic ribonuclease, RNase A.« less

  13. Purification, crystallization and preliminary X-ray analysis of aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrnes, Laura J.; Badarau, Adriana; Vakulenko, Sergei B.

    2008-02-01

    APH(2′′)-Ic is an enzyme that is responsible for high-level gentamicin resistance in E. gallinarum isolates. Crystals of the wild-type enzyme and three mutants have been prepared and a complete X-ray diffraction data set was collected to 2.15 Å resolution from an F108L crystal. Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and threemore » mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2′′)-Ic variants were crystallized in the presence of 14–20%(w/v) PEG 4000, 0.25 M MgCl{sub 2}, 0.1 M Tris–HCl pH 8.5 and 1 mM Mg{sub 2}GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 Å, β = 108.8°. X-ray diffraction data were collected to approximately 2.15 Å resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA.« less

  14. QUANTIFICATION OF TRANSGENIC PLANT MARKER GENE PERSISTENCE IN THE FIELD

    EPA Science Inventory

    Methods were developed to monitor persistence of genomic DNA in decaying plants in the field. As a model, we used recombinant neomycin phosphotransferase II (rNPT-II) marker genes present in genetically engineered plants. Polymerase chain reaction (PCR) primers were designed, com...

  15. A Novel Yeast Genomics Method for Identifying New Breast Cancer Susceptibility

    DTIC Science & Technology

    2005-05-01

    selectable marker and tracing this marker through several passages in nonselective medium. The selectable marker will be the hygromycin phosphotransferase ... hygromycin and sensitivity to (32), thereby providing both positive and negative selectivity. The assay involved measurement of the frequency of gancyclovir

  16. Large-scale purification and acute toxicity of hygromycin B phosphotransferase.

    PubMed

    Zhuo, Qin; Piao, Jian-Hua; Tian, Yuan; Xu, Jie; Yang, Xiao-Guang

    2009-02-01

    To provide the acute toxicity data of hygromycin B phosphotransferase (HPT) using recombinant protein purified from E. coli. Recombinant HPT protein was expressed and purified from E. coli. To exclude the potential adverse effect of bacteria protein in recombinant HPT protein, bacterial control plasmid was constructed, and bacteria control protein was extracted and prepared as recombinant HPT protein. One hundred mice, randomly assigned to 5 groups, were administrated 10 g/kg, 5 g/kg, or 1 g/kg body weight of HPT or 5 g/kg body weight of bacterial control protein or phosphate-buffered saline (PBS) respectively by oral gavage. All animals survived with no significant change in body weight gain throughout the study. Macroscopic necropsy examination on day 15 revealed no gross pathological lesions in any of the animals. The maximum tolerated dose (MTD) of HPT was 10 g/kg body weight in mice and could be regarded as nontoxic. HPT protein does not have any safety problems to human health.

  17. Directed evolution for thermostabilization of a hygromycin B phosphotransferase from Streptomyces hygroscopicus.

    PubMed

    Sugimoto, Naohisa; Takakura, Yasuaki; Shiraki, Kentaro; Honda, Shinya; Takaya, Naoki; Hoshino, Takayuki; Nakamura, Akira

    2013-01-01

    To obtain a selection marker gene functional in a thermophilic bacterium, Thermus thermophilus, an in vivo-directed evolutionary strategy was conducted on a hygromycin B phosphotransferase gene (hyg) from Streptomyces hygroscopicus. The expression of wild-type hyg in T. thermophilus provided hygromycin B (HygB) resistance up to 60 °C. Through selection of mutants showing HygB resistance at higher temperatures, eight amino acid substitutions and the duplication of three amino acids were identified. A variant containing seven substitutions and the duplication (HYG10) showed HygB resistance at a highest temperature of 74 °C. Biochemical and biophysical analyses of recombinant HYG and HYG10 revealed that HYG10 was in fact thermostabilized. Modeling of the three-dimensional structure of HYG10 suggests the possible roles of the various substitutions and the duplication on thermostabilization, of which three substitutions and the duplication located at the enzyme surface suggested that these mutations made the enzyme more hydrophilic and provided increased stability in aqueous solution.

  18. Genetic Engineering of the Phosphocarrier Protein NPr of the Escherichia coli Phosphotransferase System Selectively Improves Sugar Uptake Activity*

    PubMed Central

    Lopez-de los Santos, Yossef; Chan, Henry; Cantu, Vito A.; Rettner, Rachael; Sanchez, Filiberto; Zhang, Zhongge; Saier, Milton H.; Soberon, Xavier

    2012-01-01

    The Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system (PTS) in prokaryotes mediates the uptake and phosphorylation of its numerous substrates through a phosphoryl transfer chain where a phosphoryl transfer protein, HPr, transfers its phosphoryl group to any of several sugar-specific Enzyme IIA proteins in preparation for sugar transport. A phosphoryl transfer protein of the PTS, NPr, homologous to HPr, functions to regulate nitrogen metabolism and shows virtually no enzymatic cross-reactivity with HPr. Here we describe the genetic engineering of a “chimeric” HPr/NPr protein, termed CPr14 because 14 amino acid residues of the interface were replaced. CPr14 shows decreased activity with most PTS permeases relative to HPr, but increases activity with the broad specificity mannose permease. The results lead to the proposal that HPr is not optimal for most PTS permeases but instead represents a compromise with suboptimal activity for most PTS permeases. The evolutionary implications are discussed. PMID:22767600

  19. Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the Phosphotransferase System.

    PubMed

    McCloskey, Douglas; Xu, Sibei; Sandberg, Troy E; Brunk, Elizabeth; Hefner, Ying; Szubin, Richard; Feist, Adam M; Palsson, Bernhard O

    2018-06-15

    Aromatic metabolites provide the backbone for numerous industrial and pharmaceutical compounds of high value. The Phosphotransferase System (PTS) is common to many bacteria, and is the primary mechanism for glucose uptake by Escherichia coli. The PTS was removed to conserve phosphoenolpyruvate (pep), which is a precursor for aromatic metabolites and consumed by the PTS, for aromatic metabolite production. Replicate adaptive laboratory evolution (ALE) of PTS and detailed omics data sets collected revealed that the PTS bridged the gap between respiration and fermentation, leading to distinct high fermentative and high respiratory rate phenotypes. It was also found that while all strains retained high levels of aromatic amino acid (AAA) biosynthetic precursors, only one replicate from the high glycolytic clade retained high levels of intracellular AAAs. The fast growth and high AAA precursor phenotypes could provide a starting host for cell factories targeting the overproduction aromatic metabolites. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The food additive aminoglycoside 3′-phosphotransferase II may be safely used in the development of...

  1. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The food additive aminoglycoside 3′-phosphotransferase II may be safely used in the development of...

  2. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The food additive aminoglycoside 3′-phosphotransferase II may be safely used in the development of...

  3. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The food additive aminoglycoside 3′-phosphotransferase II may be safely used in the development of...

  4. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The food additive aminoglycoside 3′-phosphotransferase II may be safely used in the development of...

  5. Enzymatic analysis of a thermostabilized mutant of an Escherichia coli hygromycin B phosphotransferase.

    PubMed

    Nakamura, Akira; Takakura, Yasuaki; Sugimoto, Naohisa; Takaya, Naoki; Shiraki, Kentaro; Hoshino, Takayuki

    2008-09-01

    An Escherichia coli hygromycin B phosphotransferase (HPH) and its thermostabilized mutant protein, HPH5, containing five amino acid substitutions, D20G, A118V, S225P, Q226L, and T246A (Nakamura et al., J. Biosci. Bioeng., 100, 158-163 (2005)), obtained by an in vivo directed evolution procedure in Thermus thermophilus, were produced and purified from E. coli recombinants, and enzymatic comparisons were performed. The optimum temperatures for enzyme activity were 50 and 55 degrees C for HPH and HPH5 respectively, but the thermal stability of the enzyme activity and the temperature for protein denaturation of HPH5 increased, from 36 and 37.2 degrees C of HPH to 53 and 58.8 degrees C respectively. Specific activities and steady-state kinetics measured at 25 degrees C showed only slight differences between the two enzymes. From these results we concluded that HPH5 was thermostabilized at the protein level, and that the mutations introduced did not affect its enzyme activity, at least under the assay conditions.

  6. Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli

    PubMed Central

    Nishio, Yousuke; Usuda, Yoshihiro; Matsui, Kazuhiko; Kurata, Hiroyuki

    2008-01-01

    The phosphotransferase system (PTS) is the sugar transportation machinery that is widely distributed in prokaryotes and is critical for enhanced production of useful metabolites. To increase the glucose uptake rate, we propose a rational strategy for designing the molecular architecture of the Escherichia coli glucose PTS by using a computer-aided design (CAD) system and verified the simulated results with biological experiments. CAD supports construction of a biochemical map, mathematical modeling, simulation, and system analysis. Assuming that the PTS aims at controlling the glucose uptake rate, the PTS was decomposed into hierarchical modules, functional and flux modules, and the effect of changes in gene expression on the glucose uptake rate was simulated to make a rational strategy of how the gene regulatory network is engineered. Such design and analysis predicted that the mlc knockout mutant with ptsI gene overexpression would greatly increase the specific glucose uptake rate. By using biological experiments, we validated the prediction and the presented strategy, thereby enhancing the specific glucose uptake rate. PMID:18197177

  7. Structure and function of the mannitol permease of the Escherichia coli phosphotransferase sugar transport system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan, M.M.

    1988-01-01

    The mannitol permease, or mannitol enzyme II, is responsible for the phosphorylation and transmembrane transport of the hexitol mannitol via the phosphotransferase sugar transport system (PTS) in Escherichia coli. Neither the detailed molecular mechanisms by which this protein carries out these functions nor its three dimensional structure in the membrane are known. An in vivo selective radiolabeling system was used to study the enzyme's subunits interactions as they related to function, as well as its membrane topography, by polyacrylamide gel electrophoresis. The intramembrane topography of the mannitol enzyme II was investigated using proteases as probes of enzyme structure in themore » membrane. The enzyme was found to have two distinct domains, a very hydrophobic, membrane-bound, N-terminal domain, and a relatively hyprophilic C-terminal domain which protrudes into the cytoplasm. The membrane-bound domain was further dissected, and an extra-membrane loop region was identified using peptide-specific antibodies. The cytoplasmic domain was found to contain a site of covalent phosphorylation using (/sup 32/p)-labeled PEP, as well as the binding site for the phosphodonor HPr.« less

  8. Mutation of the ptsG Gene Results in Increased Production of Succinate in Fermentation of Glucose by Escherichia coli

    PubMed Central

    Chatterjee, Ranjini; Millard, Cynthia Sanville; Champion, Kathleen; Clark, David P.; Donnelly, Mark I.

    2001-01-01

    Escherichia coli NZN111 is blocked in the ability to grow fermentatively on glucose but gave rise spontaneously to a mutant that had this ability. The mutant carries out a balanced fermentation of glucose to give approximately 1 mol of succinate, 0.5 mol of acetate, and 0.5 mol of ethanol per mol of glucose. The causative mutation was mapped to the ptsG gene, which encodes the membrane-bound, glucose-specific permease of the phosphotransferase system, protein EIICBglc. Replacement of the chromosomal ptsG gene with an insertionally inactivated form also restored growth on glucose and resulted in the same distribution of fermentation products. The physiological characteristics of the spontaneous and null mutants were consistent with loss of function of the ptsG gene product; the mutants possessed greatly reduced glucose phosphotransferase activity and lacked normal glucose repression. Introduction of the null mutant into strains not blocked in the ability to ferment glucose also increased succinate production in those strains. This phenomenon was widespread, occurring in different lineages of E. coli, including E. coli B. PMID:11133439

  9. Sequence and expression of the genes for HPr (ptsH) and enzyme I (ptsI) of the phosphoenolpyruvate-dependent phosphotransferase transport system from Streptococcus mutans.

    PubMed Central

    Boyd, D A; Cvitkovitch, D G; Hamilton, I R

    1994-01-01

    We report the sequencing of a 2,242-bp region of the Streptococcus mutants NG5 genome containing the genes for ptsH and ptsI, which encode HPr and enzyme I (EI), respectively, of the phosphoenolpyruvate-dependent phosphotransferase transport system. The sequence was obtained from two cloned overlapping genomic fragments; one expresses HPr and a truncated EI, while the other expresses a full-length EI in Escherichia coli, as determined by Western immunoblotting. The ptsI gene appeared to be expressed from a region located in the ptsH gene. The S. mutans NG5 pts operon does not appear to be linked to other phosphotransferase transport system proteins as has been found in other bacteria. A positive fermentation pattern on MacConkey-glucose plates by an E. coli ptsI mutant harboring the S. mutans NG5 ptsI gene on a plasmid indicated that the S. mutans NG5 EI can complement a defect in the E. coli gene. This was confirmed by protein phosphorylation experiments with 32P-labeled phosphoenolpyruvate indicating phosphotransfer from the S. mutans NG5 EI to the E. coli HPr. Two forms of the cloned EI, both truncated to varying degrees in the C-terminal region, were inefficiently phosphorylated and unable to complement fully the ptsI defect in the E. coli mutant. The deduced amino acid sequence of HPr shows a high degree of homology, particularly around the active site, to the same protein from other gram-positive bacteria, notably, S. salivarius, and to a lesser extent with those of gram-negative bacteria. The deduced amino acid sequence of S. mutans NG5 EI also shares several regions of homology with other sequenced EIs, notably, with the region around the active site, a region that contains the only conserved cystidyl residue among the various proteins and which may be involved in substrate binding. Images PMID:8132321

  10. LMOf2365_0442 encoding for a fructose specific PTS permease IIA may Be required for virulence in L. monocytogenes Strain F2365

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes is a foodborne pathogen that causes listeriosis, which is a major public health concern due to the high fatality rate. The Phosphotransferase Transport System (PTS) is responsible for sugar transport. In previous studies, in-frame deletion mutants of a putative fructose-spec...

  11. Cloning and Molecular Analysis of a Mannitol Operon of Phosphoenolpyruvate-dependent Phosphotransferase (PTS) type From Vibrio cholerae O395

    PubMed Central

    Kumar, Sanath; Smith, Kenneth P.; Floyd, Jody L.; Varela, Manuel F.

    2010-01-01

    A putative mannitol operon of the phosphoenolpyruvate phosphotransferase (PTS) type was cloned from Vibrio cholerae O395 and its activity studied in Escherichia coli. The 3.9 kb operon comprising of three genes is organized as mtlADR. Based on the sequence analysis, these were identified as genes encoding a putative mannitol-specific enzyme IICBA (EIIMtl) component (MtlA), a mannitol-1-phosphate dehydrogenase (MtlD) and a mannitol operon repressor (MtlR). The transport of [3H]mannitol by the cloned mannitol operon in E. coli was 13.8±1.4 nmol/min/mg protein. The insertional inactivation of EIIMtl abolished mannitol and sorbitol transport in V. cholerae O395. Comparison of the mannitol utilization apparatus of V. cholerae with those of Gram-negative and Gram positive bacteria suggests highly conserved nature of the system. MtlA and MtlD exhibit 75% similarity with corresponding sequences of E. coli mannitol operon genes, while MtlR has 63% similarity with MtlR of E. coli. The cloning of V. cholerae mannitol utilization system in an E. coli background will help in elucidating the functional properties of this operon. PMID:21184218

  12. Optimization of Production Conditions for Protoplasts and Polyethylene Glycol-Mediated Transformation of Gaeumannomyces tritici.

    PubMed

    Wang, Mei; Zhang, Jie; Wang, Lanying; Han, Lirong; Zhang, Xing; Feng, Juntao

    2018-05-24

    Take-all, caused by Gaeumannomyces tritici , is one of the most important wheat root diseases worldwide, as it results in serious yield losses. In this study, G. tritici was transformed to express the hygromycin B phosphotransferase using a combined protoplast and polyethylene glycol (PEG)-mediated transformation technique. Based on a series of single-factor experimental results, three major factors-temperature, enzyme lysis time, and concentration of the lysing enzyme-were selected as the independent variables, which were optimized using the response surface methodology. A higher protoplast yield of 9.83 × 10⁷ protoplasts/mL was observed, and the protoplast vitality was also high, reaching 96.27% after optimization. Protoplasts were isolated under the optimal conditions, with the highest transformation frequency (46⁻54 transformants/μg DNA). Polymerase chain reaction and Southern blotting detection indicated that the genes of hygromycin phosphotransferase were successfully inserted into the genome of G. tritici . An optimised PEG-mediated protoplast transformation system for G. tritici was established. The techniques and procedures described will lay the foundation for establishing a good mutation library of G. tritici and could be used to transform other fungi.

  13. [Retroviral-mediated transfer of a hygromycin phosphotransferase-thymidine kinase fusion gene into human bladder carcinoma cell].

    PubMed

    Ye, C; Chen, S; Pei, X; Li, L; Feng, K

    1999-08-01

    To evaluate the therapeutic efficacy of retroviral-mediated hygromycin phosphotransferase-thymidine kinase fusion gene (HyTK)/GCV on human bladder carcinoma cell. A retroviral expression vector pL (HyTK) SN was constructed. By using FuGENE 6-mediated transfection and "ping-pong effect" technique, high-titer of retroviral supernatant was obtained and HyTK gene was transferred into EJ cells. A retroviral vector encoding, enhanced green fluorescent protein, EGFP was used to rapidly detect the transduction efficiency. Antitumor effects were observed after GCV treatment. In vitro experiments demonstrated the EJ cells transferred by HyTK gene were killed in the GCV treatment. Non-transduced parental cells were not sensitive to GCV, but they were dead by the bystander killing of neighboring cells when mixed with EJ/HyTK cells at various ratios. In addition, this not only affect wild-type EJ cells but also cells from different bladder carcinoma cell lines. Retroviral-mediated HyTK/GCV systems were a promising suicide gene therapy for bladder carcinoma. EGFP may act as a convenient and rapid reporter to monitor retroviral-mediated gene transfer and expression in bladder carcinoma cells.

  14. High-frequency transformation of Lobelia erinus L. by Agrobacterium-mediated gene transfer.

    PubMed

    Tsugawa, H; Kagami, T; Suzuki, M

    2004-05-01

    A highly efficient transformation procedure was developed for Lobelia erinus. Leaf or cotyledon discs were inoculated with Agrobacterium tumefaciens strain EHA105 harboring the binary vector plasmid pIG121Hm, which contains a beta-glucuronidase gene with an intron as a reporter gene and both the neomycin phosphotransferase II and hygromycin phosphotransferase genes as selectable markers. The hygromycin-resistant calli produced on the selection medium were transferred to MS medium supplemented with 0.5 mg/l benzyladenine and 0.2 mg/l indole-3-acetic acid for regeneration of adventitious shoots. Transgenic plants were obtained as a result of the high regeneration rate of the transformed calli, which was as high as 83%. In contrast, no transgenic plant was obtained by the procedure of direct shoot formation following inoculation with A. tumefaciens. Transgenic plants flowered 3-4 months after transformation. Integration of the transgenes was detected using PCR and Southern blot analysis, which revealed that one to several copies were integrated into the genomes of the host plants. The transformation frequency at the stage of whole plants was very high--45% per inoculated disc. Copyright 2004 Springer-Verlag

  15. Thermoadaptation of a mesophilic hygromycin B phosphotransferase by directed evolution in hyperthermophilic Archaea: selection of a stable genetic marker for DNA transfer into Sulfolobus solfataricus.

    PubMed

    Cannio, R; Contursi, P; Rossi, M; Bartolucci, S

    2001-06-01

    A mutated version of the hygromycin B phosphotransferase (hph(mut)) gene from Escherichia coli, isolated by directed evolution at 75 degrees C in transformants of a thermophilic strain of Sulfolobus solfataricus, was characterized with respect to its genetic stability in both the original mesophilic and the new thermophilic hosts. This gene was demonstrated to be able to express the hygromycin B resistance phenotype and to be steadily maintained and propagated also in other, more thermophilic strains of S. solfataricus, i.e., up to 82 degrees C. Furthermore, it may be transferred to S. solfataricus cells by cotransformation with pKMSD48, another extrachromosomal element derived from the virus SSV1 of Sulfolobus shibatae, without any loss of stability and without affecting the replication and infectivity of this viral DNA. The hph(mut) and the wild-type gene products were expressed at higher levels in E. coli and purified by specific affinity chromatography on immobilized hygromycin B. Comparative characterization revealed that the mutant enzyme had acquired significant thermoresistance and displayed higher thermal activity with augmented catalytic efficiency.

  16. Retrovirus-mediated transfer of a hygromycin phosphotransferase-thymidine kinase fusion gene into human CD34+ bone marrow cells.

    PubMed

    Akatsuka, Y; Emi, N; Kato, H; Abe, A; Tanimoto, M; Lupton, S D; Saito, H

    1994-12-01

    Retrovirus-mediated gene transfer into human hematopoietic stem cells has been proposed as a means of therapy for various inherited diseases and as a method of gene marking. The transduction efficiency of an amphotropic retroviral vector (PA317/HyTK) containing a hygromycin phosphotransferase-thymidine kinase fusion gene was examined with human CD34+ bone marrow cells in the presence of interleukin-3 (IL-3), interleukin-6 (IL-6), and stem cell factor. Transduction efficiencies determined from the ability of transduced granulocyte-macrophage colony forming units (CFU-GM) to grow in hygromycin B and from polymerase chain reaction analysis of individual transduced CFU-GM growing in the presence of hygromycin B were 0.3-3.0% (mean +/- S.D., 1.1 +/- 0.9%) and 0.1-1.2% (mean +/- S.D., 0.5 +/- 0.4%), respectively. Ganciclovir at a dose of approximately 1 microM reduced the number of CFU-GM derived from vector-infected CD34+ cells by 50%. These findings demonstrate that human hematopoietic stem cells infected with this retroviral vector are susceptible to ganciclovir, offering the potential to control transduced gene expression in vivo.

  17. Silencing of hygromycin phosphotransferase (hph) gene during sexual cycle and its reversible inactivation in heterokaryon of Neurospora crassa.

    PubMed

    Dev, Kamal; Maheshwari, Ramesh

    2003-09-01

    We transformed wild-type Neurospora crassa with hph gene encoding hygromycin phosphotransferase to obtain hygromycin-resistant (HygR) transformants and studied their behavior in the vegetative and sexual phases of growth. During vegetative growth in the absence of hygromycin, the hph gene was stable for at least three successive transfers with conidia. On the other hand, the behavior of the transformants in the sexual phase was different. The segregation of hph gene in the meiotic progeny was in accordance with the Mendelian ratio as inferred from PCR analysis. However, in spite of inheriting the hph gene, a proportion of the meiotic progeny failed to grow in the presence of hygromycin. This suggested that the hph gene is silenced in some progeny. The silencing effect was not confined to hph gene expression, since one-half of the meiotic progeny also showed poor conidiation. Genomic Southern analysis indicated deletions/rearrangements of the transgene in the progeny. A heterokaryon between silenced and non-silenced strains was able to grow on hygromycin-containing medium, showing that silencing was recessive. Silencing was reversed in homokaryotic nuclei extracted from such heterokaryon.

  18. Lactobacillus casei 64H Contains a Phosphoenolpyruvate-Dependent Phosphotransferase System for Uptake of Galactose, as Confirmed by Analysis of ptsH and Different gal Mutants

    PubMed Central

    Bettenbrock, Katja; Siebers, Ulrike; Ehrenreich, Petra; Alpert, Carl-Alfred

    1999-01-01

    Galactose metabolism in Lactobacillus casei 64H was analyzed by genetic and biochemical methods. Mutants with defects in ptsH, galK, or the tagatose 6-phosphate pathway were isolated either by positive selection using 2-deoxyglucose or 2-deoxygalactose or by an enrichment procedure with streptozotocin. ptsH mutations abolish growth on lactose, cellobiose, N-acetylglucosamine, mannose, fructose, mannitol, glucitol, and ribitol, while growth on galactose continues at a reduced rate. Growth on galactose is also reduced, but not abolished, in galK mutants. A mutation in galK in combination with a mutation in the tagatose 6-phosphate pathway results in sensitivity to galactose and lactose, while a galK mutation in combination with a mutation in ptsH completely abolishes galactose metabolism. Transport assays, in vitro phosphorylation assays, and thin-layer chromatography of intermediates of galactose metabolism also indicate the functioning of a permease/Leloir pathway and a phosphoenolpyruvate-dependent phosphotransferase system (PTS)/tagatose 6-phosphate pathway. The galactose-PTS is induced by growth on either galactose or lactose, but the induction kinetics for the two substrates are different. PMID:9864334

  19. Functional genomics to discover antibiotic resistance genes: The paradigm of resistance to colistin mediated by ethanolamine phosphotransferase in Shewanella algae MARS 14.

    PubMed

    Telke, Amar A; Rolain, Jean-Marc

    2015-12-01

    Shewanella algae MARS 14 is a colistin-resistant clinical isolate retrieved from bronchoalveolar lavage of a hospitalised patient. A functional genomics strategy was employed to discover the molecular support for colistin resistance in S. algae MARS 14. A pZE21 MCS-1 plasmid-based genomic expression library was constructed in Escherichia coli TOP10. The estimated library size was 1.30×10(8) bp. Functional screening of colistin-resistant clones was carried out on Luria-Bertani agar containing 8 mg/L colistin. Five colistin-resistant clones were obtained after complete screening of the genomic expression library. Analysis of DNA sequencing results found a unique gene in all selected clones. Amino acid sequence analysis of this unique gene using the Integrated Microbial Genomes (IMG) and KEGG databases revealed that this gene encodes ethanolamine phosphotransferase (EptA, or so-called PmrC). Reverse transcription PCR analysis indicated that resistance to colistin in S. algae MARS 14 was associated with overexpression of EptA (27-fold increase), which plays a crucial role in the arrangement of outer membrane lipopolysaccharide. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  20. Mechanisms of Resistance to Bacteriocins Targeting the Mannose Phosphotransferase System ▿

    PubMed Central

    Kjos, Morten; Nes, Ingolf F.; Diep, Dzung B.

    2011-01-01

    The membrane proteins IIC and IID of the mannose phosphotransferase system (Man-PTS) together form a membrane-located complex that serves as a receptor for several different bacteriocins, including the pediocin-like class IIa bacteriocins and the class IIc bacteriocin lactococcin A. Bacterial strains sensitive to class IIa bacteriocins readily give rise to resistant mutants upon bacteriocin exposure. In the present study, we have therefore investigated lactococcin A-resistant mutants of Lactococcus lactis as well as natural food isolates of Listeria monocytogenes with different susceptibilities to class IIa bacteriocins. We found two major mechanisms of resistance. The first involves downregulation of Man-PTS gene expression, which takes place both in spontaneous resistant mutants and in natural resistant isolates. The second involves normal expression of the Man-PTS system, but the underlying mechanism of resistance for these cells is unknown. In some cases, the resistant phenotype was linked to a shift in the metabolism; i.e., reduced growth on glucose due to reduction in Man-PTS expression was accompanied by enhanced growth on another sugar, such as galactose. The implications of these findings in terms of metabolic heterogeneity are discussed. PMID:21421780

  1. Identification of the Operon for the Sorbitol (Glucitol) Phosphoenolpyruvate:Sugar Phosphotransferase System in Streptococcus mutans

    PubMed Central

    Boyd, David A.; Thevenot, Tracy; Gumbmann, Markus; Honeyman, Allen L.; Hamilton, Ian R.

    2000-01-01

    Transposon mutagenesis and marker rescue were used to isolate and identify an 8.5-kb contiguous region containing six open reading frames constituting the operon for the sorbitol P-enolpyruvate phosphotransferase transport system (PTS) of Streptococcus mutans LT11. The first gene, srlD, codes for sorbitol-6-phosphate dehydrogenase, followed downstream by srlR, coding for a transcriptional regulator; srlM, coding for a putative activator; and the srlA, srlE, and srlB genes, coding for the EIIC, EIIBC, and EIIA components of the sorbitol PTS, respectively. Among all sorbitol PTS operons characterized to date, the srlD gene is found after the genes coding for the EII components; thus, the location of the gene in S. mutans is unique. The SrlR protein is similar to several transcriptional regulators found in Bacillus spp. that contain PTS regulator domains (J. Stülke, M. Arnaud, G. Rapoport, and I. Martin-Verstraete, Mol. Microbiol. 28:865–874, 1998), and its gene overlaps the srlM gene by 1 bp. The arrangement of these two regulatory genes is unique, having not been reported for other bacteria. PMID:10639465

  2. New Inhibitors of the Peripheral Site in Acetycholinesterase that Specifically Block Organophosphorylation

    DTIC Science & Technology

    1999-09-01

    P~ "I" C 3CH20--P-- 0 at 28 *C. S2 cells were cotransfected with pPac carrying the hygromycin CH3 0 C3&13! phosphotransferase gene for selection of...cells with hygromycin B. After selection with 0.2 mg/ml hygromycin B, monoclonal cell lines were isolated from colonies formed using a modified soft

  3. Detection of the High-Level Aminoglycoside Resistance Gene aph(2")-Ib in Enterococcus faecium

    PubMed Central

    Kao, Susan J.; You, Il; Clewell, Don B.; Donabedian, Susan M.; Zervos, Marcus J.; Petrin, Joanne; Shaw, Karen J.; Chow, Joseph W.

    2000-01-01

    A new high-level gentamicin resistance gene, designated aph(2")-Ib, was cloned from Enterococcus faecium SF11770. The deduced amino acid sequence of the 897-bp open reading frame of aph(2")-Ib shares homology with the aminoglycoside-modifying enzymes AAC(6′)-APH(2"), APH(2")-Ic, and APH(2")-Id. The observed phosphotransferase activity is designated APH(2")-Ib. PMID:10991878

  4. Structure-guided optimization of protein kinase inhibitors reverses aminoglycoside antibiotic resistance

    PubMed Central

    Stogios, Peter J.; Spanogiannopoulos, Peter; Evdokimova, Elena; Egorova, Olga; Shakya, Tushar; Todorovic, Nick; Capretta, Alfredo; Wright, Gerard D.; Savchenko, Alexei

    2013-01-01

    SYNOPSIS Activity of the aminoglycoside phosphotransferase APH(3’)-Ia leads to resistance to aminoglycoside antibiotics in pathogenic Gram-negative bacteria, and contributes to the clinical obsolescence of this class of antibiotics. One strategy to rescue compromised antibiotics such as aminoglycosides is targeting the enzymes that confer resistance with small molecules. Previously we demonstrated that eukaryotic protein kinase (ePK) inhibitors could inhibit APH enzymes, due to the structural similarity between these two enzyme families. However, limited structural information of enzyme-inhibitor complexes hindered interpretation of the results. As well, cross-reactivity of compounds between APHs and ePKs represents an obstacle to their use as aminoglycoside adjuvants to rescue aminoglycoside antibiotic activity. Here, we structurally and functionally characterize inhibition of APH(3’)-Ia by three diverse chemical scaffolds – anthrapyrazolone, 4-anilinoquinazoline and pyrazolopyrimidine (PP) – and reveal distinctions in the binding mode of anthrapyrazolone and PP compounds to APH(3’)-Ia versus ePKs. Using this observation, we identify PP-derivatives that select against ePKs, attenuate APH(3’)-Ia activity and rescue aminoglycoside antibiotic activity against a resistant E. coli strain. The structures presented here and these inhibition studies provide an important opportunity for structure-based design of compounds to target aminoglycoside phosphotransferases for inhibition, potentially overcoming this form of antibiotic resistance. PMID:23758273

  5. Pyrophosphate-Dependent Fructose-6-Phosphate 1-Phosphotransferase Induction and Attenuation of Hsp Gene Expression during Endosperm Modification in Quality Protein Maize1[C][W][OA

    PubMed Central

    Guo, Xiaomei; Ronhovde, Kyla; Yuan, Lingling; Yao, Bo; Soundararajan, Madhavan P.; Elthon, Thomas; Zhang, Chi; Holding, David R.

    2012-01-01

    Quality Protein Maize (QPM) is a hard-endosperm version of the high-lysine opaque2 (o2) maize (Zea mays) mutant, but the genes involved in modification of the soft o2 endosperm are largely unknown. Pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase (PFP) catalyzes the ATP-independent conversion of fructose-6-phosphate to fructose-1,6-bisphosphate in glycolysis. We found a large increase in transcript and protein levels of the α-regulatory subunit of PFP (PFPα) in QPM endosperm. In vitro enzyme assays showed a significant increase in forward PFP activity in developing endosperm extracts of QPM relative to the wild type and o2. An expressed retrogene version of PFPα of unknown function that was not up-regulated in QPM was also identified. The elevated expression levels of a number of ATP-requiring heat shock proteins (Hsps) in o2 endosperm are ameliorated in QPM. PFPα is also coinduced with Hsps in maize roots in response to heat, cold, and the unfolded protein response stresses. We propose that reduced ATP availability resulting from the generalized Hsp response in addition to the reduction of pyruvate, orthophosphate dikinase activity in o2 endosperm is compensated in part by increased PFP activity in QPM. PMID:22158678

  6. The ζ Toxin Induces a Set of Protective Responses and Dormancy

    PubMed Central

    Tabone, Mariangela; Gonzalez-Pastor, José E.; Daugelavicius, Rimantas; Ayora, Silvia; Alonso, Juan C.

    2012-01-01

    The ζε module consists of a labile antitoxin protein, ε, which in dimer form (ε2) interferes with the action of the long-living monomeric ζ phosphotransferase toxin through protein complex formation. Toxin ζ, which inhibits cell wall biosynthesis and may be bactericide in nature, at or near physiological concentrations induces reversible cessation of Bacillus subtilis proliferation (protective dormancy) by targeting essential metabolic functions followed by propidium iodide (PI) staining in a fraction (20–30%) of the population and selects a subpopulation of cells that exhibit non-inheritable tolerance (1–5×10−5). Early after induction ζ toxin alters the expression of ∼78 genes, with the up-regulation of relA among them. RelA contributes to enforce toxin-induced dormancy. At later times, free active ζ decreases synthesis of macromolecules and releases intracellular K+. We propose that ζ toxin induces reversible protective dormancy and permeation to PI, and expression of ε2 antitoxin reverses these effects. At later times, toxin expression is followed by death of a small fraction (∼10%) of PI stained cells that exited earlier or did not enter into the dormant state. Recovery from stress leads to de novo synthesis of ε2 antitoxin, which blocks ATP binding by ζ toxin, thereby inhibiting its phosphotransferase activity. PMID:22295078

  7. Single-cell characterization of metabolic switching in the sugar phosphotransferase system of Escherichia coli.

    PubMed

    Westermayer, Sonja A; Fritz, Georg; Gutiérrez, Joaquín; Megerle, Judith A; Weißl, Mira P S; Schnetz, Karin; Gerland, Ulrich; Rädler, Joachim O

    2016-05-01

    The utilization of several sugars in Escherichia coli is regulated by the Phosphotransferase System (PTS), in which diverse sugar utilization modules compete for phosphoryl flux from the general PTS proteins. Existing theoretical work predicts a winner-take-all outcome when this flux limits carbon uptake. To date, no experimental work has interrogated competing PTS uptake modules with single-cell resolution. Using time-lapse microscopy in perfused microchannels, we analyzed the competition between N-acetyl-glucosamine and sorbitol, as representative PTS sugars, by measuring both the expression of their utilization systems and the concomitant impact of sugar utilization on growth rates. We find two distinct regimes: hierarchical usage of the carbohydrates, and co-expression of the genes for both systems. Simulations of a mathematical model incorporating asymmetric sugar quality reproduce our metabolic phase diagram, indicating that under conditions of nonlimiting phosphate flux, co-expression is due to uncoupling of both sugar utilization systems. Our model reproduces hierarchical winner-take-all behaviour and stochastic co-expression, and predicts the switching between both strategies as a function of available phosphate flux. Hence, experiments and theory both suggest that PTS sugar utilization involves not only switching between the sugars utilized but also switching of utilization strategies to accommodate prevailing environmental conditions. © 2016 John Wiley & Sons Ltd.

  8. Kinetics of the phosphotransferase reaction of the catalytic subunit of the tick salivary gland cAMP-dependent protein kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mane, S.D.; Essenberg, R.C.; Sauer, J.R.

    1986-05-01

    The catalytic subunit of the cAMP dependent protein kinase was purified 100-fold from tick salivary glands. The enzyme mechanism of the phosphotransferase reaction catalyzed by this subunit was investigated. Highly purified enzyme did not show ATP-ase activity in the absence of protein substrates. Initial velocities were measured using histone H-1 or a synthetic heptapeptide, Kemptide, as P/sub i/ acceptors and (..gamma..-/sup 32/P) ATP as a phosphodonor. Patterns were consistent with a sequential, but not a ping pong mechanism. At high concentration (>2Km), histone showed substrate inhibition which was noncompetitive versus ATP. Product inhibition by Mg.ADP was competitive versus ATP andmore » noncompetitive with respect to H-1. Phosphohistone on the other hand was noncompetitive with respect to H-1, but gave parabolic competitive inhibition against ATP. Dead-end inhibition by AMP-PNP, an analogue of ATP, was competitive and noncompetitive against ATP and H-1, respectively. The inhibitory of cAMP dependent protein kinase was noncompetitive with ATP and competitive with histone. These studies strongly suggest that the tick salivary gland protein kinase has a sequential mechanism with primarily ordered addition of ATP followed by protein substrate and ordered release of phosphoprotein and ADP, but some random character.« less

  9. Genome-wide Screening Identifies Phosphotransferase System Permease BepA to Be Involved in Enterococcus faecium Endocarditis and Biofilm Formation.

    PubMed

    Paganelli, Fernanda L; Huebner, Johannes; Singh, Kavindra V; Zhang, Xinglin; van Schaik, Willem; Wobser, Dominique; Braat, Johanna C; Murray, Barbara E; Bonten, Marc J M; Willems, Rob J L; Leavis, Helen L

    2016-07-15

    Enterococcus faecium is a common cause of nosocomial infections, of which infective endocarditis is associated with substantial mortality. In this study, we used a microarray-based transposon mapping (M-TraM) approach to evaluate a rat endocarditis model and identified a gene, originally annotated as "fruA" and renamed "bepA," putatively encoding a carbohydrate phosphotransferase system (PTS) permease (biofilm and endocarditis-associated permease A [BepA]), as important in infective endocarditis. This gene is highly enriched in E. faecium clinical isolates and absent in commensal isolates that are not associated with infection. Confirmation of the phenotype was established in a competition experiment of wild-type and a markerless bepA mutant in a rat endocarditis model. In addition, deletion of bepA impaired biofilm formation in vitro in the presence of 100% human serum and metabolism of β-methyl-D-glucoside. β-glucoside metabolism has been linked to the metabolism of glycosaminoglycans that are exposed on injured heart valves, where bacteria attach and form vegetations. Therefore, we propose that the PTS permease BepA is directly implicated in E. faecium pathogenesis. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  10. Crystal structures of the ternary complex of APH(4)-Ia/Hph with hygromycin B and an ATP analog using a thermostable mutant.

    PubMed

    Iino, Daisuke; Takakura, Yasuaki; Fukano, Kazuhiro; Sasaki, Yasuyuki; Hoshino, Takayuki; Ohsawa, Kanju; Nakamura, Akira; Yajima, Shunsuke

    2013-07-01

    Aminoglycoside 4-phosphotransferase-Ia (APH(4)-Ia)/Hygromycin B phosphotransferase (Hph) inactivates the aminoglycoside antibiotic hygromycin B (hygB) via phosphorylation. The crystal structure of the binary complex of APH(4)-Ia with hygB was recently reported. To characterize substrate recognition by the enzyme, we determined the crystal structure of the ternary complex of non-hydrolyzable ATP analog AMP-PNP and hygB with wild-type, thermostable Hph mutant Hph5, and apo-mutant enzyme forms. The comparison between the ternary complex and apo structures revealed that Hph undergoes domain movement upon binding of AMP-PNP and hygB. This was about half amount of the case of APH(9)-Ia. We also determined the crystal structures of mutants in which the conserved, catalytically important residues Asp198 and Asn203, and the non-conserved Asn202, were converted to Ala, revealing the importance of Asn202 for catalysis. Hph5 contains five amino acid substitutions that alter its thermostability by 16°C; its structure revealed that 4/5 mutations in Hph5 are located in the hydrophobic core and appear to increase thermostability by strengthening hydrophobic interactions. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Selection system and co-cultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane.

    PubMed

    Joyce, Priya; Kuwahata, Melissa; Turner, Nicole; Lakshmanan, Prakash

    2010-02-01

    A reproducible method for transformation of sugarcane using various strains of Agrobacterium tumefaciens (A. tumefaciens) (AGL0, AGL1, EHA105 and LBA4404) has been developed. The selection system and co-cultivation medium were the most important factors determining the success of transformation and transgenic plant regeneration. Plant regeneration at a frequency of 0.8-4.8% occurred only when callus was transformed with A. tumefaciens carrying a newly constructed superbinary plasmid containing neomycin phosphotransferase (nptII) and beta-glucuronidase (gusA) genes, both driven by the maize ubiquitin (ubi-1) promoter. Regeneration was successful in plants carrying the nptII gene but not the hygromycin phosphotransferase (hph) gene. NptII gene selection was imposed at a concentration of 150 mg/l paromomycin sulphate and applied either immediately or 4 days after the co-cultivation period. Co-cultivation on Murashige and Skoog (MS)-based medium for a period of 4 days produced the highest number of transgenic plants. Over 200 independent transgenic lines were created using this protocol. Regenerated plants appeared phenotypically normal and contained both gusA and nptII genes. Southern blot analysis revealed 1-3 transgene insertion events that were randomly integrated in the majority of the plants produced.

  12. Purification, crystallization and preliminary X-ray analysis of Enterococcus faecium aminoglycoside-2′′-phosphotransferase-Ib [APH(2′′)-Ib

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walanj, Rupa; Young, Paul; Baker, Heather M.

    2005-04-01

    APH(2′′)-Ib is an enzyme responsible for high-level gentamicin resistance in E. faecium isolates. Native crystals of this enzyme have been prepared and preliminary X-ray diffraction experiments have been undertaken. Bacterial resistance to the aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, APH(2′′)-Ib, has been cloned and the protein (comprising 299 amino-acid residues) expressed in Escherichia coli, purified and crystallized in the presence of 16%(w/v) PEG 3350 and gentamicin. The crystals belong tomore » the monoclinic space group P2{sub 1}, with approximate unit-cell parameters a = 79.7, b = 58.8, c = 81.4 Å, β = 98.4°, and preliminary X-ray diffraction analysis is consistent with the presence of two molecules in the asymmetric unit. Synchrotron diffraction data to approximately 2.65 Å resolution were collected from a native APH(2′′)-Ib crystal at beamline BL9-2 at SSRL (Stanford, CA, USA). Selenium-substituted crystals have also been produced and structure determination is proceeding.« less

  13. Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: Functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Xiaokuang; Davis, F.C.; Ingram, L.O.

    1997-02-01

    Genomic libraries from nine cellobiose-metabolizing bacteria were screened for cellobiose utilization. Positive clones were recovered from six libraries, all of which encode phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) proteins. Clones from Bacillus subtilis, Butyrivibrio fibrisolvens, and Klebsiella oxytoca allowed the growth of recombinant Escherichia coli in cellobiose-M9 minimal medium. The K. oxytoca clone, pLOI1906, exhibited an unusually broad substrate range (cellobiose, arbutin, salicin, and methylumbelliferyl derivatives of glucose, cellobiose, mannose, and xylose) and was sequenced. The insert in this plasmid encoded the carboxy-terminal region of a putative regulatory protein, cellobiose permease (single polypeptide), and phospho-{beta}-glucosidase, which appear to form an operon (casRAB).more » Subclones allowed both casA and casB to be expressed independently, as evidenced by in vitro complementation. An analysis of the translated sequences from the EIIC domains of cellobiose, aryl-{beta}-glucoside, and other disaccharide permeases allowed the identification of a 50-amino-acid conserved region. A disaccharide consensus sequence is proposed for the most conserved segment (13 amino acids), which may represent part of the EIIC active site for binding and phosphorylation. 63 refs., 4 figs., 4 tabs.« less

  14. The ζ toxin induces a set of protective responses and dormancy.

    PubMed

    Lioy, Virginia S; Machon, Cristina; Tabone, Mariangela; Gonzalez-Pastor, José E; Daugelavicius, Rimantas; Ayora, Silvia; Alonso, Juan C

    2012-01-01

    The ζε module consists of a labile antitoxin protein, ε, which in dimer form (ε(2)) interferes with the action of the long-living monomeric ζ phosphotransferase toxin through protein complex formation. Toxin ζ, which inhibits cell wall biosynthesis and may be bactericide in nature, at or near physiological concentrations induces reversible cessation of Bacillus subtilis proliferation (protective dormancy) by targeting essential metabolic functions followed by propidium iodide (PI) staining in a fraction (20-30%) of the population and selects a subpopulation of cells that exhibit non-inheritable tolerance (1-5×10(-5)). Early after induction ζ toxin alters the expression of ∼78 genes, with the up-regulation of relA among them. RelA contributes to enforce toxin-induced dormancy. At later times, free active ζ decreases synthesis of macromolecules and releases intracellular K(+). We propose that ζ toxin induces reversible protective dormancy and permeation to PI, and expression of ε(2) antitoxin reverses these effects. At later times, toxin expression is followed by death of a small fraction (∼10%) of PI stained cells that exited earlier or did not enter into the dormant state. Recovery from stress leads to de novo synthesis of ε(2) antitoxin, which blocks ATP binding by ζ toxin, thereby inhibiting its phosphotransferase activity.

  15. Neomycin resistance as a selectable marker in Methanococcus maripaludis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argyle, J.L.; Leigh, J.A.; Tumbula, D.L.

    1996-11-01

    The authors cloned the aminoglycoside phosphotransferase genes APH3{prime}I and APH3{prime}II between the Methanococcus voltae methyl reductase promoter and terminator in a plasmid containing a fragment of Methanococcus maripaludis chromosomal DNA. The resulting plasmids encoding neomycin resistance transformed M. maripaludis at frequencies similar to those observed for pKAS102 encoding puromycin resistance. The antibiotic geneticin was not inhibitory to M. maripaludis. 22 refs., 3 figs., 3 tabs.

  16. Selective Chemosensitization of Rb Mutant Cells

    DTIC Science & Technology

    2000-07-01

    Cambridge, MA). pLPC-12S coexpresses an E1A 12S cDNA with puromycin phosphotransferase (puro) and pWZL-12S coexpresses E1A with hygromycin phospho...retinoblastoma; CR1, -2, -3, conserved regions 1, 2, and 3; MEF, mouse embryonic fibroblast; puro, puromycin; hygro, hygromycin . To whom reprint requests...ml hygromycin B (Boehringer Mannheim) to elim- inate uninfected cells. When two separate E1A mutants were coexpressed, they were introduced

  17. Prolonged treatment of porcine pulmonary artery with nitric oxide decreases cGMP sensitivity and cGMP-dependent protein kinase specific activity

    PubMed Central

    Perkins, William J.; Warner, David O.; Jones, Keith A.

    2009-01-01

    A cultured porcine pulmonary artery (PA) model was used to examine the effects of prolonged nitric oxide (NO) treatment on the response to acutely applied NO, cGMP analog, or atrial natriuretic peptide (ANP). Twenty-four-hour treatment with the NO donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO) resulted in >10-fold decrease in the response to acutely applied DETA-NO. In parallel with this, the relaxant response to acutely applied cGMP analog, β-phenyl-1,N2-etheno-8-bromoguanosine-3′,5′-cyclic monophosphorothioate, Sp isomer (Sp-8-Br-PET-cGMPS), and ANP decreased. The reduction in ANP responsiveness in PA was not associated with a reduction in cGMP levels evoked by 10−6 M ANP. Twenty-four hours in culture and treatment with DETA-NO decreased total cGMP-dependent protein kinase (cGKI) mRNA level compared with that in freshly prepared PA (1.05 ± 0.12, 0.42 ± 0.08, and 0.11 ± 0.01 amol/μg, respectively). Total cGKI protein levels were decreased to a lesser extent by 24 h in culture and further decreased by 24-h DETA-NO treatment compared with that in freshly prepared PA (361 ± 33, 272 ± 20, and 238 ± 25 ng/mg total protein, respectively). Maximal cGMP-stimulated phosphotransferase activity was reduced in 24-h cultured and DETA-NO-treated PA (986 ± 84, 815 ± 81, and 549 ± 78 pmol Pi·min−1·mg soluble protein−1), but the cGMP concentration resulting in 50% of maximal phosphotransferase activity was not. cGKI specific activity (maximal cGMP-activated phosphotransferase activity/ng cGKI) was significantly reduced in PA treated with DETA-NO for 24 h compared with freshly prepared and 24-h cultured PA (1.95 ± 0.22, 2.64 ± 0.25, and 2.85 ± 0.28 pmol Pi·min−1·ng cGKI−1, respectively). We conclude that prolonged NO treatment induces decreased acute NO responsiveness in PA in part by decreasing cGMP sensitivity. It does so by decreasing both cGKI expression and cGKI specific activity. PMID:18952758

  18. Testing New Drugs for Treatment of Melanoma Patients Applying Connectivity Map Database Analysis with Melanoma Gene Signatures

    DTIC Science & Technology

    2012-10-01

    use of R packages implemented in Bioconductor. Each dataset was normalized from raw data using the Frozen RMA (fRMA) algorithm . We applied the same...because development of the specific algorithms and fine tuning of the analytic strategy to accomplish this task was not immediately straightforward. We...express firefly luciferase using a retrovirus that encodes a fusion of luciferase and neomycin phosphotransferase (LucNeo), will be implanted and followed

  19. Sugar Influx Sensing by the Phosphotransferase System of Escherichia coli

    PubMed Central

    Somavanshi, Rahul; Ghosh, Bhaswar; Sourjik, Victor

    2016-01-01

    The phosphotransferase system (PTS) plays a pivotal role in the uptake of multiple sugars in Escherichia coli and many other bacteria. In the cell, individual sugar-specific PTS branches are interconnected through a series of phosphotransfer reactions, thus creating a global network that not only phosphorylates incoming sugars but also regulates a number of cellular processes. Despite the apparent importance of the PTS network in bacterial physiology, the holistic function of the network in the cell remains unclear. Here we used Förster resonance energy transfer (FRET) to investigate the PTS network in E. coli, including the dynamics of protein interactions and the processing of different stimuli and their transmission to the chemotaxis pathway. Our results demonstrate that despite the seeming complexity of the cellular PTS network, its core part operates in a strikingly simple way, sensing the overall influx of PTS sugars irrespective of the sugar identity and distributing this information equally through all studied branches of the network. Moreover, it also integrates several other specific metabolic inputs. The integrated output of the PTS network is then transmitted linearly to the chemotaxis pathway, in stark contrast to the amplification of conventional chemotactic stimuli. Finally, we observe that default uptake through the uninduced PTS network correlates well with the quality of the carbon source, apparently representing an optimal regulatory strategy. PMID:27557415

  20. Small-Angle X-Ray Scattering Analysis of the Bifunctional Antibiotic Resistance Enzyme Aminoglycoside (6′) Acetyltransferase-Ie/Aminoglycoside (2″) Phosphotransferase-Ia Reveals a Rigid Solution Structure

    PubMed Central

    Caldwell, Shane J.

    2012-01-01

    Aminoglycoside (6′) acetyltransferase-Ie/aminoglycoside (2″) phosphotransferase-Ia [AAC(6′)-Ie/APH(2″)-Ia] is one of the most problematic aminoglycoside resistance factors in clinical pathogens, conferring resistance to almost every aminoglycoside antibiotic available to modern medicine. Despite 3 decades of research, our understanding of the structure of this bifunctional enzyme remains limited. We used small-angle X-ray scattering (SAXS) to model the structure of this bifunctional enzyme in solution and to study the impact of substrate binding on the enzyme. It was observed that the enzyme adopts a rigid conformation in solution, where the N-terminal AAC domain is fixed to the C-terminal APH domain and not loosely tethered. The addition of acetyl-coenzyme A, coenzyme A, GDP, guanosine 5′-[β,γ-imido]triphosphate (GMPPNP), and combinations thereof to the protein resulted in only modest changes to the radius of gyration (RG) of the enzyme, which were not consistent with any large changes in enzyme structure upon binding. These results imply some selective advantage to the bifunctional enzyme beyond coexpression as a single polypeptide, likely linked to an improvement in enzymatic properties. We propose that the rigid structure contributes to improved electrostatic steering of aminoglycoside substrates toward the two active sites, which may provide such an advantage. PMID:22290965

  1. Regulatory Tasks of the Phosphoenolpyruvate-Phosphotransferase System of Pseudomonas putida in Central Carbon Metabolism

    PubMed Central

    Chavarría, Max; Kleijn, Roelco J.; Sauer, Uwe; Pflüger-Grau, Katharina; de Lorenzo, Víctor

    2012-01-01

    ABSTRACT Two branches of the phosphoenolpyruvate-phosphotransferase system (PTS) operate in the soil bacterium Pseudomonas putida KT2440. One branch encompasses a complete set of enzymes for fructose intake (PTSFru), while the other (N-related PTS, or PTSNtr) controls various cellular functions unrelated to the transport of carbohydrates. The potential of these two systems for regulating central carbon catabolism has been investigated by measuring the metabolic fluxes of isogenic strains bearing nonpolar mutations in PTSFru or PTSNtr genes and grown on either fructose (a PTS substrate) or glucose, the transport of which is not governed by the PTS in this bacterium. The flow of carbon from each sugar was distinctly split between the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways in a ratio that was maintained in each of the PTS mutants examined. However, strains lacking PtsN (EIIANtr) displayed significantly higher fluxes in the reactions of the pyruvate shunt, which bypasses malate dehydrogenase in the TCA cycle. This was consistent with the increased activity of the malic enzyme and the pyruvate carboxylase found in the corresponding PTS mutants. Genetic evidence suggested that such a metabolic effect of PtsN required the transfer of high-energy phosphate through the system. The EIIANtr protein of the PTSNtr thus helps adjust central metabolic fluxes to satisfy the anabolic and energetic demands of the overall cell physiology. PMID:22434849

  2. In vivo directed evolution for thermostabilization of Escherichia coli hygromycin B phosphotransferase and the use of the gene as a selection marker in the host-vector system of Thermus thermophilus.

    PubMed

    Nakamura, Akira; Takakura, Yasuaki; Kobayashi, Hideo; Hoshino, Takayuki

    2005-08-01

    An in vivo-directed evolutionary strategy was used to obtain a thermostabilized Escherichia coli hygromycin B phosphotransferase, using a host-vector system of Thermus thermophilus. Introduction of the mutant gene containing two amino acid substitutions, S52T and W238C, which was previously reported by Cannio et al. [J. Bacteriol., 180, 3237-3240 (1998)], did not confer hygromycin resistance on T. thermophilus cells at 55 degrees C; however, five spontaneously-generated independent mutants were obtained by selection of the transformants at this temperature. Each mutant gene contained one amino acid substitution of either A118V or T246A. Further selection with increasing temperature, at 58 degrees C and then 61 degrees C, led to acquisition of three more substitutions: D20G, S225P and Q226L. These mutations cumulatively influenced the maximum growth temperature of the T. thermophilus transformants in the presence of hygromycin; T. thermophilus carrying a mutant gene containing all the five substitutions was able to grow at up to 67 degrees C. This mutant gene, hph5, proved useful as a selection marker in the T. thermophilus host-vector system, either on the plasmid or by genome integration, at temperatures up to 65 degrees C.

  3. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism.

    PubMed Central

    Crow, V L; Davey, G P; Pearce, L E; Thomas, T D

    1983-01-01

    The three enzymes of the D-tagatose 6-phosphate pathway (galactose 6-phosphate isomerase, D-tagatose 6-phosphate kinase, and tagatose 1,6-diphosphate aldolase) were absent in lactose-negative (Lac-) derivatives of Streptococcus lactis C10, H1, and 133 grown on galactose. The lactose phosphoenolpyruvate-dependent phosphotransferase system and phospho-beta-galactosidase activities were also absent in Lac- derivatives of strains H1 and 133 and were low (possibly absent) in C10 Lac-. In all three Lac- derivatives, low galactose phosphotransferase system activity was found. On galactose, Lac- derivatives grew more slowly (presumably using the Leloir pathway) than the wild-type strains and accumulated high intracellular concentrations of galactose 6-phosphate (up to 49 mM); no intracellular tagatose 1,6-diphosphate was detected. The data suggest that the Lac phenotype is plasmid linked in the three strains studied, with the evidence being more substantial for strain H1. A Lac- derivative of H1 contained a single plasmid (33 megadaltons) which was absent from the Lac- mutant. We suggest that the genes linked to the lactose plasmid in S. lactis are more numerous than previously envisaged, coding for all of the enzymes involved in lactose metabolism from initial transport to the formation of triose phosphates via the D-tagatose 6-phosphate pathway. Images PMID:6294064

  4. Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate: Mannitol phosphotransferase system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, E.G.; Knowles, J.R.; Khandekar, S.S.

    1990-07-24

    The authors have determined the overall stereochemical course of the reactions leading to the phosphorylation of D-mannitol by mannitol-specific enzyme II (EII{sup Mtl}) of the Escherichia coli phosphoenolpyruvate- (PEP) dependent phosphotransferase system (PTS). In the presence of enzyme I and HPr of the PTS, and of membranes containing EII{sup Mtl}, the phospho group from ((R)-{sup 16}O, {sup 17}O, {sup 18}O)PEP was transferred to D-mannitol to form mannitol 1-phosphate with overall inversion of the configuration at phosphorus with respect to that of PEP. Since in the course of these reactions enzyme I and HPr are each covalently phosphorylated at a singlemore » site and inversion of the chiral phospho group from PEP indicates an odd number of transfer steps overall, transfer from phospho-HPr to mannitol via EII{sup Mtl} must also occur in an odd number of steps. Taken together with the fact that catalytically important phospho-EII{sup Mtl} intermediates have been demonstrated biochemically, the results imply that EII{sup Mtl} is sequentially phosphorylated at two different sites during phospho transfer from phospho-HPr to mannitol. This conclusion is consistent with the available evidence on phospho-EII{sup Mtl} intermediates and in particular with the recent report that two different phospho peptides can be isolated from the fully phosphorylated protein.« less

  5. The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum

    PubMed Central

    Weber, Barbara; Lindell, Kristoffer; El Qaidi, Samir; Hjerde, Erik; Willassen, Nils-Peder

    2011-01-01

    Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ54 and the σ54-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment. PMID:21948044

  6. The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum.

    PubMed

    Weber, Barbara; Lindell, Kristoffer; El Qaidi, Samir; Hjerde, Erik; Willassen, Nils-Peder; Milton, Debra L

    2011-12-01

    Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ(54) and the σ(54)-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment.

  7. Function of Protein Phosphatase 2A in Control of Proliferation: Isolation and Analysis of Dominant-Defective Mutants

    DTIC Science & Technology

    1998-06-01

    the Ca gene. In the case of pWZLneo, translation of Ca and the neomycin phosphotransferase (Neo) protein are coupled by an IRES site. In the case of...expression of both the hygromycin resistance (Hyg) and PP2A-C cassettes. In the colony formation assay, cells infected with the retroviral construct are...than hygromycin in selecting for cells expressing high levels of drug resistance (Hanson and Sedivy, 1995). Cells expressing a relatively low level of

  8. Molecular Determinants of Antiestrogen and Drug Sensitivity in Breast Carcinoma Cells

    DTIC Science & Technology

    1996-08-01

    00 ~cd -olC CC) 00, COq -6 0 00d C5 kr0) C~U, 23l Effects of infection rate and selection pressure on gene expression from an internal promoter of a...Hybridization probes were prepared by restriction enzyme digestion of the LNCIuc plasmid, followed by the isolation of the desired fragments by...sensitivity to this drug. The bacterial neo gene encodes neomycin phosphotransferase, an enzyme that metabolically inactivates G418, with the extent of

  9. Genetic transformation of the white-rot fungus Dichomitus squalens using a new commercial protoplasting cocktail.

    PubMed

    Daly, Paul; Slaghek, Gillian G; Casado López, Sara; Wiebenga, Ad; Hilden, Kristiina S; de Vries, Ronald P; Mäkelä, Miia R

    2017-12-01

    D. squalens, a white-rot fungus that efficiently degrades lignocellulose in nature, can be used in various biotechnological applications and has several strains with sequenced and annotated genomes. Here we present a method for the transformation of this basidiomycete fungus, using a recently introduced commercial ascomycete protoplasting enzyme cocktail, Protoplast F. In protoplasting of D. squalens mycelia, Protoplast F outperformed two other cocktails while releasing similar amounts of protoplasts to a third cocktail. The protoplasts released using Protoplast F had a regeneration rate of 12.5% (±6 SE). Using Protoplast F, the D. squalens monokaryon CBS464.89 was conferred with resistance to the antibiotics hygromycin and G418 via polyethylene glycol mediated protoplast transformation with resistance cassettes expressing the hygromycin phosphotransferase (hph) and neomycin phosphotransferase (nptII) genes, respectively. The hph gene was expressed in D. squalens using heterologous promoters from genes encoding β-tubulin or glyceraldehyde 3-phosphate dehydrogenase. A Southern blot confirmed integration of a resistance cassette into the D. squalens genome. An average of six transformants (±2 SE) were obtained when at least several million protoplasts were used (a transformation efficiency of 0.8 (±0.3 SE) transformants per μg DNA). Transformation of D. squalens demonstrates the suitability of the Protoplast F cocktail for basidiomycete transformation and furthermore can facilitate understanding of basidiomycete gene function and development of improved strains for biotechnological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The global regulatory system Csr senses glucose through the phosphoenolpyruvate: carbohydrate phosphotransferase system.

    PubMed

    Pérez-Morales, Deyanira; Bustamante, Víctor H

    2016-02-01

    A novel connection between two regulatory systems controlling crucial biological processes in bacteria, the carbon storage regulator (Csr) system and the glucose-specific phosphotransferase system (PTS), is reported by Leng et al. in this issue. This involves the interaction of unphosphorylated EIIA(Glc), a component of the glucose-specific PTS, with the CsrD protein, which accelerates the decay of the CsrB and CsrC small RNAs via RNase E in Escherichia coli. As unphosphorylated EIIA(G) (lc) is generated in the presence of glucose, the PTS thus acts as a sensor of glucose for the Csr system. Interestingly, another pathway can operate for communication between the Csr system and the glucose-specific PTS. The absence of glucose generates phosphorylated EIIA(Glc) , which activates the enzyme adenylate cyclase to produce cyclic adenosine monophosphate (cAMP) that, in turn, binds to the regulator cAMP receptor protein (CRP). Leng et al. show that the complex cAMP-CRP modestly reduces CsrB decay independently of CsrD. On the other hand, a previous study indicates that the complex cAMP-CRP positively regulates the transcription of CsrB and CsrC in Salmonella enterica. Therefore, EIIA(G) (lc) could work as a molecular switch that regulates the activity of the Csr system, in response to its phosphorylation state determined by the presence or absence of glucose, in order to control gene expression. © 2015 John Wiley & Sons Ltd.

  11. Fungal histidine phosphotransferase plays a crucial role in photomorphogenesis and pathogenesis in Magnaporthe oryzae

    NASA Astrophysics Data System (ADS)

    Mohanan, Varsha C.; Chandarana, Pinal M.; Chattoo, Bharat. B.; Patkar, Rajesh N.; Manjrekar, Johannes

    2017-05-01

    Two-component signal transduction (TCST) pathways play crucial roles in many cellular functions such as stress responses, biofilm formation and sporulation. The histidine phosphotransferase (HPt), which is an intermediate phosphotransfer protein in a two-component system, transfers a phosphate group to a phosphorylatable aspartate residue in the target protein(s), and up-regulates stress-activated MAP kinase cascades. Most fungal genomes carry a single copy of the gene coding for HPt, which are potential antifungal targets. However, unlike the histidine kinases (HK) or the downstream response regulators (RR) in two-component system, the HPts have not been well studied in phytopathogenic fungi. In this study, we investigated the role of HPt in the model rice-blast fungal pathogen Magnaporthe oryzae. We found that in M. oryzae an additional isoform of the HPT gene YPD1 was expressed specifically in response to light. Further, the expression of light-regulated genes such as those encoding envoy and blue-light-harvesting protein, and PAS domain containing HKs was significantly reduced upon down-regulation of YPD1 in M. oryzae. Importantly, down-regulation of YPD1 led to a significant decrease in the ability to penetrate the host cuticle and in light-dependent conidiation in M. oryzae. Thus, our results indicate that Ypd1 plays an important role in asexual development and host invasion, and suggest that YPD1 isoforms likely have distinct roles to play in the rice-blast pathogen M. oryzae.

  12. Synthesis and Physicochemical Characterization of D-Tagatose-1-Phosphate: The Substrate of the Tagatose-1-Phosphate Kinase in the Phosphotransferase System-Mediated D-Tagatose Catabolic Pathway of Bacillus licheniformis.

    PubMed

    Van der Heiden, Edwige; Delmarcelle, Michaël; Simon, Patricia; Counson, Melody; Galleni, Moreno; Freedberg, Darón I; Thompson, John; Joris, Bernard; Battistel, Marcos D

    2015-01-01

    We report the first enzymatic synthesis of D-tagatose-1-phosphate (Tag-1P) by the multicomponent phosphoenolpyruvate:sugar phosphotransferase system (PEP-PTS) present in tagatose-grown cells of Klebsiella pneumoniae. Physicochemical characterization by (31)P and (1)H nuclear magnetic resonance spectroscopy reveals that, in solution, this derivative is primarily in the pyranose form. Tag-1P was used to characterize the putative tagatose-1-phosphate kinase (TagK) of the Bacillus licheniformis PTS-mediated D-tagatose catabolic pathway (Bli-TagP). For this purpose, a soluble protein fusion was obtained with the 6 His-tagged trigger factor (TF(His6)) of Escherichia coli. The active fusion enzyme was named TagK-TF(His6). Tag-1P and D-fructose-1-phosphate are substrates for the TagK-TF(His6) enzyme, whereas the isomeric derivatives D-tagatose-6-phosphate and D-fructose-6-phosphate are inhibitors. Studies of catalytic efficiency (kcat/Km) reveal that the enzyme specificity is markedly in favor of Tag-1P as the substrate. Importantly, we show in vivo that the transfer of the phosphate moiety from PEP to the B. licheniformis tagatose-specific Enzyme II in E. coli is inefficient. The capability of the PTS general cytoplasmic components of B. subtilis, HPr and Enzyme I to restore the phosphate transfer is demonstrated. © 2015 S. Karger AG, Basel.

  13. Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli.

    PubMed

    Su, Buli; Wu, Mianbin; Zhang, Zhe; Lin, Jianping; Yang, Lirong

    2015-09-01

    A metabolically engineered Escherichia coli has been constructed for the production of xylitol, one of the top 12 platform chemicals from agricultural sources identified by the US Department of Energy. An optimal plasmid was constructed to express xylose reductase from Neurospora crassa with almost no inclusion bodies at relatively high temperature. The phosphoenolpyruvate-dependent glucose phosphotransferase system (ptsG) was disrupted to eliminate catabolite repression and allow simultaneous uptake of glucose and xylose. The native pathway for D-xylose catabolism in E. coli W3110 was blocked by deleting the xylose isomerase (xylA) and xylulose kinase (xylB) genes. The putative pathway for xylitol phosphorylation was also blocked by disrupting the phosphoenolpyruvate-dependent fructose phosphotransferase system (ptsF). The xylitol producing recombinant E. coli allowed production of 172.4 g L(-1) xylitol after 110 h of fed-batch cultivation with an average productivity of 1.57 g L(-1) h(-1). The molar yield of xylitol to glucose reached approximately 2.2 (mol xylitol mol(-1) glucose). Furthermore, the recombinant strain also produced about 150 g L(-1) xylitol from hemicellulosic sugars in modified M9 minimal medium and the overall productivity was 1.40 g L(-1) h(-1), representing the highest xylitol concentration and productivity reported to date from hemicellulosic sugars using bacteria. Thus, this engineered E. coli is a candidate for the development of efficient industrial-scale production of xylitol from hemicellulosic hydrolysate. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Characterization of mutant histidine-containing proteins of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli and Salmonella typhimurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waygood, E.B.; Reiche, B.; Hengstenberg, W.

    1987-06-01

    Histidine-containing phosphocarrier protein (HPr) is common to all of the phosphoenolpyruvate:sugar phosphotransferase systems (PTS) in Escherichia coli and Salmonella typhimurium, except the fructose-specific PTS. Strains which lack HPr activity (ptsH) have been characterized in the past, and it has proved difficult to delineate between tight and leaky mutants. In this study four different parameters of ptsH strains were measured: in vitro sugar phosphorylation activity of the mutant HPr; detection of /sup 32/P-labeled P-HPr; ability of monoclonal antibodies to bind mutant HPr; and sensitivity of ptsH strains to fosfomycin. Tight ptsH strains could be defined; they were fosfomycin resistant and producedmore » no HPr protein or completely inactive mutant HPr. All leaky ptsH strains were fosfomycin sensitive, Usually produced normal amounts of mutant HPr protein, and had low but measurable activity, and HPr was detectable as a phosphoprotein. This indicates that the regulatory functions of the PTS require a very low level of HPr activity (about 1%). The antibodies used to detect mutant HPr in crude extracts were two monoclonal immunoglobulin G antibodies Jel42 and Jel44. Both antibodies, which have different pIs, inhibited PTS sugar phosphorylation assays, but the antibody-JPr complex could still be phosphorylated by enzyme I. Preliminary evidence suggests that the antibodies bind to two different epitopes which are in part located in a ..beta..-sheet structure.« less

  15. Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalyzed by enzyme I and HPr of the phosphotransferase systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutscher, J.; Sauerwald, H.

    1986-06-01

    Recently a report was given of the phosphoenolpyruvate (PEP)-dependent phosphorylation of a 55-kilodalton protein of Streptococus faecalis catalyzed by enzyme I and histidine-containing protein (HPr) of the phosphotransferase system. The purified 55-kilodalton protein was found to exhibit dihydroxyacetone kinase activity. Glycerol was six times more slowly phosphorylated than dihydroxyacetone. The K/sub m/s were found to 0.7 mM for ATP, 0.45 mM for dihydroxyacetone, and 0.9 MM for glycerol. PEP-dependent phosphorylation of dihydroxyacetone kinase stimulated phosphorylation of both substrates about 10-fold. Fructose 1,6-diphosphate at concentrations higher than 2 mM inhibited the activity of phosphorylated and unphosphorylated dihydroxyacetone kinase in a noncompetitivemore » manner. The rate of PEP-dependent phosphorylation of dihydroxyacetone kinase was about 200-fold slower than the phosphorylation rate of III proteins (also called enzyme III or factor III), which so far have been considered the only phosphoryl acceptors of histidyl-phosphorylated HPr. P-Dihydroxyacetone kinase was found to be able to transfer its phosphoryl group in a backward reaction to HPr. Following (/sup 32/P)PEP-dependent phosphorylation and tryptic digestion of dihydroxyacetone kinase, the authors isolated a labeled peptide composed of 37 amino acids, as determined by amino acid analysis. The single histidyl residue of this peptide most likely carries the phosphoryl group in phosphorylated dihydroxyacetone kinase.« less

  16. Crystallographic Studies of Two Bacterial AntibioticResistance Enzymes: Aminoglycoside Phosphotransferase (2')-Ic and GES-1\\beta-lactamase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brynes, Laura; /Rensselaer Poly.

    2007-10-31

    Guiana Extended-Spectrum-1 (GES-1) and Aminoglycoside phosphotransferase (2')-Ic (APH(2')-Ic) are two bacteria-produced enzymes that essentially perform the same task: they provide resistance to an array of antibiotics. Both enzymes are part of a growing resistance problem in the medical world. In order to overcome the ever-growing arsenal of antibiotic-resistance enzymes, it is necessary to understand the molecular basis of their action. Accurate structures of these proteins have become an invaluable tool to do this. Using protein crystallography techniques and X-ray diffraction, the protein structure of GES-1 bound to imipenem (an inhibitor) has been solved. Also, APH(2')-Ic has been successfully crystallized, butmore » its structure was unable to be solved using molecular replacement using APH(2')-Ib as a search model. The structure of GES-1, with bound imipenem was solved to a resolution of 1.89A, and though the inhibitor is bound with only moderate occupancy, the structure shows crucial interactions inside the active site that render the enzyme unable to complete the hydrolysis of the {beta}-lactam ring. The APH(2')-Ic dataset could not be matched to the model, APH(2')-Ib, with which it shares 25% sequence identity. The structural information gained from GES-1, and future studies using isomorphous replacement to solve the APH(2')-Ic structure can aid directly to the creation of novel drugs to combat both of these classes of resistance enzymes.« less

  17. Structure of the Antibiotic Resistance Factor Spectinomycin Phosphotransferase from Legionella pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, D.; Lemke, C; Huang, J

    2010-01-01

    Aminoglycoside phosphotransferases (APHs) constitute a diverse group of enzymes that are often the underlying cause of aminoglycoside resistance in the clinical setting. Several APHs have been extensively characterized, including the elucidation of the three-dimensional structure of two APH(3{prime}) isozymes and an APH(2{double_prime}) enzyme. Although many APHs are plasmid-encoded and are capable of inactivating numerous 2-deoxystreptmaine aminoglycosides with multiple regiospecificity, APH(9)-Ia, isolated from Legionella pneumophila, is an unusual enzyme among the APH family for its chromosomal origin and its specificity for a single non-2-deoxystreptamine aminoglycoside substrate, spectinomycin. We describe here the crystal structures of APH(9)-Ia in its apo form, its binarymore » complex with the nucleotide, AMP, and its ternary complex bound with ADP and spectinomycin. The structures reveal that APH(9)-Ia adopts the bilobal protein kinase-fold, analogous to the APH(3{prime}) and APH(2{double_prime}) enzymes. However, APH(9)-Ia differs significantly from the other two types of APH enzymes in its substrate binding area and that it undergoes a conformation change upon ligand binding. Moreover, kinetic assay experiments indicate that APH(9)-Ia has stringent substrate specificity as it is unable to phosphorylate substrates of choline kinase or methylthioribose kinase despite high structural resemblance. The crystal structures of APH(9)-Ia demonstrate and expand our understanding of the diversity of the APH family, which in turn will facilitate the development of new antibiotics and inhibitors.« less

  18. Screen for leukotoxin mutants in Aggregatibacter actinomycetemcomitans: genes of the phosphotransferase system are required for leukotoxin biosynthesis.

    PubMed

    Isaza, Maria P; Duncan, Matthew S; Kaplan, Jeffrey B; Kachlany, Scott C

    2008-08-01

    Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans is a pathogen that causes localized aggressive periodontitis and extraoral infections including infective endocarditis. Recently, we reported that A. actinomycetemcomitans is beta-hemolytic on certain growth media due to the production of leukotoxin (LtxA). Based on this observation and our ability to generate random transposon insertions in A. actinomycetemcomitans, we developed and carried out a rapid screen for LtxA mutants. Using PCR, we mapped several of the mutations to genes that are known or predicted to be required for LtxA production, including ltxA, ltxB, ltxD, and tdeA. In addition, we identified an insertion in a gene previously not recognized to be involved in LtxA biosynthesis, ptsH. ptsH encodes the protein HPr, a phosphocarrier protein that is part of the sugar phosphotransferase system. HPr results in the phosphorylation of other proteins and ultimately in the activation of adenylate cyclase and cyclic AMP (cAMP) production. The ptsH mutant showed only partial hemolysis on blood agar and did not produce LtxA. The phenotype was complemented by supplying wild-type ptsH in trans, and real-time PCR analysis showed that the ptsH mutant produced approximately 10-fold less ltxA mRNA than the wild-type strain. The levels of cAMP in the ptsH mutant were significantly lower than in the wild-type strain, and LtxA production could be restored by adding exogenous cAMP to the culture.

  19. Stable transformation of Pleurotus ostreatus to hygromycin B resistance using Lentinus edodes GPD expression signals.

    PubMed

    Irie, T; Honda, Y; Hirano, T; Sato, T; Enei, H; Watanabe, T; Kuwahara, M

    2001-09-01

    It was reported that Pleurotus ostreatus was transformed unstably using recombinant plasmids containing a hygromycin B phosphotransferase gene (hph) under the control of Aspergillus nidulans expression signals, and that the plasmids were maintained extrachromosomally in the transformants. Here we report a stable and integrative transformation of the fungus to hygromycin B resistance, using a recombinant hph fused with Lentinus edodes glyceraldehyde-3-phosphate dehydrogenase expression signals. Restriction-enzyme-mediated integration (REMI) was also tried and increased the transformation efficiency about ten-fold.

  20. Structural basis of rifampin inactivation by rifampin phosphotransferase

    PubMed Central

    Qi, Xiaofeng; Lin, Wei; Ma, Miaolian; Wang, Chengyuan; He, Yang; He, Nisha; Gao, Jing; Zhou, Hu; Xiao, Youli; Wang, Yong

    2016-01-01

    Rifampin (RIF) is a first-line drug used for the treatment of tuberculosis and other bacterial infections. Various RIF resistance mechanisms have been reported, and recently an RIF-inactivation enzyme, RIF phosphotransferase (RPH), was reported to phosphorylate RIF at its C21 hydroxyl at the cost of ATP. However, the underlying molecular mechanism remained unknown. Here, we solve the structures of RPH from Listeria monocytogenes (LmRPH) in different conformations. LmRPH comprises three domains: an ATP-binding domain (AD), an RIF-binding domain (RD), and a catalytic His-containing domain (HD). Structural analyses reveal that the C-terminal HD can swing between the AD and RD, like a toggle switch, to transfer phosphate. In addition to its catalytic role, the HD can bind to the AD and induce conformational changes that stabilize ATP binding, and the binding of the HD to the RD is required for the formation of the RIF-binding pocket. A line of hydrophobic residues forms the RIF-binding pocket and interacts with the 1-amino, 2-naphthol, 4-sulfonic acid and naphthol moieties of RIF. The R group of RIF points toward the outside of the pocket, explaining the low substrate selectivity of RPH. Four residues near the C21 hydroxyl of RIF, His825, Arg666, Lys670, and Gln337, were found to play essential roles in the phosphorylation of RIF; among these the His825 residue may function as the phosphate acceptor and donor. Our study reveals the molecular mechanism of RIF phosphorylation catalyzed by RPH and will guide the development of a new generation of rifamycins. PMID:27001859

  1. Analysis of the Transcriptional Regulator GlpR, Promoter Elements, and Posttranscriptional Processing Involved in Fructose-Induced Activation of the Phosphoenolpyruvate-Dependent Sugar Phosphotransferase System in Haloferax mediterranei

    PubMed Central

    Cai, Lei; Cai, Shuangfeng; Zhao, Dahe; Wu, Jinhua; Wang, Lei; Liu, Xiaoqing; Li, Ming; Hou, Jing; Zhou, Jian; Liu, Jingfang; Han, Jing

    2014-01-01

    Among all known archaeal strains, the phosphoenolpyruvate-dependent phosphotransferase system (PTS) for fructose utilization is used primarily by haloarchaea, which thrive in hypersaline environments, whereas the molecular details of the regulation of the archaeal PTS under fructose induction remain unclear. In this study, we present a comprehensive examination of the regulatory mechanism of the fructose PTS in the haloarchaeon Haloferax mediterranei. With gene knockout and complementation, microarray analysis, and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR), we revealed that GlpR is the indispensable activator, which specifically binds to the PTS promoter (PPTS) during fructose induction. Further promoter-scanning mutation indicated that three sites located upstream of the H. mediterranei PPTS, which are conserved in most haloarchaeal PPTSs, are involved in this induction. Interestingly, two PTS transcripts (named T8 and T17) with different lengths of 5′ untranslated region (UTR) were observed, and promoter or 5′ UTR swap experiments indicated that the shorter 5′ UTR was most likely generated from the longer one. Notably, the translation efficiency of the transcript with this shorter 5′ UTR was significantly higher and the ratio of T8 (with the shorter 5′ UTR) to T17 increased during fructose induction, implying that a posttranscriptional mechanism is also involved in PTS activation. With these insights into the molecular regulation of the haloarchaeal PTS, we have proposed a working model for haloarchaea in response to environmental fructose. PMID:24334671

  2. Lipid-Mediated Regulation of Embedded Receptor Kinases via Parallel Allosteric Relays.

    PubMed

    Ghosh, Madhubrata; Wang, Loo Chien; Ramesh, Ranita; Morgan, Leslie K; Kenney, Linda J; Anand, Ganesh S

    2017-02-28

    Membrane-anchored receptors are essential cellular signaling elements for stimulus sensing, propagation, and transmission inside cells. However, the contributions of lipid interactions to the function and dynamics of embedded receptor kinases have not been described in detail. In this study, we used amide hydrogen/deuterium exchange mass spectrometry, a sensitive biophysical approach, to probe the dynamics of a membrane-embedded receptor kinase, EnvZ, together with functional assays to describe the role of lipids in receptor kinase function. Our results reveal that lipids play an important role in regulating receptor function through interactions with transmembrane segments, as well as through peripheral interactions with nonembedded domains. Specifically, the lipid membrane allosterically modulates the activity of the embedded kinase by altering the dynamics of a glycine-rich motif that is critical for phosphotransfer from ATP. This allostery in EnvZ is independent of membrane composition and involves direct interactions with transmembrane and periplasmic segments, as well as peripheral interactions with nonembedded domains of the protein. In the absence of the membrane-spanning regions, lipid allostery is propagated entirely through peripheral interactions. Whereas lipid allostery impacts the phosphotransferase function of the kinase, extracellular stimulus recognition is mediated via a four-helix bundle subdomain located in the cytoplasm, which functions as the osmosensing core through osmolality-dependent helical stabilization. Our findings emphasize the functional modularity in a membrane-embedded kinase, separated into membrane association, phosphotransferase function, and stimulus recognition. These components are integrated through long-range communication relays, with lipids playing an essential role in regulation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Regulation of the lactose phosphotransferase system of Streptococcus bovis by glucose: independence of inducer exclusion and expulsion mechanisms.

    PubMed

    Cook, G M; Kearns, D B; Russell, J B; Reizer, J; Saier, M H

    1995-09-01

    Streptococcus bovis had a diauxic pattern of glucose and lactose utilization, and both of these sugars were transported by the sugar phosphotransferase system (PTS). Lactose catabolism was inducible, and S. bovis used the tagatose pathway to ferment lactose. Since a mutant that was deficient in glucose PTS activity transported lactose as fast as the wild-type, it appeared that S. bovis has separate enzyme IIs for glucose and lactose. The nonmetabolizable glucose analogue 2-deoxyglucose (2-DG) was a noncompetitive inhibitor of methyl beta-D-thiogalactopyranoside (TMG) transport, and cells that were provided with either glucose or 2-DG were unable to transport TMG or lactose. Because the glucose-PTS-deficient mutant could ferment glucose, but could not exclude TMG, it appeared that enzyme IIGlc rather than glucose catabolism per se was the critical feature of inducer exclusion. Cells that had accumulated TMG as TMG 6-phosphate expelled free TMG when glucose was added, but 2-DG was unable to cause TMG expulsion. The glucose-PTS-deficient mutant could still expel TMG in the presence of exogenous glucose. Membrane vesicles also exhibited glucose-dependent TMG exclusion and TMG expulsion. Membrane vesicles that were electroporated with phosphoenolpyruvate (PEP) and HPr retained TMG for more than 3 min, but vesicles that were electroporated with PEP plus HPr and fructose 1,6-diphosphate (FDP) (or glycerate 2-phosphate) lost their ability to retain TMG. Because FDP was able to trigger the ATP-dependent phosphorylation of HPr, it appeared that inducer expulsion was mediated by an FDP-activated protein kinase.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Synbiotic impact of tagatose on viability of Lactobacillus rhamnosus strain GG mediated by the phosphotransferase system (PTS).

    PubMed

    Koh, Ji Hoon; Choi, Seung Hye; Park, Seung Won; Choi, Nag-Jin; Kim, Younghoon; Kim, Sae Hun

    2013-10-01

    Synbiotics, the combination of prebiotics and probiotics, has been shown to produce synergistic effects that promote gastrointestinal well-being of host. Tagatose is a low calorie food ingredient with putative health-promoting benefits. Herein, we investigated its synbiotic impact on the viability of Lactobacillus casei 01 and Lactobacillus rhamnosus strain GG and the potential mechanism involved. Tagatose, as a synbiotic substrate, enhanced the growth of L. casei 01 and L. rhamnosus strain GG compared to other prebiotics. Other gut-indigenous such as Clostridium spp. readily utilized fructooligosaccharide (FOS), the most widely used functional prebiotics, but not tagatose. Additionally, tagatose enhanced probiotic functions of L. casei 01 and L. rhamnosus strain GG by reinforcing their attachment on HT-29 intestine epithelial cells and enhancing their cholesterol-lowering activities. Whole transcriptome study and quantitative real-time polymerase chain reaction (qRT-PCR) test showed that the presence of tagatose in L. rhamnosus strain GG caused induction of a large number of genes associated with carbohydrate metabolism including the phosphotransferase system (PTS). Collectively, these results indicate the tagatose enhanced the growth of L. casei 01 and L. rhamnosus strain GG and their probiotic activities by activating tagatose-associated PTS networks. Importantly, this study highlights the potential application of tagatose and L. casei 01 and/or L. rhamnosus strain GG as a synbiotic partner in functional dairy foods (i.e. yogurt and cheese) and therapeutic dietary supplements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria†

    PubMed Central

    Deutscher, Josef; Francke, Christof; Postma, Pieter W.

    2006-01-01

    The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens. PMID:17158705

  6. Screen for Leukotoxin Mutants in Aggregatibacter actinomycetemcomitans: Genes of the Phosphotransferase System Are Required for Leukotoxin Biosynthesis▿

    PubMed Central

    Isaza, Maria P.; Duncan, Matthew S.; Kaplan, Jeffrey B.; Kachlany, Scott C.

    2008-01-01

    Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans is a pathogen that causes localized aggressive periodontitis and extraoral infections including infective endocarditis. Recently, we reported that A. actinomycetemcomitans is beta-hemolytic on certain growth media due to the production of leukotoxin (LtxA). Based on this observation and our ability to generate random transposon insertions in A. actinomycetemcomitans, we developed and carried out a rapid screen for LtxA mutants. Using PCR, we mapped several of the mutations to genes that are known or predicted to be required for LtxA production, including ltxA, ltxB, ltxD, and tdeA. In addition, we identified an insertion in a gene previously not recognized to be involved in LtxA biosynthesis, ptsH. ptsH encodes the protein HPr, a phosphocarrier protein that is part of the sugar phosphotransferase system. HPr results in the phosphorylation of other proteins and ultimately in the activation of adenylate cyclase and cyclic AMP (cAMP) production. The ptsH mutant showed only partial hemolysis on blood agar and did not produce LtxA. The phenotype was complemented by supplying wild-type ptsH in trans, and real-time PCR analysis showed that the ptsH mutant produced approximately 10-fold less ltxA mRNA than the wild-type strain. The levels of cAMP in the ptsH mutant were significantly lower than in the wild-type strain, and LtxA production could be restored by adding exogenous cAMP to the culture. PMID:18541661

  7. Properties of the glucose phosphotransferase system of Clostridium acetobutylicum NCIB 8052

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, W.J.; Shaw, J.E.; Andrews, L.

    1991-09-01

    Acetone-butanol-ethanol fermentation by Clostridium acetobutylicum has been exploited on an industrial scale in the past, but for economic reasons the process has declined. However, with an increased understanding of solvent formation and the potential for genetic manipulation of the organism, this fermentation is once again receiving attention. An economical process would be founded on the use of cheap, renewable substrates, ideally carbohydrate-based waste materials. However, little is known about the mechanism and regulation of carbohydrate accumulation by C. acetobutylicum. The glucose phosphotransferase system (PTS) of C. acetobutylicum was studied by using cell extracts. The system exhibited a K{sub m} formore » glucose of 34 {mu}M, and glucose phosphorylation was inhibited competitively by mannose and 2-deoxyglucose. The analogs 3-O-methylglucoside and methyl {alpha}-glucoside did not inhibit glucose phosphorylation significantly. Activity showed no dependence on Mg{sup 2+} ions or on pH in the range 6.0 to 8.0. The PTS comprised both soluble and membrane-bound proteins, which interacted functionally with the PTSs of Clostridium pasteurianum, Bacillus subtilis, and Escherichia coli. In addition to a membrane-bound enzyme II{sup Glc}, sugar phosphorylation assays in heterologous systems incorporating extracts of pts mutants of other organisms provided evidence for enzyme I, HPr, and III{sup Glc} components. The HPr was found in the soluble fraction of C. acetobutylicum extracts, whereas enzyme I, and probably also III{sup Glc}, was present in both the soluble and membrane fractions, suggesting a membrane location in the intact cell.« less

  8. Activation of Escherichia coli antiterminator BglG requires its phosphorylation

    PubMed Central

    Rothe, Fabian M.; Bahr, Thomas; Stülke, Jörg; Rak, Bodo; Görke, Boris

    2012-01-01

    Transcriptional antiterminator proteins of the BglG family control the expression of enzyme II (EII) carbohydrate transporters of the bacterial phosphotransferase system (PTS). In the PTS, phosphoryl groups are transferred from phosphoenolpyruvate (PEP) via the phosphotransferases enzyme I (EI) and HPr to the EIIs, which phosphorylate their substrates during transport. Activity of the antiterminators is negatively controlled by reversible phosphorylation catalyzed by the cognate EIIs in response to substrate availability and positively controlled by the PTS. For the Escherichia coli BglG antiterminator, two different mechanisms for activation by the PTS were proposed. According to the first model, BglG is activated by HPr-catalyzed phosphorylation at a site distinct from the EII-dependent phosphorylation site. According to the second model, BglG is not activated by phosphorylation, but solely through interaction with EI and HPr, which are localized at the cell pole. Subsequently BglG is released from the cell pole to the cytoplasm as an active dimer. Here we addressed this discrepancy and found that activation of BglG requires phosphorylatable HPr or the HPr homolog FruB in vivo. Further, we uniquely demonstrate that purified BglG protein becomes phosphorylated by FruB as well as by HPr in vitro. Histidine residue 208 in BglG is essential for this phosphorylation. These data suggest that BglG is in fact activated by phosphorylation and that there is no principal difference between the PTS-exerted mechanisms controlling the activities of BglG family proteins in Gram-positive and Gram-negative bacteria. PMID:22984181

  9. [Sequencing and analysis of the resistome of Streptomyces fradiae ATCC19609 in order to develop a test system for screening of new antimicrobial agents].

    PubMed

    Vatlin, A A; Bekker, O B; Lysenkova, L N; Korolev, A M; Shchekotikhin, A E; Danilenko, V N

    2016-06-01

    The paper provides the annotation and data on sequencing the antibiotic resistance genes in Streptomyces fradiae strain ATCC19609, highly sensitive to different antibiotics. Genome analysis revealed four groups of genes that determined the resistome of the tested strain. These included classical antibiotic resistance genes (nine aminoglycoside phosphotransferase genes, two beta-lactamase genes, and the genes of puromycin N-acetyltransferase, phosphinothricin N-acetyltransferase, and aminoglycoside acetyltransferase); the genes of ATP-dependent ABC transporters, involved in the efflux of antibiotics from the cell (MacB-2, BcrA, two-subunit MDR1); the genes of positive and negative regulation of transcription (whiB and padR families); and the genes of post-translational modification (serine-threonine protein kinases). A comparative characteristic of aminoglycoside phosphotransferase genes in S. fradiae ATCC19609, S. lividans TK24, and S. albus J1074, the causative agent of actinomycosis, is provided. The possibility of using the S. fradiae strain ATCC19609 as the test system for selection of the macrolide antibiotic oligomycin A derivatives with different levels of activity is demonstrated. Analysis of more than 20 semisynthetic oligomycin A derivatives made it possible to divide them into three groups according to the level of activity: inactive (>1 nmol/disk), 10 substances; with medium activity level (0.05–1 nmol/disk), 12 substances; and more active (0.01–0.05 nmol/disk), 2 substances. Important for the activity of semisynthetic derivatives is the change in the position of the 33rd carbon atom in the oligomycin A molecule.

  10. Agrobacterium tumefaciens-mediated transformation of Mucor circinelloides.

    PubMed

    Nyilasi, I; Acs, K; Papp, T; Nagy, E; Vágvölgyi, C

    2005-01-01

    The Agrobacterium tumefaciens-mediated transformation of the zygomycetous fungus Mucor circinelloides is described. A method was also developed for the hygromycin B-based selection of Mucor transformants. Transformation with the hygromycin B phosphotransferase gene of Escherichia coli controlled by the heterologous Aspergillus nidulans trpC promoter resulted in hygromycin B-resistant clones. The presence of the hygromycin resistance gene in the genome of the transformants was verified by polymerase chain reaction and Southern hybridization: the latter analyses revealed integrations in the host genome at different sites in different transformants. The stability of transformants remained questionable during the latter analyses.

  11. Seamless Genome Editing in Rice via Gene Targeting and Precise Marker Elimination.

    PubMed

    Nishizawa-Yokoi, Ayako; Saika, Hiroaki; Toki, Seiichi

    2016-01-01

    Positive-negative selection using hygromycin phosphotransferase (hpt) and diphtheria toxin A-fragment (DT-A) as positive and negative selection markers, respectively, allows enrichment of cells harboring target genes modified via gene targeting (GT). We have developed a successful GT system employing positive-negative selection and subsequent precise marker excision via the piggyBac transposon derived from the cabbage looper moth to introduce desired modifications into target genes in the rice genome. This approach could be applied to the precision genome editing of almost all endogenous genes throughout the genome, at least in rice.

  12. Genetic Transformation of Switchgrass

    NASA Astrophysics Data System (ADS)

    Xi, Yajun; Ge, Yaxin; Wang, Zeng-Yu

    Switchgrass (Panicum virgatum L.) is a highly productive warm-season C4 species that is being developed into a dedicated biofuel crop. This chapter describes a protocol that allows the generation of transgenic switchgrass plants by Agrobacterium tumefaciens-mediated transformation. Embryogenic calluses induced from caryopses or inflorescences were used as explants for inoculation with A. tumefaciens strain EHA105. Hygromycin phosphotransferase gene (hph) was used as the selectable marker and hygromycin was used as the selection agent. Calluses resistant to hygromycin were obtained after 5-6 weeks of selection. Soil-grown switchgrass plants were regenerated about 6 months after callus induction and Agrobacterium-mediated transformation.

  13. Genetic transformation of switchgrass.

    PubMed

    Xi, Yajun; Ge, Yaxin; Wang, Zeng-Yu

    2009-01-01

    Switchgrass (Panicum virgatum L.) is a highly productive warm-season C4 species that is being developed into a dedicated biofuel crop. This chapter describes a protocol that allows the generation of transgenic switchgrass plants by Agrobacterium tumefaciens-mediated transformation. Embryogenic calluses induced from caryopses or inflorescences were used as explants for inoculation with A. tumefaciens strain EHA105. Hygromycin phosphotransferase gene (hph) was used as the selectable marker and hygromycin was used as the selection agent. Calluses resistant to hygromycin were obtained after 5-6 weeks of selection. Soil-grown switchgrass plants were regenerated about 6 months after callus induction and Agrobacterium-mediated transformation.

  14. Genome Sequence of Thermotoga sp Strain RQ2, a Hyperthermophilic Bacterium Isolated from a Geothermally Heated Region of the Seafloor near Ribeira Quente, the Azores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swithers, Kristen S; DiPippo, Jonathan L; Bruce, David

    2011-01-01

    Thermotoga sp. strain RQ2 is probably a strain of Thermotoga maritima. Its complete genome sequence allows for an examination of the extent and consequences of gene flow within Thermotoga species and strains. Thermotoga sp. RQ2 differs from T. maritima in its genes involved in myo-inositol metabolism. Its genome also encodes an apparent fructose phosphotransferase system (PTS) sugar transporter. This operon is also found in Thermotoga naphthophila strain RKU-10 but no other Thermotogales. These are the first reported PTS transporters in the Thermotogales.

  15. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6′)-Ie-APH(2′′)-Ia

    PubMed Central

    Smith, Clyde A.; Toth, Marta; Bhattacharya, Monolekha; Frase, Hilary; Vakulenko, Sergei B.

    2014-01-01

    The bifunctional acetyltransferase(6′)-Ie-phosphotransfer­ase(2′′)-Ia [AAC(6′)-Ie-APH(2′′)-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6′)-Ie-APH(2′′)-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2′′)-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2′′)-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2′′)-IIa and APH(2′′)-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2′′)-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2′′)-IIIa enzyme. In APH(2′′)-Ia this GTP selectivity is governed by the presence of a ‘gatekeeper’ residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2′′)-Ia into a dual-specificity enzyme. PMID:24914967

  16. Identification of lactose phosphotransferase systems in Lactobacillus gasseri ATCC 33323 required for lactose utilization.

    PubMed

    Francl, Alyssa L; Hoeflinger, Jennifer L; Miller, Michael J

    2012-04-01

    Improving the annotation of sugar catabolism-related genes requires functional characterization. Our objective was to identify the genes necessary for lactose utilization by Lactobacillus gasseri ATCC 33323 (NCK334). The mechanism of lactose transport in many lactobacilli is a lactose/galactose-specific permease, yet no orthologue was found in NCK334. Characterization of an EI knockout strain [EI (enzyme I) is required for phosphotransferase system transporter (PTS) function] demonstrated that L. gasseri requires PTS(s) to utilize lactose. In order to determine which PTS(s) were necessary for lactose utilization, we compared transcript expression profiles in response to lactose for the 15 complete PTSs identified in the NCK334 genome. PTS 6CB (LGAS_343) and PTS 8C (LGAS_497) were induced in the presence of lactose 107- and 53-fold, respectively. However, L. gasseri ATCC 33323 PTS 6CB, PTS 8C had a growth rate similar to that of the wild-type on semisynthetic deMan, Rogosa, Sharpe (MRS) medium with lactose. Expression profiles of L. gasseri ATCC 33323 PTS 6CB, PTS 8C in response to lactose identified PTS 9BC (LGAS_501) as 373-fold induced, whereas PTS 9BC was not induced in NCK334. Elimination of growth on lactose required the inactivation of both PTS 6CB and PTS 9BC. Among the six candidate phospho-β-galactosidase genes present in the NCK334 genome, LGAS_344 was found to be induced 156-fold in the presence of lactose. In conclusion, we have determined that: (1) NCK334 uses a PTS to import lactose; (2) PTS 6CB and PTS 8C gene expression is strongly induced by lactose; and (3) elimination of PTS 6CB and PTS 9BC is required to prevent growth on lactose.

  17. Sequence analyses and evolutionary relationships among the energy-coupling proteins Enzyme I and HPr of the bacterial phosphoenolpyruvate: sugar phosphotransferase system.

    PubMed Central

    Reizer, J.; Hoischen, C.; Reizer, A.; Pham, T. N.; Saier, M. H.

    1993-01-01

    We have previously reported the overexpression, purification, and biochemical properties of the Bacillus subtilis Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) (Reizer, J., et al., 1992, J. Biol. Chem. 267, 9158-9169). We now report the sequencing of the ptsI gene of B. subtilis encoding Enzyme I (570 amino acids and 63,076 Da). Putative transcriptional regulatory signals are identified, and the pts operon is shown to be subject to carbon source-dependent regulation. Multiple alignments of the B. subtilis Enzyme I with (1) six other sequenced Enzymes I of the PTS from various bacterial species, (2) phosphoenolpyruvate synthase of Escherichia coli, and (3) bacterial and plant pyruvate: phosphate dikinases (PPDKs) revealed regions of sequence similarity as well as divergence. Statistical analyses revealed that these three types of proteins comprise a homologous family, and the phylogenetic tree of the 11 sequenced protein members of this family was constructed. This tree was compared with that of the 12 sequence HPr proteins or protein domains. Antibodies raised against the B. subtilis and E. coli Enzymes I exhibited immunological cross-reactivity with each other as well as with PPDK of Bacteroides symbiosus, providing support for the evolutionary relationships of these proteins suggested from the sequence comparisons. Putative flexible linkers tethering the N-terminal and the C-terminal domains of protein members of the Enzyme I family were identified, and their potential significance with regard to Enzyme I function is discussed. The codon choice pattern of the B. subtilis and E. coli ptsI and ptsH genes was found to exhibit a bias toward optimal codons in these organisms.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7686067

  18. Generation of Trichoderma atroviride mutants with constitutively activated G protein signaling by using geneticin resistance as selection marker.

    PubMed

    Gruber, Sabine; Omann, Markus; Rodrìguez, Carolina Escobar; Radebner, Theresa; Zeilinger, Susanne

    2012-11-17

    Species of the fungal genus Trichoderma are important industrial producers of cellulases and hemicellulases, but also widely used as biocontrol agents (BCAs) in agriculture. In the latter function Trichoderma species stimulate plant growth, induce plant defense and directly antagonize plant pathogenic fungi through their mycoparasitic capabilities. The recent release of the genome sequences of four mycoparasitic Trichoderma species now forms the basis for large-scale genetic manipulations of these important BCAs. Thus far, only a limited number of dominant selection markers, including Hygromycin B resistance (hph) and the acetamidase-encoding amdS gene, have been available for transformation of Trichoderma spp. For more extensive functional genomics studies the utilization of additional dominant markers will be essential. We established the Escherichia coli neomycin phosphotransferase II-encoding nptII gene as a novel selectable marker for the transformation of Trichoderma atroviride conferring geneticin resistance. The nptII marker cassette was stably integrated into the fungal genome and transformants exhibited unaltered phenotypes compared to the wild-type. Co-transformation of T. atroviride with nptII and a constitutively activated version of the Gα subunit-encoding tga3 gene (tga3Q207L) resulted in a high number of mitotically stable, geneticin-resistant transformants. Further analyses revealed a co-transformation frequency of 68% with 15 transformants having additionally integrated tga3Q207L into their genome. Constitutive activation of the Tga3-mediated signaling pathway resulted in increased vegetative growth and an enhanced ability to antagonize plant pathogenic host fungi. The neomycin phosphotransferase II-encoding nptII gene from Escherichia coli proved to be a valuable tool for conferring geneticin resistance to the filamentous fungus T. atroviride thereby contributing to an enhanced genetic tractability of these important BCAs.

  19. The transcription factor Mlc promotes Vibrio cholerae biofilm formation through repression of phosphotransferase system components.

    PubMed

    Pickering, Bradley S; Lopilato, Jane E; Smith, Daniel R; Watnick, Paula I

    2014-07-01

    The phosphoenol phosphotransferase system (PTS) is a multicomponent signal transduction cascade that regulates diverse aspects of bacterial cellular physiology in response to the availability of high-energy sugars in the environment. Many PTS components are repressed at the transcriptional level when the substrates they transport are not available. In Escherichia coli, the transcription factor Mlc (for makes large colonies) represses transcription of the genes encoding enzyme I (EI), histidine protein (HPr), and the glucose-specific enzyme IIBC (EIIBC(Glc)) in defined media that lack PTS substrates. When glucose is present, the unphosphorylated form of EIIBC(Glc) sequesters Mlc to the cell membrane, preventing its interaction with DNA. Very little is known about Vibrio cholerae Mlc. We found that V. cholerae Mlc activates biofilm formation in LB broth but not in defined medium supplemented with either pyruvate or glucose. Therefore, we questioned whether V. cholerae Mlc functions differently than E. coli Mlc. Here we have shown that, like E. coli Mlc, V. cholerae Mlc represses transcription of PTS components in both defined medium and LB broth and that E. coli Mlc is able to rescue the biofilm defect of a V. cholerae Δmlc mutant. Furthermore, we provide evidence that Mlc indirectly activates transcription of the vps genes by repressing expression of EI. Because activation of the vps genes by Mlc occurs under only a subset of the conditions in which repression of PTS components is observed, we conclude that additional inputs present in LB broth are required for activation of vps gene transcription by Mlc. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Reduced tumorigenicity of rat glioma cells in the brain when mediated by hygromycin phosphotransferase.

    PubMed

    Hormigo, A; Friedlander, D R; Brittis, P A; Zagzag, D; Grumet, M

    2001-04-01

    A variant of C6 glioma cells, C6R-G/H cells express hygromycin phosphotransferase (HPT) and appear to have reduced tumorigenicity in the embryonic brain. The goal of this study was to investigate their reduced capacity to generate tumors in the adult rat brain. Cell lines were implanted into rat brains and tumorigenesis was evaluated. After 3 weeks, all rats with C6 cells showed signs of neurological disease, whereas rats with C6R-G/H cells did not and were either killed then or allowed to survive until later. Histological studies were performed to analyze tumor size, malignancy, angiogenesis, and cell proliferation. Cells isolated from rat brain tumors were analyzed for mutation to HPT by testing their sensitivity to hygromycin. The results indicate that HPT suppresses tumor formation. Three weeks after implantation, only 44% of animals implanted with C6R-G/H cells developed tumors, whereas all animals that received C6 glioma cells developed high-grade gliomas. The C6R-G/H cells filled a 20-fold smaller maximal cross-sectional area than the C6 cells, and exhibited less malignant characteristics, including reduced angiogenesis, mitosis, and cell proliferation. Similar results were obtained in the brain of nude rats, indicating that the immune system did not play a significant role in suppressing tumor growth. The combination of green fluorescent protein (GFP) and HPT was more effective in suppressing tumorigenesis than either plasmid by itself, indicating that the GFP may protect against inactivation of the HPT. Interestingly. hygromycin resistance was lost in tumor cells that were recovered from a group of animals in which C6R-G/H cells formed tumors, confirming the correlation of HPT with reduced tumorigenicity.

  1. Efficient repair of DNA double-strand breaks in malignant cells with structural instability

    PubMed Central

    Cheng, Yue; Zhang, Zhenhua; Keenan, Bridget; Roschke, Anna V.; Nakahara, Kenneth; Aplan, Peter D.

    2009-01-01

    Aberrant repair of DNA double strand breaks (DSBs) is thought to be important in the generation of gross chromosomal rearrangements (GCRs). To examine how DNA DSBs might lead to GCRs, we investigated the repair of a single DNA DSB in a structurally unstable cell line. An I-SceI recognition site was introduced into OVCAR-8 cells between a constitutive promoter (EF1α) and the Herpes simplex virus thymidine kinase (TK) gene, which confers sensitivity to gancyclovir (GCV). Expression of I-SceI in these cells caused a single DSB. Clones with aberrant repair could acquire resistance to GCV by separation of the EF1α promoter from the TK gene, or deletion of either the EF1α promoter or the TK gene. All mutations that we identified were interstitial deletions. Treatment of cells with etoposide or bleomycin, agents known to produce DNA DSBs following expression of I-SceI also did not generate GCRs. Because we identified solely interstitial deletions using the aforementioned negative selection system, we developed a positive selection system to produce GCR. A construct containing an I-SceI restriction site immediately followed by a hygromycin phosphotransferase cDNA, with no promoter, was stably integrated into OVCAR-8 cells. DNA DSBs were produced by an I-SceI expression vector. None of the hygromycin resistant clones recovered had linked the hygromycin phosphotransferase cDNA to an endogenous promoter, but had instead captured a portion of the I-SceI expression vector. These results indicate that even in a structurally unstable malignant cell line, the majority of DNA DSBs are repaired by religation of the two broken chromosome ends, without the introduction of a GCR. PMID:19909760

  2. Efficient repair of DNA double-strand breaks in malignant cells with structural instability.

    PubMed

    Cheng, Yue; Zhang, Zhenhua; Keenan, Bridget; Roschke, Anna V; Nakahara, Kenneth; Aplan, Peter D

    2010-01-05

    Aberrant repair of DNA double-strand breaks (DSBs) is thought to be important in the generation of gross chromosomal rearrangements (GCRs). To examine how DNA DSBs might lead to GCRs, we investigated the repair of a single DNA DSB in a structurally unstable cell line. An I-SceI recognition site was introduced into OVCAR-8 cells between a constitutive promoter (EF1alpha) and the Herpes simplex virus thymidine kinase (TK) gene, which confers sensitivity to gancyclovir (GCV). Expression of I-SceI in these cells caused a single DSB. Clones with aberrant repair could acquire resistance to GCV by separation of the EF1alpha promoter from the TK gene, or deletion of either the EF1alpha promoter or the TK gene. All mutations that we identified were interstitial deletions. Treatment of cells with etoposide or bleomycin, agents known to produce DNA DSBs following expression of I-SceI also did not generate GCRs. Because we identified solely interstitial deletions using the aforementioned negative selection system, we developed a positive selection system to produce GCR. A construct containing an I-SceI restriction site immediately followed by a hygromycin phosphotransferase cDNA, with no promoter, was stably integrated into OVCAR-8 cells. DNA DSBs were produced by an I-SceI expression vector. None of the hygromycin resistant clones recovered had linked the hygromycin phosphotransferase cDNA to an endogenous promoter, but had instead captured a portion of the I-SceI expression vector. These results indicate that even in a structurally unstable malignant cell line, the majority of DNA DSBs are repaired by religation of the two broken chromosome ends, without the introduction of a GCR.

  3. Role of Secondary Transporters and Phosphotransferase Systems in Glucose Transport by Oenococcus oeni ▿

    PubMed Central

    Kim, Ok Bin; Richter, Hanno; Zaunmüller, Tanja; Graf, Sabrina; Unden, Gottfried

    2011-01-01

    Glucose uptake by the heterofermentative lactic acid bacterium Oenococcus oeni B1 was studied at the physiological and gene expression levels. Glucose- or fructose-grown bacteria catalyzed uptake of [14C]glucose over a pH range from pH 4 to 9, with maxima at pHs 5.5 and 7. Uptake occurred in two-step kinetics in a high- and low-affinity reaction. The high-affinity uptake followed Michaelis-Menten kinetics and required energization. It accumulated the radioactivity of glucose by a factor of 55 within the bacteria. A large portion (about 80%) of the uptake of glucose was inhibited by protonophores and ionophores. Uptake of the glucose at neutral pH was not sensitive to degradation of the proton potential, Δp. Expression of the genes OEOE_0819 and OEOE_1574 (here referred to as 0819 and 1574), coding for secondary transporters, was induced by glucose as identified by quantitative real-time (RT)-PCR. The genes 1574 and 0819 were able to complement growth of a Bacillus subtilis hexose transport-deficient mutant on glucose but not on fructose. The genes 1574 and 0819 therefore encode secondary transporters for glucose, and the transports are presumably Δp dependent. O. oeni codes, in addition, for a phosphotransferase transport system (PTS) (gene OEOE_0464 [0464] for the permease) with similarity to the fructose- and mannose-specific PTS of lactic acid bacteria. Quantitative RT-PCR showed induction of the gene 0464 by glucose and by fructose. The data suggest that the PTS is responsible for Δp-independent hexose transport at neutral pH and for the residual Δp-independent transport of hexoses at acidic pH. PMID:22020640

  4. An homolog of the Frz Phosphoenolpyruvate:carbohydrate phosphoTransferase System of extraintestinal pathogenic Escherichia coli is encoded on a genomic island in specific lineages of Streptococcus agalactiae.

    PubMed

    Patron, Kévin; Gilot, Philippe; Camiade, Emilie; Mereghetti, Laurent

    2015-06-01

    We identified a Streptococcus agalactiae metabolic region (fru2) coding for a Phosphoenolpyruvate:carbohydrate phosphoTransferase System (PTS) homologous to the Frz system of extraintestinal pathogenic Escherichia coli strains. The Frz system is involved in environmental sensing and regulation of the expression of adaptation and virulence genes in E. coli. The S. agalactiae fru2 region codes three subunits of a PTS transporter of the fructose-mannitol family, a transcriptional activator of PTSs of the MtlR family, an allulose-6 phosphate-3-epimerase, a transaldolase and a transketolase. We demonstrated that all these genes form an operon. The fru2 operon is present in a 17494-bp genomic island. We analyzed by multilocus sequence typing a population of 492 strains representative of the S. agalactiae population and we showed that the presence of the fru2 operon is linked to the phylogeny of S. agalactiae. The fru2 operon is always present within strains of clonal complexes CC 1, CC 7, CC 10, CC 283 and singletons ST 130 and ST 288, but never found in other CCs and STs. Our results indicate that the fru2 operon was acquired during the evolution of the S. agalactiae species from a common ancestor before the divergence of CC 1, CC 7, CC 10, CC 283, ST 130 and ST 288. As S. agalactiae strains of CC 1 and CC 10 are frequently isolated from adults with invasive disease, we hypothesize that the S. agalactiae Fru2 system senses the environment to allow the bacterium to adapt to new conditions encountered during the infection of adults. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Mitomycin-C induces the apoptosis of human Tenon's capsule fibroblast by activation of c-Jun N-terminal kinase 1 and caspase-3 protease.

    PubMed

    Seong, Gong Je; Park, Channy; Kim, Chan Yoon; Hong, Young Jae; So, Hong-Seob; Kim, Sang-Duck; Park, Raekil

    2005-10-01

    To investigate whether mitochondrial dysfunction and mitogen-activated protein kinase family proteins are implicated in apoptotic signaling of human Tenon's capsule fibroblasts (HTCFs) by mitomycin-C. Apoptosis was determined by Hoechst nuclei staining, agarose gel electrophoresis, and flow cytometry in HTCFs treated with 0.4 mg/mL mitomycin-C for 5 minutes. Enzymatic digestion of florigenic biosubstrate assessed the catalytic activity of caspase proteases, including caspase-3, caspase-8, and caspase-9. Phosphotransferase activity of c-Jun N-terminal kinase (JNK) 1 was measured by in vitro immune complex kinase assay using c-Jun(1-79) protein as a substrate. Mitochondrial membrane potential transition (MPT) was measured by flow cytometric analysis of JC-1 staining. Mitomycin-C (0.4 mg/mL) induced the apoptosis of HTCFs, which was characterized as nucleic acid and genomic DNA fragmentation, chromatin condensation, and sub-G(0)/G(1) fraction of cell cycle increase. The catalytic activity of caspase-3 and caspase-9 was significantly increased and was accompanied by cytosolic release of cytochrome c and MPT in response to mitomycin-C. Treatment with mitomycin-C resulted in the increased expression of Fas, FasL, Bad, and phosphorylated p53 and a decreased level of phosphorylated AKT. Treatment with mitomycin-C also increased the phosphotransferase activity and tyrosine phosphorylation of JNK1, whose inhibitor significantly suppressed the cytotoxicity of mitomycin-C. Mitomycin-C induced the apoptosis of HTCFs through the activation of intrinsic and extrinsic caspase cascades with mitochondrial dysfunction. It also activated Fas-mediated apoptotic signaling of fibroblasts. Furthermore, the activation of JNK1 played a major role in the cytotoxicity of mitomycin-C.

  6. Comparative Genomic Analyses of the Bacterial Phosphotransferase System

    PubMed Central

    Barabote, Ravi D.; Saier, Milton H.

    2005-01-01

    We report analyses of 202 fully sequenced genomes for homologues of known protein constituents of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS). These included 174 bacterial, 19 archaeal, and 9 eukaryotic genomes. Homologues of PTS proteins were not identified in archaea or eukaryotes, showing that the horizontal transfer of genes encoding PTS proteins has not occurred between the three domains of life. Of the 174 bacterial genomes (136 bacterial species) analyzed, 30 diverse species have no PTS homologues, and 29 species have cytoplasmic PTS phosphoryl transfer protein homologues but lack recognizable PTS permeases. These soluble homologues presumably function in regulation. The remaining 77 species possess all PTS proteins required for the transport and phosphorylation of at least one sugar via the PTS. Up to 3.2% of the genes in a bacterium encode PTS proteins. These homologues were analyzed for family association, range of protein types, domain organization, and organismal distribution. Different strains of a single bacterial species often possess strikingly different complements of PTS proteins. Types of PTS protein domain fusions were analyzed, showing that certain types of domain fusions are common, while others are rare or prohibited. Select PTS proteins were analyzed from different phylogenetic standpoints, showing that PTS protein phylogeny often differs from organismal phylogeny. The results document the frequent gain and loss of PTS protein-encoding genes and suggest that the lateral transfer of these genes within the bacterial domain has played an important role in bacterial evolution. Our studies provide insight into the development of complex multicomponent enzyme systems and lead to predictions regarding the types of protein-protein interactions that promote efficient PTS-mediated phosphoryl transfer. PMID:16339738

  7. Streptococcal phosphoenolpyruvate-sugar phosphotransferase system: amino acid sequence and site of ATP-dependent phosphorylation of HPr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutscher, J.; Pevec, B.; Beyreuther, K.

    1986-10-21

    The amino acid sequence of histidine-containing protein (HPr) from Streptococcus faecalis has been determined by direct Edman degradation of intact HPr and by amino acid sequence analysis of tryptic peptides, V8 proteolyptic peptides, thermolytic peptides, and cyanogen bromide cleavage products. HPr from S. faecalis was found to contain 89 amino acid residues, corresponding to a molecular weight of 9438. The amino acid sequence of HPr from S. faecalis shows extended homology to the primary structure of HPr proteins from other bacteria. Besides the phosphoenolpyruvate-dependent phosphorylation of a histidyl residue in HPr, catalyzed by enzyme I of the bacterial phosphotransferase system,more » HPr was also found to be phosphorylated at a seryl residue in an ATP-dependent protein kinase catalyzed reaction. The site of ATP-dependent phosphorylation in HPr of S faecalis has now been determined. (/sup 32/P)P-Ser-HPr was digested with three different proteases, and in each case, a single labeled peptide was isolated. Following digestion with subtilisin, they obtained a peptide with the sequence -(P)Ser-Ile-Met-. Using chymotrypsin, they isolated a peptide with the sequence -Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-Gly-Val-Met-. The longest labeled peptide was obtained with V8 staphylococcal protease. According to amino acid analysis, this peptide contained 36 out of the 89 amino acid residues of HPr. The following sequence of 12 amino acid residues of the V8 peptide was determined: -Tyr-Lys-Gly-Lys-Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-. Thus, the site of ATP-dependent phosphorylation was determined to be Ser-46 within the primary structure of HPr.« less

  8. Evaluation of the kinase domain of c-KIT in canine cutaneous mast cell tumors

    PubMed Central

    Webster, Joshua D; Kiupel, Matti; Yuzbasiyan-Gurkan, Vilma

    2006-01-01

    Background Mutations in the c-KIT proto-oncogene have been implicated in the progression of several neoplastic diseases, including gastrointestinal stromal tumors and mastocytosis in humans, and cutaneous mast cell tumors (MCTs) in canines. Mutations in human mastocytosis patients primarily occur in c-KIT exon 17, which encodes a portion of its kinase domain. In contrast, deletions and internal tandem duplication (ITD) mutations are found in the juxtamembrane domain of c-KIT in approximately 15% of canine MCTs. In addition, ITD c-KIT mutations are significantly associated with aberrant KIT protein localization in canine MCTs. However, some canine MCTs have aberrant KIT localization but lack ITD c-KIT mutations, suggesting that other mutations or other factors may be responsible for aberrant KIT localization in these tumors. Methods In order to characterize the prevalence of mutations in the phospho-transferase portion of c-KIT's kinase domain in canine MCTs exons 16–20 of 33 canine MCTs from 33 dogs were amplified and sequenced. Additionally, in order to determine if mutations in c-KIT exon 17 are responsible for aberrant KIT localization in MCTs that lack juxtamembrane domain c-KIT mutations, c-KIT exon 17 was amplified and sequenced from 18 canine MCTs that showed an aberrant KIT localization pattern but did not have ITD c-KIT mutations. Results No mutations or polymorphisms were identified in exons 16–20 of any of the MCTs examined. Conclusion In conclusion, mutations in the phospho-transferase portion of c-KIT's kinase domain do not play an important role in the progression of canine cutaneous MCTs, or in the aberrant localization of KIT in canine MCTs. PMID:16579858

  9. Analysis of Two-Component Systems in Group B Streptococcus Shows That RgfAC and the Novel FspSR Modulate Virulence and Bacterial Fitness

    PubMed Central

    Faralla, Cristina; Metruccio, Matteo M.; De Chiara, Matteo; Mu, Rong; Patras, Kathryn A.; Muzzi, Alessandro; Grandi, Guido; Margarit, Immaculada; Doran, Kelly S.

    2014-01-01

    ABSTRACT Group B Streptococcus (GBS), in the transition from commensal organisms to pathogens, will encounter diverse host environments and, thus, require coordinated control of the transcriptional responses to these changes. This work was aimed at better understanding the role of two-component signal transduction systems (TCS) in GBS pathophysiology through a systematic screening procedure. We first performed a complete inventory and sensory mechanism classification of all putative GBS TCS by genomic analysis. Five TCS were further investigated by the generation of knockout strains, and in vitro transcriptome analysis identified genes regulated by these systems, ranging from 0.1% to 3% of the genome. Interestingly, two sugar phosphotransferase systems appeared to be differentially regulated in the TCS-16 knockout strain (TCS loci were numbered in order of their appearance on the chromosome), suggesting an involvement in monitoring carbon source availability. High-throughput analysis of bacterial growth on different carbon sources showed that TCS-16 was necessary for the growth of GBS on fructose-6-phosphate. Additional transcriptional analysis provided further evidence for a stimulus-response circuit where extracellular fructose-6-phosphate leads to autoinduction of TCS-16, with concomitant dramatic upregulation of the adjacent operon, which encodes a phosphotransferase system. The TCS-16-deficient strain exhibited decreased persistence in a model of vaginal colonization. All mutant strains were also characterized in a murine model of systemic infection, and inactivation of TCS-17 (also known as RgfAC) resulted in hypervirulence. Our data suggest a role for the previously unknown TCS-16, here named FspSR, in bacterial fitness and carbon metabolism during host colonization, and the data also provide experimental evidence for TCS-17/RgfAC involvement in virulence. PMID:24846378

  10. The phosphotransferase system-dependent sucrose utilization regulon in enteropathogenic Escherichia coli strains is located in a variable chromosomal region containing iap sequences.

    PubMed

    Treviño-Quintanilla, Luis Gerardo; Escalante, Adelfo; Caro, Alma Delia; Martínez, Alfredo; González, Ricardo; Puente, José Luis; Bolívar, Francisco; Gosset, Guillermo

    2007-01-01

    The capacity to utilize sucrose as a carbon and energy source (Scr(+) phenotype) is a highly variable trait among Escherichia coli strains. In this study, seven enteropathogenic E. coli (EPEC) strains from different sources were studied for their capacity to grow using sucrose. Liquid media cultures showed that all analyzed strains have the Scr(+) phenotype and two distinct groups were defined: one of five and another of two strains displaying doubling times of 67 and 125 min, respectively. The genes conferring the Scr(+) phenotype in one of the fast-growing strains (T19) were cloned and sequenced. Comparative sequence analysis revealed that this strain possesses the scr regulon genes scrKYABR, encoding phosphoenolpyruvate:phosphotransferase system-dependent sucrose transport and utilization activities. Transcript level quantification revealed sucrose-dependent induction of scrK and scrR genes in fast-growing strains, whereas no transcripts were detected in slow-growing strains. Sequence comparison analysis revealed that the scr genes in strain T19 are almost identical to those present in the scr regulon of prototype EPEC E2348/69 and in both strains, the scr genes are inserted in the chromosomal intergenic region of hypothetical genes ygcE and ygcF. Comparison of the ygcE-ygcF intergenic region sequence of strains MG1655, enterohemorrhagic EDL933, uropathogenic ECFT073 and EPEC T19-E2348/69 revealed that the number of extragenic highly repeated iap sequences corresponded to nine, four, two and none, respectively. These results show that the iap sequence-containing chromosomal ygcE-ygcF intergenic region is highly variable in E. coli. Copyright (c) 2007 S. Karger AG, Basel.

  11. Genome Sequence of Thermotoga sp. Strain RQ2, a Hyperthermophilic Bacterium Isolated from a Geothermally Heated Region of the Seafloor near Ribeira Quente, the Azores

    PubMed Central

    Swithers, Kristen S.; DiPippo, Jonathan L.; Bruce, David C.; Detter, Christopher; Tapia, Roxanne; Han, Shunsheng; Saunders, Elizabeth; Goodwin, Lynne A.; Han, James; Woyke, Tanja; Pitluck, Sam; Pennacchio, Len; Nolan, Matthew; Mikhailova, Natalia; Lykidis, Athanasios; Land, Miriam L.; Brettin, Thomas; Stetter, Karl O.; Nelson, Karen E.; Gogarten, J. Peter; Noll, Kenneth M.

    2011-01-01

    Thermotoga sp. strain RQ2 is probably a strain of Thermotoga maritima. Its complete genome sequence allows for an examination of the extent and consequences of gene flow within Thermotoga species and strains. Thermotoga sp. RQ2 differs from T. maritima in its genes involved in myo-inositol metabolism. Its genome also encodes an apparent fructose phosphotransferase system (PTS) sugar transporter. This operon is also found in Thermotoga naphthophila strain RKU-10 but no other Thermotogales. These are the first reported PTS transporters in the Thermotogales. PMID:21952543

  12. Crystallization and preliminary crystallographic analysis of an aminoglycoside kinase from Legionella pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemke, Christopher T.; Hwang, Jiyoung; Xiong, Bing

    2005-06-01

    Two crystal forms of the antibiotic resistance enzyme APH(9)-Ia from L. pneumophila are reported. 9-Aminoglycoside phosphotransferase type Ia [APH(9)-Ia] is a resistance factor in Legionella pneuemophila, the causative agent of legionnaires’ disease. It is responsible for providing intrinsic resistance to the antibiotic spectinomycin. APH(9)-Ia phosphorylates one of the hydroxyl moieties of spectinomycin in an ATP-dependent manner, abolishing the antibiotic properties of this drug. Here, the crystallization and preliminary X-ray studies of this enzyme in two crystal forms is reported. One of the these crystal forms provides diffraction data to a resolution of 1.7 Å.

  13. Selection by drug resistance proteins located in the mitochondria of mammalian cells

    PubMed Central

    Yoon, Young Geol; Koob, Michael D.

    2008-01-01

    Transformation of mitochondria in mammalian cells is now a technical challenge. In this report, we demonstrate that the standard drug resistant genes encoding neomycin and hygromycin phosphotransferases can potentially be used as selectable markers for mammalian mitochondrial transformation. We re-engineered the drug resistance genes to express proteins targeted to the mitochondrial matrix and confirmed the location of the proteins in the cells by fusing them with GFP and by Western blot and mitochondrial content mixing analyses. We found that the mitochondrially targeted-drug resistance proteins confer resistance to high levels of G418 and hygromycin without affecting the viability of cells. PMID:18721905

  14. Selection by drug resistance proteins located in the mitochondria of mammalian cells.

    PubMed

    Yoon, Young Geol; Koob, Michael D

    2008-12-01

    Transformation of mitochondria in mammalian cells is now a technical challenge. In this report, we demonstrate that the standard drug resistant genes encoding neomycin and hygromycin phosphotransferases can potentially be used as selectable markers for mammalian mitochondrial transformation. We re-engineered the drug resistance genes to express proteins targeted to the mitochondrial matrix and confirmed the location of the proteins in the cells by fusing them with GFP and by Western blot and mitochondrial content mixing analyses. We found that the mitochondrially targeted-drug resistance proteins confer resistance to high levels of G418 and hygromycin without affecting the viability of cells.

  15. Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli

    DTIC Science & Technology

    2012-10-22

    glucose uptake and glycolytic end product consumption are carried out by  the  same  enzyme   complex  (the  phosphotransferase  system),  regulation  of...this  enzyme   by  nitrogen  availability enables substantial changes in glycolytic flux without significant changes in glycolytic intermediate...insights  into  nutrient  coordination  in  E.  coli.  By  combining  LC‐MS‐based  metabolomics with genetics  ( enzyme  knockouts and point mutants

  16. Transformation of triploid bermudagrass (Cynodon dactylon x C. transvaalensis cv. TifEagle) by means of biolistic bombardment.

    PubMed

    Zhang, G; Lu, S; Chen, T A; Funk, C R; Meyer, W A

    2003-06-01

    A transformation system for triploid bermudagrass ( Cynodon dactylon x C. transvaalensis cv. TifEagle) was established with a biolistic bombardment delivery system. Embryogenic callus was induced from stolons and maintained on Murashige and Skoog's medium supplemented with 30 microM dicamba, 20 microM benzylaminopurine, and 100 mg/l myo-inositol. Using the hygromycin phosphotransferase ( hpt) gene as the selectable marker gene, we obtained 75 transgenic lines from 18 petri dishes bombarded. Integration of the hpt gene into genomic DNA and transcription of hpt was confirmed by Southern and Northern blot analyses, respectively. Through suspension culture screening, we obtained homogeneously transformed plants showing stable transcription of the hpt gene.

  17. Bermudagrass (Cynodon spp.).

    PubMed

    Ge, Yaxin; Wang, Zeng-Yu

    2006-01-01

    Bermudagrass is an important warm-season forage and turf species widely grown in the southern United States. This chapter describes a rapid and efficient protocol that allows for the generation of a large number of transgenic bermudagrass plants, bypassing the callus formation phase. Stolon nodes are infected and co-cultivated with Agrobacterium tumefaciens harboring pCAMBIA binary vectors. Hygromycin phosphotransferase gene (hph) is used as the selectable marker and hygromycin is used as the selection agent. Green shoots are directly produced from infected stolon nodes 4 to 5 wk after hygromycin selection. Without callus formation and with minimum tissue culture, this procedure allowed us to obtain well-rooted transgenic plantlets in only 7 wk and greenhouse-grown plants in only 9 wk.

  18. Direct transformation and plant regeneration of the haploid liverwort Marchantia polymorpha L.

    PubMed

    Takenaka, M; Yamaoka, S; Hanajiri, T; Shimizu-Ueda, Y; Yamato, K T; Fukuzawa, H; Ohyama, K

    2000-06-01

    Thalli of the haploid liverwort Marchantial polymorpha were successfully used for direct particle bombardment with plasmid pMT, which carries a hygromycin phosphotransferase gene (hpt) controlled by the CaMV 35S promoter and the NOS polyadenylation region. Hygromycin-resistant cell masses arose from the thallus surface and developed directly into hygromycin-resistant thalli. Southern blot analyses indicated that these thalli carried at least 1-4 copies of the hpt gene, which were stably transmitted to their asexual thallus progenies via gemma propagation for three generations. This transformation and direct plant regeneration protocol is expected to be a valuable tool for the molecular analysis of this lower land plant.

  19. Genetic transformation of Dichanthium annulatum (Forssk)--an apomictic tropical forage grass.

    PubMed

    Dalton, S J; Bettany, A J E; Bhat, V; Gupta, M G; Bailey, K; Timms, E; Morris, P

    2003-06-01

    Eleven Dichanthium annulatum (Forssk) plants were regenerated from embryogenic callus co-transformed with two plasmids encoding either the hygromycin phosphotransferase gene (hph) or the beta-glucuronidase (GUS) gene (uidA). Analysis of these putative transformants showed that three plants were transformed with the hph gene, showed the presence of the hph transcript and expressed hygromycin resistance after transfer to soil. Two of these also contained the uidA gene but did not express GUS and were shown to be the same transformation event. All three of the transformants set seed. Hygromycin resistance varied from 68-100% in the progeny of the three transformants. Transgene transmission appeared to have been mainly through apomixis.

  20. An Efficient PEG/CaCl₂-Mediated Transformation Approach for the Medicinal Fungus Wolfiporia cocos.

    PubMed

    Sun, Qiao; Wei, Wei; Zhao, Juan; Song, Jia; Peng, Fang; Zhang, Shaopeng; Zheng, Yonglian; Chen, Ping; Zhu, Wenjun

    2015-09-01

    Sclerotia of Wolfiporia cocos are of medicinal and culinary value. The genes and molecular mechanisms involved in W. cocos sclerotial formation are poorly investigated because of the lack of a suitable and reproducible transformation system for W. cocos. In this study, a PEG/ CaCl₂-mediated genetic transformation system for W. cocos was developed. The promoter Pgpd from Ganoderma lucidum effectively drove expression of the hygromycin B phosphotransferase gene in W. cocos, and approximately 30 transformants were obtained per 10 μg DNA when the protoplast suspension density was 10(6) protoplasts/ml. However, no transformants were obtained under the regulation of the PtrpC promoter from Aspergillus nidulans.

  1. [Study on transformation of P-dissolving Penicillium oxalicum P8 with double-marker vector expressing green fluorescent protein and hygromycin B resistance].

    PubMed

    Zhang, Lei; Fan, Bing-Quan; Huang, Wei-Yi

    2005-12-01

    P-dissolving Penicillium oxalicum P8 was isolated previously in this lab which has a considerable ability to dissolve many kinds of inorganic phosphorus and improve crop growth. In order to study rhizosphere colonization of plants by Penicillium oxalicum P8, protoplasts were transformed with a double-marker expression vector of green fluorescent protein and hygromycin B resistance. Some transformants were selected which expressed both the GFP and hygromycin B phosphotransferase and did not show significant morphological or physiological differences as compared to wild-type strain. Southern blot analysis confirmed the heterogeneous genomic integration of the vector DNA into the transformants.

  2. Finger millet [Eleusine coracana (L.) Gaertn].

    PubMed

    Ceasar, Stanislaus Antony; Ignacimuthu, Savarimuthu

    2015-01-01

    Millets are the primary food source for millions of people in tropical regions of the world supplying mineral nutrition and protein. In this chapter, we describe an optimized protocol for the Agrobacterium-mediated transformation of finger millet variety GPU 45. Agrobacterium strain LBA4404 harboring plasmid pCAMBIA1301 which contains hygromycin phosphotransferase (hph) as selectable marker gene and β-glucuronidase (GUS) as reporter gene has been used. This protocol utilizes the shoot apex explants for the somatic embryogenesis and regeneration of finger millet after the transformation by Agrobacterium. Desiccation of explants during cocultivation helps for the better recovery of transgenic plants. This protocol is very useful for the efficient production of transgenic plants in finger millet through Agrobacterium-mediated transformation.

  3. Final report for DOE grant FG02-06ER15805

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gage, Daniel

    2012-05-31

    DOE funding was used to investigate the role of the phosphotransferase system (PTS) in the symbiotic, nodulating bacterium Sinorhizobium meliloti. This system is well studied in several bacterial species. However, it's organization and function in S. meliloti is substantially different than in the those other, well-studied bacteria. The S. meliloti PTS, through our DOE-funded work, has become a model for how this important signal transduction system works in the a-proteobacteria. We have found that the PTS is relatively simple, used for only signal transduction and not transport, and is involved in regulation of carbon metabolism in response to carbon availabilitymore » and nitrogen availability.« less

  4. Solution structure of the IIAChitobiose-IIBChitobiose complex of the N,N'-diacetylchitobiose branch of the Escherichia coli phosphotransferase system.

    PubMed

    Jung, Young-Sang; Cai, Mengli; Clore, G Marius

    2010-02-05

    The solution structure of the IIA-IIB complex of the N,N'-diacetylchitobiose (Chb) transporter of the Escherichia coli phosphotransferase system has been solved by NMR. The active site His-89 of IIA(Chb) was mutated to Glu to mimic the phosphorylated state and the active site Cys-10 of IIB(Chb) was substituted by serine to prevent intermolecular disulfide bond formation. Binding is weak with a K(D) of approximately 1.3 mm. The two complementary interaction surfaces are largely hydrophobic, with the protruding active site loop (residues 9-16) of IIB(Chb) buried deep within the active site cleft formed at the interface of two adjacent subunits of the IIA(Chb) trimer. The central hydrophobic portion of the interface is surrounded by a ring of polar and charged residues that provide a relatively small number of electrostatic intermolecular interactions that serve to correctly align the two proteins. The conformation of the active site loop in unphosphorylated IIB(Chb) is inconsistent with the formation of a phosphoryl transition state intermediate because of steric hindrance, especially from the methyl group of Ala-12 of IIB(Chb). Phosphorylation of IIB(Chb) is accompanied by a conformational change within the active site loop such that its path from residues 11-13 follows a mirror-like image relative to that in the unphosphorylated state. This involves a transition of the phi/psi angles of Gly-13 from the right to left alpha-helical region, as well as smaller changes in the backbone torsion angles of Ala-12 and Met-14. The resulting active site conformation is fully compatible with the formation of the His-89-P-Cys-10 phosphoryl transition state without necessitating any change in relative translation or orientation of the two proteins within the complex.

  5. Utilization of d-Ribitol by Lactobacillus casei BL23 Requires a Mannose-Type Phosphotransferase System and Three Catabolic Enzymes

    PubMed Central

    Bourand, A.; Yebra, M. J.; Boël, G.; Mazé, A.

    2013-01-01

    Lactobacillus casei strains 64H and BL23, but not ATCC 334, are able to ferment d-ribitol (also called d-adonitol). However, a BL23-derived ptsI mutant lacking enzyme I of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was not able to utilize this pentitol, suggesting that strain BL23 transports and phosphorylates d-ribitol via a PTS. We identified an 11-kb region in the genome sequence of L. casei strain BL23 (LCABL_29160 to LCABL_29270) which is absent from strain ATCC 334 and which contains the genes for a GlpR/IolR-like repressor, the four components of a mannose-type PTS, and six metabolic enzymes potentially involved in d-ribitol metabolism. Deletion of the gene encoding the EIIB component of the presumed ribitol PTS indeed prevented d-ribitol fermentation. In addition, we overexpressed the six catabolic genes, purified the encoded enzymes, and determined the activities of four of them. They encode a d-ribitol-5-phosphate (d-ribitol-5-P) 2-dehydrogenase, a d-ribulose-5-P 3-epimerase, a d-ribose-5-P isomerase, and a d-xylulose-5-P phosphoketolase. In the first catabolic step, the protein d-ribitol-5-P 2-dehydrogenase uses NAD+ to oxidize d-ribitol-5-P formed during PTS-catalyzed transport to d-ribulose-5-P, which, in turn, is converted to d-xylulose-5-P by the enzyme d-ribulose-5-P 3-epimerase. Finally, the resulting d-xylulose-5-P is split by d-xylulose-5-P phosphoketolase in an inorganic phosphate-requiring reaction into acetylphosphate and the glycolytic intermediate d-glyceraldehyde-3-P. The three remaining enzymes, one of which was identified as d-ribose-5-P-isomerase, probably catalyze an alternative ribitol degradation pathway, which might be functional in L. casei strain 64H but not in BL23, because one of the BL23 genes carries a frameshift mutation. PMID:23564164

  6. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli.

    PubMed

    Liu, Lina; Chen, Sheng; Wu, Jing

    2017-10-01

    Escherichia coli FB-04(pta1), a recombinant L-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (L-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key L-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher L-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, L-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g -1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.

  7. Unraveling the evolutionary history of the phosphoryl-transfer chain of the phosphoenolpyruvate:phosphotransferase system through phylogenetic analyses and genome context

    PubMed Central

    2008-01-01

    Background The phosphoenolpyruvate phosphotransferase system (PTS) plays a major role in sugar transport and in the regulation of essential physiological processes in many bacteria. The PTS couples solute transport to its phosphorylation at the expense of phosphoenolpyruvate (PEP) and it consists of general cytoplasmic phosphoryl transfer proteins and specific enzyme II complexes which catalyze the uptake and phosphorylation of solutes. Previous studies have suggested that the evolution of the constituents of the enzyme II complexes has been driven largely by horizontal gene transfer whereas vertical inheritance has been prevalent in the general phosphoryl transfer proteins in some bacterial groups. The aim of this work is to test this hypothesis by studying the evolution of the phosphoryl transfer proteins of the PTS. Results We have analyzed the evolutionary history of the PTS phosphoryl transfer chain (PTS-ptc) components in 222 complete genomes by combining phylogenetic methods and analysis of genomic context. Phylogenetic analyses alone were not conclusive for the deepest nodes but when complemented with analyses of genomic context and functional information, the main evolutionary trends of this system could be depicted. Conclusion The PTS-ptc evolved in bacteria after the divergence of early lineages such as Aquificales, Thermotogales and Thermus/Deinococcus. The subsequent evolutionary history of the PTS-ptc varied in different bacterial lineages: vertical inheritance and lineage-specific gene losses mainly explain the current situation in Actinobacteria and Firmicutes whereas horizontal gene transfer (HGT) also played a major role in Proteobacteria. Most remarkably, we have identified a HGT event from Firmicutes or Fusobacteria to the last common ancestor of the Enterobacteriaceae, Pasteurellaceae, Shewanellaceae and Vibrionaceae. This transfer led to extensive changes in the metabolic and regulatory networks of these bacteria including the development of a novel carbon catabolite repression system. Hence, this example illustrates that HGT can drive major physiological modifications in bacteria. PMID:18485189

  8. Detection of Specific Solvent Rearrangement Regions of an Enzyme: NMR and ITC Studies with Aminoglycoside Phosphotransferase(3??)-IIIa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozen, C.; Norris, Adrianne; Land, Miriam L

    2008-01-01

    This work describes differential effects of solvent in complexes of the aminoglycoside phosphotransferase(3¢)-IIIa (APH) with different aminoglycosides and the detection of change in solvent structure at specific sites away from substrates. Binding of kanamycins to APH occurs with a larger negative ¢H in H2O relative to D2O (¢¢H(H2O-D2O) < 0), while the reverse is true for neomycins. Unusually large negative ¢Cp values were observed for binding of aminoglycosides to APH. ¢Cp for the APHneomycin complex was -1.6 kcalâmol-1âdeg-1. A break at 30 C was observed in the APH-kanamycin complex yielding ¢Cp values of -0.7 kcalâmol-1âdeg-1 and -3.8 kcalâmol-1âdeg-1 below andmore » above 30 C, respectively. Neither the change in accessible surface area (¢ASA) nor contributions from heats of ionization were sufficient to explain the large negative ¢Cp values. Most significantly, 15N-1H HSQC experiments showed that temperature-dependent shifts of the backbone amide protons of Leu 88, Ser 91, Cys 98, and Leu143 revealed a break at 30 C only in the APH-kanamycin complex in spectra collected between 21 C and 38 C. These amino acids represent solVent reorganization sites that experience a change in solvent structure in their immediate environment as structurally different ligands bind to the enzyme. These residues were away from the substrate binding site and distributed in three hydrophobic patches in APH. Overall, our results show that a large number of factors affect ¢Cp and binding of structurally different ligand groups cause different solvent structure in the active site as well as differentially affecting specific sites away from the ligand binding site.« less

  9. The X-ray Crystallographic Structure and Activity Analysis of a Pseudomonas-Specific Subfamily of the HAD Enzyme Superfamily Evidences a Novel Biochemical Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peisach,E.; Wang, L.; Burroughs, A.

    2008-01-01

    The haloacid dehalogenase (HAD) superfamily is a large family of proteins dominated by phosphotransferases. Thirty-three sequence families within the HAD superfamily (HADSF) have been identified to assist in function assignment. One such family includes the enzyme phosphoacetaldehyde hydrolase (phosphonatase). Phosphonatase possesses the conserved Rossmanniod core domain and a C1-type cap domain. Other members of this family do not possess a cap domain and because the cap domain of phosphonatase plays an important role in active site desolvation and catalysis, the function of the capless family members must be unique. A representative of the capless subfamily, PSPTO{_}2114, from the plant pathogenmore » Pseudomonas syringae, was targeted for catalytic activity and structure analyses. The X-ray structure of PSPTO{_}2114 reveals a capless homodimer that conserves some but not all of the intersubunit contacts contributed by the core domains of the phosphonatase homodimer. The region of the PSPTO{_}2114 that corresponds to the catalytic scaffold of phosphonatase (and other HAD phosphotransfereases) positions amino acid residues that are ill suited for Mg+2 cofactor binding and mediation of phosphoryl group transfer between donor and acceptor substrates. The absence of phosphotransferase activity in PSPTO{_}2114 was confirmed by kinetic assays. To explore PSPTO{_}2114 function, the conservation of sequence motifs extending outside of the HADSF catalytic scaffold was examined. The stringently conserved residues among PSPTO{_}2114 homologs were mapped onto the PSPTO{_}2114 three-dimensional structure to identify a surface region unique to the family members that do not possess a cap domain. The hypothesis that this region is used in protein-protein recognition is explored to define, for the first time, HADSF proteins which have acquired a function other than that of a catalyst. Proteins 2008.« less

  10. Human β-glucuronidase: structure, function, and application in enzyme replacement therapy.

    PubMed

    Naz, Huma; Islam, Asimul; Waheed, Abdul; Sly, William S; Ahmad, Faizan; Hassan, Imtaiyaz

    2013-10-01

    Lysosomal storage diseases occur due to incomplete metabolic degradation of macromolecules by various hydrolytic enzymes in the lysosome. Despite structural differences, most of the lysosomal enzymes share many common features including a lysosomal targeting motif and phosphotransferase recognition sites. β-Glucuronidase (GUSB) is an important lysosomal enzyme involved in the degradation of glucuronate-containing glycosaminoglycan. The deficiency of GUSB causes mucopolysaccharidosis type VII (MPSVII), leading to lysosomal storage in the brain. GUSB is a well-studied protein for its expression, sequence, structure, and function. The purpose of this review is to summarize our current understanding of sequence, structure, function, and evolution of GUSB and its lysosomal enzyme targeting. Enzyme replacement therapy reported for this protein is also discussed.

  11. Cloning of the active thymidine kinase gene of herpes simplex virus type 1 in Escherichia coli K-12.

    PubMed

    Colbere-Garapin, F; Chousterman, S; Horodniceanu, F; Kourilsky, P; Garapin, A C

    1979-08-01

    A herpes simplex virus DNA fragment that is produced by digestion with BamHI endonuclease and carries the thymidine kinase (TK; ATP:thymidine 5'-phosphotransferase, EC 2.7.1.21) gene has been cloned in Escherichia coli. A recombinat plasmid, pFG5, has been analyzed extensively and a detailed restriction map is presented. pFG5 DNA efficiently transforms TK- mouse L cells. The TK coding sequence in the cloned fragment has been localized and a smaller recombinant plasmid, pAG0, also carrying an active TK gene, has been constructed to serve as a more convenient vector for transfer, into TK- cells, of genes previously cloned in E. coli.

  12. Structural characterization of the PTS IIA and IIB proteins associated with pneumococcal fucose utilization.

    PubMed

    Higgins, Melanie A; Hamilton, Aileen M; Boraston, Alisdair B

    2017-05-01

    Streptococcus pneumoniae harbors a significant number of transporters, including phosphotransferase (PTS) systems, allowing the bacterium to utilize a number of different carbohydrates for metabolic and other purposes. The genes encoding for one PTS transport system in particular (EII fuc ) are found within a fucose utilization operon in S. pneumoniae TIGR4. Here, we report the three-dimensional structures of IIA fuc and IIB fuc providing evidence that this PTS system belongs to the EII man family. Additionally, the predicted metabolic pathway for this distinctive fucose utilization system suggests that EII fuc transports the H-disaccharide blood group antigen, which would represent a novel PTS transporter specificity. Proteins 2017; 85:963-968. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. The crystal structure of choline kinase reveals a eukaryotic protein kinase fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peisach, D.; Gee, P.; Kent, K.

    2010-03-08

    Choline kinase catalyzes the ATP-dependent phosphorylation of choline, the first committed step in the CDP-choline pathway for the biosynthesis of phosphatidylcholine. The 2.0 {angstrom} crystal structure of a choline kinase from C. elegans (CKA-2) reveals that the enzyme is a homodimeric protein with each monomer organized into a two-domain fold. The structure is remarkably similar to those of protein kinases and aminoglycoside phosphotransferases, despite no significant similarity in amino acid sequence. Comparisons to the structures of other kinases suggest that ATP binds to CKA-2 in a pocket formed by highly conserved and catalytically important residues. In addition, a choline bindingmore » site is proposed to be near the ATP binding pocket and formed by several structurally flexible loops.« less

  14. Transcriptomic study on persistence and survival of Listeria monocytogenes following lethal treatment with Nisin.

    PubMed

    Wu, Shuyan; Yu, Pak-Lam; Wheeler, Dave; Flint, Steve

    2018-06-19

    The aim of this study was to determine the gene expression associated with the persistence of a Listeria monocytogenes stationary phase population when facing lethal nisin treatment METHODS: RNA Seq analysis was used for gene expression profiling of the persister cells in rich medium (persister TN) compared with untreated cells (non-persister).The results were confirmed using RT PCR. Functional genes associated with the persister populations were identified in multiple systems, such as heat shock related stress response, cell wall synthesis, ATP-binding cassette (ABC) transport system, phosphotransferase system (PTS system), and SOS/DNA repair. This study pointed to genetic regulation of persister cells exposed to lethal nisin and provides some insight into possible mechanisms of impeding bacterial persistence. Copyright © 2018. Published by Elsevier Ltd.

  15. Walnut (Juglans).

    PubMed

    Leslie, Charles A; Walawage, Sriema L; Uratsu, Sandra L; McGranahan, Gale; Dandekar, Abhaya M

    2015-01-01

    Walnut species are important nut and timber producers in temperate regions of Europe, Asia, South America, and North America. Trees can be impacted by Phytophthora, crown gall, nematodes, Armillaria, and cherry leaf roll virus; nuts can be severely damaged by codling moth, husk fly, and Xanthomonas blight. The long generation time of walnuts and an absence of identified natural resistance for most of these problems suggest biotechnological approaches to crop improvement. Described here is a somatic embryo-based transformation protocol that has been used to successfully insert horticulturally useful traits into walnut. Selection is based on the combined use of the selectable neomycin phosphotransferase (nptII) gene and the scorable uidA gene. Transformed embryos can be germinated or micropropagated and rooted for plant production. The method described has been used to establish field trials of mature trees.

  16. T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker.

    PubMed

    Hanif, Mubashir; Pardo, Alejandro Guillermo; Gorfer, Markus; Raudaskoski, Marjatta

    2002-06-01

    The T-DNA of Agrobacterium tumefaciens can be transferred to plants, yeasts, fungi and human cells. Using this system, dikaryotic mycelium of the ectomycorrhizal fungus Suillus bovinus was transformed with recombinant hygromycin B phosphotransferase (hph)and enhanced green fluorescent protein (EGFP) genes fused with a heterologous fungal promoter and CaMV35S terminator. Transformation resulted in hygromycin B-resistant clones, which were mitotically stable. Putative transformants were analysed for the presence of hph and EGFP genes by PCR and Southern analysis. The latter analysis proved both multiple- and single-copy integrations of the genes in the S. bovinus genome. A. tumeficiens transformation should make possible the development of tagged mutagenesis and targeted gene disruption technology for S. bovinus.

  17. Identification and functional analysis of the L-ascorbate-specific enzyme II complex of the phosphotransferase system in Streptococcus mutans.

    PubMed

    Wu, Xinyu; Hou, Jin; Chen, Xiaodan; Chen, Xuan; Zhao, Wanghong

    2016-03-22

    Streptococcus mutans is the primary etiological agent of human dental caries. It can metabolize a wide variety of carbohydrates and produce large amounts of organic acids that cause enamel demineralization. Phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) plays an important role in carbohydrates uptake of S. mutans. The ptxA and ptxB genes in S. mutans encode putative enzyme IIA and enzyme IIB of the L-ascorbate-specific PTS. The aim of this study was to analyze the function of these proteins and understand the transcriptional regulatory mechanism. ptxA (-), ptxB (-), as well as ptxA (-) , ptxB (-) double-deletion mutants all had more extended lag phase and lower growth yield than wild-type strain UA159 when grown in the medium using L-ascorbate as the sole carbon source. Acid production and acid killing assays showed that the absence of the ptxA and ptxB genes resulted in a reduction in the capacity for acidogenesis, and all three mutant strains did not survive an acid shock. According to biofilm and extracellular polysaccharides (EPS) formation analysis, all the mutant strains formed much less prolific biofilms with small amounts of EPS than wild-type UA159 when using L-ascorbate as the sole carbon source. Moreover, PCR analysis and quantitative real-time PCR revealed that sgaT, ptxA, ptxB, SMU.273, SMU.274 and SMU.275 appear to be parts of the same operon. The transcription levels of these genes were all elevated in the presence of L-ascorbate, and the expression of ptxA gene decreased significantly once ptxB gene was knockout. The ptxA and ptxB genes are involved in the growth, aciduricity, acidogenesis, and formation of biofilms and EPS of S. mutans when L-ascorbate is the sole carbon source. In addition, the expression of ptxA is regulated by ptxB. ptxA, ptxB, and the upstream gene sgaT, the downstream genes SMU.273, SMU.274 and SMU.275 appear to be parts of the same operon, and L-ascorbate is a potential inducer of the operon.

  18. An intein with genetically selectable markers provides a new approach to internally label proteins with GFP.

    PubMed

    Ramsden, Richard; Arms, Luther; Davis, Trisha N; Muller, Eric G D

    2011-06-27

    Inteins are proteins that catalyze their own removal from within larger precursor proteins. In the process they splice the flanking protein sequences, termed the N-and C-terminal exteins. Large inteins frequently have a homing endonuclease that is involved in maintaining the intein in the host. Splicing and nuclease activity are independent and distinct domains in the folded structure. We show here that other biochemical activities can be incorporated into an intein in place of the endonuclease without affecting splicing and that these activities can provide genetic selection for the intein. We have coupled such a genetically marked intein with GFP as the N-terminal extein to create a cassette to introduce GFP within the interior of a targeted protein. The Pch PRP8 mini-intein of Penicillium chrysogenum was modified to include: 1) aminoglycoside phosphotransferase; 2) imidazoleglycerol-phosphate dehydratase, His5 from S. pombe ; 3) hygromycin B phosphotransferase; and 4) the transcriptional activator LexA-VP16. The proteins were inserted at the site of the lost endonuclease. When expressed in E. coli, all of the modified inteins spliced at high efficiency. Splicing efficiency was also greater than 96% when expressed from a plasmid in S. cerevisiae. In addition the inteins conferred either G418 or hygromycin resistance, or histidine or leucine prototropy, depending on the inserted marker and the yeast genetic background. DNA encoding the marked inteins coupled to GFP as the N-terminal extein was PCR amplified with ends homologous to an internal site in the yeast calmodulin gene CMD1. The DNA was transformed into yeast and integrants obtained by direct selection for the intein's marker. The His5-marked intein yielded a fully functional calmodulin that was tagged with GFP within its central linker. Inteins continue to show their flexibility as tools in molecular biology. The Pch PRP8 intein can successfully tolerate a variety of genetic markers and still retain high splicing efficiency. We have shown that a genetically marked intein can be used to insert GFP in one-step within a target protein in vivo.

  19. Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping.

    PubMed Central

    Lengeler, J

    1975-01-01

    Mutants of Escherichia coli K-12 unable to grow on any of the three naturally occurring hexitols D-manitol, D-glucitol, and galactitol and, among these specifically, mutants with altered transport and phosphorylating activity have been isolated. Different isolation procedures have been utilized, including suicide by D-[3H]mannitol, chemotaxis, and resistance to the toxic hexitol analogue 2-deoxy-arabino-hexitol. Mutations thus obtained have been mapped in four distinct operons. (i) Mutations affecting an enzyme II-complexmt1 activity of the phosphoenolpyruvate-dependent phosphotransferase system all map in gene mtlA. This gene has previously been shown (Solomon and Lin, 1972) to be part of an operon, mtl, located at 71 min on the E. coli linkage map containing, in addition to mtlA, the cis-dominant regulatory gene mtlC and mtlD, the structural gene for the enzyme D-mannitol-1-phosphate dehydrogenase. The gene order in this operon, induced by D-mannitol, is mtlC A D. (ii) Mutations in gene gutA affecting a second enzyme II-complexgut of the phosphotransferase system map at 51 min, clustered in operon gutC A D together with the cis-dominant regulatory gene gutC and the structural gene gutD for the enzyme D-glucitol-6-phosphate dehydrogenase. The gut operon, previously called sbl or srl, is induced by D-glucitol. (iii) Mutations affecting the transport and catabolism of galactitol are clustered in a third operon, gatC A D, located at 40.5 min. This operon again contains a cis-dominant regulatory gene, gatC, the structural gene gatD for galactitol-1-phosphate dehydrogenase, and gene gatA coding for a thrid hexitol-specific enzyme II-complexgat. Other genes coding for two additional enzymes involved in galactitol catabolism apparently are not linked to gatC A D. (iv) A fourth class of mutants pleiotropically negative for hexitol growth and transport maps in the pts operon. Triple-negative mutants (mtlA gutA gatA) do not have further transport or phosphorylating activity for any of the three hexitols. PMID:1100602

  20. Transformation of taxol-producing endophytic fungi by restriction enzyme-mediated integration (REMI).

    PubMed

    Wang, Yechun; Guo, Binhui; Miao, Zhiqi; Tang, Kexuan

    2007-08-01

    The REMI method was used to introduce the plasmid pV2 harboring the hygromycin B phosphotransferase (hph) gene controlled by the Aspergillus nidulans trpC promoter and the trpC terminator into a taxol-producing endophytic fungus BT2. REMI transformation yielded stable transformants capable of continuing to grow on PDA medium containing 125 mug mL(-1) hygromycin B. The transformation efficiency was about 5-6 transformants mug(-1) plasmid DNA. The presence of hph gene in transformants was confirmed by PCR and Southern blot analyses. To the authors' knowledge, this is the first report on the transformation of taxol-producing endophytic fungi by the REMI technique. This study provides an effective approach for improving taxol production of endophytic fungi by the genetic engineering of taxol biosynthetic pathway genes in the future.

  1. Highly Efficient Electroporation-mediated Transformation into Edible Mushroom Flammulina velutipes

    PubMed Central

    Kim, Jong Kun; Park, Young Jin; Kong, Won Sik

    2010-01-01

    In this study, we developed an efficient electroporation-mediated transformation system featuring Flammulina velutipes. The flammutoxin (ftx) gene of F. velutipes was isolated by reverse transcription-PCR. pFTXHg plasmid was constructed using the partial ftx gene (410 bp) along with the hygromycin B phosphotransferase gene (hygB) downstream of the glyceraldehydes-3-phosphate dehydrogenase (gpd) promoter. The plasmid was transformed into protoplasts of monokaryotic strain 4019-20 of F. velutipes by electroporation. High transformation efficiency was obtained with an electric-pulse of 1.25 kV/cm by using 177 transformants/µg of DNA in 1 × 107 protoplasts. PCR and Southern blot hybridization indicated that a single copy of the plasmid DNA was inserted at different locations in the F. velutipes genome by non-homologous recombination. Therefore, this transformation system could be used as a useful tool for gene function analysis of F. velutipes. PMID:23956676

  2. Highly Efficient Electroporation-mediated Transformation into Edible Mushroom Flammulina velutipes.

    PubMed

    Kim, Jong Kun; Park, Young Jin; Kong, Won Sik; Kang, Hee Wan

    2010-12-01

    In this study, we developed an efficient electroporation-mediated transformation system featuring Flammulina velutipes. The flammutoxin (ftx) gene of F. velutipes was isolated by reverse transcription-PCR. pFTXHg plasmid was constructed using the partial ftx gene (410 bp) along with the hygromycin B phosphotransferase gene (hygB) downstream of the glyceraldehydes-3-phosphate dehydrogenase (gpd) promoter. The plasmid was transformed into protoplasts of monokaryotic strain 4019-20 of F. velutipes by electroporation. High transformation efficiency was obtained with an electric-pulse of 1.25 kV/cm by using 177 transformants/µg of DNA in 1 × 10(7) protoplasts. PCR and Southern blot hybridization indicated that a single copy of the plasmid DNA was inserted at different locations in the F. velutipes genome by non-homologous recombination. Therefore, this transformation system could be used as a useful tool for gene function analysis of F. velutipes.

  3. The reversed terminator of octopine synthase gene on the Agrobacterium Ti plasmid has a weak promoter activity in prokaryotes.

    PubMed

    Shao, Jun-Li; Long, Yue-Sheng; Chen, Gu; Xie, Jun; Xu, Zeng-Fu

    2010-06-01

    Agrobacterium tumefaciens transfers DNA from its Ti plasmid to plant host cells. The genes located within the transferred DNA of Ti plasmid including the octopine synthase gene (OCS) are expressed in plant host cells. The 3'-flanking region of OCS gene, known as OCS terminator, is widely used as a transcriptional terminator of the transgenes in plant expression vectors. In this study, we found the reversed OCS terminator (3'-OCS-r) could drive expression of hygromycin phosphotransferase II gene (hpt II) and beta-glucuronidase gene in Escherichia coli, and expression of hpt II in A. tumefaciens. Furthermore, reverse transcription-polymerase chain reaction analysis revealed that an open reading frame (ORF12) that is located downstream to the 3'-OCS-r was transcribed in A. tumefaciens, which overlaps in reverse with the coding region of the OCS gene in octopine Ti plasmid.

  4. Agrobacterium tumefaciens-mediated transformation of Lasiodiplodia theobromae, the causal agent of gummosis in cashew nut plants.

    PubMed

    Muniz, C R; da Silva, G F; Souza, M T; Freire, F C O; Kema, G H J; Guedes, M I F

    2014-02-21

    Lasiodiplodia theobromae is a major pathogen of many different crop cultures, including cashew nut plants. This paper describes an efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system for the successful delivery of T-DNA, transferring the genes of green fluorescent protein (gfp) and hygromycin B phosphotransferase (hph) to L. theobromae. When the fungal pycnidiospores were co-cultured with A. tumefaciens harboring the binary vector with hph-gfp gene, hygromycin-resistant fungus only developed with acetosyringone supplementation. The cashew plants inoculated with the fungus expressing GFP revealed characteristic pathogen colonization by epifluorescence microscopy. Intense and bright green hyphae were observed for transformants in all extensions of mycelium cultures. The penetration of parenchyma cells near to the inoculation site, beneath the epicuticle surface, was observed prior to 25 dpi. Penetration was followed by the development of hyphae within invaded host cells. These findings provide a rapid and reproducible ATMT method for L. theobromae transformation.

  5. Blueberry (Vaccinium corymbosum L.).

    PubMed

    Song, Guo-Qing

    2015-01-01

    Vaccinium consists of approximately 450 species, of which highbush blueberry (Vaccinium corymbosum) is one of the three major Vaccinium fruit crops (i.e., blueberry, cranberry, and lingonberry) domesticated in the twentieth century. In blueberry the adventitious shoot regeneration using leaf explants has been the most desirable regeneration system to date; Agrobacterium tumefaciens-mediated transformation is the major gene delivery method and effective selection has been reported using either the neomycin phosphotransferase II gene (nptII) or the bialaphos resistance (bar) gene as selectable markers. The A. tumefaciens-mediated transformation protocol described in this chapter is based on combining the optimal conditions for efficient plant regeneration, reliable gene delivery, and effective selection. The protocol has led to successful regeneration of transgenic plants from leaf explants of four commercially important highbush blueberry cultivars for multiple purposes, providing a powerful approach to supplement conventional breeding methods for blueberry by introducing genes of interest.

  6. Succinic acid production from cellobiose by Actinobacillus succinogenes.

    PubMed

    Jiang, Min; Xu, Rong; Xi, Yong-Lan; Zhang, Jiu-Hua; Dai, Wen-Yu; Wan, Yue-Jia; Chen, Ke-Quan; Wei, Ping

    2013-05-01

    In this study, cellobiose, a reducing disaccharide was used to produce succinic acid by Actinobacillus succinogenes NJ113. A final succinic acid concentration of 30.3g/l with a yield of 67.8% was achieved from an initial cellobiose concentration of 50 g/l via batch fermentation in anaerobic bottles. The cellobiose uptake mechanism was investigated and the results of enzyme assays revealed that the phosphoenolpyruvate phosphotransferase system (PEP-PTS) played an important role in the cellobiose uptake process. In batch fermentation with 18 g/l of cellobiose and 17 g/l of other sugars from sugarcane bagasse cellulose hydrolysates, a succinic acid concentration of 20.0 g/l was obtained, with a corresponding yield of 64.7%. This study found that cellobiose from incomplete hydrolysis of cellulose could be a potential carbon source for economical and efficient succinic acid production by A. succinogenes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Succinic acid production from sucrose by Actinobacillus succinogenes NJ113.

    PubMed

    Jiang, Min; Dai, Wenyu; Xi, Yonglan; Wu, Mingke; Kong, Xiangping; Ma, Jiangfeng; Zhang, Min; Chen, Kequan; Wei, Ping

    2014-02-01

    In this study, sucrose, a reproducible disaccharide extracted from plants, was used as the carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. During serum bottle fermentation, the succinic acid concentration reached 57.1g/L with a yield of 71.5%. Further analysis of the sucrose utilization pathways revealed that sucrose was transported and utilized via a sucrose phosphotransferase system, sucrose-6-phosphate hydrolase, and a fructose PTS. Compared to glucose utilization in single pathway, more pathways of A. succinogenes NJ113 are dependent on sucrose utilization. By changing the control strategy in a fed-batch culture to alleviate sucrose inhibition, 60.5g/L of succinic acid was accumulated with a yield of 82.9%, and the productivity increased by 35.2%, reaching 2.16g/L/h. Thus utilization of sucrose has considerable potential economics and environmental meaning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Genetic transformation of the plant pathogens Phytophthora capsici and Phytophthora parasitica.

    PubMed Central

    Bailey, A M; Mena, G L; Herrera-Estrella, L

    1991-01-01

    Phytophthora capsici and P.parasitica were transformed to hygromycin B resistance using plasmids pCM54 and pHL1, which contain the bacterial hygromycin B phosphotransferase gene (hph) fused to promoter elements of the Ustilago maydis heat shock hsp70 gene. Enzymes Driselase and Novozyme 234 were used to generate protoplasts which were then transformed following exposure to plasmid DNA and polyethylene glycol 6000. Transformation frequencies of over 500 transformants per micrograms of DNA per 1 x 10(6) protoplasts were obtained. Plasmid pCM54 appears to be transmitted in Phytophthora spp. as an extra-chromosomal element through replication, as shown by Southern blot hybridization and by the loss of plasmid methylation. In addition, transformed strains retained their capacity of infecting Serrano pepper seedlings and Mc. Intosh apple fruits, the host plants for P.capsici and P.parasitica, respectively. Images PMID:1651483

  9. Phosphatidylcholine and the CDP-Choline Cycle

    PubMed Central

    Fagone, Paolo; Jackowski, Suzanne

    2012-01-01

    The CDP-choline pathway of phosphatidylcholine (PtdCho) biosynthesis was first described more than 50 years ago. Investigation of the CDP-choline pathway in yeast provides a basis for understanding the CDP-choline pathway in mammals. PtdCho is considered as an intermediate in a cycle of synthesis and degradation, and the activity of a CDP-choline cycle is linked to subcellular membrane lipid movement. The components of the mammalian CDP-choline pathway include choline transport, choline kinase, phosphocholine cytidylyltransferase, and choline phosphotransferase activities. The protein isoforms and biochemical mechanisms of regulation of the pathway enzymes are related to their cell and tissue-specific functions. Regulated PtdCho turnover mediated by phospholipases or neuropathy target esterase participates in the mammalian CDP-choline cycle. Knockout mouse models define the biological functions of the CDP-choline cycle in mammalian cells and tissues. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:23010477

  10. Heat-inducible hygromycin resistance in transgenic tobacco.

    PubMed

    Severin, K; Schöffl, F

    1990-12-01

    We have constructed a chimaeric gene consisting of the promoter of the soybean heat shock (hs) gene Gmhsp17, 6-L, the coding region of a hygromycin phosphotransferase (hpt) gene, and the termination sequence of the nopaline synthase (nos) gene. This gene fusion was introduced into tobacco by Agrobacterium-mediated gene transfer. Heat-inducible synthesis of mRNA was shown by northern hybridization, and translation of this RNA into a functional protein was indicated by plant growth on hygromycin-containing media in a temperature-dependent fashion. One hour incubation at 40 degrees C per day, applied for several weeks, was sufficient to express the resistant phenotype in transgenic plants containing the chimaeric hs-hpt gene. These data suggest that the hygromycin resistance gene is functional and faithfully controlled by the soybean hs promoter. The suitability of these transgenic plants for selection of mutations that alter the hs response is discussed.

  11. Pyrimidine metabolism in Tritrichomonas foetus.

    PubMed Central

    Wang, C C; Verham, R; Tzeng, S F; Aldritt, S; Cheng, H W

    1983-01-01

    The anaerobic parasitic protozoa Tritrichomonas foetus is found incapable of de novo pyrimidine biosynthesis by its failure to incorporate bicarbonate, aspartate, or orotate into pyrimidine nucleotides or nucleic acids. Uracil phosphoribosyltransferase in the cytoplasm provides the major pyrimidine salvage for the parasite. Exogenous uridine and cytidine are mostly converted to uracil by uridine phosphorylase and cytidine deaminase in T. foetus prior to incorporation. T. foetus cannot incorporate labels from exogenous uracil or uridine into DNA; it has no detectable dihydrofolate reductase or thymidylate synthetase and is resistant to methotrexate, pyrimethamine, trimethoprim, and 5-bromovinyldeoxyuridine at millimolar concentrations. It has an enzyme thymidine phosphotransferase in cellular fraction pelleting at 100,000 X g that can convert exogenous thymidine to TMP via a phosphate donor such as p-nitrophenyl phosphate or nucleoside 5'-monophosphate. Thymidine salvage in T. foetus is thus totally dissociated from other pyrimidine salvage. PMID:6573672

  12. Changes in gene expression during adaptation of Listeria monocytogenes to the soil environment.

    PubMed

    Piveteau, Pascal; Depret, Géraldine; Pivato, Barbara; Garmyn, Dominique; Hartmann, Alain

    2011-01-01

    Listeria monocytogenes is a ubiquitous opportunistic pathogen responsible for listeriosis. In order to study the processes underlying its ability to adapt to the soil environment, whole-genome arrays were used to analyse transcriptome modifications 15 minutes, 30 minutes and 18 h after inoculation of L. monocytogenes EGD-e in soil extracts. Growth was observed within the first day of incubation and large numbers were still detected in soil extract and soil microcosms one year after the start of the experiment. Major transcriptional reprofiling was observed. Nutrient acquisition mechanisms (phosphoenolpyruvate-dependent phosphotransferase systems and ABC transporters) and enzymes involved in catabolism of specific carbohydrates (β-glucosidases; chitinases) were prevalent. This is consistent with the overrepresentation of the CodY regulon that suggests that in a nutrient depleted environment, L. monocytogenes recruits its extensive repertoire of transporters to acquire a range of substrates for energy production.

  13. Transgenic tobacco expressing Pinellia ternata agglutinin confers enhanced resistance to aphids.

    PubMed

    Yao, Jianhong; Pang, Yongzhen; Qi, Huaxiong; Wan, Bingliang; Zhao, Xiuyun; Kong, Weiwen; Sun, Xiaofen; Tang, Kexuan

    2003-12-01

    Tobacco leaf discs were transformed with a plasmid, pBIPTA, containing the selectable marker neomycin phosphotransferase gene (nptII) and Pinellia ternata agglutinin gene (pta) via Agrobacterium tumefaciens-mediated transformation. Thirty-two independent transgenic tobacco plants were regenerated. PCR and Southern blot analyses confirmed that the pta gene had integrated into the plant genome and northern blot analysis revealed transgene expression at various levels in transgenic plants. Genetic analysis confirmed Mendelian segregation of the transgene in T1 progeny. Insect bioassays showed that transgenic plants expressing PTA inhibited significantly the growth of peach potato aphid (Myzus persicae Sulzer). This is the first report that transgenic plants expressing pta confer enhanced resistance to aphids. Our study indicates that the pta gene can be used as a supplement to the snowdrop (Galanthus nivalis) lectin gene (gna) in the control of aphids, a sap-sucking insect pest causing significant yield losses of crops.

  14. Structural basis for phosphatidylinositol-phosphate biosynthesis

    NASA Astrophysics Data System (ADS)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  15. GigA and GigB are Master Regulators of Antibiotic Resistance, Stress Responses, and Virulence in Acinetobacter baumannii

    PubMed Central

    Shuman, Howard A.

    2017-01-01

    ABSTRACT A critical component of bacterial pathogenesis is the ability of an invading organism to sense and adapt to the harsh environment imposed by the host's immune system. This is especially important for opportunistic pathogens, such as Acinetobacter baumannii, a nutritionally versatile environmental organism that has recently gained attention as a life-threatening human pathogen. The emergence of A. baumannii is closely linked to antibiotic resistance, and many contemporary isolates are multidrug resistant (MDR). Unlike many other MDR pathogens, the molecular mechanisms underlying A. baumannii pathogenesis remain largely unknown. We report here the characterization of two recently identified virulence determinants, GigA and GigB, which comprise a signal transduction pathway required for surviving environmental stresses, causing infection and antibiotic resistance. Through transcriptome analysis, we show that GigA and GigB coordinately regulate the expression of many genes and are required for generating an appropriate transcriptional response during antibiotic exposure. Genetic and biochemical data demonstrate a direct link between GigA and GigB and the nitrogen phosphotransferase system (PTSNtr), establishing a novel connection between a novel stress response module and a well-conserved metabolic-sensing pathway. Based on the results presented here, we propose that GigA and GigB are master regulators of a global stress response in A. baumannii, and coupling this pathway with the PTSNtr allows A. baumannii to integrate cellular metabolic status with external environmental cues. IMPORTANCE Opportunistic pathogens, including Acinetobacter baumannii, encounter many harsh environments during the infection cycle, including antibiotic exposure and the hostile environment within a host. While the development of antibiotic resistance in A. baumannii has been well studied, how this organism senses and responds to environmental cues remain largely unknown. Herein, we investigate two previously identified virulence determinants, GigA and GigB, and report that they are required for in vitro stress resistance, likely comprising upstream elements of a global stress response pathway. Additional experiments identify a connection between GigA/GigB and a widely conserved metabolic-sensing pathway, the nitrogen phosphotransferase system. We propose that coordination of these two pathways allows A. baumannii to respond appropriately to changing environmental conditions, including those encountered during infection. PMID:28264991

  16. GigA and GigB are Master Regulators of Antibiotic Resistance, Stress Responses, and Virulence in Acinetobacter baumannii.

    PubMed

    Gebhardt, Michael J; Shuman, Howard A

    2017-05-15

    A critical component of bacterial pathogenesis is the ability of an invading organism to sense and adapt to the harsh environment imposed by the host's immune system. This is especially important for opportunistic pathogens, such as Acinetobacter baumannii , a nutritionally versatile environmental organism that has recently gained attention as a life-threatening human pathogen. The emergence of A. baumannii is closely linked to antibiotic resistance, and many contemporary isolates are multidrug resistant (MDR). Unlike many other MDR pathogens, the molecular mechanisms underlying A. baumannii pathogenesis remain largely unknown. We report here the characterization of two recently identified virulence determinants, GigA and GigB, which comprise a signal transduction pathway required for surviving environmental stresses, causing infection and antibiotic resistance. Through transcriptome analysis, we show that GigA and GigB coordinately regulate the expression of many genes and are required for generating an appropriate transcriptional response during antibiotic exposure. Genetic and biochemical data demonstrate a direct link between GigA and GigB and the nitrogen phosphotransferase system (PTS Ntr ), establishing a novel connection between a novel stress response module and a well-conserved metabolic-sensing pathway. Based on the results presented here, we propose that GigA and GigB are master regulators of a global stress response in A. baumannii , and coupling this pathway with the PTS Ntr allows A. baumannii to integrate cellular metabolic status with external environmental cues. IMPORTANCE Opportunistic pathogens, including Acinetobacter baumannii , encounter many harsh environments during the infection cycle, including antibiotic exposure and the hostile environment within a host. While the development of antibiotic resistance in A. baumannii has been well studied, how this organism senses and responds to environmental cues remain largely unknown. Herein, we investigate two previously identified virulence determinants, GigA and GigB, and report that they are required for in vitro stress resistance, likely comprising upstream elements of a global stress response pathway. Additional experiments identify a connection between GigA/GigB and a widely conserved metabolic-sensing pathway, the nitrogen phosphotransferase system. We propose that coordination of these two pathways allows A. baumannii to respond appropriately to changing environmental conditions, including those encountered during infection. Copyright © 2017 American Society for Microbiology.

  17. Crystal Structure of a Phosphorylation-coupled Saccharide Transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Cao; X Jin; E Levin

    Saccharides have a central role in the nutrition of all living organisms. Whereas several saccharide uptake systems are shared between the different phylogenetic kingdoms, the phosphoenolpyruvate-dependent phosphotransferase system exists almost exclusively in bacteria. This multi-component system includes an integral membrane protein EIIC that transports saccharides and assists in their phosphorylation. Here we present the crystal structure of an EIIC from Bacillus cereus that transports diacetylchitobiose. The EIIC is a homodimer, with an expansive interface formed between the amino-terminal halves of the two protomers. The carboxy-terminal half of each protomer has a large binding pocket that contains a diacetylchitobiose, which ismore » occluded from both sides of the membrane with its site of phosphorylation near the conserved His250 and Glu334 residues. The structure shows the architecture of this important class of transporters, identifies the determinants of substrate binding and phosphorylation, and provides a framework for understanding the mechanism of sugar translocation.« less

  18. Establishment of an efficient transformation system for Pleurotus ostreatus.

    PubMed

    Lei, Min; Wu, Xiangli; Zhang, Jinxia; Wang, Hexiang; Huang, Chenyang

    2017-11-21

    Pleurotus ostreatus is widely cultivated worldwide, but the lack of an efficient transformation system regarding its use restricts its genetic research. The present study developed an improved and efficient Agrobacterium tumefaciens-mediated transformation method in P. ostreatus. Four parameters were optimized to obtain the most efficient transformation method. The strain LBA4404 was the most suitable for the transformation of P. ostreatus. A bacteria-to-protoplast ratio of 100:1, an acetosyringone (AS) concentration of 0.1 mM, and 18 h of co-culture showed the best transformation efficiency. The hygromycin B phosphotransferase gene (HPH) was used as the selective marker, and EGFP was used as the reporter gene in this study. Southern blot analysis combined with EGFP fluorescence assay showed positive results, and mitotic stability assay showed that more than 75% transformants were stable after five generations. These results showed that our transformation method is effective and stable and may facilitate future genetic studies in P. ostreatus.

  19. Effect of Trehalose and Trehalose Transport on the Tolerance of Clostridium perfringens to Environmental Stress in a Wild Type Strain and Its Fluoroquinolone-Resistant Mutant

    PubMed Central

    Park, Miseon; Mitchell, Wilfrid J.

    2016-01-01

    Trehalose has been shown to protect bacterial cells from environmental stress. Its uptake and osmoprotective effect in Clostridium perfringens were investigated by comparing wild type C. perfringens ATCC 13124 with a fluoroquinolone- (gatifloxacin-) resistant mutant. In a chemically defined medium, trehalose and sucrose supported the growth of the wild type but not that of the mutant. Microarray data and qRT-PCR showed that putative genes for the phosphorylation and transport of sucrose and trehalose (via phosphoenolpyruvate-dependent phosphotransferase systems, PTS) and some regulatory genes were downregulated in the mutant. The wild type had greater tolerance than the mutant to salts and low pH; trehalose and sucrose further enhanced the osmotolerance of the wild type to NaCl. Expression of the trehalose-specific PTS was lower in the fluoroquinolone-resistant mutant. Protection of C. perfringens from environmental stress could therefore be correlated with the ability to take up trehalose. PMID:28058047

  20. Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions.

    PubMed

    Choi, Donggeon; Lee, Sae Bom; Kim, Sohyun; Min, Byoungnam; Choi, In-Geol; Chang, In Seop

    2014-02-01

    Comparative genome analysis of Shewanella strains predicted that the strains metabolize preferably two- and three-carbon carbohydrates as carbon/electron source because many Shewanella genomes are deficient of the key enzymes in glycolysis (e.g., glucokinase). In addition, all Shewanella genomes are known to have only one set of genes associated with the phosphotransferase system required to uptake sugars. To engineer Shewanella strains that can utilize five- and six-carbon carbohydrates, we constructed glucose-utilizing Shewanella oneidensis MR-1 by introducing the glucose facilitator (glf; ZMO0366) and glucokinase (glk; ZMO0369) genes of Zymomonas mobilis. The engineered MR-1 strain was able to grow on glucose as a sole carbon/electron source under anaerobic conditions. The glucose affinity (Ks) and glucokinase activity in the engineered MR-1 strain were 299.46 mM and 0.259 ± 0.034 U/g proteins. The engineered strain was successfully applied to a microbial fuel cell system and exhibited current generation using glucose as the electron source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides

    PubMed Central

    Bertran-Vicente, Jordi; Penkert, Martin; Nieto-Garcia, Olaia; Jeckelmann, Jean-Marc; Schmieder, Peter; Krause, Eberhard; Hackenberger, Christian P. R.

    2016-01-01

    In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICBGlc, which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes. PMID:27586301

  2. Apple (Malus x domestica).

    PubMed

    Dandekar, Abhaya M; Teo, Gianni; Uratsu, Sandra L; Tricoli, David

    2006-01-01

    Apple (Malus x domestica) is one of the most consumed fruit crops in the world. The major production areas are the temperate regions, however, because of its excellent storage capacity it is transported to distant markets covering the four corners of the earth. Transformation is a key to sustaining this demand - permitting the potential enhancement of existing cultivars as well as to investigate the development of new cultivars resistant to pest, disease, and storage problems that occur in the major production areas. In this paper we describe an efficient Agrobacterium tumefaciens-mediated transformation protocol that utilizes leaf tissues from in vitro grown plants. Shoot regeneration is selected with kanamycin using the selectable kanamycin phosphotransferase (APH(3)II) gene and the resulting transformants confirmed using the scorable uidA gene encoding the bacterial beta-glucuronidase (GUS) enzyme via histochemical staining. Transformed shoots are propagated, rooted to create transgenic plants that are then introduced into soil, acclimatized and transferred to the greenhouse from where they are taken out into the orchard for field-testing.

  3. Phosphomannose isomerase and phosphomannomutase gene disruptions in Streptomyces nodosus: impact on amphotericin biosynthesis and implications for glycosylation engineering.

    PubMed

    Nic Lochlainn, Laura; Caffrey, Patrick

    2009-01-01

    Streptomycetes synthesise several bioactive natural products that are modified with sugar residues derived from GDP-mannose. These include the antifungal polyenes, the antibacterial antibiotics hygromycin A and mannopeptimycins, and the anticancer agent bleomycin. Three enzymes function in biosynthesis of GDP-mannose from the glycolytic intermediate fructose 6-phosphate: phosphomannose isomerase (PMI), phosphomannomutase (PMM) and GDP-mannose pyrophosphorylase (GMPP). Synthesis of GDP-mannose from exogenous mannose requires hexokinase or phosphotransferase enzymes together with PMM and GMPP. In this study, a region containing genes for PMI, PMM and GMPP was cloned from Streptomyces nodosus, producer of the polyenes amphotericins A and B. Inactivation of the manA gene for PMI resulted in production of amphotericins and their aglycones, 8-deoxyamphoteronolides. A double mutant lacking the PMI and PMM genes produced 8-deoxyamphoteronolides in good yields along with trace levels of glycosylated amphotericins. With further genetic engineering these mutants may activate alternative hexoses as GDP-sugars for transfer to aglycones in vivo.

  4. Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli.

    PubMed

    Kubota, Akane; Ishizaki, Kimitsune; Hosaka, Masashi; Kohchi, Takayuki

    2013-01-01

    The thallus, the gametophyte body of the liverwort Marchantia polymorpha, develops clonal progenies called gemmae that are useful in the isolation and propagation of isogenic plants. Developmental timing is critical to Agrobacterium-mediated transformation, and high transformation efficiency has been achieved only with sporelings. Here we report an Agrobacterium-mediated transformation system for M. polymorpha using regenerating thalli. Thallus regeneration was induced by cutting the mature thallus across the apical-basal axis and incubating the basal portion of the thallus for 3 d. Regenerating thalli were infected with Agrobacterium carrying binary vector that contained a selection marker, the hygromycin phosphotransferase gene, and hygromycin-resistant transformants were obtained with an efficiency of over 60%. Southern blot analysis verified random integration of 1 to 4 copies of the T-DNA into the M. polymorpha genome. This Agrobacterium-mediated transformation system for M. polymorpha should provide opportunities to perform genetic transformation without preparing spores and to generate a sufficient number of transformants with isogenic background.

  5. Agrobacterium tumefaciens-mediated transformation of Phellodendron amurense Rupr. using mature-seed explants.

    PubMed

    Yang, Jingli; Zhao, Bo; Kim, Yeon Bok; Zhou, Chenguang; Li, Chunyan; Chen, Yunlin; Zhang, Haizhen; Li, Cheng Hao

    2013-01-01

    An efficient transformation protocol was developed for Agrobacterium-mediated transformation of Phellodendron amurense Rupr. for using explants from mature seeds. The binary vector pCAMBIA1303, which contained hygromycin phosphotransferase (hptII) as a selectable marker gene and β-glucuronidase (GUS) as a reporter gene, was used for transformation studies. Different factors that affect survival of transformed buds, namely Agrobacterium infection method, bacterial strain, pre-culture duration, acetosyringone concentration, co-culture duration, and co-culture temperature were examined and optimized for transformation efficiency on the basis of GUS staining of hygromycin-resistant buds. Polymerase chain reaction (PCR), Southern blot and reverse transcription PCR confirmed the presence of the GUS gene. A transformation frequency of 13.1 % was achieved under optimized conditions for transformation (A. tumefaciens strain EHA105, 4 days co-cultivation at 4 °C, and infection of the pre-cultured mature-seed explants for 2 days). This is the first report of a successful genetic transformation protocol for P. amurense.

  6. Streptococcus mutans: Fructose Transport, Xylitol Resistance, and Virulence

    PubMed Central

    Tanzer, J.M.; Thompson, A.; Wen, Z.T.; Burne, R.A.

    2008-01-01

    Streptococcus mutans, the primary etiological agent of human dental caries, possesses at least two fructose phosphotransferase systems (PTSs), encoded by fruI and fruCD. fruI is also responsible for xylitol transport. We hypothesized that fructose and xylitol transport systems do not affect virulence. Thus, colonization and cariogenicity of fruI− and fruCD− single and double mutants, their WT (UA159), and xylitol resistance (Xr) of S. mutans were studied in rats fed a high-sucrose diet. A sucrose phosphorylase (gtfA−) mutant and a reference strain (NCTC-10449S) were additional controls. Recoveries of fruI mutant from the teeth were decreased, unlike those for the other strains. The fruCD mutation was associated with a slight loss of cariogenicity on enamel, whereas mutation of fruI was associated with a loss of cariogenicity in dentin. These results also suggest why xylitol inhibition of caries is paradoxically associated with spontaneous emergence of so-called Xr S. mutans in habitual human xylitol users. PMID:16567561

  7. Tissue-specifically regulated site-specific excision of selectable marker genes in bivalent insecticidal, genetically-modified rice.

    PubMed

    Hu, Zhan; Ding, Xuezhi; Hu, Shengbiao; Sun, Yunjun; Xia, Liqiu

    2013-12-01

    Marker-free, genetically-modified rice was created by the tissue-specifically regulated Cre/loxP system, in which the Cre recombinase gene and hygromycin phosphotransferase gene (hpt) were flanked by two directly oriented loxP sites. Cre expression was activated by the tissue-specific promoter OsMADS45 in flower or napin in seed, resulting in simultaneous excision of the recombinase and marker genes. Segregation of T1 progeny was performed to select recombined plants. The excision was confirmed by PCR, Southern blot and sequence analyses indicating that efficiency varied from 10 to 53 % for OsMADS45 and from 12 to 36 % for napin. The expression of cry1Ac and vip3A was detected by RT-PCR analysis in marker-free transgenic rice. These results suggested that our tissue-specifically regulated Cre/loxP system could auto-excise marker genes from transgenic rice and alleviate public concerns about the security of GM crops.

  8. [The genetic determination and function of RR-proteins--the regulators of photoperiodic reaction and circadian rhythms in plants].

    PubMed

    Tots'kyĭ, V M; D'iachenko, L F; Muterko, O F; Balashova, I A; Toptikov, V A

    2012-01-01

    The present review devoted to the analysis of recent literature on genetic determination and the domain organization of the newly discovered two-component signaling systems in pro- and eukaryotes. These structures are involved in the regulation of numerous morphological and physiological processes in plants. RR-proteins, it the key elements of signaling systems, they launch a cascade of phosphotransferase reactions and directly or indirectly regulate the transcription and activity other proteins, including enzymes, in response to hormones or environmental factors. Modern views on the molecular and genetic mechanisms of photoperiodic response, circadian rhythms and anti-stress responses in plants are set out in these positions. The relationship between gene expression and photoreceptor sensitivity of plants to photoperiod traced. We present our own data obtained on the isogenic lines of wheat, where been showed dependence expression of structural genes of enzymes on the allelic composition of individual PRR-loci and the duration action of low temperature.

  9. Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production.

    PubMed

    Peng, Huadong; Moghaddam, Lalehvash; Brinin, Anthony; Williams, Brett; Mundree, Sagadevan; Haritos, Victoria S

    2018-03-01

    As promising alternatives to fossil-derived oils, microbial lipids are important as industrial feedstocks for biofuels and oleochemicals. Our broad aim is to increase lipid content in oleaginous yeast through expression of lipid accumulation genes and use Saccharomyces cerevisiae to functionally assess genes obtained from oil-producing plants and microalgae. Lipid accumulation genes DGAT (diacylglycerol acyltransferase), PDAT (phospholipid: diacylglycerol acyltransferase), and ROD1 (phosphatidylcholine: diacylglycerol choline-phosphotransferase) were separately expressed in yeast and lipid production measured by fluorescence, solvent extraction, thin layer chromatography, and gas chromatography (GC) of fatty acid methyl esters. Expression of DGAT1 from Arabidopsis thaliana effectively increased total fatty acids by 1.81-fold above control, and ROD1 led to increased unsaturated fatty acid content of yeast lipid. The functional assessment approach enabled the fast selection of candidate genes for metabolic engineering of yeast for production of lipid feedstocks. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  10. Expression of EGFP and NPTII protein is not associated with organ abnormalities in deceased transgenic cloned cattle.

    PubMed

    Liu, Yan; Wu, Qian; Cui, Huiting; Li, Qinghe; Zhao, Yiqiang; Luo, Juan; Liu, Qiuyue; Sun, Xiuzhu; Tang, Bo; Zhang, Lei; Dai, Yunping; Li, Ning

    2008-12-01

    Both enhanced green fluorescence protein (EGFP) and neomycin phosphotransferase type II enzyme (NPTII) are widely used in transgenic studies, but their side effects have not been extensively investigated. In this study, we evaluated the expression profiles of the two marker genes and the relationship between their expression and organ abnormalities. Eight transgenic cloned cattle were studied, four harboring both EGFP and NPTII, and four harboring only the NPTII gene. Four age-matched cloned cattle were used as controls. EGFP and NPTII expression were measured and detected by Q-PCR, Western blot, ELISA, and RIA in heart, liver, and lungs, and the values ranged from 0.3 to 5 microg/g. The expression profiles exhibited differential or mosaic pattern between the organs, the pathologic symptoms of which were identified, but were similar to those of age-matched cloned cattle. All data indicated that the expression of EGFP and NPTII is not associated with organ abnormalities in transgenic cloned cattle.

  11. Common structural changes accompany the functional inactivation of HPr by seryl phosphorylation or by serine to aspartate substitution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittekind, M.; Klevit, R.E.; Reizer, J.

    1989-12-26

    Although many proteins are known to be regulated via reversible phosphorylation, little is known about the mechanism by which the covalent modification of seryl, threonyl, or tyrosyl residues alters the activities of the target systems. To address this question, modified versions of bacillus subtilus HPr, a protein component of the bacterial phosphotransferase system, have been studied by {sup 1}H NMR spectroscopy. Phosphorylation at Ser{sub 46} or a Ser to Asp substitution at this position inactivates HPr. Two-dimensional spectra of these two modified proteins display nearly identical proton chemical shifts that differ significantly from those observed in the spectra of themore » unphosphorylated, wild-type protein and of functionally active HPr mutants. These results demonstrate that the functional inactivation of HPr brought about by the serine to aspartate mutation is accompanied by the same structural changes that occur when HPr is phosphorylated at Ser{sub 46}.« less

  12. Structural studies of ROK fructokinase YdhR from Bacillus subtilis : insights into substrate binding and fructose specificity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nocek, B.; Stein, A.; Jedrzejczak, R.

    2011-02-18

    The main pathway of bacterial sugar phosphorylation utilizes specific phosphoenolpyruvate phosphotransferase system (PTS) enzymes. In addition to the classic PTS system, a PTS-independent secondary system has been described in which nucleotide-dependent sugar kinases are used for monosaccharide phosphorylation. Fructokinase (FK), which phosphorylates d-fructose with ATP as a cofactor, has been shown to be a member of this secondary system. Bioinformatic analysis has shown that FK is a member of the 'ROK' (bacterial Repressors, uncharacterized Open reading frames, and sugar Kinases) sequence family. In this study, we report the crystal structures of ROK FK from Bacillus subtilis (YdhR) (a) apo andmore » in the presence of (b) ADP and (c) ADP/d-fructose. All structures show that YdhR is a homodimer with a monomer composed of two similar {alpha}/{beta} domains forming a large cleft between domains that bind ADP and d-fructose. Enzymatic activity assays support YdhR function as an ATP-dependent fructose kinase.« less

  13. The characteristics of pyrophosphate: D-fructose-6-phosphate 1-phosphotransferases from Sansevieria trifasciata leaves and Phaseolus coccineus stems.

    PubMed

    Kowalczyk, S

    1987-01-01

    Three different molecular forms of pyrophosphate-dependent phosphofructokinase have been isolated: one from Sansevieria trifasciata leaves and two from Phaseolus coccineus stems. The form isolated from S. trifasciata has the molecular weight of about 115,000. The apparent molecular weights for the two forms from mung bean were approximately 220,000 and 450,000. All three forms have the same pH optima, an absolute requirement for Mg2+ ions both in the forward and reverse reaction, but differ in their sensitivity toward fructose 2,6-bisphosphate. Kinetic properties of the partially purified enzymes have been investigated in the presence and absence of fructose 2,6-bisphosphate. Pyrophosphate-dependent phosphofructokinase from S. trifasciata exhibited hyperbolic kinetics with all substrates tested. The saturation curves of the enzyme (form A) from mung bean for pyrophosphate, fructose 6-phosphate and fructose 1,6-bisphosphate were sigmoidal in the absence of fructose 2,6-bisphosphate. In the presence of fructose 2,6-bisphosphate these kinetics became hyperbolic.

  14. Chromogenic detection of aminoglycoside phosphotransferases.

    PubMed

    Amoroso, A M; Gutkind, G O

    2001-01-01

    Acquired resistance to aminoglycosides is most frequently due to the presence of the so-called aminoglycoside modifying enzymes (AGME) (1) able to catalyze one or more of three general reactions: N-acetylation, O-nucleotidylation and O-phosphorylation (2). Although resistance phenotype (to different (substrate or not for enzymatic modification) may serve as an approach for identifying actual enzymes present in a given isolate (3), results can be obscured or confusing, particularly when several different enzymes (4) (even, isoenzymes with different affinities) are superimposing their action in a single microorganism with potential "permeability" or target alterations. Thus, identification of the AGME content of a given strain also requires screening at the DNA level using probes specific to all the known AGME (5). However, the complete set of probes is available only to a few laboratories around the world, making surveillance for the appearance of novel enzymes, or the unlikely evolution of those already known, a relatively nonfeasible goal, as search for new enzymes may begin only after failing to hybridize to all known probes.

  15. Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis.

    PubMed

    Nakayama, Motokazu; Shimatani, Kanami; Ozawa, Tadahiro; Shigemune, Naofumi; Tomiyama, Daisuke; Yui, Koji; Katsuki, Mao; Ikeda, Keisuke; Nonaka, Ai; Miyamoto, Takahisa

    2015-01-01

    Catechins are a class of polyphenols and have high anti-bacterial activity against various microorganisms. Here, we report the mechanism for antibacterial activity of epigallocatechin gallate (EGCg) against Gram-positive bacteria Bacillus subtilis, which is highly sensitive to EGCg. Transmission electron microscope analysis revealed that deposits containing EGCg were found throughout the cell envelope from the outermost surface to the outer surface of cytoplasmic membrane. Aggregating forms of proteins and EGCg were identified as spots that disappeared or showed markedly decreased intensity after the treatment with EGCg compared to the control by two-dimensional electrophoresis. Among the identified proteins included 4 cell surface proteins, such as oligopeptide ABC transporter binding lipoprotein, glucose phosphotransferase system transporter protein, phosphate ABC transporter substrate-binding protein, and penicillin-binding protein 5. Observations of glucose uptake of cells and cell shape B. subtilis after the treatment with EGCg suggested that EGCg inhibits the major functions of these proteins, leading to growth inhibition of B. subtilis.

  16. Phosphatidylglycerol directs binding and inhibitory action of EIIAGlc protein on the maltose transporter.

    PubMed

    Bao, Huan; Duong, Franck

    2013-08-16

    The signal-transducing protein EIIA(Glc) belongs to the phosphoenolpyruvate carbohydrate phosphotransferase system. In its dephosphorylated state, EIIA(Glc) is a negative regulator for several permeases, including the maltose transporter MalFGK2. How EIIA(Glc) is targeted to the membrane, how it interacts with the transporter, and how it inhibits sugar uptake remain obscure. We show here that acidic phospholipids together with the N-terminal tail of EIIA(Glc) are essential for the high affinity binding of the protein to the transporter. Using protein docking prediction and chemical cross-linking, we demonstrate that EIIA(Glc) binds to the MalK dimer, interacting with both the nucleotide-binding and the C-terminal regulatory domains. Dissection of the ATPase cycle reveals that EIIA(Glc) does not affect the binding of ATP but rather inhibits the capacity of MalK to cleave ATP. We propose a mechanism of maltose transport inhibition by this central amphitropic regulatory protein.

  17. Effects of Carbohydrate Source on Genetic Competence in Streptococcus mutans.

    PubMed

    Moye, Zachary D; Son, Minjun; Rosa-Alberty, Ariana E; Zeng, Lin; Ahn, Sang-Joon; Hagen, Stephen J; Burne, Robert A

    2016-08-01

    The capacity to internalize and catabolize carbohydrates is essential for dental caries pathogens to persist and cause disease. The expression of many virulence-related attributes by Streptococcus mutans, an organism strongly associated with human dental caries, is influenced by the peptide signaling pathways that control genetic competence. Here, we demonstrate a relationship between the efficiency of competence signaling and carbohydrate source. A significant increase in the activity of the promoters for comX, comS, and comYA after exposure to competence-stimulating peptide (CSP) was observed in cells growing on fructose, maltose, sucrose, or trehalose as the primary carbohydrate source, compared to cells growing on glucose. However, only cells grown in the presence of trehalose or sucrose displayed a significant increase in transformation frequency. Notably, even low concentrations of these carbohydrates in the presence of excess glucose could enhance the expression of comX, encoding a sigma factor needed for competence, and the effects on competence were dependent on the cognate sugar:phosphotransferase permease for each carbohydrate. Using green fluorescent protein (GFP) reporter fusions, we observed that growth in fructose or trehalose resulted in a greater proportion of the population activating expression of comX and comS, encoding the precursor of comX-inducing peptide (XIP), after addition of CSP, than growth in glucose. Thus, the source of carbohydrate significantly impacts the stochastic behaviors that regulate subpopulation responses to CSP, which can induce competence in S. mutans The signaling pathways that regulate development of genetic competence in Streptococcus mutans are intimately intertwined with the pathogenic potential of the organism, impacting biofilm formation, stress tolerance, and expression of known virulence determinants. Induction of the gene for the master regulator of competence, ComX, by competence-stimulating peptide (CSP) occurs in a subpopulation of cells. Here, we show that certain carbohydrates that are common in the human diet enhance the ability of CSP to activate transcription of comX and that a subset of these carbohydrates stimulates progression to the competent state. The cognate sugar:phosphotransferase permeases for each sugar are needed for these effects. Interestingly, single-cell analysis shows that the carbohydrates that increase com gene expression do so by enhancing the proportion of cells that respond to CSP. A mathematical model is developed to explain how carbohydrates modulate bistable behavior in the system via the ComRS pathway and ComX stability. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Effects of Carbohydrate Source on Genetic Competence in Streptococcus mutans

    PubMed Central

    Moye, Zachary D.; Son, Minjun; Rosa-Alberty, Ariana E.; Zeng, Lin; Ahn, Sang-Joon

    2016-01-01

    ABSTRACT The capacity to internalize and catabolize carbohydrates is essential for dental caries pathogens to persist and cause disease. The expression of many virulence-related attributes by Streptococcus mutans, an organism strongly associated with human dental caries, is influenced by the peptide signaling pathways that control genetic competence. Here, we demonstrate a relationship between the efficiency of competence signaling and carbohydrate source. A significant increase in the activity of the promoters for comX, comS, and comYA after exposure to competence-stimulating peptide (CSP) was observed in cells growing on fructose, maltose, sucrose, or trehalose as the primary carbohydrate source, compared to cells growing on glucose. However, only cells grown in the presence of trehalose or sucrose displayed a significant increase in transformation frequency. Notably, even low concentrations of these carbohydrates in the presence of excess glucose could enhance the expression of comX, encoding a sigma factor needed for competence, and the effects on competence were dependent on the cognate sugar:phosphotransferase permease for each carbohydrate. Using green fluorescent protein (GFP) reporter fusions, we observed that growth in fructose or trehalose resulted in a greater proportion of the population activating expression of comX and comS, encoding the precursor of comX-inducing peptide (XIP), after addition of CSP, than growth in glucose. Thus, the source of carbohydrate significantly impacts the stochastic behaviors that regulate subpopulation responses to CSP, which can induce competence in S. mutans. IMPORTANCE The signaling pathways that regulate development of genetic competence in Streptococcus mutans are intimately intertwined with the pathogenic potential of the organism, impacting biofilm formation, stress tolerance, and expression of known virulence determinants. Induction of the gene for the master regulator of competence, ComX, by competence-stimulating peptide (CSP) occurs in a subpopulation of cells. Here, we show that certain carbohydrates that are common in the human diet enhance the ability of CSP to activate transcription of comX and that a subset of these carbohydrates stimulates progression to the competent state. The cognate sugar:phosphotransferase permeases for each sugar are needed for these effects. Interestingly, single-cell analysis shows that the carbohydrates that increase com gene expression do so by enhancing the proportion of cells that respond to CSP. A mathematical model is developed to explain how carbohydrates modulate bistable behavior in the system via the ComRS pathway and ComX stability. PMID:27260355

  19. Transgenic fertile Scoparia dulcis L., a folk medicinal plant, conferred with a herbicide-resistant trait using an Ri binary vector.

    PubMed

    Yamazaki, M; Son, L; Hayashi, T; Morita, N; Asamizu, T; Mourakoshi, I; Saito, K

    1996-01-01

    Transgenic herbicide-resistant Scoparia dulcis plants were obtained by using an Ri binary vector system. The chimeric bar gene encoding phosphinothricin acetyltransferase flanked by the promoter for cauliflower mosaic virus 35S RNA and the terminal sequence for nopaline synthase was introduced in the plant genome by Agrobacterium-mediated transformation by means of scratching young plants. Hairy roots resistant to bialaphos were selected and plantlets (R0) were regenerated. Progenies (S1) were obtained by self-fertilization. The transgenic state was confirmed by DNA-blot hybridization and assaying of neomycin phosphotransferase II. Expression of the bar gene in the transgenic R0 and S1 progenies was indicated by the activity of phosphinothricin acetyltransferase. Transgenic plants accumulated scopadulcic acid B, a specific secondary metabolite of S. dulcis, in amounts of 15-60% compared with that in normal plants. The transgenic plants and progenies showed resistant trait towards bialaphos and phosphinothricin. These results suggest that an Ri binary system is one of the useful tools for the transformation of medicinal plants for which a regeneration protocol has not been established.

  20. Investigating the strategies for microbial production of trehalose from lignocellulosic sugars.

    PubMed

    Wu, Yifei; Wang, Jian; Shen, Xiaolin; Wang, Jia; Chen, Zhenya; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2018-03-01

    Trehalose, a multi-functional and value-added disaccharide, can be efficiently biosynthesized from glucose by using a synergetic carbon utilization mechanism (SynCar) which coupled phosphoenolpyruvate (PEP) generation from the second carbon source with PEP-dependent phosphotransferase system (PTS) to promote non-catabolic use of glucose. Considering glucose and xylose present in large amounts in lignocellulosic sugars, we explored new strategies for conversion of both sugars into trehalose. Herein, we first attempted trehalose production from xylose directly, based on which, synergetic utilization of glucose, and xylose prompted by SynCar was implemented in engineered Escherichia coli. As the results, the final titer of trehalose reached 5.55 g/L in shake flask experiments. The conversion ratio or utilization efficiency of glucose or xylose to trehalose was around fourfold higher than that of the original strain (YW-3). This work not only demonstrated the possibility of directly converting xylose (C5 sugar) into trehalose (C12 disaccharide), but also suggested a promising strategy for trehalose production from lignocellulosic sugars for the first time. © 2017 Wiley Periodicals, Inc.

  1. Novel biocatalytic systems for maintaining the nucleotide balance based on adenylate kinase immobilized on carbon nanostructures.

    PubMed

    Hetmann, Anna; Wujak, Magdalena; Bolibok, Paulina; Zięba, Wojciech; Wiśniewski, Marek; Roszek, Katarzyna

    2018-07-01

    In this study graphene oxide (GO), carbon quantum dots (CQD) and carbon nanoonions (CNO) have been characterized and applied for the first time as a matrix for recombinant adenylate kinase (AK, EC 2.7.4.3) immobilization. AK is an enzyme fulfilling a key role in metabolic processes. This phosphotransferase catalyzes the interconversion of adenine nucleotides (ATP, ADP and AMP) and thereby participates in nucleotide homeostasis, monitors a cellular energy charge as well as acts as a component of purinergic signaling system. The AK activity in all obtained biocatalytic systems was higher as compared to the free enzyme. We have found that the immobilization on carbon nanostructures increased both activity and stability of AK. Moreover, the biocatalytic systems consisting of AK immobilized on carbon nanostructures can be easily and efficiently lyophilized without risk of desorption or decrease in the catalytic activity of the investigated enzyme. The positive action of AK-GO biocatalytic system in maintaining the nucleotide balance in in vitro cell culture was proved. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Endogenous enzyme activities and polyamine levels in diverse rice cultivars depend on the genetic background and are not affected by the presence of the hygromycin phosphotransferase selectable marker.

    PubMed

    Lepri, O.; Bassie, L.; Thu-Hang, P.; Christou, P.; Capell, T.

    2002-09-01

    We used the polyamine biosynthetic pathway and rice as a relevant model to understand the genetic basis of variation in endogenous levels of metabolites and key enzymes involved in the pathway. Wild-type tissues and also tissues containing a commonly used selectable marker gene were employed. We detected a wide variation in levels of arginine decarboxylase activity and in the three polyamines, putrescine, spermidine and spermine, in different tissues and varieties, but this was not dependent on the presence of the selectable marker. A more-extensive profile of enzyme activities (ADC, ODC, SAMDC, DAO and PAO) and polyamine levels in different tissues was generated in two different varieties. Our results indicate that genetic background is important in terms of the basal levels of metabolites and enzyme activity, particularly in situations in which we aim to engineer metabolic pathways that are also encoded by homologous endogenous genes. We did not find any evidence that the presence of a selectable marker in any way influences enzyme activity or metabolite levels.

  3. Establishment of a genetic transformation system for the marine pennate diatom Fistulifera sp. strain JPCC DA0580--a high triglyceride producer.

    PubMed

    Muto, Masaki; Fukuda, Yorikane; Nemoto, Michiko; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2013-02-01

    A genetic transformation system for the marine pennate diatom, Fistulifera sp. JPCC DA0580, was established using microparticle bombardment methods. Strain JPCC DA0580 has been recently identified as the highest triglyceride (60 % w/w) producer from a culture collection of 1,393 strains of marine microalgae, and it is expected to be a feasible source of biodiesel fuel. The transformation conditions for strain JPCC DA0580 were optimised using the green fluorescent protein gene (gfp) and the gene encoding neomycin phosphotransferase II (nptII). The most efficient rate of transformation was attained when tungsten particles (0.6 μm in diameter) were used for microparticle bombardment. The effect of endogenous and exogenous promoters on the expression of nptII was examined. Endogenous promoters were more efficient for obtaining transformants compared with exogenous promoters. Southern hybridisation analysis suggested that nptII integrated into the nuclear genome. This genetic manipulation technique should allow us to understand the mechanisms of high triglyceride accumulation in this strain, thereby contributing to improving BDF production.

  4. Purine metabolism in Toxoplasma gondii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krug, E.C.; Marr, J.J.; Berens, R.L.

    1989-06-25

    We have studied the incorporation and interconversion of purines into nucleotides by freshly isolated Toxoplasma gondii. They did not synthesize nucleotides from formate, glycine, or serine. The purine bases hypoxanthine, xanthine, guanine, and adenine were incorporated at 9.2, 6.2, 5.1, and 4.3 pmol/10(7) cells/h, respectively. The purine nucleosides adenosine, inosine, guanosine, and xanthosine were incorporated at 110, 9.0, 2.7, and 0.3 pmol/10(7) cells/h, respectively. Guanine, xanthine, and their respective nucleosides labeled only guanine nucleotides. Inosine, hypoxanthine, and adenine labeled both adenine and guanine nucleotide pools at nearly equal ratios. Adenosine kinase was greater than 10-fold more active than the nextmore » most active enzyme in vitro. This is consistent with the metabolic data in vivo. No other nucleoside kinase or phosphotransferase activities were found. Phosphorylase activities were detected for guanosine and inosine; no other cleavage activities were detected. Deaminases were found for adenine and guanine. Phosphoribosyltransferase activities were detected for all four purine nucleobases. Interconversion occurs only in the direction of adenine to guanine nucleotides.« less

  5. Identification of a response regulator involved in surface attachment, cell-cell aggregation, exopolysaccharide production and virulence in the plant pathogen Xylella fastidiosa.

    PubMed

    Voegel, Tanja M; Doddapaneni, Harshavardhan; Cheng, Davis W; Lin, Hong; Stenger, Drake C; Kirkpatrick, Bruce C; Roper, M Caroline

    2013-04-01

    Xylella fastidiosa, the causal agent of Pierce's disease of grapevine, possesses several two-component signal transduction systems that allow the bacterium to sense and respond to changes in its environment. Signals are perceived by sensor kinases that autophosphorylate and transfer the phosphate to response regulators (RRs), which direct an output response, usually by acting as transcriptional regulators. In the X. fastidiosa genome, 19 RRs were found. A site-directed knockout mutant in one unusual RR, designated XhpT, composed of a receiver domain and a histidine phosphotransferase output domain, was constructed. The resulting mutant strain was analysed for changes in phenotypic traits related to biofilm formation and gene expression using microarray analysis. We found that the xhpT mutant was altered in surface attachment, cell-cell aggregation, exopolysaccharide (EPS) production and virulence in grapevine. In addition, this mutant had an altered transcriptional profile when compared with wild-type X. fastidiosa in genes for several biofilm-related traits, such as EPS production and haemagglutinin adhesins. © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  6. Calorimetric and spectroscopic investigation of the interaction between the C-terminal domain of Enzyme I and its ligands

    PubMed Central

    Yun, Young-Joo; Suh, Jeong-Yong

    2012-01-01

    Enzyme I initiates a series of phosphotransfer reactions during sugar uptake in the bacterial phosphotransferase system. Here, we have isolated a stable recombinant C-terminal domain of Enzyme I (EIC) of Escherichia coli and characterized its interaction with the N-terminal domain of Enzyme I (EIN) and also with various ligands. EIC can phosphorylate EIN, but their binding is transient regardless of the presence of phosphoenolpyruvate (PEP). Circular dichroism and NMR indicate that ligand binding to EIC induces changes near aromatic groups but not in the secondary structure of EIC. Binding of PEP to EIC is an endothermic reaction with the equilibrium dissociation constant (KD) of 0.28 mM, whereas binding of the inhibitor oxalate is an exothermic reaction with KD of 0.66 mM from calorimetry. The binding thermodynamics of EIC and PEP compared to that of Enzyme I (EI) and PEP reveals that domain–domain motion in EI can contribute as large as ∼−3.2 kcal/mol toward PEP binding. PMID:22936614

  7. Structure and Function of the Macrolide Biosensor Protein, MphR(A), with and without Erythromycin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianting; Sagar, Vatsala; Smolinsky, Adam

    2009-09-02

    The regulatory protein MphR(A) has recently seen extensive use in synthetic biological applications, such as metabolite sensing and exogenous control of gene expression. This protein negatively regulates the expression of a macrolide 2{prime}-phosphotransferase I resistance gene (mphA) via binding to a 35-bp DNA operator upstream of the start codon and is de-repressed by the presence of erythromycin. Here, we present the refined crystal structure of the MphR(A) protein free of erythromycin and that of the MphR(A) protein with bound erythromycin at 2.00- and 1.76-{angstrom} resolutions, respectively. We also studied the DNA binding properties of the protein and identified mutants ofmore » MphR(A) that are defective in gene repression and ligand binding in a cell-based reporter assay. The combination of these two structures illustrates the molecular basis of erythromycin-induced gene expression and provides a framework for additional applied uses of this protein in the isolation and engineered biosynthesis of polyketide natural products.« less

  8. Evidence of link between quorum sensing and sugar metabolism in Escherichia coli revealed via cocrystal structures of LsrK and HPr

    PubMed Central

    Eo, Yumi; Ma, Xiaochu; Stephens, Kristina; Jeong, Migyeong; Bentley, William E.

    2018-01-01

    Quorum sensing (QS), a bacterial process that regulates population-scale behavior, is mediated by small signaling molecules, called autoinducers (AIs), that are secreted and perceived, modulating a “collective” phenotype. Because the autoinducer AI-2 is secreted by a wide variety of bacterial species, its “perception” cues bacterial behavior. This response is mediated by the lsr (LuxS-regulated) operon that includes the AI-2 transporter LsrACDB and the kinase LsrK. We report that HPr, a phosphocarrier protein central to the sugar phosphotransferase system of Escherichia coli, copurifies with LsrK. Cocrystal structures of an LsrK/HPr complex were determined, and the effects of HPr and phosphorylated HPr on LsrK activity were assessed. LsrK activity is inhibited when bound to HPr, revealing new linkages between QS activity and sugar metabolism. These findings help shed new light on the abilities of bacteria to rapidly respond to changing nutrient levels at the population scale. They also suggest new means of manipulating QS activity among bacteria and within various niches. PMID:29868643

  9. Novel FR-900493 Analogues That Inhibit the Outgrowth of Clostridium difficile Spores

    PubMed Central

    2018-01-01

    The spectrum of antibacterial activity for the nucleoside antibiotic FR-900493 (1) can be extended by chemical modifications. We have generated a small focused library based on the structure of 1 and identified UT-17415 (9), UT-17455 (10), UT-17460 (11), and UT-17465 (12), which exhibit anti-Clostridium difficile growth inhibitory activity. These analogues also inhibit the outgrowth of C. difficile spores at 2× minimum inhibitory concentration. One of these analogues, 11, relative to 1 exhibits over 180-fold and 15-fold greater activity against the enzymes, phospho-MurNAc-pentapeptide translocase (MraY) and polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA), respectively. The phosphotransferase inhibitor 11 displays antimicrobial activity against several tested bacteria including Bacillus subtilis, Clostridium spp., and Mycobacterium smegmatis, but no growth inhibitory activity is observed against the other Gram-positive and Gram-negative bacteria. The selectivity index (Vero cell cytotoxicity/C. difficileantimicrobial activity) of 11 is approximately 17, and 11 does not induce hemolysis even at a 100 μM concentration. PMID:29503973

  10. Cloning of the nptII gene of Escherichia coli and construction of a recombinant strain harboring functional recA and nptII antibiotic resistance.

    PubMed

    Ghanem, S

    2011-01-01

    In an attempt to clone the ORF of the nptII gene of Escherichia coli K12 (ATCC 10798), two degenerate primers were designed based on the nptII sequence of its Tn5 transposon. The nptII ORF was placed under the control of the E. coli hybrid trc promoter, in the pKK388-1 vector, transformed into E. coli DH5α ΔrecA (recombinant, deficient strain). Transferred cells were tested for ampicillin, tetracycline, kanamycin, neomycin, geneticin, paromomycin, penicillin, and UV resistance. The neomycin phosphotransferase gene of E. coli was cloned successfully and conferred kanamycin, neomycin, geneticin, and paromomycin resistance to recombinant DH5α; this did not inhibit insertion of additional antibiotic resistance against ampicillin and tetracycline, meaning the trc promoter can express two different genes carried by two different plasmids harbored in the same cell. This resistance conferral process could be considered as an emulation of horizontal gene transfer occurring in nature and would be a useful tool for understanding mechanisms of evolution of multidrug-resistant strains.

  11. A temperature-tolerant multiplex elements and genes screening system for genetically modified organisms based on dual priming oligonucleotide primers and capillary electrophoresis.

    PubMed

    Fu, Wei; Wei, Shuang; Wang, Chenguang; Du, Zhixin; Zhu, Pengyu; Wu, Xiyang; Wu, Gang; Zhu, Shuifang

    2017-08-15

    High throughput screening systems are the preferred solution to meet the urgent requirement of increasing number of genetically modified organisms (GMOs). In this study, we have successfully developed a multiplex GMO element screening system with dual priming oligonucleotide (DPO) primers. This system can detect the cauliflower mosaic virus 35S (CaMV 35S), terminator of nopaline synthase gene (NOS), figwort mosaic virus 35S (FMV 35S) promoter, neomycin phosphotransferaseII (NPTII), Bt Cry 1Ab, phosphinothricin acetyltransferase genes (bar) and Streptomyces viridochromogenes (pat) simultaneously, which covers more than 90% of all authorized GMO species worldwide. This system exhibits a high tolerance to annealing temperatures, high specificity and a limit of detection equal to conventional PCR. A total of 214 samples from markets, national entry-exit agencies, the Institute for Reference Materials and Measurement (IRMM) and the American Oil Chemists' Society (AOCS) were also tested for applicability. This screening system is therefore suitable for GMO screening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Carbon catabolite regulation in Streptomyces: new insights and lessons learned.

    PubMed

    Romero-Rodríguez, Alba; Rocha, Diana; Ruiz-Villafán, Beatriz; Guzmán-Trampe, Silvia; Maldonado-Carmona, Nidia; Vázquez-Hernández, Melissa; Zelarayán, Augusto; Rodríguez-Sanoja, Romina; Sánchez, Sergio

    2017-09-01

    One of the most significant control mechanisms of the physiological processes in the genus Streptomyces is carbon catabolite repression (CCR). This mechanism controls the expression of genes involved in the uptake and utilization of alternative carbon sources in Streptomyces and is mostly independent of the phosphoenolpyruvate phosphotransferase system (PTS). CCR also affects morphological differentiation and the synthesis of secondary metabolites, although not all secondary metabolite genes are equally sensitive to the control by the carbon source. Even when the outcome effect of CCR in bacteria is the same, their essential mechanisms can be rather different. Although usually, glucose elicits this phenomenon, other rapidly metabolized carbon sources can also cause CCR. Multiple efforts have been put through to the understanding of the mechanism of CCR in this genus. However, a reasonable mechanism to explain the nature of this process in Streptomyces does not yet exist. Several examples of primary and secondary metabolites subject to CCR will be examined in this review. Additionally, recent advances in the metabolites and protein factors involved in the Streptomyces CCR, as well as their mechanisms will be described and discussed in this review.

  13. 3'-NADP and 3'-NAADP, Two Metabolites Formed by the Bacterial Type III Effector AvrRxo1.

    PubMed

    Schuebel, Felix; Rocker, Andrea; Edelmann, Daniel; Schessner, Julia; Brieke, Clara; Meinhart, Anton

    2016-10-28

    An arsenal of effector proteins is injected by bacterial pathogens into the host cell or its vicinity to increase virulence. The commonly used top-down approaches inferring the toxic mechanism of individual effector proteins from the host's phenotype are often impeded by multiple targets of different effectors as well as by their pleiotropic effects. Here we describe our bottom-up approach, showing that the bacterial type III effector AvrRxo1 of plant pathogens is an authentic phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3'-hydroxyl group. Both products of AvrRxo1, 3'-NADP and 3'-nicotinic acid adenine dinucleotide phosphate (3'-NAADP), are substantially different from the ubiquitous co-enzyme 2'-NADP and the calcium mobilizer 2'-NAADP. Interestingly, 3'-NADP and 3'-NAADP have previously been used as inhibitors or signaling molecules but were regarded as "artificial" compounds so far. Our findings now necessitate a shift in thinking about the biological importance of 3'-phosphorylated NAD derivatives. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Bisubstrate inhibitors of protein kinases: from principle to practical applications.

    PubMed

    Lavogina, Darja; Enkvist, Erki; Uri, Asko

    2010-01-01

    Bisubstrate inhibitors consist of two conjugated fragments, each targeted to a different binding site of a bisubstrate enzyme. The design of bisubstrate inhibitors presupposes the formation of the ternary complex in the course of the catalyzed reaction. The principle advantage of bisubstrate inhibitors is their ability to generate more interactions with the target enzyme that could result in improved affinity and selectivity of the conjugates, when compared with single-site inhibitors. Among phosphotransferases, the approach was first successfully used for adenylate kinase in 1973. Since then, several types of bisubstrate inhibitors have been developed for protein kinases, including conjugates of peptides with nucleotides, adenosine derivatives and potent ATP-competitive inhibitors. Earlier bisubstrate inhibitors had pharmacokinetic qualities that were unsuitable for cellular experiments and hence were mostly used for in vitro studies. The recently constructed conjugates of adenosine derivatives and D-arginine-rich peptides (ARCs) possess high kinase affinity, high biological and chemical stability and good cell plasma membrane penetrative properties that enable their application in the regulation of cellular protein phosphorylation balances in cell and tissue experiments.

  15. Glucose-Specific Enzyme IIA of the Phosphoenolpyruvate:Carbohydrate Phosphotransferase System Modulates Chitin Signaling Pathways in Vibrio cholerae.

    PubMed

    Yamamoto, Shouji; Ohnishi, Makoto

    2017-09-15

    In Vibrio cholerae , the genes required for chitin utilization and natural competence are governed by the chitin-responsive two-component system (TCS) sensor kinase ChiS. In the classical TCS paradigm, a sensor kinase specifically phosphorylates a cognate response regulator to activate gene expression. However, our previous genetic study suggested that ChiS stimulates the non-TCS transcriptional regulator TfoS by using mechanisms distinct from classical phosphorylation reactions (S. Yamamoto, J. Mitobe, T. Ishikawa, S. N. Wai, M. Ohnishi, H. Watanabe, and H. Izumiya, Mol Microbiol 91:326-347, 2014, https://doi.org/10.1111/mmi.12462). TfoS specifically activates the transcription of tfoR , encoding a small regulatory RNA essential for competence gene expression. Whether ChiS and TfoS interact directly remains unknown. To determine if other factors mediate the communication between ChiS and TfoS, we isolated transposon mutants that turned off tfoR :: lacZ expression but possessed intact chiS and tfoS genes. We demonstrated an unexpected association of chitin-induced signaling pathways with the glucose-specific enzyme IIA (EIIA glc ) of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) for carbohydrate uptake and catabolite control of gene expression. Genetic and physiological analyses revealed that dephosphorylated EIIA glc inactivated natural competence and tfoR transcription. Chitin-induced expression of the chb operon, which is required for chitin transport and catabolism, was also repressed by dephosphorylated EIIA glc Furthermore, the regulation of tfoR and chb expression by EIIA glc was dependent on ChiS and intracellular levels of ChiS were not affected by disruption of the gene encoding EIIA glc These results define a previously unknown connection between the PTS and chitin signaling pathways in V. cholerae and suggest a strategy whereby this bacterium can physiologically adapt to the existing nutrient status. IMPORTANCE The EIIA glc protein of the PTS coordinates a wide variety of physiological functions with carbon availability. In this report, we describe an unexpected association of chitin-activated signaling pathways in V. cholerae with EIIA glc The signaling pathways are governed by the chitin-responsive TCS sensor kinase ChiS and lead to the induction of chitin utilization and natural competence. We show that dephosphorylated EIIA glc inhibits both signaling pathways in a ChiS-dependent manner. This inhibition is different from classical catabolite repression that is caused by lowered levels of cyclic AMP. This work represents a newly identified connection between the PTS and chitin signaling pathways in V. cholerae and suggests a strategy whereby this bacterium can physiologically adapt to the existing nutrient status. Copyright © 2017 American Society for Microbiology.

  16. Biolistic transformation of Scoparia dulcis L.

    PubMed

    Srinivas, Kota; Muralikrishna, Narra; Kumar, Kalva Bharath; Raghu, Ellendula; Mahender, Aileni; Kiranmayee, Kasula; Yashodahara, Velivela; Sadanandam, Abbagani

    2016-01-01

    Here, we report for the first time, the optimized conditions for microprojectile bombardment-mediated genetic transformation in Vassourinha (Scoparia dulcis L.), a Plantaginaceae medicinal plant species. Transformation was achieved by bombardment of axenic leaf segments with Binary vector pBI121 harbouring β-glucuronidase gene (GUS) as a reporter and neomycin phosphotransferase II gene (npt II) as a selectable marker. The influence of physical parameters viz., acceleration pressure, flight distance, gap width & macroprojectile travel distance of particle gun on frequency of transient GUS and stable (survival of putative transformants) expressions have been investigated. Biolistic delivery of the pBI121 yielded the best (80.0 %) transient expression of GUS gene bombarded at a flight distance of 6 cm and rupture disc pressure/acceleration pressure of 650 psi. Highest stable expression of 52.0 % was noticed in putative transformants on RMBI-K medium. Integration of GUS and npt II genes in the nuclear genome was confirmed through primer specific PCR. DNA blot analysis showed more than one transgene copy in the transformed plantlet genomes. The present study may be used for metabolic engineering and production of biopharmaceuticals by transplastomic technology in this valuable medicinal plant.

  17. Translation of vph mRNA in Streptomyces lividans and Escherichia coli after removal of the 5' untranslated leader.

    PubMed

    Wu, C J; Janssen, G R

    1996-10-01

    The Streptomyces vinaceus viomycin phosphotransferase (vph) mRNA contains an untranslated leader with a conventional Shine-Dalgarno homology. The vph leader was removed by ligation of the vph coding sequence to the transcriptional start site of a Streptomyces or an Escherichia coli promoter, such that transcription would initiate at the first position of the vph start codon. Analysis of mRNA demonstrated that transcription initiated primarily at the A of the vph AUG translational start codon in both Streptomyces lividans and E. coli; cells expressing the unleadered vph mRNA were resistant to viomycin indicating that the Shine-Dalgarno sequence, or other features contained within the leader, was not necessary for vph translation. Addition of four nucleotides (5'-AUGC-3') onto the 5' end of the unleadered vph mRNA resulted in translation initiation from the vph start codon and the AUG triplet contained within the added sequence. Translational fusions of vph sequence to a Tn5 neo reporter gene indicated that the first 16 codons of vph coding sequence were sufficient to specify the translational start site and reading frame for expression of neomycin resistance in both E. coli and S. lividans.

  18. Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.).

    PubMed

    Cui, Cuiju; Song, Fei; Tan, Yi; Zhou, Xuan; Zhao, Wen; Ma, Fengyun; Liu, Yunyi; Hussain, Javeed; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2011-04-01

    Chloroplast transformation in wheat was achieved by bombardment of scutella from immature embryos and immature inflorescences, respectively. A wheat chloroplast site-specific expression vector, pBAGNRK, was constructed by placing an expression cassette containing neomycin phosphotransferase II (nptII) and green fluorescent protein (gfp) as selection and reporter genes, respectively, in the intergenic spacer between atpB and rbcL of wheat chloroplast genome. Integration of gfp gene in the plastome was identified by polymerase chain reaction (PCR) analysis and Southern blotting using gfp gene as a probe. Expression of GFP protein was examined by western blot. Three positive transformants were obtained and the Southern blot of partial fragment of atpB and rbcL (targeting site) probes verified that one of them was homoplasmic. Stable expression of GFP fluorescence was confirmed by confocal microscopy in the leaf tissues from T(1) progeny seedlings. PCR analysis of gfp gene also confirmed the inheritance of transgene in the T(1) progeny. These results strengthen the feasibility of wheat chloroplast transformation and also give a novel method for the introduction of important agronomic traits in wheat through chloroplast transformation.

  19. A new high-frequency Agrobacterium-mediated transformation technique for Sesamum indicum L. using de-embryonated cotyledon as explant.

    PubMed

    Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha

    2014-09-01

    In spite of the economic importance of sesame (Sesamum indicum L.) and the recent availability of its genome sequence, a high-frequency transformation protocol is still not available. The only two existing Agrobacterium-mediated transformation protocols that are available have poor transformation efficiencies of less than 2%. In the present study, we report a high-frequency, simple, and reproducible transformation protocol for sesame. Transformation was done using de-embryonated cotyledons via somatic embryogenic stages. All the critical parameters of transformation, like incubation period of explants in pre-regeneration medium prior to infection by Agrobacterium tumefaciens, cocultivation period, concentrations of acetosyringone in cocultivation medium, kanamycin concentration, and concentration of plant hormones, including 6-benzylaminopurine, have been optimized. This protocol is superior to the two existing protocols in its high regeneration and transformation efficiencies. The transformed sesame lines have been tested by PCR, RT-PCR for neomycin phosphotransferase II gene expression, and β-glucuronidase (GUS) assay. The regeneration frequency and transformation efficiency are 57.33 and 42.66%, respectively. T0 and T1 generation transgenic plants were analyzed, and several T1 plants homozygous for the transgenes were obtained.

  20. Apoptotic cell death through inhibition of protein kinase CKII activity by 3,4-dihydroxybenzaldehyde purified from Xanthium strumarium.

    PubMed

    Lee, Bang Hyo; Yoon, Soo-Hyun; Kim, Yun-Sook; Kim, Sang Kook; Moon, Byong Jo; Bae, Young-Seuk

    2008-01-01

    The CKII inhibitory compound was purified from the fruit of Xanthium strumarium by organic solvent extraction and silica gel chromatography. The inhibitory compound was identified as 3,4-dihydroxybenzaldehyde by analysis with FT-IR, FAB-Mass, EI-Mass, (1)H-NMR and (13)C-NMR. 3,4-dihydroxybenzaldehyde inhibited the phosphotransferase activity of CKII with IC(50) of about 783 microM. Steady-state studies revealed that the inhibitor acts as a competitive inhibitor with respect to the substrate ATP. A value of 138.6 microM was obtained for the apparent K(i). Concentration of 300 microM 3,4-dihydroxybenzaldehyde caused 50% growth inhibition of human cancer cell U937. 3,4-dihydroxybenzaldehyde-induced cell death was characterised with the cleavage of poly(ADP-ribose) polymerase and procaspase-3. Furthermore, the inhibitor induced the fragmentation of DNA into multiples of 180 bp, indicating that it triggered apoptosis. This induction of apoptosis by 3,4-dihydroxybenzaldehyde was also confirmed by using flow cytometry analysis. Since CKII is involved in cell proliferation and oncogenesis, these results suggest that 3,4-dihydroxybenzaldehyde may function by inhibiting oncogenic disease, at least in part, through the inhibition of CKII activity.

  1. Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-beta-galactosidase gene lacG.

    PubMed

    Takala, T M; Saris, P E J; Tynkkynen, S S H

    2003-01-01

    A new food-grade host/vector system for Lactobacillus casei based on lactose selection was constructed. The wild-type non-starter host Lb. casei strain E utilizes lactose via a plasmid-encoded phosphotransferase system. For food-grade cloning, a stable lactose-deficient mutant was constructed by deleting a 141-bp fragment from the phospho-beta-galactosidase gene lacG via gene replacement. The deletion resulted in an inactive phospho-beta-galactosidase enzyme with an internal in-frame deletion of 47 amino acids. A complementation plasmid was constructed containing a replicon from Lactococcus lactis, the lacG gene from Lb. casei, and the constitutive promoter of pepR for lacG expression from Lb. rhamnosus. The expression of the lacG gene from the resulting food-grade plasmid pLEB600 restored the ability of the lactose-negative mutant strain to grow on lactose to the wild-type level. The vector pLEB600 was used for expression of the proline iminopeptidase gene pepI from Lb. helveticus in Lb. casei. The results show that the food-grade expression system reported in this paper can be used for expression of foreign genes in Lb. casei.

  2. 3′-NADP and 3′-NAADP, Two Metabolites Formed by the Bacterial Type III Effector AvrRxo1*♦

    PubMed Central

    Schuebel, Felix; Rocker, Andrea; Edelmann, Daniel; Schessner, Julia; Brieke, Clara; Meinhart, Anton

    2016-01-01

    An arsenal of effector proteins is injected by bacterial pathogens into the host cell or its vicinity to increase virulence. The commonly used top-down approaches inferring the toxic mechanism of individual effector proteins from the host's phenotype are often impeded by multiple targets of different effectors as well as by their pleiotropic effects. Here we describe our bottom-up approach, showing that the bacterial type III effector AvrRxo1 of plant pathogens is an authentic phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3′-hydroxyl group. Both products of AvrRxo1, 3′-NADP and 3′-nicotinic acid adenine dinucleotide phosphate (3′-NAADP), are substantially different from the ubiquitous co-enzyme 2′-NADP and the calcium mobilizer 2′-NAADP. Interestingly, 3′-NADP and 3′-NAADP have previously been used as inhibitors or signaling molecules but were regarded as “artificial” compounds so far. Our findings now necessitate a shift in thinking about the biological importance of 3′-phosphorylated NAD derivatives. PMID:27621317

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iain; Rodriquez, Jason; Susanti, Dwi

    We report the complete genome of Thermofilum pendens, a deep-branching member of class Thermoproteales of Crenarchaeota. T. pendens is a sulfur-dependent, anaerobic heterotroph isolated from a solfatara in Iceland. It was known to utilize peptides as an energy source, but the genome reveals substantial ability to grow on carbohydrates. T. pendens is the first Crenarchaeote and only the second archaeon found to have transporters of the phosphotransferase system. T. pendens is known to require an extract of Thermoproteus tenax for growth, and the genome sequence reveals that biosynthetic pathways for purines, most amino acids, and most cofactors are absent. T.more » pendens has fewer biosynthetic enzymes than any other free-living organism. In addition to heterotrophy, T. pendens may gain energy from sulfur reduction with hydrogen and formate as electron donors. It may also be capable of sulfur-independent growth on formate with formate hydrogenlyase. Additional novel features are the presence of a monomethylamine:corrinoid methyltransferase, the first time this enzyme has been found outside of Methanosarcinales, and a presenilin-related protein from a new subfamily. Predicted highly expressed proteins include ABC transporters for carbohydrates and peptides, and CRISPR-associated proteins, suggesting that defense against viruses is a high priority.« less

  4. Characterization of a Multiresistant Mosaic Plasmid from a Fish Farm Sediment Exiguobacterium sp. Isolate Reveals Aggregation of Functional Clinic-Associated Antibiotic Resistance Genes

    PubMed Central

    Yang, Jing; Wang, Chao; Wu, Jinyu; Liu, Li; Zhang, Gang

    2014-01-01

    The genus Exiguobacterium can adapt readily to, and survive in, diverse environments. Our study demonstrated that Exiguobacterium sp. strain S3-2, isolated from marine sediment, is resistant to five antibiotics. The plasmid pMC1 in this strain carries seven putative resistance genes. We functionally characterized these resistance genes in Escherichia coli, and genes encoding dihydrofolate reductase and macrolide phosphotransferase were considered novel resistance genes based on their low similarities to known resistance genes. The plasmid G+C content distribution was highly heterogeneous. Only the G+C content of one block, which shared significant similarity with a plasmid from Exiguobacterium arabatum, fit well with the mean G+C content of the host. The remainder of the plasmid was composed of mobile elements with a markedly lower G+C ratio than the host. Interestingly, five mobile elements located on pMC1 showed significant similarities to sequences found in pathogens. Our data provided an example of the link between resistance genes in strains from the environment and the clinic and revealed the aggregation of antibiotic resistance genes in bacteria isolated from fish farms. PMID:24362420

  5. Efficient transformation and expression of gfp gene in Valsa mali var. mali.

    PubMed

    Chen, Liang; Sun, Gengwu; Wu, Shujing; Liu, Huixiang; Wang, Hongkai

    2015-01-01

    Valsa mali var. mali, the causal agent of valsa canker of apple, causes great loss of apple production in apple producing regions. The pathogenic mechanism of the pathogen has not been studied extensively, thus a suitable gene marker for pathogenic invasion analysis and a random insertion of T-DNA for mutants are desirable. In this paper, we reported the construction of a binary vector pKO1-HPH containing a positive selective gene hygromycin phosphotransferase (hph), a reporter gene gfp conferring green fluorescent protein, and an efficient protocol for V. mali var. mali transformation mediated by Agrobacterium tumefaciens. A transformation efficiency up to about 75 transformants per 10(5) conidia was achieved when co-cultivation of V. mali var. mali and A. tumefaciens for 48 h in A. tumefaciens inductive medium agar plates. The insertions of hph gene and gfp gene into V. mali var. mali genome verified by polymerase chain reaction and southern blot analysis showed that 10 randomly-selected transformants exhibited a single, unique hybridization pattern. This is the first report of A. tumefaciens-mediated transformation of V. mali var mali carrying a 'reporter' gfp gene that stably and efficiently expressed in the transformed V. mali var. mali species.

  6. A majority of mice show long-term expression of a human. beta. -globin gene after retrovirus transfer into hematopoietic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, M.A.; Gelinas, R.E.; Miller

    1989-04-01

    Murine bone marrow was infected with a high-titer retrovirus vector containing the human {beta}-globin and neomycin phosphotransferase genes. Anemic W/W/sup v/ mice were transplanted with infected marrow which in some cases had been exposed to the selective agent G418. Human {beta}-globin expression was monitored in transplanted animals by using a monoclonal antibody specific for human {beta}-globin polypeptide, and hematopoietic reconstitution was monitored by using donor and recipient mice which differed in hemoglobin type. In some experiments all transplanted mice expressed the human {beta}-globin polypeptide for over 4 months, and up to 50% of peripheral erythrocytes contained detectable levels of polypeptide.more » DNA analysis of transplanted animals revealed that virtually every myeloid cell contained a provirus. Integration site analysis and reconstitution of secondary marrow recipients suggested that every mouse was reconstituted with at least one infected stem cell which had extensive repopulation capability. The ability to consistently transfer an active {beta}-globin gene into mouse hematopoietic cells improves the feasibility of using these techniques for somatic cell gene therapy in humans.« less

  7. Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology.

    PubMed

    Ishizaki, Kimitsune; Chiyoda, Shota; Yamato, Katsuyuki T; Kohchi, Takayuki

    2008-07-01

    Agrobacterium-mediated transformation has not been practical in pteridophytes, bryophytes and algae to date, although it is commonly used in model plants including Arabidopsis and rice. Here we present a rapid Agrobacterium-mediated transformation system for the haploid liverwort Marchantia polymorpha L. using immature thalli developed from spores. Hundreds of hygromycin-resistant plants per sporangium were obtained by co-cultivation of immature thalli with Agrobacterium carrying the binary vector that contains a reporter, the beta-glucuronidase (GUS) gene with an intron, and a selection marker, the hygromycin phosphotransferase (hpt) gene. In this system, individual gemmae, which arise asexually from single initial cells, were analyzed as isogenic transformants. GUS activity staining showed that all hygromycin-resistant plants examined expressed the GUS transgene in planta. DNA analyses verified random integration of 1-5 copies of the intact T-DNA between the right and the left borders into the M. polymorpha genome. The efficient and rapid Agrobacterium-mediated transformation of M. polymorpha should provide molecular techniques to facilitate comparative genomics, taking advantage of this unique model plant that retains many features of the common ancestor of land plants.

  8. Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury.

    PubMed

    Lyyra, Satu; Meagher, Richard B; Kim, Tehryung; Heaton, Andrew; Montello, Paul; Balish, Rebecca S; Merkle, Scott A

    2007-03-01

    Eastern cottonwood (Populus deltoides Bartr. ex Marsh.) trees were engineered to express merA (mercuric ion reductase) and merB (organomercury lyase) transgenes in order to be used for the phytoremediation of mercury-contaminated soils. Earlier studies with Arabidopsis thaliana and Nicotiana tabacum showed that this gene combination resulted in more efficient detoxification of organomercurial compounds than did merB alone, but neither species is optimal for long-term field applications. Leaf discs from in vitro-grown merA, nptII (neomycin phosphotransferase) transgenic cottonwood plantlets were inoculated with Agrobacterium tumefaciens strain C58 carrying the merB and hygromycin resistance (hptII) genes. Polymerase chain reaction of shoots regenerated from the leaf discs under selection indicated an overall transformation frequency of 20%. Western blotting of leaves showed that MerA and MerB proteins were produced. In vitro-grown merA/merB plants were highly resistant to phenylmercuric acetate, and detoxified organic mercury compounds two to three times more rapidly than did controls, as shown by mercury volatilization assay. This indicates that these cottonwood trees are reasonable candidates for the remediation of organomercury-contaminated sites.

  9. Determination of L1 retrotransposition kinetics in cultured cells

    PubMed Central

    Ostertag, Eric M.; Luning Prak, Eline T.; DeBerardinis, Ralph J.; Moran, John V.; Kazazian, Haig H.

    2000-01-01

    L1 retrotransposons are autonomous retroelements that are active in the human and mouse genomes. Previously, we developed a cultured cell assay that uses a neomycin phosphotransferase (neo) retrotransposition cassette to determine relative retrotransposition frequencies among various L1 elements. Here, we describe a new retrotransposition assay that uses an enhanced green fluorescent protein (EGFP) retrotransposition cassette to determine retrotransposition kinetics in cultured cells. We show that retrotransposition is not detected in cultured cells during the first 48 h post-transfection, but then proceeds at a continuous high rate for at least 16 days. We also determine the relative retrotransposition rates of two similar human L1 retrotransposons, L1RP and L1.3. L1RP retrotransposed in the EGFP assay at a rate of ~0.5% of transfected cells/day, ~3-fold higher than the rate measured for L1.3. We conclude that the new assay detects near real time retrotransposition in a single cell and is sufficiently sensitive to differentiate retrotransposition rates among similar L1 elements. The EGFP assay exhibits improved speed and accuracy compared to the previous assay when used to determine relative retrotransposition frequencies. Furthermore, the EGFP cassette has an expanded range of experimental applications. PMID:10684937

  10. Agrobacterium tumefasciens-mediated transformation of the aquatic fungus Blastocladiella emersonii.

    PubMed

    Vieira, André L G; Camilo, César M

    2011-08-01

    Agrobacterium tumefaciens is widely used for plant DNA transformation and more recently, has also been used to transform yeast, filamentous fungi and even human cells. Using this technique, we developed the first transformation protocol for the saprobic aquatic fungus Blastocladiella emersonii, a Blastocladiomycete localized at the base of fungal phylogenetic tree, which has been shown as a promising and interesting model of study of cellular function and differentiation. We constructed binary T-DNA vectors containing hygromycin phosphotransferase (hph) or enhanced green fluorescent protein (egfp) genes, under the control of Aspergillus nidulans trpC promoter and terminator sequences. 24 h of co-cultivation in induction medium (IM) agar plates, followed by transfer to PYG-agar plates containing cefotaxim to kill Agrobacterium tumefsciens and hygromycin to select transformants, resulted in growth and sporulation of resistant transformants. Genomic DNA from the pool o resistant zoospores were shown to contain T-DNA insertion as evidenced by PCR amplification of hph gene. Using a similar protocol we could also evidence the expression of enhanced green fluorescent protein (EGFP) in zoospores derived from transformed cells. This protocol can also open new perspectives for other non-transformable closely related fungi, like the Chytridiomycete class. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Stable transformation of rice (Oryza sativa L.) via microprojectile bombardment of highly regenerative, green tissues derived from mature seed.

    PubMed

    Cho, M-J; Yano, H; Okamoto, D; Kim, H-K; Jung, H-R; Newcomb, K; Le, V K; Yoo, H S; Langham, R; Buchanan, B B; Lemaux, P G

    2004-02-01

    A highly efficient and reproducible transformation system for rice ( Oryza sativa L. cv. Taipei 309) was developed using microprojectile bombardment of highly regenerative, green tissues. These tissues were induced from mature seeds on NB-based medium containing 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP) and high concentrations of cupric sulfate under dim light conditions; germinating shoots and roots were completely removed. Highly regenerative, green tissues were proliferated on the same medium and used as transformation targets. From 431 explants bombarded with transgenes [i.e. a hygromycin phosphotransferase ( hpt) gene plus one of a wheat thioredoxin h ( wtrxh), a barley NADP-thioredoxin reductase ( bntr), a maize Mutator transposable element ( mudrB) or beta-glucuronidase ( uidA; gus) gene], 28 independent transgenic events were obtained after an 8- to 12-week selection period, giving a 6.5% transformation frequency. Of the 28 independent events, 17 (61%) were regenerable. Co-transformation of the second introduced transgene was detected in 81% of the transgenic lines tested. Stable integration and expression of the foreign genes in T(0) plants and T(1) progeny were confirmed by DNA hybridization, western blot analyses and germination tests.

  12. Effect of Xylitol on Growth of Streptococcus pneumoniae in the Presence of Fructose and Sorbitol

    PubMed Central

    Tapiainen, Terhi; Kontiokari, Tero; Sammalkivi, Laura; Ikäheimo, Irma; Koskela, Markku; Uhari, Matti

    2001-01-01

    Xylitol is effective in preventing acute otitis media by inhibiting the growth of Streptococcus pneumoniae. To clarify this inhibition we used fructose, which is known to block similar growth inhibition observed in Streptococcus mutans. In addition, we evaluated the efficacy of sorbitol in inhibiting the growth of pneumococci, as sorbitol is widely used for indications similar to those for which xylitol is used. The addition of 5% xylitol to the growth medium resulted in marked growth inhibition, an effect which was totally eliminated in the presence of 1, 2.5, or 5% fructose but not in the presence of 1 or 5% glucose, 1% galactose, or 1% sucrose. This finding implies that xylitol-induced inhibition of pneumococcal growth is mediated via the fructose phosphotransferase system in a way similar to that in which mutans group streptococcal growth is inhibited. The addition of sorbitol at concentrations of 1, 2.5, or 5% to the growth medium did not affect the growth of pneumococci and neither inhibited nor enhanced the xylitol-induced growth impairment. Thus, it seems that xylitol is the only commercially used sugar substitute proven to have an antimicrobial effect on pneumococci. PMID:11120960

  13. Overproduction of recombinant laccase using a homologous expression system in Coriolus versicolor.

    PubMed

    Kajita, Shinya; Sugawara, Shinsuke; Miyazaki, Yasumasa; Nakamura, Masaya; Katayama, Yoshihiro; Shishido, Kazuo; Iimura, Yosuke

    2004-12-01

    One of the major extracellular enzymes of the white-rot fungus Coriolus versicolor is laccase, which is involved in the degradation of lignin. We constructed a homologous system for the expression of a gene for laccase III (cvl3) in C. versicolor, using a chimeric laccase gene driven by the promoter of a gene for glyceraldehyde-3-phosphate dehydrogenase (gpd) from this fungus. We transformed C. versicolor successfully by introducing both a gene for hygromycin B phosphotransferase (hph) and the chimeric laccase gene. In three independent experiments, we recovered 47 hygromycin-resistant transformants at a transformation frequency of 13 transformants microg(-1) of plasmid DNA. We confirmed the introduction of the chimeric laccase gene into the mycelia of transformants by a polymerase chain reaction in nine randomly selected transformants. Overproduction of extracellular laccase by the transformants was revealed by a colorimetric assay for laccase activity. We examined the transformant (T2) that had the highest laccase activity and found that its activity was significantly higher than that of the wild type, particularly in the presence of copper (II). Our transformation system should contribute to the efficient production of the extracellular proteins of C. versicolor for the accelerated degradation of lignin and aromatic pollutants.

  14. Arginine kinase in Phytomonas, a trypanosomatid parasite of plants.

    PubMed

    Canepa, Gaspar E; Carrillo, Carolina; Miranda, Mariana R; Sayé, Melisa; Pereira, Claudio A

    2011-09-01

    Phytomonas are trypanosomatid plant parasites closely related to parasites that cause several human diseases. Little is known about the biology of these organisms including aspects of their metabolism. Arginine kinase (E.C. 2.7.3.3) is a phosphotransferase which catalyzes the interconversion between the phosphagen phosphoarginine and ATP. This enzyme is present in some invertebrates and is a homolog of another widely distributed phosphosphagen kinase, creatine kinase. In this work, a single canonical arginine kinase isoform was detected in Phytomonas Jma by enzymatic activity assays, PCR, and Western Blot. This arginine kinase is very similar to the canonical isoforms found in T. cruzi and T. brucei, presenting about 70% of amino acid sequence identity and a very similar molecular weight (40kDa). The Phytomonas phosphagen system seems to be very similar to T. cruzi, which has only one isoform, or T. brucei (three isoforms); establishing a difference with other trypanosomatids, such as Leishmania, which completely lacks phosphagen kinases, probably by the presence of the arginine-consuming enzyme, arginase. Finally, phylogenetic analysis suggests that Kinetoplastids' arginine kinase was acquired, during evolution, from the arthropod vectors by horizontal gene transfer. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. A systematic survey of lipids across mouse tissues

    PubMed Central

    Jain, Mohit; Ngoy, Soeun; Sheth, Sunil A.; Swanson, Raymond A.; Rhee, Eugene P.; Liao, Ronglih; Clish, Clary B.; Mootha, Vamsi K.

    2014-01-01

    Lipids are a diverse collection of macromolecules essential for normal physiology, but the tissue distribution and function for many individual lipid species remain unclear. Here, we report a mass spectrometry survey of lipid abundance across 18 mouse tissues, detecting ∼1,000 mass spectrometry features, of which we identify 179 lipids from the glycerolipids, glycerophospholipids, lysophospholipids, acylcarnitines, sphingolipids, and cholesteryl ester classes. Our data reveal tissue-specific organization of lipids and can be used to generate testable hypotheses. For example, our data indicate that circulating triglycerides positively and negatively associated with future diabetes in humans are enriched in mouse adipose tissue and liver, respectively, raising hypotheses regarding the tissue origins of these diabetes-associated lipids. We also integrate our tissue lipid data with gene expression profiles to predict a number of substrates of lipid-metabolizing enzymes, highlighting choline phosphotransferases and sterol O-acyltransferases. Finally, we identify several tissue-specific lipids not present in plasma under normal conditions that may be of interest as biomarkers of tissue injury, and we show that two of these lipids are released into blood following ischemic brain injury in mice. This resource complements existing compendia of tissue gene expression and may be useful for integrative physiology and lipid biology. PMID:24518676

  16. Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micronaire value in cotton

    PubMed Central

    Bajwa, Kamran S.; Shahid, Ahmad A.; Rao, Abdul Q.; Bashir, Aftab; Aftab, Asia; Husnain, Tayyab

    2015-01-01

    Cotton fiber is multigenic trait controlled by number of genes. Previous studies suggest that one of these genes may be responsible for switching cotton fiber growth on and off to influence the fiber quality produced from a cotton seed. In the present study, the Gossypium hirsutum GhEXPA8 fiber expansin gene was introduced into local cotton variety NIAB 846 by using an Agrobacterium-mediated gene transformation. The neomycin phosphotransferase (NPTII) gene was used as a selection marker for screening of putative transgenic cotton plants. Integration and expression of the fiber expansin gene in cotton plants was confirmed with molecular techniques including Southern blot analyses, real-time PCR. Cellulose assay was used for measurement of cellulose contents of transgenic cotton fiber. The data collected from 3 years of field performance of the transgenic cotton plants expressing GhEXPA8 showed that significant improvement has been made in fiber lengths and micronaire values as compared to control G. hirsutum variety NIAB 846 cotton plants. Statistical techniques were also used for analysis of fiber and agronomic characteristics. The results of this study support improvement of cotton fiber through genetic modification. PMID:26583018

  17. Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis.

    PubMed

    Oh, Euhlim; Lu, Mingshou; Park, Changhun; Park, Changhun; Oh, Han Bin; Lee, Sang Yup; Lee, Jinwon

    2011-02-01

    A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/ MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

  18. Quantitative determination of creatine kinase release from herring (Clupea harengus) spermatozoa induced by tributyltin.

    PubMed

    Grzyb, Katarzyna; Rychłowski, Michał; Biegniewska, Anna; Skorkowski, Edward F

    2003-02-01

    Creatine kinase (CK, ATP creatine phosphotransferase, EC 2.7.3.2) is an enzyme participating in ATP regeneration, which is the primary source of energy in living organisms. We demonstrated that CK from herring spermatozoa has high activity ( approximately 452 micromol/min/g of fresh semen) and has a different electrophoretic mobility from isoenzymes present in skeletal muscle. In our study, we investigated toxic effect of tributyltin (TBT) on herring spermatozoa using a specific sperm viability kit to observe live and dead sperm cells with a confocal microscope. Treatment of herring spermatozoa with TBT caused a time-dependent decrease of viability: 35% nonviable cells with 5 microM TBT and more than 90% nonviable cells with 10 microM TBT after 6 h exposure. We also monitored CK release from damaged spermatozoa into surrounding medium containing different concentrations of TBT. The higher concentration of TBT was used the more CK release from spermatozoa was observed. We suggest that CK could be a good biomarker of sperm cell membranes degradation in the case when lactate dehydrogenase release from permeabilized cells is not possible for rapid determination of the effect of TBT.

  19. Rsd balances (p)ppGpp level by stimulating the hydrolase activity of SpoT during carbon source downshift in Escherichia coli.

    PubMed

    Lee, Jae-Woo; Park, Young-Ha; Seok, Yeong-Jae

    2018-06-18

    Bacteria respond to nutritional stresses by changing the cellular concentration of the alarmone (p)ppGpp. This control mechanism, called the stringent response, depends on two enzymes, the (p)ppGpp synthetase RelA and the bifunctional (p)ppGpp synthetase/hydrolase SpoT in Escherichia coli and related bacteria. Because SpoT is the only enzyme responsible for (p)ppGpp hydrolysis in these bacteria, SpoT activity needs to be tightly regulated to prevent the uncontrolled accumulation of (p)ppGpp, which is lethal. To date, however, no such regulation of SpoT (p)ppGpp hydrolase activity has been documented in E. coli In this study, we show that Rsd directly interacts with SpoT and stimulates its (p)ppGpp hydrolase activity. Dephosphorylated HPr, but not phosphorylated HPr, of the phosphoenolpyruvate-dependent sugar phosphotransferase system could antagonize the stimulatory effect of Rsd on SpoT (p)ppGpp hydrolase activity. Thus, we suggest that Rsd is a carbon source-dependent regulator of the stringent response in E. coli . Copyright © 2018 the Author(s). Published by PNAS.

  20. Streptococcus pneumoniae Can Utilize Multiple Sources of Hyaluronic Acid for Growth

    PubMed Central

    Marion, Carolyn; Stewart, Jason M.; Tazi, Mia F.; Burnaugh, Amanda M.; Linke, Caroline M.; Woodiga, Shireen A.

    2012-01-01

    The mechanisms by which Streptococcus pneumoniae obtains carbohydrates for growth during airway colonization remain to be elucidated. The low concentration of free carbohydrates in the normal human airway suggests that pneumococci must utilize complex glycan structures for growth. The glycosaminoglycan hyaluronic acid is present on the apical surface of airway epithelial cells. As pneumococci express a hyaluronate lyase (Hyl) that cleaves hyaluronic acid into disaccharides, we hypothesized that during colonization pneumococci utilize the released carbohydrates for growth. Hyaluronic acid supported significant pneumococcal growth in an hyl-dependent manner. A phosphoenolpyruvate-dependent phosphotransferase system (PTS) and an unsaturated glucuronyl hydrolase (Ugl) encoded downstream of hyl are also essential for growth on hyaluronic acid. This genomic arrangement is present in several other organisms, suggesting conservation of the utilization mechanism between species. In vivo experiments support the hypothesis that S. pneumoniae utilizes hyaluronic acid as a carbon source during colonization. We also demonstrate that pneumococci can utilize the hyaluronic acid capsule of other bacterial species for growth, suggesting an alternative carbohydrate source for pneumococcal growth. Together, these data support a novel function for pneumococcal degradation of hyaluronic acid in vivo and provide mechanistic details of growth on this glycosaminoglycan. PMID:22311922

  1. CDP-Diacylglycerol Synthetase Coordinates Cell Growth and Fat Storage through Phosphatidylinositol Metabolism and the Insulin Pathway

    PubMed Central

    Liu, Yuan; Wang, Wei; Shui, Guanghou; Huang, Xun

    2014-01-01

    During development, animals usually undergo a rapid growth phase followed by a homeostatic stage when growth has ceased. The increase in cell size and number during the growth phase requires a large amount of lipids; while in the static state, excess lipids are usually stored in adipose tissues in preparation for nutrient-limited conditions. How cells coordinate growth and fat storage is not fully understood. Through a genetic screen we identified Drosophila melanogaster CDP-diacylglycerol synthetase (CDS/CdsA), which diverts phosphatidic acid from triacylglycerol synthesis to phosphatidylinositol (PI) synthesis and coordinates cell growth and fat storage. Loss of CdsA function causes significant accumulation of neutral lipids in many tissues along with reduced cell/organ size. These phenotypes can be traced back to reduced PI levels and, subsequently, low insulin pathway activity. Overexpressing CdsA rescues the fat storage and cell growth phenotypes of insulin pathway mutants, suggesting that CdsA coordinates cell/tissue growth and lipid storage through the insulin pathway. We also revealed that a DAG-to-PE route mediated by the choline/ethanolamine phosphotransferase Bbc may contribute to the growth of fat cells in CdsA RNAi. PMID:24603715

  2. Suppression of phytohemagglutinin-induction of thymidine uptake in guinea pig lymphocytes by methylglyoxal bis(guanylhydrazone) treatment.

    PubMed

    Otani, S; Matsui, I; Morisawa, S

    1977-10-18

    Treatment with methylglyoxal bis(guanylhydrazone), a specific inhibitor of S-adenosylmethionine decarboxylase (EC 4.1.1.50), suppressed the phytohemagglutinin-induction of [3H]thymidine uptake by guinea pig lymphocytes. The kinetics of [3H]thymidine uptake revealed that the Km value for thymidine was not changed, but the V value was markedly lowered by the methylglyoxal bis(guanylhydrazone) treatment. The induction of ATP: thymidine 5'-phosphotransferase (EC 2.7.1.75) (thymidine kinase) activity by phytohemagglutinin was suppressed to about the same extent as the induction of thymidine uptake. These suppressions were dependent on the methylglyoxal bis(guanylhydrazone) doses and on duration of the methylglyoxal bis(guanylhydrazone) treatment. Analysis of [3H]thymidine labelled compounds of the acid-soluble fraction showed that conversion of thymidine to thymidine 5'-triphosphate was inhibited by the methylglyoxal bis(guanylhydrazone) treatment. DNA polymerase activity was less inhibited by the methylglyoxal bis(guanylhydrazone) treatment in comparison with the methylglyoxal bis(guanylhydrazone) inhibition of thymidine uptake by whole cells. These results strongly suggested that blocking of polyamine accumulation by the methylglyoxal bis(guanylhydrazone) treatment influenced phytohemagglutinin induction of thymidine phosphorylation, resulting in a decrease of thymidine incorporation into DNA.

  3. Marker-free transgenic (MFT) near-isogenic introgression lines (NIILs) of 'golden' indica rice (cv. IR64) with accumulation of provitamin A in the endosperm tissue.

    PubMed

    Baisakh, Niranjan; Rehana, Sayda; Rai, Mayank; Oliva, Norman; Tan, Jing; Mackill, David J; Khush, Gurdev S; Datta, Karabi; Datta, Swapan K

    2006-07-01

    We have developed near-isogenic introgression lines (NIILs) of an elite indica rice cultivar (IR64) with the genes for beta-carotene biosynthesis from dihaploid (DH) derivatives of golden japonica rice (cv. T309). A careful analysis of the DH lines indicated the integration of the genes of interest [phytoene synthase (psy) and phytoene desaturase (crtI)] and the selectable marker gene (hygromycin phosphotransferase, hph) in two unlinked loci. During subsequent crossing, progenies could be obtained carrying only the locus with psy and crtI, which was segregated independently from the locus containing the hph gene during meiotic segregation. The NIILs (BC(2)F(2)) showed maximum similarity with the recurrent parent cultivar IR64. Further, progenies of two NIILs were devoid of any fragments beyond the left or right border, including the chloramphenicol acetyltransferase (cat) antibiotic resistance gene of the transformation vector. Spectrophotometric readings showed the accumulation of up to 1.06 microg total carotenoids, including beta-carotene, in 1 g of the endosperm. The accumulation of beta-carotene was also evident from the clearly visible yellow colour of the polished seeds.

  4. Expression of PAT and NPT II proteins during the developmental stages of a genetically modified pepper developed in Korea.

    PubMed

    Kim, Hyo Jin; Lee, Si Myung; Kim, Jae Kwang; Ryu, Tae Hun; Suh, Seok Cheol; Cho, Hyun Suk

    2010-10-27

    Estimation of the protein levels introduced in a biotechnology-derived product is conducted as part of an overall safety assessment. An enzyme-linked immunosorbent assay (ELISA) was used to analyze phosphinothricin acetyltransferase (PAT) and neomycin phosphotransferase II (NPT II) protein expression in a genetically modified (GM) pepper plant developed in Korea. PAT and NPT II expression levels, based on both dry weight and fresh weight, were variable among different plant generations and plant sections from isolated genetically modified organism (GMO) fields at four developmental stages. PAT expression was highest in leaves at anthesis (11.44 μg/gdw and 2.17 μg/gfw) and lowest in roots (0.12 μg/gdw and 0.01 μg/gfw). NPT II expression was also highest in leaves at anthesis (17.31 μg/gdw and 3.41 μg/gfw) and lowest in red pepper (0.65 μg/gdw and 0.12 μg/gfw). In pollen, PAT expression was 0.59-0.62 μg/gdw, while NPT II was not detected. Both PAT and NPT II showed a general pattern of decreased expression with progression of the growing season. As expected, PAT and NPT II protein expression was not detectable in control pepper plants.

  5. Comparative genomics of Fructobacillus spp. and Leuconostoc spp. reveals niche-specific evolution of Fructobacillus spp.

    DOE PAGES

    Endo, Akihito; Tanizawa, Yasuhiro; Tanaka, Naoto; ...

    2015-12-29

    In this study, Fructobacillus spp. in fructose-rich niches belong to the family Leuconostocaceae. They were originally classified as Leuconostoc spp., but were later grouped into a novel genus, Fructobacillus , based on their phylogenetic position, morphology and specific biochemical characteristics. The unique characters, so called fructophilic characteristics, had not been reported in the group of lactic acid bacteria, suggesting unique evolution at the genome level. Here we studied four draft genome sequences of Fructobacillus spp. and compared their metabolic properties against those of Leuconostoc spp. As a result, Fructobacillus species possess significantly less protein coding sequences in their small genomes.more » The number of genes was significantly smaller in carbohydrate transport and metabolism. Several other metabolic pathways, including TCA cycle, ubiquinone and other terpenoid-quinone biosynthesis and phosphotransferase systems, were characterized as discriminative pathways between the two genera. The adhE gene for bifunctional acetaldehyde/alcohol dehydrogenase, and genes for subunits of the pyruvate dehydrogenase complex were absent in Fructobacillus spp. The two genera also show different levels of GC contents, which are mainly due to the different GC contents at the third codon position. In conclusion, the present genome characteristics in Fructobacillus spp. suggest reductive evolution that took place to adapt to specific niches.« less

  6. Hygromycin B-induced cell death is partly mediated by reactive oxygen species in rice (Oryza sativa L.).

    PubMed

    Oung, Hui-Min; Lin, Ke-Chun; Wu, Tsung-Meng; Chandrika, Nulu Naga Prafulla; Hong, Chwan-Yang

    2015-12-01

    The aminoglycoside antibiotic hygromycin B (Hyg) inhibits prokaryotic, chloroplast and mitochondrial protein synthesis. Because of the toxic effect of Hyg on plant cells, the HPT gene, encoding hygromycin phosphotransferase, has become one of the most widely used selectable markers in plant transformation. Yet the mechanism behind Hyg-induced cell lethality in plants is not clearly understood. In this study, we aimed to decipher this mechanism. With Hyg treatment, rice calli exhibited cell death, and rice seedlings showed severe growth defects, leaf chlorosis and leaf shrinkage. Rice seedlings also exhibited severe lipid peroxidation and protein carbonylation, for oxidative stress damage at the cellular level. The production of reactive oxygen species such as O2(·-), H2O2 and OH(·) was greatly induced in rice seedlings under Hyg stress, and pre-treatment with ascorbate increased resistance to Hyg-induced toxicity indicating the existence of oxidative stress. Overexpression of mitochondrial Alternative oxidase1a gene without HPT selection marker in rice enhanced tolerance to Hyg and attenuated the degradation of protein content, whereas the rice plastidial glutathione reductase 3 mutant showed increased sensitivity to Hyg. These results demonstrate that Hyg-induced cell lethality in rice is not only due to the inhibition of protein synthesis but also mediated by oxidative stress.

  7. Comparative genomics of Fructobacillus spp. and Leuconostoc spp. reveals niche-specific evolution of Fructobacillus spp.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endo, Akihito; Tanizawa, Yasuhiro; Tanaka, Naoto

    In this study, Fructobacillus spp. in fructose-rich niches belong to the family Leuconostocaceae. They were originally classified as Leuconostoc spp., but were later grouped into a novel genus, Fructobacillus , based on their phylogenetic position, morphology and specific biochemical characteristics. The unique characters, so called fructophilic characteristics, had not been reported in the group of lactic acid bacteria, suggesting unique evolution at the genome level. Here we studied four draft genome sequences of Fructobacillus spp. and compared their metabolic properties against those of Leuconostoc spp. As a result, Fructobacillus species possess significantly less protein coding sequences in their small genomes.more » The number of genes was significantly smaller in carbohydrate transport and metabolism. Several other metabolic pathways, including TCA cycle, ubiquinone and other terpenoid-quinone biosynthesis and phosphotransferase systems, were characterized as discriminative pathways between the two genera. The adhE gene for bifunctional acetaldehyde/alcohol dehydrogenase, and genes for subunits of the pyruvate dehydrogenase complex were absent in Fructobacillus spp. The two genera also show different levels of GC contents, which are mainly due to the different GC contents at the third codon position. In conclusion, the present genome characteristics in Fructobacillus spp. suggest reductive evolution that took place to adapt to specific niches.« less

  8. Transferring cucumber mosaic virus-white leaf strain coat protein gene into Cucumis melo L. and evaluating transgenic plants for protection against infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonsalves, C.; Xue, B.; Yepes, M.

    1994-03-01

    A single regeneration procedure using cotyledon examples effectively regenerated five commercially grown muskmelon cultivars. This regeneration scheme was used to facilitate gene transfers using either Agrobacterium tumefaciens or microprojectile bombardment methods. In both cases, the transferred genes were from the T-DNA region of the binary vector plasmid pGA482GG/cp cucumber mosaic virus-white leaf strain (CMV-WL), which contains genes that encode neomycin phosphotransferase II (NPT II), [beta]-glucuronidase (GUS), and the CMV-WL coat protein (CP). Explants treated with pGA482GG/cpCMV-WL regenerated shoots on Murashige and Skoog medium containing 4.4 [mu]m 6-benzylaminopurine (BA), kanamycin (Km) at 150 mg[center dot]liter[sup [minus]1] and carbenicillin (Cb) at 500more » mg[center dot]liter[sup [minus]1]. The authors' comparison of A. tumefaciens- and microprojectile-mediated gene transfer procedures shows that both methods effectively produce nearly the same percentage of transgenic plants. R[sub 0] plants were first tested for GUS or NPT II expression, then the polymerase chain reaction (PCR) and other tests were used to verify the transfer of the NPT II, GUS, and CMV-WL CP genes.« less

  9. Inactivation of the PTS as a Strategy to Engineer the Production of Aromatic Metabolites in Escherichia coli.

    PubMed

    Carmona, Susy Beatriz; Moreno, Fabián; Bolívar, Francisco; Gosset, Guillermo; Escalante, Adelfo

    2015-01-01

    Laboratory and industrial cultures of Escherichia coli employ media containing glucose which is mainly transported and phosphorylated by the phosphotransferase system (PTS). In these strains, 50% of the phosphoenolpyruvate (PEP), which results from the catabolism of transported glucose, is used as a phosphate donor for its phosphorylation and translocation by the PTS. This characteristic of the PTS limits the production of industrial biocommodities that have PEP as a precursor. Furthermore, when E. coli is exposed to carbohydrate mixtures, the PTS prevents expression of catabolic and non-PTS transport genes by carbon catabolite repression and inducer exclusion. In this contribution, we discuss the main strategies developed to overcome these potentially limiting effects in production strains. These strategies include adaptive laboratory evolution selection of PTS(-) Glc(+) mutants, followed by the generation of strains that recover their ability to grow with glucose as a carbon source while allowing the simultaneous consumption of more than one carbon source. We discuss the benefits of using alternative glucose transport systems and describe the application of these strategies to E. coli strains with specific genetic modifications in target pathways. These efforts have resulted in significant improvements in the production of diverse biocommodities, including aromatic metabolites, biofuels and organic acids. © 2015 S. Karger AG, Basel.

  10. Highly efficient transformation system for Malassezia furfur and Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation.

    PubMed

    Celis, A M; Vos, A M; Triana, S; Medina, C A; Escobar, N; Restrepo, S; Wösten, H A B; de Cock, H

    2017-03-01

    Malassezia spp. are part of the normal human and animal mycobiota but are also associated with a variety of dermatological diseases. The absence of a transformation system hampered studies to reveal mechanisms underlying the switch from the non-pathogenic to pathogenic life style. Here we describe, a highly efficient Agrobacterium-mediated genetic transformation system for Malassezia furfur and M. pachydermatis. A binary T-DNA vector with the hygromycin B phosphotransferase (hpt) selection marker and the green fluorescent protein gene (gfp) was introduced in M. furfur and M. pachydermatis by combining the transformation protocols of Agaricus bisporus and Cryptococcus neoformans. Optimal temperature and co-cultivation time for transformation were 5 and 7days at 19°C and 24°C, respectively. Transformation efficiency was 0.75-1.5% for M. furfur and 0.6-7.5% for M. pachydermatis. Integration of the hpt resistance cassette and gfp was verified using PCR and fluorescence microscopy, respectively. The T-DNA was mitotically stable in approximately 80% of the transformants after 10 times sub-culturing in the absence of hygromycin. Improving transformation protocols contribute to study the biology and pathophysiology of Malassezia. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Characterization of the Group A Streptococcus Mga Virulence Regulator Reveals a Role for the C-terminal Region in Oligomerization and Transcriptional Activation

    PubMed Central

    Hondorp, Elise R.; Hou, Sherry C.; Hempstead, Andrew D.; Hause, Lara L.; Beckett, Dorothy M.; McIver, Kevin S.

    2012-01-01

    The Group A Streptococcus (GAS) is a strict human pathogen that causes a broad spectrum of illnesses. One of the key regulators of virulence in GAS is the transcriptional activator Mga, which coordinates the early stages of infection. Although the targets of Mga have been well characterized, basic biochemical analyses have been limited due to difficulties in obtaining purified protein. In this study, high-level purification of soluble Mga was achieved, enabling the first detailed characterization of the protein. Fluorescence titrations coupled with filter-binding assays indicate that Mga binds cognate DNA with nanomolar affinity. Gel filtration analyses, analytical ultracentrifugation, and co-immunoprecipitation experiments demonstrate that Mga forms oligomers in solution. Moreover, the ability of the protein to oligomerize in solution was found to correlate with transcriptional activation; DNA binding appears to be necessary but insufficient for full activity. Truncation analyses reveal that the uncharacterized C-terminal region of Mga, possessing similarity to phosphotransferase system EIIB proteins, plays a critical role in oligomerization and in vivo activity. Mga from a divergent serotype was found to behave similarly, suggesting that this study describes a general mechanism for Mga regulation of target virulence genes within GAS and provides insight into related regulators in other Gram-positive pathogens. PMID:22468267

  12. Structure of mycobacterial maltokinase, the missing link in the essential GlgE-pathway.

    PubMed

    Fraga, Joana; Maranha, Ana; Mendes, Vitor; Pereira, Pedro José Barbosa; Empadinhas, Nuno; Macedo-Ribeiro, Sandra

    2015-01-26

    A novel four-step pathway identified recently in mycobacteria channels trehalose to glycogen synthesis and is also likely involved in the biosynthesis of two other crucial polymers: intracellular methylglucose lipopolysaccharides and exposed capsular glucan. The structures of three of the intervening enzymes - GlgB, GlgE, and TreS - were recently reported, providing the first templates for rational drug design. Here we describe the structural characterization of the fourth enzyme of the pathway, mycobacterial maltokinase (Mak), uncovering a eukaryotic-like kinase (ELK) fold, similar to methylthioribose kinases and aminoglycoside phosphotransferases. The 1.15 Å structure of Mak in complex with a non-hydrolysable ATP analog reveals subtle structural rearrangements upon nucleotide binding in the cleft between the N- and the C-terminal lobes. Remarkably, this new family of ELKs has a novel N-terminal domain topologically resembling the cystatin family of protease inhibitors. By interfacing with and restraining the mobility of the phosphate-binding region of the N-terminal lobe, Mak's unusual N-terminal domain might regulate its phosphotransfer activity and represents the most likely anchoring point for TreS, the upstream enzyme in the pathway. By completing the gallery of atomic-detail models of an essential pathway, this structure opens new avenues for the rational design of alternative anti-tubercular compounds.

  13. Adenylate kinase 2 (AK2) promotes cell proliferation in insect development

    PubMed Central

    2012-01-01

    Background Adenylate kinase 2 (AK2) is a phosphotransferase that catalyzes the reversible reaction 2ADP(GDP) ↔ ATP(GTP) + AMP and influences cellular energy homeostasis. However, the role of AK2 in regulating cell proliferation remains unclear because AK2 has been reported to be involved in either cell proliferation or cell apoptosis in different cell types of various organisms. Results This study reports AK2 promotion of cell proliferation using the lepidopteran insect Helicoverpa armigera and its epidermal cell line HaEpi as models. Western blot analysis indicates that AK2 constitutively expresses in various tissues during larval development. Immunocytochemistry analysis indicates that AK2 localizes in the mitochondria. The recombinant expressed AK2 in E. coli promotes cell growth and viability of HaEpi cell line by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. AK2 knockdown in larvae by RNA interference causes larval growth defects, including body weight decrease and development delay. AK2 knockdown in larvae also decreases the number of circulating haemocytes. The mechanism for such effects might be the suppression of gene transcription involved in insect development caused by AK2 knockdown. Conclusion These results show that AK2 regulates cell growth, viability, and proliferation in insect growth and development. PMID:23020757

  14. Evaluation of acceptor selectivity of Lactococcus lactis ssp. lactis trehalose 6-phosphate phosphorylase in the reverse phosphorolysis and synthesis of a new sugar phosphate.

    PubMed

    Taguchi, Yodai; Saburi, Wataru; Imai, Ryozo; Mori, Haruhide

    2017-08-01

    Trehalose 6-phosphate phosphorylase (TrePP), a member of glycoside hydrolase family 65, catalyzes the reversible phosphorolysis of trehalose 6-phosphate (Tre6P) with inversion of the anomeric configuration to produce β-d-glucose 1-phosphate (β-Glc1P) and d-glucose 6-phosphate (Glc6P). TrePP in Lactococcus lactis ssp. lactis (LlTrePP) is, alongside the phosphotransferase system, involved in the metabolism of trehalose. In this study, recombinant LlTrePP was produced and characterized. It showed its highest reverse phosphorolytic activity at pH 4.8 and 40°C, and was stable in the pH range 5.0-8.0 and at up to 30°C. Kinetic analyses indicated that reverse phosphorolysis of Tre6P proceeded through a sequential bi bi mechanism involving the formation of a ternary complex of the enzyme, β-Glc1P, and Glc6P. Suitable acceptor substrates were Glc6P, and, at a low level, d-mannose 6-phosphate (Man6P). From β-Glc1P and Man6P, a novel sugar phosphate, α-d-Glcp-(1↔1)-α-d-Manp6P, was synthesized with 51% yield.

  15. Human X-Linked genes regionally mapped utilizing X-autosome translocations and somatic cell hybrids.

    PubMed Central

    Shows, T B; Brown, J A

    1975-01-01

    Human genes coding for hypoxanthine phosphoribosyltransferase (HPRT, EC 2.4.2.8; IMP:pyrophosphate phosphoribosyltransferase), glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49; D-glucose-6-phosphate:NADP+ 1-oxidoreductase), and phosphoglycerate kinase (PGK, EC 2.7.2.3; ATP:3-phospho-D-glycerate 1-phosphotransferase) have been assigned to specific regions on the long arm of the X chromosome by somatic cell gentic techniques. Gene assignment and linear order were determined by employing human somatic cells possessing an X/9 translocation or an X/22 translocation in man-mouse cell hybridization studies. The X/9 translocation involved the majority of the X long arm translocated to chromosome 9 and the X/22 translocation involved the distal half of the X long arm translocated to 22. In each case these rearrangements appeared to be reciprocal. Concordant segregation of X-linked enzymes and segments of the X chromosome generated by the translocations indicated assignment of the PGK gene to a proximal long arm region (q12-q22) and the HPRT and G6PD genes to the distal half (q22-qter) of the X long arm. Further evidence suggests a gene order on the X long arm of centromere-PGK-HPRT-G6PD. Images PMID:1056018

  16. Transcriptional profiling of Haemophilus parasuis SH0165 response to tilmicosin.

    PubMed

    Liu, Yingyu; Chen, Pin; Wang, Yang; Li, Wentao; Cheng, Shuang; Wang, Chunmei; Zhang, Anding; He, Qigai

    2012-12-01

    The Haemophilus parasuis respiratory tract pathogen poses a severe threat to the swine industry despite available antimicrobial therapies. To gain a more detailed understanding of the molecular mechanisms underlying H. parasuis response to tilmicosin treatment, microarray technology was applied to analyze the variation in gene expression of isolated H. parasuis SH0165 treated in vitro with subinhibitory (0.25 μg/ml) and inhibitory (8 μg/ml) concentrations. Tilmicosin treatment induced differential expression of 405 genes, the encoded products of which are mainly involved in the heat shock response, protein synthesis, and intracellular transportation. The subinhibitory and inhibitory concentrations of tilmicosin induced distinctive gene expression profiles of shared and unique changes, respectively. These changes included 302 genes mainly involved in protein export and the phosphotransferase system to sustain cell growth, and 198 genes mainly related to RNA polymerase, recombination, and repair to inhibit cell growth. In silico analysis of functions related to the differentially expressed genes suggested that adaptation of H. parasuis SH0165 to tilmicosin involves modulation of protein synthesis and membrane transport. Collectively, the genes comprising each transcriptional profile of H. parasuis response to tilmicosin provide novel insights into the physiological functions of this economically significant bacterium and may represent targets of future molecular therapeutic strategies.

  17. Technical note: development of a quantitative PCR method for monitoring strain dynamics during yogurt manufacture.

    PubMed

    Miller, D M; Dudley, E G; Roberts, R F

    2012-09-01

    Yogurt starter cultures may consist of multiple strains of Lactobacillus delbrueckii ssp. bulgaricus (LB) and Streptococcus thermophilus (ST). Conventional plating methods for monitoring LB and ST levels during yogurt manufacture do not allow for quantification of individual strains. The objective of the present work was to develop a quantitative PCR method for quantification of individual strains in a commercial yogurt starter culture. Strain-specific primers were designed for 2 ST strains (ST DGCC7796 and ST DGCC7710), 1 LB strain (DGCC4078), and 1 Lactobacillus delbrueckii ssp. lactis strain (LL; DGCC4550). Primers for the individual ST and LB strains were designed to target unique DNA sequences in clustered regularly interspersed short palindromic repeats. Primers for LL were designed to target a putative mannitol-specific IIbC component of the phosphotransferase system. Following evaluation of primer specificity, standard curves relating cell number to cycle threshold were prepared for each strain individually and in combination in yogurt mix, and no significant differences in the slopes were observed. Strain balance data was collected for yogurt prepared at 41 and 43°C to demonstrate the potential application of this method. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Effect of Detergents on Galactoside Binding by Melibiose Permeases.

    PubMed

    Amin, Anowarul; Hariharan, Parameswaran; Chae, Pil Seok; Guan, Lan

    2015-09-29

    The effect of various detergents on the stability and function of the melibiose permeases of Escherichia coli (MelBEc) and Salmonella typhimurium (MelBSt) was studied. In n-dodecyl-β-d-maltoside (DDM) or n-undecyl-β-d-maltoside (UDM), WT MelBSt binds melibiose with an affinity similar to that in the membrane. However, with WT MelBEc or MelBSt mutants (Arg141 → Cys, Arg295 → Cys, or Arg363 → Cys), galactoside binding is not detected in these detergents, but binding to the phosphotransferase protein IIA(Glc) is maintained. In the amphiphiles lauryl maltose neopentyl glycol (MNG-3) or glyco-diosgenin (GDN), galactoside binding with all of the MelB proteins is observed, with slightly reduced affinities. MelBSt is more thermostable than MelBEc, and the thermostability of either MelB is largely increased in MNG-3 or GDN. Therefore, the functional defect with DDM or UDM likely results from the relative instability of the sensitive MelB proteins, and stability, as well as galactoside binding, is retained in MNG-3 or GDN. Furthermore, isothermal titration calorimetry of melibiose binding with MelBSt shows that the favorable entropic contribution to the binding free energy is decreased in MNG-3, indicating that the conformational dynamics of MelB is restricted in this detergent.

  19. Effect of detergents on galactoside binding by melibiose permeases

    PubMed Central

    Amin, Anowarul; Hariharan, Parameswaran; Chae, Pil Seok; Guan, Lan

    2015-01-01

    The effect of various detergents on the stability and function of melibiose permeases of Escherichia coli (MelBEc) or Salmonella typhimurium (MelBSt) were studied. In n-dodecyl-β-d-maltoside (DDM) or n-undecyl-β-d-maltoside (UDM), WT MelBSt binds melibiose with an affinity similar to that in the membrane. However, with WT MelBEc or MelBSt mutants (Arg141→Cys, Arg295→Cys or Arg363→Cys), galactoside binding is not detected in these detergents, but binding to the phosphotransferase protein IIAGlc is maintained. In the amphiphiles lauryl maltose neopentyl glycol (MNG-3) or glyco-diosgenin (GDN), galactoside binding with all the MelB proteins is observed, with slightly reduced affinities. MelBSt is more thermostable than MelBEc, and the thermostability of either MelB is largely increased in MNG-3 or GDN. Therefore, the functional defect with DDM or UDM likely results from relative instability of the sensitive MelB proteins, and stability, as well as galactoside binding, is retained in MNG-3 or GDN. Furthermore, isothermal titration calorimetry of melibiose binding with MelBSt shows that the favorable entropic contribution to the binding free energy is decreased in MNG-3, indicating that the conformational dynamics of MelB is restricted in this detergent. PMID:26352464

  20. Genome-wide analysis of day/night DNA methylation differences in Populus nigra.

    PubMed

    Ding, Chang-Jun; Liang, Li-Xiong; Diao, Shu; Su, Xiao-Hua; Zhang, Bing-Yu

    2018-01-01

    DNA methylation is an important mechanism of epigenetic modification. Methylation changes during stress responses and developmental processes have been well studied; however, their role in plant adaptation to the day/night cycle is poorly understood. In this study, we detected global methylation patterns in leaves of the black poplar Populus nigra 'N46' at 8:00 and 24:00 by methylated DNA immunoprecipitation sequencing (MeDIP-seq). We found 10,027 and 10,242 genes to be methylated in the 8:00 and 24:00 samples, respectively. The methylated genes appeared to be involved in multiple biological processes, molecular functions, and cellular components, suggesting important roles for DNA methylation in poplar cells. Comparing the 8:00 and 24:00 samples, only 440 differentially methylated regions (DMRs) overlapped with genic regions, including 193 hyper- and 247 hypo-methylated DMRs, and may influence the expression of 137 downstream genes. Most hyper-methylated genes were associated with transferase activity, kinase activity, and phosphotransferase activity, whereas most hypo-methylated genes were associated with protein binding, ATP binding, and adenyl ribonucleotide binding, suggesting that different biological processes were activated during the day and night. Our results indicated that methylated genes were prevalent in the poplar genome, but that only a few of these participated in diurnal gene expression regulation.

  1. High Resolution Crystal Structure of Human β-Glucuronidase Reveals Structural Basis of Lysosome Targeting

    PubMed Central

    Hassan, Md. Imtaiyaz; Waheed, Abdul; Grubb, Jeffery H.; Klei, Herbert E.; Korolev, Sergey; Sly, William S.

    2013-01-01

    Human β-glucuronidase (GUS) cleaves β-D-glucuronic acid residues from the non-reducing termini of glycosaminoglycan and its deficiency leads to mucopolysaccharidosis type VII (MPSVII). Here we report a high resolution crystal structure of human GUS at 1.7 Å resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases. The structure revealed several new details including a new glycan chain at Asn272, in addition to that previously observed at Asn173, and coordination of the glycan chain at Asn173 with Lys197 of the lysosomal targeting motif which is essential for phosphotransferase recognition. Analysis of the high resolution structure not only provided new insights into the structural basis for lysosomal targeting but showed significant differences between human GUS, which is medically important in its own right, and E. coli GUS, which can be selectively inhibited in the human gut to prevent prodrug activation and is also widely used as a reporter gene by plant biologists. Despite these differences, both human and E. coli GUS share a high structure homology in all three domains with most of the glycosyl hydrolases, suggesting that they all evolved from a common ancestral gene. PMID:24260279

  2. Evaluation of agrobacterium-mediated transformation of Agaricus bisporus using a range of promoters linked to hygromycin resistance.

    PubMed

    Burns, C; Leach, K M; Elliott, T J; Challen, M P; Foster, G D; Bailey, A

    2006-02-01

    There is interest in establishing genetic modification technologies for the cultivated mushroom Agaricus bisporus, both for improved crop characteristics and for molecular pharming. For these methods to be successful, it is necessary to establish a set of transformation systems that include robust and reliable vectors for gene manipulation. In this article, we report the evaluation of a series of promoters for driving expression of the Escherichia coli hph gene encoding hygromycin phosphotransferase. This was achieved using the Aspergillus nidulans gpdA and the A. bisporus gpdII and trp2 promoters. The Coprinus cinereus beta-tubulin promoter gave contrasting results depending on the size of promoter used, with a 393-bp region being effective, whereas the longer 453-bp fragment failed to yield any hygromycin-resistant transformants. The C. cinereus trp1 and the A. bisporus lcc1 promoters both failed to yield transformants. We also show that transformation efficiency may be improved by careful selection of both appropriate Agrobacterium strains, with AGL-1 yielding more than LBA1126 and by the choice of the binary vectors used to mobilize the DNA, with pCAMBIA vectors appearing to be more efficient than either pBIN19- or pGREEN-based systems.

  3. Construction of two vectors for gene expression in Trichoderma reesei.

    PubMed

    Lv, Dandan; Wang, Wei; Wei, Dongzhi

    2012-01-01

    We report the construction of two filamentous fungi Trichoderma reesei expression vectors, pWEF31 and pWEF32. Both vectors possess the hygromycin phosphotransferase B gene expression cassette and the strong promoter and terminator of the cellobiohydrolase 1 gene (cbh1) from T. reesei. The two newly constructed vectors can be efficiently transformed into T. reesei with Agrobacterium-mediated transformation. The difference between pWEF31 and pWEF32 is that pWEF32 has two longer homologous arms. As a result, pWEF32 easily undergoes homologous recombination. On the other hand, pWEF31 undergoes random recombination. The applicability of both vectors was tested by first generating the expression vectors pWEF31-red and pWEF32-red and then detecting the expression of the DsRed2 gene in T. reesei Rut C30. Additionally, we measured the exo-1,4-β-glucanase activity of the recombinant cells. Our work provides an effective transformation system for homologous and heterologous gene expression and gene knockout in T. reesei. It also provides a method for recombination at a specific chromosomal location. Finally, both vectors will be useful for the large-scale gene expression industry. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Agrobacterium tumefaciens-mediated transformation of Narcissus tazzeta var. chinensis.

    PubMed

    Lu, Gang; Zou, Qingcheng; Guo, Deping; Zhuang, Xiaoying; Yu, Xiaolin; Xiang, Xun; Cao, Jiashu

    2007-09-01

    Phytoene synthase (PSY), as a key regulatory enzyme for carotene biosynthesis, plays an important role in regulating color formation in many species. In the present study, a protocol was developed for the transformation of Narcissus tazzeta var chinensis using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pCAMBIA1301 plasmid which contained an antisense phytoene synthase gene, a reporter beta-glucuronidase gene and a selectable marker hygromycin phosphotransferase gene. Effects of some factors on efficiency of transformation and regeneration were examined. Preculture of the explants for 6 days before inoculation enhanced the transient GUS expression. The addition of acetosyringone (AS) at 100 micromol l(-1) for inoculation and a period of 3 days co-cultivation yielded efficient transient GUS expression. Transformants were obtained through selection on MS medium containing 5 mg l(-1) 6-benzylaminopurine (BA), 0.1 mg l(-1)alpha-naphthalene acetic acid (NAA) and 40 mg l(-1) hygromycin. The transformation frequency was 1.24% based on PCR analysis of gus gene. One or two copies of transgene were demonstrated in different transformations by Southern blotting analyses. Northern blotting results confirmed that the transcription of the endogenous psy gene in transgenic plants was inhibited or silenced. The method reported here provides new opportunities for improvement of quality traits of Narcissus tazzeta via genetic transformation.

  5. Agrobacterium tumefaciens-mediated transformation of the entomopathogenic fungus Nomuraea rileyi.

    PubMed

    Shao, Changwen; Yin, Youping; Qi, Zhaoran; Li, Ren; Song, Zhangyong; Li, Yan; Wang, Zhongkang

    2015-10-01

    An Agrobacterium-mediated genetic transformation system for the entomopathogenic fungus Nomuraea rileyi was established. Three binary T-DNA vectors, pPZP-Hph, pPZP-Hph-RNAi and pPZP-Hph-DsRed2, were constructed. The trpc promoter from Aspergillus nidulans was used as the cis-regulatory element to drive the expression of hygromycin phosphotransferase (hph) gene and DsRed2, which conferred the hygromycin B (Hyg B) resistance and red fluorescence visualization, respectively. The blastospores and conidia were used as the recipients. The blastospores' transformation efficiency reached ∼20-40 transformants per 10(6) blastospores, whereas the conidia were not transformed. Based on an analysis of five generations of subcultures, PCR and Southern blotting assays, the Ptrpc-hph cassette had integrated into the genomes of all transformants, which contained single copy of the hph gene and showed mitotic stability. Abundant altered morphologic phenotypes in colonies, blastospores and hyphae formations were observed in the arbitrary insertional mutants of N. rileyi, which made it possible to study the relationships between the functions and the interrupted genes over the whole genome. The transformation protocol will promote the functional characterization of genes, and the construction of genetically engineered strains of this important entomopathogenic fungus, and potentially of other similar fungal pathogens. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Transgenic Russian wildrye (Psathyrostachys juncea) plants obtained by biolistic transformation of embryogenic suspension cells.

    PubMed

    Wang, Z-Y; Bell, J; Lehmann, D

    2004-07-01

    Russian wildrye (Psathyrostachys juncea (Fisch.) Nevski) is a cool-season forage species well adapted to semi-arid climates. We are interested in developing biotechnological methods to improve this monocot forage species. Single genotype-derived embryogenic suspension cultures were established from the Russian wildrye cultivar Bozoisky-Select, and were used as target cells for biolistic transformation. A chimeric hygromycin phosphotransferase gene (hph) was used as the selectable marker, and a chimeric beta-glucuronidase (gusA) gene was co-transformed with hph. Resistant calli were obtained from 29% of the bombarded dishes after selection with 200 mg/l hygromycin. Plants were regenerated from 45% of the hygromycin resistant calli. Thirty-six transgenic Russian wildrye plants were recovered after microprojectile bombardment of suspension cells and subsequent hygromycin selection. The transgenic nature of the regenerated plants was demonstrated by Southern hybridization analysis using undigested and digested genomic DNA samples. When a second gene (gusA) was co-transformed with hph, a reasonably high co-transformation frequency of 78% was observed. Transgenic expression of gusA was confirmed by GUS staining of shoot and leaf tissues. Fertile transgenic plants were obtained after two winters of vernalization under field conditions. This is the first report on the generation of transgenic plants in Russian wildrye.

  7. Expression of hygromycin B resistance in oyster culinary-medicinal mushroom, Pleurotus ostreatus (Jacq.:Fr.)P. Kumm. (higher Basidiomycetes) using three gene expression systems.

    PubMed

    Dong, Xiaoya; Zhang, Ke; Gao, Yuqian; Qi, Yuancheng; Shen, Jinwen; Qiu, Liyou

    2012-01-01

    Three hygromycin B phosphotransferase (hph) gene expression systems for culinary-medicinal Oyster mushroom, Pleurotus ostreatus, plasmid pSHC, pAN7-1, and pBHt1 were evaluated through PEG/CaCl(2)-mediated protoplast transformation. Plasmid pSHC is a newly constructed hph gene expression system, composed of Escherichia coli hph gene, the P. ostreatus sdi promoter, and the CaMV35S terminator. The vector pAN7-1 was commonly used for integrative transformation in filamentous fungi. Plasmid pBHtl is a T-DNA binary vector, usually introduced into fungi by Agrobacterium-mediated transformation. The results showed that plasmids pSHC, pAN7-1, and pBHt1 were all integrated into the host chromosomes and expressed hygromycin B resistance in P. ostreatus. pAN7-1 had the highest transformation efficiency and hph gene expression level, pSHC the second, and pBHt1 the lowest. Growth rates of the transformants on plates containing hygromycin B were in correspondence with their hph gene expression levels. To our knowledge, this is the first report on integrated transformation of plasmid pAN7-1 and pBHt1 in P. ostreatus.

  8. Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores.

    PubMed

    Chiyoda, Shota; Ishizaki, Kimitsune; Kataoka, Hideo; Yamato, Katsuyuki T; Kohchi, Takayuki

    2008-09-01

    The liverwort, Marchantia polymorpha L., belongs to a group of basal land plants and is an emerging model for plant biology. We established a procedure to prepare sporangia of M. polymorpha under laboratory conditions by promoting its transition to reproductive development by far-red light irradiation. Here we report an improved direct transformation system of M. polymorpha using immature thalli developing from spores. Hygromycin-resistant transformants were obtained on selective media by transformation with a plasmid carrying the hygromycin-phosphotransferase gene (hpt) conferring hygromycin resistance in 4 weeks. The aminoglycoside-3''-adenyltransferase gene (aadA) conferring spectinomycin resistance was also successfully used as an additional selectable marker for nuclear transformation of M. polymorpha. The availability of the aadA gene in addition to the hpt gene should make M. polymorpha a versatile host for genetic manipulation. DNA gel-blot analyses indicated that transformed thalli carried a variable number of copies of the transgene integrated into the genome. Although the previous system using thalli grown from gemmae required a two-step selection in liquid and solid media for 8 weeks, the system reported here using thalli developing from spores allows generation of transformants in half the time by direct selection on solid media, facilitating genetic analyses in this model plant.

  9. An engineered Streptomyces hygroscopicus aph 7" gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii.

    PubMed

    Berthold, Peter; Schmitt, Rüdiger; Mages, Wolfgang

    2002-12-01

    We have developed a positively selectable marker for the green alga Chlamydomonas reinhardtii using the Streptomyces hygroscopicus aminoglycoside phosphotransferase gene (aph7"). Its expression is controlled by C. reinhardtii regulatory elements, namely, the beta2-tubulin gene promoter in combination with the first intron and the 3' untranslated region of the small subunit of ribulose bisphosphate carboxylase, rbcS2. C. reinhardtii cell-wall deficient and wild-type strains were transformed at rates up to 5 x 10(-5) with two constructs, pHyg3 and pHyg4 (intron-less). Transformants selected on plates with 10 microg/ml hygromycin B exhibited diverse levels of resistance of up to 200 microg/ml that were stably maintained for at least seven months; they contained two to five copies of the construct integrated in their genomes. Transcription of the chimeric aph7" gene, correct splicing of the rbcS2 intron, and polyadenylation of the transcripts have been verified by sequencing of RT-PCR products. Average co-transformation rates using pHyg3 and a second selectable plasmid were about 11%. This advocates the hygromycin-resistance plasmid, pHyg3, as a new versatile tool for the transformation of a broad range of C. reinhardtii strains without the sustained need for using auxotrophic mutants as recipients.

  10. Potential role of acetyl-CoA synthetase (acs) and malate dehydrogenase (mae) in the evolution of the acetate switch in Bacteria and Archaea

    USGS Publications Warehouse

    Barnhart, Elliott P.; McClure, Marcella A.; Johnson, Kiki; Cleveland, Sean; Hunt, Kristopher A.; Fields, Matthew W.

    2015-01-01

    Although many Archaea have AMP-Acs (acetyl-coenzyme A synthetase) and ADP-Acs, the extant methanogenic genus Methanosarcina is the only identified Archaeal genus that can utilize acetate via acetate kinase (Ack) and phosphotransacetylase (Pta). Despite the importance of ack as the potential urkinase in the ASKHA phosphotransferase superfamily, an origin hypothesis does not exist for the acetate kinase in Bacteria, Archaea, or Eukarya. Here we demonstrate that Archaeal AMP-Acs and ADP-Acs contain paralogous ATPase motifs previously identified in Ack, which demonstrate a novel relation between these proteins in Archaea. The identification of ATPase motif conservation and resulting structural features in AMP- and ADP-acetyl-CoA synthetase proteins in this study expand the ASKHA superfamily to include acetyl-CoA synthetase. Additional phylogenetic analysis showed that Pta and MaeB sequences had a common ancestor, and that the Pta lineage within the halophilc archaea was an ancestral lineage. These results suggested that divergence of a duplicated maeB within an ancient halophilic, archaeal lineage formed a putative pta ancestor. These results provide a potential scenario for the establishment of the Ack/Pta pathway and provide novel insight into the evolution of acetate metabolism for all three domains of life.

  11. A novel reference plasmid for the qualitative detection of genetically modified rice in food and feed.

    PubMed

    Li, Liang; Dong, Mei; An, Na; Liang, Lixia; Wan, Yusong; Jin, Wujun

    2015-01-01

    Rice is one of the most important food crops in the world. Genetically modified (GM) technology has been used in rice to confer herbicide tolerance and pathogen or insect resistance. China invests heavily in research on GM rice. By the end of 2014, at least 250 transgenic rice lines had been developed in China. To monitor the presence of GM rice in food and feed, we collected information on foreign elements from 250 transgenic rice lines and found 5 elements, including the Agrobacterium tumefaciens nopaline synthase terminator (T-NOS), the cauliflower mosaic virus 35S promoter (CaMV35S), the ubiquitin gene (Ubi), the bar gene, and the hygromycin phosphotransferase gene (Hpt), that are commonly present in GM rice. Therefore, we constructed a novel plasmid (pBJGMM001) that contains fragments of these elements and two endogenous reference genes (the sucrose phosphate synthase gene, SPS, and the phosphoenolpyruvate carboxylase gene, PEPC). pBJGMM001 can serve as a standard for detecting 96% of GM rice lines in China. The primers, amplicons, reaction mixture, and PCR program were developed based on Chinese National Standards. The protocol was validated and determined to be suitable for practical use in monitoring and identifying GM rice.

  12. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer.

    PubMed

    Cheng, X; Sardana, R; Kaplan, H; Altosaar, I

    1998-03-17

    Over 2,600 transgenic rice plants in nine strains were regenerated from >500 independently selected hygromycin-resistant calli after Agrobacterium-mediated transformation. The plants were transformed with fully modified (plant codon optimized) versions of two synthetic cryIA(b) and cryIA(c) coding sequences from Bacillus thuringiensis as well as the hph and gus genes, coding for hygromycin phosphotransferase and beta-glucuronidase, respectively. These sequences were placed under control of the maize ubiquitin promoter, the CaMV35S promoter, and the Brassica Bp10 gene promoter to achieve high and tissue-specific expression of the lepidopteran-specific delta-endotoxins. The integration, expression, and inheritance of these genes were demonstrated in R0 and R1 generations by Southern, Northern, and Western analyses and by other techniques. Accumulation of high levels (up to 3% of soluble proteins) of CryIA(b) and CryIA(c) proteins was detected in R0 plants. Bioassays with R1 transgenic plants indicated that the transgenic plants were highly toxic to two major rice insect pests, striped stem borer (Chilo suppressalis) and yellow stem borer (Scirpophaga incertulas), with mortalities of 97-100% within 5 days after infestation, thus offering a potential for effective insect resistance in transgenic rice plants.

  13. Effect of phosphorylation on hydrogen-bonding interactions of the active site histidine of the phosphocarrier protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system determined by sup 15 N NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Dijk, A.A.; de Lange, L.C.M.; Robillard, G.T.

    1990-09-04

    The phosphocarrier protein HPr of the phosphoenolpyruvate-dependent sugar transport system of Escherichia coli can exist in a phosphorylated and a nonphosphorylated form. During phosphorylation, the phosphoryl group is carried on a histidine residue, His15. The hydrogen-bonding state of this histidine was examined with {sup 15}N NMR. For this purpose we selectively enriched the histidine imidazole nitrogens with {sup 15}N by supplying an E. coli histidine auxotroph with the amino acid labeled either at the N{delta}1 and N{epsilon}2 positions or at only the N{delta}1 position. {sup 15}N NMR spectra of two synthesized model compound, phosphoimidazole and phosphomethylimidazole, were also recorded. Themore » authors show that, prior to phosphorylation, the protonated His15 N{epsilon}2 is strongly hydrogen bonded, most probably to a carboxylate moiety. The H-bond should strengthen the nucleophilic character of the deprotonated N{delta}1, resulting in a good acceptor for the phosphoryl group. The hydrogen bond to the His15 N{delta}1 breaks upon phosphorylation of the residue. Implications of the H-bond structure for the mechanism of phosphorylation of HPr are discussed.« less

  14. Phylogenetic Characterization of Transport Protein Superfamilies: Superiority of SuperfamilyTree Programs over Those Based on Multiple Alignments

    PubMed Central

    Chen, Jonathan S.; Reddy, Vamsee; Chen, Joshua H.; Shlykov, Maksim A.; Zheng, Wei Hao; Cho, Jaehoon; Yen, Ming Ren; Saier, Milton H.

    2012-01-01

    Transport proteins function in the translocation of ions, solutes and macromolecules across cellular and organellar membranes. These integral membrane proteins fall into >600 families as tabulated in the Transporter Classification Database (www.tcdb.org). Recent studies, some of which are reported here, define distant phylogenetic relationships between families with the creation of superfamilies. Several of these are analyzed using a novel set of programs designed to allow reliable prediction of phylogenetic trees when sequence divergence is too great to allow the use of multiple alignments. These new programs, called SuperfamilyTree1 and 2 (SFT1 and 2), allow display of protein and family relationships, respectively, based on thousands of comparative BLAST scores rather than multiple alignments. Superfamilies analyzed include: (1) Aerolysins, (2) RTX Toxins, (3) Defensins, (4) Ion Transporters, (5) Bile/Arsenite/Riboflavin Transporters, (6) Cation: Proton Antiporters, and (7) the Glucose/Fructose/Lactose superfamily within the prokaryotic phosphoenol pyruvate-dependent Phosphotransferase System. In addition to defining the phylogenetic relationships of the proteins and families within these seven superfamilies, evidence is provided showing that the SFT programs outperform programs that are based on multiple alignments whenever sequence divergence of superfamily members is extensive. The SFT programs should be applicable to virtually any superfamily of proteins or nucleic acids. PMID:22286036

  15. Transcriptional Analysis of Prebiotic Uptake and Catabolism by Lactobacillus acidophilus NCFM

    PubMed Central

    Andersen, Joakim Mark; Barrangou, Rodolphe; Hachem, Maher Abou; Lahtinen, Sampo J.; Goh, Yong-Jun; Svensson, Birte; Klaenhammer, Todd R.

    2012-01-01

    The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β- linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC) transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota. PMID:23028535

  16. Mannitol and the Mannitol-Specific Enzyme IIB Subunit Activate Vibrio cholerae Biofilm Formation

    PubMed Central

    Ymele-Leki, Patrick; Houot, Laetitia

    2013-01-01

    Vibrio cholerae is a halophilic, Gram-negative rod found in marine environments. Strains that produce cholera toxin cause the diarrheal disease cholera. V. cholerae use a highly conserved, multicomponent signal transduction cascade known as the phosphoenolpyruvate phosphotransferase system (PTS) to regulate carbohydrate uptake and biofilm formation. Regulation of biofilm formation by the PTS is complex, involving many different regulatory pathways that incorporate distinct PTS components. The PTS consists of the general components enzyme I (EI) and histidine protein (HPr) and carbohydrate-specific enzymes II. Mannitol transport by V. cholerae requires the mannitol-specific EII (EIIMtl), which is expressed only in the presence of mannitol. Here we show that mannitol activates V. cholerae biofilm formation and transcription of the vps biofilm matrix exopolysaccharide synthesis genes. This regulation is dependent on mannitol transport. However, we show that, in the absence of mannitol, ectopic expression of the B subunit of EIIMtl is sufficient to activate biofilm accumulation. Mannitol, a common compatible solute and osmoprotectant of marine organisms, is a main photosynthetic product of many algae and is secreted by algal mats. We propose that the ability of V. cholerae to respond to environmental mannitol by forming a biofilm may play an important role in habitat selection. PMID:23728818

  17. Reaction kinetics and inhibition of adenosine kinase from Leishmania donovani.

    PubMed

    Bhaumik, D; Datta, A K

    1988-04-01

    The reaction kinetics and the inhibitor specificity of adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20) from Leishmania donovani, have been analysed using homogeneous preparation of the enzyme. The reaction proceeds with equimolar stoichiometry of each reactant. Double reciprocal plots of initial velocity studies in the absence of products yielded intersecting lines for both adenosine and Mg2+-ATP. AMP is a competitive inhibitor of the enzyme with respect to adenosine and noncompetitive inhibitor with respect to ATP. In contrast, ADP was a noncompetitive inhibitor with respect to both adenosine and ATP, with inhibition by ADP becoming uncompetitive at very high concentration of ATP. Parallel equilibrium dialysis experiments against [3H]adenosine and [gamma-32P]ATP resulted in binding of adenosine to fre enzyme. Tubercidin (7-deazaadenosine) and 6-methyl-mercaptopurine riboside acted as substrates for the enzyme and were found to inhibit adenosine phosphorylation competitively in vitro. 'Substrate efficiency (Vmax/Km)' and 'turnover numbers (Kcat)' of the enzyme with respect to specific analogs were determined. Taken together the results suggest that (a) the kinetic mechanism of adenosine kinase is sequential Bi-Bi, (b) AMP and ADP may regulate enzyme activity in vivo and (c) tubercidin and 6-methylmercaptopurine riboside are monophosphorylated by the parasite enzyme.

  18. Engineering of Escherichia coli to facilitate efficient utilization of isomaltose and panose in industrial glucose feedstock.

    PubMed

    Abe, Kenji; Kuroda, Akio; Takeshita, Ryo

    2017-03-01

    Industrial glucose feedstock prepared by enzymatic digestion of starch typically contains significant amounts of disaccharides such as maltose and isomaltose and trisaccharides such as maltotriose and panose. Maltose and maltosaccharides can be utilized in Escherichia coli fermentation using industrial glucose feedstock because there is an intrinsic assimilation pathway for these sugars. However, saccharides that contain α-1,6 bonds, such as isomaltose and panose, are still present after fermentation because there is no metabolic pathway for these sugars. To facilitate more efficient utilization of glucose feedstock, we introduced glvA, which encodes phospho-α-glucosidase, and glvC, which encodes a subunit of the phosphoenolpyruvate-dependent maltose phosphotransferase system (PTS) of Bacillus subtilis, into E. coli. The heterologous expression of glvA and glvC conferred upon the recombinant the ability to assimilate isomaltose and panose. The recombinant E. coli assimilated not only other disaccharides but also trisaccharides, including alcohol forms of these saccharides, such as isomaltitol. To the best of our knowledge, this is the first report to show the involvement of the microbial PTS in the assimilation of trisaccharides. Furthermore, we demonstrated that an L-lysine-producing E. coli harboring glvA and glvC converted isomaltose and panose to L-lysine efficiently. These findings are expected to be beneficial for industrial fermentation.

  19. Stable expression of rat cytochrome P-450IIB1 cDNA in Chinese hamster cells (V79) and metabolic activation of aflatoxin B1.

    PubMed Central

    Doehmer, J; Dogra, S; Friedberg, T; Monier, S; Adesnik, M; Glatt, H; Oesch, F

    1988-01-01

    V79 Chinese hamster fibroblasts are widely used for mutagenicity testing but have the serious limitation that they do not express cytochromes P-450, which are needed for the activation of many promutagens to mutagenic metabolites. A full-length cDNA clone encoding the monooxygenase cytochrome P-450IIB1 under control of the simian virus 40 early promoter was constructed and cointroduced with the selection marker neomycin phosphotransferase (conferring resistance to G418) into V79 Chinese hamster cells. G418-resistant cells were selected, established as cell lines, and tested for cytochrome P-450IIB1 expression and enzymatic activity. Two cell lines (SD1 and SD3) were found that stably produce cytochrome P-450IIB1. Although purified cytochromes P-450 possess monooxygenase activity only after reconstitution with cytochrome P-450 reductase and phospholipid, the gene product of the construct exhibited this activity. This implies that the gene product is intracellularly localized in a way that allows access to the required components. If compared with V79 cells, the mutation rate for the hypoxanthine phosphoribosyltransferase (HPRT) locus in SD1 cells is markedly increased when exposed to aflatoxin B1, which is activated by this enzyme. Images PMID:3137560

  20. Potential Role of Acetyl-CoA Synthetase (acs) and Malate Dehydrogenase (mae) in the Evolution of the Acetate Switch in Bacteria and Archaea

    DOE PAGES

    Barnhart, Elliott P.; McClure, Marcella A.; Johnson, Kiki; ...

    2015-08-03

    Although many Archaea have AMP-Acs (acetyl-coenzyme A synthetase) and ADP-Acs, the extant methanogenic genus Methanosarcina is the only identified Archaeal genus that can utilize acetate via acetate kinase (Ack) and phosphotransacetylase (Pta). Despite the importance of ack as the potential urkinase in the ASKHA phosphotransferase superfamily, an origin hypothesis does not exist for the acetate kinase in Bacteria, Archaea, or Eukarya. Here we demonstrate that Archaeal AMP-Acs and ADP-Acs contain paralogous ATPase motifs previously identified in Ack, which demonstrate a novel relation between these proteins in Archaea. The identification of ATPase motif conservation and resulting structural features in AMP- andmore » ADP-acetyl-CoA synthetase proteins in this study expand the ASKHA superfamily to include acetyl-CoA synthetase. Additional phylogenetic analysis showed that Pta and MaeB sequences had a common ancestor, and that the Pta lineage within the halophilc archaea was an ancestral lineage. Lastly, these results suggested that divergence of a duplicated maeB within an ancient halophilic, archaeal lineage formed a putative pta ancestor. These results provide a potential scenario for the establishment of the Ack/Pta pathway and provide novel insight into the evolution of acetate metabolism for all three domains of life.« less

  1. ADP-ribosylation factor6 regulates both [3H]-noradrenaline and [14C]-glutamate exocytosis through phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Zheng, Qian; Bobich, Joseph A

    2004-10-01

    GTP phosphohydrolase (cell regulating) (EC 3.6.1.47, ADP-ribosylation factor6, ARF6) has been shown to play an important role in different steps of membrane trafficking. It also regulates chromaffin granule exocytosis through phosphatidylcholine phosphatidohydrolase (EC 3.1.4.14, PLD) activation. In this study, the role of ARF6 in neurotransmitter release from both dense-core granules (DCGs) and synaptic vesicles (SVs) in rat brain cortex nerve endings was investigated. We observed that synaptosomal ARF6 is largely particulate but moves to a less easily pelleted compartment upon nerve ending stimulation. We also found that direct inhibition of ARF6 by a specific antibody or interference with ARF6 downstream effects by a myristoylated N-terminal ARF6 peptide both significantly decreased both [3H]-noradrenaline and [14C]-glutamate exocytosis. Addition of phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PIP2) partially or completely restored exocytosis. These findings suggest that ARF6 plays important regulatory roles for both DCG and SV exocytosis by activating PLD and ATP:1-phosphatidyl-1D-myo-inositol 4-phosphate 5-phosphotransferase (EC 2.7.1.68, PI4P-5K) to enhance PIP2 synthesis and nerve ending membrane trafficking.

  2. A Novel Reference Plasmid for the Qualitative Detection of Genetically Modified Rice in Food and Feed

    PubMed Central

    Dong, Mei; An, Na; Liang, Lixia; Wan, Yusong

    2015-01-01

    Rice is one of the most important food crops in the world. Genetically modified (GM) technology has been used in rice to confer herbicide tolerance and pathogen or insect resistance. China invests heavily in research on GM rice. By the end of 2014, at least 250 transgenic rice lines had been developed in China. To monitor the presence of GM rice in food and feed, we collected information on foreign elements from 250 transgenic rice lines and found 5 elements, including the Agrobacterium tumefaciens nopaline synthase terminator (T-NOS), the cauliflower mosaic virus 35S promoter (CaMV35S), the ubiquitin gene (Ubi), the bar gene, and the hygromycin phosphotransferase gene (Hpt), that are commonly present in GM rice. Therefore, we constructed a novel plasmid (pBJGMM001) that contains fragments of these elements and two endogenous reference genes (the sucrose phosphate synthase gene, SPS, and the phosphoenolpyruvate carboxylase gene, PEPC). pBJGMM001 can serve as a standard for detecting 96% of GM rice lines in China. The primers, amplicons, reaction mixture, and PCR program were developed based on Chinese National Standards. The protocol was validated and determined to be suitable for practical use in monitoring and identifying GM rice. PMID:26495318

  3. REPRESSOR OF SILENCING5 Encodes a Member of the Small Heat Shock Protein Family and Is Required for DNA Demethylation in Arabidopsis[C][W

    PubMed Central

    Zhao, Yusheng; Xie, Shaojun; Li, Xiaojie; Wang, Chunlei; Chen, Zhongzhou; Lai, Jinsheng; Gong, Zhizhong

    2014-01-01

    In Arabidopsis thaliana, active DNA demethylation is initiated by the DNA glycosylase REPRESSOR OF SILENCING1 (ROS1) and its paralogs DEMETER, DEMETER-LIKE2 (DML2), and DML3. How these demethylation enzymes are regulated, however, is poorly understood. Here, using a transgenic Arabidopsis line harboring the stress-inducible RESPONSIVE TO DEHYDRATION29A (RD29A) promoter–LUCIFERASE (LUC) reporter gene and the cauliflower mosaic virus 35S promoter (35S)–NEOMYCIN PHOSPHOTRANSFERASE II (NPTII) antibiotic resistance marker gene, we characterize a ROS locus, ROS5, that encodes a protein in the small heat shock protein family. ROS5 mutations lead to the silencing of the 35S-NPTII transgene due to DNA hypermethylation but do not affect the expression of the RD29A-LUC transgene. ROS5 physically interacts with the histone acetyltransferase ROS4/INCREASED DNA METHYLATION1 (IDM1) and is required to prevent the DNA hypermethylation of some genes that are also regulated by ROS1 and IDM1. We propose that ROS5 regulates DNA demethylation by interacting with IDM1, thereby creating a chromatin environment that facilitates the binding of ROS1 to erase DNA methylation. PMID:24920332

  4. Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw

    PubMed Central

    Jiménez, Diego Javier; Chaves-Moreno, Diego; van Elsas, Jan Dirk

    2015-01-01

    Based on the premise that plant biomass can be efficiently degraded by mixed microbial cultures and/or enzymes, we here applied a targeted metagenomics-based approach to explore the metabolic potential of two forest soil-derived lignocellulolytic microbial consortia, denoted RWS and TWS (bred on wheat straw). Using the metagenomes of three selected batches of two experimental systems, about 1.2 Gb of sequence was generated. Comparative analyses revealed an overrepresentation of predicted carbohydrate transporters (ABC, TonB and phosphotransferases), two-component sensing systems and β-glucosidases/galactosidases in the two consortia as compared to the forest soil inoculum. Additionally, “profiling” of carbohydrate-active enzymes showed significant enrichments of several genes encoding glycosyl hydrolases of families GH2, GH43, GH92 and GH95. Sequence analyses revealed these to be most strongly affiliated to genes present on the genomes of Sphingobacterium, Bacteroides, Flavobacterium and Pedobacter spp. Assembly of the RWS and TWS metagenomes generated 16,536 and 15,902 contigs of ≥10 Kb, respectively. Thirteen contigs, containing 39 glycosyl hydrolase genes, constitute novel (hemi)cellulose utilization loci with affiliation to sequences primarily found in the Bacteroidetes. Overall, this study provides deep insight in the plant polysaccharide degrading capabilities of microbial consortia bred from forest soil, highlighting their biotechnological potential. PMID:26343383

  5. Association of Salivary Microbiota with Dental Caries Incidence with Dentine Involvement after 4 Years.

    PubMed

    Kim, Bong-Soo; Han, Dong-Hun; Lee, Ho; Oh, Bumjo

    2018-03-28

    Salivary microbiota alterations can correlate with dental caries development in children, and mechanisms mediating this association need to be studied in further detail. Our study explored salivary microbiota shifts in children and their association with the incidence of dental caries with dentine involvement. Salivary samples were collected from children with caries and their subsequently matched caries-free controls before and after caries development. The microbiota was analyzed by 16S rRNA gene-based high-throughput sequencing. The salivary microbiota was more diverse in caries-free subjects than in those with dental caries with dentine involvement (DC). Although both groups exhibited similar shifts in microbiota composition, an association with caries was found by function prediction. Analysis of potential microbiome functions revealed that Granulicatella, Streptococcus, Bulleidia , and Staphylococcus in the DC group could be associated with the bacterial invasion of epithelial cells, phosphotransferase system, and D -alanine metabolism, whereas Neisseria, Lautropia , and Leptotrichia in caries-free subjects could be associated with bacterial motility protein genes, linoleic acid metabolism, and flavonoid biosynthesis, suggesting that functional differences in the salivary microbiota may be associated with caries formation. These results expand the current understanding of the functional significance of the salivary microbiome in caries development, and may facilitate the identification of novel biomarkers and treatment targets.

  6. Proteomic and transcriptional analysis of Lactobacillus johnsonii PF01 during bile salt exposure by iTRAQ shotgun proteomics and quantitative RT-PCR.

    PubMed

    Lee, Ji Yoon; Pajarillo, Edward Alain B; Kim, Min Jeong; Chae, Jong Pyo; Kang, Dae-Kyung

    2013-01-04

    Lactobacillus johnsonii PF01 has been reported to be highly resistant to bile, a key property of probiotic microorganisms. Here, we examine the nature of the bile-salt tolerance of L. johnsonii PF01. Growth inhibition and surface morphology and physiology aberrations were observed after overnight exposure to bile stress. Quantitative proteomic profiles using iTRAQ-LC-MS/MS technology identified 8307 peptides from both untreated PF01 cells and those exposed to 0.1%, 0.2%, and 0.3% bile salts. Some 215 proteins exhibited changed levels in response to bile stress; of these, levels of 94 peptides increased while those of 121 decreased. These were classified into the following categories: stress responses, cell division, transcription, translation, nucleotide metabolism, carbohydrate transport and metabolism, cell wall biosynthesis, and amino acid biosynthesis, and 16 of unidentified function. Analysis of the mRNA expression of selected genes by quantitative reverse transcriptase-PCR verified the proteomic data. Both proteomic and mRNA data provided evidence for increased phosphotransferase activity and cell wall biosynthesis. In addition, three bile salt hydrolases were significantly upregulated by bile exposure. These findings provide a basis for future evaluations of the tolerance of potential probiotic strains toward the various gastrointestinal challenges, including bile stress.

  7. Enzymic activities of cadmium- and zinc-tolerant strains of Klebsiella (Aerobacter) aerogenes growing in glucose-limited chemostats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, A.W.; Carter, I.S.; Dean, A.C.R.

    The activities of phosphatases and some enzymes of glucose metabolism were determined in K. aerogenes NCIB 418 and in two strains derived from it, resistant to 50 ..mu..g Cd/sup 2 +/ ml/sup -1/ and 16..mu..g Zn/sup 2 +/ ml/sup -1/ respectively, during growth at D = 0.38 h/sup -1/ in medium containing ..beta..-glycerophosphate as sole phosphorus source and supplemented with Cd/sup 2 +/ and Zn/sup 2 +/, as appropriate for the resistant strains. The pH-activity profiles of the phosphatases differed from strain to strain but all showed maximum activity at an acid pH and this activity was very much lowermore » in the Zn/sup 2 +/-resistant strain than in the control and even lower in the Cd/sup 2 +/-resistant strain. Resistance to either metal was associated with decreased glucose-6-phosphate dehydrogenase activity and increased phosphoglucose isomerase activity, suggesting an increased flow of carbon through the Embden-Meyerhof pathway relative to the pentose phosphate pathway, but the efficiency of the conversion of glucose into biomass was largely unaffected. Glucose phosphoenolpyruvate phosphotransferase activity was also lower in the resistant strains. 25 references, 1 figure, 1 table.« less

  8. Infrequent transposition of Ac in lettuce, Lactuca sativa.

    PubMed

    Yang, C H; Ellis, J G; Michelmore, R W

    1993-08-01

    The maize transposable element Activator (Ac) is being used to develop a transposon mutagenesis system in lettuce, Lactuca sativa. Two constructs containing the complete Ac from the waxy-m7 locus of maize were introduced into lettuce and monitored for activity using Southern analysis and PCR amplification of the excision site. No transposition of Ac was detected in over 32 transgenic R1 plants, although these constructs were known to provide frequent transposition in other species. Also, no transposition was observed in later generations. In subsequent experiments, transposition was detected in lettuce calli using constructs that allowed selection for excision events. In these constructs, the neomycin phosphotransferase II gene was interrupted by either Ac or Ds. Excision was detected as the ability of callus to grow on kanamycin. Synthesis of the transposase from the cDNA of Ac expressed from the T-DNA 2' promoter resulted in more frequent excision of Ds than was observed with the wild-type Ac. No excision was observed with Ds in the absence of the transposase. The excision events were confirmed by amplification of the excision site by PCR followed by DNA sequencing. Excision and reintegration were also confirmed by Southern analysis. Ac/Ds is therefore capable of transposition in at least calli of lettuce.

  9. Silencing the HaAK Gene by Transgenic Plant-Mediated RNAi Impairs Larval Growth of Helicoverpa armigera

    PubMed Central

    Liu, Feng; Wang, Xiao-Dong; Zhao, Yi-Ying; Li, Yan-Jun; Liu, Yong-Chang; Sun, Jie

    2015-01-01

    Insect pests have caused noticeable economic losses in agriculture, and the heavy use of insecticide to control pests not only brings the threats of insecticide resistance but also causes the great pollution to foods and the environment. Transgenic plants producing double-stranded RNA (dsRNA) directed against insect genes have been is currently developed for protection against insect pests. In this study, we used this technology to silence the arginine kinase (AK) gene of Helicoverpa armigera (HaAK), encoding a phosphotransferase that plays a critical role in cellular energy metabolism in invertebrate. Transgenic Arabidopsis plants producing HaAK dsRNA were generated by Agrobacterium-mediated transformation. The maximal mortality rate of 55% was reached when H. armigera first-instar larvae were fed with transgenic plant leaves for 3 days, which was dramatically higher than the 18% mortality recorded in the control group. Moreover, the ingestion of transgenic plants significantly retarded larval growth, and the transcript levels of HaAK were also knocked down by up to 52%. The feeding bioassays further indicated that the inhibition efficiency was correlated with the integrity and concentration of the produced HaAK dsRNA in transgenic plants. These results strongly show that the resistance to H. armigera was improved in transgenic Arabidopsis plants, suggesting that the RNAi targeting of AK has the potential for the control of insect pests. PMID:25552931

  10. Genomic characterization of symbiotic mycoplasmas from the stomach of deep-sea isopod bathynomus sp.

    PubMed

    Wang, Yong; Huang, Jiao-Mei; Wang, Shao-Lu; Gao, Zhao-Ming; Zhang, Ai-Qun; Danchin, Antoine; He, Li-Sheng

    2016-09-01

    Deep-sea isopod scavengers such as Bathynomus sp. are able to live in nutrient-poor environments, which is likely attributable to the presence of symbiotic microbes in their stomach. In this study we recovered two draft genomes of mycoplasmas, Bg1 and Bg2, from the metagenomes of the stomach contents and stomach sac of a Bathynomus sp. sample from the South China Sea (depth of 898 m). Phylogenetic trees revealed a considerable genetic distance to other mycoplasma species for Bg1 and Bg2. Compared with terrestrial symbiotic mycoplasmas, the Bg1 and Bg2 genomes were enriched with genes encoding phosphoenolpyruvate-dependent phosphotransferase systems (PTSs) and sodium-driven symporters responsible for the uptake of sugars, amino acids and other carbohydrates. The genome of mycoplasma Bg1 contained sialic acid lyase and transporter genes, potentially enabling the bacteria to attach to the stomach sac and obtain organic carbons from various cell walls. Both of the mycoplasma genomes contained multiple copies of genes related to proteolysis and oligosaccharide degradation, which may help the host survive in low-nutrient conditions. The discovery of the different types of mycoplasma bacteria in the stomach of this deep-sea isopod affords insights into symbiotic model of deep-sea animals and genomic plasticity of mycoplasma bacteria. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Vectors for fluorescent protein tagging in Phytophthora: tools for functional genomics and cell biology.

    PubMed

    Ah-Fong, Audrey M V; Judelson, Howard S

    2011-09-01

    Fluorescent tagging has become the strategy of choice for examining the subcellular localisation of proteins. To develop a versatile community resource for this method in oomycetes, plasmids were constructed that allow the expression of either of four spectrally distinct proteins [cyan fluorescent protein (CFP), green fluorescent protein (GFP), yellow fluorescent protein (YFP), and mCherry], alone or fused at their N- or C-termini, to sequences of interest. Equivalent sets of plasmids were made using neomycin or hygromycin phosphotransferases (nptII, hpt) as selectable markers, to facilitate double-labelling and aid work in diverse species. The fluorescent proteins and drug-resistance markers were fused to transcriptional regulatory sequences from the oomycete Bremia lactucae, which are known to function in diverse oomycetes, although the promoter in the fluorescence cassette (ham34) can be replaced easily by a promoter of interest. The function of each plasmid was confirmed in Phytophthora infestans. Moreover, fusion proteins were generated using targeting sequences for the endoplasmic reticulum, Golgi, mitochondria, nuclei, and peroxisomes. Studies of the distribution of the fusions in mycelia and sporangia provided insight into cellular organisation at different stages of development. This toolbox of vectors should advance studies of gene function and cell biology in Phytophthora and other oomycetes. Copyright © 2011 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  12. Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum).

    PubMed

    Singh, H Ranjit; Deka, Manab; Das, Sudripta

    2015-07-01

    Tea is the second most consumed beverage in the world. A crop loss of up to 43 % has been reported due to blister blight disease of tea caused by a fungus, Exobasidium vexans. Thus, it directly affects the tea industry qualitatively and quantitatively. Solanum tuberosum class I chitinase gene (AF153195) is a plant pathogenesis-related gene. It was introduced into tea genome via Agrobacterium-mediated transformation with hygromycin phosphotransferase (hpt) gene conferring hygromycin resistance as plant selectable marker. A total of 41 hygromycin resistant plantlets were obtained, and PCR analysis established 12 plantlets confirming about the stable integration of transgene in the plant genome. Real-time PCR detected transgene expression in four transgenic plantlets (T28, C57, C9, and T31). Resistance to biotrophic fungal pathogen, E. vexans, was tested by detached leaf infection assay of greenhouse acclimated plantlets. An inhibitory activity against the fungal pathogen was evident from the detached leaves from the transformants compared with the control. Fungal lesion formed on control plantlet whereas the transgenic plantlets showed resistance to inoculated fungal pathogen by the formation of hypersensitivity reaction area. This result suggests that constitutive expression of the potato class I chitinase gene can be exploited to improve resistance to fungal pathogen, E. vexans, in economical perennial plantation crop like tea.

  13. Germinal and Somatic Activity of the Maize Element Activator (Ac) in Arabidopsis

    PubMed Central

    Keller, J.; Lim, E.; James-Jr., D. W.; Dooner, H. K.

    1992-01-01

    We have investigated the germinal and somatic activity of the maize Activator (Ac) element in Arabidopsis with the objective of developing an efficient transposon-based system for gene isolation in that plant. Transposition activity was assayed with a chimeric marker that consists of the cauliflower mosaic virus 35S promoter and a bacterial streptomycin phosphotransferase gene (SPT). Somatic activity was detected in seedlings germinated on plates containing streptomycin as green-resistant sectors against a background of white-sensitive cells. Germinal excisions resulted in fully green seedlings. The transposition frequency was extremely low when a single copy of the transposon was present, but appeared to increase with an increase in Ac copy number. Plants that were selected as variegated produced an increased number of green progeny. The methylation state of the Ac elements in lines with either low or high levels of excision was assessed by restriction analysis. No difference was found between these lines, indicating that the degree of methylation did not contribute to the level of Ac activity. Germinal excision events were analyzed molecularly and shown to carry reinserted transposons in about 50% of the cases. In several instances, streptomycin-resistant siblings carried the same transposed Ac element, indicating that excision had occurred prior to meiosis in the parent. We discuss parameters that need to be considered to optimize the use of Ac as a transposon tag in Arabidopsis. PMID:1322854

  14. Prototypic chromatin insulator cHS4 protects retroviral transgene from silencing in Schistosoma mansoni

    PubMed Central

    Suttiprapa, Sutas; Rinaldi, Gabriel; Brindley, Paul J.

    2011-01-01

    Vesicular stomatitis virus glycoprotein (VSVG) pseudotyped murine leukemia virus (MLV) virions can transduce schistosomes, leading to chromosomal integration of reporter transgenes. To develop VSVG-MLV for functional genomics in schistosomes, the influence of the chicken β-globin cHS4 element, a prototypic chromatin insulator, on transgene expression was examined. Plasmid pLNHX encoding the MLV 5′- and 3′-Long Terminal Repeats (LTRs) flanking the neomycin phosphotransferase gene (neo) was modified to include, within the U3 region of the 3′-LTR, active components of cHS4 insulator, the 250 bp core fused to the 400 bp 3′-region. Cultured larvae of Schistosoma mansoni were transduced with virions from producer cells transfected with control or cHS4-bearing plasmids. Schistosomules transduced with cHS4 virions expressed two to 20 times higher levels of neo than controls, while carrying comparable numbers of integrated proviral transgenes. The findings not only demonstrated that cHS4 was active in schistosomes but also they represent the first report of activity of cHS4 in any Lophotrochozoan species, which has significant implications for evolutionary conservation of heterochromatin regulation. The findings advance prospects for transgenesis in functional genomics of the schistosome genome to discover intervention targets because they provide the means to enhance and extend transgene activity including for vector based RNA interference. PMID:21918820

  15. Profile of Secreted Hydrolases, Associated Proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the Degradation of Hemicellulose

    PubMed Central

    Currie, D. H.; Guss, A. M.; Herring, C. D.; Giannone, R. J.; Johnson, C. M.; Lankford, P. K.; Brown, S. D.; Hettich, R. L.

    2014-01-01

    Thermoanaerobacterium saccharolyticum, a Gram-positive thermophilic anaerobic bacterium, grows robustly on insoluble hemicellulose, which requires a specialized suite of secreted and transmembrane proteins. We report here the characterization of proteins secreted by this organism. Cultures were grown on hemicellulose, glucose, xylose, starch, and xylan in pH-controlled bioreactors, and samples were analyzed via spotted microarrays and liquid chromatography-mass spectrometry. Key hydrolases and transporters employed by T. saccharolyticum for growth on hemicellulose were, for the most part, hitherto uncharacterized and existed in two clusters (Tsac_1445 through Tsac_1464 for xylan/xylose and Tsac_1344 through Tsac_1349 for starch). A phosphotransferase system subunit, Tsac_0032, also appeared to be exclusive to growth on glucose. Previously identified hydrolases that showed strong conditional expression changes included XynA (Tsac_1459), XynC (Tsac_0897), and a pullulanase, Apu (Tsac_1342). An omnipresent transcript and protein making up a large percentage of the overall secretome, Tsac_0361, was tentatively identified as the primary S-layer component in T. saccharolyticum, and deletion of the Tsac_0361 gene resulted in gross morphological changes to the cells. The view of hemicellulose degradation revealed here will be enabling for metabolic engineering efforts in biofuel-producing organisms that degrade cellulose well but lack the ability to catabolize C5 sugars. PMID:24907337

  16. Profile of secreted hydrolases, associated proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the degradation of hemicellulose.

    PubMed

    Currie, D H; Guss, A M; Herring, C D; Giannone, R J; Johnson, C M; Lankford, P K; Brown, S D; Hettich, R L; Lynd, L R

    2014-08-01

    Thermoanaerobacterium saccharolyticum, a Gram-positive thermophilic anaerobic bacterium, grows robustly on insoluble hemicellulose, which requires a specialized suite of secreted and transmembrane proteins. We report here the characterization of proteins secreted by this organism. Cultures were grown on hemicellulose, glucose, xylose, starch, and xylan in pH-controlled bioreactors, and samples were analyzed via spotted microarrays and liquid chromatography-mass spectrometry. Key hydrolases and transporters employed by T. saccharolyticum for growth on hemicellulose were, for the most part, hitherto uncharacterized and existed in two clusters (Tsac_1445 through Tsac_1464 for xylan/xylose and Tsac_1344 through Tsac_1349 for starch). A phosphotransferase system subunit, Tsac_0032, also appeared to be exclusive to growth on glucose. Previously identified hydrolases that showed strong conditional expression changes included XynA (Tsac_1459), XynC (Tsac_0897), and a pullulanase, Apu (Tsac_1342). An omnipresent transcript and protein making up a large percentage of the overall secretome, Tsac_0361, was tentatively identified as the primary S-layer component in T. saccharolyticum, and deletion of the Tsac_0361 gene resulted in gross morphological changes to the cells. The view of hemicellulose degradation revealed here will be enabling for metabolic engineering efforts in biofuel-producing organisms that degrade cellulose well but lack the ability to catabolize C5 sugars. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Enzymatic properties and substrate specificity of a bacterial phosphatidylcholine synthase.

    PubMed

    Aktas, Meriyem; Köster, Stefan; Kizilirmak, Sarah; Casanova, Javier C; Betz, Heidi; Fritz, Christiane; Moser, Roman; Yildiz, Özkan; Narberhaus, Franz

    2014-08-01

    Phosphatidylcholine (PC) is a rare membrane lipid in bacteria, but is crucial for virulence of the plant pathogen Agrobacterium tumefaciens and various other pathogens. Agrobacterium tumefaciens uses two independent PC biosynthesis pathways. One is dependent on the integral membrane protein PC synthase (Pcs), which catalyzes the conversion of cytidine diphosphate-diacylglycerol (CDP-DAG) and choline to PC, thereby releasing a cytidine monophosphate (CMP). Here, we show that Pcs consists of eight transmembrane segments with its N- and C-termini located in the cytoplasm. A cytoplasmic loop between the second and third membrane helix contains the majority of the conserved amino acids of a CDP-alcohol phosphotransferase motif (DGX2 ARX12 GX3 DX3 D). Using point mutagenesis, we provide evidence for a crucial role of this motif in choline binding and enzyme activity. To study the catalytic features of the enzyme, we established a purification protocol for recombinant Pcs. The enzyme forms stable oligomers and exhibits broad substrate specificity towards choline derivatives. The presence of CDP-DAG and manganese is a prerequisite for cooperative binding of choline. PC formation by Pcs is reversible and proceeds via two successive reactions. In a first choline- and manganese-independent reaction, CDP-DAG is hydrolyzed releasing a CMP molecule. The resulting phosphatidyl intermediate reacts with choline in a second manganese-dependent step to form PC. Pcs and Pcs bind by molecular sieving (1, 2, 3). © 2014 FEBS.

  18. Molecular cloning, subcellular localization and characterization of two adenylate kinases from cassava, Manihot esculenta Crantz cv. KU50.

    PubMed

    Boonrueng, Channarong; Tangpranomkorn, Surachat; Yazhisai, Uthaman; Sirikantaramas, Supaart

    2016-10-01

    Adenylate kinase (ADK) is a phosphotransferase that plays an important role in cellular energy homeostasis. Many isozymes located in different subcellular compartments have been reported. In this study, we focus on the characterization of cassava (Manihot esculenta) ADKs. We found 15 ADKs that are publicly available in the African cassava genome database. We cloned two ADKs, namely MeADK1 and MeADK2, which are phylogenetically grouped together with the plastidial ADK in potato. Both MeADK1 and MeADK2 showed 66% identity in the amino acid sequences with plastidial ADK in potato. However, we demonstrated that they are localized to mitochondria using GFP fusions of MeADK1 and MeADK2. The Escherichia coli-produced recombinant MeADK1 and MeADK2 preferred forward reactions that produce ATP. They exhibited similar specific activities. The semi-quantitative RT-PCR analysis showed that MeADK1 and MeADK2 in 2-month-old leaves have similar expression patterns under a diurnal light-dark cycle. However, MeADK2 transcripts were expressed at much higher levels than MeADK1 in 5-month-old leaves and roots. Thus, we conclude that MeADK2 might play a vital role in energy homeostasis in cassava mitochondria. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyrpides, Nikos; Anderson, Iain; Rodriguez, Jason

    We report the complete genome of Thermofilum pendens, a deep-branching, hyperthermophilic member of the order Thermoproteales within the archaeal kingdom Crenarchaeota. T. pendens is a sulfur-dependent, anaerobic heterotroph isolated from a solfatara in Iceland. It is an extracellular commensal, requiring an extract of Thermoproteus tenax for growth, and the genome sequence reveals that biosynthetic pathways for purines, most amino acids, and most cofactors are absent. In fact T. pendens has fewer biosynthetic enzymes than obligate intracellular parasites, although it does not display other features common among obligate parasites and thus does not appear to be in the process of becomingmore » a parasite. It appears that T. pendens has adapted to life in an environment rich in nutrients. T. pendens was known to utilize peptides as an energy source, but the genome reveals substantial ability to grow on carbohydrates. T. pendens is the first crenarchaeote and only the second archaeon found to have a transporter of the phosphotransferase system. In addition to fermentation, T. pendens may gain energy from sulfur reduction with hydrogen and formate as electron donors. It may also be capable of sulfur-independent growth on formate with formate hydrogenlyase. Additional novel features are the presence of a monomethylamine:corrinoid methyltransferase, the first time this enzyme has been found outside of Methanosarcinales, and a presenilin-related protein. Predicted highly expressed proteins do not include housekeeping genes, and instead include ABC transporters for carbohydrates and peptides, and CRISPR-associated proteins.« less

  20. Reticular dysgenesis–associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress

    PubMed Central

    Rissone, Alberto; Weinacht, Katja Gabriele; la Marca, Giancarlo; Bishop, Kevin; Giocaliere, Elisa; Jagadeesh, Jayashree; Felgentreff, Kerstin; Dobbs, Kerry; Al-Herz, Waleed; Jones, Marypat; Chandrasekharappa, Settara; Kirby, Martha; Wincovitch, Stephen; Simon, Karen Lyn; Itan, Yuval; DeVine, Alex; Schlaeger, Thorsten; Schambach, Axel; Sood, Raman

    2015-01-01

    Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD. PMID:26150473

  1. Analysis of T-DNA integration and generative segregation in transgenic winter triticale (x Triticosecale Wittmack)

    PubMed Central

    2012-01-01

    Background While the genetic transformation of the major cereal crops has become relatively routine, to date only a few reports were published on transgenic triticale, and robust data on T-DNA integration and segregation have not been available in this species. Results Here, we present a comprehensive analysis of stable transgenic winter triticale cv. Bogo carrying the selectable marker gene HYGROMYCIN PHOSPHOTRANSFERASE (HPT) and a synthetic green fluorescent protein gene (gfp). Progeny of four independent transgenic plants were comprehensively investigated with regard to the number of integrated T-DNA copies, the number of plant genomic integration loci, the integrity and functionality of individual T-DNA copies, as well as the segregation of transgenes in T1 and T2 generations, which also enabled us to identify homozygous transgenic lines. The truncation of some integrated T-DNAs at their left end along with the occurrence of independent segregation of multiple T-DNAs unintendedly resulted in a single-copy segregant that is selectable marker-free and homozygous for the gfp gene. The heritable expression of gfp driven by the maize UBI-1 promoter was demonstrated by confocal laser scanning microscopy. Conclusions The used transformation method is a valuable tool for the genetic engineering of triticale. Here we show that comprehensive molecular analyses are required for the correct interpretation of phenotypic data collected from the transgenic plants. PMID:23006412

  2. A system for the measurement of gene targeting efficiency in human cell lines using an antibiotic resistance-GFP fusion gene.

    PubMed

    Konishi, Yuko; Karnan, Sivasundaram; Takahashi, Miyuki; Ota, Akinobu; Damdindorj, Lkhagvasuren; Hosokawa, Yoshitaka; Konishi, Hiroyuki

    2012-09-01

    Gene targeting in a broad range of human somatic cell lines has been hampered by inefficient homologous recombination. To improve this technology and facilitate its widespread application, it is critical to first have a robust and efficient research system for measuring gene targeting efficiency. Here, using a fusion gene consisting of hygromycin B phosphotransferase and 3'-truncated enhanced GFP (HygR-5' EGFP) as a reporter gene, we created a molecular system monitoring the ratio of homologous to random integration (H/R ratio) of targeting vectors into the genome. Cell clones transduced with a reporter vector containing HygR-5' EGFP were efficiently established from two human somatic cell lines. Established HygR-5' EGFP reporter clones retained their capacity to monitor gene targeting efficiency for a longer duration than a conventional reporter system using an unfused 5' EGFP gene. With the HygR-5' EGFP reporter system, we reproduced previous findings of gene targeting frequency being up-regulated by the use of an adeno-associated viral (AAV) backbone, a promoter-trap system, or a longer homology arm in a targeting vector, suggesting that this system accurately monitors H/R ratio. Thus, our HygR-5' EGFP reporter system will assist in the development of an efficient AAV-based gene targeting technology.

  3. Transformation of Candida albicans with a synthetic hygromycin B resistance gene.

    PubMed

    Basso, Luiz R; Bartiss, Ann; Mao, Yuxin; Gast, Charles E; Coelho, Paulo S R; Snyder, Michael; Wong, Brian

    2010-12-01

    Synthetic genes that confer resistance to the antibiotic nourseothricin in the pathogenic fungus Candida albicans are available, but genes conferring resistance to other antibiotics are not. We found that multiple C. albicans strains were inhibited by hygromycin B, so we designed a 1026 bp gene (CaHygB) that encodes Escherichia coli hygromycin B phosphotransferase with C. albicans codons. CaHygB conferred hygromycin B resistance in C. albicans transformed with ars2-containing plasmids or single-copy integrating vectors. Since CaHygB did not confer nourseothricin resistance and since the nourseothricin resistance marker SAT-1 did not confer hygromycin B resistance, we reasoned that these two markers could be used for homologous gene disruptions in wild-type C. albicans. We used PCR to fuse CaHygB or SAT-1 to approximately 1 kb of 5' and 3' noncoding DNA from C. albicans ARG4, HIS1 and LEU2, and introduced the resulting amplicons into six wild-type C. albicans strains. Homologous targeting frequencies were approximately 50-70%, and disruption of ARG4, HIS1 and LEU2 alleles was verified by the respective transformants' inabilities to grow without arginine, histidine and leucine. CaHygB should be a useful tool for genetic manipulation of different C. albicans strains, including clinical isolates. Copyright © 2010 John Wiley & Sons, Ltd.

  4. Analysis of T-DNA integration and generative segregation in transgenic winter triticale (x Triticosecale Wittmack).

    PubMed

    Hensel, Goetz; Oleszczuk, Sylwia; Daghma, Diaa Eldin S; Zimny, Janusz; Melzer, Michael; Kumlehn, Jochen

    2012-09-25

    While the genetic transformation of the major cereal crops has become relatively routine, to date only a few reports were published on transgenic triticale, and robust data on T-DNA integration and segregation have not been available in this species. Here, we present a comprehensive analysis of stable transgenic winter triticale cv. Bogo carrying the selectable marker gene HYGROMYCIN PHOSPHOTRANSFERASE (HPT) and a synthetic green fluorescent protein gene (gfp). Progeny of four independent transgenic plants were comprehensively investigated with regard to the number of integrated T-DNA copies, the number of plant genomic integration loci, the integrity and functionality of individual T-DNA copies, as well as the segregation of transgenes in T1 and T2 generations, which also enabled us to identify homozygous transgenic lines. The truncation of some integrated T-DNAs at their left end along with the occurrence of independent segregation of multiple T-DNAs unintendedly resulted in a single-copy segregant that is selectable marker-free and homozygous for the gfp gene. The heritable expression of gfp driven by the maize UBI-1 promoter was demonstrated by confocal laser scanning microscopy. The used transformation method is a valuable tool for the genetic engineering of triticale. Here we show that comprehensive molecular analyses are required for the correct interpretation of phenotypic data collected from the transgenic plants.

  5. Identification of Salmonella typhimurium Genes Required for Colonization of the Chicken Alimentary Tract and for Virulence in Newly Hatched Chicks

    PubMed Central

    Turner, Arthur K.; Lovell, Margaret A.; Hulme, Scott D.; Zhang-Barber, Li; Barrow, Paul A.

    1998-01-01

    From a collection of 2,800 Tn5-TC1 transposon mutants of Salmonella typhimurium F98, 18 that showed reduced intestinal colonization of 3-week-old chicks were identified. The sites of transposon insertion were determined for most of the mutants and included insertions in the lipopolysaccharide biosynthesis genes rfaK, rfaY, rfbK, and rfbB and the genes dksA, clpB, hupA, and sipC. In addition, identification was made of an insertion into a novel gene that encodes a protein showing similarity to the IIC component of the mannose class of phosphoenolpyruvate-carbohydrate phosphotransferase systems, which we putatively called ptsC. Transduction of most of the transposon mutations to a fresh S. typhimurium F98 genetic background and construction of defined mutations in the rfbK, dksA, hupA, sipC, and ptsC genes of S. typhimurium F98 supported the role in colonization of all but the pts locus. The virulence of the rfbK, dksA, hupA, sipC, and ptsC defined mutants and clpB and rfaY transductants in 1-day-old chicks was tested. All but the ptsC and rfaY mutants were attenuated for virulence. A number of other phenotypes associated with some of the mutations are described. PMID:9573095

  6. Metabolism of Fructooligosaccharides in Lactobacillus plantarum ST-III via Differential Gene Transcription and Alteration of Cell Membrane Fluidity

    PubMed Central

    Chen, Chen; Zhao, Guozhong

    2015-01-01

    Although fructooligosaccharides (FOS) can selectively stimulate the growth and activity of probiotics and beneficially modulate the balance of intestinal microbiota, knowledge of the molecular mechanism for FOS metabolism by probiotics is still limited. Here a combined transcriptomic and physiological approach was used to survey the global alterations that occurred during the logarithmic growth of Lactobacillus plantarum ST-III using FOS or glucose as the sole carbon source. A total of 363 genes were differentially transcribed; in particular, two gene clusters were induced by FOS. Gene inactivation revealed that both of the clusters participated in the metabolism of FOS, which were transported across the membrane by two phosphotransferase systems (PTSs) and were subsequently hydrolyzed by a β-fructofuranosidase (SacA) in the cytoplasm. Combining the measurements of the transcriptome- and membrane-related features, we discovered that the genes involved in the biosynthesis of fatty acids (FAs) were repressed in cells grown on FOS; as a result, the FA profiles were altered by shortening of the carbon chains, after which membrane fluidity increased in response to FOS transport and utilization. Furthermore, incremental production of acetate was observed in both the transcriptomic and the metabolic experiments. Our results provided new insights into gene transcription, the production of metabolites, and membrane alterations that could explain FOS metabolism in L. plantarum. PMID:26319882

  7. Proton Shuttles and Phosphatase Activity in Soluble Epoxide Hydrolase

    PubMed Central

    De Vivo, Marco; Ensing, Bernd; Peraro, Matteo Dal; Gomez, German A.; Christianson, David W.; Klein, Michael L.

    2008-01-01

    Recently, a novel metal (Mg2+)-dependent phosphatase activity has been discovered in the N-terminal domain of the soluble epoxide hydrolase (sEH), opening a new branch of fatty acid metabolism and providing an additional site for drug targeting. Importantly, the sEH N-terminal fold belongs to the haloacid dehalogenase (HAD) superfamily, which comprises a vast majority of phosphotransferases. Herein we present the results of a computational study of the sEH phosphatase activity, which includes classical molecular dynamics (MD) simulations and mixed quantum mechanical/molecular mechanics (QM/MM) calculations. Based on experimental results, a two-step mechanism has been proposed and herein investigated: 1) phosphoenzyme intermediate formation; 2) phosphoenzyme intermediate hydrolysis. Building on our earlier work, we now provide a detailed description of the reaction mechanism for the whole catalytic cycle along with its free energy profile. The present computations suggest metaphosphate-like transition states for these phosphoryl transfers. They also reveal that the enzyme promotes water deprotonation and facilitates shuttling of protons via a metal-ligand connecting water-bridge (WB). These WB mediated proton shuttles are crucial for the activation of the solvent nucleophile and for the stabilization of the leaving-group. Moreover, due to the conservation of structural features in the N-terminal catalytic site of sEH and other members of the HAD superfamily, we suggest a generalization of our findings to these other metal-dependent phosphatases. PMID:17212419

  8. Virtual screening of phytochemicals to novel targets in Haemophilus ducreyi towards the treatment of Chancroid.

    PubMed

    Tripathi, Pranav; Chaudhary, Ritu; Singh, Ajeet

    2014-01-01

    Conventionally, drugs are discovered by testing chemically synthesized compounds against a battery of in vivo biological screens. Information technology and Omic science enabled us for high throughput screening of compound libraries against biological targets and hits are then tested for efficacy in cells or animals. Chancroid, caused by Haemophilus ducreyi is a public health problem and has been recognized as a cofactor for Human Immunodeficiency Virus (HIV) transmission. It facilitates HIV transmission by providing an accessible portal entry, promoting viral shedding, and recruiting macrophages as well as CD4 cells to the skin. So, there is a requirement to develop an efficient drug to combat Chancroid that can also diminish HIV infection. In-silico screening of potential inhibitors against the target may facilitate in detection of the novel lead compounds for developing an effective chemo preventive strategy against Haemophilus ducreyi. The present study has investigated the effects of approximately 1100 natural compounds that inhibit three vital enzymes viz. Phosphoenolpyruvate phosphotransferase, Acetyl-coenzyme A carboxylase and Fructose 1, 6-bisphosphatase of Haemophilus ducreyi in reference to a commercial drug Rifabutin. Results reveal that the lead compound uses less energy to bind to target. The lead compound parillin has also been predicted as less immunogenic in comparison to Rifabutin. Further, better molecular dynamics, pharmacokinetics, pharmacodynamics and ADME-T properties establish it as an efficient chancroid preventer.

  9. Subcellular localization and logistics of integral membrane protein biogenesis in Escherichia coli.

    PubMed

    Bogdanov, Mikhail; Aboulwafa, Mohammad; Saier, Milton H

    2013-01-01

    Transporters catalyze entry and exit of molecules into and out of cells and organelles, and protein-lipid interactions influence their activities. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) catalyzes transport-coupled sugar phosphorylation as well as nonvectorial sugar phosphorylation in the cytoplasm. The vectorial process is much more sensitive to the lipid environment than the nonvectorial process. Moreover, cytoplasmic micellar forms of these enzyme-porters have been identified, and non-PTS permeases have similarly been shown to exist in 'soluble' forms. The latter porters exhibit lipid-dependent activities and can adopt altered topologies by simply changing the lipid composition. Finally, intracellular membranes and vesicles exist in Escherichia coli leading to the following unanswered questions: (1) what determines whether a PTS permease catalyzes vectorial or nonvectorial sugar phosphorylation? (2) How do phospholipids influence relative amounts of the plasma membrane, intracellular membrane, inner membrane-derived vesicles and cytoplasmic micelles? (3) What regulates the route(s) of permease insertion and transfer into and between the different subcellular sites? (4) Do these various membranous forms have distinct physiological functions? (5) What methods should be utilized to study the biogenesis and interconversion of these membranous structures? While research concerning these questions is still in its infancy, answers will greatly enhance our understanding of protein-lipid interactions and how they control the activities, conformations, cellular locations and biogenesis of integral membrane proteins. Copyright © 2013 S. Karger AG, Basel.

  10. Electron crystallography reveals that substrate release from the PTS IIC glucose transporter is coupled to a subtle conformational change.

    PubMed

    Kalbermatter, David; Chiu, Po-Lin; Jeckelmann, Jean-Marc; Ucurum, Zöhre; Walz, Thomas; Fotiadis, Dimitrios

    2017-07-01

    The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) is a structurally and functionally complex system that mediates sugar uptake in bacteria. Besides several soluble subunits, the glucose-specific PTS includes the integral membrane protein IICB that couples the transmembrane transport of glucose to its phosphorylation. Here, we used electron crystallography of sugar-embedded tubular crystals of the glucose-specific IIC transport domain from Escherichia coli (ecIIC glc ) to visualize the structure of the transporter in the presence and absence of its substrate. Using an in vivo transport assay and binding competition experiments, we first established that, while it transports d-glucose, ecIIC glc does not bind l-glucose. We then determined the projection structure of ecIIC glc from tubular crystals embedded in d- and l-glucose and found a subtle conformational change. From comparison of the ecIIC glc projection maps with crystal structures of other IIC transporters, we can deduce that the transporter adopts an inward-facing conformation, and that the maps in the presence and absence of the substrate reflect the transporter before and after release of the transported glucose into the cytoplasm. The transition associated with substrate release appears to require a subtle structural rearrangement in the region that includes hairpin 1. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Molecular characterization of group A Streptococcus maltodextrin catabolism and its role in pharyngitis

    PubMed Central

    Shelburne, Samuel A.; Keith, David B.; Davenport, Michael T.; Horstmann, Nicola; Brennan, Richard G.; Musser, James M.

    2008-01-01

    Summary We previously demonstrated that the cell-surface lipoprotein MalE contributes to GAS maltose/maltodextrin utilization, but MalE inactivation does not completely abrogate GAS catabolism of maltose or maltotriose. Using a genome-wide approach, we identified the GAS phosphotransferase system (PTS) responsible for non-MalE maltose/maltotriose transport. This PTS is encoded by an open reading frame (M5005_spy1692) previously annotated as ptsG based on homology with the glucose PTS in Bacillus subtilis. Genetic inactivation of M5005_spy1692 significantly reduced transport rates of radiolabeled maltose and maltotriose, but not glucose, leading us to propose its reannotation as malT for maltose transporter. The ΔmalT, ΔmalE, and ΔmalE:malT strains were significantly attenuated in their growth in human saliva and in their ability to catabolize α-glucans digested by purified human salivary α-amylase. Compared to wild-type, the three isogenic mutant strains were significantly impaired in their ability to colonize the mouse oropharynx. Finally, we discovered that the transcript levels of maltodextrin utilization genes are regulated by competitive binding of the maltose repressor MalR and catabolite control protein A. These data provide novel insights into regulation of the GAS maltodextrin genes and their role in GAS host-pathogen interaction, thereby increasing the understanding of links between nutrient acquisition and virulence in common human pathogens. PMID:18485073

  12. Profile of Secreted Hydrolases, Associated Proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the Degradation of Hemicellulose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Devin; Guss, Adam M; Herring, Christopher

    2014-01-01

    Thermoanaerobacterium saccharolyticum, a Gram-positive thermophilic anaerobic bacterium, grows robustly on insoluble hemicellulose, which requires a specialized suite of secreted and transmembrane proteins. We report here the characterization of proteins secreted by this organism. Cultures were grown on hemicellulose, glucose, xylose, starch, and xylan in pH-controlled bioreactors, and samples were analyzed via spotted microarrays and liquid chromatography-mass spectrometry. Key hydrolases and transporters employed by T. saccharolyticum for growth on hemicellulose were, for the most part, hitherto uncharacterized and existed in two clusters (Tsac_1445 through Tsac_1464 for xylan/xylose and Tsac_1344 through Tsac_1349 for starch). A phosphotransferase system subunit, Tsac_0032, also appeared tomore » be exclusive to growth on glucose. Previously identified hydrolases that showed strong conditional expression changes included XynA (Tsac_1459), XynC (Tsac_0897), and a pullulanase, Apu (Tsac_1342). An omnipresent transcript and protein making up a large percentage of the overall secretome, Tsac_0361, was tentatively identified as the primary S-layer component in T. saccharolyticum, and deletion of the Tsac_0361 gene resulted in gross morphological changes to the cells. The view of hemicellulose degradation revealed here will be enabling for metabolic engineering efforts in biofuel-producing organisms that degrade cellulose well but lack the ability to catabolize C5 sugars« less

  13. The Mannitol Operon Repressor MTIR belongs to a new class of transcription regulators in bacteria.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, K.; Borovilos, M.; Zhou, M

    2009-12-25

    Many bacteria express phosphoenolpyruvate-dependent phosphotransferase systems (PTS). The mannitol-specific PTS catalyze the uptake and phosphorylation of d-mannitol. The uptake system comprises several genes encoded in the single operon. The expression of the mannitol operon is regulated by a proposed transcriptional factor, mannitol operon repressor (MtlR) that was first studied in Escherichia coli. Here we report the first crystal structures of MtlR from Vibrio parahemeolyticus (Vp-MtlR) and its homolog YggD protein from Shigella flexneri (Sf-YggD). MtlR and YggD belong to the same protein family (Pfam05068). Although Vp-MtlR and Sf-YggD share low sequence identity (22%), their overall structures are very similar, representingmore » a novel all {alpha}-helical fold, and indicate similar function. However, their lack of any known DNA-binding structural motifs and their unfavorable electrostatic properties imply that MtlR/YggD are unlikely to bind a specific DNA operator directly as proposed earlier. This structural observation is further corroborated by in vitro DNA-binding studies of E. coli MtlR (Ec-MtlR), which detected no interaction of Ec-MtlR with the well characterized mannitol operator/promoter region. Therefore, MtlR/YggD belongs to a new class of transcription factors in bacteria that may regulate gene expression indirectly as a part of a larger transcriptional complex.« less

  14. Establishment of an Arbitrary PCR for Rapid Identification of Tn917 Insertion Sites in Staphylococcus epidermidis: Characterization of Biofilm-Negative and Nonmucoid Mutants

    PubMed Central

    Knobloch, Johannes K.-M.; Nedelmann, Max; Kiel, Kathrin; Bartscht, Katrin; Horstkotte, Matthias A.; Dobinsky, Sabine; Rohde, Holger; Mack, Dietrich

    2003-01-01

    Transposon mutagenesis with the Enterococcus faecalis transposon Tn917 is a genetic approach frequently used to identify genes related with specific phenotypes in gram-positive bacteria. We established an arbitrary PCR for the rapid and easy identification of Tn917 insertion sites in Staphylococcus epidermidis with six independent, well-characterized biofilm-negative Tn917 transposon mutants, which were clustered in the icaADBC gene locus or harbor Tn917 in the regulatory gene rsbU. For all six of these mutants, short chromosomal DNA fragments flanking both transposon ends could be amplified. All fragments were sufficient to correctly identify the Tn917 insertion sites in the published S. epidermidis genomes. By using this technique, the Tn917 insertion sites of three not-yet-characterized biofilm-negative or nonmucoid mutants were identified. In the biofilm-negative and nonmucoid mutant M12, Tn917 is inserted into a gene homologous to the regulatory gene purR of Bacillus subtilis and Staphylococcus aureus. The Tn917 insertions of the nonmucoid but biofilm-positive mutants M16 and M20 are located in genes homologous to components of the phosphoenolpyruvate-sugar phosphotransferase system (PTS) of B. subtilis, S. aureus, and Staphylococcus carnosus, indicating an influence of the PTS on the mucoid phenotype in S. epidermidis. PMID:14532029

  15. Construction and applications of yellow fever virus replicons.

    PubMed

    Jones, Christopher T; Patkar, Chinmay G; Kuhn, Richard J

    2005-01-20

    Subgenomic replicons of yellow fever virus (YFV) were constructed to allow expression of heterologous reporter genes in a replication-dependent manner. Expression of the antibiotic resistance gene neomycin phosphotransferase II (Neo) from one of these YFV replicons allowed selection of a stable population of cells (BHK-REP cells) in which the YFV replicon persistently replicated. BHK-REP cells were successfully used to trans-complement replication-defective YFV replicons harboring large internal deletions within either the NS1 or NS3 proteins. Although replicons with large deletions in either NS1 or NS3 were trans-complemented in BHK-REP, replicons that contained deletions of NS3 were trans-complemented at lower levels. In addition, replicons that retained the N-terminal protease domain of NS3 in cis were trans-complemented with higher efficiency than replicons in which both the protease and helicase domains of NS3 were deleted. To study packaging of YFV replicons, Sindbis replicons were constructed that expressed the YFV structural proteins in trans. Using these Sindbis replicons, both replication-competent and trans-complemented, replication-defective YFV replicons could be packaged into pseudo-infectious particles (PIPs). Although these results eliminate a potential role of either NS1 or full-length NS3 in cis for packaging and assembly of the flavivirus virion, they do not preclude the possibility that these proteins may act in trans during these processes.

  16. Structural basis for the sequestration of the anti-σ(70) factor Rsd from σ(70) by the histidine-containing phosphocarrier protein HPr.

    PubMed

    Park, Young Ha; Um, Si Hyeon; Song, Saemee; Seok, Yeong Jae; Ha, Nam Chul

    2015-10-01

    Histidine-containing phosphocarrier protein (HPr) is a general component of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) involved in the phosphorylation-coupled transport of numerous sugars called PTS sugars. HPr mainly exists in a dephosphorylated form in the presence of PTS sugars in the medium, while its phosphorylation increases in the absence of PTS sugars. A recent study revealed that the dephosphorylated form of HPr binds and antagonizes the function of the antisigma factor Rsd. This anti-sigma factor sequesters the housekeeping sigma factor σ(70) to facilitate switching of the sigma subunit on RNA polymerase from σ(70) to the stress-responsive sigma factor σ(S) in stationary-phase cells. In this study, the structure of the complex of Rsd and HPr was determined at 2.1 Å resolution and revealed that the binding site for HPr on the surface of Rsd partly overlaps with that for σ(70). The localization of the phosphorylation site on HPr at the binding interface for Rsd explains why phosphorylation of HPr abolishes its binding to Rsd. The mutation of crucial residues involved in the HPr-Rsd interaction significantly influenced the competition between HPr and σ(70) for binding to Rsd both in vitro and in vivo. The results provide a structural basis for the linkage of global gene regulation to nutrient availability in the external environment.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalska, Karolina; Cuff, Marianne E.; Structural Biology Center, Biosciences Division, Argonne National Laboratory

    The crystal structure of 2-oxo-3-deoxygalactonate kinase from the De Ley–Doudoroff pathway of galactose metabolism has been determined at 2.1 Å resolution. In most organisms, efficient d-galactose utilization requires the highly conserved Leloir pathway that converts d-galactose to d-glucose 1-phosphate. However, in some bacterial and fungal species alternative routes of d-galactose assimilation have been identified. In the so-called De Ley–Doudoroff pathway, d-galactose is metabolized into pyruvate and d-glyceraldehyde 3-phosphate in five consecutive reactions carried out by specific enzymes. The penultimate step in this pathway involves the phosphorylation of 2-oxo-3-deoxygalactonate to 2-oxo-3-deoxygalactonate 6-phosphate catalyzed by 2-oxo-3-deoxygalactonate kinase, with ATP serving as amore » phosphoryl-group donor. Here, a crystal structure of 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae determined at 2.1 Å resolution is reported, the first structure of an enzyme from the De Ley–Doudoroff pathway. Structural comparison indicates that the enzyme belongs to the ASKHA (acetate and sugar kinases/hsc70/actin) family of phosphotransferases. The protein is composed of two α/β domains, each of which contains a core common to all family members. Additional elements introduced between conserved structural motifs define the unique features of 2-oxo-3-deoxygalactonate kinase and possibly determine the biological function of the protein.« less

  18. Diversity and genomic insights into the uncultured Chloroflexi from the human microbiota.

    PubMed

    Campbell, Alisha G; Schwientek, Patrick; Vishnivetskaya, Tatiana; Woyke, Tanja; Levy, Shawn; Beall, Clifford J; Griffen, Ann; Leys, Eugene; Podar, Mircea

    2014-09-01

    Many microbial phyla that are widely distributed in open environments have few or no representatives within animal-associated microbiota. Among them, the Chloroflexi comprises taxonomically and physiologically diverse lineages adapted to a wide range of aquatic and terrestrial habitats. A distinct group of uncultured chloroflexi related to free-living anaerobic Anaerolineae inhabits the mammalian gastrointestinal tract and includes low-abundance human oral bacteria that appear to proliferate in periodontitis. Using a single-cell genomics approach, we obtained the first draft genomic reconstruction for these organisms and compared their inferred metabolic potential with free-living chloroflexi. Genomic data suggest that oral chloroflexi are anaerobic heterotrophs, encoding abundant carbohydrate transport and metabolism functionalities, similar to those seen in environmental Anaerolineae isolates. The presence of genes for a unique phosphotransferase system and N-acetylglucosamine metabolism suggests an important ecological niche for oral chloroflexi in scavenging material from lysed bacterial cells and the human tissue. The inferred ability to produce sialic acid for cell membrane decoration may enable them to evade the host defence system and colonize the subgingival space. As with other low abundance but persistent members of the microbiota, discerning community and host factors that influence the proliferation of oral chloroflexi may help understand the emergence of oral pathogens and the microbiota dynamics in health and disease states. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota.

    PubMed

    Polansky, Ondrej; Sekelova, Zuzana; Faldynova, Marcela; Sebkova, Alena; Sisak, Frantisek; Rychlik, Ivan

    2015-12-28

    The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota

    PubMed Central

    Polansky, Ondrej; Sekelova, Zuzana; Faldynova, Marcela; Sebkova, Alena; Sisak, Frantisek

    2015-01-01

    The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established. PMID:26712550

  1. Structure of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia revealed by crystallographic and small-angle X-ray scattering analysis.

    PubMed

    Smith, Clyde A; Toth, Marta; Weiss, Thomas M; Frase, Hilary; Vakulenko, Sergei B

    2014-10-01

    Broad-spectrum resistance to aminoglycoside antibiotics in clinically important Gram-positive staphylococcal and enterococcal pathogens is primarily conferred by the bifunctional enzyme AAC(6')-Ie-APH(2'')-Ia. This enzyme possesses an N-terminal coenzyme A-dependent acetyltransferase domain [AAC(6')-Ie] and a C-terminal GTP-dependent phosphotransferase domain [APH(2'')-Ia], and together they produce resistance to almost all known aminoglycosides in clinical use. Despite considerable effort over the last two or more decades, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. In a recent breakthrough, the structure of the isolated C-terminal APH(2'')-Ia enzyme was determined as the binary Mg2GDP complex. Here, the high-resolution structure of the N-terminal AAC(6')-Ie enzyme is reported as a ternary kanamycin/coenzyme A abortive complex. The structure of the full-length bifunctional enzyme has subsequently been elucidated based upon small-angle X-ray scattering data using the two crystallographic models. The AAC(6')-Ie enzyme is joined to APH(2'')-Ia by a short, predominantly rigid linker at the N-terminal end of a long α-helix. This α-helix is in turn intrinsically associated with the N-terminus of APH(2'')-Ia. This structural arrangement supports earlier observations that the presence of the intact α-helix is essential to the activity of both functionalities of the full-length AAC(6')-Ie-APH(2'')-Ia enzyme.

  2. The HPr(Ser) Kinase of Streptococcus salivarius: Purification, Properties, and Cloning of the hprK Gene

    PubMed Central

    Brochu, Denis; Vadeboncoeur, Christian

    1999-01-01

    In gram-positive bacteria, HPr, a protein of the phosphoenolpyruvate:sugar phosphotransferase system, is phosphorylated on a serine residue at position 46 by an ATP-dependent protein kinase. The HPr(Ser) kinase of Streptococcus salivarius ATCC 25975 was purified, and the encoding gene (hprK) was cloned by using a nucleotide probe designed from the N-terminal amino acid sequence. The predicted amino acid sequence of the S. salivarius enzyme showed 45% identity with the Bacillus subtilis enzyme, the conserved residues being located mainly in the C-terminal half of the protein. The predicted hprK gene product has a molecular mass of 34,440 Da and a pI of 5.6. These values agree well with those found experimentally by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, molecular sieve chromatography in the presence of guanidine hydrochloride, and chromatofocusing using the purified protein. The native protein migrates on a Superdex 200 HR column as a 330,000-Da protein, suggesting that the HPr(Ser) kinase is a decamer. The enzyme requires Mg2+ for activity and functions optimally at pH 7.5. Unlike the enzyme from other gram-positive bacteria, the HPr(Ser) kinase from S. salivarius is not stimulated by FDP or other glycolytic intermediates. The enzyme is inhibited by inorganic phosphate, and its Kms for HPr and ATP are 31 μM and 1 mM, respectively. PMID:9922231

  3. Nitrogen Assimilation in Escherichia coli: Putting Molecular Data into a Systems Perspective

    PubMed Central

    van Heeswijk, Wally C.; Westerhoff, Hans V.

    2013-01-01

    SUMMARY We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now. PMID:24296575

  4. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    PubMed

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  5. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    PubMed Central

    TEIXEIRA, Bertinellys; RODULFO, Hectorina; CARREÑO, Numirin; GUZMÁN, Militza; SALAZAR, Elsa; DONATO, Marcos DE

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America. PMID:27007556

  6. Evaluation of Aminoglycoside and Carbapenem Resistance in a Collection of Drug-Resistant Pseudomonas aeruginosa Clinical Isolates.

    PubMed

    Holbrook, Selina Y L; Garneau-Tsodikova, Sylvie

    2017-12-20

    Pseudomonas aeruginosa, a Gram-negative bacterium, is a member of the ESKAPE pathogens and one of the leading causes of healthcare-associated infections worldwide. Aminoglycosides (AGs) are recognized for their efficacy against P. aeruginosa. The most common resistance mechanism against AGs is the acquisition of AG-modifying enzymes (AMEs) by the bacteria, including AG N-acetyltransferases (AACs), AG O-phosphotransferases (APHs), and AG O-nucleotidyltransferases (ANTs). In this study, we obtained 122 multidrug-resistant P. aeruginosa clinical isolates and evaluated the antibacterial effects of six AGs and two carbapenems alone against all clinical isolates, and in combination against eight selected strains. We further probed for four representatives of the most common AME genes [aac(6')-Ib, aac(3)-IV, ant(2")-Ia, and aph(3')-Ia] by polymerase chain reaction (PCR) and compared the AME patterns of these 122 clinical isolates to their antibiotic resistance profile. Among the diverse antibiotics resistance profile displayed by these clinical isolates, we found correlations between the resistance to various AGs as well as between the resistance to one AG and the resistance to carbapenems. PCR results revealed that the presence of aac(6')-Ib renders these isolates more resistant to a variety of antibiotics. The correlation between resistance to various AGs and carbapenems partially reflects the complex resistance strategies adapted in these pathogens and encourages the development of strategic treatment for each P. aeruginosa infection by considering the genetic information of each isolated bacteria.

  7. Functional Analysis of the N-Acetylglucosamine Metabolic Genes of Streptomyces coelicolor and Role in Control of Development and Antibiotic Production

    PubMed Central

    Świątek, Magdalena A.; Tenconi, Elodie; Rigali, Sébastien

    2012-01-01

    N-Acetylglucosamine, the monomer of chitin, is a favored carbon and nitrogen source for streptomycetes. Its intracellular catabolism requires the combined actions of the N-acetylglucosamine-6-phosphate (GlcNAc-6P) deacetylase NagA and the glucosamine-6-phosphate (GlcN-6P) deaminase/isomerase NagB. GlcNAc acts as a signaling molecule in the DasR-mediated nutrient sensing system, activating development and antibiotic production under poor growth conditions (famine) and blocking these processes under rich conditions (feast). In order to understand how a single nutrient can deliver opposite information according to the nutritional context, we carried out a mutational analysis of the nag metabolic genes nagA, nagB, and nagK. Here we show that the nag genes are part of the DasR regulon in Streptomyces coelicolor, which explains their transcriptional induction by GlcNAc. Most likely as the result of the intracellular accumulation of GlcN-6P, nagB deletion mutants fail to grow in the presence of GlcNAc. This toxicity can be alleviated by the additional deletion of nagA. We recently showed that in S. coelicolor, GlcNAc is internalized as GlcNAc-6P via the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS). Considering the relevance of GlcNAc for the control of antibiotic production, improved insight into GlcNAc metabolism in Streptomyces may provide new leads toward biotechnological applications. PMID:22194457

  8. Characterization of Class IIa Bacteriocin Resistance in Enterococcus faecium.

    PubMed

    Geldart, Kathryn; Kaznessis, Yiannis N

    2017-04-01

    Vancomycin-resistant enterococci, particularly resistant Enterococcus faecium , pose an escalating threat in nosocomial environments because of their innate resistance to many antibiotics, including vancomycin, a treatment of last resort. Many class IIa bacteriocins strongly target these enterococci and may offer a potential alternative for the management of this pathogen. However, E. faecium 's resistance to these peptides remains relatively uncharacterized. Here, we explored the development of resistance of E. faecium to a cocktail of three class IIa bacteriocins: enterocin A, enterocin P, and hiracin JM79. We started by quantifying the frequency of resistance to these peptides in four clinical isolates of E. faecium We then investigated the levels of resistance of E. faecium 6E6 mutants as well as their fitness in different carbon sources. In order to elucidate the mechanism of resistance of E. faecium to class IIa bacteriocins, we completed whole-genome sequencing of resistant mutants and performed reverse transcription-quantitative PCR (qRT-PCR) of a suspected target mannose phosphotransferase (ManPTS). We then verified this ManPTS's role in bacteriocin susceptibility by showing that expression of the ManPTS in Lactococcus lactis results in susceptibility to the peptide cocktail. Based on the evidence found from these studies, we conclude that, in accord with other studies in E. faecalis and Listeria monocytogenes , resistance to class IIa bacteriocins in E. faecium 6E6 is likely caused by the disruption of a particular ManPTS, which we believe we have identified. Copyright © 2017 American Society for Microbiology.

  9. Characterization of Class IIa Bacteriocin Resistance in Enterococcus faecium

    PubMed Central

    Geldart, Kathryn

    2017-01-01

    ABSTRACT Vancomycin-resistant enterococci, particularly resistant Enterococcus faecium, pose an escalating threat in nosocomial environments because of their innate resistance to many antibiotics, including vancomycin, a treatment of last resort. Many class IIa bacteriocins strongly target these enterococci and may offer a potential alternative for the management of this pathogen. However, E. faecium's resistance to these peptides remains relatively uncharacterized. Here, we explored the development of resistance of E. faecium to a cocktail of three class IIa bacteriocins: enterocin A, enterocin P, and hiracin JM79. We started by quantifying the frequency of resistance to these peptides in four clinical isolates of E. faecium. We then investigated the levels of resistance of E. faecium 6E6 mutants as well as their fitness in different carbon sources. In order to elucidate the mechanism of resistance of E. faecium to class IIa bacteriocins, we completed whole-genome sequencing of resistant mutants and performed reverse transcription-quantitative PCR (qRT-PCR) of a suspected target mannose phosphotransferase (ManPTS). We then verified this ManPTS's role in bacteriocin susceptibility by showing that expression of the ManPTS in Lactococcus lactis results in susceptibility to the peptide cocktail. Based on the evidence found from these studies, we conclude that, in accord with other studies in E. faecalis and Listeria monocytogenes, resistance to class IIa bacteriocins in E. faecium 6E6 is likely caused by the disruption of a particular ManPTS, which we believe we have identified. PMID:28115354

  10. Aldosterone Upregulates Transient Receptor Potential Melastatin 7 (TRPM7)*

    PubMed Central

    Valinsky, William C.; Jolly, Anna; Miquel, Perrine

    2016-01-01

    Transient receptor potential melastatin 7 (TRPM7) is a ubiquitously expressed Mg2+-permeable ion channel fused to a C-terminal α-kinase domain. Recently, aldosterone was shown to increase intracellular Mg2+ levels and alter inflammatory signaling in TRPM7-expressing HEK293 cells. This study was undertaken to assess whether these effects were related to an aldosterone-mediated increase of TRPM7 current and/or plasma membrane localization. Using HEK293 cells stably expressing WT-TRPM7, we found that 18-h application of aldosterone significantly increased TRPM7 current and TRPM7 plasma membrane protein expression by 48% and 34%, respectively. The aldosterone-mediated increase of TRPM7 current was inhibited by eplerenone, a mineralocorticoid receptor (MR) blocker, and GSK-650394, an inhibitor of the serum- and glucocorticoid-regulated kinase 1 (SGK1). SGK1 blockade also prevented the aldosterone-induced increase of TRPM7 plasma membrane protein. It was further determined that K1648R-TRPM7, the phosphotransferase-inactive TRPM7 mutant, was unresponsive to aldosterone. Therefore, chronic aldosterone treatment increases the plasma membrane expression of TRPM7, which is associated with an increase of TRPM7 current. This process occurs via an MR-dependent, genomic signaling cascade involving SGK1 and a functioning TRPM7 α-kinase domain. We suggest that this mechanism may be of general relevance when interpreting the effects of aldosterone because the MR receptor is found in multiple tissues, and TRPM7 and SGK1 are ubiquitously expressed. PMID:27466368

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.; Chassy, B.M.; Egan, W.

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of (/sup 14/C)lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same.more » During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution /sup 31/P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM.« less

  12. Multiplex PCR To Identify Macrolide Resistance Determinants in Mannheimia haemolytica and Pasteurella multocida

    PubMed Central

    Rose, Simon; Desmolaize, Benoit; Jaju, Puneet; Wilhelm, Cornelia; Warrass, Ralf

    2012-01-01

    The bacterial pathogens Mannheimia haemolytica and Pasteurella multocida are major etiological agents in respiratory tract infections of cattle. Although these infections can generally be successfully treated with veterinary macrolide antibiotics, a few recent isolates have shown resistance to these drugs. Macrolide resistance in members of the family Pasteurellaceae is conferred by combinations of at least three genes: erm(42), which encodes a monomethyltransferase and confers a type I MLSB (macrolide, lincosamide, and streptogramin B) phenotype; msr(E), which encodes a macrolide efflux pump; and mph(E), which encodes a macrolide-inactivating phosphotransferase. Here, we describe a multiplex PCR assay that detects the presence of erm(42), msr(E), and mph(E) and differentiates between these genes. In addition, the assay distinguishes P. multocida from M. haemolytica by amplifying distinctive fragments of the 23S rRNA (rrl) genes. One rrl fragment acts as a general indicator of gammaproteobacterial species and confirms whether the PCR assay has functioned as intended on strains that are negative for erm(42), msr(E), and mph(E). The multiplex system has been tested on more than 40 selected isolates of P. multocida and M. haemolytica and correlated with MICs for the veterinary macrolides tulathromycin and tilmicosin, and the newer compounds gamithromycin and tildipirosin. The multiplex PCR system gives a rapid and robustly accurate determination of macrolide resistance genotypes and bacterial genus, matching results from microbiological methods and whole-genome sequencing. PMID:22564832

  13. PGASO: A synthetic biology tool for engineering a cellulolytic yeast

    PubMed Central

    2012-01-01

    Background To achieve an economical cellulosic ethanol production, a host that can do both cellulosic saccharification and ethanol fermentation is desirable. However, to engineer a non-cellulolytic yeast to be such a host requires synthetic biology techniques to transform multiple enzyme genes into its genome. Results A technique, named Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO), that employs overlapping oligonucleotides for recombinatorial assembly of gene cassettes with individual promoters, was developed. PGASO was applied to engineer Kluyveromycesmarxianus KY3, which is a thermo- and toxin-tolerant yeast. We obtained a recombinant strain, called KR5, that is capable of simultaneously expressing exoglucanase and endoglucanase (both of Trichodermareesei), a beta-glucosidase (from a cow rumen fungus), a neomycin phosphotransferase, and a green fluorescent protein. High transformation efficiency and accuracy were achieved as ~63% of the transformants was confirmed to be correct. KR5 can utilize beta-glycan, cellobiose or CMC as the sole carbon source for growth and can directly convert cellobiose and beta-glycan to ethanol. Conclusions This study provides the first example of multi-gene assembly in a single step in a yeast species other than Saccharomyces cerevisiae. We successfully engineered a yeast host with a five-gene cassette assembly and the new host is capable of co-expressing three types of cellulase genes. Our study shows that PGASO is an efficient tool for simultaneous expression of multiple enzymes in the kefir yeast KY3 and that KY3 can serve as a host for developing synthetic biology tools. PMID:22839502

  14. RNAi-mediated resistance to rice black-streaked dwarf virus in transgenic rice.

    PubMed

    Ahmed, Mohamed M S; Bian, Shiquan; Wang, Muyue; Zhao, Jing; Zhang, Bingwei; Liu, Qiaoquan; Zhang, Changquan; Tang, Shuzhu; Gu, Minghong; Yu, Hengxiu

    2017-04-01

    Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, causes significant economic losses in rice production in China and many other Asian countries. Development of resistant varieties by using conventional breeding methods is limited, as germplasm with high level of resistance to RBSDV have not yet been found. One of the most promising methods to confer resistance against RBSDV is the use of RNA interference (RNAi) technology. RBSDV non-structural protein P7-2, encoded by S7-2 gene, is a potential F-box protein and involved in the plant-virus interaction through the ubiquitination pathway. P8, encoded by S8 gene, is the minor core protein that possesses potent active transcriptional repression activity. In this study, we transformed rice calli using a mini-twin T-DNA vector harboring RNAi constructs of the RBSDV genes S7-2 or S8, and obtained plants harboring the target gene constructs and the selectable marker gene, hygromycin phosphotransferase (HPT). From the offspring of these transgenic plants, we obtained selectable marker (HPT gene)-free plants. Homozygous T 5 transgenic lines which harbored either S7-2-RNAi or S8-RNAi exhibited high level resistance against RBSDV under field infection pressure from indigenous viruliferous small brown planthoppers. Thus, our results showed that RNA interference with the expression of S7-2 or S8 genes seemed an effective way to induce high level resistance in rice against RBSD disease.

  15. Development and Validation of a Fluorescent Multiplexed Immunoassay for Measurement of Transgenic Proteins in Cotton (Gossypium hirsutum).

    PubMed

    Yeaman, Grant R; Paul, Sudakshina; Nahirna, Iryna; Wang, Yongcheng; Deffenbaugh, Andrew E; Liu, Zi Lucy; Glenn, Kevin C

    2016-06-22

    In order to provide farmers with better and more customized alternatives to improve yields, combining multiple genetically modified (GM) traits into a single product (called stacked trait crops) is becoming prevalent. Trait protein expression levels are used to characterize new GM products and establish exposure limits, two important components of safety assessment. Developing a multiplexed immunoassay capable of measuring all trait proteins in the same sample allows for higher sample throughput and savings in both time and expense. Fluorescent (bead-based) multiplexed immunoassays (FMI) have gained wide acceptance in mammalian research and in clinical applications. In order to facilitate the measurement of stacked GM traits, we have developed and validated an FMI assay that can measure five different proteins (β-glucuronidase, neomycin phosphotransferase II, Cry1Ac, Cry2Ab2, and CP4 5-enolpyruvyl-shikimate-3-phosphate synthase) present in cotton leaf from a stacked trait product. Expression levels of the five proteins determined by FMI in cotton leaf tissues have been evaluated relative to expression levels determined by enzyme-linked immunosorbent assays (ELISAs) of the individual proteins and shown to be comparable. The FMI met characterization requirements similar to those used for ELISA. Therefore, it is reasonable to conclude that FMI results are equivalent to those determined by conventional individual ELISAs to measure GM protein expression levels in stacked trait products but with significantly higher throughput, reduced time, and more efficient use of resources.

  16. Tissue culture specificity of the tobacco ASA2 promoter driving hpt as a selectable marker for soybean transformation selection.

    PubMed

    Zernova, Olga; Zhong, Wei; Zhang, Xing-Hai; Widholm, Jack

    2008-11-01

    This study was carried out to determine if the tobacco anthranilate synthase ASA2 2.3 kb promoter drives tissue culture specific expression and if it is strong enough to drive hpt (hygromycin phosphotransferase) gene expression at a level sufficient to allow selection of transformed soybean embryogenic culture lines. A number of transformed cell lines were selected showing that the promoter was strong enough. Northern blot analysis of plant tissues did not detect hpt mRNA in the untransformed control or in the ASA2-hpt plants except in developing seeds while hpt mRNA was detected in all tissues of the CaMV35S-hpt positive control line plants. However, when the more sensitive RT-PCR assay was used all tissues of the ASA2-hpt plants except roots and mature seeds were found to contain detectable hpt mRNA. Embryogenic tissue cultures initiated from the ASA2-hpt plants contained hpt mRNA detectable by both northern and RT-PCR analysis and the cultures were hygromycin resistant. Friable callus initiated from leaves of ASA2-hpt plants did in some cases contain hpt mRNA that was only barely detectable by northern hybridization even though the callus was very hygromycin resistant. Thus the ASA2 promoter is strong enough to drive sufficient hpt expression in soybean embryogenic cultures for hygromycin selection and only very low levels of expression were found in most plant tissues with none in mature seeds.

  17. Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris.

    PubMed

    Cha, Thye San; Yee, Willy; Aziz, Ahmad

    2012-04-01

    The successful establishment of an Agrobacterium-mediated transformation method and optimisation of six critical parameters known to influence the efficacy of Agrobacterium T-DNA transfer in the unicellular microalga Chlorella vulgaris (UMT-M1) are reported. Agrobacterium tumefaciens strain LBA4404 harbouring the binary vector pCAMBIA1304 containing the gfp:gusA fusion reporter and a hygromycin phosphotransferase (hpt) selectable marker driven by the CaMV35S promoter were used for transformation. Transformation frequency was assessed by monitoring transient β-glucuronidase (GUS) expression 2 days post-infection. It was found that co-cultivation temperature at 24°C, co-cultivation medium at pH 5.5, 3 days of co-cultivation, 150 μM acetosyringone, Agrobacterium density of 1.0 units (OD(600)) and 2 days of pre-culture were optimum variables which produced the highest number of GUS-positive cells (8.8-20.1%) when each of these parameters was optimised individually. Transformation conducted with the combination of all optimal parameters above produced 25.0% of GUS-positive cells, which was almost a threefold increase from 8.9% obtained from un-optimised parameters. Evidence of transformation was further confirmed in 30% of 30 randomly-selected hygromycin B (20 mg L(-1)) resistant colonies by polymerase chain reaction (PCR) using gfp:gusA and hpt-specific primers. The developed transformation method is expected to facilitate the genetic improvement of this commercially-important microalga.

  18. Structure and function of APH(4)-Ia, a hygromycin B resistance enzyme.

    PubMed

    Stogios, Peter J; Shakya, Tushar; Evdokimova, Elena; Savchenko, Alexei; Wright, Gerard D

    2011-01-21

    The aminoglycoside phosphotransferase (APH) APH(4)-Ia is one of two enzymes responsible for bacterial resistance to the atypical aminoglycoside antibiotic hygromycin B (hygB). The crystal structure of APH(4)-Ia enzyme was solved in complex with hygB at 1.95 Å resolution. The APH(4)-Ia structure adapts a general two-lobe architecture shared by other APH enzymes and eukaryotic kinases, with the active site located at the interdomain cavity. The enzyme forms an extended hydrogen bond network with hygB primarily through polar and acidic side chain groups. Individual alanine substitutions of seven residues involved in hygB binding did not have significant effect on APH(4)-Ia enzymatic activity, indicating that the binding affinity is spread across a distributed network. hygB appeared as the only substrate recognized by APH(4)-Ia among the panel of 14 aminoglycoside compounds. Analysis of the active site architecture and the interaction with the hygB molecule demonstrated several unique features supporting such restricted substrate specificity. Primarily the APH(4)-Ia substrate-binding site contains a cluster of hydrophobic residues that provides a complementary surface to the twisted structure of the substrate. Similar to APH(2″) enzymes, the APH(4)-Ia is able to utilize either ATP or GTP for phosphoryl transfer. The defined structural features of APH(4)-Ia interactions with hygB and the promiscuity in regard to ATP or GTP binding could be exploited for the design of novel aminoglycoside antibiotics or inhibitors of this enzyme.

  19. Construction of trypanosome artificial mini-chromosomes.

    PubMed Central

    Lee, M G; E, Y; Axelrod, N

    1995-01-01

    We report the preparation of two linear constructs which, when transformed into the procyclic form of Trypanosoma brucei, become stably inherited artificial mini-chromosomes. Both of the two constructs, one of 10 kb and the other of 13 kb, contain a T.brucei PARP promoter driving a chloramphenicol acetyltransferase (CAT) gene. In the 10 kb construct the CAT gene is followed by one hygromycin phosphotransferase (Hph) gene, and in the 13 kb construct the CAT gene is followed by three tandemly linked Hph genes. At each end of these linear molecules are telomere repeats and subtelomeric sequences. Electroporation of these linear DNA constructs into the procyclic form of T.brucei generated hygromycin-B resistant cell lines. In these cell lines, the input DNA remained linear and bounded by the telomere ends, but it increased in size. In the cell lines generated by the 10 kb construct, the input DNA increased in size to 20-50 kb. In the cell lines generated by the 13 kb constructs, two sizes of linear DNAs containing the input plasmid were detected: one of 40-50 kb and the other of 150 kb. The increase in size was not the result of in vivo tandem repetitions of the input plasmid, but represented the addition of new sequences. These Hph containing linear DNA molecules were maintained stably in cell lines for at least 20 generations in the absence of drug selection and were subsequently referred to as trypanosome artificial mini-chromosomes, or TACs. Images PMID:8532534

  20. Plant native tryptophan synthase beta 1 gene is a non-antibiotic selection marker for plant transformation.

    PubMed

    Hsiao, Paoyuan; Sanjaya; Su, Ruey-Chih; Teixeira da Silva, Jaime A; Chan, Ming-Tsair

    2007-03-01

    Gene transformation is an integral tool for plant genetic engineering. All antibiotic resistant genes currently employed are of bacterial origin and their presence in the field is undesirable. Therefore, we developed a novel and efficient plant native non-antibiotic selection system for the selection of transgenic plants in the model system Arabidopsis. This new system is based on the enhanced expression of Arabidopsis tryptophan synthase beta 1 (AtTSB1) and the use of 5-methyl-tryptophan (5MT, a tryptophan [Trp] analog) and/or CdCl2 as selection agent(s). We successfully integrated an expression cassette containing an AtT-SB1 cDNA driven by a cauliflower mosaic virus 35S promoter into Arabidopsis by floral dip transformation. Transgenic plants were efficiently selected on MS medium supplemented with 75 microM 5MT or 300 microM CdCl2 devoid of antibiotics. TSB1 selection was as efficient as the conventional hygromycin selection system. Northern blot analysis of transgenic plants selected by 5MT and CdCl2 revealed increased TSB1 mRNA transcript whereas uneven transcript levels of hygromycin phosphotransferase II (hpt) (control) was observed. Gas chromatography-mass spectrometry revealed 10-15 fold greater free Trp content in AtT-SB1 transgenic plants than in wild-type plants grown with or without 5MT or CdCl2. Taken together, the TSB1 system provides a novel selection system distinct from conventional antibiotic selection systems.

  1. Biochemical characterization of recombinant mevalonate kinase from Bacopa monniera.

    PubMed

    Kumari, Uma; Vishwakarma, Rishi K; Sonawane, Prashant; Abbassi, Shakeel; Khan, Bashir M

    2015-01-01

    Mevalonate kinase (MK; ATP: mevalonate 5-phosphotransferase; EC 2.7.1.36) plays a key role in isoprenoid biosynthetic pathway in plants. MK catalyzes the phosphorylation of mevalonate to form mevalonate-5-phosphate. The recombinant BmMK was cloned and over-expressed in E. coli BL21 (DE3), and purified to homogeneity by affinity chromatography followed by gel filtration. Optimum pH and temperature for forward reaction was found to be 7.0 and 30 °C, respectively. The enzyme was most stable at pH 8 at 25 °C with deactivation rate constant (Kd*) 1.398 × 10(-4) and half life (t1/2) 49 h. pH activity profile of BmMK indicates the involvement of carboxylate ion, histidine, lysine, arginine or aspartic acid at the active site of enzyme. Activity of recombinant BmMK was confirmed by phosphorylation of RS-mevalonate in the presence of Mg(2+), having Km and Vmax 331.9 μM and 719.1 pKat μg(-1), respectively. The values of kcat and kcat/Km for RS-mevalonate were determined to be 143.82 s(-1) and 0.43332 M(-1) s(-1) and kcat and kcat/Km values for ATP were found 150.9 s(-1) and 1.023 M(-1) s(-1). The metal ion studies suggested that BmMK is a metal dependent enzyme and highly active in the presence of MgCl2. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Expression of the Agmatine Deiminase Pathway in Enterococcus faecalis Is Activated by the AguR Regulator and Repressed by CcpA and PTSMan Systems

    PubMed Central

    Blancato, Víctor S.; Magni, Christian

    2013-01-01

    Although the agmatine deiminase system (AgDI) has been investigated in Enterococcus faecalis, little information is available with respect to its gene regulation. In this study we demonstrate that the presence of exogenous agmatine induces the expression of agu genes in this bacterium. In contrast to the homologous and extensively characterized AgDI system of S. mutants, the aguBDAC operon in E. faecalis is not induced in response to low pH. In spite of this, agmatine catabolism in this bacterium contributes by neutralizing the external medium while enhancing bacterial growth. Our results indicate that carbon catabolic repression (CCR) operates on the AgDI system via a mechanism that involves interaction of CcpA and P-Ser-HPr with a cre site found in an unusual position considering the aguB promoter (55 nt upstream the +1 position). In addition, we found that components of the mannose phosphotransferase (PTSMan) system also contributed to CCR in E. faecalis since a complete relief of the PTS-sugars repressive effect was observed only in a PTSMan and CcpA double defective strain. Our gene context analysis revealed that aguR is present in oral and gastrointestinal microorganisms. Thus, regulation of the aguBDAC operon in E. faecalis seems to have evolved to obtain energy and resist low pH conditions in order to persist and colonize gastrointestinal niches. PMID:24155893

  3. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Lauren

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure ofmore » the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.« less

  4. Glucokinase contributes to glucose phosphorylation in D-lactic acid production by Sporolactobacillus inulinus Y2-8.

    PubMed

    Zheng, Lu; Bai, Zhongzhong; Xu, Tingting; He, Bingfang

    2012-11-01

    Sporolactobacillus inulinus, a homofermentative lactic acid bacterium, is a species capable of efficient industrial D-lactic acid production from glucose. Glucose phosphorylation is the key step of glucose metabolism, and fine-tuned expression of which can improve D-lactic acid production. During growth on high-concentration glucose, a fast induction of high glucokinase (GLK) activity was observed, and paralleled the patterns of glucose consumption and D-lactic acid accumulation, while phosphoenolpyruvate phosphotransferase system (PTS) activity was completely repressed. The transmembrane proton gradient of 1.3-1.5 units was expected to generate a large proton motive force to the uptake of glucose. This suggests that the GLK pathway is the major route for glucose utilization, with the uptake of glucose through PTS-independent transport systems and phosphorylation of glucose by GLK in S. inulinus D-lactic acid production. The gene encoding GLK was cloned from S. inulinus and expressed in Escherichia coli. The amino acid sequence revealed significant similarity to GLK sequences from Bacillaceae. The recombinant GLK was purified and shown to be a homodimer with a subunit molecular mass of 34.5 kDa. Strikingly, it demonstrated an unusual broad substrate specificity, catalyzing phosphorylation of 2-deoxyglucose, mannitol, maltose, galactose and glucosamine, in addition to glucose. This report documented the key step concerning glucose phosphorylation of S. inulinus, which will help to understand the regulation of glucose metabolism and D-lactic acid production.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasid, A.; Morecki, S.; Aebersold, P.

    Tumor-infiltrating lymphocytes (TILs) are cells generated from tumor suspensions cultured in interleukin 2 that can mediate cancer regression when adoptively transferred into mice or humans. Since TILs proliferate rapidly in vitro, recirculate, and preferentially localize at the tumor site in vivo, they provide an attractive model for delivery of exogenous genetic material into man. To determine whether efficient gene transfer into TILs is feasible. The authors transduced human TILs with the bacterial gene for neomycin-resistance (Neo{sup R}) using the retroviral vector N2. The transduced TIL populations were stable and polyclonal with respect to the intact Neo{sup R} gene integration andmore » expressed high levels of neomycin phosphotransferase activity. The Neo{sup R} gene insertion did not alter the in vitro growth pattern and interleukin 2 dependence of the transduced TILs. Analyses of T-cell receptor gene rearrangement for {beta}- and {gamma}-chain genes revealed the oligoclonal nature of the TIL populations with no major change in the DNA rearrangement patterns or the levels of mRNA expression of the {beta} and {gamma} chains following transduction and selection of TILs in the neomycin analog G418. Human TILs expressed mRNA for tumor necrosis factors ({alpha} and {beta}) and interleukin 2 receptor P55. This pattern of cytokine-mRNA expression was not significantly altered following the transduction of TILs. The studies demonstrate the feasibility of TILs as suitable cellular vehicles for the introduction of therapeutic genes into patients receiving autologous TILs.« less

  6. The binding of glucose and nucleotides to hexokinase from Saccharomyces cerevisiae.

    PubMed

    Woolfitt, A R; Kellett, G L; Hoggett, J G

    1988-01-29

    The binding of glucose, ADP and AdoPP[NH]P, to the native PII dimer and PII monomer and the proteolytically-modified SII monomer of hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) from Saccharomyces cerevisiae was monitored at pH 6.7 by the concomitant quenching of protein fluorescence. The data were analysed in terms of Qmax, the maximal quenching of fluorescence at saturating concentrations of ligand, and [L]0.5, the concentration of ligand at half-maximal quenching. No changes in fluorescence were observed with free enzyme and nucleotide alone. In the presence of saturating levels of glucose, Qmax induced by nucleotide was between 2 and 7%, and [L]0.5 was between 0.12 and 0.56 mM, depending on the nucleotide and enzyme species. Qmax induced by glucose alone was between 22 and 25%, while [L]0.5 was approx. 0.4 mM for either of the monomeric hexokinase forms and 3.4 for PII dimer. In the presence of 6 mM ADP or 2 mM AdoPP[NH]P, Qmax for glucose was increased by up to 4% and [L]0.5 was diminished 3-fold for hexokinase PII monomer, 6-fold for SII monomer, and 15-fold for PII dimer. The results are interpreted in terms of nucleotide-induced conformational change of hexokinase in the presence of glucose and synergistic binding interactions between glucose and nucleotide.

  7. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity

    PubMed Central

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M.

    2015-01-01

    Summary The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His → Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism. PMID:25402841

  8. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity.

    PubMed

    Hammerstrom, Troy G; Horton, Lori B; Swick, Michelle C; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M

    2015-02-01

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO(2)/bicarbonate, and there is a positive correlation between the CO(2)/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His→Asp) and phosphoablative (His→Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism. © 2014 John Wiley & Sons Ltd.

  9. In-feed antibiotic effects on the swine intestinal microbiome

    PubMed Central

    Looft, Torey; Johnson, Timothy A.; Allen, Heather K.; Bayles, Darrell O.; Alt, David P.; Stedtfeld, Robert D.; Sul, Woo Jun; Stedtfeld, Tiffany M.; Chai, Benli; Cole, James R.; Hashsham, Syed A.; Tiedje, James M.; Stanton, Thad B.

    2012-01-01

    Antibiotics have been administered to agricultural animals for disease treatment, disease prevention, and growth promotion for over 50 y. The impact of such antibiotic use on the treatment of human diseases is hotly debated. We raised pigs in a highly controlled environment, with one portion of the littermates receiving a diet containing performance-enhancing antibiotics [chlortetracycline, sulfamethazine, and penicillin (known as ASP250)] and the other portion receiving the same diet but without the antibiotics. We used phylogenetic, metagenomic, and quantitative PCR-based approaches to address the impact of antibiotics on the swine gut microbiota. Bacterial phylotypes shifted after 14 d of antibiotic treatment, with the medicated pigs showing an increase in Proteobacteria (1–11%) compared with nonmedicated pigs at the same time point. This shift was driven by an increase in Escherichia coli populations. Analysis of the metagenomes showed that microbial functional genes relating to energy production and conversion were increased in the antibiotic-fed pigs. The results also indicate that antibiotic resistance genes increased in abundance and diversity in the medicated swine microbiome despite a high background of resistance genes in nonmedicated swine. Some enriched genes, such as aminoglycoside O-phosphotransferases, confer resistance to antibiotics that were not administered in this study, demonstrating the potential for indirect selection of resistance to classes of antibiotics not fed. The collateral effects of feeding subtherapeutic doses of antibiotics to agricultural animals are apparent and must be considered in cost-benefit analyses. PMID:22307632

  10. The sim Operon Facilitates the Transport and Metabolism of Sucrose Isomers in Lactobacillus casei ATCC 334▿

    PubMed Central

    Thompson, John; Jakubovics, Nicholas; Abraham, Bindu; Hess, Sonja; Pikis, Andreas

    2008-01-01

    Inspection of the genome sequence of Lactobacillus casei ATCC 334 revealed two operons that might dissimilate the five isomers of sucrose. To test this hypothesis, cells of L. casei ATCC 334 were grown in a defined medium supplemented with various sugars, including each of the five isomeric disaccharides. Extracts prepared from cells grown on the sucrose isomers contained high levels of two polypeptides with Mrs of ∼50,000 and ∼17,500. Neither protein was present in cells grown on glucose, maltose or sucrose. Proteomic, enzymatic, and Western blot analyses identified the ∼50-kDa protein as an NAD+- and metal ion-dependent phospho-α-glucosidase. The oligomeric enzyme was purified, and a catalytic mechanism is proposed. The smaller polypeptide represented an EIIA component of the phosphoenolpyruvate-dependent sugar phosphotransferase system. Phospho-α-glucosidase and EIIA are encoded by genes at the LSEI_0369 (simA) and LSEI_0374 (simF) loci, respectively, in a block of seven genes comprising the sucrose isomer metabolism (sim) operon. Northern blot analyses provided evidence that three mRNA transcripts were up-regulated during logarithmic growth of L. casei ATCC 334 on sucrose isomers. Internal simA and simF gene probes hybridized to ∼1.5- and ∼1.3-kb transcripts, respectively. A 6.8-kb mRNA transcript was detected by both probes, which was indicative of cotranscription of the entire sim operon. PMID:18310337

  11. Combined Use of Residual Dipolar Couplings and Solution X-ray Scattering To Rapidly Probe Rigid-Body Conformational Transitions in a Non-phosphorylatable Active-Site Mutant of the 128 kDa Enzyme I Dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takayama, Yuki; Schwieters, Charles D.; Grishaev, Alexander

    2012-10-23

    The first component of the bacterial phosphotransferase system, enzyme I (EI), is a multidomain 128 kDa dimer that undergoes large rigid-body conformational transitions during the course of its catalytic cycle. Here we investigate the solution structure of a non-phosphorylatable active-site mutant in which the active-site histidine is substituted by glutamine. We show that perturbations in the relative orientations and positions of the domains and subdomains can be rapidly and reliably determined by conjoined rigid-body/torsion angle/Cartesian simulated annealing calculations driven by orientational restraints from residual dipolar couplings and shape and translation information afforded by small- and wide-angle X-ray scattering. Although histidinemore » and glutamine are isosteric, the conformational space available to a Gln side chain is larger than that for the imidazole ring of His. An additional hydrogen bond between the side chain of Gln189 located on the EIN{sup {alpha}/{beta}} subdomain and an aspartate (Asp129) on the EIN{sup {alpha}} subdomain results in a small ({approx}9{sup o}) reorientation of the EIN{sup {alpha}} and EIN{sup {alpha}/{beta}} subdomains that is in turn propagated to a larger reorientation ({approx}26{sup o}) of the EIN domain relative to the EIC dimerization domain, illustrating the positional sensitivity of the EIN domain and its constituent subdomains to small structural perturbations.« less

  12. Structural Basis of APH(3)-IIIa-Mediated Resistance to N1-Substituted Aminoglycoside Antibiotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, D.; Berghuis, A

    2009-01-01

    Butirosin is unique among the naturally occurring aminoglycosides, having a substituted amino group at position 1 (N1) of the 2-deoxystreptamine ring with an (S)-4-amino-2-hydroxybutyrate (AHB) group. While bacterial resistance to aminoglycosides can be ascribed chiefly to drug inactivation by plasmid-encoded aminoglycoside-modifying enzymes, the presence of an AHB group protects the aminoglycoside from binding to many resistance enzymes, and hence, the antibiotic retains its bactericidal properties. Consequently, several semisynthetic N1-substituted aminoglycosides, such as amikacin, isepamicin, and netilmicin, were developed. Unfortunately, butirosin, amikacin, and isepamicin are not resistant to inactivation by 3'-aminoglycoside O-phosphotransferase type IIIa [APH(3')-IIIa]. We report here the crystal structuremore » of APH(3')-IIIa in complex with an ATP analog, AMPPNP [adenosine 5'-(?,{gamma}-imido)triphosphate], and butirosin A to 2.4-A resolution. The structure shows that butirosin A binds to the enzyme in a manner analogous to other 4,5-disubstituted aminoglycosides, and the flexible antibiotic-binding loop is key to the accommodation of structurally diverse substrates. Based on the crystal structure, we have also constructed a model of APH(3')-IIIa in complex with amikacin, a commonly used semisynthetic N1-substituted 4,6-disubstituted aminoglycoside. Together, these results suggest a strategy to further derivatize the AHB group in order to generate new aminoglycoside derivatives that can elude inactivation by resistance enzymes while maintaining their ability to bind to the ribosomal A site.« less

  13. High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode.

    PubMed

    Cho, H J; Farrand, S K; Noel, G R; Widholm, J M

    2000-01-01

    Cotyledon explants of 10 soybean [Glycine max (L.) Merr.] cultivars were inoculated with Agrobacterium rhizogenes strain K599 with and without binary vectors pBI121 or pBINm-gfp5-ER possessing both neomycin phosphotransferase II (nptII) and beta-glucuronidase (gus) or nptII and green fluorescent protein (gfp) genes, respectively. Hairy roots were produced from the wounded surface of 54-95% of the cotyledon explants on MXB selective medium containing 200 microg ml(-1) kanamycin and 500 microg ml(-1) carbenicillin. Putative individual transformed hairy roots were identified by cucumopine analysis and were screened for transgene incorporation using polymerase chain reaction. All of the roots tested were found to be co-transformed with T-DNA from the Ri-plasmid and the transgene from the binary vectors. Southern blot analysis confirmed the presence of the 35S-gfp5 gene in the plant genomes. Transgene expression was also confirmed by histochemical GUS assay and Western blot analysis for the GFP. Attempts to induce shoot formation from the hairy roots failed. Infection of hairy roots of the soybean cyst nematode (Heterodera glycines Ichinohe)-susceptible cultivar, Williams 82, with eggs of H. glycines race 1, resulted in the development of mature cysts about 4-5 weeks after inoculation. Thus the soybean cyst nematode could complete its entire life cycle in transformed soybean hairy-root cultures expressing GFP. This system should be ideal for testing genes that might impart resistance to soybean cyst nematode.

  14. An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus.

    PubMed

    Zhang, Jin jing; Shi, Liang; Chen, Hui; Sun, Yun qi; Zhao, Ming wen; Ren, Ang; Chen, Ming jie; Wang, Hong; Feng, Zhi yong

    2014-01-01

    Hypsizygus marmoreus is one of the major edible mushrooms in East Asia. As no efficient transformation method, the molecular and genetics studies were hindered. The glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of H. marmoreus was isolated and its promoter was used to drive the hygromycin B phosphotransferase (HPH) and enhanced green fluorescent protein (EGFP) in H. marmoreus. Agrobacterium tumefaciens-mediated transformation (ATMT) was successfully applied in H. marmoreus. The transformation parameters were optimized, and it was found that co-cultivation of bacteria with protoplast at a ratio of 1000:1 at a temperature of 26 °C in medium containing 0.3 mM acetosyringone resulted in the highest transformation efficiency for Agrobacterium strain. Besides, three plasmids, each carrying a different promoter (from H. marmoreus, Ganoderma lucidum and Lentinula edodes) driving the expression of an antibiotic resistance marker, were also tested. The construct carrying the H. marmoreus gpd promoter produced more transformants than other constructs. Our analysis showed that over 85% of the transformants tested remained mitotically stable even after five successive rounds of subculturing. Putative transformants were analyzed for the presence of hph gene by PCR and Southern blot. Meanwhile, the expression of EGFP in H. marmoreus transformants was detected by fluorescence imaging. This ATMT system increases the transformation efficiency of H. marmoreus and may represent a useful tool for molecular genetic studies in this mushroom species. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Agrobacterium tumefaciens-mediated transformation for investigating pathogenicity genes of the phytopathogenic fungus Colletotrichum sansevieriae.

    PubMed

    Nakamura, Masayuki; Kuwahara, Hideto; Onoyama, Keisuke; Iwai, Hisashi

    2012-08-01

    Agrobacterium tumefaciens-mediated transformation (AtMT) has become a common technique for DNA transformation of yeast and filamentous fungi. In this study, we first established a protocol of AtMT for the phytopathogenic fungus Colletotrichum sansevieriae. Binary T-DNA vector containing the hygromycin B phosphotransferase gene controlled by the Aspergillus nidulans gpdA promoter and the trpC terminator was constructed with pCAMBIA0380 and used with three different strains LBA4404, GV3101, and GV2260 of A. tumefaciens. Transformants were most effectively obtained when GV2260 and C. sansevieriae Sa-1-2 were co-cultivated; there were about 320 transformants per 10(6) spores. When 1,048 transformants were inoculated on Sansevieria trifasciata, three transformants were found to have completely lost their pathogenicity and two transformants displayed reduced pathogenicity. All of the five transformants had a single copy of T-DNA in their genomes. The three pathogenicity-deficient transformants were subjected to thermal asymmetric interlaced polymerase chain reaction and the reaction allowed us to amplify the sequences flanking the left and/or right borders. The flanking sequences of the two transformants, M154 and M875, showed no homology to any sequences in databases, but the sequences of M678 contained motifs of alpha-1,3-glucan synthase, suggesting that the gene might contribute to the pathogenicity of C. sansevieriae. This study describes a useful method for investigating pathogenicity genes in C. sansevieriae.

  16. Pyrimidine homoribonucleosides: synthesis, solution conformation, and some biological properties.

    PubMed

    Lassota, P; Kuśmierek, J T; Stolarski, R; Shugar, D

    1987-05-01

    Conversion of uridine and cytidine to their 5'-O-tosyl derivatives, followed by cyanation with tetraethylammonium cyanide, reduction and deamination, led to isolation of the hitherto unknown homouridine (1-(5'-deoxy-beta-D-allofuranosyl)uracil) and homocytidine (1-(5'-deoxy-beta-D-allofuranosyl)cytosine), analogues of uridine and cytidine in which the exocyclic 5'-CH2OH chain is extended by one carbon to CH2CH2OH. Homocytidine was also phosphorylated to its 6'-phosphate and 6'-pyrophosphate analogues. In addition, it was converted, via its 2,2'-anhydro derivative, to arahomocytidine, an analogue of the chemotherapeutically active araC. The structures of all the foregoing were established by various criteria, including 1H and 13C NMR spectroscopy, both of which were also applied to analyses of the solution conformations of the various compounds, particularly as regards the conformations of the exocyclic chains. The behaviour of the homo analogues was examined in several enzymatic systems. Homocytidine was a feeble substrate, without inhibitory properties, of E. coli cytidine deaminase. Homocytidine was an excellent substrate for wheat shoot nucleoside phosphotransferase; while homouridine was a good substrate for E. coli uridine phosphorylase. Although homoCMP was neither a substrate, nor an inhibitor, of snake venom 5'-nucleotidase, homoCDP was a potent inhibitor of this enzyme (Ki approximately 6 microM). HomoCDP was not a substrate for M. luteus polynucleotide phosphorylase. None of the compounds exhibited significant activity vs herpes simplex virus type 1, or cytotoxic activity in several mammalian cell lines.

  17. Structure and Mode-of-Action of the Two-Peptide (Class-IIb) Bacteriocins.

    PubMed

    Nissen-Meyer, Jon; Oppegård, Camilla; Rogne, Per; Haugen, Helen Sophie; Kristiansen, Per Eugen

    2010-03-01

    This review focuses on the structure and mode-of-action of the two-peptide (class-IIb) bacteriocins that consist of two different peptides whose genes are next to each other in the same operon. Optimal antibacterial activity requires the presence of both peptides in about equal amounts. The two peptides are synthesized as preforms that contain a 15-30 residue double-glycine-type N-terminal leader sequence that is cleaved off at the C-terminal side of two glycine residues by a dedicated ABC-transporter that concomitantly transfers the bacteriocin peptides across cell membranes. Two-peptide bacteriocins render the membrane of sensitive bacteria permeable to a selected group of ions, indicating that the bacteriocins form or induce the formation of pores that display specificity with respect to the transport of molecules. Based on structure-function studies, it has been proposed that the two peptides of two-peptide bacteriocins form a membrane-penetrating helix-helix structure involving helix-helix-interacting GxxxG-motifs that are present in all characterized two-peptide bacteriocins. It has also been suggested that the membrane-penetrating helix-helix structure interacts with an integrated membrane protein, thereby triggering a conformational alteration in the protein, which in turn causes membrane-leakage. This proposed mode-of-action is similar to the mode-of-action of the pediocin-like (class-IIa) bacteriocins and lactococcin A (a class-IId bacteriocin), which bind to a membrane-embedded part of the mannose phosphotransferase permease in a manner that causes membrane-leakage and cell death.

  18. Selectable antibiotic resistance marker gene-free transgenic rice harbouring the garlic leaf lectin gene exhibits resistance to sap-sucking planthoppers.

    PubMed

    Sengupta, Subhadipa; Chakraborti, Dipankar; Mondal, Hossain A; Das, Sampa

    2010-03-01

    Rice, the major food crop of world is severely affected by homopteran sucking pests. We introduced coding sequence of Allium sativum leaf agglutinin, ASAL, in rice cultivar IR64 to develop sustainable resistance against sap-sucking planthoppers as well as eliminated the selectable antibiotic-resistant marker gene hygromycin phosphotransferase (hpt) exploiting cre/lox site-specific recombination system. An expression vector was constructed containing the coding sequence of ASAL, a potent controlling agent against green leafhoppers (GLH, Nephotettix virescens) and brown planthopper (BPH, Nilaparvata lugens). The selectable marker (hpt) gene cassette was cloned within two lox sites of the same vector. Alongside, another vector was developed with chimeric cre recombinase gene cassette. Reciprocal crosses were performed between three single-copy T(0) plants with ASAL- lox-hpt-lox T-DNA and three single-copy T(0) plants with cre-bar T-DNA. Marker gene excisions were detected in T(1) hybrids through hygromycin sensitivity assay. Molecular analysis of T(1) plants exhibited 27.4% recombination efficiency. T(2) progenies of L03C04(1) hybrid parent showed 25% cre negative ASAL-expressing plants. Northern blot, western blot and ELISA showed significant level of ASAL expression in five marker-free T(2) progeny plants. In planta bioassay of GLH and BPH performed on these T(2) progenies exhibited radical reduction in survivability and fecundity compared with the untransformed control plants.

  19. Plasma and Mucosal Immunoglobulin M, Immunoglobulin A, and Immunoglobulin G Responses to the Vibrio cholerae O1 Protein Immunome in Adults With Cholera in Bangladesh.

    PubMed

    Charles, Richelle C; Nakajima, Rie; Liang, Li; Jasinskas, Al; Berger, Amanda; Leung, Daniel T; Kelly, Meagan; Xu, Peng; Kovác, Pavol; Giffen, Samantha R; Harbison, James D; Chowdhury, Fahima; Khan, Ashraful I; Calderwood, Stephen B; Bhuiyan, Taufiqur Rahman; Harris, Jason B; Felgner, Philip L; Qadri, Firdausi; Ryan, Edward T

    2017-07-01

    Cholera is a severe dehydrating illness of humans caused by toxigenic strains of Vibrio cholerae O1 or O139. Identification of immunogenic V. cholerae antigens could lead to a better understanding of protective immunity in human cholera. We probed microarrays containing 3652 V. cholerae antigens with plasma and antibody-in-lymphocyte supernatant (ALS, a surrogate marker of mucosal immune responses) from patients with severe cholera caused by V. cholerae O1 in Bangladesh and age-, sex-, and ABO-matched Bangladeshi controls. We validated a subset of identified antigens using enzyme-linked immunosorbent assay. Overall, we identified 608 immunoreactive V. cholerae antigens in our screening, 59 of which had higher immunoreactivity in convalescent compared with acute-stage or healthy control samples (34 in plasma, 39 in mucosal ALS; 13 in both sample sets). Identified antigens included cholera toxin B and A subunits, V. cholerae O-specific polysaccharide and lipopolysaccharide, toxin coregulated pilus A, sialidase, hemolysin A, flagellins (FlaB, FlaC, and FlaD), phosphoenolpyruvate-protein phosphotransferase, and diaminobutyrate-2-oxoglutarate aminotransferase. This study is the first antibody profiling of the mucosal and systemic antibody responses to the nearly complete V. cholerae O1 protein immunome; it has identified antigens that may aid in the development of an improved cholera vaccine. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  20. HPr antagonizes the anti-σ70 activity of Rsd in Escherichia coli.

    PubMed

    Park, Young-Ha; Lee, Chang-Ro; Choe, Mangyu; Seok, Yeong-Jae

    2013-12-24

    The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a multicomponent system that participates in a variety of physiological processes in addition to the phosphorylation-coupled transport of numerous sugars. In Escherichia coli and other enteric bacteria, enzyme IIA(Glc) (EIIA(Glc)) is known as the central processing unit of carbon metabolism and plays multiple roles, including regulation of adenylyl cyclase, the fermentation/respiration switch protein FrsA, glycerol kinase, and several non-PTS transporters, whereas the only known regulatory role of the E. coli histidine-containing phosphocarrier protein HPr is in the activation of glycogen phosphorylase. Because HPr is known to be more abundant than EIIA(Glc) in enteric bacteria, we assumed that there might be more regulatory mechanisms connected with HPr. The ligand fishing experiment in this study identified Rsd, an anti-sigma factor known to complex with σ(70) in stationary-phase cells, as an HPr-binding protein in E. coli. Only the dephosphorylated form of HPr formed a tight complex with Rsd and thereby inhibited complex formation between Rsd and σ(70). Dephosphorylated HPr, but not phosphorylated HPr, antagonized the inhibitory effect of Rsd on σ(70)-dependent transcriptions both in vivo and in vitro, and also influenced the competition between σ(70) and σ(S) for core RNA polymerase in the presence of Rsd. Based on these data, we propose that the anti-σ(70) activity of Rsd is regulated by the phosphorylation state-dependent interaction of HPr with Rsd.

  1. HPr antagonizes the anti-σ70 activity of Rsd in Escherichia coli

    PubMed Central

    Park, Young-Ha; Lee, Chang-Ro; Choe, Mangyu; Seok, Yeong-Jae

    2013-01-01

    The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a multicomponent system that participates in a variety of physiological processes in addition to the phosphorylation-coupled transport of numerous sugars. In Escherichia coli and other enteric bacteria, enzyme IIAGlc (EIIAGlc) is known as the central processing unit of carbon metabolism and plays multiple roles, including regulation of adenylyl cyclase, the fermentation/respiration switch protein FrsA, glycerol kinase, and several non-PTS transporters, whereas the only known regulatory role of the E. coli histidine-containing phosphocarrier protein HPr is in the activation of glycogen phosphorylase. Because HPr is known to be more abundant than EIIAGlc in enteric bacteria, we assumed that there might be more regulatory mechanisms connected with HPr. The ligand fishing experiment in this study identified Rsd, an anti-sigma factor known to complex with σ70 in stationary-phase cells, as an HPr-binding protein in E. coli. Only the dephosphorylated form of HPr formed a tight complex with Rsd and thereby inhibited complex formation between Rsd and σ70. Dephosphorylated HPr, but not phosphorylated HPr, antagonized the inhibitory effect of Rsd on σ70-dependent transcriptions both in vivo and in vitro, and also influenced the competition between σ70 and σS for core RNA polymerase in the presence of Rsd. Based on these data, we propose that the anti-σ70 activity of Rsd is regulated by the phosphorylation state-dependent interaction of HPr with Rsd. PMID:24324139

  2. CrpP Is a Novel Ciprofloxacin-Modifying Enzyme Encoded by the Pseudomonas aeruginosa pUM505 Plasmid.

    PubMed

    Chávez-Jacobo, Víctor M; Hernández-Ramírez, Karen C; Romo-Rodríguez, Pamela; Pérez-Gallardo, Rocío Viridiana; Campos-García, Jesús; Gutiérrez-Corona, J Félix; García-Merinos, Juan Pablo; Meza-Carmen, Víctor; Silva-Sánchez, Jesús; Ramírez-Díaz, Martha I

    2018-06-01

    The pUM505 plasmid, isolated from a clinical Pseudomonas aeruginosa isolate, confers resistance to ciprofloxacin (CIP) when transferred into the standard P. aeruginosa strain PAO1. CIP is an antibiotic of the quinolone family that is used to treat P. aeruginosa infections. In silico analysis, performed to identify CIP resistance genes, revealed that the 65-amino-acid product encoded by the orf131 gene in pUM505 displays 40% amino acid identity to the Mycobacterium smegmatis aminoglycoside phosphotransferase (an enzyme that phosphorylates and inactivates aminoglycoside antibiotics). We cloned orf131 (renamed crpP , for c iprofloxacin r esistance p rotein, p lasmid encoded) into the pUCP20 shuttle vector. The resulting recombinant plasmid, pUC- crpP , conferred resistance to CIP on Escherichia coli strain J53-3, suggesting that this gene encodes a protein involved in CIP resistance. Using coupled enzymatic analysis, we determined that the activity of CrpP on CIP is ATP dependent, while little activity against norfloxacin was detected, suggesting that CIP may undergo phosphorylation. Using a recombinant His-tagged CrpP protein and liquid chromatography-tandem mass spectrometry, we also showed that CIP was phosphorylated prior to its degradation. Thus, our findings demonstrate that CrpP, encoded on the pUM505 plasmid, represents a new mechanism of CIP resistance in P. aeruginosa , which involves phosphorylation of the antibiotic. Copyright © 2018 American Society for Microbiology.

  3. Sigma Factor Regulated Cellular Response in a Non-solvent Producing Clostridium beijerinckii Degenerated Strain: A Comparative Transcriptome Analysis

    PubMed Central

    Zhang, Yan; Jiao, Shengyin; Lv, Jia; Du, Renjia; Yan, Xiaoni; Wan, Caixia; Zhang, Ruijuan; Han, Bei

    2017-01-01

    Clostridium beijerinckii DG-8052, derived from NCIMB 8052, cannot produce solvent or form spores, a phenomenon known as degeneration. To explore the mechanisms of degeneration at the gene level, transcriptomic profiles of the wild-type 8052 and DG-8052 strains were compared. Expression of 5168 genes comprising 98.6% of the genome was assessed. Interestingly, 548 and 702 genes were significantly up-regulated in the acidogenesis and solventogenesis phases of DG-8052, respectively, and mainly responsible for the phosphotransferase system, sugar metabolic pathways, and chemotaxis; meanwhile, 699 and 797 genes were significantly down-regulated, respectively, and mainly responsible for sporulation, oxidoreduction, and solventogenesis. The functions of some altered genes, including 286 and 333 at the acidogenesis and solventogenesis phases, respectively, remain unknown. Dysregulation of the fermentation machinery was accompanied by lower transcription levels of glycolysis rate-limiting enzymes (pfk and pyk), and higher transcription of cell chemotaxis genes (cheA, cheB, cheR, cheW, and cheY), controlled mainly by σ54 at acidogenesis. Meanwhile, abnormal spore formation was associated with repressed spo0A, sigE, sigF, sigG, and sigK which are positively regulated by σ70, and correspondingly inhibited expression of CoA-transferase at the solventogenesis phase. These findings indicated that morphological and physiological changes in the degenerated Clostridium strain may be related to altered expression of sigma factors, providing valuable targets for strain development of Clostridium species. PMID:28194137

  4. Use of plasmid analysis and determination of aminoglycoside-modifying enzymes to characterize isolates from an outbreak of methicillin-resistant Staphylococcus aureus.

    PubMed Central

    Licitra, C M; Brooks, R G; Terry, P M; Shaw, K J; Hare, R S

    1989-01-01

    We compared disk susceptibility, plasmid analysis, aminoglycoside resistance patterns, and DNA hybridization for their usefulness in characterizing isolates from a hospital outbreak of methicillin-resistant Staphylococcus aureus. Fifteen isolates were susceptible (group 1) and 28 were resistant (group 2) to gentamicin. A total of 15 of 15 (100%) group 1 and 22 of 28 (79%) group 2 isolates carried a 21.5-megadalton plasmid. All group 2 isolates and none of the group 1 isolates possessed a 33-megadalton plasmid. Aminoglycoside resistance pattern determinations revealed the presence of the ANT(4')-I enzyme (aminoglycoside 4' adenyltransferase) in all group 1 isolates but was unable to demonstrate presence of this enzyme in group 2 organisms. The APH(2") + AAC(6')-II enzyme (aminoglycoside 2" phosphotransferase plus 6' acetyltransferase) was found in all of the group 2 isolates but in none of the group 1 isolates. Use of DNA hybridization revealed the presence of the ANT(4')-I enzyme in both groups (group 1, 14 of 15; group 2, 26 of 28). In this hospital outbreak, we found good correlation between disk susceptibility, plasmid profile, aminoglycoside resistance patterns, and DNA hybridization results. It was difficult to predict the presence of the ANT(4')-I enzyme in the presence of the bifunctional [APH(2") + AAC(6')-II] enzyme by the aminoglycoside resistance pattern method because of overlap of the substrate profile. Images PMID:2808676

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stogios, Peter J.; Shakya, Tushar; Evdokimova, Elena

    The aminoglycoside phosphotransferase (APH) APH(4)-Ia is one of two enzymes responsible for bacterial resistance to the atypical aminoglycoside antibiotic hygromycin B (hygB). The crystal structure of APH(4)-Ia enzyme was solved in complex with hygB at 1.95 {angstrom} resolution. The APH(4)-Ia structure adapts a general two-lobe architecture shared by other APH enzymes and eukaryotic kinases, with the active site located at the interdomain cavity. The enzyme forms an extended hydrogen bond network with hygB primarily through polar and acidic side chain groups. Individual alanine substitutions of seven residues involved in hygB binding did not have significant effect on APH(4)-Ia enzymatic activity,more » indicating that the binding affinity is spread across a distributed network. hygB appeared as the only substrate recognized by APH(4)-Ia among the panel of 14 aminoglycoside compounds. Analysis of the active site architecture and the interaction with the hygB molecule demonstrated several unique features supporting such restricted substrate specificity. Primarily the APH(4)-Ia substrate-binding site contains a cluster of hydrophobic residues that provides a complementary surface to the twisted structure of the substrate. Similar to APH(2{double_prime}) enzymes, the APH(4)-Ia is able to utilize either ATP or GTP for phosphoryl transfer. The defined structural features of APH(4)-Ia interactions with hygB and the promiscuity in regard to ATP or GTP binding could be exploited for the design of novel aminoglycoside antibiotics or inhibitors of this enzyme.« less

  6. Conditional silencing of the Escherichia coli pykF gene results from artificial convergent transcription protected from Rho-dependent termination.

    PubMed

    Krylov, Alexander A; Airich, Larisa G; Kiseleva, Evgeniya M; Minaeva, Natalia I; Biryukova, Irina V; Mashko, Sergey V

    2010-01-01

    PykF is one of two pyruvate kinases in Escherichia coli K-12. lambdaP(L) was convergently integrated into the chromosome of the MG1655 strain, downstream of pykF, face-to-face with its native promoter. In the presence of lambdacIts857, efficient pykF ts-silencing was achieved when the 5'-terminus of the P(L)-originated antisense RNA (asRNA), consisting of the rrnG-AT sequence, converted elongation complexes of RNA polymerase to a form resistant to Rho-dependent transcription termination. pykF silencing was detected by the following features: (a) impaired growth of the strain when pykA was also disrupted and when using ribose as a non-phosphotransferase system-transporting carbon source; (b) a pattern of reduced synthesis of the full-sized pykF mRNA, mediated by reverse transcription PCR, and (c) a significant decrease in PykF activity. The advantages of anti-terminated convergent transcription were clearly manifested in the strains where the rho_a-terminator was inserted specifically to interrupt asRNA synthesis. Most likely, the target gene was silenced by transcriptional interference due to collisions between converging RNA polymerases, although, strictly, the role of cis-asRNA effects could not be excluded. While details of the mechanisms have yet to be determined, anti-terminated convergent transcription is a promising new technique for silencing other target genes. Copyright 2010 S. Karger AG, Basel.

  7. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity

    DOE PAGES

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; ...

    2014-12-30

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO 2/bicarbonate, and there is a positive correlation between the CO 2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His →more » Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. In conclusion, the AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.« less

  8. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO 2/bicarbonate, and there is a positive correlation between the CO 2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His →more » Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. In conclusion, the AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.« less

  9. A study of lactose metabolism in Lactococcus garvieae reveals a genetic marker for distinguishing between dairy and fish biotypes.

    PubMed

    Fortina, Maria Grazia; Ricci, Giovanni; Borgo, Francesca

    2009-06-01

    Dairy and fish isolates of Lactococcus garvieae were tested for their ability to utilize lactose and to grow in milk. Fish isolates were unable to assimilate lactose, but unexpectedly, they possessed the ability to grow in milk. Genetic studies, carried out constructing different vectorette libraries, provided evidence that in fish isolates, no genes involved in lactose utilization were present. For L. garvieae dairy isolates, a single system for the catabolism of lactose was found. It consists of a lactose transport and hydrolysis depending on a phosphoenolpyruvate-dependent phosphotransferase system combined with a phospho-beta-galactosidase. The genes involved were highly similar at the nucleotide sequence level to their counterparts in Lactococcus lactis; however, while in many L. lactis strains these genes are plasmid encoded, in L. garvieae they are chromosomally located. Thus, in the species L. garvieae, the phospho-beta-galactosidase gene, detectable in all strains of dairy origin but lacking in fish isolates, can be considered a reliable genetic marker for distinguishing biotypes in the two diverse ecological niches. Moreover, we obtained information regarding the complete nucleotide sequence of the gal operon in L. garvieae, consisting of a galactose permease and the Leloir pathway enzymes. This is one of the first reports concerning the determination of the nucleotide sequences of genes (other than the 16S rDNA gene) in L. garvieae and should be considered a step in a continuous effort to explore the genome of this species, with the aim of determining the real relationship between the presence of L. garvieae in dairy products and food safety.

  10. Quantitative Proteome Analysis of Mouse Liver Lysosomes Provides Evidence for Mannose 6-phosphate-independent Targeting Mechanisms of Acid Hydrolases in Mucolipidosis II.

    PubMed

    Markmann, Sandra; Krambeck, Svenja; Hughes, Christopher J; Mirzaian, Mina; Aerts, Johannes M F G; Saftig, Paul; Schweizer, Michaela; Vissers, Johannes P C; Braulke, Thomas; Damme, Markus

    2017-03-01

    The efficient receptor-mediated targeting of soluble lysosomal proteins to lysosomes requires the modification with mannose 6-phosphate (M6P) residues. Although the absence of M6P results in misrouting and hypersecretion of lysosomal enzymes in many cells, normal levels of lysosomal enzymes have been reported in liver of patients lacking the M6P-generating phosphotransferase (PT). The identity of lysosomal proteins depending on M6P has not yet been comprehensively analyzed. In this study we purified lysosomes from liver of PT-defective mice and 67 known soluble lysosomal proteins were identified that illustrated quantitative changes using an ion mobility-assisted data-independent label-free LC-MS approach. After validation of various differentially expressed lysosomal components by Western blotting and enzyme activity assays, the data revealed a small number of lysosomal proteins depending on M6P, including neuraminidase 1, cathepsin F, Npc2, and cathepsin L, whereas the majority reach lysosomes by alternative pathways. These data were compared with findings on cultured hepatocytes and liver sinusoid endothelial cells isolated from the liver of wild-type and PT-defective mice. Our findings show that the relative expression, targeting efficiency and lysosomal localization of lysosomal proteins tested in cultured hepatic cells resemble their proportion in isolated liver lysosomes. Hypersecretion of newly synthesized nonphosphorylated lysosomal proteins suggest that secretion-recapture mechanisms contribute to maintain major lysosomal functions in liver. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The structure of a thermophilic kinase shapes fitness upon random circular permutation

    PubMed Central

    Jones, Alicia M.; Mehta, Manan M.; Thomas, Emily E.; Atkinson, Joshua T.; Segall-Shapiro, Thomas H.; Liu, Shirley; Silberg, Jonathan J.

    2016-01-01

    Proteins can be engineered for synthetic biology through circular permutation, a sequence rearrangement where native protein termini become linked and new termini are created elsewhere through backbone fission. However, it remains challenging to anticipate a protein’s functional tolerance to circular permutation. Here, we describe new transposons for creating libraries of randomly circularly permuted proteins that minimize peptide additions at their termini, and we use transposase mutagenesis to study the tolerance of a thermophilic adenylate kinase (AK) to circular permutation. We find that libraries expressing permuted AK with either short or long peptides amended to their N-terminus yield distinct sets of active variants and present evidence that this trend arises because permuted protein expression varies across libraries. Mapping all sites that tolerate backbone cleavage onto AK structure reveals that the largest contiguous regions of sequence that lack cleavage sites are proximal to the phosphotransfer site. A comparison of our results with a range of structure-derived parameters further showed that retention of function correlates to the strongest extent with the distance to the phosphotransfer site, amino acid variability in an AK family sequence alignment, and residue-level deviations in superimposed AK structures. Our work illustrates how permuted protein libraries can be created with minimal peptide additions using transposase mutagenesis, and they reveal a challenge of maintaining consistent expression across permuted variants in a library that minimizes peptide additions. Furthermore, these findings provide a basis for interpreting responses of thermophilic phosphotransferases to circular permutation by calibrating how different structure-derived parameters relate to retention of function in a cellular selection. PMID:26976658

  12. The Structure of a Thermophilic Kinase Shapes Fitness upon Random Circular Permutation.

    PubMed

    Jones, Alicia M; Mehta, Manan M; Thomas, Emily E; Atkinson, Joshua T; Segall-Shapiro, Thomas H; Liu, Shirley; Silberg, Jonathan J

    2016-05-20

    Proteins can be engineered for synthetic biology through circular permutation, a sequence rearrangement in which native protein termini become linked and new termini are created elsewhere through backbone fission. However, it remains challenging to anticipate a protein's functional tolerance to circular permutation. Here, we describe new transposons for creating libraries of randomly circularly permuted proteins that minimize peptide additions at their termini, and we use transposase mutagenesis to study the tolerance of a thermophilic adenylate kinase (AK) to circular permutation. We find that libraries expressing permuted AKs with either short or long peptides amended to their N-terminus yield distinct sets of active variants and present evidence that this trend arises because permuted protein expression varies across libraries. Mapping all sites that tolerate backbone cleavage onto AK structure reveals that the largest contiguous regions of sequence that lack cleavage sites are proximal to the phosphotransfer site. A comparison of our results with a range of structure-derived parameters further showed that retention of function correlates to the strongest extent with the distance to the phosphotransfer site, amino acid variability in an AK family sequence alignment, and residue-level deviations in superimposed AK structures. Our work illustrates how permuted protein libraries can be created with minimal peptide additions using transposase mutagenesis, and it reveals a challenge of maintaining consistent expression across permuted variants in a library that minimizes peptide additions. Furthermore, these findings provide a basis for interpreting responses of thermophilic phosphotransferases to circular permutation by calibrating how different structure-derived parameters relate to retention of function in a cellular selection.

  13. A Mariner Transposon-Based Signature-Tagged Mutagenesis System for the Analysis of Oral Infection by Listeria monocytogenes

    PubMed Central

    Cummins, Joanne; Casey, Pat G.; Joyce, Susan A.; Gahan, Cormac G. M.

    2013-01-01

    Listeria monocytogenes is a Gram-positive foodborne pathogen and the causative agent of listerosis a disease that manifests predominately as meningitis in the non-pregnant individual or infection of the fetus and spontaneous abortion in pregnant women. Common-source outbreaks of foodborne listeriosis are associated with significant morbidity and mortality. However, relatively little is known concerning the mechanisms that govern infection via the oral route. In order to aid functional genetic analysis of the gastrointestinal phase of infection we designed a novel signature-tagged mutagenesis (STM) system based upon the invasive L. monocytogenes 4b serotype H7858 strain. To overcome the limitations of gastrointestinal infection by L. monocytogenes in the mouse model we created a H7858 strain that is genetically optimised for oral infection in mice. Furthermore our STM system was based upon a mariner transposon to favour numerous and random transposition events throughout the L. monocytogenes genome. Use of the STM bank to investigate oral infection by L. monocytogenes identified 21 insertion mutants that demonstrated significantly reduced potential for infection in our model. The sites of transposon insertion included lmOh7858_0671 (encoding an internalin homologous to Lmo0610), lmOh7858_0898 (encoding a putative surface-expressed LPXTG protein homologous to Lmo0842), lmOh7858_2579 (encoding the HupDGC hemin transport system) and lmOh7858_0399 (encoding a putative fructose specific phosphotransferase system). We propose that this represents an optimised STM system for functional genetic analysis of foodborne/oral infection by L. monocytogenes. PMID:24069416

  14. Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified delta-endotoxin gene of Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud.

    PubMed

    Tang, Wei; Tian, Yingchuan

    2003-02-01

    A synthetic version of the CRY1Ac gene of Bacillus thuringiensis has been used for the transformation of loblolly pine (Pinus taeda L.) using particle bombardment. Mature zygotic embryos were used to be bombarded and to generate organogenic callus and transgenic regenerated plants. Expression vector pB48.215 DNA contained a synthetic Bacillus thuringiensis (B.t.) CRY1Ac coding sequence flanked by the double cauliflower mosaic virus (CaMV) 35S promoter and nopaline synthase (NOS) terminator sequences, and the neomycin phosphotransferase II (NPTII) gene controlled by the promoter of the nopaline synthase gene was introduced into loblolly pine tissues by particle bombardment. The transformed tissues were proliferated and selected on media with kanamycin. Shoot regeneration was induced from the kanamycin-resistant calli, and transgenic plantlets were then produced. More than 60 transformed plants from independent transformation events were obtained for each loblolly pine genotype tested. The integration and expression of the introduced genes in the transgenic loblolly pine plants was confirmed by polymerase chain reactions (PCR) analysis, by Southern hybridization, by Northern blot analysis, and by Western blot analysis. Effective resistance of transgenic plants against Dendrolimus punctatus Walker and Crypyothelea formosicola Staud was verified in feeding bioassays with the insects. The transgenic plants recovered could represent a good opportunity to analyse the impact of genetic engineering of pine for sustainable resistance to pests using a B. thuringiensis insecticidal protein. This protocol enabled the routine transformation of loblolly pine plants that were previously difficult to transform.

  15. Purification and properties of adenosine kinase from rat brain.

    PubMed

    Yamada, Y; Goto, H; Ogasawara, N

    1980-12-04

    Adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20) has been purified to apparent homogeneity from rat brain by (NH4)2SO4 fractionation, affinity chromatography on AMP-Sepharose 4B, gel filtration with Sephadex G-100, and DE-52 cellulose column chromatography. The yield was 56% of the initial activity with a final specific activity of 7.8 mumol/min per mg protein. The molecular weight was estimated as 38 000 by gel filtration with Sephadex G-100 and 41 000 by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). The enzyme catalyzed the phosphorylation of adenosine, deoxyadenosine, arabinoadenosine, inosine and ribavirin. The activity of deoxyadenosine phosphorylation was 20% that of adenosine phosphorylation. The pH optimum profile was biphasic; a sharp pH optimum at pH 5.5 and a broad pH optimum at pH 7.5-8.5. The Km value for adenosine was 0.2 microM and the maximum activity was observed at 0.5 microM. At higher concentrations of adenosine, the activity was strongly inhibited. The Km value for ATP was 0.02 mM and that for Mg2+ was 0.1 mM. GTP, dGTP, dATP and UTP were also proved to be effective phosphate donors. Co2+ was as effective as Mg2+, and Ca2+, Mn2+ or Ni2+ showed about 50% of the activity for Mg2+. The kinase is quite unstable, but stable in the presence of a high concentration of salt; e.g., 0.15 M KCl.

  16. Aldosterone Upregulates Transient Receptor Potential Melastatin 7 (TRPM7).

    PubMed

    Valinsky, William C; Jolly, Anna; Miquel, Perrine; Touyz, Rhian M; Shrier, Alvin

    2016-09-16

    Transient receptor potential melastatin 7 (TRPM7) is a ubiquitously expressed Mg(2+)-permeable ion channel fused to a C-terminal α-kinase domain. Recently, aldosterone was shown to increase intracellular Mg(2+) levels and alter inflammatory signaling in TRPM7-expressing HEK293 cells. This study was undertaken to assess whether these effects were related to an aldosterone-mediated increase of TRPM7 current and/or plasma membrane localization. Using HEK293 cells stably expressing WT-TRPM7, we found that 18-h application of aldosterone significantly increased TRPM7 current and TRPM7 plasma membrane protein expression by 48% and 34%, respectively. The aldosterone-mediated increase of TRPM7 current was inhibited by eplerenone, a mineralocorticoid receptor (MR) blocker, and GSK-650394, an inhibitor of the serum- and glucocorticoid-regulated kinase 1 (SGK1). SGK1 blockade also prevented the aldosterone-induced increase of TRPM7 plasma membrane protein. It was further determined that K1648R-TRPM7, the phosphotransferase-inactive TRPM7 mutant, was unresponsive to aldosterone. Therefore, chronic aldosterone treatment increases the plasma membrane expression of TRPM7, which is associated with an increase of TRPM7 current. This process occurs via an MR-dependent, genomic signaling cascade involving SGK1 and a functioning TRPM7 α-kinase domain. We suggest that this mechanism may be of general relevance when interpreting the effects of aldosterone because the MR receptor is found in multiple tissues, and TRPM7 and SGK1 are ubiquitously expressed. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Potential Virulence Role of the Legionella pneumophila ptsP Ortholog

    PubMed Central

    Higa, Futoshi; Edelstein, Paul H.

    2001-01-01

    We previously identified the Legionella pneumophila ptsP (phosphoenolpyruvate phosphotransferase) ortholog gene as a putative virulence factor in a study of signature-tagged mutagenesis using a guinea pig pneumonia model. In this study, we further defined the phenotypic properties of L. pneumophila ptsP and its complete sequence. The L. pneumophila ptsP was 2,295 bases in length. Its deduced amino acid sequence had high similarity with ptsP orthologs of Pseudomonas aeruginosa, Azotobacter vinelandii, and Escherichia coli, with nearly identical lengths. Here we show that while the mutant grew well in laboratory media, it was defective in both lung and spleen multiplication in guinea pigs. It grew slowly in guinea pig alveolar macrophages despite good uptake into the cells. Furthermore, there was minimal growth in a human alveolar epithelial cell line (A549). Transcomplementation of the L. pneumophila ptsP mutant almost completely rescued its growth in alveolar macrophages, in A549 cells, and in guinea pig lung and spleen. The L. pneumophila ptsP mutant was capable of evasion of phagosome-lysosome fusion and resided in ribosome-studded phagosomes. Pore formation activity of the mutant was normal. The L. pneumophila ptsP mutant expressed DotA and IcmX in apparently normal amounts, suggesting that the ptsP mutation did not affect dotA and icmX regulation. In addition, the mutant was resistant to serum and neutrophil killing. Taken together, these findings show that L. pneumophila ptsP is required for full in vivo virulence of L. pneumophila, most probably by affecting intracellular growth. PMID:11447151

  18. A novel light-dependent selection marker system in plants.

    PubMed

    Koh, Serry; Kim, Hongsup; Kim, Jinwoo; Goo, Eunhye; Kim, Yun-Jung; Choi, Okhee; Jwa, Nam-Soo; Ma, Jun; Nagamatsu, Tomohisa; Moon, Jae Sun; Hwang, Ingyu

    2011-04-01

    Photosensitizers are common in nature and play diverse roles as defense compounds and pathogenicity determinants and as important molecules in many biological processes. Toxoflavin, a photosensitizer produced by Burkholderia glumae, has been implicated as an essential virulence factor causing bacterial rice grain rot. Toxoflavin produces superoxide and H₂O₂ during redox cycles under oxygen and light, and these reactive oxygen species cause phytotoxic effects. To utilize toxoflavin as a selection agent in plant transformation, we identified a gene, tflA, which encodes a toxoflavin-degrading enzyme in the Paenibacillus polymyxa JH2 strain. TflA was estimated as 24.56 kDa in size based on the amino acid sequence and is similar to a ring-cleavage extradiol dioxygenase in the Exiguobacterium sp. 255-15; however, unlike other extradiol dioxygenases, Mn(2+) and dithiothreitol were required for toxoflavin degradation by TflA. Here, our results suggested toxoflavin is a photosensitizer and its degradation by TflA serves as a light-dependent selection marker system in diverse plant species. We examined the efficiencies of two different plant selection systems, toxoflavin/tflA and hygromycin/hygromycin phosphotransferase (hpt) in both rice and Arabidopsis. The toxoflavin/tflA selection was more remarkable than hygromycin/hpt selection in the high-density screening of transgenic Arabidopsis seeds. Based on these results, we propose the toxoflavin/tflA selection system, which is based on the degradation of the photosensitizer, provides a new robust nonantibiotic selection marker system for diverse plants. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  19. Development of a yeast heterologous expression cassette based on the promoter and terminator elements of the Eremothecium cymbalariae translational elongation factor 1α (EcTEF1) gene.

    PubMed

    Linder, Tomas

    2018-04-01

    A new expression cassette ( EC0 ) consisting of the fused 5' and 3' intergenic regions (IGRs) of the Eremothecium cymbalariae translational elongation factor 1α ( EcTEF1 ) gene was evaluated through expression of the bacterial hygromycin B phosphotransferase ( hph ) resistance gene in the common baker's yeast Saccharomyces cerevisiae . Progressively shorter versions of the hph -containing EC cassette ( hphEC1 though hphEC6 ) with trimmed 5' and 3' EcTEF1 IGRs were tested for their ability to confer resistance to hygromycin B in S. cerevisiae . Hygromycin B resistance was retained in all six generated hphEC variants up to a concentration of 400 mg/L. The hphEC6 cassette was the shortest cassette to be assayed in this study with 366 and 155 bp of the EcTEF1 5' and 3' IGRs, respectively. When tested for deletion of the S. cerevisiae proline oxidase gene PUT1 , the hphEC6 cassette was shown to successfully act as a selection marker on hygromycin B-containing medium. The hphEC6 cassette could be placed immediately adjacent to a kanMX4 G418 disulfate resistance marker without any discernable effect on the ability of the yeast to grow in the presence of both hygromycin B and G418 disulfate. Co-cultivation experiments under non-selective conditions demonstrated that a PUT1 deletion strain carrying the hphEC6 cassette displayed equivalent fitness to an otherwise isogenic PUT1 deletion strain carrying the kanMX4 cassette.

  20. Structural Studies of Bacterial Enzymes and their Relation to Antibiotic Resistance Mechanisms - Final Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Lauren

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure ofmore » the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β- lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes« less

  1. Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants.

    PubMed

    Ceasar, S Antony; Ignacimuthu, S

    2011-09-01

    A new Agrobacterium-mediated transformation system was developed for finger millet using shoot apex explants. The Agrobacterium strain LBA4404 harboring binary vector pCAMBIA1301, which contained hygromycin phosphotransferase (hptII) as selectable marker gene and β-glucuronidase (GUS) as reporter gene, was used for optimization of transformation conditions. Two finger millet genotypes, GPU 45 and CO 14, were used in this study. The optimal conditions for the Agrobacterium-mediated transformation of finger millet were found to be the co-cultivation of explants obtained on the 16th day after callus induction (DACI), exposure of explants for 30 min to agrobacterial inoculum and 3 days of co-cultivation on filter paper placed on medium supplemented with 100 μM acetosyringone (AS). Addition of 100 μM L: -cysteine in the selection medium enhanced the frequency of transformation and transgenic plant recovery. Both finger millet genotypes were transformed by Agrobacterium. A frequency of 19% transient expression with 3.8% stable transformation was achieved in genotype GPU 45 using optimal conditions. Five stably transformed plants were fully characterized by Southern blot analysis. A segregation analysis was also performed in four R(1) progenies, which showed normal Mendelian pattern of transgene segregation. The inheritance of transgenes in R(1) progenies was also confirmed by Southern blot analysis. This is the first report on Agrobacterium-mediated transformation of finger millet. This study underpins the introduction of numerous agronomically important genes into the genome of finger millet in the future.

  2. Two Gene Clusters Coordinate Galactose and Lactose Metabolism in Streptococcus gordonii

    PubMed Central

    Zeng, Lin; Martino, Nicole C.

    2012-01-01

    Streptococcus gordonii is an early colonizer of the human oral cavity and an abundant constituent of oral biofilms. Two tandemly arranged gene clusters, designated lac and gal, were identified in the S. gordonii DL1 genome, which encode genes of the tagatose pathway (lacABCD) and sugar phosphotransferase system (PTS) enzyme II permeases. Genes encoding a predicted phospho-β-galactosidase (LacG), a DeoR family transcriptional regulator (LacR), and a transcriptional antiterminator (LacT) were also present in the clusters. Growth and PTS assays supported that the permease designated EIILac transports lactose and galactose, whereas EIIGal transports galactose. The expression of the gene for EIIGal was markedly upregulated in cells growing on galactose. Using promoter-cat fusions, a role for LacR in the regulation of the expressions of both gene clusters was demonstrated, and the gal cluster was also shown to be sensitive to repression by CcpA. The deletion of lacT caused an inability to grow on lactose, apparently because of its role in the regulation of the expression of the genes for EIILac, but had little effect on galactose utilization. S. gordonii maintained a selective advantage over Streptococcus mutans in a mixed-species competition assay, associated with its possession of a high-affinity galactose PTS, although S. mutans could persist better at low pHs. Collectively, these results support the concept that the galactose and lactose systems of S. gordonii are subject to complex regulation and that a high-affinity galactose PTS may be advantageous when S. gordonii is competing against the caries pathogen S. mutans in oral biofilms. PMID:22660715

  3. LacR Is a Repressor of lacABCD and LacT Is an Activator of lacTFEG, Constituting the lac Gene Cluster in Streptococcus pneumoniae

    PubMed Central

    Afzal, Muhammad; Shafeeq, Sulman

    2014-01-01

    Comparison of the transcriptome of Streptococcus pneumoniae strain D39 grown in the presence of either lactose or galactose with that of the strain grown in the presence of glucose revealed the elevated expression of various genes and operons, including the lac gene cluster, which is organized into two operons, i.e., lac operon I (lacABCD) and lac operon II (lacTFEG). Deletion of the DeoR family transcriptional regulator lacR that is present downstream of the lac gene cluster revealed elevated expression of lac operon I even in the absence of lactose. This suggests a function of LacR as a transcriptional repressor of lac operon I, which encodes enzymes involved in the phosphorylated tagatose pathway in the absence of lactose or galactose. Deletion of lacR did not affect the expression of lac operon II, which encodes a lactose-specific phosphotransferase. This finding was further confirmed by β-galactosidase assays with PlacA-lacZ and PlacT-lacZ in the presence of either lactose or glucose as the sole carbon source in the medium. This suggests the involvement of another transcriptional regulator in the regulation of lac operon II, which is the BglG-family transcriptional antiterminator LacT. We demonstrate the role of LacT as a transcriptional activator of lac operon II in the presence of lactose and CcpA-independent regulation of the lac gene cluster in S. pneumoniae. PMID:24951784

  4. Global Microarray Analysis of Carbohydrate Use in Alkaliphilic Hemicellulolytic Bacterium Bacillus sp. N16-5

    PubMed Central

    Song, Yajian; Xue, Yanfen; Ma, Yanhe

    2013-01-01

    The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose) and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose) using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources. PMID:23326578

  5. Discovery of novel inhibitors for Leishmania nucleoside diphosphatase kinase (NDK) based on its structural and functional characterization

    NASA Astrophysics Data System (ADS)

    Mishra, Arjun K.; Singh, Nidhi; Agnihotri, Pragati; Mishra, Shikha; Singh, Saurabh P.; Kolli, Bala K.; Chang, Kwang Poo; Sahasrabuddhe, Amogh A.; Siddiqi, M. I.; Pratap, J. Venkatesh

    2017-06-01

    Nucleoside diphosphate kinases (NDKs) are ubiquitous enzymes that catalyze the transfer of the γ-phosphate moiety from an NTP donor to an NDP acceptor, crucial for maintaining the cellular level of nucleoside triphosphates (NTPs). The inability of trypanosomatids to synthesize purines de novo and their dependence on the salvage pathway makes NDK an attractive target to develop drugs for the diseases they cause. Here we report the discovery of novel inhibitors for Leishmania NDK based on the structural and functional characterization of purified recombinant NDK from Leishmania amazonensis. Recombinant LaNDK possesses auto-phosphorylation, phosphotransferase and kinase activities with Histidine 117 playing an essential role. LaNDK crystals were grown by hanging drop vapour diffusion method in a solution containing 18% PEG-MME 500, 100 mM Bis-Tris propane pH 6.0 and 50 mM MgCl2. It belongs to the hexagonal space group P6322 with unit cell parameters a = b = 115.18, c = 62.18 Å and α = β = 90°, γ = 120°. The structure solved by molecular replacement methods was refined to crystallographic R-factor and Rfree values of 22.54 and 26.52%, respectively. Molecular docking and dynamics simulation -based virtual screening identified putative binding compounds. Protein inhibition studies of selected hits identified five inhibitors effective at micromolar concentrations. One of the compounds showed 45% inhibition of Leishmania promastigotes proliferation. Analysis of inhibitor-NDK complexes reveals the mode of their binding, facilitating design of new compounds for optimization of activities as drugs against leishmaniasis.

  6. Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6’-phosphate phosphatase (MapP)

    PubMed Central

    Mokhtari, Abdelhamid; Blancato, Víctor S.; Repizo, Guillermo; Henry, Céline; Pikis, Andreas; Bourand, Alexa; de Fátima Álvarez, María; Immel, Stefan; Mechakra-Maza, Aicha; Hartke, Axel; Thompson, John; Magni, Christian; Deutscher, Josef

    2013-01-01

    Summary Similar to Bacillus subtilis, Enterococcus faecalis transports and phosphorylates maltose via a phosphoenolpyruvate (PEP):maltose phosphotransferase system (PTS). The maltose-specific PTS permease is encoded by the malT gene. However, E. faecalis lacks a malA gene encoding a 6-phospho-α-glucosidase which in B. subtilis hydrolyses maltose-6’-P into glucose and glucose-6-P. Instead, an operon encoding a maltose phosphorylase (MalP), a phosphoglucomutase and a mutarotase starts upstream from malT. MalP was suggested to split maltose-6-P into glucose-1-P and glucose-6-P. However, purified MalP phosphorolyses maltose but not maltose-6’-P. We discovered that the gene downstream from malT encodes a novel enzyme (MapP) that dephosphorylates maltose-6’-P formed by the PTS. The resulting intracellular maltose is cleaved by MalP into glucose and glucose-1-P. Slow uptake of maltose probably via a maltodextrin ABC transporter allows poor growth for the mapP but not the malP mutant. Synthesis of MapP in a B. subtilis mutant accumulating maltose-6’-P restored growth on maltose. MapP catalyzes the dephosphorylation of intracellular maltose-6’-P, and the resulting maltose is converted by the B. subtilis maltose phosphorylase into glucose and glucose-1-P. MapP therefore connects PTS-mediated maltose uptake to maltose phosphorylase-catalyzed metabolism. Dephosphorylation assays with a wide variety of phospho-substrates revealed that MapP preferably dephosphorylates disaccharides containing an O-α-glycosyl linkage. PMID:23490043

  7. Crystal structure of B acillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity: AtxA multimerization, phosphorylation and activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.

    2014-12-30

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (HisAsp) and phosphoablative (HisAla) amino acid changes for activitymore » in B.anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.« less

  8. Lactobacillus acidophilus Metabolizes Dietary Plant Glucosides and Externalizes Their Bioactive Phytochemicals

    PubMed Central

    Theilmann, Mia C.; Nielsen, Kristian Fog; Klaenhammer, Todd R.

    2017-01-01

    ABSTRACT Therapeutically active glycosylated phytochemicals are ubiquitous in the human diet. The human gut microbiota (HGM) modulates the bioactivities of these compounds, which consequently affect host physiology and microbiota composition. Despite a significant impact on human health, the key players and the underpinning mechanisms of this interplay remain uncharacterized. Here, we demonstrate the growth of Lactobacillus acidophilus on mono- and diglucosyl dietary plant glycosides (PGs) possessing small aromatic aglycones. Transcriptional analysis revealed the upregulation of host interaction genes and identified two loci that encode phosphotransferase system (PTS) transporters and phospho-β-glucosidases, which mediate the uptake and deglucosylation of these compounds, respectively. Inactivating these transport and hydrolysis genes abolished or severely reduced growth on PG, establishing the specificity of the loci to distinct groups of PGs. Following intracellular deglucosylation, the aglycones of PGs are externalized, rendering them available for absorption by the host or for further modification by other microbiota taxa. The PG utilization loci are conserved in L. acidophilus and closely related lactobacilli, in correlation with versatile growth on these compounds. Growth on the tested PG appeared more common among human gut lactobacilli than among counterparts from other ecologic niches. The PGs that supported the growth of L. acidophilus were utilized poorly or not at all by other common HGM strains, underscoring the metabolic specialization of L. acidophilus. These findings highlight the role of human gut L. acidophilus and select lactobacilli in the bioconversion of glycoconjugated phytochemicals, which is likely to have an important impact on the HGM and human host. PMID:29162708

  9. Adenosine Kinase: Exploitation for Therapeutic Gain

    PubMed Central

    2013-01-01

    Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5′-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically. PMID:23592612

  10. Partial genome assembly for a candidate division OP11 single cell from an anoxic spring (Zodletone Spring, Oklahoma).

    PubMed

    Youssef, Noha H; Blainey, Paul C; Quake, Stephen R; Elshahed, Mostafa S

    2011-11-01

    Members of candidate division OP11 are widely distributed in terrestrial and marine ecosystems, yet little information regarding their metabolic capabilities and ecological role within such habitats is currently available. Here, we report on the microfluidic isolation, multiple-displacement-amplification, pyrosequencing, and genomic analysis of a single cell (ZG1) belonging to candidate division OP11. Genome analysis of the ∼270-kb partial genome assembly obtained showed that it had no particular similarity to a specific phylum. Four hundred twenty-three open reading frames were identified, 46% of which had no function prediction. In-depth analysis revealed a heterotrophic lifestyle, with genes encoding endoglucanase, amylopullulanase, and laccase enzymes, suggesting a capacity for utilization of cellulose, starch, and, potentially, lignin, respectively. Genes encoding several glycolysis enzymes as well as formate utilization were identified, but no evidence for an electron transport chain was found. The presence of genes encoding various components of lipopolysaccharide biosynthesis indicates a Gram-negative bacterial cell wall. The partial genome also provides evidence for antibiotic resistance (β-lactamase, aminoglycoside phosphotransferase), as well as antibiotic production (bacteriocin) and extracellular bactericidal peptidases. Multiple mechanisms for stress response were identified, as were elements of type I and type IV secretion systems. Finally, housekeeping genes identified within the partial genome were used to demonstrate the OP11 affiliation of multiple hitherto unclassified genomic fragments from multiple database-deposited metagenomic data sets. These results provide the first glimpse into the lifestyle of a member of a ubiquitous, yet poorly understood bacterial candidate division.

  11. HIV Glycoprotein Gp120 Impairs Fast Axonal Transport by Activating Tak1 Signaling Pathways

    PubMed Central

    Berth, Sarah H.; Mesnard-Hoaglin, Nichole; Wang, Bin; Kim, Hajwa; Song, Yuyu; Sapar, Maria; Morfini, Gerardo

    2016-01-01

    Sensory neuropathies are the most common neurological complication of HIV. Of these, distal sensory polyneuropathy (DSP) is directly caused by HIV infection and characterized by length-dependent axonal degeneration of dorsal root ganglion (DRG) neurons. Mechanisms for axonal degeneration in DSP remain unclear, but recent experiments revealed that the HIV glycoprotein gp120 is internalized and localized within axons of DRG neurons. Based on these findings, we investigated whether intra-axonal gp120 might impair fast axonal transport (FAT), a cellular process critical for appropriate maintenance of the axonal compartment. Significantly, we found that gp120 severely impaired both anterograde and retrograde FAT. Providing a mechanistic basis for these effects, pharmacological experiments revealed an involvement of various phosphotransferases in this toxic effect, including members of mitogen-activated protein kinase pathways (Tak-1, p38, and c-Jun N-terminal Kinase (JNK)), inhibitor of kappa-B-kinase 2 (IKK2), and PP1. Biochemical experiments and axonal outgrowth assays in cell lines and primary cultures extended these findings. Impairments in neurite outgrowth in DRG neurons by gp120 were rescued using a Tak-1 inhibitor, implicating a Tak-1 mitogen-activated protein kinase pathway in gp120 neurotoxicity. Taken together, these observations indicate that kinase-based impairments in FAT represent a novel mechanism underlying gp120 neurotoxicity consistent with the dying-back degeneration seen in DSP. Targeting gp120-based impairments in FAT with specific kinase inhibitors might provide a novel therapeutic strategy to prevent axonal degeneration in DSP. PMID:27872270

  12. Survival of Listeria monocytogenes in Soil Requires AgrA-Mediated Regulation

    PubMed Central

    Vivant, Anne-Laure; Garmyn, Dominique; Gal, Laurent; Hartmann, Alain

    2015-01-01

    In a recent paper, we demonstrated that inactivation of the Agr system affects the patterns of survival of Listeria monocytogenes (A.-L. Vivant, D. Garmyn, L. Gal, and P. Piveteau, Front Cell Infect Microbiol 4:160, http://dx.doi.org/10.3389/fcimb.2014.00160). In this study, we investigated whether the Agr-mediated response is triggered during adaptation in soil, and we compared survival patterns in a set of 10 soils. The fate of the parental strain L. monocytogenes L9 (a rifampin-resistant mutant of L. monocytogenes EGD-e) and that of a ΔagrA deletion mutant were compared in a collection of 10 soil microcosms. The ΔagrA mutant displayed significantly reduced survival in these biotic soil microcosms, and differential transcriptome analyses showed large alterations of the transcriptome when AgrA was not functional, while the variations in the transcriptomes between the wild type and the ΔagrA deletion mutant were modest under abiotic conditions. Indeed, in biotic soil environments, 578 protein-coding genes and an extensive repertoire of noncoding RNAs (ncRNAs) were differentially transcribed. The transcription of genes coding for proteins involved in cell envelope and cellular processes, including the phosphotransferase system and ABC transporters, and proteins involved in resistance to antimicrobial peptides was affected. Under sterilized soil conditions, the differences were limited to 86 genes and 29 ncRNAs. These results suggest that the response regulator AgrA of the Agr communication system plays important roles during the saprophytic life of L. monocytogenes in soil. PMID:26002901

  13. Survival of Listeria monocytogenes in Soil Requires AgrA-Mediated Regulation.

    PubMed

    Vivant, Anne-Laure; Garmyn, Dominique; Gal, Laurent; Hartmann, Alain; Piveteau, Pascal

    2015-08-01

    In a recent paper, we demonstrated that inactivation of the Agr system affects the patterns of survival of Listeria monocytogenes (A.-L. Vivant, D. Garmyn, L. Gal, and P. Piveteau, Front Cell Infect Microbiol 4:160, http://dx.doi.org/10.3389/fcimb.2014.00160). In this study, we investigated whether the Agr-mediated response is triggered during adaptation in soil, and we compared survival patterns in a set of 10 soils. The fate of the parental strain L. monocytogenes L9 (a rifampin-resistant mutant of L. monocytogenes EGD-e) and that of a ΔagrA deletion mutant were compared in a collection of 10 soil microcosms. The ΔagrA mutant displayed significantly reduced survival in these biotic soil microcosms, and differential transcriptome analyses showed large alterations of the transcriptome when AgrA was not functional, while the variations in the transcriptomes between the wild type and the ΔagrA deletion mutant were modest under abiotic conditions. Indeed, in biotic soil environments, 578 protein-coding genes and an extensive repertoire of noncoding RNAs (ncRNAs) were differentially transcribed. The transcription of genes coding for proteins involved in cell envelope and cellular processes, including the phosphotransferase system and ABC transporters, and proteins involved in resistance to antimicrobial peptides was affected. Under sterilized soil conditions, the differences were limited to 86 genes and 29 ncRNAs. These results suggest that the response regulator AgrA of the Agr communication system plays important roles during the saprophytic life of L. monocytogenes in soil. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Development of marker-free transgenic lettuce resistant to Mirafiori lettuce big-vein virus.

    PubMed

    Kawazu, Yoichi; Fujiyama, Ryoi; Imanishi, Shunsuke; Fukuoka, Hiroyuki; Yamaguchi, Hirotaka; Matsumoto, Satoru

    2016-10-01

    Lettuce big-vein disease caused by Mirafiori lettuce big-vein virus (MLBVV) is found in major lettuce production areas worldwide, but highly resistant cultivars have not yet been developed. To produce MLBVV-resistant marker-free transgenic lettuce that would have a transgene with a promoter and terminator of lettuce origin, we constructed a two T-DNA binary vector, in which the first T-DNA contained the selectable marker gene neomycin phosphotransferase II, and the second T-DNA contained the lettuce ubiquitin gene promoter and terminator and inverted repeats of the coat protein (CP) gene of MLBVV. This vector was introduced into lettuce cultivars 'Watson' and 'Fuyuhikari' by Agrobacterium tumefaciens-mediated transformation. Regenerated plants (T0 generation) that were CP gene-positive by PCR analysis were self-pollinated, and 312 T1 lines were analyzed for resistance to MLBVV. Virus-negative plants were checked for the CP gene and the marker gene, and nine lines were obtained which were marker-free and resistant to MLBVV. Southern blot analysis showed that three of the nine lines had two copies of the CP gene, whereas six lines had a single copy and were used for further analysis. Small interfering RNAs, which are indicative of RNA silencing, were detected in all six lines. MLBVV infection was inhibited in all six lines in resistance tests performed in a growth chamber and a greenhouse, resulting in a high degree of resistance to lettuce big-vein disease. Transgenic lettuce lines produced in this study could be used as resistant cultivars or parental lines for breeding.

  15. Bioengineered 'golden' indica rice cultivars with beta-carotene metabolism in the endosperm with hygromycin and mannose selection systems.

    PubMed

    Datta, Karabi; Baisakh, Niranjan; Oliva, Norman; Torrizo, Lina; Abrigo, Editha; Tan, Jing; Rai, Mayank; Rehana, Sayda; Al-Babili, Salim; Beyer, Peter; Potrykus, Ingo; Datta, Swapan K

    2003-03-01

    Vitamin-A deficiency (VAD) is a major malnutrition problem in South Asia, where indica rice is the staple food. Indica-type rice varieties feed more than 2 billion people. Hence, we introduced a combination of transgenes using the biolistic system of transformation enabling biosynthesis of provitamin A in the endosperm of several indica rice cultivars adapted to diverse ecosystems of different countries. The rice seed-specific glutelin promoter (Gt-1 P) was used to drive the expression of phytoene synthase (psy), while lycopene beta-cyclase (lcy) and phytoene desaturase (crtI), fused to the transit peptide sequence of the pea-Rubisco small subunit, were driven by the constitutive cauliflower mosaic virus promoter (CaMV35S P). Transgenic plants were recovered through selection with either CaMV35S P driven hph (hygromycin phosphotransferase) gene or cestrum yellow leaf curling virus promoter (CMP) driven pmi (phophomannose isomerase) gene. Molecular and biochemical analyses demonstrated stable integration and expression of the transgenes. The yellow colour of the polished rice grain evidenced the carotenoid accumulation in the endosperm. The colour intensity correlated with the estimated carotenoid content by spectrophotometric and HPLC analysis. Carotenoid level in cooked polished seeds was comparable (with minor loss of xanthophylls) to that in non-cooked seeds of the same transgenic line. The variable segregation pattern in T1 selfing generation indicated single to multiple loci insertion of the transgenes in the genome. This is the first report of using nonantibiotic pmi driven by a novel promoter in generating transgenic indica rice for possible future use in human nutrition.

  16. A Mutation Associated with Stuttering Alters Mouse Pup Ultrasonic Vocalizations.

    PubMed

    Barnes, Terra D; Wozniak, David F; Gutierrez, Joanne; Han, Tae-Un; Drayna, Dennis; Holy, Timothy E

    2016-04-13

    A promising approach to understanding the mechanistic basis of speech is to study disorders that affect speech without compromising other cognitive or motor functions. Stuttering, also known as stammering, has been linked to mutations in the lysosomal enzyme-targeting pathway, but how this remarkably specific speech deficit arises from mutations in a family of general "cellular housekeeping" genes is unknown. To address this question, we asked whether a missense mutation associated with human stuttering causes vocal or other abnormalities in mice. We compared vocalizations from mice engineered to carry a mutation in the Gnptab (N-acetylglucosamine-1-phosphotransferase subunits alpha/beta) gene with wild-type littermates. We found significant differences in the vocalizations of pups with the human Gnptab stuttering mutation compared to littermate controls. Specifically, we found that mice with the mutation emitted fewer vocalizations per unit time and had longer pauses between vocalizations and that the entropy of the temporal sequence was significantly reduced. Furthermore, Gnptab missense mice were similar to wild-type mice on an extensive battery of non-vocal behaviors. We then used the same language-agnostic metrics for auditory signal analysis of human speech. We analyzed speech from people who stutter with mutations in this pathway and compared it to control speech and found abnormalities similar to those found in the mouse vocalizations. These data show that mutations in the lysosomal enzyme-targeting pathway produce highly specific effects in mouse pup vocalizations and establish the mouse as an attractive model for studying this disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Identification of genes associated with the long-gut-persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC533 using a combination of genomics and transcriptome analysis.

    PubMed

    Denou, Emmanuel; Pridmore, Raymond David; Berger, Bernard; Panoff, Jean-Michel; Arigoni, Fabrizio; Brüssow, Harald

    2008-05-01

    Lactobacillus johnsonii strains NCC533 and ATCC 33200 (the type strain of this species) differed significantly in gut residence time (12 versus 5 days) after oral feeding to mice. Genes affecting the long gut residence time of the probiotic strain NCC533 were targeted for analysis. We hypothesized that genes specific for this strain, which are expressed during passage of the bacterium through the gut, affect the phenotype. When the DNA of the type strain was hybridized against a microarray of the sequenced NCC533 strain, we identified 233 genes that were specific for the long-gut-persistence isolate. Whole-genome transcription analysis of the NCC533 strain using the microarray format identified 174 genes that were strongly and consistently expressed in the jejunum of mice monocolonized with this strain. Fusion of the two microarray data sets identified three gene loci that were both expressed in vivo and specific to the long-gut-persistence isolate. The identified genes included LJ1027 and LJ1028, two glycosyltransferase genes in the exopolysaccharide synthesis operon; LJ1654 to LJ1656, encoding a sugar phosphotransferase system (PTS) transporter annotated as mannose PTS; and LJ1680, whose product shares 30% amino acid identity with immunoglobulin A proteases from pathogenic bacteria. Knockout mutants were tested in vivo. The experiments revealed that deletion of LJ1654 to LJ1656 and LJ1680 decreased the gut residence time, while a mutant with a deleted exopolysaccharide biosynthesis cluster had a slightly increased residence time.

  18. Isolation and characterization of a homogeneous isoenzyme of wheat germ acid phosphatase.

    PubMed

    Waymack, P P; Van Etten, R L

    1991-08-01

    An acid phosphatase (orthophosphoric monoester phosphohydrolase, acid optimum; EC 3.1.3.2) isoenzyme from wheat germ was purified 7000-fold to homogeneity. The effect of wheat germ sources and their relationship to the isoenzyme content and purification behavior of acid phosphatases was investigated. Extensive information about the purification and stabilization of the enzyme is provided. The instability of isoenzymes in the latter stages of purification appeared to be the result of surface inactivation together with a sensitivity to dilution that could be partially offset by addition of Triton X-100 during chromatographic procedures. Added sulfhydryl protecting reagents had no effect on activity or stability, which was greatest in the pH range 4-7. The purified isoenzyme was homogeneous by polyacrylamide gel electrophoresis and exhibited the highest specific activity and turnover number reported for any acid phosphatase. The molecular weights of the pure isoenzyme and of related isoenzymes from wheat germ were found to be identical (58,000). The pure isoenzyme contained a single polypeptide chain and had a negligible carbohydrate content. The amino acid composition was determined. Of the various reasons that were considered to explain isoenzyme occurrence, a genetic basis was considered most likely. The enzyme was found to exhibit substrate inhibition with some substrates below pH 6, while above pH 8 it exhibited downwardly curving Lineweaver-Burk plots of the type that are generally described as "substrate activation". The observation of a phosphotransferase activity was consistent with the formation of a covalent phosphoenzyme intermediate, while inactivation by diethyl pyrocarbonate was consistent with the presence of an active site histidine.

  19. Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Ziyu; Deng, Shuang; Culley, David E.

    Background: Because of interest in the production of renewable bio-hydrocarbon fuels, various living organisms have been explored for their potential use in producing fuels and chemicals. The oil-producing (oleaginous) yeast Lipomyces starkeyi is the subject of active research regarding the production of lipids using a wide variety of carbon and nutrient sources. The genome of L. starkeyi has been published, which opens the door to production strain improvements using the tools of synthetic biology and metabolic engineering. However, using these tools for strain improvement requires the establishment of effective and reliable transformation methods with suitable selectable markers (antibiotic resistance ormore » auxotrophic marker genes) and the necessary genetic elements (promoters and terminators) for expression of introduced genes. Chemical-based methods have been published, but suffer from low efficiency or the requirement for targeting to rRNA loci. To address these problems, Agrobacterium-mediated transformation was investigated as an alternative method for L. starkeyi and other Lipomyces species. Results: In this study, Agrobacterium-mediated transformation was demonstrated to be effective in the transformation of both L. starkeyi and other Lipomyces species and that the introduced DNA can be reliably integrated into the chromosomes of these species. The gene deletion of Ku70 and Pex10 was also demonstrated in L. starkeyi. In addition to the bacterial antibiotic selection marker gene hygromycin B phosphotransferase, the bacterial -glucuronidase reporter gene under the control of L. starkeyi translation elongation factor 1 promoter was also stably expressed in seven different Lipomyces species. Conclusion: The results from this study clearly demonstrate that Agrobacterium-mediated transformation is a reliable genetic tool for gene deletion and integration and expression of heterologous genes in L. starkeyi and other Lipomyces species.« less

  20. Structure of the bifunctional aminoglycoside-resistance enzyme AAC(6′)-Ie-APH(2′′)-Ia revealed by crystallographic and small-angle X-ray scattering analysis

    PubMed Central

    Smith, Clyde A.; Toth, Marta; Weiss, Thomas M.; Frase, Hilary; Vakulenko, Sergei B.

    2014-01-01

    Broad-spectrum resistance to aminoglycoside antibiotics in clinically important Gram-positive staphylococcal and entero­coccal pathogens is primarily conferred by the bifunctional enzyme AAC(6′)-Ie-APH(2′′)-Ia. This enzyme possesses an N-terminal coenzyme A-dependent acetyltransferase domain [AAC(6′)-Ie] and a C-terminal GTP-dependent phosphotransferase domain [APH(2′′)-Ia], and together they produce resistance to almost all known aminoglycosides in clinical use. Despite considerable effort over the last two or more decades, structural details of AAC(6′)-Ie-APH(2′′)-Ia have remained elusive. In a recent breakthrough, the structure of the isolated C-terminal APH(2′′)-Ia enzyme was determined as the binary Mg2GDP complex. Here, the high-resolution structure of the N-terminal AAC(6′)-Ie enzyme is reported as a ternary kanamycin/coenzyme A abortive complex. The structure of the full-length bifunctional enzyme has subsequently been elucidated based upon small-angle X-ray scattering data using the two crystallographic models. The AAC(6′)-Ie enzyme is joined to APH(2′′)-Ia by a short, predominantly rigid linker at the N-terminal end of a long α-helix. This α-helix is in turn intrinsically associated with the N-terminus of APH(2′′)-Ia. This structural arrangement supports earlier observations that the presence of the intact α-helix is essential to the activity of both functionalities of the full-length AAC(6′)-Ie-APH(2′′)-Ia enzyme. PMID:25286858

  1. Modeling of a possible conformational change associated with the catalytic mechanism in the hammerhead ribozyme

    NASA Technical Reports Server (NTRS)

    Setlik, R. F.; Shibata, M.; Sarma, R. H.; Sarma, M. H.; Kazim, A. L.; Ornstein, R. L.; Tomasi, T. B.; Rein, R.

    1995-01-01

    Here we describe a possible model of the cleavage mechanism in the hammerhead ribozyme. In this model, the 2' hydroxyl of C17 is moved into an appropriate orientation for an in-line attack on the G1.1 phosphate through a change in its sugar pucker from C3' endo to C2' endo. This conformational change in the active site is caused by a change in the uridine turn placing the N2 and N3 atoms of G5 of the conserved core in hydrogen bonding geometry with the N3 and N2 atoms on the conserved G16.2 residue. The observed conformational change in the uridine turn suggests an explanation for the conservation of G5. In the crystal structure of H.M. Pley et al., Nature 372, 68-74 (1994), G5 is situated 5.3A away from G16.2. However, the uridine turn is sufficiently flexible to allow this conformational change with relatively modest changes in the backbone torsion angles (average change of 14.2 degrees). Two magnesium ions were modeled into the active site with positions analogous to those described in the functionally similar Klenow fragment 3'-5' exonuclease (L.S. Beese and T.A. Steitz, EMBO J. 10, 25-33 (1991)), the Group I intron (T.A. Steitz and J.A. Steitz, P.N.A.S. U.S.A. 90, 6498-6502 (1993); R.F. Setlik et al., J. Biomol. Str. Dyn. 10, 945-972 (1993)) and other phosphotransferases. Comparison of this model with one in which the uridine turn conformation was not changed showed that although the changes in the C17 sugar pucker could be modeled, insufficient space existed for the magnesium ions in the active site.

  2. The Genome-Based Metabolic Systems Engineering to Boost Levan Production in a Halophilic Bacterial Model.

    PubMed

    Aydin, Busra; Ozer, Tugba; Oner, Ebru Toksoy; Arga, Kazim Yalcin

    2018-03-01

    Metabolic systems engineering is being used to redirect microbial metabolism for the overproduction of chemicals of interest with the aim of transforming microbial hosts into cellular factories. In this study, a genome-based metabolic systems engineering approach was designed and performed to improve biopolymer biosynthesis capability of a moderately halophilic bacterium Halomonas smyrnensis AAD6 T producing levan, which is a fructose homopolymer with many potential uses in various industries and medicine. For this purpose, the genome-scale metabolic model for AAD6 T was used to characterize the metabolic resource allocation, specifically to design metabolic engineering strategies for engineered bacteria with enhanced levan production capability. Simulations were performed in silico to determine optimal gene knockout strategies to develop new strains with enhanced levan production capability. The majority of the gene knockout strategies emphasized the vital role of the fructose uptake mechanism, and pointed out the fructose-specific phosphotransferase system (PTS fru ) as the most promising target for further metabolic engineering studies. Therefore, the PTS fru of AAD6 T was restructured with insertional mutagenesis and triparental mating techniques to construct a novel, engineered H. smyrnensis strain, BMA14. Fermentation experiments were carried out to demonstrate the high efficiency of the mutant strain BMA14 in terms of final levan concentration, sucrose consumption rate, and sucrose conversion efficiency, when compared to the AAD6 T . The genome-based metabolic systems engineering approach presented in this study might be considered an efficient framework to redirect microbial metabolism for the overproduction of chemicals of interest, and the novel strain BMA14 might be considered a potential microbial cell factory for further studies aimed to design levan production processes with lower production costs.

  3. Incidence of Ganciclovir Resistance in CMV-positive Renal Transplant Recipients and its Association with UL97 Gene Mutations.

    PubMed

    Aslani, Hamid Reza; Ziaie, Shadi; Salamzadeh, Jamshid; Zaheri, Sara; Samadian, Fariba; Mastoor-Tehrani, Shayan

    2017-01-01

    Human cytomegalovirus (CMV) remains the most common infection affecting organ transplant recipients. Despite advances in the prophylaxis and acute treatment of CMV, it remains an important pathogen affecting the short- and long-term clinical outcome of solid organ transplant recipient. The emergence of CMV resistance in a patient reduces the clinical efficacy of antiviral therapy, complicates therapeutic and clinical management decisions, and in some cases results in loss of the allograft and/or death of the patient. Common mechanisms of CMV resistance to ganciclovir have been described chiefly with the UL97 mutations. Here we evaluate Incidence of ganciclovir resistance in 144 CMV-positive renal transplant recipients and its association with UL97 gene mutations. Active CMV infection was monitored by viral DNA quantification in whole blood, and CMV resistance was assessed by UL97 gene sequencing. Six mutations in six patients were detected. Three patients (2.6%) of 112 patients with history of ganciclovir (GCV) treatment had clinical resistance with single UL97 mutations at loci known to be related to resistance (including mutations at codon 594, codon 460, and codon 520). three patients who were anti-CMV drug naïve had single UL97 mutations (D605E) without clinical resistance. Our results confirm and extend our earlier findings on the specific mutations in the UL97 phosphotransferase gene in loci that have established role in ganciclovir resistance and also indicate that clinical ganciclovir resistance due to UL97 gene mutations is an issue in subjects with history of with ganciclovir treatment. D605E mutations remains a controversial issue that needs further investigations.

  4. The Biosynthesis of Capuramycin-type Antibiotics

    PubMed Central

    Cai, Wenlong; Goswami, Anwesha; Yang, Zhaoyong; Liu, Xiaodong; Green, Keith D.; Barnard-Britson, Sandra; Baba, Satoshi; Funabashi, Masanori; Nonaka, Koichi; Sunkara, Manjula; Morris, Andrew J.; Spork, Anatol P.; Ducho, Christian; Garneau-Tsodikova, Sylvie; Thorson, Jon S.; Van Lanen, Steven G.

    2015-01-01

    A-500359s, A-503083s, and A-102395 are capuramycin-type nucleoside antibiotics that were discovered using a screen to identify inhibitors of bacterial translocase I, an essential enzyme in peptidoglycan cell wall biosynthesis. Like the parent capuramycin, A-500359s and A-503083s consist of three structural components: a uridine-5′-carboxamide (CarU), a rare unsaturated hexuronic acid, and an aminocaprolactam, the last of which is substituted by an unusual arylamine-containing polyamide in A-102395. The biosynthetic gene clusters for A-500359s and A-503083s have been reported, and two genes encoding a putative non-heme Fe(II)-dependent α-ketoglutarate:UMP dioxygenase and an l-Thr:uridine-5′-aldehyde transaldolase were uncovered, suggesting that C–C bond formation during assembly of the high carbon (C6) sugar backbone of CarU proceeds from the precursors UMP and l-Thr to form 5′-C-glycyluridine (C7) as a biosynthetic intermediate. Here, isotopic enrichment studies with the producer of A-503083s were used to indeed establish l-Thr as the direct source of the carboxamide of CarU. With this knowledge, the A-102395 gene cluster was subsequently cloned and characterized. A genetic system in the A-102395-producing strain was developed, permitting the inactivation of several genes, including those encoding the dioxygenase (cpr19) and transaldolase (cpr25), which abolished the production of A-102395, thus confirming their role in biosynthesis. Heterologous production of recombinant Cpr19 and CapK, the transaldolase homolog involved in A-503083 biosynthesis, confirmed their expected function. Finally, a phosphotransferase (Cpr17) conferring self-resistance was functionally characterized. The results provide the opportunity to use comparative genomics along with in vivo and in vitro approaches to probe the biosynthetic mechanism of these intriguing structures. PMID:25855790

  5. Control of Clostridium difficile Physiopathology in Response to Cysteine Availability

    PubMed Central

    Dubois, Thomas; Dancer-Thibonnier, Marie; Monot, Marc; Hamiot, Audrey; Bouillaut, Laurent; Soutourina, Olga; Martin-Verstraete, Isabelle

    2016-01-01

    The pathogenicity of Clostridium difficile is linked to its ability to produce two toxins: TcdA and TcdB. The level of toxin synthesis is influenced by environmental signals, such as phosphotransferase system (PTS) sugars, biotin, and amino acids, especially cysteine. To understand the molecular mechanisms of cysteine-dependent repression of toxin production, we reconstructed the sulfur metabolism pathways of C. difficile strain 630 in silico and validated some of them by testing C. difficile growth in the presence of various sulfur sources. High levels of sulfide and pyruvate were produced in the presence of 10 mM cysteine, indicating that cysteine is actively catabolized by cysteine desulfhydrases. Using a transcriptomic approach, we analyzed cysteine-dependent control of gene expression and showed that cysteine modulates the expression of genes involved in cysteine metabolism, amino acid biosynthesis, fermentation, energy metabolism, iron acquisition, and the stress response. Additionally, a sigma factor (SigL) and global regulators (CcpA, CodY, and Fur) were tested to elucidate their roles in the cysteine-dependent regulation of toxin production. Among these regulators, only sigL inactivation resulted in the derepression of toxin gene expression in the presence of cysteine. Interestingly, the sigL mutant produced less pyruvate and H2S than the wild-type strain. Unlike cysteine, the addition of 10 mM pyruvate to the medium for a short time during the growth of the wild-type and sigL mutant strains reduced expression of the toxin genes, indicating that cysteine-dependent repression of toxin production is mainly due to the accumulation of cysteine by-products during growth. Finally, we showed that the effect of pyruvate on toxin gene expression is mediated at least in part by the two-component system CD2602-CD2601. PMID:27297391

  6. 5-Azacytidine mediated reactivation of silenced transgenes in potato (Solanum tuberosum) at the whole plant level.

    PubMed

    Tyč, Dimitrij; Nocarová, Eva; Sikorová, Lenka; Fischer, Lukáš

    2017-08-01

    Transient 5-azacytidine treatment of leaf explants from potato plants with transcriptionally silenced transgenes allows de novo regeneration of plants with restored transgene expression at the whole plant level. Transgenes introduced into plant genomes frequently become silenced either at the transcriptional or the posttranscriptional level. Transcriptional silencing is usually associated with DNA methylation in the promoter region. Treatments with inhibitors of maintenance DNA methylation were previously shown to allow reactivation of transcriptionally silenced transgenes in single cells or tissues, but not at the whole plant level. Here we analyzed the effect of DNA methylation inhibitor 5-azacytidine (AzaC) on the expression of two silenced reporter genes encoding green fluorescent protein (GFP) and neomycin phosphotransferase (NPTII) in potato plants. Whereas no obvious reactivation was observed in AzaC-treated stem cuttings, transient treatment of leaf segments with 10 μM AzaC and subsequent de novo regeneration of shoots on the selective medium with kanamycin resulted in the production of whole plants with clearly reactivated expression of previously silenced transgenes. Reactivation of nptII expression was accompanied by a decrease in cytosine methylation in the promoter region of the gene. Using the plants with reactivated GFP expression, we found that re-silencing of this transgene can be accidentally triggered by de novo regeneration. Thus, testing the incidence of transgene silencing during de novo regeneration could be a suitable procedure for negative selection of transgenic lines (insertion events) which have an inclination to be silenced. Based on our analysis of non-specific inhibitory effects of AzaC on growth of potato shoots in vitro, we estimated that AzaC half-life in the culture media is approximately 2 days.

  7. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open ↔ Closed Transitions

    PubMed Central

    Beckstein, Oliver; Denning, Elizabeth J.; Perilla, Juan R.; Woolf, Thomas B.

    2009-01-01

    Adenylate kinase (AdK), a phosphotransferase enzyme, plays an important role in cellular energy homeostasis. It undergoes a large conformational change between an open and a closed state, even in the absence of substrate. We investigate the apo-AdK transition at the atomic level both with free energy calculations and our new dynamic importance sampling (DIMS) molecular dynamics (MD) method. DIMS is shown to sample biologically relevant conformations as verified by comparing an ensemble of hundreds of DIMS transitions to AdK crystal structure intermediates. The simulations reveal in atomic detail how hinge regions partially and intermittently unfold during the transition. Conserved salt bridges are seen to have important structural and dynamic roles; in particular four ionic bonds are identified that open in a sequential, zipper-like fashion and thus dominate the free energy landscape of the transition. Transitions between the closed and open conformations only have to overcome moderate free energy barriers. Unexpectedly, the closed and open state encompass broad free energy basins that contain conformations differing in domain hinge motions by up to 40°. The significance of these extended states is discussed in relation to recent experimental FRET measurements. Taken together, these results demonstrate how a small number of cooperative key interactions can shape the overall dynamics of an enzyme and suggest an “all-or-nothing” mechanism for the opening and closing of AdK. Our efficient DIMS-MD computer simulation approach can provide a detailed picture of a functionally important macromolecular transition and thus help to interpret and suggest experiments to probe the conformational landscape of dynamic proteins such as AdK. PMID:19751742

  8. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences.

    PubMed

    Vanfossen, Amy L; Verhaart, Marcel R A; Kengen, Servé M W; Kelly, Robert M

    2009-12-01

    Coutilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H(2)-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on individual monosaccharides (arabinose, fructose, galactose, glucose, mannose, and xylose), mixtures of these sugars, as well as on xylan and xylogluco-oligosacchrides. C. saccharolyticus grew at approximately the same rate (t(d), approximately 95 min) and to the same final cell density (1 x 10(8) to 3 x 10(8) cells/ml) on all sugars and sugar mixtures tested. In the monosaccharide mixture, although simultaneous consumption of all monosaccharides was observed, not all were utilized to the same extent (fructose > xylose/arabinose > mannose/glucose/galactose). Transcriptome contrasts for monosaccharide growth revealed minimal changes in some cases (e.g., 32 open reading frames [ORFs] changed >/=2-fold for glucose versus galactose), while substantial changes occurred for cases involving mannose (e.g., 353 ORFs changed >/=2-fold for glucose versus mannose). Evidence for catabolite repression was not noted for either growth on multisugar mixtures or the corresponding transcriptomes. Based on the whole-genome transcriptional response analysis and comparative genomics, carbohydrate specificities for transport systems could be proposed for most of the 24 putative carbohydrate ATP-binding cassette transporters and single phosphotransferase system identified in C. saccharolyticus. Although most transporter genes responded to individual monosaccharides and polysaccharides, the genes Csac_0692 to Csac_0694 were upregulated only in the monosaccharide mixture. The results presented here affirm the broad growth substrate preferences of C. saccharolyticus on carbohydrates representative of lignocellulosic biomass and suggest that this bacterium holds promise for biofuel applications.

  9. Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species.

    PubMed

    Dai, Ziyu; Deng, Shuang; Culley, David E; Bruno, Kenneth S; Magnuson, Jon K

    2017-08-01

    Interest in using renewable sources of carbon, especially lignocellulosic biomass, for the production of hydrocarbon fuels and chemicals has fueled interest in exploring various organisms capable of producing hydrocarbon biofuels and chemicals or their precursors. The oleaginous (oil-producing) yeast Lipomyces starkeyi is the subject of active research regarding the production of triacylglycerides as hydrocarbon fuel precursors using a variety of carbohydrate and nutrient sources. The genome of L. starkeyi has been published, which opens the door to production strain improvements through the development and use of the tools of synthetic biology for this oleaginous species. The first step in establishment of synthetic biology tools for an organism is the development of effective and reliable transformation methods with suitable selectable marker genes and demonstration of the utility of the genetic elements needed for expression of introduced genes or deletion of endogenous genes. Chemical-based methods of transformation have been published but suffer from low efficiency. To address these problems, Agrobacterium-mediated transformation was investigated as an alternative method for L. starkeyi and other Lipomyces species. In this study, Agrobacterium-mediated transformation was demonstrated to be effective in the transformation of both L. starkeyi and other Lipomyces species. The deletion of the peroxisomal biogenesis factor 10 gene was also demonstrated in L. starkeyi. In addition to the bacterial antibiotic selection marker gene hygromycin B phosphotransferase, the bacterial β-glucuronidase reporter gene under the control of L. starkeyi translation elongation factor 1α promoter was also stably expressed in six different Lipomyces species. The results from this study demonstrate that Agrobacterium-mediated transformation is a reliable and effective genetic tool for homologous recombination and expression of heterologous genes in L. starkeyi and other Lipomyces species.

  10. Involvement of polyphosphate kinase in virulence and stress tolerance of uropathogenic Proteus mirabilis.

    PubMed

    Peng, Liang; Jiang, Qiao; Pan, Jia-Yun; Deng, Cong; Yu, Jing-Yi; Wu, Xiao-Man; Huang, Sheng-He; Deng, Xiao-Yan

    2016-04-01

    Proteus mirabilis (P. mirabilis), a gram-negative enteric bacterium, frequently causes urinary tract infections. Many virulence factors of uropathogenic P. mirabilis have been identified, including urease, flagella, hemolysin and fimbriae. However, the functions of polyphosphate kinase (PPK), which are related to the pathogenicity of many bacteria, remain entirely unknown in P. mirabilis. In this study, a ppk gene encoding the PPK insertional mutant in P. mirabilis strain HI4320 was constructed, and its biological functions were examined. The results of survival studies demonstrated that the ppk mutant was deficient in resistance to oxidative, hyperosmotic and heat stress. The swarming and biofilm formation abilities of P. mirabilis were also attenuated after the ppk interruption. In vitro and in vivo experiments suggested that ppk was required for P. mirabilis to invade the bladder. The negative phenotypes of the ppk mutant could be restored by ppk gene complementation. Furthermore, two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry were used to analyze the proteomes of the wild-type strain and the ppk mutant. Compared with the wild-type strain, seven proteins including TonB-dependent receptor, universal stress protein G, major mannose-resistant/Proteus-like fimbrial protein (MR/P fimbriae), heat shock protein, flagellar capping protein, putative membrane protein and multidrug efflux protein were down-regulated, and four proteins including exported peptidase, repressor protein for FtsI, FKBP-type peptidyl-prolyl cis-trans isomerase and phosphotransferase were up-regulated in the ppk mutant. As a whole, these results indicate that PPK is an important regulator and plays a crucial role in stress tolerance and virulence in uropathogenic P. mirabilis.

  11. How Quorum Sensing Connects Sporulation to Necrotrophism in Bacillus thuringiensis

    PubMed Central

    Poncet, Sandrine; Lazar, Noureddine; Li de la Sierra-Gallay, Inès; Gohar, Michel; Lereclus, Didier; Nessler, Sylvie

    2016-01-01

    Bacteria use quorum sensing to coordinate adaptation properties, cell fate or commitment to sporulation. The infectious cycle of Bacillus thuringiensis in the insect host is a powerful model to investigate the role of quorum sensing in natural conditions. It is tuned by communication systems regulators belonging to the RNPP family and directly regulated by re-internalized signaling peptides. One such RNPP regulator, NprR, acts in the presence of its cognate signaling peptide NprX as a transcription factor, regulating a set of genes involved in the survival of these bacteria in the insect cadaver. Here, we demonstrate that, in the absence of NprX and independently of its transcriptional activator function, NprR negatively controls sporulation. NprR inhibits expression of Spo0A-regulated genes by preventing the KinA-dependent phosphorylation of the phosphotransferase Spo0F, thus delaying initiation of the sporulation process. This NprR function displays striking similarities with the Rap proteins, which also belong to the RNPP family, but are devoid of DNA-binding domain and indirectly control gene expression via protein-protein interactions in Bacilli. Conservation of the Rap residues directly interacting with Spo0F further suggests a common inhibition of the sporulation phosphorelay. The crystal structure of apo NprR confirms that NprR displays a highly flexible Rap-like structure. We propose a molecular regulatory mechanism in which key residues of the bifunctional regulator NprR are directly and alternatively involved in its two functions. NprX binding switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. NprR thus tightly coordinates sporulation and necrotrophism, ensuring survival and dissemination of the bacteria during host infection. PMID:27483473

  12. How Quorum Sensing Connects Sporulation to Necrotrophism in Bacillus thuringiensis.

    PubMed

    Perchat, Stéphane; Talagas, Antoine; Poncet, Sandrine; Lazar, Noureddine; Li de la Sierra-Gallay, Inès; Gohar, Michel; Lereclus, Didier; Nessler, Sylvie

    2016-08-01

    Bacteria use quorum sensing to coordinate adaptation properties, cell fate or commitment to sporulation. The infectious cycle of Bacillus thuringiensis in the insect host is a powerful model to investigate the role of quorum sensing in natural conditions. It is tuned by communication systems regulators belonging to the RNPP family and directly regulated by re-internalized signaling peptides. One such RNPP regulator, NprR, acts in the presence of its cognate signaling peptide NprX as a transcription factor, regulating a set of genes involved in the survival of these bacteria in the insect cadaver. Here, we demonstrate that, in the absence of NprX and independently of its transcriptional activator function, NprR negatively controls sporulation. NprR inhibits expression of Spo0A-regulated genes by preventing the KinA-dependent phosphorylation of the phosphotransferase Spo0F, thus delaying initiation of the sporulation process. This NprR function displays striking similarities with the Rap proteins, which also belong to the RNPP family, but are devoid of DNA-binding domain and indirectly control gene expression via protein-protein interactions in Bacilli. Conservation of the Rap residues directly interacting with Spo0F further suggests a common inhibition of the sporulation phosphorelay. The crystal structure of apo NprR confirms that NprR displays a highly flexible Rap-like structure. We propose a molecular regulatory mechanism in which key residues of the bifunctional regulator NprR are directly and alternatively involved in its two functions. NprX binding switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. NprR thus tightly coordinates sporulation and necrotrophism, ensuring survival and dissemination of the bacteria during host infection.

  13. Folate Polyglutamylation Is Involved in Chromatin Silencing by Maintaining Global DNA Methylation and Histone H3K9 Dimethylation in Arabidopsis[C][W

    PubMed Central

    Zhou, Hao-Ran; Zhang, Fang-Fang; Ma, Ze-Yang; Huang, Huan-Wei; Jiang, Ling; Cai, Tao; Zhu, Jian-Kang; Zhang, Chuyi; He, Xin-Jian

    2013-01-01

    DNA methylation and repressive histone Histone3 Lysine9 (H3K9) dimethylation correlate with chromatin silencing in plants and mammals. To identify factors required for DNA methylation and H3K9 dimethylation, we screened for suppressors of the repressor of silencing1 (ros1) mutation, which causes silencing of the expression of the RD29A (RESPONSE TO DESSICATION 29A) promoter-driven luciferase transgene (RD29A-LUC) and the 35S promoter-driven NPTII (NEOMYCIN PHOSPHOTRANSFERASE II) transgene (35S-NPTII). We identified the folylpolyglutamate synthetase FPGS1 and the known factor DECREASED DNA METHYLATION1 (DDM1). The fpgs1 and ddm1 mutations release the silencing of both RD29A-LUC and 35S-NPTII. Genome-wide analysis indicated that the fpgs1 mutation reduces DNA methylation and releases chromatin silencing at a genome-wide scale. The effect of fpgs1 on chromatin silencing is correlated with reduced levels of DNA methylation and H3K9 dimethylation. Supplementation of fpgs1 mutants with 5-formyltetrahydrofolate, a stable form of folate, rescues the defects in DNA methylation, histone H3K9 dimethylation, and chromatin silencing. The competitive inhibitor of methyltransferases, S-adenosylhomocysteine, is markedly upregulated in fpgs1, by which fpgs1 reduces S-adenosylmethionine accessibility to methyltransferases and accordingly affects DNA and histone methylation. These results suggest that FPGS1-mediated folate polyglutamylation is required for DNA methylation and H3K9 dimethylation through its function in one-carbon metabolism. Our study makes an important contribution to understanding the complex interplay among metabolism, development, and epigenetic regulation. PMID:23881414

  14. Marker-free transgenic rice expressing the vegetative insecticidal protein (Vip) of Bacillus thuringiensis shows broad insecticidal properties.

    PubMed

    Pradhan, Subrata; Chakraborty, Anirban; Sikdar, Narattam; Chakraborty, Saikat; Bhattacharyya, Jagannath; Mitra, Joy; Manna, Anulina; Dutta Gupta, Snehasish; Sen, Soumitra Kumar

    2016-10-01

    Genetically engineered rice lines with broad insecticidal properties against major lepidopteran pests were generated using a synthetic, truncated form of vegetative insecticidal protein (Syn vip3BR) from Bacillus thuringiensis. The selectable marker gene and the redundant transgene(s) were eliminated through Cre/ lox mediated recombination and genetic segregation to make consumer friendly Bt -rice. For sustainable resistance against lepidopteran insect pests, chloroplast targeted synthetic version of bioactive core component of a vegetative insecticidal protein (Syn vip3BR) of Bacillus thuringiensis was expressed in rice under the control of green-tissue specific ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene promoter. The transgenic plants (in Oryza sativa indica Swarna cultivar) showed high insect mortality rate in vitro against major rice pests, yellow stem borer (Scirpophaga incertulas), rice leaf folder (Cnaphalocrocis medinalis) and rice horn caterpillar (Melanitis leda ismene) in T1 generation, indicating insecticidal potency of Syn vip3BR. Under field conditions, the T1 plants showed considerable resistance against leaf folders and stem borers. The expression cassette (vip-lox-hpt-lox) as well as another vector with chimeric cre recombinase gene under constitutive rice ubiquitin1 gene promoter was designed for the elimination of selectable marker hygromycin phosphotransferase (hptII) gene. Crossing experiments were performed between T1 plants with single insertion site of vip-lox-hpt-lox T-DNA and one T1 plant with moderate expression of cre recombinase with linked bialaphos resistance (syn bar) gene. Marker gene excision was achieved in hybrids with up to 41.18 % recombination efficiency. Insect resistant transgenic lines, devoid of selectable marker and redundant transgene(s) (hptII + cre-syn bar), were established in subsequent generation through genetic segregation.

  15. Acetate and Formate Stress: Opposite Responses in the Proteome of Escherichia coli

    PubMed Central

    Kirkpatrick, Christopher; Maurer, Lisa M.; Oyelakin, Nikki E.; Yoncheva, Yuliya N.; Maurer, Russell; Slonczewski, Joan L.

    2001-01-01

    Acetate and formate are major fermentation products of Escherichia coli. Below pH 7, the balance shifts to lactate; an oversupply of acetate or formate retards growth. E. coli W3110 was grown with aeration in potassium-modified Luria broth buffered at pH 6.7 in the presence or absence of added acetate or formate, and the protein profiles were compared by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Acetate increased the steady-state expression levels of 37 proteins, including periplasmic transporters for amino acids and peptides (ArtI, FliY, OppA, and ProX), metabolic enzymes (YfiD and GatY), the RpoS growth phase regulon, and the autoinducer synthesis protein LuxS. Acetate repressed 17 proteins, among them phosphotransferase (Pta). An ackA-pta deletion, which nearly eliminates interconversion between acetate and acetyl-coenzyme A (acetyl-CoA), led to elevated basal levels of 16 of the acetate-inducible proteins, including the RpoS regulon. Consistent with RpoS activation, the ackA-pta strain also showed constitutive extreme-acid resistance. Formate, however, repressed 10 of the acetate-inducible proteins, including the RpoS regulon. Ten of the proteins with elevated basal levels in the ackA-pta strain were repressed by growth of the mutant with formate; thus, the formate response took precedence over the loss of the ackA-pta pathway. The similar effects of exogenous acetate and the ackA-pta deletion, and the opposite effect of formate, could have several causes; one possibility is that the excess buildup of acetyl-CoA upregulates stress proteins but excess formate depletes acetyl-CoA and downregulates these proteins. PMID:11591692

  16. Combinations of Macrolide Resistance Determinants in Field Isolates of Mannheimia haemolytica and Pasteurella multocida▿

    PubMed Central

    Desmolaize, Benoit; Rose, Simon; Wilhelm, Cornelia; Warrass, Ralf; Douthwaite, Stephen

    2011-01-01

    Respiratory tract infections in cattle are commonly associated with the bacterial pathogens Mannheimia haemolytica and Pasteurella multocida. These infections can generally be successfully treated in the field with one of several groups of antibiotics, including macrolides. A few recent isolates of these species exhibit resistance to veterinary macrolides with phenotypes that fall into three distinct classes. The first class has type I macrolide, lincosamide, and streptogramin B antibiotic resistance and, consistent with this, the 23S rRNA nucleotide A2058 is monomethylated by the enzyme product of the erm(42) gene. The second class shows no lincosamide resistance and lacks erm(42) and concomitant 23S rRNA methylation. Sequencing of the genome of a representative strain from this class, P. multocida 3361, revealed macrolide efflux and phosphotransferase genes [respectively termed msr(E) and mph(E)] that are arranged in tandem and presumably expressed from the same promoter. The third class exhibits the most marked drug phenotype, with high resistance to all of the macrolides tested, and possesses all three resistance determinants. The combinations of erm(42), msr(E), and mph(E) are chromosomally encoded and intermingled with other exogenous genes, many of which appear to have been transferred from other members of the Pasteurellaceae. The presence of some of the exogenous genes explains recent reports of resistance to additional drug classes. We have expressed recombinant versions of the erm(42), msr(E), and mph(E) genes within an isogenic Escherichia coli background to assess their individually contributions to resistance. Our findings indicate what types of compounds might have driven the selection for these resistance determinants. PMID:21709086

  17. Enhanced transgene expression in rice following selection controlled by weak promoters.

    PubMed

    Zhou, Jie; Yang, Yong; Wang, Xuming; Yu, Feibo; Yu, Chulang; Chen, Juan; Cheng, Ye; Yan, Chenqi; Chen, Jianping

    2013-03-27

    Techniques that enable high levels of transgene expression in plants are attractive for the commercial production of plant-made recombinant pharmaceutical proteins or other gene transfer related strategies. The conventional way to increase the yield of desired transgenic products is to use strong promoters to control the expression of the transgene. Although many such promoters have been identified and characterized, the increase obtainable from a single promoter is ultimately limited to a certain extent. In this study, we report a method to magnify the effect of a single promoter by using a weak promoter-based selection system in transgenic rice. tCUP1, a fragment derived from the tobacco cryptic promoter (tCUP), was tested for its activity in rice by fusion to both a β-glucuronidase (GUS) reporter and a hygromycin phosphotransferase (HPT) selectable marker. The tCUP1 promoter allowed the recovery of transformed rice plants and conferred tissue specific expression of the GUS reporter, but was much weaker than the CaMV 35S promoter in driving a selectable marker for growth of resistant calli. However, in the resistant calli and regenerated transgenic plants selected by the use of tCUP1, the constitutive expression of green fluorescent protein (GFP) was dramatically increased as a result of the additive effect of multiple T-DNA insertions. The correlation between attenuated selection by a weak promoter and elevation of copy number and foreign gene expression was confirmed by using another relatively weak promoter from nopaline synthase (Nos). The use of weak promoter derived selectable markers leads to a high T-DNA copy number and then greatly increases the expression of the foreign gene. The method described here provides an effective approach to robustly enhance the expression of heterogenous transgenes through copy number manipulation in rice.

  18. Electrotransformation and expression of bacterial genes encoding hygromycin phosphotransferase and beta-galactosidase in the pathogenic fungus Histoplasma capsulatum.

    PubMed

    Woods, J P; Heinecke, E L; Goldman, W E

    1998-04-01

    We developed an efficient electrotransformation system for the pathogenic fungus Histoplasma capsulatum and used it to examine the effects of features of the transforming DNA on transformation efficiency and fate of the transforming DNA and to demonstrate fungal expression of two recombinant Escherichia coli genes, hph and lacZ. Linearized DNA and plasmids containing Histoplasma telomeric sequences showed the greatest transformation efficiencies, while the plasmid vector had no significant effect, nor did the derivation of the selectable URA5 marker (native Histoplasma gene or a heterologous Podospora anserina gene). Electrotransformation resulted in more frequent multimerization, other modification, or possibly chromosomal integration of transforming telomeric plasmids when saturating amounts of DNA were used, but this effect was not observed with smaller amounts of transforming DNA. We developed another selection system using a hygromycin B resistance marker from plasmid pAN7-1, consisting of the E. coli hph gene flanked by Aspergillus nidulans promoter and terminator sequences. Much of the heterologous fungal sequences could be removed without compromising function in H. capsulatum, allowing construction of a substantially smaller effective marker fragment. Transformation efficiency increased when nonselective conditions were maintained for a time after electrotransformation before selection with the protein synthesis inhibitor hygromycin B was imposed. Finally, we constructed a readily detectable and quantifiable reporter gene by fusing Histoplasma URA5 with E. coli lacZ, resulting in expression of functional beta-galactosidase in H. capsulatum. Demonstration of expression of bacterial genes as effective selectable markers and reporters, together with a highly efficient electrotransformation system, provide valuable approaches for molecular genetic analysis and manipulation of H. capsulatum, which have proven useful for examination of targeted gene disruption, regulated gene expression, and potential virulence determinants in this fungus.

  19. Use of Coniothyrium minitans transformed with the hygromycin B resistance gene to study survival and infection of Sclerotinia sclerotiorum sclerotia in soil.

    PubMed

    Jones, E Eirian; Stewart, Alison; Whipps, John M

    2003-03-01

    A Coniothyrium minitans strain (T3) co-transformed with the genes for beta-glucuronidase (uidA) and hygromycin phosphotransferase (hph), the latter providing resistance to the antibiotic hygromycin B, was used to investigate the survival and infection of sclerotia of Sclerotinia sclerotiorum by C. minitans over time in four different soils. Infection of sclerotia was rapid in all cases, with the behaviour of transformant T3 and wild type parent A69 being similar. Differences were seen between the soils in the rate of infection of sclerotia by C. minitans and in their indigenous fungal populations. Amendment of agar with hygromycin B enabled the quantification of C. minitans in soil by dilution plating where there was a high background of other microorganisms. In Lincoln soil from New Zealand, which had a natural but low population of C. minitans, the hygromycin B resistance marker allowed the umambiguous discrimination of the applied transformed isolate from the indigenous hygromycin B sensitive one. In this soil, although the indigenous C. minitans population was detected from sclerotia, none were recovered on the dilution plates, indicating the increased sensitivity of C. minitans detection from soil using sclerotial baiting. C. minitans was a very efficient parasite, being able to infect a large proportion of sclerotia within a relatively short time from an initially low soil population. The addition of hygromycin B to agar also allowed the detection of C. minitans from decaying sclerotia by inhibiting secondary fungal colonisers. This is the first report to show that fungi colonising sclerotia already infected by C. minitans mask the detection of C. minitans from sclerotia rather than displacing the original parasite.

  20. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments

    PubMed Central

    González-Plaza, Juan J.; Šimatović, Ana; Milaković, Milena; Bielen, Ana; Wichmann, Fabienne; Udiković-Kolić, Nikolina

    2018-01-01

    Environments polluted by direct discharges of effluents from antibiotic manufacturing are important reservoirs for antibiotic resistance genes (ARGs), which could potentially be transferred to human pathogens. However, our knowledge about the identity and diversity of ARGs in such polluted environments remains limited. We applied functional metagenomics to explore the resistome of two Croatian antibiotic manufacturing effluents and sediments collected upstream of and at the effluent discharge sites. Metagenomic libraries built from an azithromycin-production site were screened for resistance to macrolide antibiotics, whereas the libraries from a site producing veterinary antibiotics were screened for resistance to sulfonamides, tetracyclines, trimethoprim, and beta-lactams. Functional analysis of eight libraries identified a total of 82 unique, often clinically relevant ARGs, which were frequently found in clusters and flanked by mobile genetic elements. The majority of macrolide resistance genes identified from matrices exposed to high levels of macrolides were similar to known genes encoding ribosomal protection proteins, macrolide phosphotransferases, and transporters. Potentially novel macrolide resistance genes included one most similar to a 23S rRNA methyltransferase from Clostridium and another, derived from upstream unpolluted sediment, to a GTPase HflX from Emergencia. In libraries deriving from sediments exposed to lower levels of veterinary antibiotics, we found 8 potentially novel ARGs, including dihydrofolate reductases and beta-lactamases from classes A, B, and D. In addition, we detected 7 potentially novel ARGs in upstream sediment, including thymidylate synthases, dihydrofolate reductases, and class D beta-lactamase. Taken together, in addition to finding known gene types, we report the discovery of novel and diverse ARGs in antibiotic-polluted industrial effluents and sediments, providing a qualitative basis for monitoring the dispersal of ARGs from environmental hotspots such as discharge sites of pharmaceutical effluents. PMID:29387045

  1. Elite Indica transgenic rice plants expressing modified Cry1Ac endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas).

    PubMed

    Khanna, H K; Raina, S K

    2002-08-01

    Bt-transgenics of elite indica rice breeding lines (IR-64, Pusa Basmati-1 and Karnal Local) were generated through biolistic or Agrobacterium-mediated approaches. A synthetic cry1Ac gene, codon optimised for rice and driven by the maize ubiquitin-1 promoter, was used. Over 200 putative transformants of IR-64 and Pusa Basmati-1 and 26 of the Karnal Local were regenerated following use of the hpt (hygromycin phosphotransferase) selection system. Initial transformation frequency was in the range of 1 to 2% for particle bombardment while it was comparatively higher (approximately 9%) for Agrobacterium. An improved selection procedure, involving longer selection on the antibiotic-supplemented medium, enhanced the frequency of Bt-transformants and reduced the number of escapes. Molecular evaluation revealed multiple transgene insertions in transformants, whether generated through biolistic or Agrobacterium. In the latter case, it was also observed that all genes on the T-DNA do not necessarily get transferred as an intact insert. Selected Bt-lines of IR-64 and Pusa Basmati-1, having Bt-titers of 0.1% (of total soluble protein) and above were evaluated for resistance against manual infestation of freshly hatched neonate larvae of yellow stem borers collected from a hot spot stem borer infested area in northern India. Several Bt-lines were identified showing 100% mortality of larvae, within 4-days of infestation, in cut-stem as well as vegetative stage whole plant assays. However, there was an occasional white head even among such plants when assayed at the reproductive stage. Results are discussed in the light of resistance management strategies for deployment of Bt-rice.

  2. Agrobacterium tumefaciens-mediated transformation for investigation of somatic recombination in the fungal pathogen Armillaria mellea.

    PubMed

    Baumgartner, Kendra; Fujiyoshi, Phillip; Foster, Gary D; Bailey, Andy M

    2010-12-01

    Armillaria root disease is one of the most damaging timber and fruit tree diseases in the world. Despite its economic importance, many basic questions about the biology of the causal fungi, Armillaria spp., are unanswered. For example, Armillaria undergoes matings between diploid and haploid mycelia, which can result in a recombinant diploid without meiosis. Evidence of such somatic recombination in natural populations suggests that this reproductive mode may affect the pathogen's ecology. Investigations of the mechanisms and adaptive consequences of somatic recombination are, however, hampered by the lack of a method to reliably synthesize somatic recombinants. Here we report the first genetic transformation system for the genus Armillaria. We transformed A. mellea with selective markers for use in diploid-haploid matings to reliably synthesize somatic recombinants. This was accomplished with Agrobacterium tumefaciens carrying pBGgHg, which carries the hygromycin phosphotransferase gene (hph). hph was integrated into transformants, as evidenced by serial transfer to selective media, PCR, reverse transcription-PCR (RT-PCR), and Southern hybridization. Nuclear and mitochondrial markers were developed to genotype synthesized mycelia. In matings between a wild-type diploid and hygromycin-resistant haploids (transgenic), we identified recombinant, hygromycin-resistant diploids and, additionally, hygromycin-resistant triploids, all with the mitochondrial haplotype of the haploid partner. Our approach created no mycelium in which the haploid nucleus was replaced by the diploid nucleus, the typical outcome of diploid-haploid matings in Armillaria. This genetic transformation system, in combination with new markers to track chromosomal and cytoplasmic inheritance in A. mellea, will advance research aimed at characterizing the significance of somatic recombination in the ecology of this important fungus.

  3. Glycerol-3-phosphate-induced catabolite repression in Escherichia coli.

    PubMed

    Eppler, Tanja; Postma, Pieter; Schütz, Alexandra; Völker, Uwe; Boos, Winfried

    2002-06-01

    The formation of glycerol-3-phosphate (G3P) in cells growing on TB causes catabolite repression, as shown by the reduction in malT expression. For this repression to occur, the general proteins of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), in particular EIIA(Glc), as well as the adenylate cyclase and the cyclic AMP-catabolite activator protein system, have to be present. We followed the level of EIIA(Glc) phosphorylation after the addition of glycerol or G3P. In contrast to glucose, which causes a dramatic shift to the dephosphorylated form, glycerol or G3P only slightly increased the amount of dephosphorylated EIIA(Glc). Isopropyl-beta-D-thiogalactopyranoside-induced overexpression of EIIA(Glc) did not prevent repression by G3P, excluding the possibility that G3P-mediated catabolite repression is due to the formation of unphosphorylated EIIA(Glc). A mutant carrying a C-terminally truncated adenylate cyclase was no longer subject to G3P-mediated repression. We conclude that the stimulation of adenylate cyclase by phosphorylated EIIA(Glc) is controlled by G3P and other phosphorylated sugars such as D-glucose-6-phosphate and is the basis for catabolite repression by non-PTS compounds. Further metabolism of these compounds is not necessary for repression. Two-dimensional polyacrylamide gel electrophoresis was used to obtain an overview of proteins that are subject to catabolite repression by glycerol. Some of the prominently repressed proteins were identified by peptide mass fingerprinting. Among these were periplasmic binding proteins (glutamine and oligopeptide binding protein, for example), enzymes of the tricarboxylic acid cycle, aldehyde dehydrogenase, Dps (a stress-induced DNA binding protein), and D-tagatose-1,6-bisphosphate aldolase.

  4. Maltose Uptake by the Novel ABC Transport System MusEFGK2I Causes Increased Expression of ptsG in Corynebacterium glutamicum

    PubMed Central

    Henrich, Alexander; Kuhlmann, Nora; Eck, Alexander W.; Krämer, Reinhard

    2013-01-01

    The Gram-positive Corynebacterium glutamicum efficiently metabolizes maltose by a pathway involving maltodextrin and glucose formation by 4-α-glucanotransferase, glucose phosphorylation by glucose kinases, and maltodextrin degradation via maltodextrin phosphorylase and α-phosphoglucomutase. However, maltose uptake in C. glutamicum has not been investigated. Interestingly, the presence of maltose in the medium causes increased expression of ptsG in C. glutamicum by an unknown mechanism, although the ptsG-encoded glucose-specific EII permease of the phosphotransferase system itself is not required for maltose utilization. We identified the maltose uptake system as an ABC transporter encoded by musK (cg2708; ATPase subunit), musE (cg2705; substrate binding protein), musF (cg2704; permease), and musG (cg2703; permease) by combination of data obtained from characterization of maltose uptake and reanalyses of transcriptome data. Deletion of the mus gene cluster in C. glutamicum Δmus abolished maltose uptake and utilization. Northern blotting and reverse transcription-PCR experiments revealed that musK and musE are transcribed monocistronically, whereas musF and musG are part of an operon together with cg2701 (musI), which encodes a membrane protein of unknown function with no homologies to characterized proteins. Characterization of growth and [14C]maltose uptake in the musI insertion strain C. glutamicum IMcg2701 showed that musI encodes a novel essential component of the maltose ABC transporter of C. glutamicum. Finally, ptsG expression during cultivation on different carbon sources was analyzed in the maltose uptake-deficient strain C. glutamicum Δmus. Indeed, maltose uptake by the novel ABC transport system MusEFGK2I is required for the positive effect of maltose on ptsG expression in C. glutamicum. PMID:23543710

  5. D-Tagatose inhibits the growth and biofilm formation of Streptococcus mutans

    PubMed Central

    Hasibul, Khaleque; Nakayama-Imaohji, Haruyuki; Hashimoto, Masahito; Yamasaki, Hisashi; Ogawa, Takaaki; Waki, Junpei; Tada, Ayano; Yoneda, Saori; Tokuda, Masaaki; Miyake, Minoru; Kuwahara, Tomomi

    2018-01-01

    Dental caries is an important global health concern and Streptococcus mutans has been established as a major cariogenic bacterial species. Reports indicate that a rare sugar, D-tagatose, is not easily catabolized by pathogenic bacteria. In the present study, the inhibitory effects of D-tagatose on the growth and biofilm formation of S. mutans GS-5 were examined. Monitoring S. mutans growth over a 24 h period revealed that D-tagatose prolonged the lag phase without interfering with the final cell yield. This growth retardation was also observed in the presence of 1% sucrose, although it was abolished by the addition of D-fructose. S. mutans biofilm formation was significantly inhibited by growth in sucrose media supplemented with 1 and 4% D-tagatose compared with that in a culture containing sucrose alone, while S. mutans formed granular biofilms in the presence of this rare sugar. The inhibitory effect of D-tagatose on S. mutans biofilm formation was significantly more evident than that of xylitol. Growth in sucrose media supplemented with D-tagatose significantly decreased the expression of glucosyltransferase, exo-β-fructosidase and D-fructose-specific phosphotransferase genes but not the expression of fructosyltransferase compared with the culture containing sucrose only. The activity of cell-associated glucosyltransferase in S. mutans was inhibited by 4% D-tagatose. These results indicate that D-tagatose reduces water-insoluble glucan production from sucrose by inhibiting glucosyltransferase activities, which limits access to the free D-fructose released during this process and retards the growth of S. mutans. Therefore, foods and oral care products containing D-tagatose are anticipated to reduce the risk of caries by inhibiting S. mutans biofilm formation. PMID:29115611

  6. The fruRBA Operon Is Necessary for Group A Streptococcal Growth in Fructose and for Resistance to Neutrophil Killing during Growth in Whole Human Blood

    PubMed Central

    Valdes, Kayla M.; Sundar, Ganesh S.; Vega, Luis A.; Belew, Ashton T.; Islam, Emrul; Binet, Rachel; El-Sayed, Najib M.

    2016-01-01

    Bacterial pathogens rely on the availability of nutrients for survival in the host environment. The phosphoenolpyruvate-phosphotransferase system (PTS) is a global regulatory network connecting sugar uptake with signal transduction. Since the fructose PTS has been shown to impact virulence in several streptococci, including the human pathogen Streptococcus pyogenes (the group A Streptococcus [GAS]), we characterized its role in carbon metabolism and pathogenesis in the M1T1 strain 5448. Growth in fructose as a sole carbon source resulted in 103 genes affected transcriptionally, where the fru locus (fruRBA) was the most induced. Reverse transcriptase PCR showed that fruRBA formed an operon which was repressed by FruR in the absence of fructose, in addition to being under carbon catabolic repression. Growth assays and carbon utilization profiles revealed that although the entire fru operon was required for growth in fructose, FruA was the main transporter for fructose and also was involved in the utilization of three additional PTS sugars: cellobiose, mannitol, and N-acetyl-d-galactosamine. The inactivation of sloR, a fruA homolog that also was upregulated in the presence of fructose, failed to reveal a role as a secondary fructose transporter. Whereas the ability of both ΔfruR and ΔfruB mutants to survive in the presence of whole human blood or neutrophils was impaired, the phenotype was not reproduced in murine whole blood, and those mutants were not attenuated in a mouse intraperitoneal infection. Since the ΔfruA mutant exhibited no phenotype in the human or mouse assays, we propose that FruR and FruB are important for GAS survival in a human-specific environment. PMID:26787724

  7. Agrobacterium tumefaciens-mediated transformation of blueberry (Vaccinium corymbosum L.).

    PubMed

    Song, Guo-Qing; Sink, K C

    2004-12-01

    Transient expression studies using blueberry leaf explants and monitored by beta-glucuronidase (GUS) assays indicated Agrobacterium tumefaciens strain EHA105 was more effective than LBA4404 or GV3101; and the use of acetosyringone (AS) at 100 microM for inoculation and 6 days co-cultivation was optimum compared to 2, 4, 8, 10 or 12 days. Subsequently, explants of the cultivars Aurora, Bluecrop, Brigitta, and Legacy were inoculated with strain EHA105 containing the binary vector pBISN1 with the neomycin phosphotransferase gene (nptII) and an intron-interrupted GUS gene directed by the chimeric super promoter (Aocs)3AmasPmas. Co-cultivation was for 6 days on modified woody plant medium (WPM) plus 100 microM AS. Explants were then placed on modified WPM supplemented with 1.0 mg l(-1) thidiazuron, 0.5 mg l(-1) alpha-naphthaleneacetic, 10 mg l(-1) kanamycin (Km), and 250 mg l(-1) cefotaxime. Selection for Km-resistant shoots was carried out in the dark for 2 weeks followed by culture in the light at 30 microE m(-2) s(-1) at 25 degrees C. After 12 weeks, selected shoots that were both Km resistant and GUS positive were obtained from 15.3% of the inoculated leaf explants of cultivar Aurora. Sixty-eight independent clones derived from such shoots all tested positive by the polymerase chain reaction using a nptII primer. Eight of eight among these 68 clones tested positive by Southern hybridization using a gusA gene derived probe. The transformation protocol also yielded Km-resistant, GUS-positive shoots that were also PCR positive at frequencies of 5.0% for Bluecrop, 10.0% for Brigitta and 5.6% for Legacy.

  8. Solution Structure of the 128 kDa Enzyme I Dimer from Escherichia coli and Its 146 kDa Complex with HPr Using Residual Dipolar Couplings and Small- and Wide-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwieters, Charles D.; Suh, Jeong-Yong; Grishaev, Alexander

    2010-09-17

    The solution structures of free Enzyme I (EI, {approx}128 kDa, 575 x 2 residues), the first enzyme in the bacterial phosphotransferase system, and its complex with HPr ({approx}146 kDa) have been solved using novel methodology that makes use of prior structural knowledge (namely, the structures of the dimeric EIC domain and the isolated EIN domain both free and complexed to HPr), combined with residual dipolar coupling (RDC), small- (SAXS) and wide- (WAXS) angle X-ray scattering and small-angle neutron scattering (SANS) data. The calculational strategy employs conjoined rigid body/torsion/Cartesian simulated annealing, and incorporates improvements in calculating and refining against SAXS/WAXS datamore » that take into account complex molecular shapes in the description of the solvent layer resulting in a better representation of the SAXS/WAXS data. The RDC data orient the symmetrically related EIN domains relative to the C{sub 2} symmetry axis of the EIC dimer, while translational, shape, and size information is provided by SAXS/WAXS. The resulting structures are independently validated by SANS. Comparison of the structures of the free EI and the EI-HPr complex with that of the crystal structure of a trapped phosphorylated EI intermediate reveals large ({approx}70-90{sup o}) hinge body rotations of the two subdomains comprising the EIN domain, as well as of the EIN domain relative to the dimeric EIC domain. These large-scale interdomain motions shed light on the structural transitions that accompany the catalytic cycle of EI.« less

  9. CcpA-Dependent Carbon Catabolite Repression in Bacteria

    PubMed Central

    Warner, Jessica B.; Lolkema, Juke S.

    2003-01-01

    Carbon catabolite repression (CCR) by transcriptional regulators follows different mechanisms in gram-positive and gram-negative bacteria. In gram-positive bacteria, CcpA-dependent CCR is mediated by phosphorylation of the phosphoenolpyruvate:sugar phosphotransferase system intermediate HPr at a serine residue at the expense of ATP. The reaction is catalyzed by HPr kinase, which is activated by glycolytic intermediates. In this review, the distribution of CcpA-dependent CCR among bacteria is investigated by searching the public databases for homologues of HPr kinase and HPr-like proteins throughout the bacterial kingdom and by analyzing their properties. Homologues of HPr kinase are commonly observed in the phylum Firmicutes but are also found in the phyla Proteobacteria, Fusobacteria, Spirochaetes, and Chlorobi, suggesting that CcpA-dependent CCR is not restricted to gram-positive bacteria. In the α and β subdivisions of the Proteobacteria, the presence of HPr kinase appears to be common, while in the γ subdivision it is more of an exception. The genes coding for the HPr kinase homologues of the Proteobacteria are in a gene cluster together with an HPr-like protein, termed XPr, suggesting a functional relationship. Moreover, the XPr proteins contain the serine phosphorylation sequence motif. Remarkably, the analysis suggests a possible relation between CcpA-dependent gene regulation and the nitrogen regulation system (Ntr) found in the γ subdivision of the Proteobacteria. The relation is suggested by the clustering of CCR and Ntr components on the genome of members of the Proteobacteria and by the close phylogenetic relationship between XPr and NPr, the HPr-like protein in the Ntr system. In bacteria in the phylum Proteobacteria that contain HPr kinase and XPr, the latter may be at the center of a complex regulatory network involving both CCR and the Ntr system. PMID:14665673

  10. The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aklujkar, Muktak; Haveman, Shelley; DiDonatoJr, Raymond

    2012-01-01

    Background: The bacterium Pelobacter carbinolicus is able to grow by fermentation, syntrophic hydrogen/formate transfer, or electron transfer to sulfur from short-chain alcohols, hydrogen or formate; it does not oxidize acetate and is not known to ferment any sugars or grow autotrophically. The genome of P. carbinolicus was sequenced in order to understand its metabolic capabilities and physiological features in comparison with its relatives, acetate-oxidizing Geobacter species. Results: Pathways were predicted for catabolism of known substrates: 2,3-butanediol, acetoin, glycerol, 1,2-ethanediol, ethanolamine, choline and ethanol. Multiple isozymes of 2,3-butanediol dehydrogenase, ATP synthase and [FeFe]-hydrogenase were differentiated and assigned roles according to theirmore » structural properties and genomic contexts. The absence of asparagine synthetase and the presence of a mutant tRNA for asparagine encoded among RNA-active enzymes suggest that P. carbinolicus may make asparaginyl-tRNA in a novel way. Catabolic glutamate dehydrogenases were discovered, implying that the tricarboxylic acid (TCA) cycle can function catabolically. A phosphotransferase system for uptake of sugars was discovered, along with enzymes that function in 2,3-butanediol production. Pyruvate: ferredoxin/flavodoxin oxidoreductase was identified as a potential bottleneck in both the supply of oxaloacetate for oxidation of acetate by the TCA cycle and the connection of glycolysis to production of ethanol. The P. carbinolicus genome was found to encode autotransporters and various appendages, including three proteins with similarity to the geopilin of electroconductive nanowires. Conclusions: Several surprising metabolic capabilities and physiological features were predicted from the genome of P. carbinolicus, suggesting that it is more versatile than anticipated.« less

  11. The fruRBA Operon Is Necessary for Group A Streptococcal Growth in Fructose and for Resistance to Neutrophil Killing during Growth in Whole Human Blood.

    PubMed

    Valdes, Kayla M; Sundar, Ganesh S; Vega, Luis A; Belew, Ashton T; Islam, Emrul; Binet, Rachel; El-Sayed, Najib M; Le Breton, Yoann; McIver, Kevin S

    2016-04-01

    Bacterial pathogens rely on the availability of nutrients for survival in the host environment. The phosphoenolpyruvate-phosphotransferase system (PTS) is a global regulatory network connecting sugar uptake with signal transduction. Since the fructose PTS has been shown to impact virulence in several streptococci, including the human pathogen Streptococcus pyogenes(the group A Streptococcus[GAS]), we characterized its role in carbon metabolism and pathogenesis in the M1T1 strain 5448. Growth in fructose as a sole carbon source resulted in 103 genes affected transcriptionally, where the frulocus (fruRBA) was the most induced. Reverse transcriptase PCR showed that fruRBA formed an operon which was repressed by FruR in the absence of fructose, in addition to being under carbon catabolic repression. Growth assays and carbon utilization profiles revealed that although the entire fruoperon was required for growth in fructose, FruA was the main transporter for fructose and also was involved in the utilization of three additional PTS sugars: cellobiose, mannitol, and N-acetyl-D-galactosamine. The inactivation of sloR, a fruA homolog that also was upregulated in the presence of fructose, failed to reveal a role as a secondary fructose transporter. Whereas the ability of both ΔfruR and ΔfruB mutants to survive in the presence of whole human blood or neutrophils was impaired, the phenotype was not reproduced in murine whole blood, and those mutants were not attenuated in a mouse intraperitoneal infection. Since the ΔfruA mutant exhibited no phenotype in the human or mouse assays, we propose that FruR and FruB are important for GAS survival in a human-specific environment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Heat-shock-mediated elimination of the nptII marker gene in transgenic apple (Malus×domestica Borkh.).

    PubMed

    Herzog, Katja; Flachowsky, Henryk; Deising, Holger B; Hanke, Magda-Viola

    2012-04-25

    Production of marker-free genetically modified (GM) plants is one of the major challenges of molecular fruit breeding. Employing clean vector technologies, allowing the removal of undesired DNA sequences from GM plants, this goal can be achieved. The present study describes the establishment of a clean vector system in apple Malus×domestica Borkh., which is based on the use of the neomycin phosphotransferase II gene (nptII) as selectable marker gene and kanamycin/paramomycin as selective agent. The nptII gene can be removed after selection of GM shoots via site-specific excision mediated by heat-shock-inducible expression of the budding yeast FLP recombinase driven by the soybean Gmhsp17.5-E promoter. We created a monitoring vector containing the nptII and the flp gene as a box flanked by two direct repeats of the flp recognition target (FRT) sites. The FRT-flanked box separates the gusA reporter gene from the Cauliflower Mosaic Virus 35S (CaMV 35S) promoter. Consequently, GUS expression does only occur after elimination of the FRT-flanked box. Transformation experiments using the monitoring vector resulted in a total of nine transgenic lines. These lines were investigated for transgenicity by PCR, RT-PCR and Southern hybridization. Among different temperature regimes tested, exposure to 42 °C for 3.5 to 4h led to efficient induction of FLP-mediated recombination and removal of the nptII marker gene. A second round of shoot regeneration from leaf explants led to GM apple plants completely free of the nptII gene. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. The Lcn972 Bacteriocin-Encoding Plasmid pBL1 Impairs Cellobiose Metabolism in Lactococcus lactis▿

    PubMed Central

    Campelo, Ana B.; Gaspar, Paula; Roces, Clara; Rodríguez, Ana; Kok, Jan; Kuipers, Oscar P.; Neves, Ana Rute; Martínez, Beatriz

    2011-01-01

    pBL1 is a Lactococcus lactis theta-replicating 10.9-kbp plasmid that encodes the synthetic machinery of the bacteriocin Lcn972. In this work, the transcriptomes of exponentially growing L. lactis strains with and without pBL1 were compared. A discrete response was observed, with a total of 10 genes showing significantly changed expression. Upregulation of the lactococcal oligopeptide uptake (opp) system was observed, which was likely linked to a higher nitrogen demand required for Lcn972 biosynthesis. Strikingly, celB, coding for the membrane porter IIC of the cellobiose phosphoenolpyruvate-dependent phosphotransferase system (PTS), and the upstream gene llmg0186 were downregulated. Growth profiles for L. lactis strains MG1363, MG1363/pBL1, and MG1363 ΔcelB grown in chemically defined medium (CDM) containing cellobiose confirmed slower growth of MG1363/pBL1 and MG1363 ΔcelB, while no differences were observed with growth on glucose. The presence of pBL1 shifted the fermentation products toward a mixed acid profile and promoted substantial changes in intracellular pool sizes for glycolytic intermediates in cells growing on cellobiose as determined by high-pressure liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). Overall, these data support the genetic evidence of a constriction in cellobiose uptake. Notably, several cell wall precursors accumulated, while other UDP-activated sugar pools were lower, which could reflect rerouting of precursors toward the production of structural or storage polysaccharides. Moreover, cells growing slowly on cellobiose and those lacking celB were more tolerant to Lcn972 than cellobiose-adapted cells. Thus, downregulation of celB could help to build up a response against the antimicrobial activity of Lcn972, enhancing self-immunity of the producer cells. PMID:21890668

  14. Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase.

    PubMed

    Kucherenko, I S; Soldatkin, O O; Lagarde, F; Jaffrezic-Renault, N; Dzyadevych, S V; Soldatkin, A P

    2015-11-01

    Creatine kinase (CK: adenosine-5-triphosphate-creatine phosphotransferase) is an important enzyme of muscle cells; the presence of a large amount of the enzyme in blood serum is a biomarker of muscular injuries, such as acute myocardial infarction. This work describes a bi-enzyme (glucose oxidase and hexokinase based) biosensor for rapid and convenient determination of CK activity by measuring the rate of ATP production by this enzyme. Simultaneously the biosensor determines glucose concentration in the sample. Platinum disk electrodes were used as amperometric transducers. Glucose oxidase and hexokinase were co-immobilized via cross-linking with BSA by glutaraldehyde and served as a biorecognition element of the biosensor. The biosensor work at different concentrations of CK substrates (ADP and creatine phosphate) was investigated; optimal concentration of ADP was 1mM, and creatine phosphate - 10 mM. The reproducibility of the biosensor responses to glucose, ATP and CK during a day was tested (relative standard deviation of 15 responses to glucose was 2%, to ATP - 6%, to CK - 7-18% depending on concentration of the CK). Total time of CK analysis was 10 min. The measurements of creatine kinase in blood serum samples were carried out (at 20-fold sample dilution). Twentyfold dilution of serum samples was chosen as optimal for CK determination. The biosensor could distinguish healthy and ill people and evaluate the level of CK increase. Thus, the biosensor can be used as a test-system for CK analysis in blood serum or serve as a component of multibiosensors for determination of important blood substances. Determination of activity of other kinases by the developed biosensor is also possible for research purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Dynamic Localization of a Transcription Factor in Bacillus subtilis: the LicT Antiterminator Relocalizes in Response to Inducer Availability

    PubMed Central

    Rothe, Fabian M.; Wrede, Christoph; Lehnik-Habrink, Martin; Görke, Boris

    2013-01-01

    Bacillus subtilis transports β-glucosides such as salicin by a dedicated phosphotransferase system (PTS). The expression of the β-glucoside permease BglP is induced in the presence of the substrate salicin, and this induction requires the binding of the antiterminator protein LicT to a specific RNA target in the 5′ region of the bglP mRNA to prevent the formation of a transcription terminator. LicT is composed of an N-terminal RNA-binding domain and two consecutive PTS regulation domains, PRD1 and PRD2. In the absence of salicin, LicT is phosphorylated on PRD1 by BglP and thereby inactivated. In the presence of the inducer, the phosphate group from PRD1 is transferred back to BglP and consequently to the incoming substrate, resulting in the activation of LicT. In this study, we have investigated the intracellular localization of LicT. While the protein was evenly distributed in the cell in the absence of the inducer, we observed a subpolar localization of LicT if salicin was present in the medium. Upon addition or removal of the inducer, LicT rapidly relocalized in the cells. This dynamic relocalization did not depend on the binding of LicT to its RNA target sites, since the localization pattern was not affected by deletion of all LicT binding sites. In contrast, experiments with mutants affected in the PTS components as well as mutations of the LicT phosphorylation sites revealed that phosphorylation of LicT by the PTS components plays a major role in the control of the subcellular localization of this RNA-binding transcription factor. PMID:23475962

  16. Regulation of Lactobacillus casei Sorbitol Utilization Genes Requires DNA-Binding Transcriptional Activator GutR and the Conserved Protein GutM▿

    PubMed Central

    Alcántara, Cristina; Sarmiento-Rubiano, Luz Adriana; Monedero, Vicente; Deutscher, Josef; Pérez-Martínez, Gaspar; Yebra, María J.

    2008-01-01

    Sequence analysis of the five genes (gutRMCBA) downstream from the previously described sorbitol-6-phosphate dehydrogenase-encoding Lactobacillus casei gutF gene revealed that they constitute a sorbitol (glucitol) utilization operon. The gutRM genes encode putative regulators, while the gutCBA genes encode the EIIC, EIIBC, and EIIA proteins of a phosphoenolpyruvate-dependent sorbitol phosphotransferase system (PTSGut). The gut operon is transcribed as a polycistronic gutFRMCBA messenger, the expression of which is induced by sorbitol and repressed by glucose. gutR encodes a transcriptional regulator with two PTS-regulated domains, a galactitol-specific EIIB-like domain (EIIBGat domain) and a mannitol/fructose-specific EIIA-like domain (EIIAMtl domain). Its inactivation abolished gut operon transcription and sorbitol uptake, indicating that it acts as a transcriptional activator. In contrast, cells carrying a gutB mutation expressed the gut operon constitutively, but they failed to transport sorbitol, indicating that EIIBCGut negatively regulates GutR. A footprint analysis showed that GutR binds to a 35-bp sequence upstream from the gut promoter. A sequence comparison with the presumed promoter region of gut operons from various firmicutes revealed a GutR consensus motif that includes an inverted repeat. The regulation mechanism of the L. casei gut operon is therefore likely to be operative in other firmicutes. Finally, gutM codes for a conserved protein of unknown function present in all sequenced gut operons. A gutM mutant, the first constructed in a firmicute, showed drastically reduced gut operon expression and sorbitol uptake, indicating a regulatory role also for GutM. PMID:18676710

  17. The histidine phosphocarrier protein, HPr, binds to the highly thermostable regulator of sigma D protein, Rsd, and its isolated helical fragments.

    PubMed

    Neira, José L; Hornos, Felipe; Cozza, Concetta; Cámara-Artigas, Ana; Abián, Olga; Velázquez-Campoy, Adrián

    2018-02-01

    The phosphotransferase system (PTS) controls the preferential use of sugars in bacteria and it is also involved in other processes, such as chemotaxis. It is formed by a protein cascade in which the first two proteins are general (namely, EI and HPr) and the others are sugar-specific permeases. The Rsd protein binds specifically to the RNA polymerase (RNAP) σ 70 factor. We first characterized the conformational stability of Escherichia coli Rsd. And second, we delineated the binding regions of Streptomyces coelicolor, HPr sc , and E. coli Rsd, by using fragments derived from each protein. To that end, we used several biophysical probes, namely, fluorescence, CD, NMR, ITC and BLI. Rsd had a free energy of unfolding of 15 kcal mol -1 at 25 °C, and a thermal denaturation midpoint of 103 °C at pH 6.5. The affinity between Rsd and HPr sc was 2 μM. Interestingly enough, the isolated helical-peptides, comprising the third (RsdH3) and fourth (RsdH4) Rsd helices, also interacted with HPr sc in a specific manner, and with affinities similar to that of the whole Rsd. Moreover, the isolated peptide of HPr sc , HPr 9-30 , comprising the active site, His15, also was bound to intact Rsd with similar affinity. Therefore, binding between Rsd and HPr sc was modulated by the two helices H3 and H4 of Rsd, and the regions around the active site of HPr sc . This implies that specific fragments of Rsd and HPr sc can be used to interfere with other protein-protein interactions (PPIs) of each other protein. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. A simple approach to the generation of heterologous competitive internal controls for real-time PCR assays on the LightCycler.

    PubMed

    Stöcher, Markus; Leb, Victoria; Hölzl, Gabriele; Berg, Jörg

    2002-12-01

    The real-time PCR technology allows convenient detection and quantification of virus derived DNA. This approach is used in many PCR based assays in clinical laboratories. Detection and quantification of virus derived DNA is usually performed against external controls or external standards. Thus, adequacy within a clinical sample is not monitored for. This can be achieved using internal controls that are co-amplified with the specific target within the same reaction vessel. We describe a convenient way to prepare heterologous internal controls as competitors for real-time PCR based assays. The internal controls were devised as competitors in real-time PCR, e.g. LightCycler-PCR. The bacterial neomycin phosphotransferase gene (neo) was used as source for heterologous DNA. Within the neo gene a box was chosen containing sequences for four differently spaced forward primers, one reverse primer, and a pair of neo specific hybridization probes. Pairs of primers were constructed to compose of virus-specific primer sequences and neo box specific primer sequences. Using those composite primers in conventional preparative PCR four types of internal controls were amplified from the neo box and subsequently cloned. A panel of the four differently sized internal controls was generated and tested by LightCycler PCR using their virus-specific primers. All four different PCR products were detected with the single pair of neo specific FRET-hybridization probes. The presented approach to generate competitive internal controls for use in LightCycler PCR assays proved convenient und rapid. The obtained internal controls match most PCR product sizes used in clinical routine molecular assays and will assist to discriminate true from false negative results.

  19. Inhibition of Anaerobic Phosphate Release by Nitric Oxide in Activated Sludge

    PubMed Central

    Van Niel, E. W. J.; Appeldoorn, K. J.; Zehnder, A. J. B.; Kortstee, G. J. J.

    1998-01-01

    Activated sludge not containing significant numbers of denitrifying, polyphosphate [poly(P)]-accumulating bacteria was grown in a fill-and-draw system and exposed to alternating anaerobic and aerobic periods. During the aerobic period, poly(P) accumulated up to 100 mg of P · g of (dry) weight. When portions of the sludge were incubated anaerobically in the presence of acetate, 80 to 90% of the intracellular poly(P) was degraded and released as orthophosphate. Degradation of poly(P) was mainly catalyzed by the concerted action of polyphosphate:AMP phosphotransferase and adenylate kinase, resulting in ATP formation. In the presence of 0.3 mM nitric oxide (NO) in the liquid-phase release of phosphate, uptake of acetate, formation of poly-β-hydroxybutyrate, utilization of glycogen, and formation of ATP were severely inhibited or completely abolished. In cell extracts of the sludge, adenylate kinase activity was completely inhibited by 0.15 mM NO. The nature of this inhibition was probably noncompetitive, similar to that with hog adenylate kinase. Activated sludge polyphosphate glucokinase was also completely inhibited by 0.15 mM NO. It is concluded that the inhibitory effect of NO on acetate-mediated phosphate release by the sludge used in this study is due to the inhibition of adenylate kinase in the phosphate-releasing organisms. The inhibitory effect of nitrate and nitrite on phosphate release is probably due to their conversion to NO. The lack of any inhibitory effect of NO on adenylate kinase of the poly(P)-accumulating Acinetobacter johnsonii 210A suggests that this type of organism is not involved in the enhanced biological phosphate removal by the sludges used. PMID:9687452

  20. A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria

    PubMed Central

    2018-01-01

    ABSTRACT The alphaproteobacterial general stress response is governed by a conserved partner-switching mechanism that is triggered by phosphorylation of the response regulator PhyR. In the model organism Caulobacter crescentus, PhyR was proposed to be phosphorylated by the histidine kinase PhyK, but biochemical evidence in support of such a role of PhyK is missing. Here, we identify a single-domain response regulator, MrrA, that is essential for general stress response activation in C. crescentus. We demonstrate that PhyK does not function as a kinase but accepts phosphoryl groups from MrrA and passes them on to PhyR, adopting the role of a histidine phosphotransferase. MrrA is phosphorylated by at least six histidine kinases that likely serve as stress sensors. MrrA also transfers phosphate to LovK, a histidine kinase involved in C. crescentus holdfast production and attachment, which also negatively regulates the general stress response. We show that LovK together with the response regulator LovR acts as a phosphate sink to redirect phosphate flux away from the PhyKR branch. In agreement with the biochemical data, an mrrA mutant is unable to activate the general stress response and shows a hyperattachment phenotype, which is linked to decreased expression of the major holdfast inhibitory protein HfiA. We propose that MrrA serves as a central phosphorylation hub that coordinates the general stress response with C. crescentus development and other adaptive behaviors. The characteristic bow-tie architecture of this phosphorylation network with MrrA as the central knot may expedite the evolvability and species-specific niche adaptation of this group of bacteria. PMID:29789370

  1. ArcR modulates biofilm formation in the dental plaque colonizer Streptococcus gordonii.

    PubMed

    Robinson, J C; Rostami, N; Casement, J; Vollmer, W; Rickard, A H; Jakubovics, N S

    2018-04-01

    Biofilm formation and cell-cell sensing by the pioneer dental plaque colonizer Streptococcus gordonii are dependent upon arginine. This study aimed to identify genetic factors linking arginine-dependent responses and biofilm formation in S. gordonii. Isogenic mutants disrupted in genes required for the biosynthesis or catabolism of arginine, or for arginine-dependent gene regulation, were screened for their ability to form biofilms in a static culture model. Biofilm formation by a knockout mutant of arcR, encoding an arginine-dependent regulator of transcription, was reduced to < 50% that of the wild-type whereas other strains were unaffected. Complementation of S. gordonii ∆arcR with a plasmid-borne copy of arcR restored the ability to develop biofilms. By DNA microarray analysis, 25 genes were differentially regulated in S. gordonii ∆arcR compared with wild-type under arginine-replete conditions including eight genes encoding components of phosphotransferase systems for sugar uptake. By contrast, disruption of argR or ahrC genes, which encode paralogous arginine-dependent regulators, each resulted in significant changes in the expression of more than 100 genes. Disruption of a gene encoding a putative extracellular protein that was strongly regulated in S. gordonii ∆arcR had a minor impact on biofilm formation. We hypothesize that genes regulated by ArcR form a critical pathway linking arginine sensing to biofilm formation in S. gordonii. Further elucidation of this pathway may provide new targets for the control of dental plaque formation by inhibiting biofilm formation by a key pioneer colonizer of tooth surfaces. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Temperature-Dependent Expression of phzM and Its Regulatory Genes lasI and ptsP in Rhizosphere Isolate Pseudomonas sp. Strain M18▿

    PubMed Central

    Huang, Jiaofang; Xu, Yuquan; Zhang, Hongyan; Li, Yaqian; Huang, Xianqing; Ren, Bin; Zhang, Xuehong

    2009-01-01

    Pseudomonas sp. strain M18, an effective biological control agent isolated from the melon rhizosphere, has a genetic background similar to that of the opportunistic human pathogen Pseudomonas aeruginosa PAO1. However, the predominant phenazine produced by strain M18 is phenazine-1-carboxylic acid (PCA) rather than pyocyanin (PYO); the quantitative ratio of PCA to PYO is 105 to 1 at 28°C in strain M18, while the ratio is 1 to 2 at 37°C in strain PAO1. We first provided evidence that the differential production of the two phenazines in strains M18 and PAO1 is related to the temperature-dependent and strain-specific expression patterns of phzM, a gene involved in the conversion of PCA to PYO. Transcriptional levels of phzM were measured by quantitative real-time PCR, and the activities of both transcriptional and translational phzM′-′lacZ fusions were determined in strains M18 and PAO1, respectively. Using lasI::Gm and ptsP::Gm inactivation M18 mutants, we further show that expression of the phzM gene is positively regulated by the quorum-sensing protein LasI and negatively regulated by the phosphoenolpyruvate phosphotransferase protein PtsP. Surprisingly, the lasI and ptsP regulatory genes were also expressed in a temperature-dependent and strain-specific manner. The differential production of the phenazines PCA and PYO by strains M18 and PAO1 may be a consequence of selective pressure imposed on P. aeruginosa PAO1 and its relative M18 in the two different niches over a long evolutionary process. PMID:19717631

  3. Transcriptome Analysis of the Brucella abortus BvrR/BvrS Two-Component Regulatory System

    PubMed Central

    Viadas, Cristina; Rodríguez, María C.; Sangari, Felix J.; Gorvel, Jean-Pierre; García-Lobo, Juan M.; López-Goñi, Ignacio

    2010-01-01

    Background The two-component BvrR/BvrS system is essential for Brucella abortus virulence. It was shown previously that its dysfunction alters the expression of some major outer membrane proteins and the pattern of lipid A acylation. To determine the genes regulated by BvrR/BvrS, we performed a whole-genome microarray analysis using B. abortus RNA obtained from wild type and bvrR mutant cells grown in the same conditions. Methodology/Principal Findings A total of 127 differentially expressed genes were found: 83 were over expressed and 44 were less expressed in the bvrR mutant. Two operons, the phosphotransferase system and the maltose transport system, were down-regulated. Several genes involved in cell envelope or outer membrane biogenesis were differentially expressed: genes for outer membrane proteins (omp25a, omp25d), lipoproteins, LPS and fatty acid biosynthesis, stress response proteins, chaperones, flagellar genes, and twelve genes encoding ABC transport systems. Ten genes related with carbon metabolism (pckA and fumB among others) were up-regulated in the bvrR mutant, and denitrification genes (nirK, norC and nosZ) were also regulated. Notably, seven transcriptional regulators were affected, including VjbR, ExoR and OmpR that were less expressed in the bvrR mutant. Finally, the expression of eleven genes which have been previously related with Brucella virulence was also altered. Conclusions/Significance All these data corroborate the impact of BvrR/BvrS on cell envelope modulation, confirm that this system controls the carbon and nitrogen metabolism, and suggest a cross-talk among some regulators to adjust the Brucella physiology to the shift expected to occur during the transit from the extracellular to the intracellular niche. PMID:20422049

  4. Glucocorticoid receptor haploinsufficiency causes hypertension and attenuates hypothalamic-pituitary-adrenal axis and blood pressure adaptions to high-fat diet

    PubMed Central

    Michailidou, Z.; Carter, R. N.; Marshall, E.; Sutherland, H. G.; Brownstein, D. G.; Owen, E.; Cockett, K.; Kelly, V.; Ramage, L.; Al-Dujaili, E. A. S.; Ross, M.; Maraki, I.; Newton, K.; Holmes, M. C.; Seckl, J. R.; Morton, N. M.; Kenyon, C. J.; Chapman, K. E.

    2008-01-01

    Glucocorticoid hormones are critical to respond and adapt to stress. Genetic variations in the glucocorticoid receptor (GR) gene alter hypothalamic-pituitary-adrenal (HPA) axis activity and associate with hypertension and susceptibility to metabolic disease. Here we test the hypothesis that reduced GR density alters blood pressure and glucose and lipid homeostasis and limits adaption to obesogenic diet. Heterozygous GRβgeo/+ mice were generated from embryonic stem (ES) cells with a gene trap integration of a β-galactosidase-neomycin phosphotransferase (βgeo) cassette into the GR gene creating a transcriptionally inactive GR fusion protein. Although GRβgeo/+ mice have 50% less functional GR, they have normal lipid and glucose homeostasis due to compensatory HPA axis activation but are hypertensive due to activation of the renin-angiotensin-aldosterone system (RAAS). When challenged with a high-fat diet, weight gain, adiposity, and glucose intolerance were similarly increased in control and GRβgeo/+ mice, suggesting preserved control of intermediary metabolism and energy balance. However, whereas a high-fat diet caused HPA activation and increased blood pressure in control mice, these adaptions were attenuated or abolished in GRβgeo/+ mice. Thus, reduced GR density balanced by HPA activation leaves glucocorticoid functions unaffected but mineralocorticoid functions increased, causing hypertension. Importantly, reduced GR limits HPA and blood pressure adaptions to obesogenic diet.—Michailidou, Z., Carter, R. N., Marshall, E., Sutherland, H. G., Brownstein, D. G., Owen, E., Cockett, K., Kelly, V., Ramage, L., Al-Dujaili, E. A. S., Ross, M., Maraki, I., Newton, K., Holmes, M. C., Seckl, J. R., Morton, N. M., Kenyon, C. J., Chapman, K. E. Glucocorticoid receptor haploinsufficiency causes hypertension and attenuates hypothalamic-pituitary-adrenal axis and blood pressure adaptions to high-fat diet. PMID:18697839

  5. Getting the chemistry right: protonation, tautomers and the importance of H atoms in biological chemistry.

    PubMed

    Bax, Ben; Chung, Chun Wa; Edge, Colin

    2017-02-01

    There are more H atoms than any other type of atom in an X-ray crystal structure of a protein-ligand complex, but as H atoms only have one electron they diffract X-rays weakly and are `hard to see'. The positions of many H atoms can be inferred by our chemical knowledge, and such H atoms can be added with confidence in `riding positions'. For some chemical groups, however, there is more ambiguity over the possible hydrogen placements, for example hydroxyls and groups that can exist in multiple protonation states or tautomeric forms. This ambiguity is far from rare, since about 25% of drugs have more than one tautomeric form. This paper focuses on the most common, `prototropic', tautomers, which are isomers that readily interconvert by the exchange of an H atom accompanied by the switch of a single and an adjacent double bond. Hydrogen-exchange rates and different protonation states of compounds (e.g. buffers) are also briefly discussed. The difference in heavy (non-H) atom positions between two tautomers can be small, and careful refinement of all possible tautomers may single out the likely bound ligand tautomer. Experimental methods to determine H-atom positions, such as neutron crystallography, are often technically challenging. Therefore, chemical knowledge and computational approaches are frequently used in conjugation with experimental data to deduce the bound tautomer state. Proton movement is a key feature of many enzymatic reactions, so understanding the orchestration of hydrogen/proton motion is of critical importance to biological chemistry. For example, structural studies have suggested that, just as a chemist may use heat, some enzymes use directional movement to protonate specific O atoms on phosphates to catalyse phosphotransferase reactions. To inhibit `wriggly' enzymes that use movement to effect catalysis, it may be advantageous to have inhibitors that can maintain favourable contacts by adopting different tautomers as the enzyme `wriggles'.

  6. Gene transfer preferentially selects MHC class I positive tumour cells and enhances tumour immunogenicity.

    PubMed

    Hacker, Ulrich T; Schildhauer, Ines; Barroso, Margarita Céspedes; Kofler, David M; Gerner, Franz M; Mysliwietz, Josef; Buening, Hildegard; Hallek, Michael; King, Susan B S

    2006-05-01

    The modulated expression of MHC class I on tumour tissue is well documented. Although the effect of MHC class I expression on the tumorigenicity and immunogenicity of MHC class I negative tumour cell lines has been rigorously studied, less is known about the validity of gene transfer and selection in cell lines with a mixed MHC class I phenotype. To address this issue we identified a C26 cell subline that consists of distinct populations of MHC class I (H-2D/K) positive and negative cells. Transient transfection experiments using liposome-based transfer showed a lower transgene expression in MHC class I negative cells. In addition, MHC class I negative cells were more sensitive to antibiotic selection. This led to the generation of fully MHC class I positive cell lines. In contrast to C26 cells, all transfectants were rejected in vivo and induced protection against the parental tumour cells in rechallenge experiments. Tumour cell specificity of the immune response was demonstrated in in vitro cytokine secretion and cytotoxicity assays. Transfectants expressing CD40 ligand and hygromycin phosphotransferase were not more immunogenic than cells expressing hygromycin resistance alone. We suggest that the MHC class I positive phenotype of the C26 transfectants had a bearing on their immunogenicity, because selected MHC class I positive cells were more immunogenic than parental C26 cells and could induce specific anti-tumour immune responses. These data demonstrate that the generation of tumour cell transfectants can lead to the selection of subpopulations that show an altered phenotype compared to the parental cell line and display altered immunogenicity independent of selection marker genes or other immune modulatory genes. Our results show the importance of monitoring gene transfer in the whole tumour cell population, especially for the evaluation of in vivo therapies targeted to heterogeneous tumour cell populations.

  7. Long-Distance Translocation of Protein during Morphogenesis of the Fruiting Body in the Filamentous Fungus, Agaricus bisporus

    PubMed Central

    Woolston, Benjamin M.; Schlagnhaufer, Carl; Wilkinson, Jack; Larsen, Jeffrey; Shi, Zhixin; Mayer, Kimberly M.; Walters, Donald S.; Curtis, Wayne R.; Romaine, C. Peter

    2011-01-01

    Commercial cultivation of the mushroom fungus, Agaricus bisporus, utilizes a substrate consisting of a lower layer of compost and upper layer of peat. Typically, the two layers are seeded with individual mycelial inoculants representing a single genotype of A. bisporus. Studies aimed at examining the potential of this fungal species as a heterologous protein expression system have revealed unexpected contributions of the mycelial inoculants in the morphogenesis of the fruiting body. These contributions were elucidated using a dual-inoculant method whereby the two layers were differientially inoculated with transgenic β-glucuronidase (GUS) and wild-type (WT) lines. Surprisingly, use of a transgenic GUS line in the lower substrate and a WT line in the upper substrate yielded fruiting bodies expressing GUS activity while lacking the GUS transgene. Results of PCR and RT-PCR analyses for the GUS transgene and RNA transcript, respectively, suggested translocation of the GUS protein from the transgenic mycelium colonizing the lower layer into the fruiting body that developed exclusively from WT mycelium colonizing the upper layer. Effective translocation of the GUS protein depended on the use of a transgenic line in the lower layer in which the GUS gene was controlled by a vegetative mycelium-active promoter (laccase 2 and β-actin), rather than a fruiting body-active promoter (hydrophobin A). GUS-expressing fruiting bodies lacking the GUS gene had a bonafide WT genotype, confirmed by the absence of stably inherited GUS and hygromycin phosphotransferase selectable marker activities in their derived basidiospores and mycelial tissue cultures. Differientially inoculating the two substrate layers with individual lines carrying the GUS gene controlled by different tissue-preferred promoters resulted in up to a ∼3.5-fold increase in GUS activity over that obtained with a single inoculant. Our findings support the existence of a previously undescribed phenomenon of long-distance protein translocation in A. bisporus that has potential application in recombinant protein expression and biotechnological approaches for crop improvement. PMID:22163014

  8. Safety Evaluation of Neo Transgenic Pigs by Studying Changes in Gut Microbiota Using High-Throughput Sequencing Technology

    PubMed Central

    Jiang, Shengwang; Cai, Chunbo; Ma, Dezun; Gao, Pengfei; Li, Hegang; Jiang, Ke; Tang, Maoxue; Hou, Jian; Liu, Jie; Cui, Wentao

    2016-01-01

    The neo (neomycin phosphotransferase) gene is widely used as a selection marker in the production of genetically engineered animals and plants. Recent attention has been focused on safety concerns regarding neo transgene expression. In this study, neo transgenic and non-transgenic piglets were randomly assigned into Group A and Group B to evaluate effects of neo transgene by studying changes in gut microbiota using high-throughput sequencing. Group A pigs were fed a standard diet supplemented with antibiotic neomycin; Group B pigs were fed a standard diet. We examined horizontal transfer of exogenous neo gene using multiplex PCR; and investigated if the presence of secreted NPT II (neo expression product) in the intestine could lead to some protection against neomycin in transgenic pigs by monitoring different patterns of changes in gut microbiota in Group A animals. The unintended effects of neo transgene on gut microbiota were studied in Group B animals. Horizontal gene transfer was not detected in gut microbiota of any transgenic pigs. In Group A, a significant difference was observed between transgenic pigs and non-transgenic pigs in pattern of changes in Proteobacteria populations in fecal samples during and post neomycin feeding. In Group B, there were significant differences in the relative abundance of phyla Firmicutes, Bacteroidetes and Proteobacteria, and genera Lactobacillus and Escherichia-Shigella-Hafnia between transgenic pigs and non-transgenic pigs. We speculate that the secretion of NPT II from transgenic tissues/cells into gut microbiota results in the inhibition of neomycin activity and the different patterns of changes in bacterial populations. Furthermore, the neo gene also leads to unintended effects on gut microbiota in transgenic pigs that were fed with basic diet (not supplemented with neomycin). Thus, our data in this study caution that wide use of the neo transgene in genetically engineered animals should be carefully considered and fully assessed. PMID:26966911

  9. The Biosynthesis of Capuramycin-type Antibiotics: IDENTIFICATION OF THE A-102395 BIOSYNTHETIC GENE CLUSTER, MECHANISM OF SELF-RESISTANCE, AND FORMATION OF URIDINE-5'-CARBOXAMIDE.

    PubMed

    Cai, Wenlong; Goswami, Anwesha; Yang, Zhaoyong; Liu, Xiaodong; Green, Keith D; Barnard-Britson, Sandra; Baba, Satoshi; Funabashi, Masanori; Nonaka, Koichi; Sunkara, Manjula; Morris, Andrew J; Spork, Anatol P; Ducho, Christian; Garneau-Tsodikova, Sylvie; Thorson, Jon S; Van Lanen, Steven G

    2015-05-29

    A-500359s, A-503083s, and A-102395 are capuramycin-type nucleoside antibiotics that were discovered using a screen to identify inhibitors of bacterial translocase I, an essential enzyme in peptidoglycan cell wall biosynthesis. Like the parent capuramycin, A-500359s and A-503083s consist of three structural components: a uridine-5'-carboxamide (CarU), a rare unsaturated hexuronic acid, and an aminocaprolactam, the last of which is substituted by an unusual arylamine-containing polyamide in A-102395. The biosynthetic gene clusters for A-500359s and A-503083s have been reported, and two genes encoding a putative non-heme Fe(II)-dependent α-ketoglutarate:UMP dioxygenase and an l-Thr:uridine-5'-aldehyde transaldolase were uncovered, suggesting that C-C bond formation during assembly of the high carbon (C6) sugar backbone of CarU proceeds from the precursors UMP and l-Thr to form 5'-C-glycyluridine (C7) as a biosynthetic intermediate. Here, isotopic enrichment studies with the producer of A-503083s were used to indeed establish l-Thr as the direct source of the carboxamide of CarU. With this knowledge, the A-102395 gene cluster was subsequently cloned and characterized. A genetic system in the A-102395-producing strain was developed, permitting the inactivation of several genes, including those encoding the dioxygenase (cpr19) and transaldolase (cpr25), which abolished the production of A-102395, thus confirming their role in biosynthesis. Heterologous production of recombinant Cpr19 and CapK, the transaldolase homolog involved in A-503083 biosynthesis, confirmed their expected function. Finally, a phosphotransferase (Cpr17) conferring self-resistance was functionally characterized. The results provide the opportunity to use comparative genomics along with in vivo and in vitro approaches to probe the biosynthetic mechanism of these intriguing structures. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The expression of the Saccharomyces cerevisiae HAL1 gene increases salt tolerance in transgenic watermelon [Citrullus lanatus (Thunb.) Matsun. & Nakai.].

    PubMed

    Ellul, P; Ríos, G; Atarés, A; Roig, L A; Serrano, R; Moreno, V

    2003-08-01

    An optimised Agrobacterium-mediated gene transfer protocol was developed in order to obtain watermelon transgenic plants [Citrullus lanatus (Thunb.) Matsun. & Nakai.]. Transformation efficiencies ranged from 2.8% to 5.3%, depending on the cultivar. The method was applied to obtain genetically engineered watermelon plants expressing the Saccharomyces cerevisiae HAL1 gene related to salt tolerance. In order to enhance its constitutive expression in plants, the HAL1 gene was cloned in a pBiN19 plasmid under control of the 35S promoter with a double enhancer sequence from the cauliflower mosaic virus and the RNA4 leader sequence of the alfalfa mosaic virus. This vector was introduced into Agrobacterium tumefaciens strain LBA4404 for further inoculation of watermelon half-cotyledon explants. The introduction of both the neomycin phosphotransferase II and HAL1 genes was assessed in primary transformants (TG1) by polymerase chain reaction analysis and Southern hybridisation. The expression of the HAL1 gene was determined by Northern analysis, and the diploid level of transgenic plants was confirmed by flow cytometry. The presence of the selectable marker gene in the expected Mendelian ratios was demonstrated in TG2 progenies. The TG2 kanamycin-resistant plantlets elongated better and produced new roots and leaves in culture media supplemented with NaCl compared with the control. Salt tolerance was confirmed in a semi-hydroponic system (EC=6 dS m(-1)) on the basis of the higher growth performance of homozygous TG3 lines with respect to their respective azygous control lines without the transgene. The halotolerance observed confirmed the inheritance of the trait and supports the potential usefulness of the HAL1 gene of S. cerevisiae as a molecular tool for genetic engineering of salt-stress protection in other crop species.

  11. Two strictly polyphosphate-dependent gluco(manno)kinases from diazotrophic Cyanobacteria with potential to phosphorylate hexoses from polyphosphates.

    PubMed

    Albi, Tomás; Serrano, Aurelio

    2015-05-01

    The single-copy genes encoding putative polyphosphate-glucose phosphotransferases (PPGK, EC 2.7.1.63) from two nitrogen-fixing Cyanobacteria, Nostoc sp. PCC7120 and Nostoc punctiforme PCC73102, were cloned and functionally characterized. In contrast to their actinobacterial counterparts, the cyanobacterial PPGKs have shown the ability to phosphorylate glucose using strictly inorganic polyphosphates (polyP) as phosphoryl donors. This has proven to be an economically attractive reagent in contrast to the more costly ATP. Cyanobacterial PPGKs had a higher affinity for medium-long-sized polyP (greater than ten phosphoryl residues). Thus, longer polyP resulted in higher catalytic efficiency. Also in contrast to most their homologs in Actinobacteria, both cyanobacterial PPGKs exhibited a modest but significant polyP-mannokinase activity as well. Specific activities were in the range of 180-230 and 2-3 μmol min(-1) mg(-1) with glucose and mannose as substrates, respectively. No polyP-fructokinase activity was detected. Cyanobacterial PPGKs required a divalent metal cofactor and exhibited alkaline pH optima (approx. 9.0) and a remarkable thermostability (optimum temperature, 45 °C). The preference for Mg(2+) was noted with an affinity constant of 1.3 mM. Both recombinant PPGKs are homodimers with a subunit molecular mass of ca. 27 kDa. Based on database searches and experimental data from Southern blots and activity assays, closely related PPGK homologs appear to be widespread among unicellular and filamentous mostly nitrogen-fixing Cyanobacteria. Overall, these findings indicate that polyP may be metabolized in these photosynthetic prokaryotes to yield glucose (or mannose) 6-phosphate. They also provide evidence for a novel group-specific subfamily of strictly polyP-dependent gluco(manno)kinases with ancestral features and high biotechnological potential, capable of efficiently using polyP as an alternative and cheap source of energy-rich phosphate instead of costly ATP. Finally, these results could shed new light on the evolutionary origin of sugar kinases.

  12. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis.

    PubMed

    Gu, Yang; Deng, Jieying; Liu, Yanfeng; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Liu, Long

    2017-10-01

    N-acetylglucosamine (GlcNAc) is an important amino sugar extensively used in the healthcare field. In a previous study, the recombinant Bacillus subtilis strain BSGN6-P xylA -glmS-pP43NMK-GNA1 (BN0-GNA1) had been constructed for microbial production of GlcNAc by pathway design and modular optimization. Here, the production of GlcNAc is further improved by rewiring both the glucose transportation and central metabolic pathways. First, the phosphotransferase system (PTS) is blocked by deletion of three genes, yyzE (encoding the PTS system transporter subunit IIA YyzE), ypqE (encoding the PTS system transporter subunit IIA YpqE), and ptsG (encoding the PTS system glucose-specific EIICBA component), resulting in 47.6% increase in the GlcNAc titer (from 6.5 ± 0.25 to 9.6 ± 0.16 g L -1 ) in shake flasks. Then, reinforcement of the expression of the glcP and glcK genes and optimization of glucose facilitator proteins are performed to promote glucose import and phosphorylation. Next, the competitive pathways for GlcNAc synthesis, namely glycolysis, peptidoglycan synthesis pathway, pentose phosphate pathway, and tricarboxylic acid cycle, are repressed by initiation codon-optimization strategies, and the GlcNAc titer in shake flasks is improved from 10.8 ± 0.25 to 13.2 ± 0.31 g L -1 . Finally, the GlcNAc titer is further increased to 42.1 ± 1.1 g L -1 in a 3-L fed-batch bioreactor, which is 1.72-fold that of the original strain, BN0-GNA1. This study shows considerably enhanced GlcNAc production, and the metabolic engineering strategy described here will be useful for engineering other prokaryotic microorganisms for the production of GlcNAc and related molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.).

    PubMed

    Breitler, Jean-Christophe; Meynard, Donaldo; Van Boxtel, Jos; Royer, Monique; Bonnot, François; Cambillau, Laurence; Guiderdoni, Emmanuel

    2004-06-01

    A pilot binary vector was constructed to assess the potential of the 2 T-DNA system for generating selectable marker-free progeny plants in three elite rice cultivars (ZhongZuo321, Ariete and Khao Dawk Mali 105) known to exhibit contrasting amenabilities to transformation. The first T-DNA of the vector, delimited by Agrobacterium tumefaciens borders, contains the hygromycin phosphotransferase (hpt) selectable gene and the green fluorescent protein (gfp) reporter gene while the second T-DNA, delimited by Agrobacterium rhizogenes borders, bears the phosphinothricin acetyl transferase (bar) gene, featuring the gene of interest. 82-90% of the hygromycin-resistant primary transformants exhibited tolerance to ammonium glufosinate mediated by the bar gene suggesting very high co-transformation frequency in the three cultivars. All of the regenerated plants were analyzed by Southern blot which confirmed co-integration of the T-DNAs at frequencies consistent with those of co-expression and allowed determination of copy number for each gene as well as detection of two different vector backbone fragments extending between the two T-DNAs. Hygromycin susceptible, ammonium glufosinate tolerant phenotypes represented 14.4, 17.4 and 14.3% of the plants in T1 progenies of ZZ321, Ariete and KDML105 primary transformants, respectively. We developed a statistical model for deducing from the observed copy number of each T-DNA in T0 plants and phenotypic segregations in T1 progenies the most likely constitution and linkage of the T-DNA integration locus. Statistical analysis identified in 40 out of 42 lines a most likely linkage configuration theoretically allowing genetic separation of the two T-DNA types and out segregation of the T-DNA bearing the bar gene. Overall, though improvements of the technology would be beneficial, the 2 T-DNA system appeared to be a useful approach to generate selectable marker-free rice plants with a consistent frequency among cultivars.

  14. Decreased CD8-p56lck activity in peripheral blood T-lymphocytes from patients with hereditary haemochromatosis.

    PubMed

    Arosa, F A; da Silva, A J; Godinho, I M; ter Steege, J C; Porto, G; Rudd, C E; de Sousa, M

    1994-05-01

    Hereditary haemochromatosis (HH) is an autosomal recessive disease linked to certain MHC class-I specificities. The disease is characterized by increased iron absorption and, in some patients, abnormally low numbers of CD8+ T cells in the periphery. We were interested in whether CD4- and CD8-associated p56lck kinase activities were altered in patients with HH. In a study of 18 patients with HH (with and without low numbers of CD8+ cells), the level of autophosphorylation of the CD8-associated p56lck as well as its phosphotransferase activity, as determined by phosphorylation of an exogenous substrate, was significantly reduced by two- to three-fold relative to a control population of 23 healthy blood donors (P < 6 x 10(-7). CD8-p56lck activity was decreased in 16 out of 18 patients (ranging from 1.5- to 10-fold decrease). By contrast, the level of CD4-p56lck activity did not show an overall decrease relative to controls. In addition to an occasional decrease in the amount of CD8-associated lck, HH patient-derived T cells showed a consistent decrease in the relative CD8-p56lck specific activity. Immunofluorescence staining showed further that the difference could not be accounted by a discrepancy in the expression of CD8 alpha alpha or CD8 alpha beta complexes or MHC class I molecules. Decreased CD8-p56lck activity was seen both in patients undergoing intensive phlebotomy treatment and in patients in maintenance therapy (i.e. patients who had reached normal levels of iron stores), indicating that this abnormality does not appear to be corrected by iron depletion. To our knowledge, this is the first demonstration of an abnormality in a src-like receptor associated kinase in a human disease state linked to MHC class-I antigens.

  15. Alpha-lipoic acid blocks HIV-1 LTR-dependent expression of hygromycin resistance in THP-1 stable transformants.

    PubMed

    Merin, J P; Matsuyama, M; Kira, T; Baba, M; Okamoto, T

    1996-09-23

    Gene expression of human immunodeficiency virus (HIV) depends on a host cellular transcription factors including nuclear factor-kappaB (NF-kappaB). The involvement of reactive oxygen intermediates (ROI) has been implicated as intracellular messengers in the inducible activation of NF-kappaB. In this study, we compared the efficacy of two antioxidants, alpha-lipoic acid (LA) and N-acetylcysteine (NAC), which are widely recognized NF-kappaB inhibitors. Here, we demonstrate that LA has a more potent activity in inhibiting NF-KappaB-mediated gene expression in THP-1 cells that have been stably transfected with a plasmid bearing a hygromycin B resistance gene under the control of HIV-1 long terminal repeat (LTR) promoter. The spontaneous activation of NF-kappaB in this cell culture system leads to expression of the hygromycin phosphotransferase gene hence rendering the cells resistance to hygromycin B. In this study, the effect of the test compounds against transcriptional activity of HIV-1 LTR was evaluated based on the degree of cellular toxicity due to the inhibitory activity on the expression of hygromycin B resistance gene in the presence of hygromycin B. We also found that 0.2 mM LA could cause 40% reduction in the HIV-1 expression from the TNF-alpha-stimulated OM 10.1, a cell line latently infected with HIV-1. On the other hand, 10 mM NAC was required to elicit the same effect. Furthermore, the initiation of HIV-1 induction by TNF-alpha was completely abolished by 1 mM LA. These findings confirm the involvement of ROI in NF-kappaB-mediated HIV gene expression as well as the efficacy of LA as a therapeutic regimen for HIV infection and acquired immunodeficiency syndrome (AIDS). Moreover, this study validates the applicability of our present assay system which we primarily designed for the screening of candidate drugs against HIV-1 gene expression.

  16. A plant cell-based system that predicts aβ42 misfolding: potential as a drug discovery tool for Alzheimer's disease.

    PubMed

    Zhao, Tiehan; Zeng, Ying; Kermode, Allison R

    2012-11-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid β (Aβ) peptides and the failure of mechanisms to clear toxic aggregates. The Aβ42 peptide is considered to be a causative factor that underlies the pathophysiology of AD, in part due to its propensity for misfolding and aggregation; the small oligomers that result represent toxic species. Thus agents that prevent Aβ42 misfolding/aggregation or, alternatively improve Aβ42 oligomer clearance, may have significant therapeutic value. We have developed the basis for a drug screening system based on transgenic plant cells that express Aβ42 fusion proteins to serve as the reliable indicators of the general conformational status of Aβ42. Within cells of transgenic tobacco and Nicotiana benthamiana, misfolding of Aβ42 causes the misfolding of a GFP fusion partner, and consequently there is a loss of fluorescence associated with the native GFP protein. In a similar fusion consisting of Aβ42 linked to hygromycin phosphotransferase II (Hpt II), a hygromycin-resistance marker, misfolding of Aβ42 leads to a misfolded Hpt II, and consequently the transgenic cells are unable to grow on media containing hygromycin. Importantly, substitution of the 'aggregation-prone' Aβ42 with a missense mutant of Aβ42 (F19S/L34F) that is not prone to misfolding/aggregation, 'rescues' both fusion partners. Several 'positive control' chemicals that represent inhibitors of Aβ42 aggregation, including curcumin, epigallocatechin-3-gallate (EGCG), and resveratrol show efficacy in preventing the Aβ42-fusion proteins from misfolding/aggregating in the transgenic plant cells. We discuss the potential of the two fusion protein systems to serve as the basis for an inexpensive, selective, and efficient screening system in which a plant cell can fluoresce or survive only in the presence of drug candidates that are able to prevent Aβ42 misfolding/aggregation. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Helper-Free Foamy Virus Vectors

    PubMed Central

    TROBRIDGE, GRANT D.; RUSSELL, DAVID W.

    2010-01-01

    Retroviral vectors based on human foamy virus (HFV) have been developed and show promise as gene therapy vehicles. Here we describe a method for the production of HFV vector stocks free of detectable helper virus. The helper and vector plasmid constructs used both lack the HFV bel genes, so recombination between these constructs cannot create a wild-type virus. A fusion promoter that combines portions of the cytomegalovirus (CMV) immediate-early and HFV long terminal repeat (LTR) promoters was used to drive expression of both the helper and vector constructs. The CMV–LTR fusion promoter allows for HFV vector production in the absence of the Bel-1 trans-activator protein, which would otherwise be necessary for efficient transcription from the HFV LTR. Vector stocks containing either neomycin phosphotransferase or alkaline phosphatase reporter genes were produced by transient transfection at titers greater than 105 transducing units/ml. G418-resistant BHK-21 cells obtained by transduction with neo vectors contained randomly integrated HFV vector proviruses without detectable deletions or rearrangements. The vector stocks generated were free of replication-competent retrovirus (RCR), as determined by assays for LTR trans-activation and a marker rescue assay developed here for the detection of Bel-independent RCR. OVERVIEW SUMMARY Vectors based on human foamy virus have been developed but low titers and the presence of replication-competent retrovirus (RCR) in vector stocks have prevented their use in preclinical animal experiments. We have developed a transient transfection method that can be used to produce replication-incompetent HFV vector stocks at titers greater than 105/ml, and that does not produce contaminating RCR. The use of CMV-HFV LTR fusion promoters in the helper and vector constructs has circumvented the requirement for the HFV Bel-1 trans-activator protein. Consequently, the potential for generating wild-type HFV by recombination between helper and vector constructs during vector production has been eliminated. Here we describe HFV vector production using this Bel-independent system. PMID:9853518

  18. Mapping and comparative proteomic analysis of the starch biosynthetic pathway in rice by 2D PAGE/MS.

    PubMed

    Chang, Tao-Shan; Liu, Chih-Wei; Lin, Yu-Ling; Li, Chao-Yi; Wang, Arthur Z; Chien, Min-Wei; Wang, Chang-Sheng; Lai, Chien-Chen

    2017-11-01

    Our results not only provide a comprehensive overview of the starch biosynthetic pathway in the developing endosperm but also reveal some important protein markers that regulate the synthesis of starch. In human diets, rice (Oryza sativa L.) is an important source of starch, a substantial amount of which is accumulated in developing endosperm. A better understanding of the complicated pathways involved in starch biosynthesis is needed to improve the yield and quality of rice and other cereal crops through breeding. One pure line rice mutant, SA0419, was induced from a wild-type rice, TNG67, by sodium azide mutagenesis; therefore, TNG67 and SA0419 share the same genetic background. SA0419 is, however, a unique glutinous rice with a lower amylose content (8%) than that of TNG67 (20%), and the grains of SA0419 develop earlier and faster than those of TNG67. In this study, we used a comparative proteomic analysis to identify the differentially expressed proteins that may explain the differences in starch biosynthesis and the characteristics of TNG67 and SA0419. A gel-based proteomic approach was applied to profile the expressed proteome in the developing endosperm of these two rice varieties by nano-LC/MS/MS. Several over-expressed proteins were found in SA0419, such as plastidial ADP-glucose pyrophosphorylase (AGPase), phosphoglucomutase (PGM), pyrophosphate-fructose 6-phosphate 1-phosphotransferase (PFP), 6-phosphofructokinase (PFK), pyruvate phosphate dikinase (PPDK), starch branching enzymes (SBE) and starch debranching enzyme (SDBE), with those proteins mainly being involved in the pathways of starch metabolism and PPDK-mediated gluconeogenesis. Those over-expressed enzymes may contribute to the relatively early development, similar starch accumulation and rapid grain filling of SA0419 as compared with TNG67. This study provides a detailed biochemical description of starch biosynthesis and related information regarding a unique starch mutant that may assist future research efforts to improve the yield and quality of grain and starch in rice through breeding.

  19. Stannous Fluoride Effects on Gene Expression of Streptococcus mutans and Actinomyces viscosus.

    PubMed

    Shi, Y; Li, R; White, D J; Biesbrock, A R

    2018-02-01

    A genome-wide transcriptional analysis was performed to elucidate the bacterial cellular response of Streptococcus mutans and Actinomyces viscosus to NaF and SnF 2 . The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of SnF 2 were predetermined before microarray study. Gene expression profiling microarray experiments were carried out in the absence (control) and presence (experimental) of 10 ppm and 100 ppm Sn 2+ (in the form of SnF 2 ) and fluoride controls for 10-min exposures (4 biological replicates/treatment). These Sn 2+ levels and treatment time were chosen because they have been shown to slow bacterial growth of S. mutans (10 ppm) and A. viscosus (100 ppm) without affecting cell viability. All data generated by microarray experiments were analyzed with bioinformatics tools by applying the following criteria: 1) a q value should be ≤0.05, and 2) an absolute fold change in transcript level should be ≥1.5. Microarray results showed SnF 2 significantly inhibited several genes encoding enzymes of the galactose pathway upon a 10-min exposure versus a negative control: lacA and lacB (A and B subunits of the galactose-6-P isomerase), lacC (tagatose-6-P kinase), lacD (tagatose-1,6-bP adolase), galK (galactokinase), galT (galactose-1-phosphate uridylyltransferase), and galE (UDP-glucose 4-epimerase). A gene fruK encoding fructose-1-phosphate kinase in the fructose pathway was also significantly inhibited. Several genes encoding fructose/mannose-specific enzyme IIABC components in the phosphotransferase system (PTS) were also downregulated, as was ldh encoding lactate dehydrogenase, a key enzyme involved in lactic acid synthesis. SnF 2 downregulated the transcription of most key enzyme genes involved in the galactose pathway and also suppressed several key genes involved in the PTS, which transports sugars into the cell in the first step of glycolysis.

  20. Expression of a novel gene, gluP, is essential for normal Bacillus subtilis cell division and contributes to glucose export

    PubMed Central

    Mesak, Lili R; Mesak, Felix M; Dahl, Michael K

    2004-01-01

    Background The Bacillus subtilis glucokinase operon was predicted to be comprised of the genes, yqgP (now named gluP), yqgQ, and glcK. We have previously established a role for glcK in glucose metabolism. In the absence of enzymes that phosphorylate glucose, such as GlcK and/or enzyme IIGlc, accumulated cytoplasmic glucose can be transported out of the cell. Genes within the glucokinase operon were not previously known to play a role in glucose transport. Here we describe the expression of gluP and its function in glucose transport. Results We found that transcription of the glucokinase operon was regulated, putatively, by two promoters: σA and σH. Putative σA and σH-recognition sites were located upstream of and within gluP, respectively. Transcriptional glucokinase operon – lacZ fusions and Northern blotting were used to analyze the expression of gluP. GluP was predicted to be an integral membrane protein. Moreover, the prediction of GluP structure revealed interesting signatures: a rhomboid domain and two tetracopeptide repeat (TPR) motifs. Microscopic analysis showed that GluP minus cells were unable to divide completely, resulting in a filamentous phenotype. The cells were grown in either rich or minimal medium. We found GluP may be involved in glucose transport. [14C]-glucose uptake by the GluP minus strain was slightly less than in the wild type. On the other hand, trehalose-derived glucose in the growth medium of the GluP minus strain was detected in very low amounts. Experimental controls comprised of single or multiple genes mutations within the glucose transporting phosphotransferase system. Conclusions gluP seems to be regulated only by a putative σA-dependent promoter. The glucose uptake and export assays suggest that GluP is important for glucose export and may act as an exporter. This also supports the role of the glucokinase operon in glucose utilization. PMID:15050034

Top