Science.gov

Sample records for phosphotyrosine peptidomimetic prodrugs

  1. Peptides and peptidomimetics as immunomodulators

    PubMed Central

    Gokhale, Ameya S; Satyanarayanajois, Seetharama

    2014-01-01

    Peptides and peptidomimetics can function as immunomodulating agents by either blocking the immune response or stimulating the immune response to generate tolerance. Knowledge of B- or T-cell epitopes along with conformational constraints is important in the design of peptide-based immunomodulating agents. Work on the conformational aspects of peptides, synthesis and modified amino acid side chains have contributed to the development of a new generation of therapeutic agents for autoimmune diseases and cancer. The design of peptides/peptidomimetics for immunomodulation in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, systemic lupus and HIV infection is reviewed. In cancer therapy, peptide epitopes are used in such a way that the body is trained to recognize and fight the cancer cells locally as well as systemically. PMID:25186605

  2. Phosphotyrosine as a substrate of acid and alkaline phosphatases.

    PubMed

    Apostoł, I; Kuciel, R; Wasylewska, E; Ostrowski, W S

    1985-01-01

    A new spectrophotometric method for following dephosphorylation of phosphotyrosine has been described. The absorption spectra of phosphotyrosine and tyrosine were plotted over the pH range from 3 to 9. The change in absorbance accompanying the conversion of phosphotyrosine to tyrosine was the greatest at 286 nm. The difference absorption coefficients were calculated for several pH values. Dephosphorylation of phosphotyrosine by acid phosphatases from human prostate gland, from wheat germ and potatoes obeys the Michaelis-Menten equation, whereas alkaline phosphatases calf intestine and E. coli are inhibited by excess of substrate.

  3. New prodrugs against tuberculosis.

    PubMed

    Mori, Giorgia; Chiarelli, Laurent Roberto; Riccardi, Giovanna; Pasca, Maria Rosalia

    2017-03-01

    The term 'prodrug' was first introduced by Albert in 1958. Generally, prodrugs can be utilized for improving active drug solubility and bioavailability, increasing drug permeability and absorption, modifying the distribution profile, preventing fast metabolism and excretion, and reducing toxicity. Previously, the prodrug approach was a final resort during the drug discovery process only after all other approaches had been exhausted. However, this strategy is now considered during the early stages of the drug development process. Most antitubercular agents are defined as 'prodrugs', including isoniazid and ethionamide. Thus, the prodrug approach could provide novel targets for the rational design of more effective treatments for tuberculosis (TB).

  4. A phosphotyrosine switch regulates organic cation transporters.

    PubMed

    Sprowl, Jason A; Ong, Su Sien; Gibson, Alice A; Hu, Shuiying; Du, Guoqing; Lin, Wenwei; Li, Lie; Bharill, Shashank; Ness, Rachel A; Stecula, Adrian; Offer, Steven M; Diasio, Robert B; Nies, Anne T; Schwab, Matthias; Cavaletti, Guido; Schlatter, Eberhard; Ciarimboli, Giuliano; Schellens, Jan H M; Isacoff, Ehud Y; Sali, Andrej; Chen, Taosheng; Baker, Sharyn D; Sparreboom, Alex; Pabla, Navjotsingh

    2016-03-16

    Membrane transporters are key determinants of therapeutic outcomes. They regulate systemic and cellular drug levels influencing efficacy as well as toxicities. Here we report a unique phosphorylation-dependent interaction between drug transporters and tyrosine kinase inhibitors (TKIs), which has uncovered widespread phosphotyrosine-mediated regulation of drug transporters. We initially found that organic cation transporters (OCTs), uptake carriers of metformin and oxaliplatin, were inhibited by several clinically used TKIs. Mechanistic studies showed that these TKIs inhibit the Src family kinase Yes1, which was found to be essential for OCT2 tyrosine phosphorylation and function. Yes1 inhibition in vivo diminished OCT2 activity, significantly mitigating oxaliplatin-induced acute sensory neuropathy. Along with OCT2, other SLC-family drug transporters are potentially part of an extensive 'transporter-phosphoproteome' with unique susceptibility to TKIs. On the basis of these findings we propose that TKIs, an important and rapidly expanding class of therapeutics, can functionally modulate pharmacologically important proteins by inhibiting protein kinases essential for their post-translational regulation.

  5. Earliest Holozoan Expansion of Phosphotyrosine Signaling

    PubMed Central

    Suga, Hiroshi; Torruella, Guifré; Burger, Gertraud; Brown, Matthew W.; Ruiz-Trillo, Iñaki

    2015-01-01

    Phosphotyrosine (pTyr) signaling is involved in development and maintenance of metazoans’ multicellular body through cell-to-cell communication. Tyrosine kinases (TKs), tyrosine phosphatases, and other proteins relaying the signal compose the cascade. Domain architectures of the pTyr signaling proteins are diverse in metazoans, reflecting their complex intercellular communication. Previous studies had shown that the metazoan-type TKs, as well as other pTyr signaling proteins, were already diversified in the common ancestor of metazoans, choanoflagellates, and filastereans (which are together included in the clade Holozoa) whereas they are absent in fungi and other nonholozoan lineages. However, the earliest-branching holozoans Ichthyosporea and Corallochytrea, as well as the two fungi-related amoebae Fonticula and Nuclearia, have not been studied. Here, we analyze the complete genome sequences of two ichthyosporeans and Fonticula, and RNAseq data of three additional ichthyosporeans, one corallochytrean, and Nuclearia. Both the ichthyosporean and corallochytrean genomes encode a large variety of receptor TKs (RTKs) and cytoplasmic TKs (CTKs), as well as other pTyr signaling components showing highly complex domain architectures. However, Nuclearia and Fonticula have no TK, and show much less diversity in other pTyr signaling components. The CTK repertoires of both Ichthyosporea and Corallochytrea are similar to those of Metazoa, Choanoflagellida, and Filasterea, but the RTK sets are totally different from each other. The complex pTyr signaling equipped with positive/negative feedback mechanism likely emerged already at an early stage of holozoan evolution, yet keeping a high evolutionary plasticity in extracellular signal reception until the co-option of the system for cell-to-cell communication in metazoans. PMID:24307687

  6. Pyruvate kinase M2 is a phosphotyrosine-binding protein

    SciTech Connect

    Christofk, H.R.; Vander Heiden, M.G.; Wu, N.; Asara, J.M.; Cantley, L.C.

    2008-06-03

    Growth factors stimulate cells to take up excess nutrients and to use them for anabolic processes. The biochemical mechanism by which this is accomplished is not fully understood but it is initiated by phosphorylation of signalling proteins on tyrosine residues. Using a novel proteomic screen for phosphotyrosine-binding proteins, we have made the observation that an enzyme involved in glycolysis, the human M2 (fetal) isoform of pyruvate kinase (PKM2), binds directly and selectively to tyrosine-phosphorylated peptides. We show that binding of phosphotyrosine peptides to PKM2 results in release of the allosteric activator fructose-1,6-bisphosphate, leading to inhibition of PKM2 enzymatic activity. We also provide evidence that this regulation of PKM2 by phosphotyrosine signalling diverts glucose metabolites from energy production to anabolic processes when cells are stimulated by certain growth factors. Collectively, our results indicate that expression of this phosphotyrosine-binding form of pyruvate kinase is critical for rapid growth in cancer cells.

  7. Structural and evolutionary division of phosphotyrosine binding (PTB) domains.

    PubMed

    Uhlik, Mark T; Temple, Brenda; Bencharit, Sompop; Kimple, Adam J; Siderovski, David P; Johnson, Gary L

    2005-01-07

    Proteins encoding phosphotyrosine binding (PTB) domains function as adaptors or scaffolds to organize the signaling complexes involved in wide-ranging physiological processes including neural development, immunity, tissue homeostasis and cell growth. There are more than 200 proteins in eukaryotes and nearly 60 human proteins having PTB domains. Six PTB domain encoded proteins have been found to have mutations that contribute to inherited human diseases including familial stroke, hypercholesteremia, coronary artery disease, Alzheimer's disease and diabetes, demonstrating the importance of PTB scaffold proteins in organizing critical signaling complexes. PTB domains bind both peptides and headgroups of phosphatidylinositides, utilizing two distinct binding motifs to mediate spatial organization and localization within cells. The structure of PTB domains confers specificity for binding peptides having a NPXY motif with differing requirements for phosphorylation of the tyrosine within this recognition sequence. In this review, we use structural, evolutionary and functional analysis to divide PTB domains into three groups represented by phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like and phosphotyrosine-independent Dab-like PTBs, with the Dab-like PTB domains representing nearly 75% of proteins encoding PTB domains. In addition, we further define the binding characteristics of the cognate ligands for each group of PTB domains. The signaling complexes organized by PTB domain encoded proteins are largely unknown and represents an important challenge in systems biology for the future.

  8. Two absorption furosemide prodrugs.

    PubMed

    Mombrú, A W; Mariezcurrena, R A; Suescun, L; Pardo, H; Manta, E; Prandi, C

    1999-03-15

    The structures of two absorption furosemide prodrugs, hexanoyloxymethyl 4-chloro-N-furfuryl-5-sulfamoyl-anthranilate (C19H23CIN2O7S), (I), and benzoyloxymethyl 4-chloro-N-furfuryl-5-sulfamoylanthranilate (C20H17CIN2O7S), (II), are described in this paper and compared with furosemide and four other prodrugs. The molecular conformations of both compounds are similar to those of the other prodrugs; the packing and the crystal system are the primary differences. Compound (I) crystallizes in the trigonal space group R3 and compound (II) in the monoclinic space group P2(1)/n. The packing of both structures is stabilized by a three-dimensional hydrogen-bond network.

  9. Cytochrome P450-activated prodrugs

    PubMed Central

    Ortiz de Montellano, Paul R

    2013-01-01

    A prodrug is a compound that has negligible, or lower, activity against a specified pharmacological target than one of its major metabolites. Prodrugs can be used to improve drug delivery or pharmacokinetics, to decrease toxicity, or to target the drug to specific cells or tissues. Ester and phosphate hydrolysis are widely used in prodrug design because of their simplicity, but such approaches are relatively ineffective for targeting drugs to specific sites. The activation of prodrugs by the cytochrome P450 system provides a highly versatile approach to prodrug design that is particularly adaptable for targeting drug activation to the liver, to tumors or to hypoxic tissues. PMID:23360144

  10. Self-assembly of small peptidomimetic cyclophanes.

    PubMed

    Becerril, Jorge; Burguete, M Isabel; Escuder, Beatriu; Galindo, Francisco; Gavara, Raquel; Miravet, Juan F; Luis, Santiago V; Peris, Gabriel

    2004-08-20

    The self-assembly of a series of small peptidomimetic cyclophanes in organic solvents was studied. X-ray diffraction, NMR spectroscopy, and molecular modelling were used to understand the structural features of these self-assembling compounds both at the molecular and supramolecular level. The factors that could influence the formation of gels rather than crystals were studied and a model for the arrangement of molecules in the gel was proposed. Furthermore, scanning electron microscopy revealed that in some cases these compounds undergo a transcription of chirality when going from organogelator to helicoidal gel fibres.

  11. Peptides and Peptidomimetics for Antimicrobial Drug Design

    PubMed Central

    Mojsoska, Biljana; Jenssen, Håvard

    2015-01-01

    The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics. PMID:26184232

  12. Prodrugs: design and clinical applications.

    PubMed

    Rautio, Jarkko; Kumpulainen, Hanna; Heimbach, Tycho; Oliyai, Reza; Oh, Dooman; Järvinen, Tomi; Savolainen, Jouko

    2008-03-01

    Prodrugs are bioreversible derivatives of drug molecules that undergo an enzymatic and/or chemical transformation in vivo to release the active parent drug, which can then exert the desired pharmacological effect. In both drug discovery and development, prodrugs have become an established tool for improving physicochemical, biopharmaceutical or pharmacokinetic properties of pharmacologically active agents. About 5-7% of drugs approved worldwide can be classified as prodrugs, and the implementation of a prodrug approach in the early stages of drug discovery is a growing trend. To illustrate the applicability of the prodrug strategy, this article describes the most common functional groups that are amenable to prodrug design, and highlights examples of prodrugs that are either launched or are undergoing human trials.

  13. Heterocycles in Peptidomimetics and Pseudopeptides: Design and Synthesis †

    PubMed Central

    Cerminara, Iole; Chiummiento, Lucia; Funicello, Maria; Guarnaccio, Ambra; Lupattelli, Paolo

    2012-01-01

    This minireview provides a brief outline of the peculiar aspects of the preparation of peptidomimetic and pseudopeptidic structures containing heterocycles. In particular novel tricyclic structures are investigated as potential drugs. PMID:24281380

  14. Prodrug approaches for CNS delivery.

    PubMed

    Rautio, Jarkko; Laine, Krista; Gynther, Mikko; Savolainen, Jouko

    2008-01-01

    Central nervous system (CNS) drug delivery remains a major challenge, despite extensive efforts that have been made to develop novel strategies to overcome obstacles. Prodrugs are bioreversible derivatives of drug molecules that must undergo an enzymatic and/or chemical transformation in vivo to release the active parent drug, which subsequently exerts the desired pharmacological effect. In both drug discovery and drug development, prodrugs have become an established tool for improving physicochemical, biopharmaceutical or pharmacokinetic properties of pharmacologically active agents that overcome barriers to a drug's usefulness. This review provides insight into various prodrug strategies explored to date for CNS drug delivery, including lipophilic prodrugs, carrier- and receptor-mediated prodrug delivery systems, and gene-directed enzyme prodrug therapy.

  15. An acid phosphatase in the plasma membranes of human astrocytoma showing marked specificity toward phosphotyrosine protein.

    PubMed

    Leis, J F; Kaplan, N O

    1982-11-01

    The plasma membrane from the human tumor astrocytoma contains an active acid phosphatase activity based on hydrolysis of p-nitrophenyl phosphate. Other acid phosphatase substrates--beta-glycerophosphate, O-phosphorylcholine, and 5'-AMP--are not hydrolyzed significantly. The phosphatase activity is tartrate insensitive and is stimulated by Triton X-100 and EDTA. Of the three known phosphoamino acids, only free O-phosphotyrosine is hydrolyzed by the membrane phosphatase activity. Other acid phosphatases tested from potato, wheat germ, milk, and bovine prostate did not show this degree of specificity. The plasma membrane activity also dephosphorylated phosphotyrosine histone at a much greater rate than did the other acid phosphatases. pH profiles for free O-phosphotyrosine and phosphotyrosine histone showed a shift toward physiological pH, indicating possible physiological significance. Phosphotyrosine histone dephosphorylation activity was nearly 10 times greater than that seen for phosphoserine histone dephosphorylation, and Km values were much lower for phosphotyrosine histone dephosphorylation (0.5 microM vs. 10 microM). Fluoride and zinc significantly inhibited phosphoserine histone dephosphorylation. Vanadate, on the other hand, was a potent inhibitor of phosphotyrosine histone dephosphorylation (50% inhibition at 0.5 microM) but not of phosphoserine histone. ATP stimulated phosphotyrosine histone dephosphorylation (160-250%) but inhibited phosphoserine histone dephosphorylation (95%). These results suggest the existence of a highly specific phosphotyrosine protein phosphatase activity associated with the plasma membrane of human astrocytoma.

  16. Prodrug Strategies for Paclitaxel

    PubMed Central

    Meng, Ziyuan; Lv, Quanxia; Lu, Jun; Yao, Houzong; Lv, Xiaoqing; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective. PMID:27223283

  17. New water-soluble prodrugs of HIV protease inhibitors based on O-->N intramolecular acyl migration.

    PubMed

    Hamada, Yoshio; Ohtake, Jun; Sohma, Youhei; Kimura, Tooru; Hayashi, Yoshio; Kiso, Yoshiaki

    2002-12-01

    To improve the low water-solubility of HIV protease inhibitors, we synthesized water-soluble prodrugs of KNI-272 and KNI-279 which are potent HIV-1 protease inhibitors consisting of an Apns-Thz core structure (Apns; allophenylnorstatine, Thz; thiazolidine-4-carboxylic acid) as an inhibitory machinery. The prodrugs, which contained an O-acyl peptidomimetic structure with an ionized amino group leading to the increase of water-solubility, were designed to regenerate the corresponding parent drugs based on the O-->N intramolecular acyl migration reaction at the alpha-hydroxy-beta-amino acid residue, that is allophenylnorstatine. The synthetic prodrugs 3, 4, 6, and 7 improved the water-solubility (>300mg/mL) more than 4000-fold in comparison with the parent compounds, which is the practically acceptable value as water-soluble drugs. These prodrugs were stable as an HCl salt and in a strongly acidic solution corresponding to gastric juice (pH 2.0), and could be converted to the parent compounds promptly in the aqueous condition from slightly acidic to basic pH at 37 degrees C, with the suitable migration rate, via a five-membered ring intermediate. Using a similar method, we synthesized a prodrug (12) of ritonavir, a clinically useful HIV-1 protease inhibitor as an anti-AIDS drug. In contrast to the prodrugs 3, 4, 6, and 7, the prodrug 12 was very slowly converted to ritonavir probably through a six-membered ring intermediate, with the t(1/2) value of 32h that may not be suitable for practical use.

  18. Cytomegalovirus protease targeted prodrug development.

    PubMed

    Sabit, Hairat; Dahan, Arik; Sun, Jing; Provoda, Chester J; Lee, Kyung-Dall; Hilfinger, John H; Amidon, Gordon L

    2013-04-01

    Human cytomegalovirus (HCMV) is a prevalent virus that infects up to 90% of the population. The goal of this research is to determine if small molecular prodrug substrates can be developed for a specific HCMV encoded protease and thus achieve site-specific activation. HCMV encodes a 256 amino acid serine protease that is responsible for capsid assembly, an essential process for herpes virus production. The esterase activity of the more stable HCMV A143T/A144T protease mutant was evaluated with model p-nitrophenol (ONp) esters, Boc-Xaa-ONp (Ala, Leu, Ile, Val, Gln, Phe at the Xaa position). We demonstrate that the A143T/A144T mutant has esterase activity toward specific small ester compounds, e.g., Boc-L-Ala-ONp. Mono amino acid and dipeptide prodrugs of ganciclovir (GCV) were also synthesized and evaluated for hydrolysis by the A143T/A144T protease mutant in solution. Hydrolysis of these prodrugs was also evaluated in Caco-2 cell homogenates, human liver microsomes (HLMs), and rat and human plasma. For the selectivity potential of the prodrugs, the hydrolysis ratio was evaluated as a percentage of prodrug hydrolyzed by the HCMV protease over the percentages of prodrug hydrolyses by Caco-2 cell homogenates, HLMs, and human/rat plasma. A dipeptide prodrug of ganciclovir, Ac-l-Gln-l-Ala-GCV, emerged as a potential selective prodrug candidate. The results of this research demonstrate that targeting prodrugs for activation by a specific protease encoded by the infectious HCMV pathogen may be achievable.

  19. Peptoids and peptide-peptoid hybrid biopolymers as peptidomimetics.

    PubMed

    Stawikowski, Maciej J

    2013-01-01

    Peptoids (oligomers of N-substituted glycine residues) and peptide-peptoid hybrid polymers (peptomers) are interesting classes of compounds mimicking structure and function of biologically active peptides. The oligomeric peptidomimetics such as peptoids are particularly important compounds since they provide access to an enormous molecular diversity, by variation of the building blocks. The modular structure of peptoids, ease of synthesis, and high compatibility with existing peptide chemistry synthetic protocols, make peptoids and peptoid-containing peptidomimetics ideal tools for structure-activity and drug discovery related studies.

  20. Prodrug delivery of novel PTP1B inhibitors to enhance insulin signalling.

    PubMed

    Erbe, D V; Klaman, L D; Wilson, D P; Wan, Z-K; Kirincich, S J; Will, S; Xu, X; Kung, L; Wang, S; Tam, S; Lee, J; Tobin, J F

    2009-06-01

    A growing percentage of the population is resistant to two key hormones - insulin and leptin - as a result of increased obesity, often leading to significant health consequences such as type 2 diabetes. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of signalling by both of these hormones, so that inhibitors of this enzyme may provide promise for correcting endocrine abnormalities in both diabetes and obesity. As with other tyrosine phosphatases, identification of viable drug candidates targeting PTP1B has been elusive because of the nature of its active site. Beginning with novel phosphotyrosine mimetics, we have designed some of the most potent PTP1B inhibitors. However, their highly acidic structures limit intrinsic permeability and pharmacokinetics. Ester prodrugs of these inhibitors improve their drug-like properties with the goal of delivering these nanomolar inhibitors to the cytoplasm of cells within target tissues. In addition to identifying prodrugs that is able to deliver active drugs into cells to inhibit PTP1B and increase insulin signalling, these compounds were further modified to gain a variety of cleavage properties for targeting activity in vivo. One such prodrug candidate improved insulin sensitivity in ob/ob mice, with lowered fasting blood glucose levels seen in the context of lowered fasting insulin levels following 4 days of intraperitoneal dosing. The results presented in this study highlight the potential for design of orally active drug candidates targeting PTP1B, while also delineating the considerable challenges remaining.

  1. Proteomics method for identification of pseudopodium phosphotyrosine proteins.

    PubMed

    Wang, Yingchun; Klemke, Richard L

    2012-01-01

    Cell migration requires actin/myosin-mediated membrane protrusion of a pseudopodium (or lamellipodium) and its attachment to the substratum. This process guides the direction of cell movement through cytoskeletal remodeling and is regulated by complex signaling networks that act spatially downstream of integrin adhesion receptors. Understanding how these regulatory networks are organized in migratory cells is important for many physiological and pathological processes, including wound healing, immune function, and cancer metastasis. Here, we describe methods for the immunoaffinity purification of phosphotyrosine proteins (pY) from pseudopodia that have been isolated from migratory cells. These methods are compatible with current mass spectrometry-based protein identification technologies and can be utilized for the large-scale identification of the pseudopodium pY proteome in various migratory cell lines, including primary and cancer cells.

  2. DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides.

    PubMed

    Dowler, S; Currie, R A; Downes, C P; Alessi, D R

    1999-08-15

    We have identified a novel 280 amino acid protein which contains a putative myristoylation site at its N-terminus followed by an Src homology (SH2) domain and a pleckstrin homology (PH) domain at its C-terminus. It has been termed dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1). DAPP1 is widely expressed and exhibits high-affinity interactions with PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2), but not with other phospholipids tested. These observations predict that DAPP1 will interact with both tyrosine phosphorylated proteins and 3-phosphoinositides and may therefore play a role in regulating the location and/or activity of such proteins(s) in response to agonists that elevate PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2).

  3. MEMO associated with an ErbB2 receptor phosphopeptide reveals a new phosphotyrosine motif.

    PubMed

    Feracci, Mikaël; Pimentel, Cyril; Bornet, Olivier; Roche, Philippe; Salaun, Danièle; Badache, Ali; Guerlesquin, Françoise

    2011-09-02

    Tyrosine phosphorylations are essential in signal transduction. Recently, a new type of phosphotyrosine binding protein, MEMO (Mediator of ErbB2-driven cell motility), has been reported to bind specifically to an ErbB2-derived phosphorylated peptide encompassing Tyr-1227 (PYD). Structural and functional analyses of variants of this peptide revealed the minimum sequence required for MEMO recognition. Using a docking approach we have generated a structural model for MEMO/PYD complex and compare this new phosphotyrosine motif to SH2 and PTB phosphotyrosine motives.

  4. Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics

    PubMed Central

    Koopmanschap, Gijs; Ruijter, Eelco

    2014-01-01

    Summary In the recent past, the design and synthesis of peptide mimics (peptidomimetics) has received much attention. This because they have shown in many cases enhanced pharmacological properties over their natural peptide analogues. In particular, the incorporation of cyclic constructs into peptides is of high interest as they reduce the flexibility of the peptide enhancing often affinity for a certain receptor. Moreover, these cyclic mimics force the molecule into a well-defined secondary structure. Constraint structural and conformational features are often found in biological active peptides. For the synthesis of cyclic constrained peptidomimetics usually a sequence of multiple reactions has been applied, which makes it difficult to easily introduce structural diversity necessary for fine tuning the biological activity. A promising approach to tackle this problem is the use of multicomponent reactions (MCRs), because they can introduce both structural diversity and molecular complexity in only one step. Among the MCRs, the isocyanide-based multicomponent reactions (IMCRs) are most relevant for the synthesis of peptidomimetics because they provide peptide-like products. However, these IMCRs usually give linear products and in order to obtain cyclic constrained peptidomimetics, the acyclic products have to be cyclized via additional cyclization strategies. This is possible via incorporation of bifunctional substrates into the initial IMCR. Examples of such bifunctional groups are N-protected amino acids, convertible isocyanides or MCR-components that bear an additional alkene, alkyne or azide moiety and can be cyclized via either a deprotection–cyclization strategy, a ring-closing metathesis, a 1,3-dipolar cycloaddition or even via a sequence of multiple multicomponent reactions. The sequential IMCR-cyclization reactions can afford small cyclic peptide mimics (ranging from four- to seven-membered rings), medium-sized cyclic constructs or peptidic macrocycles

  5. Water-soluble prodrugs of dipeptide HIV protease inhibitors based on O-->N intramolecular acyl migration: Design, synthesis and kinetic study.

    PubMed

    Hamada, Yoshio; Matsumoto, Hikaru; Yamaguchi, Satoshi; Kimura, Tooru; Hayashi, Yoshio; Kiso, Yoshiaki

    2004-01-02

    To improve the low water-solubility of HIV protease inhibitors, we synthesized water-soluble prodrugs of KNI-727, a potent small-sized dipeptide-type HIV-1 protease inhibitor consisting of an Apns-Dmt core (Apns; allophenylnorstatine, Dmt; (R)-5,5-dimethyl-1,3-thiazolidine-4-carboxylic acid) as inhibitory machinery. These prodrugs contained an O-acyl peptidomimetic structure with an ionized amino group leading to an increase in water-solubility, and were designed to regenerate the corresponding parent drugs based on the O-->N intramolecular acyl migration reaction via a five-membered ring intermediate at the alpha-hydroxy-beta-amino acid residue, that is Apns. The synthetic prodrug 3a improved the water-solubility (13 mg/mL) more than 8000-fold in comparison with the parent compound, which is the practically acceptable value as water-soluble drug. Furthermore, to understand the structural effects of the O-acyl moiety on the migration rate, we evaluated several phenylacetyl-type and benzoyl-type prodrugs. These prodrugs were stable as an HCl salt and in a strongly acidic solution corresponding to gastric juice (pH 2.0), and could be converted to the parent compounds promptly under aqueous conditions from slightly acidic to basic pH at 37 degrees C.

  6. Prodrugs--from serendipity to rational design.

    PubMed

    Huttunen, Kristiina M; Raunio, Hannu; Rautio, Jarkko

    2011-09-01

    The prodrug concept has been used to improve undesirable properties of drugs since the late 19th century, although it was only at the end of the 1950s that the actual term prodrug was introduced for the first time. Prodrugs are inactive, bioreversible derivatives of active drug molecules that must undergo an enzymatic and/or chemical transformation in vivo to release the active parent drug, which can then elicit its desired pharmacological effect in the body. In most cases, prodrugs are simple chemical derivatives that are only one or two chemical or enzymatic steps away from the active parent drug. However, some prodrugs lack an obvious carrier or promoiety but instead result from a molecular modification of the prodrug itself, which generates a new active compound. Numerous prodrugs designed to overcome formulation, delivery, and toxicity barriers to drug utilization have reached the market. In fact, approximately 20% of all small molecular drugs approved during the period 2000 to 2008 were prodrugs. Although the development of a prodrug can be very challenging, the prodrug approach represents a feasible way to improve the erratic properties of investigational drugs or drugs already on the market. This review introduces in depth the rationale behind the use of the prodrug approach from past to present, and also considers the possible problems that can arise from inadequate activation of prodrugs.

  7. Why Prodrugs and Propesticides Succeed.

    PubMed

    Casida, John E

    2017-05-15

    What are the advantages of bioactivation in optimizing drugs and pesticides? Why are there so many prodrugs and propesticides? These questions are examined here by considering compounds selected on the basis of economic value or market success in 2015. The 100 major drugs and 90 major pesticides are divided into ones acting directly and those definitely or possibly requiring bioactivation. Established or candidate prodrugs accounted for 19% of the total drug sales, with corresponding values of 20, 37, and 17% for proinsecticides, proherbicides, and profungicides. The 19 prodrugs acting in humans generally had better pharmacodynamic/pharmacokinetic properties for target enzyme, receptor, tissue, or organ specificity due to their physical properties (lipophilicity and stabilization). Bioactivation usually involved hydrolases or cytochrome P450 oxidation or reduction. Prodrugs considered are neuroactive aripiprazole, eletriptan, desvenlafaxin, lisdexamfetamine, quetiapine, and fesoterodine; cholesterol-lowering atorvastatin, ezetimibe, and fenofibrate; various prodrugs activated by esterases or sulfatases, ciclesonide, oseltamivir, dabigatran; omega-3 fatty acid ethyl esters and esterone sulfate; and five others with various targets (sofosbuvir, fingolimod, clopidogrel, dapsone, and sildenafil). The proinsecticides are the neuroactive chlorpyrifos, thiamethoxam, and indoxacarb, two spiro enol ester inhibitors of acetyl CoA carboxylase (ACCase), and the bacterial protein delta-endotoxin. The proherbicides considered are five ACCase inhibitors including pinoxaden and clethodim, three protox inhibitors (saflufenacil, flumioxazin, and canfentrazone-ethyl), and three with various targets (fluroxypyr, isoxaflutole, and clomazone). The profungicides are prothioconazole, mancozeb, thiophanate-methyl, dazomet, and fosetyl-aluminum. The prodrug and propesticide concept is broadly applicable and has created some of the most selective pharmaceutical and pest control agents

  8. Phosphotyrosine signalling and the origin of animal multicellularity

    PubMed Central

    Tong, Kai; Wang, Yuyu

    2017-01-01

    The evolution of multicellular animals (i.e. metazoans) from a unicellular ancestor is one of the most important yet least understood evolutionary transitions. Historically, given its indispensable functions in intercellular communication and exclusive presence in metazoans, phosphotyrosine (pTyr) signalling was considered a metazoan-specific evolutionary innovation that might have contributed to the origin of metazoan multicellularity. However, recent studies have led to a new understanding of pTyr signalling evolution and its role in the metazoan origin. Sequence analyses have unravelled a much earlier emergence of pTyr signalling in eukaryotic evolution. Even so, several distinct properties of holozoan pTyr signalling may have paved the way for a hypothesized functional transition of pTyr signalling at the multicellular origin, from environmental sensing to intercellular communication, and for it to evolve as a powerful intercellular signalling system for multicellularity. Biochemical analyses of premetazoan pTyr signalling components have further revealed the premetazoan origin of many key features of metazoan pTyr signalling, and the metazoan establishment of others, including the Csk-mediated negative regulation of the activity of Src, a conserved tyrosine kinase in the Holozoa. Finally, potential future directions are discussed, with a stress on the biological functions of premetazoan pTyr signalling via newly developed gene manipulation tools in non-animal holozoans. PMID:28768887

  9. Evolution of SH2 domains and phosphotyrosine signalling networks

    PubMed Central

    Liu, Bernard A.; Nash, Piers D.

    2012-01-01

    Src homology 2 (SH2) domains mediate selective protein–protein interactions with tyrosine phosphorylated proteins, and in doing so define specificity of phosphotyrosine (pTyr) signalling networks. SH2 domains and protein-tyrosine phosphatases expand alongside protein-tyrosine kinases (PTKs) to coordinate cellular and organismal complexity in the evolution of the unikont branch of the eukaryotes. Examination of conserved families of PTKs and SH2 domain proteins provides fiduciary marks that trace the evolutionary landscape for the development of complex cellular systems in the proto-metazoan and metazoan lineages. The evolutionary provenance of conserved SH2 and PTK families reveals the mechanisms by which diversity is achieved through adaptations in tissue-specific gene transcription, altered ligand binding, insertions of linear motifs and the gain or loss of domains following gene duplication. We discuss mechanisms by which pTyr-mediated signalling networks evolve through the development of novel and expanded families of SH2 domain proteins and the elaboration of connections between pTyr-signalling proteins. These changes underlie the variety of general and specific signalling networks that give rise to tissue-specific functions and increasingly complex developmental programmes. Examination of SH2 domains from an evolutionary perspective provides insight into the process by which evolutionary expansion and modification of molecular protein interaction domain proteins permits the development of novel protein-interaction networks and accommodates adaptation of signalling networks. PMID:22889907

  10. Phospho-tyrosine dependent protein–protein interaction network

    PubMed Central

    Grossmann, Arndt; Benlasfer, Nouhad; Birth, Petra; Hegele, Anna; Wachsmuth, Franziska; Apelt, Luise; Stelzl, Ulrich

    2015-01-01

    Post-translational protein modifications, such as tyrosine phosphorylation, regulate protein–protein interactions (PPIs) critical for signal processing and cellular phenotypes. We extended an established yeast two-hybrid system employing human protein kinases for the analyses of phospho-tyrosine (pY)-dependent PPIs in a direct experimental, large-scale approach. We identified 292 mostly novel pY-dependent PPIs which showed high specificity with respect to kinases and interacting proteins and validated a large fraction in co-immunoprecipitation experiments from mammalian cells. About one-sixth of the interactions are mediated by known linear sequence binding motifs while the majority of pY-PPIs are mediated by other linear epitopes or governed by alternative recognition modes. Network analysis revealed that pY-mediated recognition events are tied to a highly connected protein module dedicated to signaling and cell growth pathways related to cancer. Using binding assays, protein complementation and phenotypic readouts to characterize the pY-dependent interactions of TSPAN2 (tetraspanin 2) and GRB2 or PIK3R3 (p55γ), we exemplarily provide evidence that the two pY-dependent PPIs dictate cellular cancer phenotypes. PMID:25814554

  11. Phosphotyrosine signalling and the origin of animal multicellularity.

    PubMed

    Tong, Kai; Wang, Yuyu; Su, Zhixi

    2017-08-16

    The evolution of multicellular animals (i.e. metazoans) from a unicellular ancestor is one of the most important yet least understood evolutionary transitions. Historically, given its indispensable functions in intercellular communication and exclusive presence in metazoans, phosphotyrosine (pTyr) signalling was considered a metazoan-specific evolutionary innovation that might have contributed to the origin of metazoan multicellularity. However, recent studies have led to a new understanding of pTyr signalling evolution and its role in the metazoan origin. Sequence analyses have unravelled a much earlier emergence of pTyr signalling in eukaryotic evolution. Even so, several distinct properties of holozoan pTyr signalling may have paved the way for a hypothesized functional transition of pTyr signalling at the multicellular origin, from environmental sensing to intercellular communication, and for it to evolve as a powerful intercellular signalling system for multicellularity. Biochemical analyses of premetazoan pTyr signalling components have further revealed the premetazoan origin of many key features of metazoan pTyr signalling, and the metazoan establishment of others, including the Csk-mediated negative regulation of the activity of Src, a conserved tyrosine kinase in the Holozoa. Finally, potential future directions are discussed, with a stress on the biological functions of premetazoan pTyr signalling via newly developed gene manipulation tools in non-animal holozoans. © 2017 The Author(s).

  12. Duocarmycin-based prodrugs for cancer prodrug monotherapy.

    PubMed

    Tietze, Lutz F; Schuster, Heiko J; Schmuck, Kianga; Schuberth, Ingrid; Alves, Frauke

    2008-06-15

    The synthesis and biological evaluation of novel prodrugs based on the cytotoxic antibiotic duocarmycin SA (1) for a selective treatment of cancer using a prodrug monotherapy (PMT) are described. Transformation of the phenol 8 with the glucuronic acid benzyl ester trichloroacetimidate 9b followed by reaction with DMAI x HCl (10) gives the glucuronide 11b, which is deprotected to afford the desired prodrug 4a containing a glucuronic acid moiety. In addition, the prodrug 4b with a glucuronic methyl ester unit is prepared. The cytotoxicity of the glucuronides is determined using a HTCFA-assay with IC(50) values of 610 nM for 4a and 3300 nM for 4b. In the presence of beta-glucuronidase, 4a expresses an IC(50) value of 0.9 nM and 4b of 2.1 nM resulting in QIC(50) values of about 700 for 4a and 1600 for 4b.

  13. A small molecule peptidomimetic of spider silk and webs.

    PubMed

    Maji, Krishnendu; Sarkar, Rajib; Bera, Santu; Haldar, Debasish

    2014-10-28

    A peptidomimetic compound containing leucine, tyrosine and malonic acid self-assembles through various noncovalent interactions to form spider silk-like fibers at ambient temperature. From the high-density liquid, a liquid-solid phase transition is initiated at 20 °C and solidification occurs upon contact with air. The fiber has comprehensive mechanical strength and optical properties similar to spider silk, and can be used to mimic a natural spider web.

  14. Phosphoramidate-based Peptidomimetic Prostate Cancer PET Imaging Agents

    DTIC Science & Technology

    2013-07-01

    develop a PET imaging agent based on modifying the peptidomimetic PSMA inhibitor which will result in improved tumor uptake and clearance mechanism...Different fluorination approaches were attempted with PSMA module compounds such as direct labeling, cupper free chemistry and the use of...labeling approaches are established, and then the labeling of the modified PSMA inhibitor analogues will be investigated in vitro as well as in vivo. 15

  15. Phosphoramidate-based Peptidomimetic Prostate Cancer PET Imaging Agents

    DTIC Science & Technology

    2013-11-01

    goal is to develop a PET imaging agent based on modifying the peptidomimetic PSMA inhibitor which will result in improved tumor uptake and clearance...mechanism. Different fluorination approaches were attempted with PSMA module compounds such as direct labeling, cupper free chemistry and the use of...the labeling approaches are established, and then the labeling of the modified PSMA inhibitor analogues will be investigated in vitro as well as in

  16. Rationally Designed Peptidomimetic Modulators of Aβ Toxicity in Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Rajasekhar, K.; Suresh, S. N.; Manjithaya, Ravi; Govindaraju, T.

    2015-01-01

    Alzheimer's disease is one of the devastating illnesses mankind is facing in the 21st century. The main pathogenic event in Alzheimer's disease is believed to be the aggregation of the β-amyloid (Aβ) peptides into toxic aggregates. Molecules that interfere with this process may act as therapeutic agents for the treatment of the disease. Use of recognition unit based peptidomimetics as inhibitors are a promising approach, as they exhibit greater protease stability compared to natural peptides. Here, we present peptidomimetic inhibitors of Aβ aggregation designed based on the KLVFF (P1) sequence that is known to bind Aβ aggregates. We improved inhibition efficiency of P1 by introducing multiple hydrogen bond donor-acceptor moieties (thymine/barbiturate) at the N-terminal (P2 and P3), and blood serum stability by modifying the backbone by incorporating sarcosine (N-methylglycine) units at alternate positions (P4 and P5). The peptidomimetics showed moderate to good activity in both inhibition and dissolution of Aβ aggregates as depicted by thioflavin assay, circular dichroism (CD) measurements and microscopy (TEM). The activity of P4 and P5 were studied in a yeast cell model showing Aβ toxicity. P4 and P5 could rescue yeast cells from Aβ toxicity and Aβ aggregates were cleared by the process of autophagy.

  17. Prodrugs in photodynamic anticancer therapy.

    PubMed

    Musiol, Robert; Serda, Maciej; Polanski, Jaroslaw

    2011-01-01

    Photodynamic therapy (PDT), the concept of cancer treatment through the selective uptake of a light-sensitive agent followed by exposure to a specific wavelength, is limited by the transport of a photosensitizer (PS) to the tumor tissue. Porphyrin, an important PS class, can be used in PDT in the form of its prodrug molecule 5-aminolevulinic acid (5-ALA). Unfortunately, its poor pharmacokinetic properties make this compound difficult to administer. Two different methods for eliminating this problem can be distinguished. The first approach is to play with its formulation in order to improve the drug's applicability. The second approach, which is to find possible 5- ALA prodrugs, is an example of the double-prodrug method, a strategy often used in modern drug design. In this approach, the biological mechanisms in a long biosynthetic pathway involving several steps must be completed before the active drug appears. Recently, an idea of enhancing PDT sensitization using the so-called iron chelators seemed to increase the accumulation of protoporphyrin in cells. At the same time, iron chelators can destroy tumor cells by producing active oxygen after the formation of an active drug by chelating iron in the cancer cells. Thus, in the latter case, the therapy resembles a prodrug strategy. The mechanism can be explained by the Fenton reaction. Vitamin C is another example of a potential anticancer agent of this type.

  18. Antibacterial evaluation of structurally amphipathic, membrane active small cationic peptidomimetics: synthesized by incorporating 3-amino benzoic acid as peptidomimetic element.

    PubMed

    Lohan, Sandeep; Cameotra, Swaranjit Singh; Bisht, Gopal Singh

    2014-08-18

    A new series of small cationic peptidomimetics were synthesized by incorporating 3-amino benzoic acid (3-ABA) in a small structural framework with the objective to mimic essential properties of natural antimicrobial peptides (AMPs). The new design approach resulted into improvement of activity and selectivity in comparison to linear peptides and allowed us to better understand the influence of structural amphipathicity on biological activity. Lead peptidomimetics displayed antibacterial activities against resistant pathogens (MRSA & MRSE). A calcein dye leakage experiment revealed a membranolytic effect of 4g and 4l which was further confirmed by fluorescence microscopy. In addition, proteolytic stability and no sign of resistance development against Staphylococcus aureus and MRSA demonstrate their potential for further development as novel antimicrobial therapeutics. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Global Impact of Oncogenic Src on a Phosphotyrosine Proteome

    PubMed Central

    Luo, Weifeng; Slebos, Robbert J.; Hill, Salisha; Li, Ming; Brábek, Jan; Amanchy, Ramars; Chaerkady, Raghothama; Pandey, Akhilesh; Ham, Amy-Joan L.; Hanks, Steven K.

    2008-01-01

    Elevated activity of Src, the first characterized protein-tyrosine kinase, is associated with progression of many human cancers, and Src has attracted interest as a therapeutic target. Src is known to act in various receptor signaling systems to impact cell behavior, yet it remains likely that the spectrum of Src protein substrates relevant to cancer is incompletely understood. To better understand the cellular impact of deregulated Src kinase activity, we extensively applied a mass spectrometry shotgun phosphotyrosine (pTyr) proteomics strategy to obtain global pTyr profiles of Src-transformed mouse fibroblasts as well as their nontransformed counterparts. A total of 867 peptides representing 563 distinct pTyr sites on 374 different proteins were identified from the Src-transformed cells, while 514 peptides representing 275 pTyr sites on 167 proteins were identified from nontransformed cells. Distinct characteristics of the two profiles were revealed by spectral counting, indicative of pTyr site relative abundance, and by complementary quantitative analysis using stable isotope labeling with amino acids in cell culture (SILAC). While both pTyr profiles are replete with sites on signaling and adhesion/cytoskeletal regulatory proteins, the Src-transformed profile is more diverse with enrichment in sites on metabolic enzymes and RNA and protein synthesis and processing machinery. Forty-three pTyr sites (32 proteins) are predicted as major biologically relevant Src targets on the basis of frequent identification in both cell populations. This select group, of particular interest as diagnostic biomarkers, includes well-established Src sites on signaling/adhesion/cytoskeletal proteins, but also uncharacterized sites of potential relevance to the transformed cell phenotype. PMID:18563927

  20. Phosphotyrosine phosphatase R3 receptors: Origin, evolution and structural diversification.

    PubMed

    Chicote, Javier U; DeSalle, Rob; García-España, Antonio

    2017-01-01

    Subtype R3 phosphotyrosine phosphatase receptors (R3 RPTPs) are single-spanning membrane proteins characterized by a unique modular composition of extracellular fibronectin repeats and a single cytoplasmatic protein tyrosine phosphatase (PTP) domain. Vertebrate R3 RPTPs consist of five members: PTPRB, PTPRJ, PTPRH and PTPRO, which dephosphorylate tyrosine residues, and PTPRQ, which dephosphorylates phophoinositides. R3 RPTPs are considered novel therapeutic targets in several pathologies such as ear diseases, nephrotic syndromes and cancer. R3 RPTP vertebrate receptors, as well as their known invertebrate counterparts from animal models: PTP52F, PTP10D and PTP4e from the fruitfly Drosophila melanogaster and F44G4.8/DEP-1 from the nematode Caenorhabditis elegans, participate in the regulation of cellular activities including cell growth and differentiation. Despite sharing structural and functional properties, the evolutionary relationships between vertebrate and invertebrate R3 RPTPs are not fully understood. Here we gathered R3 RPTPs from organisms covering a broad evolutionary distance, annotated their structure and analyzed their phylogenetic relationships. We show that R3 RPTPs (i) have probably originated in the common ancestor of animals (metazoans), (ii) are variants of a single ancestral gene in protostomes (arthropods, annelids and nematodes); (iii) a likely duplication of this ancestral gene in invertebrate deuterostomes (echinodermes, hemichordates and tunicates) generated the precursors of PTPRQ and PTPRB genes, and (iv) R3 RPTP groups are monophyletic in vertebrates and have specific conserved structural characteristics. These findings could have implications for the interpretation of past studies and provide a framework for future studies and functional analysis of this important family of proteins.

  1. Phosphotyrosine phosphatase R3 receptors: Origin, evolution and structural diversification

    PubMed Central

    Chicote, Javier U.; DeSalle, Rob; García-España, Antonio

    2017-01-01

    Subtype R3 phosphotyrosine phosphatase receptors (R3 RPTPs) are single-spanning membrane proteins characterized by a unique modular composition of extracellular fibronectin repeats and a single cytoplasmatic protein tyrosine phosphatase (PTP) domain. Vertebrate R3 RPTPs consist of five members: PTPRB, PTPRJ, PTPRH and PTPRO, which dephosphorylate tyrosine residues, and PTPRQ, which dephosphorylates phophoinositides. R3 RPTPs are considered novel therapeutic targets in several pathologies such as ear diseases, nephrotic syndromes and cancer. R3 RPTP vertebrate receptors, as well as their known invertebrate counterparts from animal models: PTP52F, PTP10D and PTP4e from the fruitfly Drosophila melanogaster and F44G4.8/DEP-1 from the nematode Caenorhabditis elegans, participate in the regulation of cellular activities including cell growth and differentiation. Despite sharing structural and functional properties, the evolutionary relationships between vertebrate and invertebrate R3 RPTPs are not fully understood. Here we gathered R3 RPTPs from organisms covering a broad evolutionary distance, annotated their structure and analyzed their phylogenetic relationships. We show that R3 RPTPs (i) have probably originated in the common ancestor of animals (metazoans), (ii) are variants of a single ancestral gene in protostomes (arthropods, annelids and nematodes); (iii) a likely duplication of this ancestral gene in invertebrate deuterostomes (echinodermes, hemichordates and tunicates) generated the precursors of PTPRQ and PTPRB genes, and (iv) R3 RPTP groups are monophyletic in vertebrates and have specific conserved structural characteristics. These findings could have implications for the interpretation of past studies and provide a framework for future studies and functional analysis of this important family of proteins. PMID:28257417

  2. Prodrug applications for targeted cancer therapy.

    PubMed

    Giang, Irene; Boland, Erin L; Poon, Gregory M K

    2014-09-01

    Prodrugs are widely used in the targeted delivery of cytotoxic compounds to cancer cells. To date, targeted prodrugs for cancer therapy have achieved great diversity in terms of target selection, activation chemistry, as well as size and physicochemical nature of the prodrug. Macromolecular prodrugs such as antibody-drug conjugates, targeted polymer-drug conjugates and other conjugates that self-assemble to form liposomal and micellar nanoparticles currently represent a major trend in prodrug development for cancer therapy. In this review, we explore a unified view of cancer-targeted prodrugs and highlight several examples from recombinant technology that exemplify the prodrug concept but are not identified as such. Recombinant "prodrugs" such as engineered anthrax toxin show promise in biological specificity through the conditionally targeting of multiple cellular markers. Conditional targeting is achieved by structural complementation, the spontaneous assembly of engineered inactive subunits or fragments to reconstitute functional activity. These complementing systems can be readily adapted to achieve conditionally bispecific targeting of enzymes that are used to activate low-molecular weight prodrugs. By leveraging strengths from medicinal chemistry, polymer science, and recombinant technology, prodrugs are poised to remain a core component of highly focused and tailored strategies aimed at conditionally attacking complex molecular phenotypes in clinically relevant cancer.

  3. Peptidomimetics as protein arginine deiminase 4 (PAD4) inhibitors.

    PubMed

    Trabocchi, Andrea; Pala, Nicolino; Krimmelbein, Ilga; Menchi, Gloria; Guarna, Antonio; Sechi, Mario; Dreker, Tobias; Scozzafava, Andrea; Supuran, Claudiu T; Carta, Fabrizio

    2015-06-01

    The protein arginine deiminase 4 (PAD4) is a calcium-dependent enzyme, which catalyses the irreversible conversion of peptidyl-arginines into peptidyl-citrullines and plays an important role in several diseases such as in the rheumatoid arthritis, multiple sclerosis, Alzheimer's disease, Creutzfeldt-Jacob's disease and cancer. In this study, we report the inhibition profiles and computational docking toward the PAD4 enzyme of a series of 1,2,3-triazole peptidomimetic-based derivatives incorporating the β-phenylalanine and guanidine scaffolds. Several effective, low micromolar PAD4 inhibitors are reported in this study.

  4. Peptidomimetics containing a vinyl ketone warhead as falcipain-2 inhibitors.

    PubMed

    Ettari, Roberta; Zappalà, Maria; Micale, Nicola; Grazioso, Giovanni; Giofrè, Salvatore; Schirmeister, Tanja; Grasso, Silvana

    2011-06-01

    The design, chemical synthesis, and enzymatic activity evaluation of a set of falcipain-2 inhibitors are reported. These compounds contain a proven peptidomimetic recognition motif based on a benzo[1,4]diazepin-2-one (1,4-BDZ) framework built on a dipeptide sequence, and a Michael acceptor terminal moiety capable of deactivating the cysteine protease active site. Our goal is to modify the P(3) site of this motif in order to identify the structural requirements for the interaction with the target.

  5. A diversity-oriented synthesis strategy enabling the combinatorial-type variation of macrocyclic peptidomimetic scaffolds.

    PubMed

    Isidro-Llobet, Albert; Hadje Georgiou, Kathy; Galloway, Warren R J D; Giacomini, Elisa; Hansen, Mette R; Méndez-Abt, Gabriela; Tan, Yaw Sing; Carro, Laura; Sore, Hannah F; Spring, David R

    2015-04-21

    Macrocyclic peptidomimetics are associated with a broad range of biological activities. However, despite such potentially valuable properties, the macrocyclic peptidomimetic structural class is generally considered as being poorly explored within drug discovery. This has been attributed to the lack of general methods for producing collections of macrocyclic peptidomimetics with high levels of structural, and thus shape, diversity. In particular, there is a lack of scaffold diversity in current macrocyclic peptidomimetic libraries; indeed, the efficient construction of diverse molecular scaffolds presents a formidable general challenge to the synthetic chemist. Herein we describe a new, advanced strategy for the diversity-oriented synthesis (DOS) of macrocyclic peptidomimetics that enables the combinatorial variation of molecular scaffolds (core macrocyclic ring architectures). The generality and robustness of this DOS strategy is demonstrated by the step-efficient synthesis of a structurally diverse library of over 200 macrocyclic peptidomimetic compounds, each based around a distinct molecular scaffold and isolated in milligram quantities, from readily available building-blocks. To the best of our knowledge this represents an unprecedented level of scaffold diversity in a synthetically derived library of macrocyclic peptidomimetics. Cheminformatic analysis indicated that the library compounds access regions of chemical space that are distinct from those addressed by top-selling brand-name drugs and macrocyclic natural products, illustrating the value of our DOS approach to sample regions of chemical space underexploited in current drug discovery efforts. An analysis of three-dimensional molecular shapes illustrated that the DOS library has a relatively high level of shape diversity.

  6. Beta-galactoside prodrugs of doxorubicin for application in antibody directed enzyme prodrug therapy/prodrug monotherapy.

    PubMed

    Devalapally, HariKrishna; Navath, Raghavendra Swamy; Yenamandra, Venkateshwarlu; Akkinepally, RaghuRam Rao; Devarakonda, Rama Krishna

    2007-06-01

    Anthracycline antibiotics, particularly doxorubicin and daunorubicin, have been used exten sively in the treatment of human malignancies. However cardiotoxicity and multidrug resistance are significant problems that limit the clinical efficacy of such agents. Rational design to avoid these side effects includes strategies such as drug targeting and prodrug synthesis. Described here are the synthesis and preliminary biological evaluation of the enzymatically activated two new prodrugs (6 & 11) of doxorubicin. These prodrugs were designed as potential candidates for selective chemotherapy in ADEPT or PMT strategies. They are constituted of a galactose moiety, a spacer and the cytotoxic drug and they differ by the type of spacer. The prodrugs were stable in a buffer, and the in vitro studies showed good detoxification and hydrolysis kinetics. As prodrug 11 was readily hydrolyzed, this could be a valuable candidate for further development.

  7. Prodrug approach: An overview of recent cases.

    PubMed

    Abet, Valentina; Filace, Fabiana; Recio, Javier; Alvarez-Builla, Julio; Burgos, Carolina

    2017-02-15

    In this review we highlight the most modern trends in the prodrug strategy. In drug research and development, the prodrug concept has found a number of useful applications. Selected examples of this approach are provided in this paper and they are classified according to the aim of their design.

  8. Selective enrichment and separation of phosphotyrosine peptides by thermosensitive molecularly imprinted polymers.

    PubMed

    Yang, Xiaoqing; Xia, Yan

    2016-01-01

    Novel thermosensitive molecularly imprinted polymers were successfully prepared using the epitope imprinting approach in the presence of the mimic template phenylphosphonic acid, the functional monomer vinylphosphonic acid-Ti(4+) , the temperature-sensitive monomer N-isopropylacrylamide and the crosslinker N,N'-methylenebisacrylamide. The ratio of the template/thermosensitive monomers/crosslinker was optimized, and when the ratio was 2:2:1, the prepared thermosensitive molecularly imprinted polymers had the highest imprinting factor. The synthetic thermosensitive molecularly imprinted polymers were characterized by Fourier transform infrared spectroscopy to reveal the combination and elution processes of the template. Then, the adsorption capacity and thermosensitivity was measured. When the temperature was 28°C, the imprinting factor was the highest. The selectivity and adsorption capacity of the thermosensitive molecularly imprinted polymers for phosphotyrosine peptides from a mixture of three tailor-made peptides were measured by high-performance liquid chromatography. The results showed that the thermosensitive molecularly imprinted polymers have good selectivity for phosphotyrosine peptides. Finally, the imprinted hydrogels were applied to specifically adsorb phosphotyrosine peptides from a sample mixture containing phosphotyrosine and a tryptic digest of β-casein, which demonstrated high selectivity. After four rebinding cycles, 78.9% adsorption efficiency was still retained.

  9. Peptidomimetics as a new generation of antimicrobial agents: current progress

    PubMed Central

    Méndez-Samperio, Patricia

    2014-01-01

    Antibiotic resistance is an increasing public health concern around the world. Rapid increase in the emergence of multidrug-resistant bacteria has been the target of extensive research efforts to develop a novel class of antibiotics. Antimicrobial peptides (AMPs) are small cationic amphiphilic peptides, which play an important role in the defense against bacterial infections through disruption of their membranes. They have been regarded as a potential source of future antibiotics, owing to a remarkable set of advantageous properties such as broad-spectrum activity, and they do not readily induce drug-resistance. However, AMPs have some intrinsic drawbacks, such as susceptibility to enzymatic degradation, toxicity, and high production cost. Currently, a new class of AMPs termed “peptidomimetics” have been developed, which can mimic the bactericidal mechanism of AMPs, while being stable to enzymatic degradation and displaying potent activity against multidrug-resistant bacteria. This review will focus on current findings of antimicrobial peptidomimetics. The potential future directions in the development of more potent analogs of peptidomimetics as a new generation of antimicrobial agents are also presented. PMID:25210467

  10. Insight into Prodrugs of Quinolones and Fluoroquinolones.

    PubMed

    Sharma, Prabodh Chander; Piplani, Mona; Mittal, Monika; Pahwa, Rakesh

    2016-01-01

    Quinolones and fluoroquinolones are principal weapons against variety of bacterial infections and exert their antibacterial potential by interfering the activities of bacterial enzymes. As these agents are associated with some limitations, an important approach to overcome these major constraints is to prepare covalent derivatives, i.e. prodrugs. Prodrug design has been employed to improve the limitations of these drugs such as less aqueous solubility, poor absorption and distribution, toxicity, disagreeable taste, poor lipophilicity etc and for improving their pharmacological profile. This paper highlights the utility of various prodrug strategies in optimizing the therapeutic index of these antibacterial agents and their recent patents. Some of their prodrugs being utilized at preclinical and clinical levels have also been discussed. Hence, this paper has been prepared to present the significant findings of various research papers that would be helpful in motivating scientific researchers to forward the research in direction of utilization of prodrugs in clinical therapy.

  11. Prodrug behaviour of nicotinoylmorphine esters.

    PubMed

    Broekkamp, C L; Oosterloo, S K; Rijk, H W

    1988-06-01

    Morphine and its nicotinoyl esters, dinicotinoylmorphine (nicomorphine), 6-mononicotinoylmorphine (6-MNM) and 3-mononicotinoylmorphine (3-MNM) were tested in mice for central activity to obtain time-effect profiles of these compounds in rats. Two effects, analgesia with the hot plate test and locomotor stimulation in activity cages were measured and nicomorphine, 6-MNM and 3-MNM were found to have a faster onset of action compared with morphine. The effects of 3-MNM and morphine lasted longer than the effect of nicomorphine and 6-MNM. The prodrug behaviour of 3-MNM and nicomorphine for morphine and 6-MNM, respectively, is discussed.

  12. Synthesis of sansalvamide A peptidomimetics: triazole, oxazole, thiazole, and pseudoproline containing compounds

    PubMed Central

    Davis, Melinda R.; Singh, Erinprit K.; Wahyudi, Hendra; Alexander, Leslie D.; Kunicki, Joseph B.; Nazarova, Lidia A.; Fairweather, Kelly A.; Giltrap, Andrew M.; Jolliffe, Katrina A.; McAlpine, Shelli R.

    2011-01-01

    Peptidomimetic-based macrocycles typically have improved pharmacokinetic properties over those observed with peptide analogs. Described are the syntheses of 13 peptidomimetic derivatives that are based on active Sansalvamide A structures, where these analogs incorporate heterocycles (triazoles, oxazoles, thiazoles, or pseudoprolines) along the macrocyclic backbone. The syntheses of these derivatives employ several approaches that can be applied to convert a macrocyclic peptide into its peptidomimetic counterpart. These approaches include peptide modifications to generate the alkyne and azide for click chemistry, a serine conversion into an oxazole, a Hantzsch reaction to generate the thiazole, and protected threonine to generate the pseudoproline derivatives. Furthermore, we show that two different peptidomimetic moieties, triazoles and thiazoles, can be incorporated into the macrocyclic backbone without reducing cytotoxicity: triazole and thiazole. PMID:22287031

  13. A stereoselective approach to peptidomimetic BACE1 inhibitors.

    PubMed

    Butini, Stefania; Gabellieri, Emanuele; Brindisi, Margherita; Giovani, Simone; Maramai, Samuele; Kshirsagar, Giridhar; Guarino, Egeria; Brogi, Simone; La Pietra, Valeria; Giustiniano, Mariateresa; Marinelli, Luciana; Novellino, Ettore; Campiani, Giuseppe; Cappelli, Andrea; Gemma, Sandra

    2013-01-01

    Aiming at identifying new scaffolds to generate beta-secretase (BACE1) inhibitors we developed peptidomimetics based on a 1,4-benzodiazepine core (3a-d), their seco-analogs (4a-b), and linear analogs (5a-h), by stereoselective approaches. We herein discuss the synthesis, molecular modeling and in vitro studies for the newly developed ligands. Compounds 5c and 5h behaved as BACE1 inhibitors on the isolated enzyme and in cellular studies. Particularly, for its low molecular weight, inhibitor 5h is a prototypic hit to develop a series of BACE1 inhibitors more potent and active on whole-cells. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Prodrug Strategies in Ocular Drug Delivery

    PubMed Central

    Barot, Megha; Bagui, Mahuya; Gokulgandhi, Mitan R.; Mitra, Ashim K.

    2015-01-01

    Poor bioavailability of topically instilled drug is the major concern in the field of ocular drug delivery. Efflux transporters, static and dynamic ocular barriers often possess rate limiting factors for ocular drug therapy. Different formulation strategies like suspension, ointment, gels, nanoparticles, implants, dendrimers and liposomes have been employed in order to improve drug permeation and retention by evading rate limiting factors at the site of absorption. Chemical modification such as prodrug targeting various nutrient transporters (amino acids, peptide and vitamin) has evolved a great deal ofintereSt to improve ocular drug delivery. In this review, we have discussed various prodrug strategies which have been widely applied for enhancing therapeutic efficacy of ophthalmic drugs. The purpose of this review is to provide an update on the utilization of prodrug concept in ocular drug delivery. In addition, this review will highlight ongoing academic and industrial research and development in terms of ocular prodrug design and delivery. PMID:22530907

  15. Identification of Glioblastoma Phosphotyrosine-Containing Proteins with Two-Dimensional Western Blotting and Tandem Mass Spectrometry

    PubMed Central

    Guo, Tianyao; Wang, Xiaowei; Li, Maoyu; Yang, Haiyan; Li, Ling; Peng, Fang

    2015-01-01

    To investigate the presence of, and the potential biological roles of, protein tyrosine phosphorylation in the glioblastoma pathogenesis, two-dimensional gel electrophoresis- (2DGE-) based Western blotting coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis was used to detect and identify the phosphotyrosine immunoreaction-positive proteins in a glioblastoma tissue. MS/MS and Mascot analyses were used to determine the phosphotyrosine sites of each phosphopeptide. Protein domain and motif analysis and systems pathway analysis were used to determine the protein domains/motifs that contained phosphotyrosine residue and signal pathway networks to clarify the potential biological functions of protein tyrosine phosphorylation. A total of 24 phosphotyrosine-containing proteins were identified. Each phosphotyrosine-containing protein contained at least one tyrosine kinase phosphorylation motif and a certain structural and functional domains. Those phosphotyrosine-containing proteins were involved in the multiple signal pathway systems such as oxidative stress, stress response, and cell migration. Those data show 2DGE-based Western blotting, MS/MS, and bioinformatics are a set of effective approaches to detect and identify glioblastoma tyrosine-phosphorylated proteome and to effectively rationalize the biological roles of tyrosine phosphorylation in the glioblastoma biological systems. It provides novel insights regarding tyrosine phosphorylation and its potential role in the molecular mechanism of a glioblastoma. PMID:26090378

  16. Biocatalytic approaches applied to the synthesis of nucleoside prodrugs.

    PubMed

    Iglesias, Luis E; Lewkowicz, Elizabeth S; Medici, Rosario; Bianchi, Paola; Iribarren, Adolfo M

    2015-01-01

    Nucleosides are valuable bioactive molecules, which display antiviral and antitumour activities. Diverse types of prodrugs are designed to enhance their therapeutic efficacy, however this strategy faces the troublesome selectivity issues of nucleoside chemistry. In this context, the aim of this review is to give an overview of the opportunities provided by biocatalytic procedures in the preparation of nucleoside prodrugs. The potential of biocatalysis in this research area will be presented through examples covering the different types of nucleoside prodrugs: nucleoside analogues as prodrugs, nucleoside lipophilic prodrugs and nucleoside hydrophilic prodrugs.

  17. Novel Peptidomimetics for Inhibition of HER2:HER3 Heterodimerization in HER2-Positive Breast Cancer.

    PubMed

    Kanthala, Shanthi; Banappagari, Sashikanth; Gokhale, Ameya; Liu, Yong-Yu; Xin, Gu; Zhao, Yunfeng; Jois, Seetharama

    2015-06-01

    The current approach to treating HER2-overexpressed breast cancer is the use of monoclonal antibodies or a combination of antibodies with traditional chemotherapeutic agents or kinase inhibitors. Our approach is to target clinically validated HER2 domain IV with peptidomimetics and inhibit the protein-protein interactions (PPI) of HERs. Unlike antibodies, peptidomimetics have advantages in terms of stability, modification, and molecular size. We have designed peptidomimetics (compounds 5 and 9) that bind to HER2 domain IV, inhibit protein-protein interactions, and decrease cell viability in breast cancer cells with HER2 overexpression. We have shown, using enzyme fragment complementation and proximity ligation assays, that peptidomimetics inhibit the PPI of HER2:HER3. Compounds 5 and 9 suppressed the tumor growth in a xenograft mouse model. Furthermore, we have shown that these compounds inhibit PPI of HER2:HER3 and phosphorylation of HER2 as compared to control in tissue samples derived from in vivo studies. The stability of the compounds was also investigated in mouse serum, and the compounds exhibited stability with a half-life of up to 3 h. These results suggest that the novel peptidomimetics we have developed target the extracellular domain of HER2 protein and inhibit HER2:HER3 interaction, providing a novel method to treat HER2-positive cancer.

  18. On modeling peptidomimetics in complex with the SH2 domain of Stat3.

    PubMed

    Dhanik, Ankur; McMurray, John S; Kavraki, Lydia

    2011-01-01

    Signal transducer and activator of transcription 3 (Stat3) plays a role in human cancers. One of the main approaches towards inhibiting its activity is the development of phosphopetides or peptidomimetics that competitively bind to the SH2 domain of Stat3. This work reports, to the best of our knowledge, the first computational molecular docking study to model all of the 142 peptidomimetics that mimic the Stat3 inhibitory pTyr-X-X-Glu motif. We used the docking programs AUTODOCK and VINA to model SH2 domain-peptidomimetic complexes and estimate their binding affinities. We obtained better screening accuracy using AUTODOCK which ranked the most potent inhibitor as second highest. Experimental binding energy values and scores from docking programs correlated poorly, confirming the limitations of many current docking programs when dealing with ligands that have a large number of rotatable bonds. Nevertheless, for close to 65% of peptidomimetics, the structures of complexes computed by AUTODOCK are in agreement with current understanding of the structures. Modeling of the SH2 domain-peptidomimetic complexes is essential to better understand and design drug compounds for curing cancer. Our study is an important first step forward towards that goal.

  19. Amino Acid Carbamates As Prodrugs Of Resveratrol.

    PubMed

    Mattarei, Andrea; Azzolini, Michele; La Spina, Martina; Zoratti, Mario; Paradisi, Cristina; Biasutto, Lucia

    2015-10-14

    Resveratrol (3, 5, 4'-trihydroxy-trans-stilbene), a plant polyphenol, has important drug-like properties, but its pharmacological exploitation in vivo is hindered by its rapid transformation via phase II conjugative metabolism. One approach to bypass this problem relies on prodrugs. We report here the synthesis, characterization, stability and in vivo pharmacokinetic behaviour of prodrugs of resveratrol in which the OH groups are engaged in an N-monosubstituted carbamate ester (-OC(O)NHR) linkage with a natural amino acid (Leu, Ile, Phe, Thr) to prevent conjugation and modulate the physicochemical properties of the molecule. We also report a convenient, high-yield protocol to obtain derivatives of this type. The new carbamate ester derivatives are stable at pH 1, while they undergo slow hydrolysis at physiological pH and hydrolyse with kinetics suitable for use in prodrugs in whole blood. After administration to rats by oral gavage the isoleucine-containing prodrug was significantly absorbed, and was present in the bloodstream as non-metabolized unaltered or partially deprotected species, demonstrating effective shielding from first-pass metabolism. We conclude that prodrugs based on the N-monosubstituted carbamate ester bond have the appropriate stability profile for the systemic delivery of phenolic compounds.

  20. Amino Acid Carbamates As Prodrugs Of Resveratrol

    PubMed Central

    Mattarei, Andrea; Azzolini, Michele; La Spina, Martina; Zoratti, Mario; Paradisi, Cristina; Biasutto, Lucia

    2015-01-01

    Resveratrol (3, 5, 4′-trihydroxy-trans-stilbene), a plant polyphenol, has important drug-like properties, but its pharmacological exploitation in vivo is hindered by its rapid transformation via phase II conjugative metabolism. One approach to bypass this problem relies on prodrugs. We report here the synthesis, characterization, stability and in vivo pharmacokinetic behaviour of prodrugs of resveratrol in which the OH groups are engaged in an N-monosubstituted carbamate ester (-OC(O)NHR) linkage with a natural amino acid (Leu, Ile, Phe, Thr) to prevent conjugation and modulate the physicochemical properties of the molecule. We also report a convenient, high-yield protocol to obtain derivatives of this type. The new carbamate ester derivatives are stable at pH 1, while they undergo slow hydrolysis at physiological pH and hydrolyse with kinetics suitable for use in prodrugs in whole blood. After administration to rats by oral gavage the isoleucine-containing prodrug was significantly absorbed, and was present in the bloodstream as non-metabolized unaltered or partially deprotected species, demonstrating effective shielding from first-pass metabolism. We conclude that prodrugs based on the N-monosubstituted carbamate ester bond have the appropriate stability profile for the systemic delivery of phenolic compounds. PMID:26463125

  1. Peptides and peptidomimetics in medicine, surgery and biotechnology.

    PubMed

    Gentilucci, Luca; Tolomelli, Alessandra; Squassabia, Federico

    2006-01-01

    Despite the fact that they have been used for a century to treat several kinds of diseases, peptides and short proteins are now considered the new generation of biologically active tools. Indeed, recent findings suggest a wide range of novel applications in medicine, biotechnology, and surgery. The efficacy of native peptides has been greatly enhanced by introducing structural modifications in the original sequences, giving rise to the class of peptidomimetics. This review gives an overview of both classical applications and promising new categories of biologically active peptides and analogs. Besides the new entries in well known peptide families, such as antibiotic macrocyclic peptides, integrin inhibitors, as well as immunoactive, anticancer, neuromodulator, opioid, and hormone peptides, a number of novel applications have been recently reported. Outstanding examples include peptide-derived semi-synthetic vaccines, drug delivery systems, radiolabeled peptides, self-assembling peptides, which can serve as biomaterials in tissue engineering for creating cartilage, blood vessels, and other tissues, or as substrates for neurite outgrowth and synapse formation, immobilized peptides, and proteins. Finally, peptide-based biomaterials can find applications in bio-nanotechnology for bio-microchips, peptide nanorods and nanotubes, bio-sensors, bio-electronic devices, and peptide-metal wires.

  2. The SH2 domain-containing proteins in 21 species establish the provenance and scope of phosphotyrosine signaling in eukaryotes.

    PubMed

    Liu, Bernard A; Shah, Eshana; Jablonowski, Karl; Stergachis, Andrew; Engelmann, Brett; Nash, Piers D

    2011-12-06

    The Src homology 2 (SH2) domains are participants in metazoan signal transduction, acting as primary mediators for regulated protein-protein interactions with tyrosine-phosphorylated substrates. Here, we describe the origin and evolution of SH2 domain proteins by means of sequence analysis from 21 eukaryotic organisms from the basal unicellular eukaryotes, where SH2 domains first appeared, through the multicellular animals and increasingly complex metazoans. On the basis of our results, SH2 domains and phosphotyrosine signaling emerged in the early Unikonta, and the numbers of SH2 domains expanded in the choanoflagellate and metazoan lineages with the development of tyrosine kinases, leading to rapid elaboration of phosphotyrosine signaling in early multicellular animals. Our results also indicated that SH2 domains coevolved and the number of the domains expanded alongside protein tyrosine kinases and tyrosine phosphatases, thereby coupling phosphotyrosine signaling to downstream signaling networks. Gene duplication combined with domain gain or loss produced novel SH2-containing proteins that function within phosphotyrosine signaling, which likely have contributed to diversity and complexity in metazoans. We found that intra- and intermolecular interactions within and between SH2 domain proteins increased in prevalence along with organismal complexity and may function to generate more highly connected and robust phosphotyrosine signaling networks.

  3. The SH2 Domain–Containing Proteins in 21 Species Establish the Provenance and Scope of Phosphotyrosine Signaling in Eukaryotes

    PubMed Central

    Liu, Bernard A.; Shah, Eshana; Jablonowski, Karl; Stergachis, Andrew; Engelmann, Brett; Nash, Piers D.

    2014-01-01

    The Src homology 2 (SH2) domains are participants in metazoan signal transduction, acting as primary mediators for regulated protein-protein interactions with tyrosine-phosphorylated substrates. Here, we describe the origin and evolution of SH2 domain proteins by means of sequence analysis from 21 eukaryotic organisms from the basal unicellular eukaryotes, where SH2 domains first appeared, through the multicellular animals and increasingly complex metazoans. On the basis of our results, SH2 domains and phosphotyrosine signaling emerged in the early Unikonta, and the numbers of SH2 domains expanded in the choanoflagellate and metazoan lineages with the development of tyrosine kinases, leading to rapid elaboration of phosphotyrosine signaling in early multicellular animals. Our results also indicated that SH2 domains coevolved and the number of the domains expanded alongside protein tyrosine kinases and tyrosine phosphatases, thereby coupling phosphotyrosine signaling to downstream signaling networks. Gene duplication combined with domain gain or loss produced novel SH2-containing proteins that function within phosphotyrosine signaling, which likely have contributed to diversity and complexity in metazoans. We found that intra- and intermolecular interactions within and between SH2 domain proteins increased in prevalence along with organismal complexity and may function to generate more highly connected and robust phosphotyrosine signaling networks. PMID:22155787

  4. [Radiation Anticarcinogenesis by Thiazolidine Pro-drug

    NASA Technical Reports Server (NTRS)

    Warters, Raymond L.; Roberts, Jeanette C.; Fain, Heidi

    1999-01-01

    The original goal of this work was to determine the capacity of selected aminothiols to modulate radiation induced cytotoxicity, mutagenesis and carcinogenesis in a human mammary epithelial cell line. The conclusions from this work are that WR-1065 is the "gold standard" for protection against radiation induced cytotoxicity, mutagenesis and carcinogenesis. While a potent radiation protector, WR-1065 is cytotoxic in vitro and in vivo. Our rationale for a study of the thiazolidine pro-drugs was that these compounds are neither toxic in vitro or in vivo. The results obtained during this funding period indicate that the thiazolidine pro-drugs are as potent as WR-1065 as protectors against radiation induced mutation induction, and thus presumably against radiation induced carcinogenesis. Our results indicate that the thiazolidine prodrugs are excellent candidates to test as non-toxic anticarcinogens for protecting astronauts from cancer induction during space travel.

  5. [Radiation Anticarcinogenesis by Thiazolidine Pro-drug

    NASA Technical Reports Server (NTRS)

    Warters, Raymond L.; Roberts, Jeanette C.; Fain, Heidi

    1999-01-01

    The original goal of this work was to determine the capacity of selected aminothiols to modulate radiation induced cytotoxicity, mutagenesis and carcinogenesis in a human mammary epithelial cell line. The conclusions from this work are that WR-1065 is the "gold standard" for protection against radiation induced cytotoxicity, mutagenesis and carcinogenesis. While a potent radiation protector, WR-1065 is cytotoxic in vitro and in vivo. Our rationale for a study of the thiazolidine pro-drugs was that these compounds are neither toxic in vitro or in vivo. The results obtained during this funding period indicate that the thiazolidine pro-drugs are as potent as WR-1065 as protectors against radiation induced mutation induction, and thus presumably against radiation induced carcinogenesis. Our results indicate that the thiazolidine prodrugs are excellent candidates to test as non-toxic anticarcinogens for protecting astronauts from cancer induction during space travel.

  6. Evidence for a role for the phosphotyrosine-binding domain of Shc in interleukin 2 signaling.

    PubMed Central

    Ravichandran, K S; Igras, V; Shoelson, S E; Fesik, S W; Burakoff, S J

    1996-01-01

    Stimulation via the T-cell growth factor interleukin 2 (IL-2) leads to tyrosine phosphorylation of Shc, the interaction of Shc with Grb2, and the Ras GTP/GDP exchange factor, mSOS. Shc also coprecipitates with the IL-2 receptor (IL-2R), and therefore, may link IL-2R to Ras activation. We have further characterized the Shc-IL-2R interaction and have made the following observations. (i) Among the two phosphotyrosine-interaction domains present in Shc, the phosphotyrosine-binding (PTB) domain, rather than its SH2 domain, interacts with the tyrosine-phosphorylated IL-2R beta chain. Moreover, the Shc-PTB domain binds a phosphopeptide derived from the IL-2R beta chain (corresponding to residues surrounding Y338, SCFTNQGpYFF) with high affinity. (ii) In vivo, mutant IL-2R beta chains lacking the acidic region of IL-2Rbeta (which contains Y338) fail to phosphorylate Shc. Furthermore, when wild type or mutant Shc proteins that lack the PTB domain were expressed in the IL-2-dependent CTLL-20 cell line, an intact Shc-PTB domain was required for Shc phosphorylation by the IL-2R, which provides further support for a Shc-PTB-IL-2R interaction in vivo. (iii) PTB and SH2 domains of Shc associate with different proteins in IL-2- and T-cell-receptor-stimulated lysates, suggesting that Shc, through the concurrent use of its two different phosphotyrosine-binding domains, could assemble multiple protein complexes. Taken together, our in vivo and in vitro observations suggest that the PTB domain of Shc interacts with Y338 of the IL-2R and provide evidence for a functional role for the Shc-PTB domain in IL-2 signaling. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8643566

  7. Thermodynamic and structural analysis of phosphotyrosine polypeptide binding to Grb2-SH2.

    PubMed

    McNemar, C; Snow, M E; Windsor, W T; Prongay, A; Mui, P; Zhang, R; Durkin, J; Le, H V; Weber, P C

    1997-08-19

    A thermodynamic analysis using isothermal titration calorimetry (ITC) has been performed to examine the binding interaction between the SH2 (Src homology 2) domain of growth factor receptor binding protein 2 (Grb2-SH2) and one of its phosphotyrosine (pY) polypeptide ligands. Interaction of the Shc-derived phosphotyrosine hexapeptide Ac-SpYVNVQ-NH2 with Grb2-SH2 was both enthalpically and entropically favorable (DeltaH = -7.55 kcal mol-1, -TDeltaS = -1.46 kcal mol-1 , DeltaG = -9.01 kcal mol-1, T = 20 degrees C). ITC experiments using five alanine-substituted peptides were performed to examine the role of each side chain in binding. The results were consistent with homology models of the Grb2-SH2-Shc hexapeptide complex which identified several possible hydrogen bonds between Grb2-SH2 and the phosphotyrosine and conserved asparagine(+2) side chains of the Shc hexapeptide. These studies also demonstrated that the hydrophobic valine(+1) side chain contributes significantly to the favorable entropic component of binding. The thermodynamic and structural data are consistent with a Grb2-SH2 recognition motif of pY-hydrophobic-N-X (where X is any amino acid residue). The measured heat capacity of binding (DeltaCp = -146 cal mol-1 K-1) was very similar to computed values using semiempirical estimates (DeltaCp = -106 to -193 cal mol-1 K-1) derived from apolar and polar accessible surface area values calculated from several homology models of the Grb2-SH2-Shc hexapeptide complex. The homology model which most closely reproduced the measured DeltaCp value is also the model which had the lowest RMS deviation from the subsequently determined crystal structure. Calculations based on the thermodynamic data and these semiempirical estimates indicated that the binding event involves burial of nearly comparable apolar (677 A2) and polar (609 A2) surface areas.

  8. Synthesis and evaluation of diverse analogs of amygdalin as potential peptidomimetics of peptide T.

    PubMed

    Araya, Eyleen; Rodriguez, Alex; Rubio, Jaime; Spada, Alessandro; Joglar, Jesus; Llebaria, Amadeu; Lagunas, Carmen; Fernandez, Andres G; Spisani, Susanna; Perez, Juan J

    2005-03-01

    Peptide T (ASTTTNYT) is a promising molecule to prevent the neuropsychometric symptoms of patients suffering AIDS and for the treatment of psoriasis. In order to fully prove its therapeutic benefits, efforts were put forward to design peptidomimetics of the peptide. In this direction, in a recent computational study the natural product amygdalin was identified as a prospective peptidomimetic of the peptide and later proved to exhibit a similar chemotactic profile to the peptide. However, the cyanide moiety of amygdalin provides to the molecule a toxic profile. The present study reports the synthesis of a set of amygdalin analogs lacking the cyanide group with improved chemotactic profiles.

  9. Prodrugs of herpes simplex thymidine kinase inhibitors.

    PubMed

    Yanachkova, Milka; Xu, Wei-Chu; Dvoskin, Sofya; Dix, Edward J; Yanachkov, Ivan B; Focher, Federico; Savi, Lida; Sanchez, M Dulfary; Foster, Timothy P; Wright, George E

    2015-04-01

    Because guanine-based herpes simplex virus thymidine kinase inhibitors are not orally available, we synthesized various 6-deoxy prodrugs of these compounds and evaluated them with regard to solubility in water, oral bioavailability, and efficacy to prevent herpes simplex virus-1 reactivation from latency in a mouse model. Organic synthesis was used to prepare compounds, High Performance Liquid Chromatography (HPLC) to analyze hydrolytic conversion, Mass Spectrometry (MS) to measure oral bioavailability, and mouse latent infection and induced reactivation to evaluate the efficacy of a specific prodrug. Aqueous solubilities of prodrugs were improved, oxidation of prodrugs by animal cytosols occurred in vitro, and oral absorption of the optimal prodrug sacrovir™ (6-deoxy-mCF3PG) in the presence of the aqueous adjuvant Soluplus® and conversion to active compound N(2)-[3-(trifluoromethyl)pheny])guanine (mCF3PG) were accomplished in mice. Treatment of herpes simplex virus-1 latent mice with sacrovir™ in 1% Soluplus in drinking water significantly suppressed herpes simplex virus-1 reactivation and viral genomic replication. Ad libitum oral delivery of sacrovir™ was effective in suppressing herpes simplex virus-1 reactivation in ocularly infected latent mice as measured by the numbers of mice shedding infectious virus at the ocular surface, numbers of trigeminal ganglia positive for infectious virus, number of corneas that had detectable infectious virus, and herpes simplex virus-1 genome copy numbers in trigeminal ganglia following reactivation. These results demonstrate the statistically significant effect of the prodrug on suppressing herpes simplex virus-1 reactivation in vivo. © The Author(s) 2015.

  10. Lactic acid oligomers (OLAs) as prodrug moieties.

    PubMed

    Kruse, J; Lachmann, B; Lauer, R; Eppacher, S; Noe, C R

    2013-02-01

    In this paper we propose the use of lactic acid oligomers (OLAs) as prodrug moieties. Two synthetic approaches are presented, on the one hand a non selective oligomerisation of lactic acid and on the other hand a block synthesis to tetramers of lactic acid. Dimers of lactic acid were investigated with respect to their plasma stability and their adsorption to albumine. Ibuprofen was chosen as the first drug for OLAylation. The ester 19 of LA(1)-ibuprofen was evaluated with respect to the degradation to human plasma and the adsorption to albumine. All results indicate that lactic acid oligomers are promising prodrug moieties.

  11. [In vitro metabolism of fenbendazole prodrug].

    PubMed

    Wen, Ai-Dan; Duan, Li-Ping; Liu, Cong-Shan; Tao, Yi; Xue, Jian; Wu, Ning-Bo; Jiang, Bin; Zhang, Hao-Bing

    2013-02-01

    Synthesized fenbendazole prodrug N-methoxycarbonyl-N'-(2-nitro-4-phenylthiophenyl) thiourea (MPT) was analyzed in vitro in artificial gastric juice, intestinal juice and mouse liver homogenate model by using HPLC method, and metabolic curve was then generated. MPT was tested against Echinococcus granulosus protoscolices in vitro. The result showed that MPT could be metabolized in the three biological media, and to the active compound fenbendazole in liver homogenate, with a metabolic rate of 7.92%. Besides, the prodrug showed a weak activity against E. granulosus protoscolices with a mortality of 45.9%.

  12. Modern prodrug design for targeted oral drug delivery.

    PubMed

    Dahan, Arik; Zimmermann, Ellen M; Ben-Shabat, Shimon

    2014-10-14

    The molecular information that became available over the past two decades significantly influenced the field of drug design and delivery at large, and the prodrug approach in particular. While the traditional prodrug approach was aimed at altering various physiochemical parameters, e.g., lipophilicity and charge state, the modern approach to prodrug design considers molecular/cellular factors, e.g., membrane influx/efflux transporters and cellular protein expression and distribution. This novel targeted-prodrug approach is aimed to exploit carrier-mediated transport for enhanced intestinal permeability, as well as specific enzymes to promote activation of the prodrug and liberation of the free parent drug. The purpose of this article is to provide a concise overview of this modern prodrug approach, with useful successful examples for its utilization. In the past the prodrug approach used to be viewed as a last option strategy, after all other possible solutions were exhausted; nowadays this is no longer the case, and in fact, the prodrug approach should be considered already in the very earliest development stages. Indeed, the prodrug approach becomes more and more popular and successful. A mechanistic prodrug design that aims to allow intestinal permeability by specific transporters, as well as activation by specific enzymes, may greatly improve the prodrug efficiency, and allow for novel oral treatment options.

  13. Novel prodrugs with a spontaneous cleavable guanidine moiety.

    PubMed

    Hamada, Yoshio

    2016-04-01

    Water-soluble prodrug strategy is a practical alternative for improving the drug bioavailability of sparingly-soluble drugs with reduced drug efficacy. Many water-soluble prodrugs of sparingly-soluble drugs, such as the phosphate ester of a drug, have been reported. Recently, we described a novel water-soluble prodrug based on O-N intramolecular acyl migration. However, these prodrug approaches require a hydroxy group in the structure of their drugs, and other prodrug approaches are often restricted by the structure of the parent drugs. To develop prodrugs with no restriction in the structure, we focused on a decomposition reaction of arginine methyl ester. This reaction proceeds at room temperature under neutral conditions, and we applied this reaction to the prodrug strategy for drugs with an amino group. We designed and synthesized novel prodrugs of representative sparingly soluble drugs phenytoin and sulfathiazole. Phenytoin and sulfathiazole were obtained as stable salt that were converted to parent drugs under physiological conditions. Phenytoin prodrug 3 showed a short half-life (t1/2) of 13min, whereas sulfathiazole prodrug 7 had a moderate t1/2 of 40min. Prodrugs 3 and 7 appear to be suitable for use as an injectable formulation and orally administered drug, respectively.

  14. Phosphotyrosine phosphatase and tyrosine kinase inhibition modulate airway pressure-induced lung injury.

    PubMed

    Parker, J C; Ivey, C L; Tucker, A

    1998-11-01

    We determined whether drugs which modulate the state of protein tyrosine phosphorylation could alter the threshold for high airway pressure-induced microvascular injury in isolated perfused rat lungs. Lungs were ventilated for successive 30-min periods with peak inflation pressures (PIP) of 7, 20, 30, and 35 cmH2O followed by measurement of the capillary filtration coefficient (Kfc), a sensitive index of hydraulic conductance. In untreated control lungs, Kfc increased by 1.3- and 3.3-fold relative to baseline (7 cmH2O PIP) after ventilation with 30 and 35 cmH2O PIP. However, in lungs treated with 100 microM phenylarsine oxide (a phosphotyrosine phosphatase inhibitor), Kfc increased by 4.7- and 16.4-fold relative to baseline at these PIP values. In lungs treated with 50 microM genistein (a tyrosine kinase inhibitor), Kfc increased significantly only at 35 cmH2O PIP, and the three groups were significantly different from each other. Thus phosphotyrosine phosphatase inhibition increased the susceptibility of rat lungs to high-PIP injury, and tyrosine kinase inhibition attenuated the injury relative to the high-PIP control lungs.

  15. Prodrug approach to improve absorption of prednisolone

    PubMed Central

    Sheng, Ye; Yang, Xiaoyan; Pal, Dhananjay; Mitra, Ashim K.

    2015-01-01

    Amino acid and dipeptide prodrugs have been developed to examine their potential in enhancing aqueous solubility and permeability as well as to bypass P-glycoprotein (P-gp) mediated cellular efflux of prednisolone. Prodrugs have been synthesized and identified with LC/MS/MS and NMR. Prodrugs displayed significantly higher aqueous solubility relative to prednisolone. These compounds also exhibited higher stability under acidic conditions relative to basic medium. [14]-Erythromycin uptake remained unaltered in the presence of valine-valine-prednisolone (VVP) indicating lower affinity towards P-gp. Moreover, VVP generated significantly higher transepithelial permeability across MDCK-MDR1 cells compared to prednisolone. Importantly, [3H]-GlySar uptake diminished significantly in the presence of VVP indicating high affinity towards peptide transporters. Moreover, prednisolone was regenerated from VVP due to enzymatic hydrolysis in SIRC cell homogenate. Results obtained from these studies clearly suggest that peptide transporter targeted prodrugs is a viable strategy to improve aqueous solubility and overcome P-gp mediated cellular efflux of prednisolone. PMID:25888804

  16. Rapid Multistep Synthesis of a Bioactive Peptidomimetic Oligomer for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Utku, Yeliz; Rohatgi, Abhinav; Yoo, Barney; Kirshenbaum, Kent; Zuckermann, Ronald N.; Pohl, Nicola L.

    2010-01-01

    Peptidomimetic compounds are increasingly important in drug-discovery applications. We introduce the synthesis of an N-substituted glycine oligomer, a bioactive "peptoid" trimer. The six-step protocol is conducted on solid-phase resin, enabling the synthesis to be performed by undergraduate organic chemistry students. This synthesis lab was…

  17. Rapid Multistep Synthesis of a Bioactive Peptidomimetic Oligomer for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Utku, Yeliz; Rohatgi, Abhinav; Yoo, Barney; Kirshenbaum, Kent; Zuckermann, Ronald N.; Pohl, Nicola L.

    2010-01-01

    Peptidomimetic compounds are increasingly important in drug-discovery applications. We introduce the synthesis of an N-substituted glycine oligomer, a bioactive "peptoid" trimer. The six-step protocol is conducted on solid-phase resin, enabling the synthesis to be performed by undergraduate organic chemistry students. This synthesis lab was…

  18. Tricks with clicks: modification of peptidomimetic oligomers via copper-catalyzed azide-alkyne [3 + 2] cycloaddition.

    PubMed

    Holub, Justin M; Kirshenbaum, Kent

    2010-04-01

    This tutorial review examines recent developments involving use of Copper-catalyzed Azide-Alkyne [3 + 2] Cycloaddition (CuAAC) reactions in the synthesis, modification, and conformational control of peptidomimetic oligomers. CuAAC reactions have been used to address a variety of objectives including: (i) ligation of peptidomimetic oligomers; (ii) synthesis of ordered "foldamer" architectures; (iii) conjugation of ligands to peptidomimetic scaffolds; and (iv) macrocyclization of peptidomimetics using triazole linkages as conformational constraints. Variations in synthesis protocols, such as the use of different solvent systems, temperatures and copper species are evaluated herein to present a range of variables for the optimization of CuAAC reactions. The overall objectives of these studies are assessed to highlight the widespread applications of the products, which range from bioactive ligands to new materials.

  19. Photoactivatable Caged Prodrugs of VEGFR-2 Kinase Inhibitors.

    PubMed

    Pinchuk, Boris; Horbert, Rebecca; Döbber, Alexander; Kuhl, Lydia; Peifer, Christian

    2016-04-29

    In this study, we report on the design, synthesis, photokinetic properties and in vitro evaluation of photoactivatable caged prodrugs for the receptor tyrosine kinase VEGFR-2. Highly potent VEGFR-2 inhibitors 1 and 3 were caged by introduction of a photoremovable protecting group (PPG) to yield the caged prodrugs 4 and 5. As expected, enzymatic and cellular proliferation assays showed dramatically diminished efficacy of caged prodrugs in vitro. Upon ultraviolet (UV) irradiation of the prodrugs original inhibitory activity was completely restored and even distinctly reinforced, as was the case for the prodrug 4. The presented results are a further evidence for caging technique being an interesting approach in the protein kinase field. It could enable spatial and temporal control for the inhibition of VEGFR-2. The described photoactivatable prodrugs might be highly useful as biological probes for studying the VEGFR-2 signal transduction.

  20. Prodrugs design based on inter- and intramolecular chemical processes.

    PubMed

    Karaman, Rafik

    2013-12-01

    This review provides the reader a concise overview of the majority of prodrug approaches with the emphasis on the modern approaches to prodrug design. The chemical approach catalyzed by metabolic enzymes which is considered as widely used among all other approaches to minimize the undesirable drug physicochemical properties is discussed. Part of this review will shed light on the use of molecular orbital methods such as DFT, semiempirical and ab initio for the design of novel prodrugs. This novel prodrug approach implies prodrug design based on enzyme models that were utilized for mimicking enzyme catalysis. The computational approach exploited for the prodrug design involves molecular orbital and molecular mechanics (DFT, ab initio, and MM2) calculations and correlations between experimental and calculated values of intramolecular processes that were experimentally studied to assign the factors determining the reaction rates in certain processes for better understanding on how enzymes might exert their extraordinary catalysis.

  1. Prodrugs - an efficient way to breach delivery and targeting barriers.

    PubMed

    Huttunen, Kristiina M; Rautio, Jarkko

    2011-01-01

    The study of prodrugs that are chemically modified bioreversible derivatives of active drug compounds to alter their undesired properties has been expanded widely during the last decades. Despite the commercial success the prodrugs have afforded, the concept is still quite unknown among many scientist. Furthermore, many scientists regard prodrugs as a pure interest of academic research groups and not as a feasible solution to improve the delivery or targeting properties of new chemical entities, drug candidates failed in clinical trials, or drugs withdrawn from the market. Although there are still unmet needs that require addressing, prodrugs should be seen as fine-tuning tools for the successful drug research and development. This review represents the potential of prodrugs to improve the drug delivery by enhanced aqueous solubility or permeability as well as describes several targeted prodrug strategies.

  2. Synthesis and characterization of novel dipeptide ester prodrugs of acyclovir

    NASA Astrophysics Data System (ADS)

    Nashed, Yasser E.; Mitra, Ashim K.

    2003-07-01

    Four dipeptide (Gly-Gly, Gly-Val, Val-Val, Val-Gly) ester prodrugs of 9-[(2-hydroxyethoxy)methyl]guanine (acyclovir, ACV) were synthesized. LC/MS was used to characterize the new prodrugs. Both 1H NMR and 13C NMR spectra of the four prodrugs of ACV were measured and assigned based on spectral comparison with compounds of similar structures.

  3. Hydrolysis-Sensitive Dithiolethione Prodrug Micelles.

    PubMed

    Hasegawa, Urara; Tateishi, Naoya; Uyama, Hiroshi; van der Vlies, André J

    2015-11-01

    Prodrug micelles carrying 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), a compound possessing chemopreventive properties, are prepared from amphiphilic block copolymers linking ADT-OH via an ester bond using glycine (PAM-PGlyADT) and isoleucine linkers (PAM-PIleADT). The release of ADT-OH from the PAM-PIleADT micelles is much slower than the PAM-PGlyADT micelles. The PAM-PGlyADT micelles show comparable toxicity with ADT-OH in different cancer cell lines, whereas the PAM-PIleADT micelles are not toxic up to 400 µM. This ADT-ester prodrug micelle approach enables to modulate the release rate of ADT-OH and thus might find application in cancer therapy and prevention. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Lipid prodrug nanocarriers in cancer therapy.

    PubMed

    Mura, Simona; Bui, Duc Trung; Couvreur, Patrick; Nicolas, Julien

    2015-06-28

    Application of nanotechnology in the medical field (i.e., nanomedicine) plays an important role in the development of novel drug delivery methods. Nanoscale drug delivery systems can indeed be customized with specific functionalities in order to improve the efficacy of the treatments. However, despite the progresses of the last decades, nanomedicines still face important obstacles related to: (i) the physico-chemical properties of the drug moieties which may reduce the total amount of loaded drug; (ii) the rapid and uncontrolled release (i.e., burst release) of the encapsulated drug after administration and (iii) the instability of the drug in biological media where a fast transformation into inactive metabolites can occur. As an alternative strategy to alleviate these drawbacks, the prodrug approach has found wide application. The covalent modification of a drug molecule into an inactive precursor from which the drug will be freed after administration offers several benefits such as: (i) a sustained drug release (mediated by chemical or enzymatic hydrolysis of the linkage between the drug-moiety and its promoiety); (ii) an increase of the drug chemical stability and solubility and, (iii) a reduced toxicity before the metabolization occurs. Lipids have been widely used as building blocks for the design of various prodrugs. Interestingly enough, these lipid-derivatized drugs can be delivered through a nanoparticulate form due to their ability to self-assemble and/or to be incorporated into lipid/polymer matrices. Among the several prodrugs developed so far, this review will focus on the main achievements in the field of lipid-based prodrug nanocarriers designed to improve the efficacy of anticancer drugs. Gemcitabine (Pubchem CID: 60750); 5-fluorouracil (Pubchem CID: 3385); Doxorubicin (Pubchem CID: 31703); Docetaxel (Pubchem CID: 148124); Methotrexate (Pubchem CID: 126941); Paclitaxel (Pubchem CID: 36314).

  5. Lectin-directed enzyme activated prodrug therapy (LEAPT): Synthesis and evaluation of rhamnose-capped prodrugs.

    PubMed

    Garnier, Philippe; Wang, Xiang-Tao; Robinson, Mark A; van Kasteren, Sander; Perkins, Alan C; Frier, Malcolm; Fairbanks, Antony J; Davis, Benjamin G

    2010-12-01

    The lectin-directed enzyme activated prodrug therapy (LEAPT) bipartite drug delivery system utilizes glycosylated enzyme, localized according to its sugar pattern, and capped prodrugs released by that enzyme. In this way, the sugar coat of a synthetic enzyme determines the site of release of a given drug. Here, prodrugs of doxorubicin and 5-fluorouracil capped by the nonmammalian l-rhamnosyl sugar unit have been efficiently synthesized and evaluated for use in the LEAPT system. Both are stable in blood, released by synthetically d-galactosylated rhamnosidase enzyme, and do not inhibit the uptake of the synthetic enzyme to its liver target. These results are consistent with their proposed mode of action and efficacy in models of liver cancer, and confirm modular flexibility in the drugs that may be used in LEAPT.

  6. The future of prodrugs - design by quantum mechanics methods.

    PubMed

    Karaman, Rafik; Fattash, Beesan; Qtait, Alaa

    2013-05-01

    The revolution in computational chemistry greatly impacted the drug design and delivery fields, in general, and recently the utilization of the prodrug approach in particular. The use of ab initio, semiempirical and molecular mechanics methods to understand organic reaction mechanisms of certain processes, especially intramolecular reactions, has opened the door to design and to rapidly produce safe and efficacious delivery of a wide range of active small molecule and biotherapeutics such as prodrugs. This article provides the readers with a concise overview of this modern approach to prodrug design. The use of computational approaches, such as density functional theory (DFT), semiempirical and ab initio molecular orbital methods, in modern prodrugs design will be discussed. The novel prodrug approach to be reported in this review implies prodrug design based on enzyme model (mimicking enzyme catalysis) that has been utilized to understand how enzymes work. The tool used in the design is a computational approach consisting of calculations using molecular orbital and molecular mechanics methods (DFT, ab initio and MM2) and correlations between experimental and calculated values of intramolecular processes that were used to understand the mechanism by which enzymes might exert their high rates catalysis. The future of prodrug technology is exciting yet extremely challenging. Advances must be made in understanding the chemistry of many organic reactions that can be effectively utilized to enable the development of even more types of prodrugs. Despite the increase in the number of marketed prodrugs, we have only started to appreciate the potential of the prodrug approach in modern drug development, and the coming years will witness many novel prodrug innovations.

  7. Peptidomimetic β-Secretase Inhibitors Comprising a Sequence of Amyloid-β Peptide for Alzheimer's Disease.

    PubMed

    Vila-Real, Helder; Coelho, Helena; Rocha, João; Fernandes, Adelaide; Ventura, M Rita; Maycock, Christopher D; Iranzo, Olga; Simplício, Ana L

    2015-07-23

    Alzheimer's disease is a grave social problem in an aging population. A major problem is the passage of drugs through the blood-brain barrier. This work tests the hypothesis that the conjugation of peptidomimetic β-secretase inhibitors with a fragment of amyloid-β peptide facilitates entrance into the central nervous system. HVR-3 (compound 4), one of the conjugation products, was found to be as potent as OM00-3, a known peptidomimetic inhibitor, 4-fold more selective toward β-secretase 1 in relation to β-secretase 2 and 3-fold more resistant to in vitro metabolization in human serum. Its intravenous administration to mice and Wistar rats generated an active metabolite recovered from the rodent's brains.

  8. Boron-containing peptidomimetics--a novel class of selective anti-tubercular drugs.

    PubMed

    Gorovoy, Alexey S; Gozhina, Olga V; Svendsen, John S; Domorad, Anna A; Tetz, George V; Tetz, Victor V; Lejon, Tore

    2013-03-01

    Medical treatment for tuberculosis is complicated nowadays by the appearance of new multiresistant strains, and therefore, new antibiotics are in great need. Here, we report the synthesis and in vitro testing of a new class of highly selective antimicrobial boron-containing peptidomimetics with compounds exhibiting activity against Mycobacterium tuberculosis at ≤5 μg/mL. The new approach developed makes it possible to synthesize variously substituted β-aminoboronic acids and their derivatives with a high level of diastereoselectivity.

  9. The Determination of Protonation Constants of Peptidomimetic Cyclophanes in Binary Methanol-Water Mixtures

    PubMed Central

    Tomczyk, Danuta; Andrijewski, Grzegorz

    2016-01-01

    The protonation constants of new group of peptidomimetic cyclophanes with valine or phenylalanine moieties incorporated into the macrocyclic skeleton as well as their linear analogues were determined by potentiometric measurements in solutions of methanol-water mixtures at 25°C and constant ionic strength. The influence of cavity size, location of protonation sites, and attached substituents of the macrocyclic ligands on the protonation constants were discussed on the basis of potentiometric measurement as well as H1-NMR results. PMID:27516918

  10. Cyclic alpha-conotoxin peptidomimetic chimeras as potent GLP-1R agonists.

    PubMed

    Swedberg, Joakim E; Schroeder, Christina I; Mitchell, Justin M; Durek, Thomas; Fairlie, David P; Edmonds, David J; Griffith, David A; Ruggeri, Roger B; Derksen, David R; Loria, Paula M; Liras, Spiros; Price, David A; Craik, David J

    2015-10-20

    Type 2 diabetes mellitus (T2DM) results from compromised pancreatic β-cell function, reduced insulin production, and lowered insulin sensitivity in target organs resulting in hyperglycemia. The GLP-1 hormone has two biologically active forms, GLP-1-(7-37) and GLP-1-(7-36)amide, which are equipotent at the glucagon-like peptide-1 receptor (GLP-1R). These peptides are central both to normal glucose metabolism and dysregulation in T2DM. Several structurally modified GLP-1 analogues are now approved drugs, and a number of other analogues are in clinical trials. None of these compounds is orally bioavailable and all require parenteral delivery. Recently, a number of smaller peptidomimetics containing 11-12 natural and unnatural amino acids have been identified that have similar insulin regulating profiles as GLP-1. The α-conotoxins are a class of disulfide rich peptide venoms isolated from cone snails, and are known for their highly constrained structures and resistance to enzymatic degradation. In this study, we examined whether 11-residue peptidomimetics incorporated into α-conotoxin scaffolds, forming monocyclic or bicyclic compounds constrained by disulfide bonds and/or backbone cyclization, could activate the GLP-1 receptor (GLP-1R). Several compounds showed potent (nanomolar) agonist activity at GLP-1R, as evaluated via cAMP signaling. In addition, HPLC retention times and in silico calculations suggested that mono- and bicyclic compounds had more favorable n-octanol/water partition coefficients according to the virtual partition coefficient model (vLogP), while maintaining a smaller radius of gyration compared to corresponding uncyclized peptidomimetics. Our findings suggest that cyclic peptidomimetics provide a potential avenue for future design of potent, compact ligands targeting GLP-1R and possessing improved physicochemical properties. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. De novo design and synthesis of a μ-conotoxin KIIIA peptidomimetic.

    PubMed

    Brady, Ryan M; Zhang, Minmin; Gable, Robert; Norton, Raymond S; Baell, Jonathan B

    2013-09-01

    μ-Conotoxin KIIIA blocks voltage-gated sodium channels and displays potent analgesic activity in mice models for pain. Structure-activity studies with KIIIA have shown that residues important for sodium channel activity are presented on an α-helix. Herein, we report the de novo design and synthesis of a three-residue (Lys7, Trp8, His12) peptidomimetic based on a novel diketopiperazine (DKP) carboxamide scaffold. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Michael Acceptor-Based Peptidomimetic Inhibitor of Main Protease from Porcine Epidemic Diarrhea Virus.

    PubMed

    Wang, Fenghua; Chen, Cheng; Yang, Kailin; Xu, Yang; Liu, Xiaomei; Gao, Fan; Liu, He; Chen, Xia; Zhao, Qi; Liu, Xiang; Cai, Yan; Yang, Haitao

    2017-03-13

    Porcine epidemic diarrhea virus (PEDV) causes high mortality in pigs. PEDV main protease (Mpro) plays an essential role in viral replication. We solved the structure of PEDV Mpro complexed with peptidomimetic inhibitor N3 carrying a Michael acceptor warhead, revealing atomic level interactions. We further designed a series of 17 inhibitors with altered side groups. Inhibitors M2 and M17 demonstrated enhanced specificity against PEDV Mpro. These compounds have potential as future therapeutics to combat PEDV infection.

  13. Ultrasmall particle of iron oxide--RGD peptidomimetic conjugate: synthesis and characterisation.

    PubMed

    Rerat, Vincent; Laurent, Sophie; Burtéa, Carmen; Driesschaert, Benoît; Pourcelle, Vincent; Vander Elst, Luce; Muller, Robert N; Marchand-Brynaert, Jacqueline

    2010-03-15

    Ultrasmall particles of iron oxide (USPIOs) coated with 3,3'-bis(phosphonate)propionic acid were covalently coupled to a home-made Arg-Gly-Asp (RGD) peptidomimetic molecule via a short oligoethylene-glycol (OEG) spacer. The conjugation rate was measured by X-ray photoelectron spectroscopy (XPS). The particle size and magnetic characteristics were kept. Our novel conjugate targeted efficiently Jurkat cells (increase of 229% vs the control). Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Cyclic carbo-isosteric depsipeptides and peptides as a novel class of peptidomimetics.

    PubMed

    Guéret, Stéphanie M; Meier, Peter; Roth, Hans-Jörg

    2014-03-07

    A novel and highly efficient cyclization method has been developed to access a new class of cyclic carbo-isosteric depsipeptides and carbo-isosteric peptides. Our strategy requires easily accessible C-terminal methyl ketone ester or amide functionalized linear precursors as starting materials. The well-known reductive amination has then been used to afford cyclic tetra- to octa-pseudopeptides via a selective intramolecular formation of a glycine peptidomimetic unit under moderate dilution.

  15. Bioinformatic Identification of Peptidomimetic-Based Inhibitors against Plasmodium falciparum Antigen AMA1

    PubMed Central

    2014-01-01

    Plasmodium falciparum apical membrane antigen 1 (PfAMA1) is a valuable vaccine candidate and exported on the merozoite surface at the time of erythrocyte invasion. PfAMA1 interacts with rhoptry neck protein PfRON2, a component of the rhoptry protein complex, which forms the tight junction at the time of invasion. Phage display studies have identified a 15-residue (F1) and a 20-residue (R1) peptide that bind to PfAMA1 and block the invasion of erythrocytes. Cocrystal structures of central region of PfAMA1 containing disulfide-linked clusters (domains I and II) with R1 peptide and a peptide derived from PfRON2 showed strong structural similarity in binding. The peptides bound to a hydrophobic groove surrounded by domain I and II loops. In this study, peptidomimetics based on the crucial PfAMA1-binding residues of PfRON2 peptide have been identified. Top 5 peptidomimetics when checked for their docking on the region of PfAMA1 encompassing the hydrophobic groove were found to dock on the groove. Drug-like molecules having structural similarity to the top 5 peptidomimetics were identified based on their binding ability to PfAMA1 hydrophobic groove in blind docking. These inhibitors provide potential lead compounds, which could be used in the development of antimalarials targeting PfAMA1. PMID:25580351

  16. Mechanism of action and initial evaluation of a membrane active all-D-enantiomer antimicrobial peptidomimetic

    PubMed Central

    McGrath, Danielle M.; Barbu, E. Magda; Driessen, Wouter H. P.; Lasco, Todd M.; Tarrand, Jeffrey J.; Okhuysen, Pablo C.; Kontoyiannis, Dimitrios P.; Sidman, Richard L.; Pasqualini, Renata; Arap, Wadih

    2013-01-01

    Development of therapy against infections caused by antibiotic-resistant pathogens is a major unmet need in contemporary medicine. In previous work, our group chemically modified an antimicrobial peptidomimetic motif for targeted applications against cancer and obesity. Here, we show that the modified motif per se is resistant to proteolytic degradation and is a candidate antiinfective agent. We also show that the susceptibility of microorganisms to the drug is independent of bacterial growth phase. Moreover, this peptidomimetic selectively interferes with the integrity and function of the microbial surface lipid bilayer, data indicative that bacterial death results from membrane disruption followed by dissipation of membrane potential. Finally, we demonstrate two potential translational applications: use against biofilms and synergy with antibiotics in use. In summary, we introduce the mechanism of action and the initial evaluation of a prototype drug and a platform for the development of D-enantiomer antimicrobial peptidomimetics that target bacterial membranes of certain Gram-negative problem pathogens with promising translational applications. PMID:23345420

  17. Peptidomimetic inhibitors of APC-Asef interaction block colorectal cancer migration.

    PubMed

    Jiang, Haiming; Deng, Rong; Yang, Xiuyan; Shang, Jialin; Lu, Shaoyong; Zhao, Yanlong; Song, Kun; Liu, Xinyi; Zhang, Qiufen; Chen, Yu; Chinn, Y Eugene; Wu, Geng; Li, Jian; Chen, Guoqiang; Yu, Jianxiu; Zhang, Jian

    2017-09-01

    The binding of adenomatous polyposis coli (APC) to its receptor Asef relieves the negative intramolecular regulation of Asef and leads to aberrant cell migration in human colorectal cancer. Because of its crucial role in metastatic dissemination, the interaction between APC and Asef is an attractive target for anti-colorectal-cancer therapy. We rationally designed a series of peptidomimetics that act as potent inhibitors of the APC interface. Crystal structures and biochemical and cellular assays showed that the peptidomimetics in the APC pocket inhibited the migration of colorectal cells by disrupting APC-Asef interaction. By using the peptidomimetic inhibitor as a chemical probe, we found that CDC42 was the downstream GTPase involved in APC-stimulated Asef activation in colorectal cancer cells. Our work demonstrates the feasibility of exploiting APC-Asef interaction to regulate the migration of colorectal cancer cells, and provides what to our knowledge is the first class of protein-protein interaction inhibitors available for the development of cancer therapeutics targeting APC-Asef signaling.

  18. A conformationally constrained peptidomimetic binds to the extracellular region of HER2 protein.

    PubMed

    Banappagari, Sashikanth; Ronald, Sharon; Satyanarayanajois, Seetharama D

    2010-12-01

    Human epidermal growth factor receptor 2 (HER2) is a member of the human epidermal growth factor receptor kinases (other members include EGFR or HER1, HER3, and HER4) that are involved in signaling cascades for cell growth and differentiation. It is well established that HER2-mediated heterodimerization has important implications in cancer. Deregulation of signaling pathways and overexpression of HER2 is known to occur in cancer cells, indicating a role of HER2 in tumorigenesis. Therefore, blocking HER2-mediated signaling has potential therapeutic value. We have designed several peptidomimetics to inhibit HER2-mediated signaling for cell growth. One of the compounds (HERP5, Arg-beta Naph-Phe) exhibited antiproliferative activity with IC(50) values in the micromolar-to-nanomolar range in breast cancer cell lines. Binding of fluorescently labeled HERP5 to HER2 protein was evaluated by fluorescence assay, microscopy, and circular dichroism spectroscopy. Results indicated that HERP5 binds to the extracellular region of the HER2 protein. Structure of the peptidomimetic HERP5 was studied by NMR and molecular dynamics simulations. Based on these results a model was proposed for HER2-EGFR dimerization and possible blocking by HERP5 peptidomimetic using a protein-protein docking method.

  19. Recent approaches in design of peptidomimetics for antimicrobial drug discovery research.

    PubMed

    Lohan, Sandeep; Bisht, Gopal Singh

    2013-06-01

    Resistant pathogenic microbial strains are emerging at a rate that far exceeds the pace of new anti-infective drug development. In order to combat resistance development, there is pressing need to develop novel class of antibiotics having different mechanism of action in comparison to existing antibiotics. Antimicrobial peptides (AMPs) have been identified as ubiquitous components of innate immune system and widely regarded as a potential source of future antibiotics owing to a remarkable set of advantageous properties ranging from broad spectrum of activity to low propensity of resistance development. However, AMPs present several drawbacks that strongly limit their clinical applicability as ideal drug candidates such as; poor bioavailability, potential immunogenicity and high production cost. Thus, to overcome the limitations of native peptides, peptidomimetic becomes an important and promising approach. The different research groups worldwide engaged in antimicrobial drug discovery over the past decade have paid tremendous effort to design peptidomimetics. This review will focus on recent approaches in design of antimicrobial peptidomimetics their structure-activity relationship studies, mode of action, selectivity & toxicity.

  20. Recent Approaches in design of Peptidomimetics for Antimicrobial Drug Discovery Resear.

    PubMed

    Lohan, Sandeep; Bisht, Gopal Singh

    2013-04-25

    Resistant pathogenic microbial strains are emerging at a rate that far exceeds the pace of new anti-infective drug development. In order to combat resistance development, there is pressing need to develop novel class of antibiotics having different mechanism of action in comparison to existing antibiotics. Antimicrobial peptides (AMPs) have been identified as ubiquitous components of innate immune system and widely regarded as a potential source of future antibiotics owing to a remarkable set of advantageous properties ranging from broad spectrum of activity to low propensity of resistance development. However, AMPs present several drawbacks that strongly limit their clinical applicability as ideal drug candidates such as; poor bioavailability, potential immunogenicity and high production cost. Thus, to overcome the limitations of native peptides, peptidomimetic becomes an important and promising approach. The different research groups worldwide engaged in antimicrobial drug discovery over the past decade have paid tremendous effort to design peptidomimetics. This review will focus on recent approaches in design of antimicrobial peptidomimetics their structure-activity relationship studies, mode of action, selectivity & toxicity.

  1. Targeted prodrug approaches for hormone refractory prostate cancer.

    PubMed

    Aloysius, Herve; Hu, Longqin

    2015-05-01

    Due to the propensity of relapse and resistance with prolonged androgen deprivation therapy (ADT), there is a growing interest in developing non-hormonal therapeutic approaches as alternative treatment modalities for hormone refractory prostate cancer (HRPC). Although the standard treatment for HRPC consists of a combination of ADT with taxanes and anthracyclines, the clinical use of chemotherapeutics is limited by systemic toxicity stemming from nondiscriminatory drug exposure to normal tissues. In order to improve the tumor selectivity of chemotherapeutics, various targeted prodrug approaches have been explored. Antibody-directed enzyme prodrug therapy (ADEPT) and gene-directed enzyme prodrug therapy (GDEPT) strategies leverage tumor-specific antigens and transcription factors for the specific delivery of cytotoxic anticancer agents using various prodrug-activating enzymes. In prostate cancer, overexpression of tumor-specific proteases such as prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) is being exploited for selective activation of anticancer prodrugs designed to be activated through proteolysis by these prostate cancer-specific enzymes. PSMA- and PSA-activated prodrugs typically comprise an engineered high-specificity protease peptide substrate coupled to a potent cytotoxic agent via a linker for rapid release of cytotoxic species in the vicinity of prostate cancer cells following proteolytic cleavage. Over the past two decades, various such prodrugs have been developed and they were effective at inhibiting prostate tumor growth in rodent models; several of these prodrug approaches have been advanced to clinical trials and may be developed into effective therapies for HRPC.

  2. Pharmacological screening of glycine amino acid prodrug of acetaminophen

    PubMed Central

    Parashar, Arun

    2015-01-01

    Objective: To develop an amino acid prodrug of acetaminophen with comparable therapeutic profile and less hepatotoxicity than acetaminophen. Materials and Methods: Acetaminophen prodrug was synthesized by esterification between the carboxyl group of amino acid glycine and hydroxyl group of acetaminophen. Analgesic, antipyretic, ulcer healing, and hepatotoxic activities were performed on Wistar rats in this study. Results: Prodrug showed a 44% inhibition in writhings as compared to 53.3% of acetaminophen. Acetaminophen also offered highest antipyretic activity. Prodrug showed gastroprotective and hepatoprotective effects as it reduced the gastric lesions by 32.1% (P < 0.01) and significantly prevented the rise in liver enzymes (serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase and bilirubin). The most notable effect of prodrug was in preventing the depletion of hepatic glutathione (GSH), which is reduced by acetaminophen. Conclusion: Prodrug showed hepatoprotective and gastroprotective effects, although the therapeutic efficacy was compromised. Prodrug was successful in preventing a decrease in GSH, thereby exhibiting promising results in the field of prodrug designing to avoid the toxic effects of acetaminophen. PMID:25878383

  3. Pharmacological screening of glycine amino acid prodrug of acetaminophen.

    PubMed

    Parashar, Arun

    2015-01-01

    To develop an amino acid prodrug of acetaminophen with comparable therapeutic profile and less hepatotoxicity than acetaminophen. Acetaminophen prodrug was synthesized by esterification between the carboxyl group of amino acid glycine and hydroxyl group of acetaminophen. Analgesic, antipyretic, ulcer healing, and hepatotoxic activities were performed on Wistar rats in this study. Prodrug showed a 44% inhibition in writhings as compared to 53.3% of acetaminophen. Acetaminophen also offered highest antipyretic activity. Prodrug showed gastroprotective and hepatoprotective effects as it reduced the gastric lesions by 32.1% (P < 0.01) and significantly prevented the rise in liver enzymes (serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase and bilirubin). The most notable effect of prodrug was in preventing the depletion of hepatic glutathione (GSH), which is reduced by acetaminophen. Prodrug showed hepatoprotective and gastroprotective effects, although the therapeutic efficacy was compromised. Prodrug was successful in preventing a decrease in GSH, thereby exhibiting promising results in the field of prodrug designing to avoid the toxic effects of acetaminophen.

  4. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy.

    PubMed

    Luo, Cong; Sun, Jin; Sun, Bingjun; He, Zhonggui

    2014-11-01

    Despite the rapid developments in nanotechnology and biomaterials, the efficient delivery of chemotherapeutic agents is still challenging. Prodrug-based nanoassemblies have many advantages as a potent platform for anticancer drug delivery, such as improved drug availability, high drug loading efficiency, resistance to recrystallization upon encapsulation, and spatially and temporally controllable drug release. In this review, we discuss prodrug-based nanocarriers for cancer therapy, including nanosystems based on polymer-drug conjugates, self-assembling small molecular weight prodrugs and prodrug-encapsulated nanoparticles (NPs). In addition, we discuss new trends in the field of prodrug-based nanoassemblies that enhance the delivery efficiency of anticancer drugs, with special emphasis on smart stimuli-triggered drug release, hybrid nanoassemblies, and combination drug therapy.

  5. Design, Synthesis, and Evaluation of Prodrugs of Ertapenem

    PubMed Central

    2013-01-01

    Carbapenems are intravenous lifesaving hospital antibiotics. Once patients leave the hospital, they are sent home with antibiotics other than carbapenems since they cannot be administered orally due to lack of oral absorption primarily because of very highly polarity. A prodrug approach is a bona fide strategy to improve oral absorption of compounds. Design and synthesis, in vitro and in vivo evaluation of diversified prodrugs of ertapenem, one of the only once daily dosed carbapenems is described. Many of the prodrugs prepared for evaluation are rapidly hydrolyzed in rat plasma. Only bis-(5-methyl-2-oxo-1,3-dioxol-4-yl)methyl (medoxomil) ester prodrug was rapidly hydrolyzed in most of the plasmas including rat, human, dog, and monkey. Although the rate of conversion of ertapenem diethyl ester prodrug (6) was slow in in vitro plasma hydrolysis, it showed the best in vivo pharmacokinetic profile in dog by an intraduodenal dosing giving >31% total oral absorption. PMID:24900737

  6. Development of macromolecular prodrug for rheumatoid arthritis☆

    PubMed Central

    Yuan, Fang; Quan, Ling-dong; Cui, Liao; Goldring, Steven R.; Wang, Dong

    2012-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disease that is considered to be one of the major public health problems worldwide. The development of therapies that target tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and co-stimulatory pathways that regulate the immune system have revolutionized the care of patients with RA. Despite these advances, many patients continue to experience symptomatic and functional impairment. To address this issue, more recent therapies that have been developed are designed to target intracellular signaling pathways involved in immunoregulation. Though this approach has been encouraging, there have been major challenges with respect to off-target organ side effects and systemic toxicities related to the widespread distribution of these signaling pathways in multiple cell types and tissues. These limitations have led to an increasing interest in the development of strategies for the macromolecularization of anti-rheumatic drugs, which could target them to the inflamed joints. This approach enhances the efficacy of the therapeutic agent with respect to synovial inflammation, while markedly reducing non-target organ adverse side effects. In this manuscript, we provide a comprehensive overview of the rational design and optimization of macromolecular prodrugs for treatment of RA. The superior and the sustained efficacy of the prodrug may be partially attributed to their Extravasation through Leaky Vasculature and subsequent Inflammatory cell-mediated Sequestration (ELVIS) in the arthritic joints. This biologic process provides a plausible mechanism, by which macromolecular prodrugs preferentially target arthritic joints and illustrates the potential benefits of applying this therapeutic strategy to the treatment of other inflammatory diseases. PMID:22433784

  7. Prodrugs for the treatment of neglected diseases.

    PubMed

    Chung, Man Chin; Ferreira, Elizabeth Igne; Santos, Jean Leandro; Giarolla, Jeanine; Rando, Daniela Gonçales; Almeida, Adélia Emília; Bosquesi, Priscila Longhin; Menegon, Renato Farina; Blau, Lorena

    2007-03-19

    Recently, World Health Organization (WHO) and Medicins San Frontieres (MSF) proposed a classification of diseases as global, neglected and extremely neglected. Global diseases, such as cancer, cardiovascular and mental (CNS) diseases represent the targets of the majority of the R&D efforts of pharmaceutical companies. Neglected diseases affect millions of people in the world yet existing drug therapy is limited and often inappropriate. Furthermore, extremely neglected diseases affect people living under miserable conditions who barely have access to the bare necessities for survival. Most of these diseases are excluded from the goals of the R&D programs in the pharmaceutical industry and therefore fall outside the pharmaceutical market. About 14 million people,mainly in developing countries, die each year from infectious diseases. From 1975 to 1999,1393 new drugs were approved yet only 1% were for the treatment of neglected diseases[3]. These numbers have not changed until now, so in those countries there is an urgent need for the design and synthesis of new drugs and in this area the prodrug approach is a very interesting field. It provides, among other effects, activity improvements and toxicity decreases for current and new drugs, improving market availability. It is worth noting that it is essential in drug design to save time and money, and prodrug approaches can be considered of high interest in this respect. The present review covers 20 years of research on the design of prodrugs for the treatment of neglected and extremely neglected diseases such as Chagas' disease (American trypanosomiasis), sleeping sickness (African trypanosomiasis), malaria, sickle cell disease, tuberculosis, leishmaniasis and schistosomiasis.

  8. Cloning of a novel phosphotyrosine binding domain containing molecule, Odin, involved in signaling by receptor tyrosine kinases.

    PubMed

    Pandey, Akhilesh; Blagoev, Blagoy; Kratchmarova, Irina; Fernandez, Minerva; Nielsen, Mogens; Kristiansen, Troels Zakarias; Ohara, Osamu; Podtelejnikov, Alexandre V; Roche, Serge; Lodish, Harvey F; Mann, Matthias

    2002-11-14

    We have used a proteomic approach using mass spectrometry to identify signaling molecules involved in receptor tyrosine kinase signaling pathways. Using affinity purification by anti-phosphotyrosine antibodies to enrich for tyrosine phosphorylated proteins, we have identified a novel signaling molecule in the epidermal growth factor receptor signaling pathway. This molecule, designated Odin, contains several ankyrin repeats, two sterile alpha motifs and a phosphotyrosine binding domain and is ubiquitously expressed. Using antibodies against endogenous Odin, we show that it undergoes tyrosine phosphorylation upon addition of growth factors such as EGF or PDGF but not by cytokines such as IL-3 or erythropoietin. Immunofluorescence experiments as well as Western blot analysis on subcellular fractions demonstrated that Odin is localized to the cytoplasm both before and after growth factor treatment. Deletion analysis showed that the phosphotyrosine binding domain of Odin is not required for its tyrosine phosphorylation. Overexpression of Odin, but not an unrelated adapter protein, Grb2, inhibited EGF-induced activation of c-Fos promoter. Microinjection of wild-type or a mutant version lacking the PTB domain into NIH3T3 fibroblasts inhibited PDGF-induced mitogenesis. Taken together, our results indicate that Odin may play a negative role in growth factor receptor signaling pathways.

  9. Role of Phosphotyrosine Interaction Domain Containing 1 in Porcine Intramuscular Preadipocyte Proliferation and Differentiation.

    PubMed

    Chen, Xiaoling; Luo, Yanliu; Huang, Zhiqing; Jia, Gang; Liu, Guangmang; Zhao, Hua

    2016-10-01

    Phosphotyrosine interaction domain containing 1 (PID1), a recently identified gene involved in obesity-associated insulin resistance, plays an important role in fat deposition. However, its effect on porcine intramuscular preadipocyte proliferation and differentiation remains poorly understood. In this study, the plasmid pcDNA3.1(+)-pPID1 was transfected into porcine intramuscular preadipocytes with Lipofectamine 3000 reagent to over-express porcine PID1 (pPID1). Over-expression of pPID1 significantly promoted porcine intramuscular preadipocyte proliferation. Expression of pPID1 mRNA was significantly increased upon porcine intramuscular preadipocyte differentiation. Indirect fluorescent immunocytochemistry demonstrated that pPID1 protein was localized predominantly in the nucleus of porcine intramuscular preadipocyte. The mRNA levels of peroxisome proliferators-activated receptor γ, CCAAT/enhancer binding protein α and lipoprotein lipase were significantly increased by pPID1 over-expression. Over-expression of pPID1 also led to an increase in lipid accumulation which was detected by Oil Red O staining, and significantly increased the intramuscular triacylglycerol content. These results indicate that pPID1 may play a role in enhancing porcine intramuscular preadipocyte proliferation and differentiation.

  10. Global phosphotyrosine proteomics identifies PKCδ as a marker of responsiveness to Src inhibition in colorectal cancer.

    PubMed

    McKinley, Eliot T; Liu, Huiling; McDonald, W Hayes; Luo, Weifeng; Zhao, Ping; Coffey, Robert J; Hanks, Steven K; Manning, H Charles

    2013-01-01

    Sensitive and specific biomarkers of protein kinase inhibition can be leveraged to accelerate drug development studies in oncology by associating early molecular responses with target inhibition. In this study, we utilized unbiased shotgun phosphotyrosine (pY) proteomics to discover novel biomarkers of response to dasatinib, a small molecule Src-selective inhibitor, in preclinical models of colorectal cancer (CRC). We performed unbiased mass spectrometry shotgun pY proteomics to reveal the pY proteome of cultured HCT-116 colonic carcinoma cells, and then extended this analysis to HCT-116 xenograft tumors to identify pY biomarkers of dasatinib-responsiveness in vivo. Major dasatinib-responsive pY sites in xenograft tumors included sites on delta-type protein kinase C (PKCδ), CUB-domain-containing protein 1 (CDCP1), Type-II SH2-domain-containing inositol 5-phosphatase (SHIP2), and receptor protein-tyrosine phosphatase alpha (RPTPα). The pY313 site PKCδ was further supported as a relevant biomarker of dasatinib-mediated Src inhibition in HCT-116 xenografts by immunohistochemistry and immunoblotting with a phosphospecific antibody. Reduction of PKCδ pY313 was further correlated with dasatinib-mediated inhibition of Src and diminished growth as spheroids of a panel of human CRC cell lines. These studies reveal PKCδ pY313 as a promising readout of Src inhibition in CRC and potentially other solid tumors and may reflect responsiveness to dasatinib in a subset of colorectal cancers.

  11. Gene Expression Profiles of Human Phosphotyrosine Phosphatases Consequent to Th1 Polarisation and Effector Function

    PubMed Central

    Castro-Sánchez, Patricia; Ramirez-Munoz, Rocio

    2017-01-01

    Phosphotyrosine phosphatases (PTPs) constitute a complex family of enzymes that control the balance of intracellular phosphorylation levels to allow cell responses while avoiding the development of diseases. Despite the relevance of CD4 T cell polarisation and effector function in human autoimmune diseases, the expression profile of PTPs during T helper polarisation and restimulation at inflammatory sites has not been assessed. Here, a systematic analysis of the expression profile of PTPs has been carried out during Th1-polarising conditions and upon PKC activation and intracellular raise of Ca2+ in effector cells. Changes in gene expression levels suggest a previously nonnoted regulatory role of several PTPs in Th1 polarisation and effector function. A substantial change in the spatial compartmentalisation of ERK during T cell responses is proposed based on changes in the dose of cytoplasmic and nuclear MAPK phosphatases. Our study also suggests a regulatory role of autoimmune-related PTPs in controlling T helper polarisation in humans. We expect that those PTPs that regulate T helper polarisation will constitute potential targets for intervening CD4 T cell immune responses in order to generate new therapies for the treatment of autoimmune diseases. PMID:28393080

  12. Global Phosphotyrosine Proteomics Identifies PKCδ as a Marker of Responsiveness to Src Inhibition in Colorectal Cancer

    PubMed Central

    McDonald, W. Hayes; Luo, Weifeng; Zhao, Ping; Coffey, Robert J.; Hanks, Steven K.; Manning, H. Charles

    2013-01-01

    Sensitive and specific biomarkers of protein kinase inhibition can be leveraged to accelerate drug development studies in oncology by associating early molecular responses with target inhibition. In this study, we utilized unbiased shotgun phosphotyrosine (pY) proteomics to discover novel biomarkers of response to dasatinib, a small molecule Src-selective inhibitor, in preclinical models of colorectal cancer (CRC). We performed unbiased mass spectrometry shotgun pY proteomics to reveal the pY proteome of cultured HCT-116 colonic carcinoma cells, and then extended this analysis to HCT-116 xenograft tumors to identify pY biomarkers of dasatinib-responsiveness in vivo. Major dasatinib-responsive pY sites in xenograft tumors included sites on delta-type protein kinase C (PKCδ), CUB-domain-containing protein 1 (CDCP1), Type-II SH2-domain-containing inositol 5-phosphatase (SHIP2), and receptor protein-tyrosine phosphatase alpha (RPTPα). The pY313 site PKCδ was further supported as a relevant biomarker of dasatinib-mediated Src inhibition in HCT-116 xenografts by immunohistochemistry and immunoblotting with a phosphospecific antibody. Reduction of PKCδ pY313 was further correlated with dasatinib-mediated inhibition of Src and diminished growth as spheroids of a panel of human CRC cell lines. These studies reveal PKCδ pY313 as a promising readout of Src inhibition in CRC and potentially other solid tumors and may reflect responsiveness to dasatinib in a subset of colorectal cancers. PMID:24260357

  13. Phosphotyrosine in proteins: chemical and immunological identification and isolation of phosphotyrosyl proteins

    SciTech Connect

    Martensen, T.M.

    1986-05-01

    Proteins which contain phosphotyrosine (Tyr-P) residues can be identified and purified by utilizing the chemical and immunological properties of the Tyr-P moiety. The stability of Tyr-P to basic conditions which cleave most ser/thr phosphoryl bonds enabled the analysis of cellular phosphoproteins after Na dodecyl SO/sub 4/ gel electrophoresis. Analyses were simplified using a nylon electroblot of the gel which is stable to 1 hr incubation in 1 N NaOH at 65/sup 0/C. Autoradiograms of nylon blots before and after base treatment were performed on /sup 32/P-labeled phosphoproteins of normal and retrovirus transformed fibroblasts. Conditions for optimal labeling of cellular proteins were studied by protein tyrosine kinase activity measurements using poly glu/sub 4/tyr. Differences in base resistant phosphoprotein patterns could be seen for each transformed cell line. Confirmation that certain base resistant phosphoproteins contained Tyr-P was achieved by immunostaining with affinity-purified sheep anti-Tyr-P antibodies (Ab). These Ab served as useful reagents to study Tyr-P proteins since they inhibit their dephosphorylation by phosphatases, and precipitate them in the presence of rabbit anti-sheep IgG Ab. Tyr-P protein was immobilized when mixed with anti-Tyr-P Ab and incubated with immobilized protein A sepharose rabbit anti-sheep IgG Ab complex. Selective elution of the Tyr-P protein was achieved with free Tyr-P.

  14. Purification of the platelet-derived growth factor receptor by using an anti-phosphotyrosine antibody

    SciTech Connect

    Daniel, T.O.; Tremble, P.M.; Frackelton, A.R. Jr.; Williams, L.T.

    1985-05-01

    The platelet-derived growth factor (PDGF) receptor is a 180-kDa membrane glycoprotein. A protein of identical size, lectin affinity, and isoelectric point has been identified as a major substrate for PDGF-activated tyrosine kinase in stimulated 3T3 cells. The authors have purified this tyrosine-phosphorylated protein to homogeneity by using anti-phosphotyrosine immunoaffinity and lectin affinity steps. Demonstration that this purified tyrosine phosphoprotein is the PDGF receptor necessitated development of an assay capable of identifying specific SVI-labeled PDGF binding activity in soluble receptor preparations. Precipitated binding sites display affinity and kinetic characteristics of PDGF receptors in cells and membranes. Preparations of the 180-kDa phosphoprotein that are > 90% homogeneous by silver stain and by (TVS)methionine protein autoradiography have specific high affinity SVI-labeled PDGF binding sites. These data demonstrate that the 180-kDa substrate of the PDGF-stimulated tyrosine kinase is the PDGF receptor. Furthermore, these methods provide a means of purifying this and other tyrosine kinase substrates from growth factor-stimulated cells.

  15. 10-Boronic acid substituted camptothecin as prodrug of SN-38.

    PubMed

    Wang, Lei; Xie, Shao; Ma, Longjun; Chen, Yi; Lu, Wei

    2016-06-30

    Malignant tumor cells have been found to have high levels of reactive oxygen species such as hydrogen peroxide (H2O2), supporting the hypothesis that a prodrug could be activated by intracellular H2O2 and lead to a potential antitumor therapy. In this study, the 7-ethyl-10-boronic acid camptothecin (B1) was synthesized for the first time as prodrug of SN-38, by linking a cleavable aryl carbon-boron bond to the SN-38. Prodrug B1 selectively activated by H2O2, converted rapidly to the active form SN-38 under favorable oxidative conditions in cancer cells with elevated levels of H2O2. The cell survival assay showed that prodrug B1 was equally or more effective in inhibiting the growth of six different cancer cells, as compared to SN-38. Unexpectedly, prodrug B1 displayed even more potent Topo I inhibitory activity than SN-38, suggesting that it was not only a prodrug of SN-38 but also a typical Topo I inhibitor. Prodrug B1 also demonstrated a significant antitumor activity at 2.0 mg/kg in a xenograft model using human brain star glioblastoma cell lines U87MG.

  16. Discovery of olmesartan hexetil: a new potential prodrug of olmesartan.

    PubMed

    El-Gamal, Mohammed I; Anbar, Hanan S; Chung, Hye Jin; Kim, Hyun-Il; Cho, Young-Jin; Lee, Bong Sang; Lee, Sun Ahe; Moon, Ji Yun; Lee, Dong Jin; Kwon, Dow; Choi, Won-Jai; Jeon, Hong-Ryeol; Oh, Chang-Hyun

    2013-03-01

    Synthesis of a new ester prodrug of olmesartan, olmesartan hexetil (1), is described. It is in vitro stabilities and in vivo pharmacokinetics (PK) were evaluated. It showed high stability in simulated gastric juice, and was rapidly hydrolyzed to olmesartan in rat liver microsomes and rat plasma in vitro. C(max) and AUC(last) for olmesartan were significantly increased in case of hexetil prodrug, compared with olmesartan medoxomil. Olmesartan hexetil is proposed to be an efficient prodrug of olmesartan with markedly increased oral bioavailability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. First enzymatically activated Taxotere prodrugs designed for ADEPT and PMT.

    PubMed

    Bouvier, Emmanuel; Thirot, Sylvie; Schmidt, Frédéric; Monneret, Claude

    2004-03-01

    Described here are the syntheses and preliminary biological evaluations of the first two enzymatically activated prodrugs of docetaxel (Taxotere) reported to date. These prodrugs were designed as potential candidates for selective chemotherapy in ADEPT or PMT. They are constituted of a glucuronic acid moiety, a double spacer and the cytotoxic drug, differing only by the spacer substitution. The prodrugs were stable in a buffer, and the in vitro studies showed good detoxification and hydrolysis kinetics. As docetaxel was efficiently released in both cases, these compounds are very valuable candidates for further biological evaluations.

  18. Synthesis and biophysical characterization of chlorambucil anticancer ether lipid prodrugs.

    PubMed

    Pedersen, Palle J; Christensen, Mikkel S; Ruysschaert, Tristan; Linderoth, Lars; Andresen, Thomas L; Melander, Fredrik; Mouritsen, Ole G; Madsen, Robert; Clausen, Mads H

    2009-05-28

    The synthesis and biophysical characterization of four prodrug ether phospholipid conjugates are described. The lipids are prepared from the anticancer drug chlorambucil and have C16 and C18 ether chains with phosphatidylcholine or phosphatidylglycerol headgroups. All four prodrugs have the ability to form unilamellar liposomes (86-125 nm) and are hydrolyzed by phospholipase A(2), resulting in chlorambucil release. Liposomal formulations of prodrug lipids displayed cytotoxicity toward HT-29, MT-3, and ES-2 cancer cell lines in the presence of phospholipase A(2), with IC(50) values in the 8-36 microM range.

  19. Antiviral prodrugs - the development of successful prodrug strategies for antiviral chemotherapy.

    PubMed

    De Clercq, Erik; Field, Hugh J

    2006-01-01

    Following the discovery of the first effective antiviral compound (idoxuridine) in 1959, nucleoside analogues, especially acyclovir (ACV) for the treatment of herpesvirus infections, have dominated antiviral therapy for several decades. However, ACV and similar acyclic nucleosides suffer from low aqueous solubility and low bioavailability following oral administration. Derivatives of acyclic nucleosides, typically esters, were developed to overcome this problem and valaciclovir, the valine ester of ACV, was among the first of a new series of compounds that were readily metabolized upon oral administration to produce the antiviral nucleoside in vivo, thus increasing the bioavailility by several fold. Concurrently, famciclovir was developed as an oral formulation of penciclovir. These antiviral 'prodrugs' thus established a principle that has led to many successful drugs including both nucleoside and nucleotide analogues for the control of several virus infections, notably those caused by herpes-, retro- and hepatitisviruses. This review will chart the origins and development of the most important of the antiviral prodrugs to date.

  20. Synthesis of acylhydrazino-peptomers, a new class of peptidomimetics, by consecutive Ugi and hydrazino-Ugi reactions

    PubMed Central

    dos Santos, Veronica Alves

    2016-01-01

    Herein we describe a versatile approach for the synthesis of acylhydrazino-peptomers, a new class of peptidomimetics. The key idea in this approach is based on a simple route using a one-pot hydrazino-Ugi four-component reaction followed by a hydrazinolysis or hydrolysis reaction and subsequent hydrazino-Ugi reaction or classical Ugi reaction for the construction of acyclic acylhydrazino-peptomers. The consecutive multicomponent reactions produced a variety of acylhydrazino-peptomers in moderate to excellent yields (47–90%). These compounds are multifunctional intermediates that can be further functionalized to obtain new peptidomimetics with potential biological activity. PMID:28144359

  1. Synthesis and biological studies of different duocarmycin based glycosidic prodrugs for their use in the antibody-directed enzyme prodrug therapy.

    PubMed

    Tietze, Lutz F; Schuster, Heiko J; Krewer, Birgit; Schuberth, Ingrid

    2009-01-22

    The synthesis and biological evaluation of novel prodrugs for use in the antibody directed enzyme prodrug therapy (ADEPT) of cancer based on the cytotoxic antibiotic duocarmycin SA (1) are described. In this approach, we investigated the influence of the sugar moiety of the glycosidic prodrug on the QIC(50) values as well as on the stability and the water solubility. The best result was found for prodrug 22 containing an alpha-mannoside moiety with a QIC(50) value of 4500.

  2. Manipulating connexin communication channels: use of peptidomimetics and the translational outputs.

    PubMed

    Evans, W Howard; Bultynck, Geert; Leybaert, Luc

    2012-08-01

    Gap junctions are key components underpinning multicellularity. They provide cell to cell channel pathways that enable direct intercellular communication and cellular coordination in tissues and organs. The channels are constructed of a family of connexin (Cx) membrane proteins. They oligomerize inside the cell, generating hemichannels (connexons) composed of six subunits arranged around a central channel. After transfer to the plasma membrane, arrays of Cx hemichannels (CxHcs) interact and couple with partners in neighboring attached cells to generate gap junctions. Cx channels have been studied using a range of technical approaches. Short peptides corresponding to sequences in the extra- and intracellular regions of Cxs were used first to generate epitope-specific antibodies that helped studies on the organization and functions of gap junctions. Subsequently, the peptides themselves, especially Gap26 and -27, mimetic peptides derived from each of the two extracellular loops of connexin43 (Cx43), a widely distributed Cx, have been extensively applied to block Cx channels and probe the biology of cell communication. The development of a further series of short peptides mimicking sequences in the intracellular loop, especially the extremity of the intracellular carboxyl tail of Cx43, followed. The primary inhibitory action of the peptidomimetics occurs at CxHcs located at unapposed regions of the cell's plasma membrane, followed by inhibition of cell coupling occurring across gap junctions. CxHcs respond to a range of environmental conditions by increasing their open probability. Peptidomimetics provide a way to block the actions of CxHcs with some selectivity. Furthermore, they are increasingly applied to address the pathological consequences of a range of environmental stresses that are thought to influence Cx channel operation. Cx peptidomimetics show promise as candidates in developing new therapeutic approaches for containing and reversing damage inflicted on

  3. Inhibition of lipopolysaccharide transport to the outer membrane in Pseudomonas aeruginosa by peptidomimetic antibiotics.

    PubMed

    Werneburg, Martina; Zerbe, Katja; Juhas, Mario; Bigler, Laurent; Stalder, Urs; Kaech, Andres; Ziegler, Urs; Obrecht, Daniel; Eberl, Leo; Robinson, John A

    2012-08-13

    The asymmetric outer membrane (OM) of Gram-negative bacteria contains lipopolysaccharide (LPS) in the outer leaflet and phospholipid in the inner leaflet. During OM biogenesis, LPS is transported from the periplasm into the outer leaflet by a complex comprising the OM proteins LptD and LptE. Recently, a new family of macrocyclic peptidomimetic antibiotics that interact with LptD of the opportunistic human pathogen Pseudomonas aeruginosa was discovered. Here we provide evidence that the peptidomimetics inhibit the LPS transport function of LptD. One approach to monitor LPS transport involved studies of lipid A modifications. Some modifications occur only in the inner membrane while others occur only in the OM, and thus provide markers for LPS transport within the bacterial envelope. We prepared a conditional lptD mutant of P. aeruginosa PAO1 that allowed control of lptD expression from the rhamnose promoter. With this mutant, the effects caused by the antibiotic on the wild-type strain were compared with those caused by depleting LptD in the mutant strain. When LptD was depleted in the mutant, electron microscopy revealed accumulation of membrane-like material within cells and OM blebbing; this mirrored similar effects in the wild-type strain caused by the antibiotic. Moreover, the bacterium responded to the antibiotic, and to depletion of LptD, by introducing the same lipid A modifications, consistent with inhibition by the antibiotic of LptD-mediated LPS transport. This conclusion was further supported by monitoring the radiolabelling of LPS from [¹⁴C]acetate, and by fractionation of IM and OM components. Overall, the results provide support for a mechanism of action for the peptidomimetic antibiotics that involves inhibition of LPS transport to the cell surface. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Polyethylene terephthalate membrane grafted with peptidomimetics: endothelial cell compatibility and retention under shear stress.

    PubMed

    Rémy, Murielle; Bareille, Reine; Rerat, Vincent; Bourget, Chantal; Marchand-Brynaert, Jacqueline; Bordenave, Laurence

    2013-01-01

    The present work aimed to treat a polyethylene terephthalate (PET) surface to make the biomaterial more 'attractive' in terms of attachment and shear stress response to endothelial cells with a view to possible applications in vascular grafting. A surface wet-chemistry protocol was applied to graft track-etched PET membranes with RGD peptidomimetics based on the tyrosine template and active at the nano-level vs. isolated human αvβ3 receptor, which was monitored by X-ray photoelectron spectroscopy, contact angle measurement and atomic force microscopy for characterization. A primary culture of human saphenous vein endothelial cells was used before and after sterilization of the membranes (heat treatment or γ-ray irradiation) to test the benefit of grafting. The optimal surface concentrations of grafted molecules were around 50 pmol/cm². Compared to GRGDS, the peptidomimetics promoted cell attachment with similar or slightly better performances. Endothelialized grafted supports were further exposed to 2 h of shear stress mimicking arterial conditions. Cells were lost on non-grafted PET whereas cells on grafted polymers sterilized by γ-ray irradiation withstood forces with no significant difference in focal contacts. At the mRNA level, cells on functionalized PET were able to respond to shear stress with NFkB upregulation. Thus, grafting of peptidomimetics as ligands of the αvβ3 integrin could be a relevant strategy to improve the adhesion of human endothelial cells and to obtain an efficient endothelialized PET for the surgery of small-diameter vascular prostheses.

  5. The human phosphotyrosine signaling network: Evolution and hotspots of hijacking in cancer

    PubMed Central

    Li, Lei; Tibiche, Chabane; Fu, Cong; Kaneko, Tomonori; Moran, Michael F.; Schiller, Martin R.; Li, Shawn Shun-Cheng; Wang, Edwin

    2012-01-01

    Phosphotyrosine (pTyr) signaling, which plays a central role in cell–cell and cell–environment interactions, has been considered to be an evolutionary innovation in multicellular metazoans. However, neither the emergence nor the evolution of the human pTyr signaling system is currently understood. Tyrosine kinase (TK) circuits, each of which consists of a TK writer, a kinase substrate, and a related reader, such as Src homology (SH) 2 domains and pTyr-binding (PTB) domains, comprise the core machinery of the pTyr signaling network. In this study, we analyzed the evolutionary trajectories of 583 literature-derived and 50,000 computationally predicted human TK circuits in 19 representative eukaryotic species and assigned their evolutionary origins. We found that human TK circuits for intracellular pTyr signaling originated largely from primitive organisms, whereas the inter- or extracellular signaling circuits experienced significant expansion in the bilaterian lineage through the “back-wiring” of newly evolved kinases to primitive substrates and SH2/PTB domains. Conversely, the TK circuits that are involved in tissue-specific signaling evolved mainly in vertebrates by the back-wiring of vertebrate substrates to primitive kinases and SH2/PTB domains. Importantly, we found that cancer signaling preferentially employs the pTyr sites, which are linked to more TK circuits. Our work provides insights into the evolutionary paths of the human pTyr signaling circuits and suggests the use of a network approach for cancer intervention through the targeting of key pTyr sites and their associated signaling hubs in the network. PMID:22194470

  6. Analysis of tyrosine phosphorylation and phosphotyrosine-binding proteins in germinating seeds from Scots pine.

    PubMed

    Kovaleva, Valentina; Cramer, Rainer; Krynytskyy, Hryhoriy; Gout, Ivan; Gout, Roman

    2013-06-01

    Protein tyrosine phosphorylation in angiosperms has been implicated in various physiological processes, including seed development and germination. In conifers, the role of tyrosine phosphorylation and the mechanisms of its regulation are yet to be investigated. In this study, we examined the profile of protein tyrosine phosphorylation in Scots pine seeds at different stages of germination. We detected extensive protein tyrosine phosphorylation in extracts from Scots pine (Pinus sylvestris L.) dormant seeds. In addition, the pattern of tyrosine phosphorylation was found to change significantly during seed germination, especially at earlier stages of post-imbibition which coincides with the initiation of cell division, and during the period of intensive elongation of hypocotyls. To better understand the molecular mechanisms of phosphotyrosine signaling, we employed affinity purification and mass spectrometry for the identification of pTyr-binding proteins from the extracts of Scots pine seedlings. Using this approach, we purified two proteins of 10 and 43 kDa, which interacted specifically with pTyr-Sepharose and were identified by mass spectrometry as P. sylvestris defensin 1 (PsDef1) and aldose 1-epimerase (EC:5.1.3.3), respectively. Additionally, we demonstrated that both endogenous and recombinant PsDef1 specifically interact with pTyr-Sepharose, but not Tyr-beads. As the affinity purification approach did not reveal the presence of proteins with known pTyr binding domains (SH2, PTB and C2), we suggest that plants may have evolved a different mode of pTyr recognition, which yet remains to be uncovered.

  7. A graftable LDV peptidomimetic: design, synthesis and application to a blood filtration membrane.

    PubMed

    Momtaz, Maryam; Rerat, Vincent; Gharbi, Sonia; Gérard, Estelle; Pourcelle, Vincent; Marchand-Brynaert, Jacqueline

    2008-02-01

    A graftable LDV (Leu-Asp-Val) peptidomimetic molecule (B-c) has been prepared from 3-(5-amino-2-hydroxy)phenyl-propionic acid, as alpha(4)beta(1) (VLA-4) integrin ligand. For that purpose, the mechanism of 3-(4-azidophenyl)propionic acid rearrangement has been revisited. Activation of Durapore DVPP-hydrophilic membrane, by surface wet chemistry using triazine trifluoride, followed by covalent coupling of B-c produced a modified filter (0.8% of derivatisation from XPS analysis) with improved capacity of leukocyte retention.

  8. Synthesis of Amino Acid-Derived Cyclic Acyl Amidines for Use in β-Strand Peptidomimetics

    PubMed Central

    Hammond, Ming C.; Bartlett, Paul A.

    2008-01-01

    The acyl amidine represented by the 4,5-dihydro-2(3H)-pyrazinone ring system 2 is isosteric to the vinylogous amide of the 1,2-dihydro-3(6H)-pyridinone 1, but its assembly from separate amine and amide components enables ready incorporation of an amino acid side chain with correct regio- and stereochemistry. β-Strand peptidomimetics incorporating amino acid analogues based on 2 have recently been shown to be potent, protease-resistant ligands to a PDZ protein-interaction domain. Two routes to the protected dipeptide analogue 3 are described. PMID:17371075

  9. Spiro sugar-isoxazolidine scaffold as useful polyfunctional building block for peptidomimetics design.

    PubMed

    Richard, Mylène; Chapleur, Yves; Pellegrini-Moïse, Nadia

    2016-03-03

    Spiro sugar-isoxazolidines obtained by 1,3-dipolar cycloaddition of activated exo-glycals and nitrones were efficiently functionalized at two sites, i.e. C-4 and C-7, with arginine, arginine mimetics and guanidylated appendages. Two bicyclic sugar derivatives differing by the configuration at C-7 were chosen as model compounds. The small library of peptidomimetics was evaluated toward inhibition of VEGF-A165/neuropilin-1 binding. Unexpected cleavage of C3-C4 bond of isoxazolidine moiety was observed during hydrogenolysis and opened thus a new way toward hemiketal structures which could also find interesting applications as less constrained scaffold.

  10. Synergism of Selective Tumor Vascular Thrombosis and Protease Activated Prodrug

    DTIC Science & Technology

    2008-05-01

    Such a cytotoxin can be aldesleukin, 5- aminolevulinic acid, bleomycin sulfate, camptothecin, carboplatin, carmustine, cisplatin, cladribine, lyophilized... aminolevulinic acid, protoporphyrin IX, taxol or paclitaxel. In one embodiment, the prodrug is activated by asparaginyl proteases (e.g., legumain) and

  11. Development of a novel sulfonate ester-based prodrug strategy.

    PubMed

    Hanaya, Kengo; Yoshioka, Shohei; Ariyasu, Shinya; Aoki, Shin; Shoji, Mitsuru; Sugai, Takeshi

    2016-01-15

    A self-immolative γ-aminopropylsulfonate linker was investigated for use in the development of prodrugs that are reactive to various chemical or biological stimuli. To demonstrate their utility, a leucine-conjugated prodrug of 5-chloroquinolin-8-ol (5-Cl-8-HQ), which is a potent inhibitor against aminopeptidase from Aeromonas proteolytica (AAP), was synthesized. The sulfonate prodrug was considerably stable under physiological conditions, with only enzyme-mediated hydrolysis of leucine triggering the subsequent intramolecular cyclization to simultaneously release 5-Cl-8-HQ and form γ-sultam. It was also confirmed that this γ-aminopropylsulfonate linker was applicable for prodrugs of not only 8-HQ derivatives but also other drugs bearing a phenolic hydroxy group.

  12. Bioreductive prodrugs as cancer therapeutics: targeting tumor hypoxia.

    PubMed

    Guise, Christopher P; Mowday, Alexandra M; Ashoorzadeh, Amir; Yuan, Ran; Lin, Wan-Hua; Wu, Dong-Hai; Smaill, Jeff B; Patterson, Adam V; Ding, Ke

    2014-02-01

    Hypoxia, a state of low oxygen, is a common feature of solid tumors and is associated with disease progression as well as resistance to radiotherapy and certain chemotherapeutic drugs. Hypoxic regions in tumors, therefore, represent attractive targets for cancer therapy. To date, five distinct classes of bioreactive prodrugs have been developed to target hypoxic cells in solid tumors. These hypoxia-activated prodrugs, including nitro compounds, N-oxides, quinones, and metal complexes, generally share a common mechanism of activation whereby they are reduced by intracellular oxidoreductases in an oxygen-sensitive manner to form cytotoxins. Several examples including PR-104, TH-302, and EO9 are currently undergoing phase II and phase III clinical evaluation. In this review, we discuss the nature of tumor hypoxia as a therapeutic target, focusing on the development of bioreductive prodrugs. We also describe the current knowledge of how each prodrug class is activated and detail the clinical progress of leading examples.

  13. Advances in antibody-directed enzyme prodrug therapy.

    PubMed

    Sharma, Surinder K; Bagshawe, Kenneth D; Begent, Richard H J

    2005-06-01

    Antibody-directed enzyme prodrug therapy has demonstrated feasibility as a treatment for cancer. Numerous prodrug/drug systems have been developed for activation by a variety of enzymes and although many have shown potential in preclinical studies, so far only one system has progressed to the clinic. Clinical studies have identified issues that were not readily apparent in xenograft models, however, these have not been addressed in the development and testing of new prodrugs. The issue of immunogenicity arising from the use of non-human enzymes has also been a major hurdle. The development of recombinant fusion proteins provides reproducible and effective antibody-enzyme products that retain the necessary specificity for prodrug activation. Advances in molecular, structural and systems biology, in combination with bioinformatics, have allowed these molecules to be readily manipulated to provide the desired characteristics.

  14. Ocular Sustained Release Nanoparticles Containing Stereoisomeric Dipeptide Prodrugs of Acyclovir

    PubMed Central

    Jwala, Jwala; Boddu, Sai H.S.; Shah, Sujay; Sirimulla, Suman; Pal, Dhananjay

    2011-01-01

    Abstract Purpose The objective of this study was to develop and characterize polymeric nanoparticles of appropriate stereoisomeric dipeptide prodrugs of acyclovir (L-valine-L-valine-ACV, L-valine-D-valine-ACV, D-valine-L-valine-ACV, and D-valine-D-valine-ACV) for the treatment of ocular herpes keratitis. Methods Stereoisomeric dipeptide prodrugs of acyclovir (ACV) were screened for bioreversion in various ocular tissues, cell proliferation, and uptake across the rabbit primary corneal epithelial cell line. Docking studies were carried out to examine the affinity of prodrugs to the peptide transporter protein. Prodrugs with optimum characteristics were selected for the preparation of nanoparticles using various grades of poly (lactic-co-glycolic acid) (PLGA). Nanoparticles were characterized for the entrapment efficiency, surface morphology, size distribution, and in vitro release. Further, the effect of thermosensitive gels on the release of prodrugs from nanoparticles was also studied. Results L-valine-L-valine-ACV and L-valine-D-valine-ACV were considered to be optimum in terms of enzymatic stability, uptake, and cytotoxicity. Docking results indicated that L-valine in the terminal position increases the affinity of the prodrugs to the peptide transporter protein. Entrapment efficiency values of L-valine-L-valine-ACV and L-valine-D-valine-ACV were found to be optimal with PLGA 75:25 and PLGA 65:35 polymers, respectively. In vitro release of prodrugs from nanoparticles exhibited a biphasic release behavior with initial burst phase followed by sustained release. Dispersion of nanoparticles in thermosensitive gels completely eliminated the burst release phase. Conclusion Novel nanoparticulate systems of dipeptide prodrugs of ACV suspended in thermosensitive gels may provide sustained delivery after topical administration. PMID:21500985

  15. The Prodrug Approach: A Successful Tool for Improving Drug Solubility.

    PubMed

    Jornada, Daniela Hartmann; dos Santos Fernandes, Guilherme Felipe; Chiba, Diego Eidy; de Melo, Thais Regina Ferreira; dos Santos, Jean Leandro; Chung, Man Chin

    2015-12-29

    Prodrug design is a widely known molecular modification strategy that aims to optimize the physicochemical and pharmacological properties of drugs to improve their solubility and pharmacokinetic features and decrease their toxicity. A lack of solubility is one of the main obstacles to drug development. This review aims to describe recent advances in the improvement of solubility via the prodrug approach. The main chemical carriers and examples of successful strategies will be discussed, highlighting the advances of this field in the last ten years.

  16. Stimuli-responsive PEGylated prodrugs for targeted doxorubicin delivery.

    PubMed

    Xu, Minghui; Qian, Junmin; Liu, Xuefeng; Liu, Ting; Wang, Hongjie

    2015-05-01

    In recent years, stimuli-sensitive prodrugs have been extensively studied for the rapid "burst" release of antitumor drugs to enhance chemotherapeutic efficiency. In this study, a novel stimuli-sensitive prodrug containing galactosamine as a targeting moiety, poly(ethylene glycol)-doxorubicin (PEG-DOX) conjugate, was developed for targeting HepG2 human liver cancer cells. To obtain the PEG-DOX conjugate, both galactosamine-decorated poly(ethylene glycol) aldehyde (Gal-PEG-CHO) and methoxy poly(ethylene glycol) aldehyde (mPEG-CHO) were firstly synthesized and functionalized with dithiodipropionate dihydrazide (TPH) through direct reductive amination via Schiff's base formation, and then DOX molecules were chemically conjugated to the hydrazide end groups of TPH-functionalized Gal-/m-PEG chains via pH-sensitive hydrazone linkages. The chemical structures of TPH-functionalized PEG and PEG-DOX prodrug were confirmed by (1)H NMR analysis. The PEG-DOX conjugate could self-assemble into spherical nanomicelles with a mean diameter of 140 nm, as indicated by transmission electron microscopy and dynamic light scattering. The drug loading content and loading efficiency in the prodrug nanomicelles were as high as 20 wt.% and 75 wt.%, respectively. In vitro drug release studies showed that DOX was released rapidly from the prodrug nanomicelles at the intracellular levels of pH and reducing agent. Cellular uptake and MTT experiments demonstrated that the galactosamine-decorated prodrug nanomicelles were more efficiently internalized into HepG2 cells via a receptor-mediated endocytosis process and exhibited a higher toxicity, compared with pristine prodrug nanomicelles. These results suggest that the novel Gal-PEG-DOX prodrug nanomicelles have tremendous potential for targeted liver cancer therapy.

  17. Ocular sustained release nanoparticles containing stereoisomeric dipeptide prodrugs of acyclovir.

    PubMed

    Jwala, Jwala; Boddu, Sai H S; Shah, Sujay; Sirimulla, Suman; Pal, Dhananjay; Mitra, Ashim K

    2011-04-01

    The objective of this study was to develop and characterize polymeric nanoparticles of appropriate stereoisomeric dipeptide prodrugs of acyclovir (L-valine-L-valine-ACV, L-valine-D-valine-ACV, D-valine-L-valine-ACV, and D-valine-D-valine-ACV) for the treatment of ocular herpes keratitis. Stereoisomeric dipeptide prodrugs of acyclovir (ACV) were screened for bioreversion in various ocular tissues, cell proliferation, and uptake across the rabbit primary corneal epithelial cell line. Docking studies were carried out to examine the affinity of prodrugs to the peptide transporter protein. Prodrugs with optimum characteristics were selected for the preparation of nanoparticles using various grades of poly (lactic-co-glycolic acid) (PLGA). Nanoparticles were characterized for the entrapment efficiency, surface morphology, size distribution, and in vitro release. Further, the effect of thermosensitive gels on the release of prodrugs from nanoparticles was also studied. L-valine-L-valine-ACV and L-valine-D-valine-ACV were considered to be optimum in terms of enzymatic stability, uptake, and cytotoxicity. Docking results indicated that L-valine in the terminal position increases the affinity of the prodrugs to the peptide transporter protein. Entrapment efficiency values of L-valine-L-valine-ACV and L-valine-D-valine-ACV were found to be optimal with PLGA 75:25 and PLGA 65:35 polymers, respectively. In vitro release of prodrugs from nanoparticles exhibited a biphasic release behavior with initial burst phase followed by sustained release. Dispersion of nanoparticles in thermosensitive gels completely eliminated the burst release phase. Novel nanoparticulate systems of dipeptide prodrugs of ACV suspended in thermosensitive gels may provide sustained delivery after topical administration.

  18. Isolation and characterization of a protein-tyrosine kinase and a phosphotyrosine-protein phosphatase from Klebsiella pneumoniae.

    PubMed

    Preneta, R; Jarraud, S; Vincent, C; Doublet, P; Duclos, B; Etienne, J; Cozzone, A J

    2002-01-01

    Two proteins of Klebsiella pneumoniae, termed Yor5 and Yco6, were analyzed for their capacity to participate in the reversible phosphorylation of proteins on tyrosine. First, protein Yco6 was overproduced from its specific gene and purified to homogeneity by affinity chromatography. Upon incubation in the presence of radioactive adenosine triphosphate, it was found to effectively autophosphorylate. Two-dimensional analysis of its phosphoamino acid content revealed that it was modified exclusively at tyrosine. Second, protein Yor5 was also overproduced from the corresponding gene and purified to homogeneity by affinity chromatography. It was shown to contain a phosphatase activity capable of cleaving the synthetic substrate p-nitrophenyl phosphate into p-nitrophenol and free phosphate. In addition, it was assayed on individual phosphorylated amino acids and appeared to dephosphorylate specifically phosphotyrosine, with no effect on phosphoserine or phosphothreonine. Such specificity for phosphotyrosine was confirmed by the observation that Yor5 was able to dephosphorylate protein Yco6 previously autophosphorylated. Together, these data demonstrate that similarly to other bacterial species including Acinetobacter johnsonii and Escherichia coli, the cells of K. pneumoniae contain both a protein-tyrosine kinase and a phosphotyrosine-protein phosphatase. They also provide evidence that this phosphatase can utilize the kinase as an endogenous substrate, which suggests the occurrence of a regulatory mechanism connected with reversible protein phosphorylation on tyrosine. Since Yco6 and Yor5 are both involved in the synthesis of capsular polysaccharide and since capsules are essential to the virulence of K. pneumoniae, we suggest that reversible protein phosphorylation on tyrosine may be part of the cascade of reactions that determine the pathogenicity of bacteria.

  19. Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb.

    PubMed

    Vincent, C; Doublet, P; Grangeasse, C; Vaganay, E; Cozzone, A J; Duclos, B

    1999-06-01

    Two proteins of Escherichia coli, termed Wzc and Wzb, were analyzed for their capacity to participate in the reversible phosphorylation of proteins on tyrosine. First, Wzc was overproduced from its specific gene and purified to homogeneity by affinity chromatography. Upon incubation in the presence of radioactive ATP, it was found to effectively autophosphorylate. Two-dimensional analysis of its phosphoamino acid content revealed that it was modified exclusively at tyrosine. Second, Wzb was also overproduced from the corresponding gene and purified to homogeneity by affinity chromatography. It was shown to contain a phosphatase activity capable of cleaving the synthetic substrate p-nitrophenyl phosphate into p-nitrophenol and free phosphate. In addition, it was assayed on individual phosphorylated amino acids and appeared to dephosphorylate specifically phosphotyrosine, with no effect on phosphoserine or phosphothreonine. Such specificity for phosphotyrosine was confirmed by the observation that Wzb was able to dephosphorylate previously autophosphorylated Wzc. Together, these data demonstrate, for the first time, that E. coli cells contain both a protein-tyrosine kinase and a phosphotyrosine-protein phosphatase. They also provide evidence that this phosphatase can utilize the kinase as an endogenous substrate, which suggests the occurrence of a regulatory mechanism connected with reversible protein phosphorylation on tyrosine. From comparative analysis of amino acid sequences, Wzc was found to be similar to a number of proteins present in other bacterial species which are all involved in the synthesis or export of exopolysaccharides. Since these polymers are considered important virulence factors, we suggest that reversible protein phosphorylation on tyrosine may be part of the cascade of reactions that determine the pathogenicity of bacteria.

  20. Development of cytarabine prodrugs and delivery systems for leukemia treatment.

    PubMed

    Chhikara, Bhupender S; Parang, Keykavous

    2010-12-01

    Cytarabine is a polar nucleoside drug used for the treatment of myeloid leukemia and non-Hodgkin's lymphoma. The drug has a short plasma half-life, low stability and limited bioavailability. Overdosing of patients with continuous infusions may lead to side effects. Thus, various prodrug strategies and delivery systems have been explored extensively to enhance the half-life, stability and delivery of cytarabine. Among the recent cytarabine prodrugs, amino acid conjugate ValCytarabine and fatty acid derivative CP-4055 (in Phase III trials) have been investigated for the treatment of leukemia and solid tumors, respectively. Alternatively, delivery systems of cytarabine have emerged for the treatment of different cancers. The liposomal-cytarabine formulation (DepoCyt®, Pacira Pharmaceuticals Inc., New Jersey, USA) has been approved for the treatment of lymphomatous meningitis. Various prodrug strategies evaluated for cytarabine are discussed. Then, the review summarizes the drug delivery systems that have been used for more effective cancer therapy. This review provides in-depth discussion of the prodrug strategy and delivery systems of cytarabine derivatives for the treatment of cancer. The design of cytarabine prodrugs and delivery systems provides insights for designing the next generation of more effective anticancer agents with enhanced delivery and stability. Strategies on designing cytarabine prodrug and delivery formulations showed great promise in developing effective anticancer agents with better therapeutic profile. Similar studies with other anticancer nucleosides can be an alternative approach to gaining access to more effective anticancer agents.

  1. Detection of phosphotyrosine-containing 34,000-dalton protein in the framework of cells transformed with Rous sarcoma virus.

    PubMed Central

    Cheng, Y S; Chen, L B

    1981-01-01

    Phosphotyrosine-containing 34,000-dalton protein is detected by treatment of a two-dimensional gel of cellular framework with 1 M NaOH at 40 degrees C for 1 hr. The alkali-resistant 32PO4-labeled 34,000-dalton protein is detected in various cell lines transformed by Rous sarcoma virus but not in lines transformed by simian virus 40, polyoma virus, herpes simplex II virus, adenovirus type 2, or chemical carcinogens. In addition, interferons or fibronectin matrices have no detectable effect on the phosphorylation of the 34,000-dalton protein in Rous sarcoma virus-transformed cells. Images PMID:6166009

  2. Synthesis of polyhydroxylated piperidine and pyrrolidine peptidomimetics via one-pot sequential lactam reduction/Joullié-Ugi reaction.

    PubMed

    Szcześniak, Piotr; Maziarz, Elżbieta; Stecko, Sebastian; Furman, Bartłomiej

    2015-04-03

    A direct approach to the synthesis of polyhydroxylated piperidine and pyrrolidine peptidomimetics is described. The presented strategy is based on one-pot reduction of sugar-derived lactams with Schwartz's reagent followed by a multicomponent Ugi-Joullié reaction.

  3. Discovery of Novel Peptidomimetics as Irreversible CHIKV NsP2 Protease Inhibitors Using Quantum Mechanical-Based Ligand Descriptors.

    PubMed

    El-labbad, Eman M; Ismail, Mohammed A H; Abou Ei Ella, Dalal A; Ahmed, Marawan; Wang, Feng; Barakat, Khaled H; Abouzid, Khaled A M

    2015-12-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus. Recent outbreaks of CHIKV infections have been reported in Asia, Africa, and Europe. The symptoms of CHIKV infection include fever, headache, nausea, vomiting, myalgia, rash, and chronic persistent arthralgia. To date, no vaccines or selective antiviral drugs against this important emerging virus have been reported. In this study, the design, synthesis, and antiviral activity screening of new topographical peptidomimetics revealed three potential prototype agents 3a, 4b, and 5d showing 93-100% maximum inhibition of CHIKV replication in cell-based assay having EC90 of 8.76-9.57 μg/mL. Intensive molecular modeling studies including covalent docking, lowest unoccupied molecular orbital energies, and the atomic condensed Fukui functions calculations strongly suggested the covalent binding of peptidomimetics 3a, 4b, and 5d to CHIKV nsP2 protease leading to permanent enzyme inactivation via Michael adduct formation between α/β-unsaturated ketone functionality in our designed peptidomimetics and active site catalytic cysteine1013. Furthermore, small molecular weight peptidomimetics 3a and 4b satisfied the Lipinski rule of five for drug-likeness and showed promising intestinal absorption and aqueous solubility via computational admet studies making them promising hits for further optimization.

  4. An Experimental-Theoretical Analysis of Protein Adsorption on Peptidomimetic Polymer Brushes

    PubMed Central

    Lau, K.H. Aaron; Ren, Chunlai; Park, Sung Hyun; Szleifer, Igal; Messersmith, Phillip B.

    2012-01-01

    Surface-grafted water soluble polymer brushes are being intensely investigated for preventing protein adsorption to improve biomedical device function, prevent marine fouling, and enable applications in biosensing and tissue engineering. In this contribution, we present an experimental-theoretical analysis of a peptidomimetic polymer brush system with regard to the critical brush density required for preventing protein adsorption at varying chain lengths. A mussel adhesive-inspired DOPA-Lys pentapeptide surface grafting motif enabled aqueous deposition of our peptidomimetic polypeptoid brushes over a wide range of chain densities. Critical densities of 0.88 nm−2 for a relatively short polypeptoid 10-mer to 0.42 nm−2 for a 50-mer were identified from measurements of protein adsorption. The experiments were also compared with the protein adsorption isotherms predicted by a molecular theory. Excellent agreements in terms of both the polymer brush structure and the critical chain density were obtained. Furthermore, atomic force microscopy (AFM) imaging is shown to be useful in verifying the critical brush density for preventing protein adsorption. The present co-analysis of experimental and theoretical results demonstrates the significance of characterizing the critical brush density in evaluating the performance of an anti-fouling polymer brush system. The high fidelity of the agreement between the experiments and molecular theory also indicate that the theoretical approach presented can aid in the practical design of antifouling polymer brush systems. PMID:22107438

  5. Small molecule peptidomimetic inhibitors of importin α/β mediated nuclear transport

    PubMed Central

    Ambrus, Géza; Whitby, Landon R.; Singer, Eric L.; Trott, Oleg; Choi, Euna; Olson, Arthur J.; Boger, Dale L.; Gerace, Larry

    2010-01-01

    Nucleocytoplasmic transport of macromolecules is a fundamental process of eukaryotic cells. Translocation of proteins and many RNAs between the nucleus and cytoplasm is carried out by shuttling receptors of the β-karyopherin family, also called importins and exportins. Leptomycin B, a small molecule inhibitor of the exportin CRM1, has proved to be an invaluable tool for cell biologists, but up to now no small molecule inhibitors of nuclear import have been described. We devised a microtiter plate based permeabilized cell screen for small molecule inhibitors of the importin α/β pathway. By analyzing peptidomimetic libraries, we identified β-turn and α-helix peptidomimetic compounds that selectively inhibit nuclear import by importin α/β but not by transportin. Structure-activity relationship analysis showed that large aromatic residues and/or a histidine side chain are required for effective import inhibition by these compounds. Our validated inhibitors can be useful for in vitro studies of nuclear import, and can also provide a framework for synthesis of higher potency nuclear import inhibitors. PMID:20869252

  6. Large amino acid transporter 1 (LAT1) prodrugs of valproic acid: new prodrug design ideas for central nervous system delivery.

    PubMed

    Peura, Lauri; Malmioja, Kalle; Laine, Krista; Leppänen, Jukka; Gynther, Mikko; Isotalo, Antti; Rautio, Jarkko

    2011-10-03

    Central nervous system (CNS) drug delivery is a major challenge in drug development because the blood-brain barrier (BBB) efficiently restricts the entry of drug molecules into the CNS at sufficient amounts. The brain uptake of poorly penetrating drugs could be improved by utilizing the transporters at the BBB with a prodrug approach. In this study, we designed four phenylalanine derivatives of valproic acid and studied their ability to utilize a large amino acid transporter 1 (LAT1) in CNS delivery with an aim to show that the meta-substituted phenylalanine prodrugs bind to LAT1 with a higher affinity compared with the affinity of the para-substituted derivatives. All of the prodrugs crossed the BBB carrier mediatedly via LAT1 in in situ rat brain perfusion. For the first time, we introduced a novel meta-substituted phenylalanine analogue promoiety which improved the LAT1 affinity 10-fold and more importantly the rat brain uptake of the prodrug 2-fold compared with those of the para-substituted derivatives. Therefore, we have characterized a new prodrug design idea for CNS drug delivery utilizing a transporter-mediated prodrug approach.

  7. HUMAN SKIN PERMEATION OF 3-O-ALKYL CARBAMATE PRODRUGS OF NALTREXONE

    PubMed Central

    Vaddi, Haranath K.; Banks, Stan L.; Chen, Jianhong; Hammell, Dana C.; Crooks, Peter A.; Stinchcomb, Audra L.

    2009-01-01

    N-Monoalkyl and N,N-dialkyl carbamate prodrugs of naltrexone (NTX), an opioid antagonist, were synthesized and their in vitro permeation across human skin was determined. Relevant physicochemical properties were also determined. Most prodrugs exhibited lower melting points, lower aqueous solubilities, and higher oil solubilities than NTX. The flux values from N-monoalkyl carbamate prodrugs were significantly higher than those from NTX and N,N-dialkyl carbamates. The melting points of N-monoalkyl carbamate prodrugs were quite low compared to the N,N-dialkyl carbamate prodrugs and NTX. Heats of fusion for the N,N-dialkyl carbamate prodrugs were higher than that for NTX. N-Monoalkyl carbamate prodrugs had higher stratum corneum/vehicle partition coefficients than their N,N-dialkyl counterparts. Higher percent prodrug bioconversion to NTX in skin appeared to be related to increased skin flux. N,N-Dialkyl carbamate prodrugs were more stable in buffer and in plasma than N-monoalkyl carbamate prodrugs. In conclusion, N-monoalkyl carbamate prodrugs of NTX improved the systemic delivery of NTX across human skin in vitro. N,N-Dialkyl substitution in the prodrug moiety decreased skin permeation and plasma hydrolysis to the parent drug. The cross-sectional area of the carbamate head group was the major determinant of flux of the N-monoalkyl and N,N-dialkyl carbamate prodrugs of NTX. PMID:18972573

  8. Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles

    NASA Astrophysics Data System (ADS)

    Fan, Jianquan; Fang, Gang; Wang, Xiaodan; Zeng, Fang; Xiang, Yufei; Wu, Shuizhu

    2011-11-01

    A targeted anticancer prodrug system was fabricated with 180 nm mesoporous silica nanoparticles (MSNs) as carriers. The anticancer drug doxorubicin (DOX) was conjugated to the particles through an acid-sensitive carboxylic hydrazone linker which is cleavable under acidic conditions. Moreover, folic acid (FA) was covalently conjugated to the particle surface as the targeting ligand for folate receptors (FRs) overexpressed in some cancer cells. The in vitro release profiles of DOX from the MSN-based prodrug systems showed a strong dependence on the environmental pH values. The fluorescent dye FITC was incorporated in the MSNs so as to trace the cellular uptake on a fluorescence microscope. Cellular uptakes by HeLa, A549 and L929 cell lines were tested for FA-conjugated MSNs and plain MSNs respectively, and a much more efficient uptake by FR-positive cancer cells (HeLa) can be achieved by conjugation of folic acid onto the particles because of the folate-receptor-mediated endocytosis. The cytotoxicities for the FA-conjugated MSN prodrug, the plain MSN prodrug and free DOX against three cell lines were determined, and the result indicates that the FA-conjugated MSN prodrug exhibits higher cytotoxicity to FR-positive cells, and reduced cytotoxicity to FR-negative cells. Thus, with 180 nm MSNs as the carriers for the prodrug system, good drug loading, selective targeting and sustained release of drug molecules within targeted cancer cells can be realized. This study may provide useful insights for designing and improving the applicability of MSNs in targeted anticancer prodrug systems.

  9. Esters of valerenic acid as potential prodrugs

    PubMed Central

    Hintersteiner, Juliane; Haider, Maximilian; Luger, Denise; Schwarzer, Christoph; Reznicek, Gottfried; Jäger, Walter; Khom, Sophia; Mihovilovic, Marko D.; Hering, Steffen

    2014-01-01

    Valerenic acid (VA) is a β2/3 subunit-specific modulator of γ-aminobutyric acid (GABA) type A (GABAA) receptors inducing anxiolysis. Here we analyze if VA-esters can serve as prodrugs and if different ester structures have different in vitro/in vivo effects. Modulation of GABAA receptors expressed in Xenopus oocytes was studied with 2-microelectrode-voltage-clamp. Anxiolytic effects of the VA-esters were studied on male C57BL/6N mice by means of the elevated plus maze-test; anticonvulsant properties were deduced from changes in seizure threshold upon pentylenetetrazole infusion. VA was detected in plasma confirming hydrolysis of the esters and release of VA in vivo. Esterification significantly reduced the positive allosteric modulation of GABAA (α1β3γ2S) receptors in vitro. in vivo, the studied VA-ester derivatives induced similar or even stronger anxiolytic and anticonvulsant action than VA. While methylation and propylation of VA resulted in faster onset of anxiolysis, the action of VA-ethylester was longer lasting, but occurred with a significant delay. The later finding is in line with the longer lasting anticonvulsant effects of this compound. The estimated VA plasma concentrations provided first insight into the release kinetics from different VA-esters. This might be an important step for its future clinical application as a potential non-sedative anxiolytic and anticonvulsant. PMID:24680924

  10. Improved peptide prodrugs of 5-ALA for PDT: rationalization of cellular accumulation and protoporphyrin IX production by direct determination of cellular prodrug uptake and prodrug metabolization.

    PubMed

    Giuntini, Francesca; Bourré, Ludovic; MacRobert, Alexander J; Wilson, Michael; Eggleston, Ian M

    2009-07-09

    Twenty-seven dipeptide derivatives of general structure Ac-Xaa-ALA-OR were synthesized as potential prodrugs for 5-aminolaevulinic acid-based photodynamic therapy (ALA-PDT). Xaa is an alpha-amino acid, chosen to provide a prodrug with appropriately tailored lipophilicity and water solubility. Although no simple correlation is observed between downstream production of protoporphyrin IX (PpIX) in PAM212 keratinocytes and HPLC-derived descriptors of compound lipophilicity, quantification of prodrug uptake reveals that most of the dipeptides are actually more efficiently accumulated than ALA in PAM212 and also A549 and Caco-2 cell lines. Subsequent ALA release is the limiting factor, which emphasizes the importance of decoupling prodrug uptake and intracellular metabolization when assessing the efficacy of ALA derivatives for PDT. In agreement with PpIX fluorescence studies, at a concentration of 0.1 mM, l-Phe derivatives 4m and 4o, and l-Leu, l-Met, and l-Glu derivatives 4f, 4k, and 4u, exhibit significantly enhanced photoxicity in PAM212 cells compared to ALA.

  11. Simvastatin prodrug micelles target fracture and improve healing.

    PubMed

    Jia, Zhenshan; Zhang, Yijia; Chen, Yen Hsun; Dusad, Anand; Yuan, Hongjiang; Ren, Ke; Li, Fei; Fehringer, Edward V; Purdue, P Edward; Goldring, Steven R; Daluiski, Aaron; Wang, Dong

    2015-02-28

    Simvastatin (SIM), a widely used anti-lipidemic drug, has been identified as a bone anabolic agent. Its poor water solubility and the lack of distribution to the skeleton, however, have limited its application in the treatment of bone metabolic diseases. In this study, an amphiphilic macromolecular prodrug of SIM was designed and synthesized to overcome these limitations. The polyethylene glycol (PEG)-based prodrug can spontaneously self-assemble to form micelles. The use of SIM trimer as the prodrug's hydrophobic segment allows easy encapsulation of additional free SIM. The in vitro studies showed that SIM/SIM-mPEG micelles were internalized by MC3T3 cells via lysosomal trafficking and consistently induced expression of both BMP2 and DKK1 mRNA, suggesting that the prodrug micelle retains the biological functions of SIM. After systemic administration, optical imaging suggests that the micelles would passively target to bone fracture sites associated with hematoma and inflammation. Furthermore, flow cytometry study revealed that SIM/SIM-mPEG micelles had preferred cellular uptake by inflammatory and resident cells within the fracture callus tissue. The treatment study using a mouse osteotomy model validated the micelles' therapeutic efficacy in promoting bone fracture healing as demonstrated by micro-CT and histological analyses. Collectively, these data suggest that the macromolecular prodrug-based micelle formulation of SIM may have great potential for clinical management of impaired fracture healing.

  12. Recent Trends in Targeted Anticancer Prodrug and Conjugate Design

    PubMed Central

    Singh, Yashveer; Palombo, Matthew; Sinko, Patrick J.

    2009-01-01

    Anticancer drugs are often nonselective antiproliferative agents (cytotoxins) that preferentially kill dividing cells by attacking their DNA at some level. The lack of selectivity results in significant toxicity to noncancerous proliferating cells. These toxicities along with drug resistance exhibited by the solid tumors are major therapy limiting factors that results into poor prognosis for patients. Prodrug and conjugate design involves the synthesis of inactive drug derivatives that are converted to an active form inside the body and preferably at the site of action. Classical prodrug and conjugate design has focused on the development of prodrugs that can overcome physicochemical (e.g., solubility, chemical instability) or biopharmaceutical problems (e.g., bioavailability, toxicity) associated with common anticancer drugs. The recent targeted prodrug and conjugate design, on the other hand, hinges on the selective delivery of anticancer agents to tumor tissues thereby avoiding their cytotoxic effects on noncancerous cells. Targeting strategies have attempted to take advantage of low extracellular pH, elevated enzymes in tumor tissues, the hypoxic environment inside the tumor core, and tumor-specific antigens expressed on tumor cell surfaces. The present review highlights recent trends in prodrug and conjugate rationale and design for cancer treatment. The various approaches that are currently being explored are critically analyzed and a comparative account of the advantages and disadvantages associated with each approach is presented. PMID:18691040

  13. Prodrugs of aza nucleosides based on proton transfer reaction

    NASA Astrophysics Data System (ADS)

    Karaman, Rafik

    2010-12-01

    DFT calculation results for intramolecular proton transfer reactions in Kirby's enzyme models 1- 7 reveal that the reaction rate is quite responsive to geometric disposition, especially to distance between the two reactive centers, r GM, and the angle of attack, α (the hydrogen bonding angle). Hence, the study on the systems reported herein could provide a good basis for designing aza nucleoside prodrug systems that are less hydrophilic than their parental drugs and can be used, in different dosage forms, to release the parent drug in a controlled manner. For example, based on the calculated log EM, the cleavage process for prodrug 1ProD is predicted to be about 1010 times faster than that for prodrug 7ProD and about 104 times faster than prodrug 3ProD: rate 1ProD > rate 3ProD > rate 7ProD . Hence, the rate by which the prodrug releases the aza nucleoside drug can be determined according to the structural features of the linker (Kirby's enzyme model).

  14. Structure-activity relationships for dipeptide prodrugs of acyclovir: implications for prodrug design.

    PubMed

    Santos, Cledir R; Capela, Rita; Pereira, Cláudia S G P; Valente, Emília; Gouveia, Luís; Pannecouque, Christophe; De Clercq, Erik; Moreira, Rui; Gomes, Paula

    2009-06-01

    A series of water-soluble dipeptide ester prodrugs of the antiviral acyclovir (ACV) were evaluated for their chemical stability, cytotoxicity, and antiviral activity against several strains of Herpes Simplex-1 and -2, vaccinia, vesicular stomatitis, cytomegalovirus and varicella zoster viruses. ACV dipeptide esters were very active against herpetic viruses, independently of the rate at which they liberate the parent drug. Their minimum cytotoxic concentrations were above 100 microM and the resulting MCC/EC(50) values were lower than those of ACV. When comparing the reactivity of Phe-Gly esters and amides (ACV, zidovudine, paracetamol, captopril and primaquine) in pH 7.4 buffer it was found that the rate of drug release increases with drug's leaving group ability. Release of the parent drug from Phe-Gly in human plasma is markedly faster than in pH 7.4 buffer, thus suggesting that the dipeptide-based prodrug approach can be successfully applied to bioactive agents containing thiol, phenol and amine functional groups.

  15. Optimization of alkylating agent prodrugs derived from phenol and aniline mustards: a new clinical candidate prodrug (ZD2767) for antibody-directed enzyme prodrug therapy (ADEPT).

    PubMed

    Springer, C J; Dowell, R; Burke, P J; Hadley, E; Davis, D H; Blakey, D C; Melton, R G; Niculescu-Duvaz, I

    1995-12-22

    Sixteen novel potential prodrugs derived from phenol or aniline mustards and their 16 corresponding drugs with ring substitution and/or different alkylating functionalities were designed. The [[[4-]bis(2-bromoethyl)-(1a), [[[4-[bis(2-iodoethyl)-(1b), and [[[4-[(2-chloroethyl)-[2-(mesyloxy)ethyl]amino]phenyl]oxy] carbonyl]-L-glutamic acids (1c), their [[[2- and 3-substituted-4-[bis(2-chloroethyl)amino]phenyl]oxy]carbonyl]-L- glutamic acids (1e-1), and the [[3-substituted-4-[bis(2-chloroethyl)amino]phenyl]carbamoyl]-L- glutamic acids (1o-r) were synthesized. They are bifunctional alkylating agents in which the activating effect of the phenolic hydroxyl or amino function is masked through an oxycarbonyl or a carbamoyl bond to a glutamic acid. These prodrugs were designed to be activated to their corresponding phenol and aniline nitrogen mustard drugs at a tumor site by prior administration of a monoclonal antibody conjugated to the bacterial enzyme carboxypeptidase G2 (CPG2) in antibody-directed enzyme prodrug therapy (ADEPT). The synthesis of the analogous novel parent drugs (2a-r) is also described. The viability of a colorectal cell line (LoVo) was monitored with the potential prodrugs and the parent drugs. The differential in the cytotoxicity between the potential prodrugs and their corresponding active drugs ranged between 12 and > 195 fold. Compounds 1b-d,f,o exhibited substantial prodrug activity, since a cytotoxicity differential of > 100 was achieved compared to 2b-d,f,o respectively. The ability of the potential prodrugs to act as substrates for CPG2 was determined (kinetic parameters KM and kcat), and the chemical stability was measured for all the compounds. The unsubstituted phenols with different alkylating functionalities (1a-c) proved to have the highest ratio of the substrates kcat:KM. From these studies [[[4-[bis(2-iodoethyl)amino]phenyl]oxy]carbonyl]-L-glutamic acid (1b) emerges as a new ADEPT clinical trial candidate due to its physicochemical and

  16. Long-Acting Diclofenac Ester Prodrugs for Joint Injection: Kinetics, Mechanism of Degradation, and In Vitro Release From Prodrug Suspension.

    PubMed

    Mertz, Nina; Larsen, Susan Weng; Kristensen, Jesper; Østergaard, Jesper; Larsen, Claus

    2016-10-01

    A prodrug approach for local and sustained diclofenac action after injection into joints based on ester prodrugs having a pH-dependent solubility is presented. Inherent ester prodrug properties influencing the duration of action include their pH-dependent solubility and charge state, as well as susceptibility to undergo esterase facilitated hydrolysis. In this study, physicochemical properties and pH rate profiles of 3 diclofenac ester prodrugs differing with respect to the spacer carbon chain length between the drug and the imidazole-based promoiety were determined and a rate equation for prodrug degradation in aqueous solution in the pH range 1-10 was derived. In the pH range 6-10, the prodrugs were subject to parallel degradation to yield diclofenac and an indolinone derivative. The prodrug degradation was found to be about 6-fold faster in 80% (vol/vol) human plasma as compared to 80% (vol/vol) human synovial fluid with 2-(1-methyl-1H-imidazol-2-yl)ethyl 2-(2-(2,6 dichlorophenyl)amino)phenylacetate being the poorest substrate toward enzymatic cleavage. The conversion and release of parent diclofenac from prodrug suspensions in vitro were studied using the rotating dialysis model. The results suggest that it is possible to alter and control dissolution and reconversion behavior of the diclofenac prodrugs, thus making the prodrug approach feasible for local and sustained diclofenac action after joint injection.

  17. Prodrug design to improve pharmacokinetic and drug delivery properties: challenges to the discovery scientists.

    PubMed

    Jana, S; Mandlekar, S; Marathe, P

    2010-01-01

    The prodrug design is a versatile, powerful method that can be applied to a wide range of parent drug molecules, administration routes, and formulations. Clinically, the majority of prodrugs are used with the aim of enhancing drug permeation by increasing lipophilicity, or by improving aqueous solubility. Prodrug design may improve the bioavailability of parent molecule, and thus can be integrated into the iterative process of lead optimization, rather than employing it as a post-hoc approach. The purpose of this review is to provide an update of advances and progress in the knowledge of current strategic approaches of prodrug design, along with their real-world utility in drug discovery and development. The review covers the type of prodrugs and functional groups that are amenable to prodrug design. Various prodrug approaches for improving oral drug delivery are discussed, with numerous examples of marketed prodrugs, including improved aqueous solubility, improved lipophilicity, transporter-mediated absorption, and prodrug design to achieve site-specific delivery. Tools employed for prodrug screening, and specific challenges in prodrug research and development are also elaborated. This article is intended to encourage discovery scientists to be creative and consider a rationally designed prodrug approach during the lead optimization phase of drug discovery programs, when the structure activity relationship (SAR) for the drug target is incompatible with pharmacokinetic or biopharmaceutical objectives.

  18. A combinatorial approach for the design of complementarity-determining region-derived peptidomimetics with in vitro anti-tumoral activity.

    PubMed

    Timmerman, Peter; Barderas, Rodrigo; Desmet, Johan; Altschuh, Danièle; Shochat, Susana; Hollestelle, Martine J; Höppener, Jo W M; Monasterio, Alberto; Casal, J Ignacio; Meloen, Rob H

    2009-12-04

    The great success of therapeutic monoclonal antibodies has fueled research toward mimicry of their binding sites and the development of new strategies for peptide-based mimetics production. Here, we describe a new combinatorial approach for the production of peptidomimetics using the complementarity-determining regions (CDRs) from gastrin17 (pyroEGPWLEEEEEAYGWMDF-NH(2)) antibodies as starting material for cyclic peptide synthesis in a microarray format. Gastrin17 is a trophic factor in gastrointestinal tumors, including pancreatic cancer, which makes it an interesting target for development of therapeutic antibodies. Screening of microarrays containing bicyclic peptidomimetics identified a high number of gastrin binders. A strong correlation was observed between gastrin binding and overall charge of the peptidomimetic. Most of the best gastrin binders proceeded from CDRs containing charged residues. In contrast, CDRs from high affinity antibodies containing mostly neutral residues failed to yield good binders. Our experiments revealed essential differences in the mode of antigen binding between CDR-derived peptidomimetics (K(d) values in micromolar range) and the parental monoclonal antibodies (K(d) values in nanomolar range). However, chemically derived peptidomimetics from gastrin binders were very effective in gastrin neutralization studies using cell-based assays, yielding a neutralizing activity in pancreatic tumoral cell lines comparable with that of gastrin-specific monoclonal antibodies. These data support the use of combinatorial CDR-peptide microarrays as a tool for the development of a new generation of chemically synthesized cyclic peptidomimetics with functional activity.

  19. Diglyceride prodrug strategy for enhancing the bioavailability of norfloxacin.

    PubMed

    Dhaneshwar, Suneela; Tewari, Kunal; Joshi, Sonali; Godbole, Dhanashree; Ghosh, Pinaki

    2011-05-01

    Prodrug approach using diglyceride as a promoiety is a promising strategy to improve bioavailability of poorly absorbed drugs and the same was explored in the present work to improve oral bioavailability of norfloxacin; a second generation fluoroquinolone antibacterial. The prodrug was synthesized by standard procedures using dipalmitine as a carrier and the structure was confirmed by spectral analysis. Higher LogP indicated improved lipophilicity. The ester linkage between norfloxacin and dipalmitine would be susceptible to hydrolysis by lipases to release the parent drug and carrier in the body. In vivo kinetic studies in rats indicated 53% release of norfloxacin in plasma at the end of 8h. The prodrug exhibited improved pharmacological profile than the parent compound at equimolar dose that indirectly indicated improved bioavailability. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Peptidomimetics Based On Dehydroepiandrosterone Scaffold: Synthesis, Antiproliferation Activity, Structure-Activity Relationship, and Mechanisms

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui; Su, Haihuan; Wang, Wenda; Chen, Changshui; Cao, Xiufang

    2016-09-01

    A series of novel peptidomimetics bearing dehydroepiandrosterone moiety were designed, synthesized, and evaluated for their inhibition activities against cell proliferation. According to the preliminary studies on inhibitory activities, some of the newly prepared compounds indicated significantly inhibition activities against human hepatoma cancer (HepG2), human lung cancer (A549), human melanoma (A875) cell lines compared with the control 5-fluorouracil. Especially, compounds Ii (IC50 < 14 μM) and Ik (IC50 < 13 μM) exhibited obvious inhibition activities against all tested cell lines. The highly potential compound Ik induced apoptosis in HepG2 cells were analyzed by flow cytometry, and the apoptotic effects of compound Ik were further evaluated using Annexin V-FITC/propidium iodide dual staining assay, which revealed these highly potential compounds induced cell death in HepG2 cells at least partly by apoptosis.

  1. Combining Elements from Two Antagonists of Formyl Peptide Receptor 2 Generates More Potent Peptidomimetic Antagonists.

    PubMed

    Skovbakke, Sarah Line; Holdfeldt, André; Nielsen, Christina; Hansen, Anna Mette; Perez-Gassol, Iris; Dahlgren, Claes; Forsman, Huamei; Franzyk, Henrik

    2017-08-24

    Structural optimization of a peptidomimetic antagonist of formyl peptide receptor 2 (FPR2) was explored by an approach involving combination of elements from the two most potent FPR2 antagonists described: a Rhodamine B-conjugated 10-residue gelsonin-derived peptide (i.e., PBP10, RhB-QRLFQVKGRR-OH) and the palmitoylated α-peptide/β-peptoid hybrid Pam-(Lys-βNspe)6-NH2. This generated an array of hybrid compounds from which a new subclass of receptor-selective antagonists was identified. The most potent representatives displayed activity in the low nanomolar range. The resulting stable and potent FPR2-selective antagonists (i.e., RhB-(Lys-βNphe)n-NH2; n = 4-6) are expected to become valuable tools in further elucidation of the physiological role of FPR2 in health and disease.

  2. Synthesis and antimicrobial activity of binaphthyl-based, functionalized oxazole and thiazole peptidomimetics.

    PubMed

    Wales, Steven M; Hammer, Katherine A; Somphol, Kittiya; Kemker, Isabell; Schröder, David C; Tague, Andrew J; Brkic, Zinka; King, Amy M; Lyras, Dena; Riley, Thomas V; Bremner, John B; Keller, Paul A; Pyne, Stephen G

    2015-11-28

    Thirty two new binaphthyl-based, functionalized oxazole and thiazole peptidomimetics and over thirty five novel leucine-containing intermediate oxazoles and thiazoles were prepared in this study. This includes the first examples of the direct C-5 arylation of an amino acid dipeptide-derived oxazole. Moderate to excellent antibacterial activity was observed for all new compounds across Gram positive isolates with MICs ranging from 1-16 μg mL(-1). Results for Gram negative E. coli and A. baumannii were more variable, but MICs as low as 4 μg mL(-1) were returned for two examples. Significantly, the in vitro results with a fluoromethyl-oxazole derivative collectively represent the best obtained to date for a member of our binaphthyl peptide antimicrobials.

  3. Novel peptidomimetics as BACE-1 inhibitors: synthesis, molecular modeling, and biological studies.

    PubMed

    Butini, Stefania; Gabellieri, Emanuele; Brindisi, Margherita; Casagni, Alice; Guarino, Egeria; Huleatt, Paul B; Relitti, Nicola; La Pietra, Valeria; Marinelli, Luciana; Giustiniano, Mariateresa; Novellino, Ettore; Campiani, Giuseppe; Gemma, Sandra

    2013-01-01

    Aiming at identifying new scaffolds for BACE-1 inhibition devoid of the pharmacokinetic drawbacks of peptide-like structures, we investigated a series of novel peptidomimetics based on a 1,4-benzodiazepine (BDZ) core 1a-h and their seco-analogues 2a-d. We herein discuss synthesis, molecular modeling and in vitro studies which, starting from 1a, led to the seco-analogues (R)-2c and (S)-2d endowed with BACE-1 inhibition properties in the micromolar range both on the isolated enzyme and in cellular studies. These data can encourage to pursue these analogues as hits for the development of a new series of BACE-1 inhibitors active on whole-cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Development of peptidomimetics with a vinyl sulfone warhead as irreversible falcipain-2 inhibitors.

    PubMed

    Ettari, Roberta; Nizi, Emanuela; Di Francesco, Maria Emilia; Dude, Marie-Adrienne; Pradel, Gabriele; Vicík, Radim; Schirmeister, Tanja; Micale, Nicola; Grasso, Silvana; Zappalà, Maria

    2008-02-28

    This paper describes the synthesis of a new class of peptidomimetic cysteine protease inhibitors based on a 1,4-benzodiazepine scaffold and on an electrophilic vinyl sulfone moiety. The former was introduced internally to a peptide sequence that mimics the fragment D-Ser-Gly; the latter was built on the P1-P1' site and reacts as a classical "Michael acceptor", leading to an alkylated enzyme by irreversible addition of the thiol group of the active site cysteine. The introduction of the vinyl sulfone moiety has been accomplished by olefin cross-metathesis, a powerful tool for the formation of carbon-carbon double bonds. New compounds 2-3 have been proven to be potent and selective inhibitors of falcipain-2, a cysteine protease isolated from Plasmodium falciparum, displaying antiplasmodial activity.

  5. Small cationic antimicrobial peptidomimetics: emerging candidate for the development of potential anti-infective agents.

    PubMed

    Lohan, Sandeep; Bisht, Gopal Singh

    2013-01-01

    Rapid increase in the emergence and spread of microbes resistant to conventionally used antibiotics has become a major threat to global health care. Antimicrobial peptides (AMPs) are considered as a potential source of novel antibiotics because of their numerous advantages such as broad-spectrum activity, lower tendency to induce resistance, immunomodulatory response and unique mode of action. However, AMPs have several drawbacks such as; susceptibility to protease degradation, toxicity and high costs of manufacturing. Therefore, extensive research efforts are underway to explore the therapeutic potential of these fascinating natural compounds. This review highlights the potential of small cationic antimicrobial peptidomimetics (SCAMPs; M.W. ≅ 700 Da) as new generation antibiotics. In particular, we focused on recently identified small active pharmacophore from bulky templates of native AMPs, β-peptides, and lipopeptides. In addition, various design strategies recently undertaken to improve the physicochemical properties (proteolytic stability & plasma protein binding) of small cationic peptides have also been discussed.

  6. Systematic analysis of phosphotyrosine antibodies recognizing single phosphorylated EPIYA-motifs in CagA of East Asian-type Helicobacter pylori strains.

    PubMed

    Lind, Judith; Backert, Steffen; Hoffmann, Rebecca; Eichler, Jutta; Yamaoka, Yoshio; Perez-Perez, Guillermo I; Torres, Javier; Sticht, Heinrich; Tegtmeyer, Nicole

    2016-09-02

    Highly virulent strains of the gastric pathogen Helicobacter pylori encode a type IV secretion system (T4SS) that delivers the effector protein CagA into gastric epithelial cells. Translocated CagA undergoes tyrosine phosphorylation by members of the oncogenic c-Src and c-Abl host kinases at EPIYA-sequence motifs A, B and D in East Asian-type strains. These phosphorylated EPIYA-motifs serve as recognition sites for various SH2-domains containing human proteins, mediating interactions of CagA with host signaling factors to manipulate signal transduction pathways. Recognition of phospho-CagA is mainly based on the use of commercial pan-phosphotyrosine antibodies that were originally designed to detect phosphotyrosines in mammalian proteins. Specific anti-phospho-EPIYA antibodies for each of the three sites in CagA are not forthcoming. This study was designed to systematically analyze the detection preferences of each phosphorylated East Asian CagA EPIYA-motif by pan-phosphotyrosine antibodies and to determine a minimal recognition sequence. We synthesized phospho- and non-phosphopeptides derived from each predominant EPIYA-site, and determined the recognition patterns by seven different pan-phosphotyrosine antibodies using Western blotting, and also investigated representative East Asian H. pylori isolates during infection. The results indicate that a total of only 9-11 amino acids containing the phosphorylated East Asian EPIYA-types are required and sufficient to detect the phosphopeptides with high specificity. However, the sequence recognition by the different antibodies was found to bear high variability. From the seven antibodies used, only four recognized all three phosphorylated EPIYA-motifs A, B and D similarly well. Two of the phosphotyrosine antibodies preferentially bound primarily to the phosphorylated motif A and D, while the seventh antibody failed to react with any of the phosphorylated EPIYA-motifs. Control experiments confirmed that none of the

  7. Interferon gamma peptidomimetic targeted to interstitial myofibroblasts attenuates renal fibrosis after unilateral ureteral obstruction in mice

    PubMed Central

    Poosti, Fariba; Bansal, Ruchi; Yazdani, Saleh; Prakash, Jai; Beljaars, Leonie; van den Born, Jacob; de Borst, Martin H.; van Goor, Harry; Hillebrands, Jan-Luuk; Poelstra, Klaas

    2016-01-01

    Renal fibrosis cannot be adequately treated since anti-fibrotic treatment is lacking. Interferon-γ is a pro-inflammatory cytokine with anti-fibrotic properties. Clinical use of interferon-γ is hampered due to inflammation-mediated systemic side effects. We used an interferon-γ peptidomimetic (mimγ) lacking the extracellular IFNγReceptor recognition domain, and coupled it to the PDGFβR-recognizing peptide BiPPB. Here we tested the efficacy of mimγ-BiPPB (referred to as “Fibroferon”) targeted to PDGFβR-overexpressing interstitial myofibroblasts to attenuate renal fibrosis without inducing inflammation-mediated side effects in the mouse unilateral ureter obstruction model. Unilateral ureter obstruction induced renal fibrosis characterized by significantly increased α-SMA, TGFβ1, fibronectin, and collagens I and III protein and/or mRNA expression. Fibroferon treatment significantly reduced expression of these fibrotic markers. Compared to full-length IFNγ, anti-fibrotic effects of Fibroferon were more pronounced. Unilateral ureter obstruction-induced lymphangiogenesis was significantly reduced by Fibroferon but not full-length IFNγ. In contrast to full-length IFNγ, Fibroferon did not induce IFNγ-related side-effects as evidenced by preserved low-level brain MHC II expression (similar to vehicle), lowered plasma triglyceride levels, and improved weight gain after unilateral ureter obstruction. In conclusion, compared to full-length IFNγ, the IFNγ-peptidomimetic Fibroferon targeted to PDGFβR-overexpressing myofibroblasts attenuates renal fibrosis in the absence of IFNγ-mediated adverse effects. PMID:27509062

  8. Your prodrug releases formaldehyde: should you be concerned? No!

    PubMed

    Dhareshwar, Sundeep S; Stella, Valentino J

    2008-10-01

    The title of this commentary contains a frequently asked question whenever someone presents or proposes a prodrug strategy that releases formaldehyde as a result of bioconversion of a prodrug to parent drug. Formaldehyde, a highly water-soluble one-carbon molecule, is endogenous to cells, tissues, and body fluids. Although formaldehyde is generated and incorporated into essential metabolic processes by the human body, exposure to large amounts of formaldehyde vapor can irritate the nasal mucosa and may potentially be carcinogenic. It also gives a positive Ames test. Metabolism of both endogenous and exogenous formaldehyde involves rapid oxidation to formic acid catalyzed by glutathione dependent and independent dehydrogenases in the liver and erythrocytes. Balancing this rapid detoxification pathway is endogenous formation from normal metabolic processes and exogenous formaldehyde input, resulting in approximately 0.1 mM systemic levels. The possibility that formaldehyde released upon bioconversion of prodrugs might induce toxicity has been repeatedly stated, but no convincing evidence for this perceived toxicity has been documented in experimental studies. Therefore, as pharmaceutical chemists and not as toxicologists, we present our perspective on the apparent concern with release of formaldehyde as a by-product of in vivo bioconversion of selective prodrugs, and suggest that in comparison to the total amount of daily endogenous formaldehyde production from metabolism, and exogenous exposure from food and the environment, the amount generated by prodrugs is minute and is unlikely to cause any systemic toxicity in humans. Such an argument does not preclude formaldehyde-based toxicity assessment of a prodrug. Instead, it reduces the risk that in vivo liberation of formaldehyde will cause undue toxicity. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  9. New prodrugs based on phospholipid-nucleoside conjugates

    SciTech Connect

    MacCoss, M.

    1982-02-03

    A method is described for the preparation of defined, isomerically pure phospholipid-nucleoside conjugates as a prodrug in which the drug (araC) is attached to the phospholipid by a monophosphate linkage. Key intermediates in the process involve selective blocking and deblocking of the nucleoside derivative. These particular monophosphate-linked derivatives represent a new class of prodrug, which are useful by themselves or in combination with diphosphate linked derivatives. Several new compositions involving diphosphate linked derivatives are described in which the products are isomerically pure and having defined fatty acid chain lengths.

  10. Antibody-directed enzyme prodrug therapy: a promising approach for a selective treatment of cancer based on prodrugs and monoclonal antibodies.

    PubMed

    Tietze, Lutz F; Krewer, Birgit

    2009-09-01

    The antibody-directed enzyme prodrug therapy allows a selective liberation of cytotoxic agents from non-toxic prodrugs in cancerous tissue by targeted antibody-enzyme conjugates. We have developed a series of novel glycosidic prodrugs based on the natural antibiotic CC-1065 and the duocarmycins, which are up to 4800 times less toxic than the drugs liberated from these prodrugs in the presence of the activating enzyme (e.g., beta-D-galactosidase). Furthermore, the drugs show very high cytotoxicities with IC(50) values of as low as 4.5 pm. In this report, we summarize our recent results on the development and biological evaluation of these novel third-generation prodrugs with higher water solubility, higher difference in cytotoxicity between the prodrugs and the corresponding drugs and improved cytotoxicity of the drugs as compared with previous compounds.

  11. Glutathione-S-transferase selective release of metformin from its sulfonamide prodrug.

    PubMed

    Rautio, Jarkko; Vernerová, Monika; Aufderhaar, Imke; Huttunen, Kristiina M

    2014-11-01

    In this study, three sulfonamide prodrugs of metformin were designed and synthesized. The bioconversion of the sulfonamide prodrugs by glutathione-S-transferase (GST) was evaluated in rat and human liver S9 fractions as well as with recombinant human GST forms. One of the prodrugs (3) was bioactivated by GST and released metformin in a quantitative manner, whereas the two others were enzymatically stable. Prodrug 3 had a much higher logD value relative to metformin and it was reasonably stable in both acidic buffer and rat small intestine homogenate, which indicates that this prodrug has the potential to increase the oral absorption of metformin.

  12. Investigating the Impact of Asp181 Point Mutations on Interactions between PTP1B and Phosphotyrosine Substrate

    NASA Astrophysics Data System (ADS)

    Liu, Mengyuan; Wang, Lushan; Sun, Xun; Zhao, Xian

    2014-05-01

    Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling, which suggests that it is an attractive therapeutic target in type II diabetes and obesity. The aim of this research is to explore residues which interact with phosphotyrosine substrate can be affected by D181 point mutations and lead to increased substrate binding. To achieve this goal, molecular dynamics simulations were performed on wild type (WT) and two mutated PTP1B/substrate complexes. The cross-correlation and principal component analyses show that point mutations can affect the motions of some residues in the active site of PTP1B. Moreover, the hydrogen bond and energy decomposition analyses indicate that apart from residue 181, point mutations have influence on the interactions of substrate with several residues in the active site of PTP1B.

  13. Synthesis and biological evaluation of prodrugs based on the natural antibiotic duocarmycin for use in ADEPT and PMT.

    PubMed

    Tietze, Lutz F; Schmuck, Kianga; Schuster, Heiko J; Müller, Michael; Schuberth, Ingrid

    2011-02-07

    Chemotherapy of malign tumors is usually associated with serious side effects as common anticancer drugs lack selectivity. An approach to deal with this problem is the antibody-directed enzyme prodrug therapy (ADEPT) and the prodrug monotherapy (PMT). Herein, the synthesis and biological evaluation of new glycosidic prodrugs suitable for both concepts are described. All prodrugs but one are stable in human serum and show QIC(50) values (IC(50) of prodrug/IC(50) of prodrug in the presence of the appropriate glycohydrolase) of up to 6500. This is the best value found so far for compounds interacting with DNA.

  14. Cancer chemotherapy: a SN-38 (7-ethyl-10-hydroxycamptothecin) glucuronide prodrug for treatment by a PMT (Prodrug MonoTherapy) strategy.

    PubMed

    Angenault, Stéphane; Thirot, Sylvie; Schmidt, Frédéric; Monneret, Claude; Pfeiffer, Bruno; Renard, Pierre

    2003-03-10

    A glucuronide-based prodrug of SN-38 (7-ethyl-10-hydroxycamptothecin) has been synthesized for use in a Prodrug MonoTherapy Strategy (PMT). Since this prodrug is significantly less cytotoxic than SN-38 itself and efficiently releases the drug in vitro in the presence of beta-D-glucuronidase, it can be considered as an appropriate candidate for cancer treatment by a PMT strategy.

  15. Molecular cloning and tissue distribution of the phosphotyrosine interaction domain containing 1 (PID1) gene in Tianfu goat.

    PubMed

    Xu, Honggang; Xu, Gangyi; Wang, Daihua; Zheng, Chengli; Wan, Lu

    2013-02-15

    Phosphotyrosine interaction domain containing 1 (PID1) is an important mediator in the development of obesity-related insulin resistance in humans and animals. For a better understanding of the structure and function of the PID1 gene and to study its effect in caprine, the cDNA of the PID1 gene from the abdominal muscle of Tianfu goat was cloned and sequenced. The structure of PID1 was analyzed using bioinformatics tools. The results showed that the full sequence of the caprine PID1 cDNA was 896 bp long and contained a 654 bp long coding region that encoded a 217 amino acid sequence. Fifteen phosphorylation sites were predicted in the translated PID1 protein. The protein had a phosphotyrosine-binding domain between Arg(53) and Ile(199). A phylogenic tree based on the PID1 proteins from other species revealed that the caprine protein was closely related to cattle PID1. Fluorescence quantitative PCR analyses revealed that PID1 was expressed in the heart, liver, spleen, lung, kidney, leg muscle, abdominal muscle and longissimus dorsi muscle of goats. In particular, high expression levels of PID1 were detected in liver and abdominal muscle, and low expression levels were seen in lung. Furthermore, the PID1 mRNA expression levels in the longissimus dorsi muscles increased gradually with the age of the goats (P<0.05). Western blotting results detected the PID1 protein in six of the tissues in which PID1 was shown to be expressed; the two exceptions were liver and spleen. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Esterase-Sensitive Prodrugs with Tunable Release Rates and Direct Generation of Hydrogen Sulfide.

    PubMed

    Zheng, Yueqin; Yu, Bingchen; Ji, Kaili; Pan, Zhixiang; Chittavong, Vayou; Wang, Binghe

    2016-03-24

    Prodrugs that release hydrogen sulfide upon esterase-mediated cleavage of an ester group followed by lactonization are described herein. By modifying the ester group and thus its susceptibility to esterase, and structural features critical to the lactonization rate, H2 S release rates can be tuned. Such prodrugs directly release hydrogen sulfide without the involvement of perthiol species, which are commonly encountered with existing H2 S donors. Additionally, such prodrugs can easily be conjugated to another non-steroidal anti-inflammatory agent, leading to easy synthesis of hybrid prodrugs. As a biological validation of the H2 S prodrugs, the anti-inflammatory effects of one such prodrug were examined by studying its ability to inhibit LPS-induced TNF-α production in RAW 264.7 cells. This type of H2 S prodrugs shows great potential as both research tools and therapeutic agents.

  17. High-Affinity, Small-Molecule Peptidomimetic Inhibitors of MLL1/WDR5 Protein-Protein Interaction

    SciTech Connect

    Karatas, Hacer; Townsend, Elizabeth C; Cao, Fang; Chen, Yong; Bernard, Denzil; Liu, Liu; Lei, Ming; Dou, Yali; Wang, Shaomeng

    2013-02-12

    Mixed lineage leukemia 1 (MLL1) is a histone H3 lysine 4 (H3K4) methyltransferase, and targeting the MLL1 enzymatic activity has been proposed as a novel therapeutic strategy for the treatment of acute leukemia harboring MLL1 fusion proteins. The MLL1/WDR5 protein–protein interaction is essential for MLL1 enzymatic activity. In the present study, we designed a large number of peptidomimetics to target the MLL1/WDR5 interaction based upon -CO-ARA-NH–, the minimum binding motif derived from MLL1. Our study led to the design of high-affinity peptidomimetics, which bind to WDR5 with Ki < 1 nM and function as potent antagonists of MLL1 activity in a fully reconstituted in vitro H3K4 methyltransferase assay. Determination of co-crystal structures of two potent peptidomimetics in complex with WDR5 establishes their structural basis for high-affinity binding to WDR5. Evaluation of one such peptidomimetic, MM-102, in bone marrow cells transduced with MLL1-AF9 fusion construct shows that the compound effectively decreases the expression of HoxA9 and Meis-1, two critical MLL1 target genes in MLL1 fusion protein mediated leukemogenesis. MM-102 also specifically inhibits cell growth and induces apoptosis in leukemia cells harboring MLL1 fusion proteins. Our study provides the first proof-of-concept for the design of small-molecule inhibitors of the WDR5/MLL1 protein–protein interaction as a novel therapeutic approach for acute leukemia harboring MLL1 fusion proteins.

  18. Solution and solid-supported synthesis of 3,4,5-trisubstituted 1,2,4-triazole-based peptidomimetics.

    PubMed

    Boeglin, Damien; Cantel, Sonia; Heitz, Annie; Martinez, Jean; Fehrentz, Jean-Alain

    2003-11-13

    [reaction: see text] 3,4,5-Trisubstituted 1,2,4-triazoles were synthesized in solution from various thioamides and hydrazides in smooth experimental conditions leading to peptidomimetic scaffolds. This strategy was found to be compatible with the usual peptide synthesis protecting groups. This methodology was then applied on solid support by anchoring alpha-amino acids through their amino function to an activated carbonate resin.

  19. Bivalent peptidomimetic ligands of TrkC are biased agonists, selectively induce neuritogenesis, or potentiate neurotrophin-3 trophic signals

    PubMed Central

    Chen, Dianjun; Brahimi, Fouad; Angell, Yu; Li, Yu-Chin; Moscowicz, Jennifer; Saragovi, H. Uri; Burgess, Kevin

    2009-01-01

    This study was initiated to find small molecule ligands that would induce a functional response when docked with neurotrophin Trk receptors. “Minimalist” mimics of β-turns were designed for this purpose. These mimics are: (i) rigid, yet easily folded into turn-like conformations, and (ii) readily accessible from amino acids bearing most of the natural side chains. Gram quantities of sixteen of these turn mimics were prepared, then assembled into 152 fluorescein-labeled bivalent peptidomimetics via a solution-phase combinatorial method. Fluorescence-based screening of these molecules using cells transfected with the Trk receptors identified 10 potential ligands of TrkC, the receptor for neurotrophin-3 (NT-3). Analogs of these bivalent peptidomimetics with biotin replacing the fluorescein label were then prepared and tested to confirm that binding was not due to the fluorescein. Several assays were conducted to find the mode of action of these biotinylated compounds. Thus, direct binding, survival and neuritogenic, and biochemical signal transduction assays showed 8 of the original 10 hits were agonistic ligands binding to the ectodomain of TrkC. Remarkably, some peptidomimetics afford discrete signals leading to either cell survival or neuritogenic differentiation. The significance of this work is three fold. First, we succeeded in finding small, selective, proteolytically stable ligands for the TrkC receptor; there are very few of these in the literature. Second, we show that it is possible to activate distinct and biased signaling pathways with ligands binding at the ectodomain of wild type receptors. Third, the discovery that some peptidomimetics initiate different modes of cell signaling increases their potential as pharmacological probes and therapeutic leads. PMID:19735123

  20. Mimicking bone extracellular matrix: integrin-binding peptidomimetics enhance osteoblast-like cells adhesion, proliferation, and differentiation on titanium.

    PubMed

    Fraioli, Roberta; Rechenmacher, Florian; Neubauer, Stefanie; Manero, José M; Gil, Javier; Kessler, Horst; Mas-Moruno, Carlos

    2015-04-01

    Interaction between the surface of implants and biological tissues is a key aspect of biomaterials research. Apart from fulfilling the non-toxicity and structural requirements, synthetic materials are asked to direct cell response, offering engineered cues that provide specific instructions to cells. This work explores the functionalization of titanium with integrin-binding peptidomimetics as a novel and powerful strategy to improve the adhesion, proliferation and differentiation of osteoblast-like cells to implant materials. Such biomimetic strategy aims at targeting integrins αvβ3 and α5β1, which are highly expressed on osteoblasts and are essential for many fundamental functions in bone tissue development. The successful grafting of the bioactive molecules on titanium is proven by contact angle measurements, X-ray photoelectron spectroscopy and fluorescent labeling. Early attachment and spreading of cells are statistically enhanced by both peptidomimetics compared to unmodified titanium, reaching values of cell adhesion comparable to those obtained with full-length extracellular matrix proteins. Moreover, an increase in alkaline phosphatase activity, and statistically higher cell proliferation and mineralization are observed on surfaces coated with the peptidomimetics. This study shows an unprecedented biological activity for low-molecular-weight ligands on titanium, and gives striking evidence of the potential of these molecules to foster bone regeneration on implant materials.

  1. PACE4 inhibitors and their peptidomimetic analogs block prostate cancer tumor progression through quiescence induction, increased apoptosis and impaired neovascularisation.

    PubMed

    Levesque, Christine; Couture, Frédéric; Kwiatkowska, Anna; Desjardins, Roxane; Guérin, Brigitte; Neugebauer, Witold A; Day, Robert

    2015-02-28

    Prostate cancer is the leading cancer in North American men. Current pharmacological treatments are limited to anti-androgen strategies and the development of new therapeutic approaches remains a challenge. As a fundamentally new approach, we propose the inhibition of PACE4, a member of the proprotein convertases family of enzymes, as a therapeutic target in prostate cancer. We developed an inhibitor named the Multi-Leu peptide, with potent in vitro anti-proliferative effects. However, the Multi-Leu peptide has not been tested under in vivo conditions and its potency under such conditions is most likely limited, due to the labile characteristics of peptides in general. Using a peptidomimetic approach, we modified the initial scaffold, generating the analog Ac-[DLeu]LLLRVK-Amba, which demonstrates increased inhibitory potency and stability. The systemic administration of this peptidomimetic significantly inhibits tumor progression in the LNCaP xenograft model of prostate cancer by inducing tumor cell quiescence, increased apoptosis and neovascularization impairment. Pharmacokinetic and biodistribution profiles of this inhibitor confirm adequate tumor delivery properties of the compound. We conclude that PACE4 peptidomimetic inhibitors could result in stable and potent drugs for a novel therapeutic strategy for prostate cancer.

  2. PACE4 inhibitors and their peptidomimetic analogs block prostate cancer tumor progression through quiescence induction, increased apoptosis and impaired neovascularisation

    PubMed Central

    Levesque, Christine; Couture, Frédéric; Kwiatkowska, Anna; Desjardins, Roxane; Guérin, Brigitte; Neugebauer, Witold A.; Day, Robert

    2015-01-01

    Prostate cancer is the leading cancer in North American men. Current pharmacological treatments are limited to anti-androgen strategies and the development of new therapeutic approaches remains a challenge. As a fundamentally new approach, we propose the inhibition of PACE4, a member of the proprotein convertases family of enzymes, as a therapeutic target in prostate cancer. We developed an inhibitor named the Multi-Leu peptide, with potent in vitro anti-proliferative effects. However, the Multi-Leu peptide has not been tested under in vivo conditions and its potency under such conditions is most likely limited, due to the labile characteristics of peptides in general. Using a peptidomimetic approach, we modified the initial scaffold, generating the analog Ac-[DLeu]LLLRVK-Amba, which demonstrates increased inhibitory potency and stability. The systemic administration of this peptidomimetic significantly inhibits tumor progression in the LNCaP xenograft model of prostate cancer by inducing tumor cell quiescence, increased apoptosis and neovascularization impairment. Pharmacokinetic and biodistribution profiles of this inhibitor confirm adequate tumor delivery properties of the compound. We conclude that PACE4 peptidomimetic inhibitors could result in stable and potent drugs for a novel therapeutic strategy for prostate cancer. PMID:25682874

  3. Computer-assisted design for paracetamol masking bitter taste prodrugs.

    PubMed

    Hejaz, Hatem; Karaman, Rafik; Khamis, Mustafa

    2012-01-01

    It is believed that the bitter taste of paracetamol, a pain killer drug, is due to its hydroxyl group. Hence, it is expected that blocking the hydroxy group with a suitable linker could inhibit the interaction of paracetamol with its bitter taste receptor/s and hence masking its bitterness. Using DFT theoretical calculations we calculated proton transfers in ten different Kirby's enzyme models, 1-10. The calculation results revealed that the reaction rate is linearly correlated with the distance between the two reactive centers (r(GM)) and the angle of the hydrogen bonding (α) formed along the reaction pathway. Based on these results three novel tasteless paracetamol prodrugs were designed and the thermodynamic and kinetic parameters for their proton transfers were calculated. Based on the experimental t(1/2) (the time needed for the conversion of 50% of the reactants to products) and EM (effective molarity) values for processes 1-10 we have calculated the t(1/2) values for the conversion of the three prodrugs to the parental drug, paracetamol. The calculated t(1/2) values for ProD 1-3 were found to be 21.3 hours, 4.7 hours and 8 minutes, respectively. Thus, the rate by which the paracetamol prodrug undergoes cleavage to release paracetamol can be determined according to the nature of the linker of the prodrug (Kirby's enzyme model 1-10). Further, blocking the phenolic hydroxyl group by a linker moiety is believed to hinder the paracetamol bitterness.

  4. Plasma-Mediated Release of Morphine from Synthesized Prodrugs

    DTIC Science & Technology

    2013-01-01

    containing open functional groups which allow conjugation to nanoparticles, such as dendrimers ,8 to change its pharmacokinetics and enable specific targeting...conjugation to nanoparticles such as the neutralized and non- cytotoxic dendrimers ,22, 23 which may allow improved drug solubility, payload... Dendrimer based Nanomedicine. ; Majoros, I. J., Baker Jr. J. R. , Ed.; Panstanford Publishers, 2008, 175. KEY WORDS Morphine, prodrugs, plasma

  5. Legubicin a Tumor-activated Prodrug for Breast Cancer Therapy

    DTIC Science & Technology

    2008-04-01

    labels. For example, when cytotoxic drugs are part of the prodrug, a hydrophilic group is preferably used for R1 to limit cell uptake by non-target... myeloma , non-small cell lung cancer, retinoblastoma, or tumors in the ovaries. The invention also provides a method for inhibiting cancer metastasis and...

  6. Novel antiglaucoma prodrugs and codrugs of ethacrynic acid.

    PubMed

    Cynkowska, Grazyna; Cynkowski, Tadeusz; Al-Ghananeem, Abeer M; Al-Ghananeem, Abeer A; Guo, Hong; Ashton, Paul; Crooks, Peter A

    2005-08-01

    The purpose of this study was to synthesize a novel prodrug of ethacrynic acid (ECA) with short chain polyethylene glycols (PEGs) and codrugs of ECA with the beta-adrenergic blocking agent atenolol (ATL) or timolol (TML) to overcome the adverse effects of ECA and to enhance its physicochemical properties.

  7. Computationally-designed phenylephrine prodrugs - a model for enhancing bioavailability

    NASA Astrophysics Data System (ADS)

    Karaman, Rafik; Karaman, Donia; Zeiadeh, Isra'

    2013-11-01

    DFT calculations at B3LYP 6-31G (d,p) for intramolecular proton transfer in a number of Kirby's enzyme models demonstrated that the driving force for the proton transfer efficiency is the distance between the two reactive centres (rGM) and the attack angle (α); and the rate of the reaction is linearly correlated with rGM2 and sin (180°- α). Based on these results three phenylephrine prodrugs were designed to provide phenylephrine with higher bioavailability than their parent drug. Using the experimental t1/2 (the time needed for the conversion of 50% of the reactants to products) and EM (effective molarity) values for these processes the t1/2 values for the conversion of the three prodrugs to the parent drug, phenylephrine were calculated. The calculated t1/2 values for ProD 1 and ProD 2 were very high (145 days and several years, respectively) whereas that of ProD 3 was found to be about 35 hours. Therefore, the intra-conversion rates of the phenylephrine prodrugs to phenylephrine can be programmed according to the nature of the prodrug linker.

  8. Simvastatin Prodrug Micelles Target Fracture and Improve Healing

    PubMed Central

    Dusad, Anand; Yuan, Hongjiang; Ren, Ke; Li, Fei; Fehringer, Edward V.; Purdue, P. Edward; Goldring, Steven R.; Daluiski, Aaron; Wang, Dong

    2014-01-01

    Simvastatin (SIM), a widely used anti-lipidaemic drug, has been identified as a bone anabolic agent. Its poor water solubility and the lack of distribution to the skeleton, however, have limited its application in the treatment of bone metabolic diseases. In this study, an amphiphilic macromolecular prodrug of SIM was designed and synthesized to overcome these limitations. The polyethylene glycol (PEG)-based prodrug can spontaneously self-assemble to form micelles. The use of SIM trimer as the prodrug’s hydrophobic segment allows easy encapsulation of additional free SIM. The in vitro studies showed that SIM/SIM-mPEG micelles were internalized by MC3T3 cells via lysosomal trafficking and consistently induced expression of both BMP2 and DKK1 mRNA, suggesting that the prodrug micelle retains the biological functions of SIM. After systemic administration, optical imaging suggests that the micelles would passively target to bone fracture sites associated with hematoma and inflammation. Furthermore, flow cytometry study revealed that SIM/SIM-mPEG micelles had preferred cellular uptake by inflammatory and resident cells within the fracture callus tissue. The treatment study using a mouse osteotomy model validated the micelles’ therapeutic efficacy in promoting bone fracture healing as demonstrated by micro-CT and histological analyses. Collectively, these data suggest that the macromolecular prodrug-based micelle formulation of SIM may have great potential for clinical management of impaired fracture healing. PMID:25542644

  9. Successful kinase bypass with new acyclovir phosphoramidate prodrugs.

    PubMed

    McGuigan, Christopher; Derudas, Marco; Bugert, Joachim J; Andrei, Graciela; Snoeck, Robert; Balzarini, Jan

    2008-08-01

    Novel phosphoramidates of acyclovir have been prepared and evaluated in vitro against acyclovir-sensitive and -resistant herpes simplex virus (HSV) types 1 and 2 and varicella-zoster virus (VZV). Unlike the parent nucleoside these novel phosphate prodrugs retain antiviral potency versus the ACV-resistant virus strain, suggesting an efficient bypass of the viral thymidine kinase.

  10. GSH-Activated NIR Fluorescent Prodrug for Podophyllotoxin Delivery.

    PubMed

    Liu, Yajing; Zhu, Shaojia; Gu, Kaizhi; Guo, Zhiqian; Huang, Xiaoyu; Wang, Mingwei; Amin, Hesham M; Zhu, Weihong; Shi, Ping

    2017-09-06

    Theranostic prodrug therapy enables the targeted delivery of anticancer drugs with minimized adverse effects and real-time in situ monitoring of activation of the prodrugs. In this work, we report the synthesis and biological assessment of the near-infrared (NIR) prodrug DCM-S-PPT and its amphiphilic copolymer (mPEG-DSPE)-encapsulated nanoparticles. DCM-S-PPT is composed of podophyllotoxin (PPT) as the anticancer moiety and a dicyanomethylene-4H-pyran (DCM) derivative as the NIR fluorescent reporter, which are linked by a thiol-specific cleavable disulfide bond. In vitro experiments indicated that DCM-S-PPT has low cytotoxicity and that glutathione (GSH) can activate DCM-S-PPT resulting in PPT release and a concomitant significant enhancement in NIR fluorescence at 665 nm. After being intravenously injected into tumor-bearing nude mice, DCM-S-PPT exhibited excellent tumor-activated performance. Furthermore, we have demonstrated that mPEG-DSPE as a nanocarrier loaded with DCM-S-PPT (mPEG-DSPE/DCM-S-PPT) showed even greater tumor-targeting performance than DCM-S-PPT on account of the enhanced permeability and retention effect. Its tumor-targeting ability and specific drug release in tumors make DCM-S-PPT a promising prodrug that could provide a significant strategy for theranostic drug delivery systems.

  11. Evaluation of Diclofenac Prodrugs for Enhancing Transdermal Delivery

    PubMed Central

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2016-01-01

    The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD), and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates, and bioconversion rates. In vitro fluxes across human epidermal membrane (HEM) in Franz diffusion cell were determined on DA, MD, ED, GD, and PD saturated aqueous solutions. The formation of GD and ED led to the prodrugs with higher aqueous solubilities and lower partition coefficients than those of the parent drug. Prodrugs with improved aqueous solubility showed better fluxes across HEM in aqueous solution than that of the parent drug, with GD showing the highest aqueous solubility and also the highest flux. There is a linear relationship between the aqueous solubility and flux for DA, ED and PD, but GD and MD deviated from the linear line. Overall, diclofenac prodrugs with improved hydrophilicity than the parent drug could be utilized for enhancing transdermal diclofenac delivery. PMID:24517636

  12. Transporter targeted gatifloxacin prodrugs: Synthesis, permeability, and topical ocular delivery

    PubMed Central

    Vooturi, Sunil K.; Kadam, Rajendra S.; Kompella, Uday B.

    2013-01-01

    Purpose To design and synthesize prodrugs of gatifloxacin targeting OCT, MCT, and ATB (0, +) transporters and to identify a prodrug with enhanced delivery to the back of the eye. Method Dimethylamino-propyl, carboxy-propyl, and amino-propyl(2-methyl) derivatives of gatifloxacin (GFX), DMAP-GFX, CP-GFX, and APM-GFX, were designed and synthesized to target OCT, MCT, and ATB (0, +) transporters, respectively. LC-MS method was developed to analyze drug and prodrug levels in various studies. Solubility and Log D (pH 7.4) were measured for prodrugs and the parent drug. Permeability of the prodrugs was determined in cornea, conjunctiva, and sclera-choroidretinal pigment epitheluim (SCRPE) and compared with gatifloxacin using Ussing chamber assembly. Permeability mechanisms were elucidated by determining the transport in the presence of transporter specific inhibitors. 1-Methyl-4-phenylpyridinium iodide (MPP+), nicotinic acid sodium salt, and α-methyl-DL-tryptophan were used to inhibit OCT, MCT, and ATB (0, +) transporters, respectively. A prodrug selected based on in vitro studies was administered as an eye drop to pigmented rabbits and the delivery to various eye tissues including vitreous humor was compared with gatifloxacin dosing. Results DMAP-GFX exhibited 12.8-fold greater solubility than GFX. All prodrugs were more lipophilic, with the measured Log D (pH 7.4) values ranging from 0.05 to 1.04, when compared to GFX (Log D: -1.15). DMAP-GFX showed 1.4-, 1.8-, and 1.9-fold improvement in permeability across cornea, conjunctiva, as well as SCRPE when compared to GFX. Moreover, it exhibited reduced permeability in the presence of MPP+ (competitive inhibitor of OCT), indicating OCT-mediated transport. CP-GFX showed 1.2-, 2.3- and 2.5-fold improvement in permeability across cornea, conjunctiva and SCRPE, respectively. In the presence of nicotinic acid (competitive inhibitor of MCT), permeability of CP-GFX was reduced across conjunctiva. However, cornea and SCRPE

  13. Transporter targeted gatifloxacin prodrugs: synthesis, permeability, and topical ocular delivery.

    PubMed

    Vooturi, Sunil K; Kadam, Rajendra S; Kompella, Uday B

    2012-11-05

    In this work, we aim to design and synthesize prodrugs of gatifloxacin targeting organic cation transporter (OCT), monocarboxylate transporter (MCT), and ATB (0, +) transporters and to identify a prodrug with enhanced delivery to the back of the eye. Dimethylamino-propyl, carboxy-propyl, and amino-propyl(2-methyl) derivatives of gatifloxacin (GFX), DMAP-GFX, CP-GFX, and APM-GFX, were designed and synthesized to target OCT, MCT, and ATB (0, +) transporters, respectively. An LC-MS method was developed to analyze drug and prodrug levels in various studies. Solubility and log D (pH 7.4) were measured for prodrugs and the parent drug. The permeability of the prodrugs was determined in the cornea, conjunctiva, and sclera-choroid-retinal pigment epitheluim (SCRPE) and compared with gatifloxacin using an Ussing chamber assembly. Permeability mechanisms were elucidated by determining the transport in the presence of transporter specific inhibitors. 1-Methyl-4-phenylpyridinium iodide (MPP+), nicotinic acid sodium salt, and α-methyl-DL-tryptophan were used to inhibit OCT, MCT, and ATB (0, +) transporters, respectively. A prodrug selected based on in vitro studies was administered as an eye drop to pigmented rabbits, and the delivery to various eye tissues including vitreous humor was compared with gatifloxacin dosing. DMAP-GFX exhibited 12.8-fold greater solubility than GFX. All prodrugs were more lipophilic, with the measured log D (pH 7.4) values ranging from 0.05 to 1.04, when compared to GFX (log D: -1.15). DMAP-GFX showed 1.4-, 1.8-, and 1.9-fold improvement in permeability across the cornea, conjunctiva, and SCRPE when compared to GFX. Moreover, it exhibited reduced permeability in the presence of MPP+ (competitive inhibitor of OCT), indicating OCT-mediated transport. CP-GFX showed 1.2-, 2.3-, and 2.5-fold improvement in permeability across the cornea, conjunctiva, and SCRPE, respectively. In the presence of nicotinic acid (competitive inhibitor of MCT), the

  14. Thiazolidine prodrugs of cysteamine and cysteine as radioprotective agents

    SciTech Connect

    Roberts, J.C.; Koch, K.E.; Detrick, S.R.

    1995-08-01

    The need for protection against the toxic effects of ionizing radiation comes from many different directions: occupational exposure, nuclear accidents, environmental sources and protection of normal tissue during the therapeutic irradiation of cancer. Sulfhydryl-containing compounds, including cysteamine and L-cysteine, have long been known to possess radioprotective properties, but their therapeutic utility is limited by their side effects at radioprotective doses. To avoid this drawback, thiazolidine prodrugs of cysteamine and L-cysteine were prepared by the condensation of each thiolamine with the aldose monosaccharides, D-ribose and D-glucose, producing RibCyst, GlcCyst, Rib-Cys and GlcCys. The prodrugs were designed to liberate the parent thiolamine nonenzymatically, after ring opening and hydrolysis, which is then available e to function as a radioprotective agent. Cysteamine`s inherent toxicity, measured using Chinese hamster V79 cells growing in culture, was completely eliminated, even at concentrations as high as 25 mM, by providing the thiolamine in the form of a prodrug. Good protection against radiation-induced lethality was demonstrated by the cysteamine prodrugs using a clonogenic assay. Protection against radiation-induced DNA single-strand breaks, as measured by alkaline elution, was also shown by both RibCyst and GlcCyst; this activity was higher than that exhibited by either cysteamine or WR-1065. The L-cysteine prodrugs, RibCys and GlcCys, also possessed radioprotective abilities under most of the conditions studied. Protection against DNA damage was comparable between L-cystein, WR-1065 and RibCys. 42 refs., 7 figs., 2 tabs.

  15. The first generation of β-galactosidase-responsive prodrugs designed for the selective treatment of solid tumors in prodrug monotherapy.

    PubMed

    Legigan, Thibaut; Clarhaut, Jonathan; Tranoy-Opalinski, Isabelle; Monvoisin, Arnaud; Renoux, Brigitte; Thomas, Mikaël; Le Pape, Alain; Lerondel, Stéphanie; Papot, Sébastien

    2012-11-12

    Massive attack: Galactoside prodrugs have been designed that can be selectively activated by lysosomal β-galactosidase located inside cancer cells expressing a specific tumor-associated receptor. This efficient enzymatic process triggers a potent cytotoxic effect, releasing the potent antimitotic agent MMAE and allowing the destruction of both receptor-positive and surrounding receptor-negative tumor cells.

  16. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy

    NASA Astrophysics Data System (ADS)

    Han, Haijie; Wang, Haibo; Chen, Yangjun; Li, Zuhong; Wang, Yin; Jin, Qiao; Ji, Jian

    2015-12-01

    A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy.A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which

  17. Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria.

    PubMed

    Lehouritis, Panos; Stanton, Michael; McCarthy, Florence O; Jeavons, Matthieu; Tangney, Mark

    2016-01-28

    Some chemotherapeutic drugs (prodrugs) require activation by an enzyme for efficacy. We and others have demonstrated the ability of probiotic bacteria to grow specifically within solid tumours following systemic administration, and we hypothesised that the natural enzymatic activity of these tumour-localised bacteria may be suitable for activation of certain such chemotherapeutic drugs. Several wild-type probiotic bacteria; Escherichia coli Nissle, Bifidobacterium breve, Lactococcus lactis and Lactobacillus species, were screened against a panel of popular prodrugs. All strains were capable of activating at least one prodrug. E. coli Nissle 1917 was selected for further studies because of its ability to activate numerous prodrugs and its resistance to prodrug toxicity. HPLC data confirmed biochemical transformation of prodrugs to their toxic counterparts. Further analysis demonstrated that different enzymes can complement prodrug activation, while simultaneous activation of multiple prodrugs (CB1954, 5-FC, AQ4N and Fludarabine phosphate) by E. coli was confirmed, resulting in significant efficacy improvement. Experiments in mice harbouring murine tumours validated in vitro findings, with significant reduction in tumour growth and increase in survival of mice treated with probiotic bacteria and a combination of prodrugs. These findings demonstrate the ability of probiotic bacteria, without the requirement for genetic modification, to enable high-level activation of multiple prodrugs specifically at the site of action.

  18. The delivery and antinociceptive effects of morphine and its ester prodrugs from lipid emulsions.

    PubMed

    Wang, Jhi-Joung; Sung, K C; Yeh, Chih-Hui; Fang, Jia-You

    2008-04-02

    Long-acting analgesia is critical for patients suffering from long-acting pain. The purpose of this study was to develop lipid emulsions as parenteral drug delivery systems for morphine and its ester prodrugs. Morphine prodrugs with various alkyl chain lengths, including morphine propionate (MPR), morphine enanthate (MEN), and morphine decanoate (MDE), were synthesized. The prodrugs were stable against chemical hydrolysis in an aqueous solution, but were quickly hydrolyzed to the parent drug when exposed to esterase and plasma. Lipid emulsions were prepared using phosphatidylethanolamine (PE) as an emulsifier, while squalene was used as an inner oil phase. Drug release was found to be a function of the drug/prodrug lipophilicity, with a lower release rate for more-lipophilic drug/prodrugs. The inclusion of morphine and its prodrugs into lipid emulsions retarded their release. Lipid emulsions, which incorporated cholesterol, generally exhibited a drug/prodrug release comparable to that of emulsions without co-emulsifiers. Pluronic F68 (PF68) further slowed down the release of morphine and its prodrugs from the emulsions. The antinociceptive activity through the parenteral administration of these emulsions was examined using a cold ethanol tail-flick study. Compared with an aqueous solution, a prolonged analgesic duration was detected after application of the drug/prodrug emulsions. Incorporation of co-emulsifiers such as PF68 and cholesterol further increased the duration of action. The combination of prodrug strategy and lipid emulsions may be practically useful for improving analgesic therapy with morphine.

  19. MDCK cell permeability characteristics of a sulfenamide prodrug: strategic implications in considering sulfenamide prodrugs for oral delivery of NH-acids.

    PubMed

    Guarino, Victor R; Nti-Addae, Kwame; Stella, Valentino J

    2011-01-01

    The objective of this Letter is both to report the permeability results of a linezolid-based sulfenamide prodrug in an MDCK cell model (enterocyte surrogate system) and to discuss the strategic implications of these results for considering sulfenamide prodrugs to enhance the oral delivery of weakly acidic NH-acids (e.g., amides, ureas, etc.). The two main findings from this study are that the sulfenamide prodrug does not appear to survive intracellular transport due to conversion to linezolid and that there appears to be an apically-oriented surface conversion pathway that can additionally serve to convert the sulfenamide prodrug to linezolid upon approach of the apical membrane. It is hoped that these findings, along with the discussion of the strategic implications, will facilitate a greater awareness of the potential strengths and weaknesses inherent in the sulfenamide prodrug approach for enhancing the oral delivery of weakly acidic NH-acid drugs.

  20. Visible Light Controlled Release of Anticancer Drug through Double Activation of Prodrug

    PubMed Central

    2012-01-01

    We designed and synthesized a novel double activatable prodrug system (drug–linker–deactivated photosensitizer), containing a photocleavable aminoacrylate-linker and a deactivated photosensitizer, to achieve the spatiotemporally controlled release of parent drugs using visible light. Three prodrugs of CA-4, SN-38, and coumarin were prepared to demonstrate the activation of deactivated photosensitizer by cellular esterase and the release of parent drugs by visible light (540 nm) via photounclick chemistry. Among these prodrugs, nontoxic coumarin prodrug was used to quantify the release of parent drug in live cells. About 99% coumarin was released from the coumarin prodrug after 24 h of incubation with MCF-7 cells followed by irradiation with low intensity visible light (8 mW/cm2) for 30 min. Less toxic prodrugs of CA-4 and SN-38 killed cancer cells as effectively as free drugs after the double activation. PMID:24900573

  1. Supramolecular Crafting of Self-Assembling Camptothecin Prodrugs with Enhanced Efficacy against Primary Cancer Cells

    PubMed Central

    Su, Hao; Zhang, Pengcheng; Cheetham, Andrew G; Koo, Jin Mo; Lin, Ran; Masood, Asad; Schiapparelli, Paula; Quiñones-Hinojosa, Alfredo; Cui, Honggang

    2016-01-01

    Chemical modification of small molecule hydrophobic drugs is a clinically proven strategy to devise prodrugs with enhanced treatment efficacy. While this prodrug strategy improves the parent drug's water solubility and pharmacokinetic profile, it typically compromises the drug's potency against cancer cells due to the retarded drug release rate and reduced cellular uptake efficiency. Here we report on the supramolecular design of self-assembling prodrugs (SAPD) with much improved water solubility while maintaining high potency against cancer cells. We found that camptothecin (CPT) prodrugs created by conjugating two CPT molecules onto a hydrophilic segment can associate into filamentous nanostructures in water. Our results suggest that these SAPD exhibit much greater efficacy against primary brain cancer cells relative to that of irinotecan, a clinically used CPT prodrug. We believe these findings open a new avenue for rational design of supramolecular prodrugs for cancer treatment. PMID:27217839

  2. Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic membranes

    DOE PAGES

    Andreev, Konstantin; Bianchi, Christopher; Laursen, Jonas S.; ...

    2014-05-28

    In this study, antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanism of antimicrobial α-peptide–β-peptoid chimeras. Langmuir monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) were used to model cytoplasmic membranes of both Gram-positive and Gram-negative bacteria, while lipopolysaccharide Kdo2-lipid A monolayers were mimicking the outer membrane of Gram-negative species. We report the results of the measurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity tomore » study the molecular mechanisms of peptidomimetic interaction with bacterial membranes. We found guanidino group-containing chimeras to exhibit greater disruptive activity on DPPG monolayers than the amino group-containing analogues. However, this effect was not observed for lipopolysaccharide monolayers where the difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity of these antimicrobials into both model membrane systems examined, which may be useful for future cellular localization studies.« less

  3. Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic membranes

    SciTech Connect

    Andreev, Konstantin; Bianchi, Christopher; Laursen, Jonas S.; Citterio, Linda; Hein-Kristensen, Line; Gram, Lone; Kuzmenko, Ivan; Olsen, Christian A.; Gidalevitz, David

    2014-01-01

    Antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanismof antimicrobial α-peptide–β-peptoid chimeras. Langmuirmonolayers composed of 1,2-dipalmitoylsn- glycero-3-phosphatidylglycerol (DPPG) were used to model cytoplasmic membranes of both Gram-positive and Gram-negative bacteria,while lipopolysaccharide Kdo2-lipid Amonolayersweremimicking the outer membrane of Gram-negative species.We report the results of themeasurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity to study the molecularmechanisms of peptidomimetic interaction with bacterialmembranes.We found guanidino group-containing chimeras to exhibit greater disruptive activity on DPPGmonolayers than the amino group-containing analogues. However, this effect was not observed for lipopolysaccharidemonolayerswhere the difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity of these antimicrobials into both model membrane systems examined, which may be useful for future cellular localization studies.

  4. Sugar amino acid based scaffolds--novel peptidomimetics and their potential in combinatorial synthesis.

    PubMed

    Chakraborty, Tushar K; Jayaprakash, Sarva; Ghosh, Subhash

    2002-08-01

    To meet the growing demands for the development of new molecular entities for discovering new drugs and materials, organic chemists have started looking for new concepts to supplement traditional approaches. In one such approach, the expertise gained over the years in the area of organic synthesis and the rational drug-design concepts are combined together to create "nature-like" and yet unnatural organic molecules that are expected to provide leads in discovering new molecules. Emulating the basic principles followed by nature to build its vast repertoire of biomolecules, organic chemists are developing many novel multifunctional building blocks. Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl groups provide an excellent opportunity for organic chemists to create structural diversities akin to nature's molecular arsenal. Recent advances in the area of combinatorial chemistry give unprecedented technological support for rapid compilations of sugar amino acid-based libraries exploiting the diversities of carbohydrate molecules and well-developed solid-phase peptide synthesis methods. This review chronicles the development of sugar amino acids as a novel class of peptidomimetic building blocks and their applications in generating desired secondary structures in peptides as well as in creating mimics of natural biopolymers.

  5. Conformer and pharmacophore based identification of peptidomimetic inhibitors of chikungunya virus nsP2 protease.

    PubMed

    Dhindwal, Sonali; Kesari, Pooja; Singh, Harvijay; Kumar, Pravindra; Tomar, Shailly

    2016-12-02

    Chikungunya virus nsP2 replication protein is a cysteine protease, which cleaves the nonstructural nsP1234 polyprotein into functional replication components. The cleavage and processing of nsP1234 by nsP2 protease is essential for the replication and proliferation of the virus. Thus, ChikV nsP2 protease is a promising target for antiviral drug discovery. In this study, the crystal structure of the C-terminal domain of ChikV nsP2 protease (PDB ID: 4ZTB) was used for structure based identification and rational designing of peptidomimetic inhibitors against nsP2 protease. The interactions of the junction residues of nsP3/4 polyprotein in the active site of nsP2 protease have been mimicked to identify and design potential inhibitory molecules. Molecular docking of the nsP3/4 junction peptide in the active site of ChikV nsP2 protease provided the structural insight of the probable binding mode of nsP3/4 peptide and pigeonholed the molecular interactions critical for the substrate binding. Further, the shape and pharmacophoric properties of the viral nsP3/4 substrate peptide were taken into consideration and the mimetic molecules were identified and designed. The designed mimetic compounds were then analyzed by docking and their binding affinity was assessed by molecular dynamics simulations.

  6. Conformationally Constrained Histidines in the Design of Peptidomimetics: Strategies for the χ-Space Control

    PubMed Central

    Stefanucci, Azzurra; Pinnen, Francesco; Feliciani, Federica; Cacciatore, Ivana; Lucente, Gino; Mollica, Adriano

    2011-01-01

    A successful design of peptidomimetics must come to terms with χ-space control. The incorporation of χ-space constrained amino acids into bioactive peptides renders the χ1 and χ2 torsional angles of pharmacophore amino acids critical for activity and selectivity as with other relevant structural features of the template. This review describes histidine analogues characterized by replacement of native α and/or β-hydrogen atoms with alkyl substituents as well as analogues with α, β-didehydro unsaturation or Cα-Cβ cyclopropane insertion (ACC derivatives). Attention is also dedicated to the relevant field of β-aminoacid chemistry by describing the synthesis of β2- and β3-models (β-hHis). Structural modifications leading to cyclic imino derivatives such as spinacine, aza-histidine and analogues with shortening or elongation of the native side chain (nor-histidine and homo-histidine, respectively) are also described. Examples of the use of the described analogues to replace native histidine in bioactive peptides are also given. PMID:21686155

  7. Discovery of Peptidomimetic Ligands of EED as Allosteric Inhibitors of PRC2.

    PubMed

    Barnash, Kimberly D; The, Juliana; Norris-Drouin, Jacqueline L; Cholensky, Stephanie H; Worley, Beau M; Li, Fengling; Stuckey, Jacob I; Brown, Peter J; Vedadi, Masoud; Arrowsmith, Cheryl H; Frye, Stephen V; James, Lindsey I

    2017-03-13

    The function of EED within polycomb repressive complex 2 (PRC2) is mediated by a complex network of protein-protein interactions. Allosteric activation of PRC2 by binding of methylated proteins to the embryonic ectoderm development (EED) aromatic cage is essential for full catalytic activity, but details of this regulation are not fully understood. EED's recognition of the product of PRC2 activity, histone H3 lysine 27 trimethylation (H3K27me3), stimulates PRC2 methyltransferase activity at adjacent nucleosomes leading to H3K27me3 propagation and, ultimately, gene repression. By coupling combinatorial chemistry and structure-based design, we optimized a low-affinity methylated jumonji, AT-rich interactive domain 2 (Jarid2) peptide to a smaller, more potent peptidomimetic ligand (Kd = 1.14 ± 0.14 μM) of the aromatic cage of EED. Our strategy illustrates the effectiveness of applying combinatorial chemistry to achieve both ligand potency and property optimization. Furthermore, the resulting ligands, UNC5114 and UNC5115, demonstrate that targeted disruption of EED's reader function can lead to allosteric inhibition of PRC2 catalytic activity.

  8. The structural basis for peptidomimetic inhibition of eukaryotic ribonucleotide reductase: a conformationally flexible pharmacophore.

    PubMed

    Xu, Hai; Fairman, James W; Wijerathna, Sanath R; Kreischer, Nathan R; LaMacchia, John; Helmbrecht, Elizabeth; Cooperman, Barry S; Dealwis, Chris

    2008-08-14

    Eukaryotic ribonucleotide reductase (RR) catalyzes nucleoside diphosphate conversion to deoxynucleoside diphosphate. Crucial for rapidly dividing cells, RR is a target for cancer therapy. RR activity requires formation of a complex between subunits R1 and R2 in which the R2 C-terminal peptide binds to R1. Here we report crystal structures of heterocomplexes containing mammalian R2 C-terminal heptapeptide, P7 (Ac-1FTLDADF7) and its peptidomimetic P6 (1Fmoc(Me)PhgLDChaDF7) bound to Saccharomyces cerevisiae R1 (ScR1). P7 and P6, both of which inhibit ScRR, each bind at two contiguous sites containing residues that are highly conserved among eukaryotes. Such binding is quite distinct from that reported for prokaryotes. The Fmoc group in P6 peptide makes several hydrophobic interactions that contribute to its enhanced potency in binding to ScR1. Combining all of our results, we observe three distinct conformations for peptide binding to ScR1. These structures provide pharmacophores for designing highly potent nonpeptide class I RR inhibitors.

  9. Isosorbide-based peptidomimetics as inhibitors of hepatitis C virus serine protease.

    PubMed

    Portela, Aline C; Barros, Thalita G; Lima, Camilo H da S; Dias, Luiza R S; Azevedo, Pedro H R de A; Dantas, Anna Sophia C L; Mohana-Borges, Ronaldo; Ventura, Gustavo T; Pinheiro, Sergio; Muri, Estela M F

    2017-08-15

    Hepatitis C infection is a cause of chronic liver diseases such as cirrhosis and carcinoma. The current therapy for hepatitis C has limited efficacy and low tolerance. The HCV encodes a serine protease which is critical for viral replication, and few protease inhibitors are currently on the market. In this paper, we describe the synthesis and screening of novel isosorbide-based peptidomimetic inhibitors, in which the compounds 1d, 1e, and 1i showed significant inhibition of the protease activity in vitro at 100µM. The compound 1e also showed dose-response (IC50=36±3µM) and inhibited the protease mutants D168A and V170A at 100µM, indicating it as a promising inhibitor of the HCV NS3/4A protease. Our molecular modeling studies suggest that the activity of 1e is associated with a change in the interactions of S2 and S4 subsites, since that the increased flexibility favors a decrease in activity against D168A, whereas the appearance of a hydrophobic cavity in the S4 subsite increase the inhibition against V170A strain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Design, synthesis, and application of OB2C combinatorial peptide and peptidomimetic libraries.

    PubMed

    Liu, Ruiwu; Shih, Tsung-Chieh; Deng, Xiaojun; Anwar, Lara; Ahadi, Sara; Kumaresan, Pappanaicken; Lam, Kit S

    2015-01-01

    The "one-bead two-compound" (OB2C) combinatorial library is constructed on topologically segregated trifunctional bilayer beads such that each bead has a fixed cell-capturing ligand and a random library compound co-displayed on its surface and a chemical coding tag (bar code) inside the bead. An OB2C library containing thousands to millions of compounds can be synthesized and screened concurrently within a short period of time. When live cells are incubated with such OB2C libraries, every bead will be coated with a monolayer of cells. The cell membranes of the captured cells facing the bead surface are exposed to the library compounds tethered to each bead. A specific biochemical or cellular response can be detected with an appropriate reporter system. The OB2C method enables investigators to rapidly discover synthetic molecules that not only interact with cell-surface receptors but can also stimulate or inhibit downstream cell signaling. To demonstrate this powerful method, one OB2C peptide library and two OB2C peptidomimetic libraries were synthesized and screened against Molt-4 lymphoma cells to discover "death ligands." Apoptosis of the bead-bound cells was detected with immunocytochemistry using horseradish peroxidase (HRP)-conjugated anti-cleaved caspase-3 antibody and 3,3'-diaminobenzidine as a substrate. Two novel synthetic "death ligands" against Molt-4 cells were discovered using this OB2C library approach.

  11. Amphipathic guanidine-embedded glyoxamide-based peptidomimetics as novel antibacterial agents and biofilm disruptors.

    PubMed

    Nizalapur, Shashidhar; Kimyon, Onder; Yee, Eugene; Ho, Kitty; Berry, Thomas; Manefield, Mike; Cranfield, Charles G; Willcox, Mark; Black, David StC; Kumar, Naresh

    2017-03-01

    Antimicrobial resistance in bacteria is becoming increasingly prevalent, posing a critical challenge to global health. Bacterial biofilm formation is a common resistance mechanism that reduces the effectiveness of antibiotics. Thus, the development of compounds that can disrupt bacterial biofilms is a potential strategy to combat antimicrobial resistance. We report herein the synthesis of amphipathic guanidine-embedded glyoxamide-based peptidomimetics via ring-opening reactions of N-naphthoylisatins with amines and amino acids. These compounds were investigated for their antibacterial activity by the determination of minimum inhibitory concentration (MIC) against S. aureus and E. coli. Compounds 35, 36, and 66 exhibited MIC values of 6, 8 and 10 μg mL(-1) against S. aureus, respectively, while compounds 55 and 56 showed MIC values of 17 and 19 μg mL(-1) against E. coli, respectively. Biofilm disruption and inhibition activities were also evaluated against various Gram-positive and Gram-negative bacteria. The most active compound 65 exhibited the greatest disruption of established biofilms by 65% in S. aureus, 61% in P. aeruginosa, and 60% in S. marcescens respectively, at 250 μM concentration, while compound 52 inhibited the formation of biofilms by 72% in S. marcescens at 250 μM. We also report here the in vitro toxicity against MRC-5 human lung fibroblast cells. Finally, the pore forming capability of the three most potent compounds were tested using tethered bilayer lipid membrane (tBLM) technology.

  12. Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity.

    PubMed

    Ahn, Mija; Gunasekaran, Pethaiah; Rajasekaran, Ganesan; Kim, Eun Young; Lee, Soo-Jae; Bang, Geul; Cho, Kun; Hyun, Jae-Kyung; Lee, Hyun-Ju; Jeon, Young Ho; Kim, Nam-Hyung; Ryu, Eun Kyoung; Shin, Song Yub; Bang, Jeong Kyu

    2017-01-05

    In this study, we report on the first chemical synthesis of ultra-short pyrazole-arginine based antimicrobial peptidomimetics derived from the newly synthesized N-alkyl/aryl pyrazole amino acids. Through the systematic tuning of hydrophobicity, charge, and peptide length, we identified the shortest peptide Py11 with the most potent antimicrobial activity. Py11 displayed greater antimicrobial activity against antibiotic-resistant bacteria, including MRSA, MDRPA, and VREF, which was approximately 2-4 times higher than that of melittin. Besides its higher selectivity (therapeutic index) toward bacterial cells than LL-37, Py11 showed highly increased proteolytic stability against trypsin digestion and maintained its antimicrobial activity in the presence of physiological salts. Interestingly, Py11 exhibited higher anti-biofilm activity against MDRPA compared to LL-37. The results from fluorescence spectroscopy and transmission electron microscopy (TEM) suggested that Py11 kills bacterial cells possibly by integrity disruption damaging the cell membrane, leading to the cytosol leakage and eventual cell lysis. Furthermore, Py11 displayed significant anti-inflammatory (endotoxin-neutralizing) activity by inhibiting LPS-induced production of nitric oxide (NO) and TNF-α. Collectively, our results suggest that Py11 may serve as a model compound for the design of antimicrobial and antisepsis agents.

  13. The Structural Basis for Peptidomimetic Inhibition of Eukaryotic Ribonucleotide Reductase: A Conformationally Flexible Pharmacophore

    SciTech Connect

    Xu, Hai; Fairman, James W.; Wijerathna, Sanath R.; Kreischer, Nathan R.; LaMacchia, John; Helmbrecht, Elizabeth; Cooperman, Barry S.; Dealwis, Chris

    2008-08-19

    Eukaryotic ribonucleotide reductase (RR) catalyzes nucleoside diphosphate conversion to deoxynucleoside diphosphate. Crucial for rapidly dividing cells, RR is a target for cancer therapy. RR activity requires formation of a complex between subunits R1 and R2 in which the R2 C-terminal peptide binds to R1. Here we report crystal structures of heterocomplexes containing mammalian R2 C-terminal heptapeptide, P7 (Ac-{sup 1}FTLDADF{sup 7}) and its peptidomimetic P6 ({sup 1}Fmoc(Me)PhgLDChaDF{sup 7}) bound to Saccharomyces cerevisiae R1 (ScR1). P7 and P6, both of which inhibit ScRR, each bind at two contiguous sites containing residues that are highly conserved among eukaryotes. Such binding is quite distinct from that reported for prokaryotes. The Fmoc group in P6 peptide makes several hydrophobic interactions that contribute to its enhanced potency in binding to ScR1. Combining all of our results, we observe three distinct conformations for peptide binding to ScR1. These structures provide pharmacophores for designing highly potent nonpeptide class I RR inhibitors.

  14. Synthesis, biological evaluation, hydration site thermodynamics, and chemical reactivity analysis of α-keto substituted peptidomimetics for the inhibition of Plasmodium falciparum.

    PubMed

    Weldon, David J; Shah, Falgun; Chittiboyina, Amar G; Sheri, Anjaneyulu; Chada, Raji Reddy; Gut, Jiri; Rosenthal, Philip J; Shivakumar, Develeena; Sherman, Woody; Desai, Prashant; Jung, Jae-Chul; Avery, Mitchell A

    2014-03-01

    A new series of peptidomimetic pseudo-prolyl-homophenylalanylketones were designed, synthesized and evaluated for inhibition of the Plasmodium falciparum cysteine proteases falcipain-2 (FP-2) and falcipain-3 (FP-3). In addition, the parasite killing activity of these compounds in human blood-cultured P. falciparum was examined. Of twenty-two (22) compounds synthesized, one peptidomimetic comprising a homophenylalanine-based α-hydroxyketone linked Cbz-protected hydroxyproline (39) showed the most potency (IC50 80 nM against FP-2 and 60 nM against FP-3). In silico analysis of these peptidomimetic analogs offered important protein-ligand structural insights including the role, by WaterMap, of water molecules in the active sites of these protease isoforms. The pseudo-dipeptide 39 and related compounds may serve as a promising direction forward in the design of competitive inhibitors of falcipains for the effective treatment of malaria.

  15. Synthesis and optimization of peptidomimetics as HIV entry inhibitors against the receptor protein CD4 using STD NMR and ligand docking.

    PubMed

    Neffe, Axel T; Bilang, Matthias; Meyer, Bernd

    2006-09-07

    We recently described the design and synthesis of a novel CD4 binding peptidomimetic as a potential HIV entry inhibitor with a KD value of approximately 35 microM and a high proteolytic stability [A. T. Neffe and B. Meyer, Angew. Chem., Int. Ed., 2004, 43, 2937-2940]. Based on saturation transfer difference (STD) NMR analyses and docking studies of peptidomimetics we now report the rational design, synthesis, and binding properties of 11 compounds with improved binding affinity. Surface plasmon resonance (SPR) resulted in a KD = 10 microM for the best peptidomimetic XI, whose binding affinity is confirmed by STD NMR (KD = 9 microM). The STD NMR determined binding epitope of the ligand indicates a very similar binding mode as that of the lead structure. The binding studies provide structure activity relationships and demonstrate the utility of this approach.

  16. Brain uptake of a Zidovudine prodrug after nasal administration of solid lipid microparticles.

    PubMed

    Dalpiaz, Alessandro; Ferraro, Luca; Perrone, Daniela; Leo, Eliana; Iannuccelli, Valentina; Pavan, Barbara; Paganetto, Guglielmo; Beggiato, Sarah; Scalia, Santo

    2014-05-05

    Our previous results demonstrated that a prodrug obtained by the conjugation of the antiretroviral drug zidovudine (AZT) with ursodeoxycholic acid (UDCA) represents a potential carrier for AZT in the central nervous system, thus possibly increasing AZT efficiency as an anti-HIV drug. Based on these results and in order to enhance AZT brain targeting, the present study focuses on solid lipid microparticles (SLMs) as a carrier system for the nasal administration of UDCA-AZT prodrug. SLMs were produced by the hot emulsion technique, using tristearin and stearic acid as lipidic carriers, whose mean diameters were 16 and 7 μm, respectively. SLMs were of spherical shape, and their prodrug loading was 0.57 ± 0.03% (w/w, tristearin based) and 1.84 ± 0.02% (w/w, stearic acid based). The tristearin SLMs were able to control the prodrug release, whereas the stearic acid SLMs induced a significant increase of the dissolution rate of the free prodrug. The free prodrug was rapidly hydrolyzed in rat liver homogenates with a half-life of 2.7 ± 0.14 min (process completed within 30 min). The tristearin SLMs markedly enhanced the stability of the prodrug (75% of the prodrug still present after 30 min), whereas the stabilization effect of the stearic acid SLMs was lower (14% of the prodrug still present after 30 min). No AZT and UDCA-AZT were detected in the rat cerebrospinal fluid (CSF) after an intravenous prodrug administration (200 μg). Conversely, the nasal administration of stearic acid based SLMs induced the uptake of the prodrug in the CSF, demonstrating the existence of a direct nose-CNS pathway. In the presence of chitosan, the CSF prodrug uptake increased six times, up to 1.5 μg/mL within 150 min after nasal administration. The loaded SLMs appear therefore as a promising nasal formulation for selective zidovudine brain uptake.

  17. New Taxol (paclitaxel) prodrugs designed for ADEPT and PMT strategies in cancer chemotherapy.

    PubMed

    Alaoui, Abdessamad El; Saha, Nabendu; Schmidt, Frédéric; Monneret, Claude; Florent, Jean-Claude

    2006-07-15

    Two new glucuronide paclitaxel prodrugs have been synthesized. Linked to the 2'-OH of the drug by a carbonate function, they include a self-immolative spacer bearing an arylnitro or arylamino group between the drug and the glucuronic acid residue. Both prodrugs were well detoxified and easily cleaved in the presence of beta-D-glucuronidase with fast removal of the spacer, releasing paclitaxel. The arylamino spacer-containing prodrug, more stable than the corresponding nitro analogue, was selected for further studies.

  18. Synthesis, characterization and evaluation of pro-drugs of VLA-4 antagonists.

    PubMed

    Huryn, Donna M; Ashwell, Susan; Baudy, Reinhardt; Dressen, Darren B; Gallaway, William; Grant, Francine S; Konradi, Andrei; Ley, Robert W; Petusky, Susan; Pleiss, Michael A; Sarantakis, Dimitri; Semko, Christopher M; Sherman, Mary M; Tio, Cesar; Zhang, Lu

    2004-04-05

    A pro-drug strategy to identify orally efficacious VLA-4 antagonists is described. Potential pro-drugs were evaluated for their physical chemical characteristics and in vitro properties, including solubility, stability, permeability and plasma stability. Based on this characterization, promising compounds were identified for in vivo pharmacokinetic evaluation. These studies resulted in the identification of a pro-drug that exhibited desirable blood levels in PK studies in several different species.

  19. Prodrugs of phosphonates and phosphates: crossing the membrane barrier.

    PubMed

    Wiemer, Andrew J; Wiemer, David F

    2015-01-01

    A substantial portion of metabolism involves transformation of phosphate esters, including pathways leading to nucleotides and oligonucleotides, carbohydrates, isoprenoids and steroids, and phosphorylated proteins. Because the natural substrates bear one or more negative charges, drugs that target these enzymes generally must be charged as well, but small charged molecules can have difficulty traversing the cell membrane by means other than endocytosis. The resulting dichotomy has stimulated a great deal of effort to develop effective prodrugs, compounds that carry little or no charge to enable them to transit biological membranes, but able to release the parent drug once inside the target cell. This chapter presents recent studies on advances in prodrug forms, along with representative examples of their application to marketed and developmental drugs.

  20. Anticancer platinum (IV) prodrugs with novel modes of activity.

    PubMed

    Chin, Chee Fei; Wong, Daniel Yuan Qiang; Jothibasu, Ramasamy; Ang, Wee Han

    2011-01-01

    Over the past four decades, the search for improved platinum drugs based on the classical platinum (II)-diam(m)ine pharmacophore has yielded only a handful of successful candidates. New methodologies centred on platinum (IV) complexes, with better stability and expanded coordination spheres, offer the possibility of overcoming limitations inherent to platinum (II) drugs. In this review, novel strategies of targeting and killing cancer cells using platinum (IV) constructs are discussed. These approaches exploit the unique electrochemical characteristics and structural attributes of platinum (IV) complexes as a means of developing anticancer prodrugs that can target and selectively destroy cancer cells. Anticancer platinum (IV) prodrugs represent promising new strategies as targeted chemotherapeutic agents in the ongoing battle against cancer.

  1. Prodrug thiamine analogs as inhibitors of the enzyme transketolase.

    PubMed

    Le Huerou, Yvan; Gunawardana, Indrani; Thomas, Allen A; Boyd, Steven A; de Meese, Jason; Dewolf, Walter; Gonzales, Steven S; Han, May; Hayter, Laura; Kaplan, Tomas; Lemieux, Christine; Lee, Patrice; Pheneger, Jed; Poch, Gregory; Romoff, Todd T; Sullivan, Francis; Weiler, Solly; Wright, S Kirk; Lin, Jie

    2008-01-15

    Transketolase, a key enzyme in the pentose phosphate pathway, has been suggested as a target for inhibition in the treatment of cancer. Compound 5a ('N3'-pyridyl thiamine'; 3-(6-methyl-2-amino-pyridin-3-ylmethyl)-5-(2-hydroxy-ethyl)-4-methyl-thiazol-3-ium chloride hydrochloride), an analog of the transketolase cofactor thiamine, is a potent transketolase inhibitor but suffers from poor pharmacokinetics due to high clearance and C(max) linked toxicity. An efficient way of improving the pharmacokinetic profile of 5a is to prepare oxidized prodrugs which are slowly reduced in vivo yielding longer, sustained blood levels of the drug. The synthesis of such prodrugs and their evaluation in rodent models is reported.

  2. Prodrugs of phosphonates and phosphates: crossing the membrane barrier

    PubMed Central

    Wiemer, Andrew J.; Wiemer, David F.

    2016-01-01

    A substantial portion of metabolism involves transformation of phosphate esters, including pathways leading to nucleotides and oligonucleotides, carbohydrates, isoprenoids and steroids, and phosphorylated proteins. Because the natural substrates bear one or more negative charges, drugs that target these enzymes generally must be charged as well but small charged molecules can have difficulty traversing the cell membrane other than by endocytosis. The resulting dichotomy has stimulated abundant effort to develop effective prodrugs, compounds that carry little or no charge to enable them to transit biological membranes but then able to release the parent drug once inside the target cell. This chapter will present recent studies on advances in prodrug forms, along with representative examples of their application to marketed and developmental drugs. PMID:25391982

  3. Deep Phospho- and Phosphotyrosine Proteomics Identified Active Kinases and Phosphorylation Networks in Colorectal Cancer Cell Lines Resistant to Cetuximab.

    PubMed

    Abe, Yuichi; Nagano, Maiko; Kuga, Takahisa; Tada, Asa; Isoyama, Junko; Adachi, Jun; Tomonaga, Takeshi

    2017-09-05

    Abnormality in cellular phosphorylation is closely related to oncogenesis. Thus, kinase inhibitors, especially tyrosine kinase inhibitors (TKIs), have been developed as anti-cancer drugs. Genomic analyses have been used in research on TKI sensitivity, but some types of TKI resistance have been unclassifiable by genomic data. Therefore, global proteomic analysis, especially phosphotyrosine (pY) proteomic analysis, could contribute to predict TKI sensitivity and overcome TKI-resistant cancer. In this study, we conducted deep phosphoproteomic analysis to select active kinase candidates in colorectal cancer intrinsically resistant to Cetuximab. The deep phosphoproteomic data were obtained by performing immobilized metal-ion affinity chromatography-based phosphoproteomic and highly sensitive pY proteomic analyses. Comparison between sensitive (LIM1215 and DLD1) and resistant cell lines (HCT116 and HT29) revealed active kinase candidates in the latter, most of which were identified by pY proteomic analysis. Remarkably, genomic mutations were not assigned in most of these kinases. Phosphorylation-based signaling network analysis of the active kinase candidates indicated that SRC-PRKCD cascade was constitutively activated in HCT116 cells. Treatment with an SRC inhibitor significantly inhibited proliferation of HCT116 cells. In summary, our results based on deep phosphoproteomic data led us to propose novel therapeutic targets against cetuximab resistance and showed the potential for anti-cancer therapy.

  4. NADPH oxidase-derived H2O2 subverts pathogen signaling by oxidative phosphotyrosine conversion to PB-DOPA

    PubMed Central

    Alvarez, Luis A.; Kovačič, Lidija; Rodríguez, Javier; Gosemann, Jan-Hendrik; Kubica, Malgorzata; Pircalabioru, Gratiela G.; Friedmacher, Florian; Cean, Ada; Ghişe, Alina; Sărăndan, Mihai B.; Puri, Prem; Daff, Simon; Plettner, Erika; von Kriegsheim, Alex; Bourke, Billy; Knaus, Ulla G.

    2016-01-01

    Strengthening the host immune system to fully exploit its potential as antimicrobial defense is vital in countering antibiotic resistance. Chemical compounds released during bidirectional host–pathogen cross-talk, which follows a sensing-response paradigm, can serve as protective mediators. A potent, diffusible messenger is hydrogen peroxide (H2O2), but its consequences on extracellular pathogens are unknown. Here we show that H2O2, released by the host on pathogen contact, subverts the tyrosine signaling network of a number of bacteria accustomed to low-oxygen environments. This defense mechanism uses heme-containing bacterial enzymes with peroxidase-like activity to facilitate phosphotyrosine (p-Tyr) oxidation. An intrabacterial reaction converts p-Tyr to protein-bound dopa (PB-DOPA) via a tyrosinyl radical intermediate, thereby altering antioxidant defense and inactivating enzymes involved in polysaccharide biosynthesis and metabolism. Disruption of bacterial signaling by DOPA modification reveals an infection containment strategy that weakens bacterial fitness and could be a blueprint for antivirulence approaches. PMID:27562167

  5. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS

    PubMed Central

    Huang, William Y. C.; Yan, Qingrong; Lin, Wan-Chen; Chung, Jean K.; Hansen, Scott D.; Christensen, Sune M.; Tu, Hsiung-Lin; Kuriyan, John; Groves, Jay T.

    2016-01-01

    The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kinetics and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. The generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes. PMID:27370798

  6. Numb-Associated Kinase Interacts with the Phosphotyrosine Binding Domain of Numb and Antagonizes the Function of Numb In Vivo

    PubMed Central

    Chien, Cheng-ting; Wang, Shuwen; Rothenberg, Michael; Jan, Lily Y.; Jan, Yuh Nung

    1998-01-01

    During asymmetric cell division, the membrane-associated Numb protein localizes to a crescent in the mitotic progenitor and is segregated predominantly to one of the two daughter cells. We have identified a putative serine/threonine kinase, Numb-associated kinase (Nak), which interacts physically with the phosphotyrosine binding (PTB) domain of Numb. The PTB domains of Shc and insulin receptor substrate bind to an NPXY motif which is not present in the region of Nak that interacts with Numb PTB domain. We found that the Numb PTB domain but not the Shc PTB domain interacts with Nak through a peptide of 11 amino acids, implicating a novel and specific protein-protein interaction. Overexpression of Nak in the sensory organs causes both daughters of a normally asymmetric cell division to adopt the same cell fate, a transformation similar to the loss of numb function phenotype and opposite the cell fate transformation caused by overexpression of Numb. The frequency of cell fate transformation is sensitive to the numb gene dosage, as expected from the physical interaction between Nak and Numb. These findings indicate that Nak may play a role in cell fate determination during asymmetric cell divisions. PMID:9418906

  7. Hepatic protein phosphotyrosine phosphatase. Dephosphorylation of insulin and epidermal growth factor receptors in normal and alloxan diabetic rats.

    PubMed Central

    Gruppuso, P A; Boylan, J M; Posner, B I; Faure, R; Brautigan, D L

    1990-01-01

    Polypeptide hormone signal transmission by receptor tyrosine kinases requires the rapid reversal of tyrosine phosphorylation by protein phosphotyrosine phosphatases (PPTPases). We studied hepatic PPTPases in the rat with emphasis on acute and chronic regulation by insulin. PPTPase activity with artificial substrates ([32P]Tyr-reduced, carboxyamidomethylated, and maleylated lysozyme and [32P]Tyr-poly[glutamic acid:tyrosine] 4:1) was present in distinct membrane, cytoskeletal, and cytosolic fractions. These PPTPase activities were unaffected by alloxan diabetes. Acute administration of insulin to normal animals also did not change PPTPase activity in liver plasma membranes or endosomal membranes. Although alloxan diabetes did not affect PPTPase activity measured with artificial substrates or with epidermal growth factor receptors, a decrease in insulin receptor dephosphorylation was noted. Dephosphorylation of hepatic receptors from normal and diabetic rats by membrane PPTPase from control rats was similar. These results indicate that alloxan diabetes does not lead to a generalized effect on hepatic PPTPase activity, although a substrate-specific decrease in activity with the insulin receptor may occur. Images PMID:2161429

  8. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS

    SciTech Connect

    Huang, William Y. C.; Yan, Qingrong; Lin, Wan-Chen; Chung, Jean K.; Hansen, Scott D.; Christensen, Sune M.; Tu, Hsiung-Lin; Kuriyan, John; Groves, Jay T.

    2016-07-01

    The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kinetics and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. In conclusion, the generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes.

  9. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS

    DOE PAGES

    Huang, William Y. C.; Yan, Qingrong; Lin, Wan-Chen; ...

    2016-07-01

    The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kineticsmore » and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. In conclusion, the generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes.« less

  10. Structural Basis for Phosphotyrosine Recognition by the Src Homology-2 Domains of the Adapter Proteins SH2-B and APS

    SciTech Connect

    Hu,J.; Hubbard, S.

    2006-01-01

    SH2-B, APS, and Lnk constitute a family of adapter proteins that modulate signaling by protein tyrosine kinases. These adapters contain an N-terminal dimerization region, a pleckstrin homology domain, and a C-terminal Src homology-2 (SH2) domain. SH2-B is recruited via its SH2 domain to various protein tyrosine kinases, including Janus kinase-2 (Jak2) and the insulin receptor. Here, we present the crystal structure at 2.35 Angstroms resolution of the SH2 domain of SH2-B in complex with a phosphopeptide representing the SH2-B recruitment site in Jak2 (pTyr813). The structure reveals a canonical SH2 domain-phosphopeptide binding mode, but with specific recognition of a glutamate at the +1 position relative to phosphotyrosine, in addition to recognition of a hydrophobic residue at the +3 position. Biochemical studies of SH2-B and APS demonstrate that, although the SH2 domains of these two adapter proteins share 79% sequence identity, the SH2-B SH2 domain binds preferentially to Jak2, whereas the APS SH2 domain has higher affinity for the insulin receptor. This differential specificity is attributable to the difference in the oligomeric states of the two SH2 domains: monomeric for SH2-B and dimeric for APS.

  11. AS160 Phosphotyrosine-binding Domain Constructs Inhibit Insulin-stimulated GLUT4 Vesicle Fusion with the Plasma Membrane*

    PubMed Central

    Koumanov, Françoise; Richardson, Judith D.; Murrow, Beverley A.; Holman, Geoffrey D.

    2011-01-01

    AS160 (TBC1D4) is a known Akt substrate that is phosphorylated downstream of insulin action and that leads to regulated traffic of GLUT4. As GLUT4 vesicle fusion with the plasma membrane is a highly regulated step in GLUT4 traffic, we investigated whether AS160 and 14-3-3 interactions are involved in this process. Fusion was inhibited by a human truncated AS160 variant that encompasses the first N-terminal phosphotyrosine-binding (PTB) domain, by either of the two N-terminal PTB domains, and by a tandem construct of both PTB domains of rat AS160. We also found that in vitro GLUT4 vesicle fusion was strongly inhibited by the 14-3-3-quenching inhibitors R18 and fusicoccin. To investigate the mode of interaction of AS160 and 14-3-3, we examined insulin-dependent increases in the levels of these proteins on GLUT4 vesicles. 14-3-3γ was enriched on insulin-stimulated vesicles, and its binding to AS160 on GLUT4 vesicles was inhibited by the AS160 tandem PTB domain construct. These data suggest a model for PTB domain action on GLUT4 vesicle fusion in which these constructs inhibit insulin-stimulated 14-3-3γ interaction with AS160 rather than AS160 phosphorylation. PMID:21454690

  12. The Genetics of Signal Transduction and the Feto-Maternal Relationship. A Study of Cytosolic Low Molecular Weight Phosphotyrosine Phosphatase

    PubMed Central

    Bottini, E.; Cosmi, E.; Nicotra, M.; Santeusanio, G.; La Torre, M.; Bottini, N.; Lucarini, N.

    1998-01-01

    Intracellular kinases mediate positive signalling from surface receptors by phosphorylating critical target proteins whereas phosphatases inhibit this process. Differential phosphatase activity at the feto-maternal interface could determine the appropriate relative growth and development on each side of the placenta. The highly polymorphic cytosolic low molecular weight phosphotyrosine-phosphatase (ACP1-cLMWPTPase) has been studied in 170 women who had at least two consecutive spontaneous abortions along with their husbands and in 352 normal puerperae along with their newborn babies. Symmetry analysis of joint wife/husband and mother/infant distribution suggests that when ACP1 activity is lower in the mother than in either her aborted fetus or her child, the probability of abortion is higher and the survival to term is lower as compared to pairs in which the ACP1 activity is higher in the mother than in her fetus. Further analysis has shown that the effect is due to S isoform: i.e. a high mother/fetus S isoform ratio favours intrauterine survival. Analysis of gestational duration and birth weight suggests that a high ACP1 maternal activity coupled with a low or moderate fetal activity favour fetal growth and developmental maturation. The present data indicate that maternal-fetal genetic differences in signal transduction could contribute significantly to variability of intrauterine developmental parameters and to pathological manifestation of pregnancy. PMID:10427472

  13. In vitro and in vivo evaluation of a sulfenamide prodrug of basic metformin.

    PubMed

    Huttunen, Kristiina M; Leppänen, Jukka; Vepsäläinen, Jouko; Sirviö, Jouni; Laine, Krista; Rautio, Jarkko

    2012-08-01

    In the present study, a previously described sulfenamide prodrug of a basic antidiabetic drug, metformin, was evaluated further. This sulfenamide prodrug was designed to improve the permeability and consequently the oral absorption and bioavailability (F) of the highly water-soluble metformin. Bioactivation of the prodrug was mediated by reduced glutathione, but it has been reported that sulfenamide prodrugs can also be bioactivated by other endogenous thiols like cysteine, and free thiol-containing proteins. Consistent with earlier findings for a sulfenamide prodrug of a weakly acid drug, linezolid, the permeability studies indicated that the metformin prodrug was also prematurely bioactivated on the apical surface of the Caco-2 cell monolayer. Nevertheless, the bioavailability of metformin was increased by approximately 25% after oral administration of the prodrug in rats, most probably because of better oral absorption. This indicates that the sulfenamide prodrug approach may be used to improve the moderate oral bioavailability of metformin, which may help to decrease the uncomfortable gastrointestinal adverse effects associated with metformin therapy as the daily doses of metformin can be reduced. Furthermore, the present study confirms that the applicability of the sulfenamide prodrug approach can be successfully extended from weak NH acids to very basic guanide-type drugs.

  14. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy.

    PubMed

    Han, Haijie; Wang, Haibo; Chen, Yangjun; Li, Zuhong; Wang, Yin; Jin, Qiao; Ji, Jian

    2016-01-07

    A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and "click" reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy.

  15. Strategies in the designing of prodrugs, taking into account the antiviral and anticancer compounds.

    PubMed

    Lesniewska-Kowiel, Monika A; Muszalska, Izabela

    2017-03-31

    Prodrugs are a wide group of substances of low or no pharmacological activity. The search for prodrugs is aimed at obtaining drugs characterized by better pharmacokinetic properties, pharmaceutical availability and selective activity of the active substance. Prodrug strategies involve chemical modifications and syntheses of new structures as well as the establishment of systems that deliver active substances for therapeutic aims that is prodrug-based treatments. The paper describes decisive factors in prodrug designing, such as enzymes participating in their activation, concepts of chemical modifications in the group of antiviral drugs and new anticancer treatments based on prodrugs (ADEPT, GDEPT, LEAPT). Prodrugs are seen as a possibility to design medicines which are selective for their therapeutic aim, for example a tumorous cell or a microorganism. Such an approach is possible thanks to the knowledge on: pathogenesis of diseases at molecular level, metabolism of healthy and affected cells as well as metabolism of microorganisms (bacteria, fungi, protozoa, etc.). Many drugs which have been used for years are still studied in relation to their metabolism and their molecular mechanism of operation, providing new knowledge on active substances. Many of them meet the criteria of being a prodrug. The paper indicates methods of discovering new structures or modifications of known structures and their synthesis as well as new therapeutic strategies using prodrugs, which are expected to be successful and to broaden the knowledge on what is happening to the drug in the body, in addition to providing a molecular explanation of xenobiotics activity.

  16. Stereoisomeric Prodrugs to Improve Corneal Absorption of Prednisolone: Synthesis and In Vitro Evaluation.

    PubMed

    Sheng, Ye; Yang, Xiaoyan; Wang, Zhiying; Mitra, Ashim K

    2016-06-01

    A series of stereoisomeric prodrugs have been designed to examine efficacy in generating higher corneal absorption relative to prednisolone. Prodrugs have been studied and identified with LC/MS/MS and NMR analyses. Prodrugs have been characterized for aqueous solubility, buffer stability, and cytotoxicity. Cellular uptake and permeability studies have been conducted across MDCK-MDR1 cells to determine prodrug affinity towards P-glycoprotein (P-gp) and peptide transporters. Enzyme-mediated degradation of prodrugs has been determined using Statens Seruminstitut rabbit cornea (SIRC) cell homogenates. Prodrugs exhibited higher aqueous solubility relative to prednisolone. Prodrugs circumvented P-gp-mediated cellular efflux and were recognized by peptide transporters. Prodrugs (DP, DDP) produced with D-isomers (D-valine) were significantly stable against both chemical and enzymatic hydrolyses. The order of degradation rate constants observed in chemical and enzymatic hydrolyses were in the same order, i.e., L-valine-L-valine-prednisolone (LLP) > L-valine-D-valine-prednisolone (LDP) > D-valine-L-valine-prednisolone (DLP) > D-valine-D-valine-prednisolone (DDP). Results obtained from this study clearly suggest that stereoisomeric prodrug approach is an effective strategy to overcome P-gp-mediated efflux and improve transcorneal permeability of prednisolone following topical administration.

  17. A Minireview: Usefulness of Transporter-Targeted Prodrugs in Enhancing Membrane Permeability.

    PubMed

    Murakami, Teruo

    2016-09-01

    Orally administered drugs are categorized into 4 classes depending on the solubility and permeability in a Biopharmaceutics Classification System. Prodrug derivatization is one of feasible approaches in modifying the physicochemical properties such as low solubility and low permeability without changing the in vivo pharmacological action of the parent drug. In this article, prodrug-targeted solute carrier (SLC) transporters were searched randomly by PubMed. Collected SLC transporters are amino acid transporter 1, bile acid transporter, carnitine transporter 2, glucose transporter 1, peptide transporter 1, vitamin C transporter 1, and multivitamin transporter. The usefulness of transporter-targeted prodrugs was evaluated in terms of membrane permeability, stability under acidic condition, and conversion to the parent drug. Among prodrugs collected, peptide transporter-targeted prodrugs exhibited the highest number, and some prodrugs such as valaciclovir and valganciclovir are clinically available. ATP-binding cassette efflux transporter, P-glycoprotein (P-gp), reduces the intestinal absorption of lipophilic P-gp substrate drugs, and SLC transporter-targeted prodrugs of P-gp substrate drugs circumvented the P-gp-mediated efflux transport. Thus, SLC transporter-targeted prodrug derivatization seems to be feasible approach to increase the oral bioavailability by overcoming various unwanted physicochemical properties of orally administered drugs, although the effect of food on prodrug absorption should be taken into consideration. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Prodrug approaches for enhancing the bioavailability of drugs with low solubility.

    PubMed

    Müller, Christa E

    2009-11-01

    Low water solubility and low bioavailability are frequent problems in drug development, particularly in the area of central nervous system (CNS) drugs. This short review describes selected prodrug approaches which have been developed to enhance the bioavailability of drugs, especially that of poorly soluble drugs. Some of the most successful drugs on the market are prodrugs. With a better understanding of active-transport processes at cell membranes in the gut as well as at the blood-brain barrier, the importance of prodrug approaches will further increase in the future. Prodrug approaches will already be considered in the early phase of drug discovery.

  19. Nanoparticles Containing High Loads of Paclitaxel Silicate Prodrugs: Formulation, Drug Release, and Anti-cancer Efficacy

    PubMed Central

    Han, Jing; Michel, Andrew R.; Lee, Han Seung; Kalscheuer, Stephen; Wohl, Adam; Hoye, Thomas R.; McCormick, Alon V.; Panyam, Jayanth; Macosko, Christopher W.

    2016-01-01

    We have investigated particle size, interior structure, drug release kinetics, and anticancer efficacy of PEG-b-PLGA-based nanoparticles loaded with a series of paclitaxel (PTX) silicate prodrugs [PTX-Si(OR)3]. Silicate derivatization enabled us to adjust the hydrophobicity and hydrolytic lability of the prodrugs by the choice of the alkyl group (R) in the silicate derivatives. The greater hydrophobicity of these prodrugs allows for the preparation of nanoparticles that are stable in aqueous dispersion even when loaded with up to ca. 75 wt% of the prodrug. The hydrolytic lability of silicates allows for facile conversion of prodrugs back to the parent drug, PTX. A suite of eight PTX-silicate prodrugs was investigated; nanoparticles were made by flash nanoprecipitation (FNP) using a confined impingement jet mixer with a dilution step (CIJ-D). The resulting nanoparticles were 80–150 nm in size with a loading level of 47–74 weight percent (wt%) of a PTX-silicate, which corresponds to 36–59 effective wt % of free PTX. Cryogenic transmission electron microscopy images show that particles are typically spherical with a core-shell structure. Prodrug/drug release profiles were measured. Release tended to be slower for prodrugs having greater hydrophobicity and slower hydrolysis rate. Nanoparticles loaded with PTX-silicate prodrugs that hydrolyze most rapidly showed in vitro cytotoxicity similar to that of the parent PTX. Nanoparticles loaded with more labile silicates also tended to show greater in vivo efficacy. PMID:26505116

  20. Nanoparticles Containing High Loads of Paclitaxel-Silicate Prodrugs: Formulation, Drug Release, and Anticancer Efficacy.

    PubMed

    Han, Jing; Michel, Andrew R; Lee, Han Seung; Kalscheuer, Stephen; Wohl, Adam; Hoye, Thomas R; McCormick, Alon V; Panyam, Jayanth; Macosko, Christopher W

    2015-12-07

    We have investigated particle size, interior structure, drug release kinetics, and anticancer efficacy of PEG-b-PLGA-based nanoparticles loaded with a series of paclitaxel (PTX)-silicate prodrugs [PTX-Si(OR)3]. Silicate derivatization enabled us to adjust the hydrophobicity and hydrolytic lability of the prodrugs by the choice of the alkyl group (R) in the silicate derivatives. The greater hydrophobicity of these prodrugs allows for the preparation of nanoparticles that are stable in aqueous dispersion even when loaded with up to ca. 75 wt % of the prodrug. The hydrolytic lability of silicates allows for facile conversion of prodrugs back to the parent drug, PTX. A suite of eight PTX-silicate prodrugs was investigated; nanoparticles were made by flash nanoprecipitation (FNP) using a confined impingement jet mixer with a dilution step (CIJ-D). The resulting nanoparticles were 80-150 nm in size with a loading level of 47-74 wt % (wt %) of a PTX-silicate, which corresponds to 36-59 effective wt % of free PTX. Cryogenic transmission electron microscopy images show that particles are typically spherical with a core-shell structure. Prodrug/drug release profiles were measured. Release tended to be slower for prodrugs having greater hydrophobicity and slower hydrolysis rate. Nanoparticles loaded with PTX-silicate prodrugs that hydrolyze most rapidly showed in vitro cytotoxicity similar to that of the parent PTX. Nanoparticles loaded with more labile silicates also tended to show greater in vivo efficacy.

  1. Amino Acid Prodrugs: An Approach to Improve the Absorption of HIV-1 Protease Inhibitor, Lopinavir

    PubMed Central

    Patel, Mitesh; Mandava, Nanda; Gokulgandhi, Mitan; Pal, Dhananjay; Mitra, Ashim K.

    2014-01-01

    Poor systemic concentrations of lopinavir (LPV) following oral administration occur due to high cellular efflux by P-glycoprotein (P-gp) and multidrug resistance-associated proteins (MRPs) and extensive metabolism by CYP3A4 enzymes. In this study, amino acid prodrugs of LPV were designed and investigated for their potential to circumvent efflux processes and first pass effects. Three amino acid prodrugs were synthesized by conjugating isoleucine, tryptophan and methionine to LPV. Prodrug formation was confirmed by the LCMS/MS and NMR technique. Interaction of LPV prodrugs with efflux proteins were carried out in P-gp (MDCK-MDR1) and MRP2 (MDCK-MRP2) transfected cells. Aqueous solubility studies demonstrated that prodrugs generate higher solubility relative to LPV. Prodrugs displayed higher stability under acidic conditions and degraded significantly with rise in pH. Uptake and transport data suggested that prodrugs carry significantly lower affinity towards P-gp and MRP2 relative to LPV. Moreover, prodrugs exhibited higher liver microsomal stability relative to LPV. Hence, amino acid prodrug modification might be a viable approach for enhancing LPV absorption across intestinal epithelial and brain endothelial cells which expresses high levels of P-gp and MRP2. PMID:24727459

  2. A screen for and validation of prodrug antimicrobials.

    PubMed

    Fleck, Laura E; North, E Jeffrey; Lee, Richard E; Mulcahy, Lawrence R; Casadei, Gabriele; Lewis, Kim

    2014-01-01

    The rise of resistant pathogens and chronic infections tolerant to antibiotics presents an unmet need for novel antimicrobial compounds. Identifying broad-spectrum leads is challenging due to the effective penetration barrier of Gram-negative bacteria, formed by an outer membrane restricting amphipathic compounds, and multidrug resistance (MDR) pumps. In chronic infections, pathogens are shielded from the immune system by biofilms or host cells, and dormant persisters tolerant to antibiotics are responsible for recalcitrance to chemotherapy with conventional antibiotics. We reasoned that the dual need for broad-spectrum and sterilizing compounds could be met by developing prodrugs that are activated by bacterium-specific enzymes and that these generally reactive compounds could kill persisters and accumulate over time due to irreversible binding to targets. We report the development of a screen for prodrugs, based on identifying compounds that nonspecifically inhibit reduction of the viability dye alamarBlue, and then eliminate generally toxic compounds by testing for cytotoxicity. A large pilot of 55,000 compounds against Escherichia coli produced 20 hits, 3 of which were further examined. One compound, ADC111, is an analog of a known nitrofuran prodrug nitrofurantoin, and its activity depends on the presence of activating enzymes nitroreductases. ADC112 is an analog of another known antimicrobial tilbroquinol with unknown mechanism of action, and ADC113 does not belong to an approved class. All three compounds had a good spectrum and showed good to excellent activity against persister cells in biofilm and stationary cultures. These results suggest that screening for overlooked prodrugs may present a viable platform for antimicrobial discovery.

  3. The Design, Synthesis and Screening of Potential Pyridinium Oxime Prodrugs.

    DTIC Science & Technology

    1985-07-31

    but this dihydropyridine oxime probably does not contribute to the reactivation of brain AChE. It is noteworthy that pro-2-PAM given prophylactically 10...Brain Barrier by Its Dihydropyridine Derivative. Science, 190, 155. 21. Bodor, N., Shek, E. and Higuchi, T. (1976) Improved Delivery Through...Biological Membranes 1. Synthesis and Properties of 1-Methyl-1,6 Dihydropyridine -2-Carbaldoxime, A Pro-Drug of N-Methyl Pyridinium-2- -Carbaldoxime Chloride

  4. Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency

    PubMed Central

    Ehinger, Johannes K.; Piel, Sarah; Ford, Rhonan; Karlsson, Michael; Sjövall, Fredrik; Frostner, Eleonor Åsander; Morota, Saori; Taylor, Robert W.; Turnbull, Doug M.; Cornell, Clive; Moss, Steven J.; Metzsch, Carsten; Hansson, Magnus J.; Fliri, Hans; Elmér, Eskil

    2016-01-01

    Mitochondrial complex I (CI) deficiency is the most prevalent defect in the respiratory chain in paediatric mitochondrial disease. This heterogeneous group of diseases includes serious or fatal neurological presentations such as Leigh syndrome and there are very limited evidence-based treatment options available. Here we describe that cell membrane-permeable prodrugs of the complex II substrate succinate increase ATP-linked mitochondrial respiration in CI-deficient human blood cells, fibroblasts and heart fibres. Lactate accumulation in platelets due to rotenone-induced CI inhibition is reversed and rotenone-induced increase in lactate:pyruvate ratio in white blood cells is alleviated. Metabolomic analyses demonstrate delivery and metabolism of [13C]succinate. In Leigh syndrome patient fibroblasts, with a recessive NDUFS2 mutation, respiration and spare respiratory capacity are increased by prodrug administration. We conclude that prodrug-delivered succinate bypasses CI and supports electron transport, membrane potential and ATP production. This strategy offers a potential future therapy for metabolic decompensation due to mitochondrial CI dysfunction. PMID:27502960

  5. Aggregatibacter actinomycetemcomitans biofilm killing by a targeted ciprofloxacin prodrug

    PubMed Central

    Reeves, Benjamin D.; Young, Mark; Grieco, Paul A.; Suci, Peter

    2013-01-01

    A pH-sensitive ciprofloxacin prodrug was synthesized and targeted against biofilms of the periodontal pathogen Aggregatibacter actinomycetemcomitans (Aa). The dose required to reduce the viability of a mature biofilm of Aa by ~80% was in the range of ng cm−2 of colonized area (mean biofilm density 2.33 x109 cells cm−2). A mathematical model was formulated that predicts the temporal change in the concentration of ciprofloxacin in the Aa biofilm as the drug is released and diffuses into the bulk medium. The predictions of the model were consistent with the extent of killing obtained. The results demonstrate the feasibility of the strategy to induce mortality, and together with the mathematical model, provide the basis for design of targeted antimicrobial prodrugs for the topical treatment of oral infections such as periodontitis. The targeted prodrug approach offers the possibility of optimizing the dose of available antimicrobials in order to kill a chosen pathogen while leaving the commensal microbiota relatively undisturbed. PMID:23952779

  6. Macromolecular Pt(IV) Prodrugs from Poly(organo)phosphazenes

    PubMed Central

    Banfić, Jelena; Theiner, Sarah; Körner, Wilfried; Brüggemann, Oliver; Berger, Walter; Keppler, Bernhard K.; Heffeter, Petra; Teasdale, Ian

    2016-01-01

    The preparation of novel macromolecular prodrugs via the conjugation of two platinum(IV) complexes to suitably functionalized poly(organo)phosphazenes is presented. The inorganic/organic polymers provide carriers with controlled dimensions due to the use of living cationic polymerization and allow the preparation of conjugates with excellent aqueous solubility but long-term hydrolytic degradability. The macromolecular Pt(IV) prodrugs are designed to undergo intracellular reduction and simultaneous release from the macromolecular carrier to present the active Pt(II) drug derivatives. In vitro investigations show a significantly enhanced intracellular uptake of Pt for the macromolecular prodrugs when compared to small molecule Pt complexes, which is also reflected in an increase in cytotoxicity. Interestingly, drug-resistant sublines also show a significantly smaller resistance against the conjugates compared to clinically established platinum drugs, indicating that an alternative uptake route of the Pt(IV) conjugates might also be able to overcome acquired resistance against Pt(II) drugs. In vivo studies of a selected conjugate show improved tumor shrinkage compared to the respective Pt(IV) complex. PMID:27169668

  7. Synthesis and characterization of mPEG-PLA prodrug micelles.

    PubMed

    Hans, Meredith; Shimoni, Karin; Danino, Dganit; Siegel, Steven J; Lowman, Anthony

    2005-01-01

    Polymeric prodrugs of mPEG-PLA-haloperidol (methoxypoly(ethylene glycol)-b-poly(lactic acid)) can self-assemble into nanoscale micelle-like structures in aqueous solutions. mPEG-PLA-haloperidol was prepared and characterized using 1H and 13C NMR. The conjugation efficiency was found to be 64.8 +/- 21%. Micelles that form spontaneously upon solubilization of the mPEG-PLA and the polymeric prodrugs in water were characterized using a variety of techniques. The mPEG-PLA and prodrug micelles were found to have diameters of 28.73 +/- 1.45 and 49.67 +/- 4.29 nm, respectively, using dynamic light scattering (DLS). The micelle size and polydispersity were also evaluated with cryogenic transmission electron microscopy (cryo-TEM) and were consistent with the DLS results. Cryo-TEM and proton NMR confirmed that the micelles were spherical in shape. DLS was also used to determine the aggregation numbers of the micelles. The aggregation numbers ranged from 351 to 603. The change in aggregation number was dependent on the total drug incorporation into the micelle core. Critical micelle concentrations were determined for the various micelle/drug formulations and found to range from 3 to 14 microg/mL. Finally, drug was incorporated into the micelle core using the conjugate, free drug with a saturated aqueous phase during production, or a combination of both techniques. Drug incorporation could be increased from 3% to 20% (w/w) using the different formulations.

  8. Recent advances in drugs and prodrugs design of chitosan.

    PubMed

    Vinsova, J; Vavrikova, E

    2008-01-01

    The aim of this review is to outline the recent advances in chitosan molecular modeling, especially its usage as a prodrug or drug in a field of antibacterial, anticarcinogenic and antioxidant activity. Polymeric materials like peptides, polysaccharides and other natural products have recently attracted attention as biodegradabile drug carriers. They can optimize clinical drug application, minimize the undesirable drug properties and improve drug efficiency. They are used for the slow release of effective components as depot forms, to improve membrane permeability, solubility and site-specific targeting. Chitosan is such a prospective cationic polysaccharide which has shown number of functions in many fields, including bio medicinal, pharmaceutical, preservative, microbial and others. This article discusses the structure characteristics of chitosan, a number of factors such as degree of polymerization, level of deacetylation, types of quarternisation, installation of various hydrophilic substituents, metal complexation, and combination with other active agents. Biodegradable, non-toxic and non-allergenic nature of chitosan encourages its potential use as a carrier for drug delivery systems in all above mentioned targets. The use of chitosan prodrug conjugates is aimed at the site-specific transport to the target cells use, for example, a spacer tetrapeptide Gly-Phe-Leu-Gly, promotion of drug incorporation into cells via endocytosis, hybridization or synergism of two types of drugs or a drug with a bioactive carrier. The design of chitosan macromolecule prodrugs is also discussed.

  9. New green synthesis and formulations of acyclovir prodrugs.

    PubMed

    de Regil-Hernández, Rubén; Martínez-Lagos, Fernando; Rodríguez-Bayón, Amalia; Sinisterra, José-Vicente

    2011-01-01

    Different green synthesis of alkyl esters of acyclovir (acyclovir prodrugs) is described. Hexanoic, decanoic, dodecanoic and tetradecanoic acyclovir esters were synthesized reacting acyclovir and the respective acid anhydride in dimethyl sulfoxide (DMSO), in solvents from renewable sources and without solvent (T=30 °C). Yields in prodrugs after 10 min of reaction were >95% using DMSO as solvent. The purification methodology was very simple, shorter and greener than previously described. The biosolvent, N,N-dimethylamide of decanoic acid, let us to obtain >95% yield at 24 h. This oily biosolvent is not dermotoxic and the reaction crude can directly be used in topic formulations. Syntheses without solvent proceeded successfully for acyclovir esters. Indeed, dodecanoate and tetradecanoate yielding >98% conversion of reactants in 30 min. In spite of requiring mild temperature (65 °C), substrate molar ratios were lowered to 1 : 1, thus conducing to a more efficient use of raw materials. The synthetic procedures were scaled up to a 300 g batch (yield 98-99% isolated ester). These esters can be used as acyclovir prodrugs in topic formulations. The esters release from an oil/water micro-emulsion and a hydrogel formulation were tested with good results.

  10. Plasma-mediated release of morphine from synthesized prodrugs.

    PubMed

    Thomas, Thommey P; Huang, Baohua; Desai, Ankur; Zong, Hong; Cheng, Xue-Min; Kotlyar, Alina; Leroueil, Pascale R; Dunham, Thomas; van der Spek, Abraham; Ward, Brent B; Baker, James R

    2010-11-01

    Two morphine prodrugs ('PDA' and 'PDB') were synthesized and the kinetics of esterase-mediated morphine release from these prodrugs were determined when incubated with plasma from different animal species. Morphine was rapidly released from PDA by all species plasma with the maximum reached within 5-10min; the released morphine was biologically active as determined by an in vitro cAMP assay. The morphine was released from PDB at a slower and species-dependent rate (mouse>rat>guinea pig>human). Morphine's release from PDB appeared to be mediated by carboxyl esterases as the release was inhibited by the carboxyl esterase inhibitor benzil. PDA nor PDB induce cytotoxicity in the neuronal cell lines SK-NSH and SH-SY5Y. The carboxyl and amino functional moieties present on the linker portions of PDA and PDB, respectively, may facilitate their conjugation to nanoparticles to tailor morphine pharmacokinetics and specific targeting. These studies suggest the potential clinical utility of these prodrugs for morphine release at desired rates by administration of their mixture at selected ratios.

  11. Programmed Hydrolysis in Designing Paclitaxel Prodrug for Nanocarrier Assembly

    PubMed Central

    Fu, Q.; Wang, Y.; Ma, Y.; Zhang, D.; Fallon, J. K.; Yang, X.; Liu, D.; He, Z.; Liu, F.

    2015-01-01

    Nanocarriers delivering prodrugs are a way of improving in vivo effectiveness and efficiency. For therapeutic efficacy, the prodrug must hydrolyze to its parent drug after administration. Based on the fact that the hydrolysis is impeded by steric hindrance and improved by sufficient polarity, in this study, we proposed the PTX-S-S-VE, the conjugation of paclitaxel (PTX) to vitamin E (VE) through a disulfide bridge. This conjugate possessed the following advantages: first, it can be encapsulated in the VE/VE2-PEG2000/water nanoemulsions because of favorable hydrophobic interactions; second, the nanoemulsions had a long blood circulation time; finally, the concentrated glutathione in the tumor microenvironment could cleave the disulfide bond to weaken the steric hindrance and increase the polarity, promoting the hydrolysis to PTX and increasing the anticancer activity. It was demonstrated in vitro that the hydrolysis of PTX-S-S-VE was enhanced and the cytotoxicity was increased. In addition, PTX-S-S-VE had greater anticancer activity against the KB-3-1 cell line tumor xenograft and the tumor size was smaller after the 4th injection. The present result suggests a new way, use of reduction, to improve the in vivo anticancer activity of a prodrug for nanocarrier delivery by unshielding the ester bond and taking off the steric block. PMID:26166066

  12. Aggregatibacter actinomycetemcomitans biofilm killing by a targeted ciprofloxacin prodrug.

    PubMed

    Reeves, Benjamin D; Young, Mark; Grieco, Paul A; Suci, Peter

    2013-09-01

    A pH-sensitive ciprofloxacin prodrug was synthesized and targeted against biofilms of the periodontal pathogen Aggregatibacter actinomycetemcomitans (Aa). The dose required to reduce the viability of a mature biofilm of Aa by ~80% was in the range of ng cm(-2) of colonized area (mean biofilm density 2.33 × 10(9) cells cm(-2)). A mathematical model was formulated that predicts the temporal change in the concentration of ciprofloxacin in the Aa biofilm as the drug is released and diffuses into the bulk medium. The predictions of the model were consistent with the extent of killing obtained. The results demonstrate the feasibility of the strategy to induce mortality, and together with the mathematical model, provide the basis for design of targeted antimicrobial prodrugs for the topical treatment of oral infections such as periodontitis. The targeted prodrug approach offers the possibility of optimizing the dose of available antimicrobials in order to kill a chosen pathogen while leaving the commensal microbiota relatively undisturbed.

  13. Efficient macrocyclization of U-turn preorganized peptidomimetics: the role of intramolecular H-bond and solvophobic effects.

    PubMed

    Becerril, Jorge; Bolte, Michael; Burguete, M Isabel; Galindo, Francisco; García-España, Enrique; Luis, Santiago V; Miravet, Juan F

    2003-06-04

    Simple peptidomimetic molecules derived from amino acids were reacted with meta- and para-bis(bromomethyl)benzene in acetonitrile to very efficiently yield macrocyclic structures. The cyclization reaction does not require high dilution techniques and seems to be insensitive to the size of the formed macrocycle. The analysis of data obtained by (1)H NMR, single-crystal X-ray diffraction, fluorescence measurements, and molecular mechanics indicate that folded conformations can preorganize the system for an efficient cyclization. The role played by intramolecular hydrogen-bonding and solvophobic effects in the presence of folded conformations is analyzed.

  14. Discovery of a new isomannide-based peptidomimetic synthetized by Ugi multicomponent reaction as human tissue kallikrein 1 inhibitor.

    PubMed

    Barros, Thalita G; Santos, Jorge A N; de Souza, Bruno E G; Sodero, Ana Carolina R; de Souza, Alessandra M T; da Silva, Dayane P; Rodrigues, Carlos Rangel; Pinheiro, Sergio; Dias, Luiza R S; Abrahim-Vieira, Bárbara; Puzer, Luciano; Muri, Estela M F

    2017-01-15

    Human kallikrein 1 (KLK1) is the most extensively studied member of this family and plays a major role in inflammation processes. From Ugi multicomponent reactions, isomannide-based peptidomimetic 10 and 13 where synthesized and showed low micromolar values of IC50 for KLK1 The most active compound (10) presented competitive mechanism, with three structural modifications important to interact with active site residues which corroborates its KLK1 inhibition. Finally, the most active compound also showed good ADMET profile, which indicates compound 10 as a potential hit in the search for new KLK1 inhibitors with low side effects.

  15. Requirement for both H and L chain V regions, VH and VK joining amino acids, and the unique H chain D region for the high affinity binding of an anti-phosphotyrosine antibody.

    PubMed

    Ruff-Jamison, S; Glenney, J R

    1993-04-15

    Sequence analysis of a panel of antibodies to phosphotyrosine revealed predominant H and L chain V regions in the immune response and a unique D segment in the Py20 mAb, which exhibits a high affinity for phosphotyrosine. In order to determine the influence of somatic diversity on the high affinity binding of Py20, H and L chain V regions were expressed in Escherichia coli as an Fv dimer. Whereas the H or L chain V regions of Py20 alone were unable to bind phosphotyrosine, the Fv binds phosphotyrosine with an affinity comparable with the intact IgG as determined by fluorescence quenching experiments (1.55 x 10(-7) M vs 1.25 x 10(-7) M, respectively). Substitution of the Py20 V regions with other IgG V regions that differed greatly in sequence abolished binding. A high affinity Py20-combining site was dependent on the presence of the unique D-D segment. Replacement of the Py20 D-D region with a single homologous D region resulted in a decrease in affinity (5.9 x 10(-7) M). Substitution of this D-D region for the D region of another anti-phosphotyrosine antibody that is known to bind phosphotyrosine weakly (1 x 10(-3) M) conferred high affinity binding. Removal of three tyrosines from the first of the two D regions was accompanied by a fivefold reduction in affinity for phosphotyrosine. In addition, changing the VK and VH junctional amino acids resulted in a complete loss of binding. Therefore, the formation of the high affinity Py20 combining site requires both a H and L chain that are similar in sequence to those of Py20 including the unique D region and the junctional amino acids.

  16. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers.

    PubMed

    Gupta, Deepak; Gupta, Sheeba Varghese; Lee, Kyung-Dall; Amidon, Gordon L

    2009-01-01

    We evaluated the chemical and enzymatic stabilities of prodrugs containing methoxy, ethoxy and propylene glycol linkers in order to find a suitable linker for prodrugs of carboxylic acids with amino acids. l-Valine and l-phenylalanine prodrugs of model compounds (benzoic acid and phenyl acetic acid) containing methoxy, ethoxy and propylene glycol linkers were synthesized. The hydrolysis rate profile of each compound was studied at physiologically relevant pHs (1.2, 4, 6 and 7.4). Enzymatic hydrolysis of propylene glycol containing compounds was studied using Caco-2 homogenate as well as purified enzyme valacyclovirase. It was observed that the stability of the prodrugs increases with the linker length (propyl > ethyl > methyl). The model prodrugs were stable at acidic pH as compared to basic pH. It was observed that the prodrug with the aliphatic amino acid promoiety was more stable compared to its aromatic counterpart. The comparison between benzyl and the phenyl model compounds revealed that the amino acid side chain is significant in determining the stability of the prodrug whereas the benzyl or phenyl carboxylic acid had little or no effect on the stability. The enzymatic activation studies of propylene glycol linker prodrug in the presence of valacyclovirase and cell homogenate showed faster generation of the parent drug at pH 7.4. The half-life of prodrugs at pH 7.4 was more than 12 h, whereas in the presence of cell homogenate the half-lives were less than 1 h. Hydrolysis by Caco-2 homogenate generated the parent compound in two steps, where the prodrug was first converted to the intermediate, propylene glycol benzoate, which was then converted to the parent compound (benzoic acid). Enzymatic hydrolysis of propylene glycol containing prodrugs by valacyclovirase showed hydrolysis of the amino acid ester part to generate the propylene glycol ester of model compound (propylene glycol benzoate) as the major product. The amino acid prodrugs containing methoxy

  17. Synthesis of a novel legumain-cleavable colchicine prodrug with cell-specific toxicity.

    PubMed

    Smith, Robert Løvsletten; Åstrand, Ove Alexander Høgmoen; Nguyen, Luan Minh; Elvestrand, Tina; Hagelin, Gunnar; Solberg, Rigmor; Johansen, Harald Thidemann; Rongved, Pål

    2014-07-01

    Conventional chemotherapy has undesirable toxic side-effects to healthy tissues due to low cell selectivity of cytotoxic drugs. One approach to increase the specificity of a cytotoxic drug is to make a less toxic prodrug which becomes activated at the tumour site. The cysteine protease legumain have remarkable restricted substrate specificity and is the only known mammalian asparaginyl (Asn) endopeptidase. Over-expression of legumain is reported in cancers and unstable atherosclerotic plaques, and utilizing legumain is a promising approach to activate prodrugs. In this study we have synthesized the legumain-cleavable peptide sequence N-Boc-Ala-Ala-Asn-Val-OH. The peptide was subsequently conjugated to deacetyl colchicine during three steps to produce Suc-Ala-Ala-Asn-Val-colchicine (prodrug) with >90% chemical purity. Several cell lines with different expressions and activities of legumain were used to evaluate the general toxicity, specificity and efficacy of the microtubule inhibitor colchicine, valyl colchicine and the legumain-cleavable colchicine prodrug. The prodrug was more toxic to the colorectal cancer HCT116 cells (expressing both the 36kDa active and 56kDa proform of legumain) than SW620 cells (only expressing the 56kDa prolegumain) indicating a relationship between toxicity of the prodrug and activity of legumain in the cells. Also, in monoclonal legumain over-expressing HEK293 cells the prodrug toxicity was higher compared to native HEK293 cells. Furthermore, co-administration of the prodrug either with the potent legumain inhibitor cystatin E/M or the endocytosis inhibitor Dyngo-4a inhibited cell death, indicating that the prodrug toxicity was dependent on both asparaginyl endopeptidase activity and endocytosis. This colchicine prodrug adds to a legumain-activated prodrug strategy approach and could possibly be of use both in targeted anticancer and anti-inflammatory therapy.

  18. Synthesis, Bioevaluation and Molecular Dynamic Simulation Studies of Dexibuprofen-Antioxidant Mutual Prodrugs.

    PubMed

    Ashraf, Zaman; Alamgeer; Rasool, Raqiqatur; Hassan, Mubashir; Ahsan, Haseeb; Afzal, Samina; Afzal, Khurram; Cho, Hongsik; Kim, Song Ja

    2016-12-21

    Dexibuprofen-antioxidant conjugates were synthesized with the aim to reduce its gastrointestinal effects. The esters analogs of dexibuprofen 5a-c were obtained by reacting its -COOH group with chloroacetyl derivatives 3a-c. The in vitro hydrolysis data confirmed that synthesized prodrugs 5a-c were stable in stomach while undergo significant hydrolysis in 80% human plasma and thus release free dexibuprofen. The minimum reversion was observed at pH 1.2 suggesting that prodrugs are less irritating to stomach than dexibuprofen. The anti-inflammatory activity of 5c (p < 0.001) is more significant than the parent dexibuprofen. The prodrug 5c produced maximum inhibition (42.06%) of paw-edema against egg-albumin induced inflammation in mice. Anti-pyretic effects in mice indicated that prodrugs 5a and 5b showed significant inhibition of pyrexia (p < 0.001). The analgesic activity of 5a is more pronounced compared to other synthesized prodrugs. The mean percent inhibition indicated that the prodrug 5a was more active in decreasing the number of writhes induced by acetic acid than standard dexibuprofen. The ulcerogenic activity results assured that synthesized prodrugs produce less gastrointestinal adverse effects than dexibuprofen. The ex vivo antiplatelet aggregation activity results also confirmed that synthesized prodrugs are less irritant to gastrointestinal mucosa than the parent dexibuprofen. Molecular docking analysis showed that the prodrugs 5a-c interacts with the residues present in active binding sites of target protein. The stability of drug-target complexes is verified by molecular dynamic simulation study. It exhibited that synthesized prodrugs formed stable complexes with the COX-2 protein thus support our wet lab results. It is therefore concluded that the synthesized prodrugs have promising pharmacological activities with reduced gastrointestinal adverse effects than the parent drug.

  19. Synthesis, Bioevaluation and Molecular Dynamic Simulation Studies of Dexibuprofen–Antioxidant Mutual Prodrugs

    PubMed Central

    Ashraf, Zaman; Alamgeer; Rasool, Raqiqatur; Hassan, Mubashir; Ahsan, Haseeb; Afzal, Samina; Afzal, Khurram; Cho, Hongsik; Kim, Song Ja

    2016-01-01

    Dexibuprofen–antioxidant conjugates were synthesized with the aim to reduce its gastrointestinal effects. The esters analogs of dexibuprofen 5a–c were obtained by reacting its –COOH group with chloroacetyl derivatives 3a–c. The in vitro hydrolysis data confirmed that synthesized prodrugs 5a–c were stable in stomach while undergo significant hydrolysis in 80% human plasma and thus release free dexibuprofen. The minimum reversion was observed at pH 1.2 suggesting that prodrugs are less irritating to stomach than dexibuprofen. The anti-inflammatory activity of 5c (p < 0.001) is more significant than the parent dexibuprofen. The prodrug 5c produced maximum inhibition (42.06%) of paw-edema against egg-albumin induced inflammation in mice. Anti-pyretic effects in mice indicated that prodrugs 5a and 5b showed significant inhibition of pyrexia (p < 0.001). The analgesic activity of 5a is more pronounced compared to other synthesized prodrugs. The mean percent inhibition indicated that the prodrug 5a was more active in decreasing the number of writhes induced by acetic acid than standard dexibuprofen. The ulcerogenic activity results assured that synthesized prodrugs produce less gastrointestinal adverse effects than dexibuprofen. The ex vivo antiplatelet aggregation activity results also confirmed that synthesized prodrugs are less irritant to gastrointestinal mucosa than the parent dexibuprofen. Molecular docking analysis showed that the prodrugs 5a–c interacts with the residues present in active binding sites of target protein. The stability of drug–target complexes is verified by molecular dynamic simulation study. It exhibited that synthesized prodrugs formed stable complexes with the COX-2 protein thus support our wet lab results. It is therefore concluded that the synthesized prodrugs have promising pharmacological activities with reduced gastrointestinal adverse effects than the parent drug. PMID:28009827

  20. The Potential Therapeutic Application of Peptides and Peptidomimetics in Cardiovascular Disease

    PubMed Central

    Recio, Carlota; Maione, Francesco; Iqbal, Asif J.; Mascolo, Nicola; De Feo, Vincenzo

    2017-01-01

    Cardiovascular disease (CVD) remains a leading cause of mortality and morbidity worldwide. Numerous therapies are currently under investigation to improve pathological cardiovascular complications, but yet, there have been very few new medications approved for intervention/treatment. Therefore, new approaches to treat CVD are urgently required. Attempts to prevent vascular complications usually involve amelioration of contributing risk factors and underlying processes such as inflammation, obesity, hyperglycaemia, or hypercholesterolemia. Historically, the development of peptides as therapeutic agents has been avoided by the Pharmaceutical industry due to their low stability, size, rate of degradation, and poor delivery. However, more recently, resurgence has taken place in developing peptides and their mimetics for therapeutic intervention. As a result, increased attention has been placed upon using peptides that mimic the function of mediators involved in pathologic processes during vascular damage. This review will provide an overview on novel targets and experimental therapeutic approaches based on peptidomimetics for modulation in CVD. We aim to specifically examine apolipoprotein A-I (apoA-I) and apoE mimetic peptides and their role in cholesterol transport during atherosclerosis, suppressors of cytokine signaling (SOCS)1-derived peptides and annexin-A1 as potent inhibitors of inflammation, incretin mimetics and their function in glucose-insulin tolerance, among others. With improvements in technology and synthesis platforms the future looks promising for the development of novel peptides and mimetics for therapeutic use. However, within the area of CVD much more work is required to identify and improve our understanding of peptide structure, interaction, and function in order to select the best targets to take forward for treatment. PMID:28111551

  1. The Potential Therapeutic Application of Peptides and Peptidomimetics in Cardiovascular Disease.

    PubMed

    Recio, Carlota; Maione, Francesco; Iqbal, Asif J; Mascolo, Nicola; De Feo, Vincenzo

    2016-01-01

    Cardiovascular disease (CVD) remains a leading cause of mortality and morbidity worldwide. Numerous therapies are currently under investigation to improve pathological cardiovascular complications, but yet, there have been very few new medications approved for intervention/treatment. Therefore, new approaches to treat CVD are urgently required. Attempts to prevent vascular complications usually involve amelioration of contributing risk factors and underlying processes such as inflammation, obesity, hyperglycaemia, or hypercholesterolemia. Historically, the development of peptides as therapeutic agents has been avoided by the Pharmaceutical industry due to their low stability, size, rate of degradation, and poor delivery. However, more recently, resurgence has taken place in developing peptides and their mimetics for therapeutic intervention. As a result, increased attention has been placed upon using peptides that mimic the function of mediators involved in pathologic processes during vascular damage. This review will provide an overview on novel targets and experimental therapeutic approaches based on peptidomimetics for modulation in CVD. We aim to specifically examine apolipoprotein A-I (apoA-I) and apoE mimetic peptides and their role in cholesterol transport during atherosclerosis, suppressors of cytokine signaling (SOCS)1-derived peptides and annexin-A1 as potent inhibitors of inflammation, incretin mimetics and their function in glucose-insulin tolerance, among others. With improvements in technology and synthesis platforms the future looks promising for the development of novel peptides and mimetics for therapeutic use. However, within the area of CVD much more work is required to identify and improve our understanding of peptide structure, interaction, and function in order to select the best targets to take forward for treatment.

  2. Current Advances in L-DOPA and DOPA-Peptidomimetics: Chemistry, Applications and Biological Activity.

    PubMed

    Bizzarri, Bruno Mattia; Tortolini, Silvia; Rotelli, Luca; Botta, Giorgia; Saladino, Raffaele

    2015-01-01

    L-3,4-Dihydroxyphenylalanine [2-amino-3-(3,4-dihydroxyphenyl) propanoic acid (L-DOPA) is a natural constituent of animal and plant tissue derived from post-translational modification of the amino acid tyrosine. L-DOPA is modified during metabolism to catecholamine neurotransmitters, noradrenaline and adrenaline, which are characterized by different biological activities. L-DOPA has been the first drug of choice in the therapy of Parkinson's disease that is a progressive neurodegenerative disorder involving the loss of dopaminergic neurons of substantia nigra pars compacta. The social and economic impact of these diseases is very high due to the progressive aging of the population. This review focuses on the biological effect of LDOPA, as well as on the synthesis of L-DOPA derivatives and their application in central nervous system diseases. Among them, L-DOPA-containing peptides (L-DOPA-Pep) show important biological and pharmacological activities. For example, L-DOPA analogues of the alpha-factor interact with models of the G protein-coupled receptor, inhibit the oxidation of low-density lipoproteins, and are used for improving L-DOPA absorption in long-term treatment of Parkinson's disease and as skin moisturizer in cosmetic compositions. Moreover, L-DOPA residues in proteins provide reactive tools for the preparation of adhesives and coatings materials. Usually, L-DOPA-Pep is prepared by traditional liquid or solid state procedures starting from simple amino acids. Recently, selective side-chain modifications of pre-formed peptides have also been reported both for linear and branched peptides. Here, we describe the recent advances in the synthesis of L-DOPA and dopa-peptidomimetics and their biological and pharmacological activities, focusing the attention on new synthetic procedures and biological mechanism of actions.

  3. Design, Synthesis and in vitro Characterization of Novel Hybrid Peptidomimetic Inhibitors of STAT3 Protein

    PubMed Central

    Shahani, Vijay M.; Yue, Peibin; Fletcher, Steven; Sharmeen, Sumaiya; Sukhai, Mahadeo A.; Luu, Diana P.; Zhang, Xiaolei; Sun, Hong; Zhao, Wei; Schimmer, Aaron D.; Turkson, James; Gunning, Patrick T.

    2011-01-01

    Aberrant activation of oncogenic signal transducer and activator of transcription 3 (STAT3) protein signaling pathways has been extensively implicated in human cancers. Given STAT3’s prominent dysregulatory role in malignant transformation and tumorigenesis, there has been a significant effort to discover STAT3-specific inhibitors as chemical probes for defining the aberrant STAT3-mediated molecular events that support the malignant phenotype. To identify novel, STAT3-selective inhibitors suitable for interrogating STAT3 signaling in tumor cells, we explored the design of hybrid molecules by conjugating a known STAT3 inhibitory peptidomimetic, ISS610 to the high-affinity STAT3-binding peptide motif derived from the ILR/gp-130. Several hybrid molecules were examined in in vitro biophysical and biochemical studies for inhibitory potency against STAT3. Lead inhibitor 14aa was shown to strongly bind to STAT3 (KD = 900 nM), disrupt STAT3:phosphopeptide complexes (Ki = 5 μM) and suppress STAT3 activity in in vitro DNA-binding activity/ electrophoretic mobility shift assay (EMSA). Moreover, lead STAT3 inhibitor 14aa induced a time-dependent inhibition of constitutive STAT3 activation in v-Src transformed mouse fibroblasts (NIH3T3/v-Src), with 80 % suppression of constitutively-active STAT3 at six hours following treatment of NIH3T3/v-Src. However, STAT3 activity recovered at 24 hours after treatment of cells, suggesting potential degradation of the compound. Results further showed a suppression of aberrant STAT3 activity in NIH3T3/v-Src by the treatment with compound 14aa-OH, which is the non-pTyr version of compound 14aa. The effect of compounds 14aa and 14aa-OH are accompanied by a moderate loss of cell viability. PMID:21216604

  4. Acid-responsive PEGylated doxorubicin prodrug nanoparticles for neuropilin-1 receptor-mediated targeted drug delivery.

    PubMed

    Song, Huijuan; Zhang, Ju; Wang, Weiwei; Huang, Pingsheng; Zhang, Yumin; Liu, Jianfeng; Li, Chen; Kong, Deling

    2015-12-01

    Self-assembled prodrug nanoparticles have demonstrated great promise in cancer chemotherapy. In the present study, we developed a new kind of prodrug nanoparticles for targeted drug delivery. PEGylated doxorubicin conjugate with an acid-cleavable cis-aconityl spacer was prepared. Then it was functionalized with a tumor-penetrating peptide, Cys-Arg-Gly-Asp-Lys (CRGDK), providing the prodrug nanoparticles with the specific binding ability to neurophilin-1 receptor. In acid mediums, doxorubicin could be released from the prodrug nanoparticles with an accumulative release around 60% through the acid-triggered hydrolysis of cis-aconityl bond and nanoparticle disassembly. Whereas, drug release was slow under a neutral pH and the accumulative drug release was less than 16%. In the cell culture tests, our prodrug nanoparticles showed enhanced endocytosis and cytotoxicity in cancer cells including HepG2, MCF-7 and MDA-MB-231 cells, but lower cytotoxicity in human cardiomyocyte H2C9. In the animal experiments, the prodrug nanoparticles were intravenously injected into Balb/c nude mice bearing MDA-MB-231 tumors. Enhanced drug penetration and accumulation in tumors, accompanying with a rapid early tumor-binding behavior, was observed after intravenous injection of the peptide modified prodrug nanoparticles. These data suggests that the acid-sensitive and tumor-targeting PEGylated doxorubicin prodrug nanoparticle may be an efficient drug delivery system for cancer chemotherapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Synthesis and evaluation of atorvastatin esters as prodrugs metabolically activated by human carboxylesterases.

    PubMed

    Mizoi, Kenta; Takahashi, Masato; Haba, Masami; Hosokawa, Masakiyo

    2016-02-01

    We synthesized 11 kinds of prodrug with an esterified carboxylic acid moiety of atorvastatin in moderate to high yields. We discovered that they underwent metabolic activation specifically by the human carboxylesterase 1 (CES1) isozyme. The results suggested that these ester compounds of atorvastatin have the potential to act as prodrugs in vivo.

  6. Sulfur dioxide prodrugs: triggered release of SO2via a click reaction.

    PubMed

    Wang, Wenyi; Ji, Xingyue; Du, Zhenming; Wang, Binghe

    2017-01-24

    Sulfur dioxide (SO2) is being recognized as a possible endogenous gasotransmitter with importance on par with that of NO, CO, and H2S. Herein we describe a series of SO2 prodrugs that are activated for SO2 release via a bioorthogonal click reaction. The release rate can be tuned by adjusting the substituents on the prodrug.

  7. Functional characterization of five different PRXamide receptors of the red flour beetle Tribolium castaneum with peptidomimetics and identificaiton of agonists and antagonists

    USDA-ARS?s Scientific Manuscript database

    The neuropeptidergic system in insects is considered to be an excellent target for pest control strategies. One promising biorational approach is the use of peptidomimetics modified from endogenous ligands to enhance biostability and bioavailability. In this study, we functionally characterized fiv...

  8. Disaggregation of Amylin Aggregate by Novel Conformationally Restricted Aminobenzoic Acid containing α/β and α/γ Hybrid Peptidomimetics

    NASA Astrophysics Data System (ADS)

    Paul, Ashim; Kalita, Sourav; Kalita, Sujan; Sukumar, Piruthivi; Mandal, Bhubaneswar

    2017-01-01

    Diabetes has emerged as a threat to the current world. More than ninety five per cent of all the diabetic population has type 2 diabetes mellitus (T2DM). Aggregates of Amylin hormone, which is co-secreted with insulin from the pancreatic β-cells, inhibit the activities of insulin and glucagon and cause T2DM. Importance of the conformationally restricted peptides for drug design against T2DM has been invigorated by recent FDA approval of Symlin, which is a large conformationally restricted peptide. However, Symlin still has some issues including solubility, oral bioavailability and cost of preparation. Herein, we introduced a novel strategy for conformationally restricted peptide design adopting a minimalistic approach for cost reduction. We have demonstrated efficient inhibition of amyloid formation of Amylin and its disruption by a novel class of conformationally restricted β-sheet breaker hybrid peptidomimetics (BSBHps). We have inserted β, γ and δ -aminobenzoic acid separately into an amyloidogenic peptide sequence, synthesized α/β, α/γ and α/δ hybrid peptidomimetics, respectively. Interestingly, we observed the aggregation inhibitory efficacy of α/β and α/γ BSBHps, but not of α/δ analogues. They also disrupt existing amyloids into non-toxic forms. Results may be useful for newer drug design against T2DM as well as other amyloidoses and understanding amyloidogenesis.

  9. NMR-assisted computational studies of peptidomimetic inhibitors bound in the hydrophobic pocket of HIV-1 glycoprotein 41

    NASA Astrophysics Data System (ADS)

    Gochin, Miriam; Whitby, Landon R.; Phillips, Aaron H.; Boger, Dale L.

    2013-07-01

    Due to the inherently flexible nature of a protein-protein interaction surface, it is difficult both to inhibit the association with a small molecule, and to predict how it might bind to the surface. In this study, we have examined small molecules that mediate the interaction between a WWI motif on the C-helix of HIV-1 glycoprotein-41 (gp41) and a deep hydrophobic pocket contained in the interior N-helical trimer. Association between these two components of gp41 leads to virus-cell and cell-cell fusion, which could be abrogated in the presence of an inhibitor that binds tightly in the pocket. We have studied a comprehensive combinatorial library of α-helical peptidomimetics, and found that compounds with strongly hydrophobic side chains had the highest affinity. Computational docking studies produced multiple possible binding modes due to the flexibility of both the binding site and the peptidomimetic compounds. We applied a transferred paramagnetic relaxation enhancement experiment to two selected members of the library, and showed that addition of a few experimental constraints enabled definitive identification of unique binding poses. Computational docking results were extremely sensitive to side chain conformations, and slight variations could preclude observation of the experimentally validated poses. Different receptor structures were required for docking simulations to sample the correct pose for the two compounds. The study demonstrated the sensitivity of predicted poses to receptor structure and indicated the importance of experimental verification when docking to a malleable protein-protein interaction surface.

  10. Simplified AIP-II Peptidomimetics Are Potent Inhibitors of Staphylococcus aureus AgrC Quorum Sensing Receptors.

    PubMed

    Vasquez, Joseph K; Tal-Gan, Yftah; Cornilescu, Gabriel; Tyler, Kimberly A; Blackwell, Helen E

    2017-02-16

    The bacterial pathogen Staphylococcus aureus controls many aspects of virulence by using the accessory gene regulator (agr) quorum sensing (QS) system. The agr system is activated by a macrocyclic peptide signal known as an autoinducing peptide (AIP). We sought to develop structurally simplified mimetics of AIPs for use as chemical tools to study QS in S. aureus. Herein, we report new peptidomimetic AgrC receptor inhibitors based on a tail-truncated AIP-II peptide that have almost analogous inhibitory activities to the parent peptide. Structural comparison of one of these peptidomimetics to the parent peptide and a highly potent, all-peptide-derived, S. aureus agr inhibitor (AIP-III D4A) revealed a conserved hydrophobic motif and overall amphipathic nature. Our results suggest that the AIP scaffold is amenable to structural mimicry and minimization for the development of synthetic agr inhibitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Disaggregation of Amylin Aggregate by Novel Conformationally Restricted Aminobenzoic Acid containing α/β and α/γ Hybrid Peptidomimetics

    PubMed Central

    Paul, Ashim; Kalita, Sourav; Kalita, Sujan; Sukumar, Piruthivi; Mandal, Bhubaneswar

    2017-01-01

    Diabetes has emerged as a threat to the current world. More than ninety five per cent of all the diabetic population has type 2 diabetes mellitus (T2DM). Aggregates of Amylin hormone, which is co-secreted with insulin from the pancreatic β-cells, inhibit the activities of insulin and glucagon and cause T2DM. Importance of the conformationally restricted peptides for drug design against T2DM has been invigorated by recent FDA approval of Symlin, which is a large conformationally restricted peptide. However, Symlin still has some issues including solubility, oral bioavailability and cost of preparation. Herein, we introduced a novel strategy for conformationally restricted peptide design adopting a minimalistic approach for cost reduction. We have demonstrated efficient inhibition of amyloid formation of Amylin and its disruption by a novel class of conformationally restricted β-sheet breaker hybrid peptidomimetics (BSBHps). We have inserted β, γ and δ -aminobenzoic acid separately into an amyloidogenic peptide sequence, synthesized α/β, α/γ and α/δ hybrid peptidomimetics, respectively. Interestingly, we observed the aggregation inhibitory efficacy of α/β and α/γ BSBHps, but not of α/δ analogues. They also disrupt existing amyloids into non-toxic forms. Results may be useful for newer drug design against T2DM as well as other amyloidoses and understanding amyloidogenesis. PMID:28054630

  12. NMR-assisted computational studies of peptidomimetic inhibitors bound in the hydrophobic pocket of HIV-1 glycoprotein 41

    PubMed Central

    Gochin, Miriam; Whitby, Landon R.; Phillips, Aaron H.; Boger, Dale L.

    2013-01-01

    Due to the inherently flexible nature of a protein – protein interaction surface, it is difficult both to inhibit the association with a small molecule, and to predict how it might bind to the surface. In this study, we have examined small molecules that mediate the interaction between a WWI motif on the C-helix of HIV-1 glycoprotein-41 and a deep hydrophobic pocket contained in the interior N-helical trimer. Association between these two components of gp41 leads to virus–cell and cell–cell fusion, which could be abrogated in the presence of an inhibitor that binds tightly in the pocket. We have studied a comprehensive combinatorial library of α-helical peptidomimetics, and found that compounds with strongly hydrophobic side chains had the highest affinity. Computational docking studies produced multiple possible binding modes due to the flexibility of both the binding site and the peptidomimetic compounds. We applied a transferred paramagnetic relaxation enhancement (PRE) experiment to two selected members of the library, and showed that addition of a few experimental constraints enabled definitive identification of unique binding poses. Computational docking results were extremely sensitive to side chain conformations, and slight variations could preclude observation of the experimentally validated poses. Different receptor structures were required for docking simulations to sample the correct pose for the two compounds. The study demonstrated the sensitivity of predicted poses to receptor structure and indicated the importance of experimental verification when docking to a malleable protein – protein interaction surface. PMID:23893342

  13. Improvement of Topical Palmitoylethanolamide Anti-Inflammatory Activity by Pegylated Prodrugs.

    PubMed

    Tronino, Diana; Russo, Roberto; Ostacolo, Carmine; Mazzolari, Angelica; De Caro, Carmen; Avagliano, Carmen; Laneri, Sonia; La Rana, Giovanna; Sacchi, Antonia; Della Valle, Francesco; Vistoli, Giulio; Calignano, Antonio

    2015-09-08

    A small library of polyethylene glycol esters of palmitoylethanolamide (PEA) was synthesized with the aim of improving the pharmacokinetic profile of the parent drug after topical administration. Synthesized prodrugs were studied for their skin accumulation, pharmacological activities, in vitro chemical stability, and in silico enzymatic hydrolysis. Prodrugs proved to be able to delay and prolong the pharmacological activity of PEA by modification of its skin accumulation profile. Pharmacokinetic improvements were particularly evident when specific structural requirements, such as flexibility and reduced molecular weight, were respected. Some of the synthesized prodrugs prolonged the pharmacological effects 5 days following topical administration, while a formulation composed by PEA and two pegylated prodrugs showed both rapid onset and long-lasting activity, suggesting the potential use of polyethylene glycol prodrugs of PEA as a suitable candidate for the treatment of skin inflammatory diseases.

  14. β-Glucuronidase-responsive prodrugs for selective cancer chemotherapy: an update.

    PubMed

    Tranoy-Opalinski, Isabelle; Legigan, Thibaut; Barat, Romain; Clarhaut, Jonathan; Thomas, Mikaël; Renoux, Brigitte; Papot, Sébastien

    2014-03-03

    The design of novel antitumor agents allowing the destruction of malignant cells while sparing healthy tissues is one of the major challenges in medicinal chemistry. In this context, the use of non-toxic prodrugs programmed to be selectively activated by beta-glucuronidase present at high concentration in the microenvironment of most solid tumors has attracted considerable attention. This review summarizes the major progresses that have been realized in this field over the past ten years. This includes the new prodrugs that have been designed to target a wide variety of anticancer drugs, the prodrugs employed in the course of a combined therapy, the dendritic glucuronide prodrugs and the concept of β-glucuronidase-responsive albumin binding prodrugs. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. A Novel, Unusually Efficacious Duocarmycin Carbamate Prodrug That Releases No Residual Byproduct

    PubMed Central

    Wolfe, Amanda L.; Duncan, Katharine K.; Parelkar, Nikhil K.; Weir, Scott J.; Vielhauer, George A.; Boger, Dale L.

    2012-01-01

    A unique heterocyclic carbamate prodrug of seco-CBI-indole2 that releases no residual byproduct is reported as a new member of a class of hydrolyzable prodrugs of the duocarmycin and CC-1065 family of natural products. The prodrug was designed to be activated by hydrolysis of a carbamate releasing the free drug without the cleavage release of a traceable extraneous group. Unlike prior carbamate prodrugs examined that are rapidly cleaved in vivo, the cyclic carbamate was found to be exceptionally stable to hydrolysis under both chemical and biological conditions providing a slow, sustained release of the exceptionally potent free drug. An in vivo evaluation of the prodrug found that its efficacy exceeded that of the parent drug, that its therapeutic window of efficacy versus toxicity is much larger than the parent drug, and that its slow free drug release permitted the safe and efficacious use of doses 150-fold higher than the parent compound. PMID:22650244

  16. Efficacious Cyclic N-Acyl O-Amino Phenol Duocarmycin Prodrugs

    PubMed Central

    Wolfe, Amanda L.; Duncan, Katharine K.; Parelkar, Nikhil K.; Brown, Douglas; Vielhauer, George A.; Boger, Dale L.

    2013-01-01

    Two novel cyclic N-acyl O-amino phenol prodrugs are reported as new members of a unique class of reductively cleaved prodrugs of the duocarmycin family of natural products. These prodrugs were explored with the expectation that they may be cleaved selectively within hypoxic tumor environments that have intrinsically higher concentrations of reducing nucleophiles and were designed to liberate the free drug without the release of an extraneous group. In vivo evaluation of the prodrug 6 showed that it exhibits extraordinary efficacy (T/C > 1500, L1210; 6/10 one year survivors) substantially exceeding that of the free drug, that its therapeutic window of activity is much larger permitting a dosing ≥ 40-fold higher than the free drug, and yet that it displays a potency in vivo that approaches the free drug (within 3-fold). Clearly, the prodrug 6 benefits from either its controlled slow release of the free drug or its preferential intracellular reductive cleavage. PMID:23627265

  17. Prodrugs as self-assembled hydrogels: a new paradigm for biomaterials.

    PubMed

    Vemula, Praveen Kumar; Wiradharma, Nikken; Ankrum, James A; Miranda, Oscar R; John, George; Karp, Jeffrey M

    2013-12-01

    Prodrug-based self-assembled hydrogels represent a new class of active biomaterials that can be harnessed for medical applications, in particular the design of stimuli responsive drug delivery devices. In this approach, a promoiety is chemically conjugated to a known-drug to generate an amphiphilic prodrug that is capable of forming self-assembled hydrogels. Prodrug-based self-assembled hydrogels are advantageous as they alter the solubility of the drug, enhance drug loading, and eliminate the use of harmful excipients. In addition, self-assembled prodrug hydrogels can be designed to undergo controlled drug release or tailored degradation in response to biological cues. Herein we review the development of prodrug-based self-assembled hydrogels as an emerging class of biomaterials that overcome several common limitations encountered in conventional drug delivery.

  18. Pharmacological Evaluation and Preliminary Pharmacokinetics Studies of a New Diclofenac Prodrug without Gastric Ulceration Effect

    PubMed Central

    dos Santos, Jean Leandro; Moreira, Vanessa; Campos, Michel Leandro; Chelucci, Rafael Consolin; Barbieri, Karina Pereira; de Castro Souto, Pollyana Cristina Maggio; Matsubara, Márcio Hideki; Teixeira, Catarina; Bosquesi, Priscila Longhin; Peccinini, Rosângela Gonçalves; Chin, Chung Man

    2012-01-01

    Long-term nonsteroidal anti-inflammatory drugs (NSAIDs) therapy has been associated with several adverse effects such as gastric ulceration and cardiovascular events. Among the molecular modifications strategies, the prodrug approach is a useful tool to discover new safe NSAIDs. The 1-(2,6-dichlorophenyl)indolin-2-one is a diclofenac prodrug which demonstrated relevant anti-inflammatory properties without gastro ulceration effect. In addition, the prodrug decreases PGE2 levels, COX-2 expression and cellular influx into peritoneal cavity induced by carrageenan treatment. Preliminary pharmacokinetic studies have shown in vivo bioconversion of prodrug to diclofenac. This prodrug is a new nonulcerogenic NSAID useful to treat inflammatory events by long-term therapy. PMID:23203127

  19. Substrate-Competitive Activity-Based Profiling of Ester Prodrug Activating Enzymes.

    PubMed

    Xu, Hao; Majmudar, Jaimeen D; Davda, Dahvid; Ghanakota, Phani; Kim, Ki H; Carlson, Heather A; Showalter, Hollis D; Martin, Brent R; Amidon, Gordon L

    2015-09-08

    Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating preclinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a four-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design, and

  20. A Food Effect Study of an Oral Thrombin Inhibitor and Prodrug Approach To Mitigate It.

    PubMed

    Lee, Jihye; Kim, Bongchan; Kim, Tae Hun; Lee, Sun Hwa; Park, Hee Dong; Chung, Kyungha; Lee, Sung-Hack; Paek, Seungyup; Kim, Eunice EunKyeong; Yoon, SukKyoon; Kim, Aeri

    2016-04-04

    LB30870, a new direct thrombin inhibitor, showed 80% reduction in oral bioavailability in fed state. The present study aims to propose trypsin binding as a mechanism for such negative food effect and demonstrate a prodrug approach to mitigate food effect. Effect of food composition on fed state oral bioavailability of LB30870 was studied in dogs. Various prodrugs were synthesized, and their solubility, permeability, and trypsin binding affinity were measured. LB30870 and prodrugs were subject to cocrystallization with trypsin, and the X-ray structures of cocrystals were determined. Food effect was studied in dogs for selected prodrugs. Protein or lipid meal appeared to affect oral bioavailability of LB30870 in dogs more than carbohydrate meal. Blocking both carboxyl and amidine groups of LB30870 resulted in trypsin Ki values orders of magnitude higher than that of LB30870. Prodrugs belonged to either Biopharmaceutical Classification System I, II, or III. X-ray crystallography revealed that prodrugs did not bind to trypsin, but instead their hydrolysis product at the amidine blocking group formed cocrystal with trypsin. A prodrug with significantly less food effect than LB30870 was identified. Binding of prodrugs to food components such as dietary fiber appeared to counteract the positive effect brought with the prodrug approach. Further formulation research is warranted to enhance the oral bioavailability of prodrugs. In conclusion, this study is the first to demonstrate that the negative food effect of LB30870 can be attributed to trypsin binding. Trypsin binding study is proposed as a screening tool during lead optimization to minimize food effect.

  1. Evaluation of salicylic acid fatty ester prodrugs for UV protection.

    PubMed

    Im, Jong Seob; Balakrishnan, Prabagar; Oh, Dong Hoon; Kim, Jung Sun; Jeon, Eun-Mi; Kim, Dae-Duk; Yong, Chul Soon; Choi, Han-Gon

    2011-07-01

    The purpose of this study was to investigate the physicochemical properties and in vitro evaluation of fatty ester prodrugs of salicylic acid for ultraviolet (UV) protection. The physicochemical properties such as lipophilicity, chemical stability and enzymatic hydrolysis were investigated with the following fatty ester prodrugs of salicylic acid: octanoyl (C8SA), nonanoyl (C9SA), decanoyl (C10SA), lauroyl (C12SA), myristoyl (C14SA) and palmitoyl oxysalicylate (C16SA). Furthermore, their skin permeation and accumulation were evaluated using a combination of common permeation enhancing techniques such as the use of a lipophilic receptor solution, removal of stratum corneum and delipidization of skin. Their k' values were proportional to the degree of carbon-carbon saturation in the side chain. All these fatty esters were highly stable in 2-propanol, acetonitrile and glycerin, but unstable in methanol and ethanol. They were relatively unstable in liver and skin homogenates. In particular, C16SA was mostly hydrolyzed to its parent compound in hairless mouse liver and skin homogenates, suggesting that it might be converted to salicylic acid after its topical administration. In the skin permeation and accumulation study, C16SA showed the poorest permeation in all skins, suggesting that it could not be permeated in the skin. Furthermore, C14SA and C16SA were less accumulated in delipidized skin compared with normal skin or stripped skin, suggesting that these esters had relatively strong affinities for lipids compared with the other prodrugs in the skin. C16SA showed significantly higher dermal accumulation in all skins compared with its parent salicylic acid. Thus, the palmitoyl oxysalicylate (C16SA) might be a potential candidate for UV protection due to its absence of skin permeation, smaller uptake in the lipid phase and relatively lower skin accumulation.

  2. Legubicin, a Tumor-Activated Prodrug for Breast Cancer Therapy

    DTIC Science & Technology

    2007-04-01

    Thr-Asn-Leu, Ala - Ala - Asn-Leu (SEQ ID NO: 5 ), Ala -Thr-Asn-Leu (SEQ ID NO:6), and Boc- Ala - Ala -Asn-Leu (SEQ ID NO:4). Examples of prodrugs provided by...O N AEPI-4 AEPI- 5 is N-acetyl- Ala - Ala -AzaAsn-(S,S)-EPCOOEt, a compound of the structure: Annual Report...Cheng Liu, M.D., Ph.D. 31 H N H N O O HN O N H2N O O O O O O AEPI- 5 AEPI-6 is N-succinyl- Ala - Ala -AzaAsn-(S,S)-EPCOOEt, a compound of the

  3. Supramolecular curcumin-barium prodrugs for formulating with ceramic particles.

    PubMed

    Kamalasanan, Kaladhar; Anupriya; Deepa, M K; Sharma, Chandra P

    2014-10-01

    A simple and stable curcumin-ceramic combined formulation was developed with an aim to improve curcumin stability and release profile in the presence of reactive ceramic particles for potential dental and orthopedic applications. For that, curcumin was complexed with barium (Ba(2+)) to prepare curcumin-barium (BaCur) complex. Upon removal of the unbound curcumin and Ba(2+) by dialysis, a water-soluble BaCur complex was obtained. The complex was showing [M+1](+) peak at 10,000-20,000 with multiple fractionation peaks of MALDI-TOF-MS studies, showed that the complex was a supramolecular multimer. The (1)H NMR and FTIR studies revealed that, divalent Ba(2+) interacted predominantly through di-phenolic groups of curcumin to form an end-to-end complex resulted in supramolecular multimer. The overall crystallinity of the BaCur was lower than curcumin as per XRD analysis. The complexation of Ba(2+) to curcumin did not degrade curcumin as per HPLC studies. The fluorescence spectrum was blue shifted upon Ba(2+) complexation with curcumin. Monodisperse nanoparticles with size less than 200dnm was formed, out of the supramolecular complex upon dialysis, as per DLS, and upon loading into pluronic micelles the size was remaining in similar order of magnitude as per DLS and AFM studies. Stability of the curcumin was improved greater than 50% after complexation with Ba(2+) as per UV/Vis spectroscopy. Loading of the supramloecular nanoparticles into pluronic micelles had further improved the stability of curcumin to approx. 70% in water. These BaCur supramolecule nanoparticles can be considered as a new class of prodrugs with improved solubility and stability. Subsequently, ceramic nanoparticles with varying chemical composition were prepared for changing the material surface reactivity in terms of the increase in, degradability, surface pH and protein adsorption. Further, these ceramic particles were combined with curcumin prodrug formulations and optimized the curcumin release

  4. Discovery and Characterization of a Water-Soluble Prodrug of a Dual Inhibitor of Bacterial DNA Gyrase and Topoisomerase IV.

    PubMed

    O'Dowd, Hardwin; Shannon, Dean E; Chandupatla, Kishan R; Dixit, Vaishali; Engtrakul, Juntyma J; Ye, Zhengqi; Jones, Steven M; O'Brien, Colleen F; Nicolau, David P; Tessier, Pamela R; Crandon, Jared L; Song, Bin; Macikenas, Dainius; Hanzelka, Brian L; Le Tiran, Arnaud; Bennani, Youssef L; Charifson, Paul S; Grillot, Anne-Laure

    2015-07-09

    Benzimidazole 1 is the lead compound resulting from an antibacterial program targeting dual inhibitors of bacterial DNA gyrase and topoisomerase IV. With the goal of improving key drug-like properties, namely, the solubility and the formulability of 1, an effort to identify prodrugs was undertaken. This has led to the discovery of a phosphate ester prodrug 2. This prodrug is rapidly cleaved to the parent drug molecule upon both oral and intravenous administration. The prodrug achieved equivalent exposure of 1 compared to dosing the parent in multiple species. The prodrug 2 has improved aqueous solubility, simplifying both intravenous and oral formulation.

  5. Discovery and Characterization of a Water-Soluble Prodrug of a Dual Inhibitor of Bacterial DNA Gyrase and Topoisomerase IV

    PubMed Central

    2015-01-01

    Benzimidazole 1 is the lead compound resulting from an antibacterial program targeting dual inhibitors of bacterial DNA gyrase and topoisomerase IV. With the goal of improving key drug-like properties, namely, the solubility and the formulability of 1, an effort to identify prodrugs was undertaken. This has led to the discovery of a phosphate ester prodrug 2. This prodrug is rapidly cleaved to the parent drug molecule upon both oral and intravenous administration. The prodrug achieved equivalent exposure of 1 compared to dosing the parent in multiple species. The prodrug 2 has improved aqueous solubility, simplifying both intravenous and oral formulation. PMID:26191374

  6. Jointly handling potency and toxicity of antimicrobial peptidomimetics by simple rules from desirability theory and chemoinformatics.

    PubMed

    Cruz-Monteagudo, Maykel; Borges, Fernanda; Cordeiro, M Natália D S

    2011-12-27

    Today, emerging and increasing resistance to antibiotics has become a threat to public health worldwide. Antimicrobial peptides have unique action mechanisms making them an attractive therapeutic prospect to be applied against resistant bacteria. However, the major drawback is related with their high hemolytic activity which cancels out the safety requirements for a human antibiotic. Therefore, additional efforts are needed to develop new antimicrobial peptides that possess a greater potency for bacterial cells and less or no toxicity over erythrocytes. In this paper, we introduce a practical approach to simultaneously deal with these two conflicting properties. The convergence of machine learning techniques and desirability theory allowed us to derive a simple, predictive, and interpretable multicriteria classification rule for simultaneously handling the antibacterial and hemolytic properties of a set of cyclic β-hairpin cationic peptidomimetics (Cβ-HCPs). The multicriteria classification rule exhibited a prediction accuracy of about 80% on training and external validation sets. Results from an additional concordance test have shown an excellent agreement between the multicriteria classification rule predictions and the predictions from independent classifiers for complementary antibacterial and hemolytic activities, respectively, evidencing the reliability of the multicriteria classification rule. The rule was also consistent with the general mode of action of cationic peptides pointing out its biophysical relevance. We also propose a multicriteria virtual screening strategy based on the joint use of the multicriteria classification rule, desirability, similarity, and chemometrics concepts. The ability of such a virtual screening strategy to prioritize selective (nonhemolytic) antibacterial Cβ-HCPs was assessed and challenged for their predictivity regarding the training, validation, and overall data. In doing so, we were able to rank a selective

  7. Novel biotinylated lipid prodrugs of acyclovir for the treatment of herpetic keratitis (HK): transporter recognition, tissue stability and antiviral activity.

    PubMed

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Earla, Ravinder; Sirimulla, Suman; Bailey, Jake Brain; Pal, Dhananjay; Mitra, Ashim K

    2013-08-01

    Biotinylated lipid prodrugs of acyclovir (ACV) were designed to target the sodium dependent multivitamin transporter (SMVT) on the cornea to facilitate enhanced cellular absorption of ACV. All the prodrugs were screened for in vitro cellular uptake, interaction with SMVT, docking analysis, cytotoxicity, enzymatic stability and antiviral activity. Uptake of biotinylated lipid prodrugs of ACV (B-R-ACV and B-12HS-ACV) was significantly higher than biotinylated prodrug (B-ACV), lipid prodrugs (R-ACV and 12HS-ACV) and ACV in corneal cells. Transepithelial transport across rabbit corneas indicated the recognition of the prodrugs by SMVT. Average Vina scores obtained from docking studies further confirmed that biotinylated lipid prodrugs possess enhanced affinity towards SMVT. All the prodrugs studied did not cause any cytotoxicity and were found to be safe and non-toxic. B-R-ACV and B-12HS-ACV were found to be relatively more stable in ocular tissue homogenates and exhibited excellent antiviral activity. Biotinylated lipid prodrugs demonstrated synergistic improvement in cellular uptake due to recognition of the prodrugs by SMVT on the cornea and lipid mediated transcellular diffusion. These biotinylated lipid prodrugs appear to be promising drug candidates for the treatment of herpetic keratitis (HK) and may lower ACV resistance in patients with poor clinical response.

  8. Novel Biotinylated Lipid Prodrugs of Acyclovir for the Treatment of Herpetic Keratitis (HK): Transporter Recognition, Tissue Stability and Antiviral Activity

    PubMed Central

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Earla, Ravinder; Sirimulla, Suman; Bailey, Jake Brain; Pal, Dhananjay; Mitra, Ashim K.

    2013-01-01

    Purpose Biotinylated lipid prodrugs of acyclovir (ACV) were designed to target the sodium dependent multivitamin transporter (SMVT) on the cornea to facilitate enhanced cellular absorption of ACV. Methods All the prodrugs were screened for in vitro cellular uptake, interaction with SMVT, docking analysis, cytotoxicity, enzymatic stability and antiviral activity. Results Uptake of biotinylated lipid prodrugs of ACV (B-R-ACV and B-12HS-ACV) was significantly higher than biotinylated prodrug (B-ACV), lipid prodrugs (R-ACV and 12HS-ACV) and ACV in corneal cells. Transepithelial transport across rabbit corneas indicated the recognition of the prodrugs by SMVT. Average Vina scores obtained from docking studies further confirmed that biotinylated lipid prodrugs possess enhanced affinity towards SMVT. All the prodrugs studied did not cause any cytotoxicity and were found to be safe and non-toxic. B-R-ACV and B-12HS-ACV were found to be relatively more stable in ocular tissue homogenates and exhibited excellent antiviral activity. Conclusions Biotinylated lipid prodrugs demonstrated synergistic improvement in cellular uptake due to recognition of the prodrugs by SMVT on the cornea and lipid mediated transcellular diffusion. These biotinylated lipid prodrugs appear to be promising drug candidates for the treatment of herpetic keratitis (HK) and may lower ACV resistance in patients with poor clinical response. PMID:23657675

  9. A prodrug approach to enhance azelaic acid percutaneous availability.

    PubMed

    Al-Marabeh, Sara; Khalil, Enam; Khanfar, Mohammad; Al-Bakri, Amal G; Alzweiri, Muhammed

    2017-06-01

    Azelaic acid is a dicarboxylic acid compound used in treatment of acne vulgaris. However, high concentration (ca 20%) is needed to guarantee the drug availability in the skin. The latter increases the incidence of side effects such as local irritation. The prodrug strategy to enhance azelaic acid diffusion through skin was not reported before. Thus, a lipophilic prodrug of azelaic acid (diethyl azelate [DEA]) was synthesized and investigated to improve percutaneous availability of azelaic acid, with a subsequent full physical, chemical, and biological characterization. Expectedly, DEA exhibited a significant increase in diffusion compared to azelaic acid through silicone membrane. In contrast, the diffusion results through human stratum corneum (SC) displayed weaker permeation for DEA with expected retention in the SC. Therefore, a desorption study of DEA from SC was conducted to examine the reservoir behavior in SC. Results showed an evidence of sustained release behavior of DEA from SC. Consequently, enhancement of keratolytic effect is expected due to azelaic acid produced from enzymatic conversion of DEA released from SC.

  10. Preparation of alginate beads containing a prodrug of diethylenetriaminepentaacetic acid

    PubMed Central

    Yang, Yu-Tsai; Di Pasqua, Anthony J.; He, Weiling; Tsai, Tsuimin; Sueda, Katsuhiko; Zhang, Yong; Jay, Michael

    2012-01-01

    A penta-ethyl ester prodrug of the radionuclide decorporation agent diethylenetriaminepentaacetic acid (DTPA), which exists as an oily liquid, was encapsulated in alginate beads by the ionotropic gelation method. An optimal formulation was found by varying initial concentrations of DTPA pentaethyl ester, alginate polymer, Tween 80 surfactant and calcium chloride. All prepared alginate beads were ~1.6 mm in diameter, and the optimal formulation had loading and encapsulation efficiencies of 91.0 ± 1.1 and 72.6 ± 2.2%, respectively, and only 3.2 ± 0.8% water absorption after storage at room temperature in ~80% relative humidity. Moreover, Fourier transform infrared spectroscopy showed that DTPA penta-ethyl ester did not react with excipients during formation of the DTPA penta-ethyl ester-containing alginate beads. Release of prodrug from alginate beads was via anomalous transport, and its stability enhanced by encapsulation. Collectively, these data suggest that this solid dosage form may be suitable for oral administration after radionuclide contamination. PMID:23399237

  11. Macrophage mediated PCI enhanced gene-directed enzyme prodrug therapy

    NASA Astrophysics Data System (ADS)

    Christie, Catherine E.; Zamora, Genesis; Kwon, Young J.; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2015-03-01

    Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. Prodrug activating gene therapy (suicide gene therapy) employing the transduction of the E. coli cytosine deaminase (CD) gene into tumor cells, is a promising method. Expression of this gene within the target cell produces an enzyme that converts the nontoxic prodrug, 5-FC, to the toxic metabolite, 5-fluorouracil (5-FU). 5-FC may be particularly suitable for brain tumors, because it can readily cross the bloodbrain barrier (BBB). In addition the bystander effect, where activated drug is exported from the transfected cancer cells into the tumor microenvironment, plays an important role by inhibiting growth of adjacent tumor cells. Tumor-associated macrophages (TAMs) are frequently found in and around glioblastomas. Monocytes or macrophages (Ma) loaded with drugs, nanoparticles or photosensitizers could therefore be used to target tumors by local synthesis of chemo attractive factors. The basic concept is to combine PCI, to enhance the ex vivo transfection of a suicide gene into Ma, employing specially designed core/shell NP as gene carrier.

  12. Antineoplastic agents. 548. Synthesis of iodo- and diiodocombstatin phosphate prodrugs.

    PubMed

    Pettit, George R; Rosenberg, Heidi J; Dixon, Rachel; Knight, John C; Hamel, Ernest; Chapuis, Jean-Charles; Pettit, Robin K; Hogan, Fiona; Sumner, Brandy; Ain, Kenneth B; Trickey-Platt, Brindi

    2012-03-23

    Toward the objective of designing a structurally modified analogue of the combretastatin A-4 phosphate prodrug (1b) with the potential for increased specificity toward thyroid carcinoma, synthesis of a series of iodocombstatin phosphate (11a-h) and diiodocombstatin phosphate prodrugs (12a-h) has been accomplished. The diiodo series was obtained via 8a and 9c from condensation of 4 and 6, and the iodo sequence involved a parallel pathway. Both series of iodocombstatins were found to display significant to powerful inhibition of the growth of a panel of human cancer cell lines and of the murine P388 lymphocytic leukemia cell line. Of the diiodo series, 12a was also found to markedly inhibit growth of pediatric neuroblastoma, and monoiodocombstatin 9a strongly inhibited HUVEC growth. Overall, the strongest activity was found against the breast, CNS, leukemia, lung, and prostate cancer cell lines and the least activity against the pancreas and colon lines. Parallel biological investigations of tubulin interaction, antiangiogenesis, and antimicrobial effects were also conducted.

  13. Molecular Pathways: Hypoxia-activated prodrugs in cancer therapy.

    PubMed

    Baran, Natalia; Konopleva, Marina

    2017-01-30

    Hypoxia is a known feature of aggressive solid tumors as well as a critical hallmark of the niche in aggressive hematologic malignances. Hypoxia is associated with insufficient response to standard therapy, resulting in disease progression and curtailed patients' survival through maintenance of noncycling cancer stem-like cells. A better understanding of the mechanisms and signaling pathways induced by hypoxia is essential to overcoming these effects. Recent findings demonstrate that bone marrow in the setting of hematologic malignancies is highly hypoxic and that progression of the disease is associated with expansion of hypoxic niches and stabilization of the oncogenic hypoxia-inducible factor-1alpha (HIF-1α). Solid tumors have also been shown to harbor hypoxic areas, maintaining survival of cancer cells via the HIF-1α pathway. Developing new strategies for targeting hypoxia has become a crucial approach in modern cancer therapy. The number of preclinical and clinical trials targeting low-oxygen tumor compartments or the hypoxic bone marrow niche via hypoxia-activated prodrugs is increasing. This review discusses the development of the hypoxia-activated prodrugs and their applicability in treating both hematologic malignancies and solid tumors.

  14. Transmembrane signalling at the epidermal growth factor receptor. Positive regulation by the C-terminal phosphotyrosine residues.

    PubMed Central

    Magni, M; Pandiella, A; Helin, K; Meldolesi, J; Beguinot, L

    1991-01-01

    point mutants suggest that the role of phosphotyrosine residues is not in the participation in specific amino acid sequences, but rather in the introduction of strong negative charges at strategic sites of the receptor tail. As a consequence of autophosphorylation, the receptor could become competent for specific association with phospholipase C gamma, with ensuing activation by tyrosine phosphorylation followed by the chains of intracellular responses ultimately leading to DNA synthesis and cell duplication. Images Fig. 2. Fig. 3. PMID:1713444

  15. The Tetraspanin-Associated Uroplakins Family (UPK2/3) Is Evolutionarily Related to PTPRQ, a Phosphotyrosine Phosphatase Receptor

    PubMed Central

    Chicote, Javier U.; DeSalle, Rob; Segarra, José; Sun, Tung-Tien; García-España, Antonio

    2017-01-01

    Uroplakins are a widespread group of vertebrate integral membrane proteins that belong to two different families: UPK1a and UPK1b belong to the large tetraspanin (TSPAN) gene family, and UPK3a, UPK3b, UPK3c, UPK3d, UPK2a and UPK2b form a family of their own, the UPK2/3 tetraspanin-associated family. In a previous study, we reported that uroplakins first appeared in vertebrates, and that uroplakin tetraspanins (UPK1a and UPK1b) should have originated by duplication of an ancestor tetraspanin gene. However, the evolutionary origin of the UPK2/3 family remains unclear. In this study, we provide evidence that the UPK2/3 family originated by gene duplication and domain loss from a protoPTPRQ-like basal deuterostome gene. PTPRQs are members of the subtype R3 tyrosine phosphatase receptor (R3 PTPR) family, which are characterized by having a unique modular composition of extracellular fibronectin (FN3) repeats, a transmembrane helix, and a single intra-cytoplasmic phosphotyrosine phophatase (PTP) domain. Our assumption of a deuterostome protoPTPRQ-like gene as an ancestor of the UPK2/3 family by gene duplication and loss of its PTP and fibronectin (FN3) domains, excluding the one closest to the transmembrane helix, is based on the following: (i) phylogenetic analyses, (ii) the existence of an identical intron/exon gene pattern between UPK2/3 and the corresponding genetic region in R3 PTPRs, (iii) the conservation of cysteine patterns and protein motifs between UPK2/3 and PTPRQ proteins and, (iv) the existence in tunicates, the closest organisms to vertebrates, of two sequences related to PTPRQ; one with the full subtype R3 modular characteristic and another without the PTP domain but with a short cytoplasmic tail with some sequence similarity to that of UPK3a. This finding will facilitate further studies on the structure and function of these important proteins with implications in human diseases. PMID:28099513

  16. Analysis of an ampicillin propyl ester prodrug which inhibits the growth of Escherichia coli.

    PubMed

    Bartzatt, Ronald; Malesa, Cynthia

    2002-10-01

    An ampicillin prodrug was synthesized by utilizing the chemical reaction of ampicillin with diazopropane (CH(3)CH(2)CHN(2)) in an organic solvent. The result is esterification of the carboxylic acid functional group. The ampicillin prodrug is a solid that forms yellow crystals which are soluble in water and LB agarose media. The ampicillin prodrug was stable for more than 10 weeks when stored at < or = 0.0 degrees C. The prodrug has reduced hydrogen-bonding capability compared with the unmodified structure of ampicillin. Evaluation of the logP parameter (the octanol/water partition coefficient) indicates that the ampicillin prodrug (logP=1.773) has increased lipophilic characteristics relative to the unmodified ampicillin structure (logP=1.06). The lipophilic substituent constant for the esterification of the carboxylic acid is 0.713, a positive value which indicates that the substituent has a lipophilic nature. The ampicillin prodrug was solubilized into LB agarose media at a concentration of 0.228 mg/ml, and was found to induce 100% growth inhibition of an ampicillin-susceptible and streptomycin-resistant Escherichia coli strain (designated DH1), and induced greater than 30% growth inhibition of an ampicillin-resistant E. coli strain (designated PKK). Synthesis of this prodrug utilizing a diazoalkane was highly efficient, with no undesirable by-products being formed.

  17. Synthesis, metabolism and cellular permeability of enzymatically stable dipeptide prodrugs of acyclovir.

    PubMed

    Talluri, Ravi S; Samanta, Swapan K; Gaudana, Ripal; Mitra, Ashim K

    2008-09-01

    The objective of this study was to synthesize and evaluate novel enzymatically stable dipeptide prodrugs for improved absorption of acyclovir. l-Valine-l-valine-acyclovir (LLACV), l-valine-d-valine-acyclovir (LDACV), d-valine-l-valine-acyclovir (DLACV) and d-valine-d-valine-acyclovir (DDACV) were successfully synthesized. The uptake and transport studies were conducted on a Caco-2 cell line. Buffer stability and metabolism of the prodrugs in Caco-2, rat intestine and liver homogenates were studied. Structure and purity of the all compounds were confirmed with LC-MS/MS and NMR spectroscopy. Uptake and transport of [(3)H] glycylsarcosine was inhibited by all prodrugs except DDACV. DLACV and DDACV exhibited no measurable degradation in Caco-2 homogenate. Except DDACV other three prodrugs were hydrolyzed in rat intestine and liver homogenates. The order of permeability across Caco-2 was LDACV>LLACV>DDACV>DLACV. A linear correlation between the amount of prodrug transported and over all permeability of acyclovir was established. This study shows that the incorporation of one d-valine in a dipeptide did not abolish its affinity towards peptide transporters (PEPT). Moreover, it enhanced enzymatic stability of prodrug to a certain extent depending on the position in a dipeptide conjugate. This strategy improved both the cellular permeability and the amount of intact prodrug transported which would enable targeting the nutrient transporters at blood ocular barrier (BOB).

  18. Design, synthesis and in vitro evaluation of novel water-soluble prodrugs of buparvaquone.

    PubMed

    Mäntylä, Antti; Rautio, Jarkko; Nevalainen, Tapio; Keski-Rahkonen, Pekka; Vepsälainen, Jouko; Järvinen, Tomi

    2004-10-01

    Novel water-soluble phosphate prodrugs (2b-5b) of buparvaquone-oxime (1a) and buparvaquone-O-methyloxime (1b) were synthesized and evaluated in vitro as potential oral prodrugs against leishmaniasis. Buparvaquone-oxime (1a), and most probably also buparvaquone-O-methyloxime (1b), released the parent buparvaquone via a cytochrome P450-catalysed reaction. The prodrugs 2b-5b showed significantly higher aqueous solubilities (>4 mg/ml) than buparvaquone (< or = 0.03 microg/ml) over a pH range of 3.0-7.4. The prodrugs 2b, 3b and 5b rapidly released (t1/2 = 7 min) the corresponding oximes of buparvaquone (1a and 1b), and prodrug 4b at a moderate rate (t1/2 = 22.5 min) in alkaline phosphatase solution in vitro. Prodrug 3b was the most chemically stable in the aqueous solutions over a pH range of 3.0-7.4 (t1/2 > 8 days). Although buparvaquone-oxime (1a) has been shown to undergo a cytochrome P450-catalysed oxidation in liver microsomes to the parent buparvaquone and behave as a novel bioreversible prodrug, its usefulness is limited in oral drug delivery due to its poor aqueous solubility, like buparvaquone itself. Further phosphorylation of an oxime form of buparvaquone significantly increased water solubility, and this novel approach is therefore useful to improve physicochemical properties of drugs containing a ketone functional group.

  19. A polymeric colchicinoid prodrug with reduced toxicity and improved efficacy for vascular disruption in cancer therapy

    PubMed Central

    Crielaard, Bart J; van der Wal, Steffen; Lammers, Twan; Le, Huong Thu; Hennink, Wim E; Schiffelers, Raymond M; Storm, Gert; Fens, Marcel HAM

    2011-01-01

    Colchicinoids are very potent tubulin-binding compounds, which interfere with microtubule formation, giving them strong cytotoxic properties, such as cell mitosis inhibition and induction of microcytoskeleton depolymerization. While this makes them promising vascular disrupting agents (VDAs) in cancer therapy, their dose-limiting toxicity has prevented any clinical application for this purpose. Therefore, colchicinoids are considered attractive lead molecules for the development of novel vascular disrupting nanomedicine. In a previous study, a polymeric colchicinoid prodrug that showed favorable hydrolysis characteristics at physiological conditions was developed. In the current study, this polymeric colchicinoid prodrug was evaluated in vitro and in vivo for its toxicity and vascular disrupting potential. Cell viability studies with human umbilical vein endothelial cells, as an in vitro measure for colchicine activity, reflected the degradation kinetics of the prodrug accordingly. Upon intravenous treatment, in vivo, of B16F10 melanoma-bearing mice with colchicine or with the polymeric colchicinoid prodrug, apparent vascular disruption and consequent tumor necrosis was observed for the prodrug but not for free colchicine at an equivalent dose. Moreover, a five-times-higher dose of the prodrug was well tolerated, indicating reduced toxicity. These findings demonstrate that the polymeric colchicinoid prodrug has a substantially improved efficacy/toxicity ratio compared with that of colchicine, making it a promising VDA for cancer therapy. PMID:22114500

  20. Characterization of lipophilic gemcitabine prodrug-liposomal membrane interaction by differential scanning calorimetry.

    PubMed

    Castelli, Francesco; Sarpietro, Maria Grazia; Ceruti, Maurizio; Rocco, Flavio; Cattel, Luigi

    2006-01-01

    Gemcitabine is an anticancer agent rapidly deaminated to the inactive metabolite 2',2'-difluorodeoxyuridine. Its stability as well as bioavailability can be increased by making prodrugs. A series of lipophilic prodrugs of gemcitabine were synthesized by linking the 4-amino group with valeroyl, lauroyl, and stearoyl linear acyl derivatives. We studied, by the differential scanning calorimetry technique, and compared the interaction of pure gemcitabine and its prodrugs with dimyristoylphosphatidylcholine and distearoylphosphatidylcholine vesicles with the aim of demonstrating if the gemcitabine prodrug is more able than the pure gemcitabine to interact with lipid vesicles employed both as model biomembranes and as carriers in the transport of antitumor drugs. These studies, carried out by static and kinetic calorimetric measurements, give evidence that the increase of the prodrug's lipophilic character improves the interaction with lipid bilayers, favoring the absorption through the lipid barriers and allowing the liposomes to work (when the prodrug is inserted inside the vesicles) as a lipophilic carrier which is able to deliver the drug near the cell surface. The use of different prodrugs modified in their lipophilic character, of different kinds of vesicles (multilamellar and unilamellar), and of different kinds of vesicles forming phospholipids permitted us to determine the better equilibrium between in-vesicle solubility and through-vesicle diffusion of the drug, important in the preformulative studies of antitumor carriers based on phospholipid formulations. Such studies suggest that the prodrug lipophilic tail should modulate the transport and the release of gemcitabine inside the cellular compartments, and the efficiency of the liposomal system is related to the length of the prodrug's acyl chain which has to match the phospholipid acyl chain allowing or retarding the migration through the lipid release device.

  1. Synthesis and pharmacological evaluation of nucleoside prodrugs designed to target siderophore biosynthesis in Mycobacterium tuberculosis.

    PubMed

    Dawadi, Surendra; Kawamura, Shuhei; Rubenstein, Anja; Remmel, Rory; Aldrich, Courtney C

    2016-03-15

    The nucleoside antibiotic, 5'-O-[N-(salicyl)sulfamoyl]adenosine (1), possesses potent whole-cell activity against Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB). This compound is also active in vivo, but suffers from poor drug disposition properties that result in poor bioavailability and rapid clearance. The synthesis and evaluation of a systematic series of lipophilic ester prodrugs containing linear and α-branched alkanoyl groups from two to twelve carbons at the 3'-position of a 2'-fluorinated analog of 1 is reported with the goal to improve oral bioavailability. The prodrugs were stable in simulated gastric fluid (pH 1.2) and under physiological conditions (pH 7.4). The prodrugs were also remarkably stable in mouse, rat, and human serum (relative serum stability: human∼rat≫mouse) displaying a parabolic trend in the SAR with hydrolysis rates increasing with chain length up to eight carbons (t1/2=1.6 h for octanoyl prodrug 7 in mouse serum) and then decreasing again with higher chain lengths. The permeability of the prodrugs was also assessed in a Caco-2 cell transwell model. All of the prodrugs were found to have reduced permeation in the apical-to-basolateral direction and enhanced permeation in the basolateral-to-apical direction relative to the parent compound 2, resulting in efflux ratios 5-28 times greater than 2. Additionally, Caco-2 cells were found to hydrolyze the prodrugs with SAR mirroring the serum stability results and a preference for hydrolysis on the apical side. Taken together, these results suggest that the described prodrug strategy will lead to lower than expected oral bioavailability of 2 and highlight the contribution of intestinal esterases for prodrug hydrolysis.

  2. Identification of novel nitroreductases from Bacillus cereus and their interaction with the CB1954 prodrug.

    PubMed

    Gwenin, Vanessa V; Poornima, Paramasivan; Halliwell, Jennifer; Ball, Patrick; Robinson, George; Gwenin, Chris D

    2015-12-01

    Directed enzyme prodrug therapy is a form of cancer chemotherapy in which bacterial prodrug-activating enzymes, or their encoding genes, are directed to the tumour before administration of a prodrug. The prodrug can then be activated into a toxic drug at the tumour site, reducing off-target effects. The bacterial nitroreductases are a class of enzymes used in this therapeutic approach and although very promising, the low turnover rate of prodrug by the most studied nitroreductase enzyme, NfnB from Escherichia coli (NfnB_Ec), is a major limit to this technology. There is a continual search for enzymes with greater efficiency, and as part of the search for more efficient bacterial nitroreductase enzymes, two novel enzymes from Bacillus cereus (strain ATCC 14579) have been identified and shown to reduce the CB1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide) prodrug to its respective 2'-and 4'-hydroxylamine products. Both enzymes shared features characteristic of the nitro-FMN-reductase superfamily including non-covalently associated FMN, requirement for the NAD(P)H cofactor, homodimeric, could be inhibited by Dicoumarol (3,3'-methylenebis(4-hydroxy-2H-chromen-2-one)), and displayed ping pong bi bi kinetics. Based on the biochemical characteristics and nucleotide alignment with other nitroreductase enzymes, one enzyme was named YdgI_Bc and the other YfkO_Bc. Both B. cereus enzymes had greater turnover for the CB1954 prodrug compared with NfnB_Ec, and in the presence of added NADPH cofactor, YfkO_Bc had superior cell killing ability, and produced mainly the 4'-hydroxylamine product at low prodrug concentration. The YfkO_Bc was identified as a promising candidate for future enzyme prodrug therapy.

  3. Phosphotyrosine phosphatase inhibitor bisperoxovanadium endows myogenic cells with enhanced muscle stem cell functions via epigenetic modulation of Sca-1 and Pw1 promoters.

    PubMed

    Smeriglio, Piera; Alonso-Martin, Sonia; Masciarelli, Silvia; Madaro, Luca; Iosue, Ilaria; Marrocco, Valeria; Relaix, Frédéric; Fazi, Francesco; Marazzi, Giovanna; Sassoon, David A; Bouché, Marina

    2016-04-01

    Understanding the regulation of the stem cell fate is fundamental for designing novel regenerative medicine strategies. Previous studies have suggested that pharmacological treatments with small molecules provide a robust and reversible regulation of the stem cell program. Previously, we showed that treatment with a vanadium compound influences muscle cell fatein vitro In this study, we demonstrate that treatment with the phosphotyrosine phosphatase inhibitor bisperoxovanadium (BpV) drives primary muscle cells to a poised stem cell stage, with enhanced function in muscle regenerationin vivofollowing transplantation into injured muscles. Importantly, BpV-treated cells displayed increased self-renewal potentialin vivoand replenished the niche in both satellite and interstitial cell compartments. Moreover, we found that BpV treatment induces specific activating chromatin modifications at the promoter regions of genes associated with stem cell fate, includingSca-1andPw1 Thus, our findings indicate that BpV resets the cell fate program by specific epigenetic regulations, such that the committed myogenic cell fate is redirected to an earlier progenitor cell fate stage, which leads to an enhanced regenerative stem cell potential.-Smeriglio, P., Alonso-Martin, S., Masciarelli, S., Madaro, L., Iosue, I., Marrocco, V., Relaix, F., Fazi, F., Marazzi, G., Sassoon, D. A., Bouché, M. Phosphotyrosine phosphatase inhibitor bisperoxovanadium endows myogenic cells with enhanced muscle stem cell functionsviaepigenetic modulation of Sca-1 and Pw1 promoters.

  4. A novel conserved phosphotyrosine motif in the Drosophila fibroblast growth factor signaling adaptor Dof with a redundant role in signal transmission.

    PubMed

    Csiszar, Agnes; Vogelsang, Elisabeth; Beug, Hartmut; Leptin, Maria

    2010-04-01

    The fibroblast growth factor receptor (FGFR) signals through adaptors constitutively associated with the receptor. In Drosophila melanogaster, the FGFR-specific adaptor protein Downstream-of-FGFR (Dof) becomes phosphorylated upon receptor activation at several tyrosine residues, one of which recruits Corkscrew (Csw), the Drosophila homolog of SHP2, which provides a molecular link to mitogen-activated protein kinase (MAPK) activation. However, the Csw pathway is not the only link from Dof to MAPK. In this study, we identify a novel phosphotyrosine motif present in four copies in Dof and also found in other insect and vertebrate signaling molecules. We show that these motifs are phosphorylated and contribute to FGF signal transduction. They constitute one of three sets of phosphotyrosines that act redundantly in signal transmission: (i) a Csw binding site, (ii) four consensus Grb2 recognition sites, and (iii) four novel tyrosine motifs. We show that Src64B binds to Dof and that Src kinases contribute to FGFR-dependent MAPK activation. Phosphorylation of the novel tyrosine motifs is required for the interaction of Dof with Src64B. Thus, Src64B recruitment to Dof through the novel phosphosites can provide a new link to MAPK activation and other cellular responses. This may give a molecular explanation for the involvement of Src kinases in FGF-dependent developmental events.

  5. Binding of the Grb2 SH2 domain to phosphotyrosine motifs does not change the affinity of its SH3 domains for Sos proline-rich motifs.

    PubMed

    Cussac, D; Frech, M; Chardin, P

    1994-09-01

    Phosphotyrosine peptide binding to Grb2 induces tryptophan fluorescence changes in the Src homology 2 (SH2) domain. Affinities are in the nanomolar range, the Shc peptide having the highest affinity, followed by peptides mimicking Grb2 binding sites on EGF and HGF receptors, the putative sites on insulin and IGF-1 receptors having much lower affinities. Proline-rich peptide binding to the SH3 domains induces fluorescence changes mainly in the C-terminal SH3. Affinities are in the micromolar range, the highest affinity peptides mimicking the first proline-rich motif of the Sos C-terminus. Additional residues before this PVPPPVPP motif provide a minor contribution to the binding, but the two residues after this motif are important and may contribute to specificity. The affinity of each SH3 for each proline-rich motif is too low to account for the high stability of the Grb2-Sos complex, suggesting that Grb2 recognizes other structural features in the Sos C-terminus. Binding of a phosphotyrosine peptide to the SH2 has no effect on the SH3s. Thus the binding of Grb2 to a receptor or to an associated protein phosphorylated on tyrosines is unlikely to activate the exchange factor activity of Sos through a conformational change transmitted from the SH2 to the SH3 domains.

  6. Annexin V-targeted enzyme prodrug therapy using cytosine deaminase in combination with 5-fluorocytosine.

    PubMed

    Van Rite, Brent D; Harrison, Roger G

    2011-08-01

    A fusion protein, consisting of cytosine deaminase (CD) linked to human annexin V, was created for use in an enzyme prodrug therapy targeted to the tumor vasculature and associated cancer cells in the primary tumor and distant metastases. The major finding of this study is that the CD-annexin V fusion protein in combination with the prodrug 5-fluorocytosine has significant cytotoxic activity against endothelial cells and two breast cancer cells lines in vitro that expose phosphatidylserine on their surface. The cytotoxicity experiments verified this novel enzyme prodrug system has the ability to produce therapeutic levels of 5-fluorouracil and thus appears promising.

  7. A Potent Peptidomimetic Inhibitor of Botulinum Neurotoxin Serotype a Has a Very Different Conformation Than SNAP-25 Substrate

    SciTech Connect

    Zuniga, J.E.; Schmidt, J.J.; Fenn, T.; Burnett, J.C.; Arac, D.; Gussio, R.; Stafford, R.G.; Badie, S.S.; Bavari, S.; Brunger, A.T.

    2009-05-28

    Botulinum neurotoxin serotype A is the most lethal of all known toxins. Here, we report the crystal structure, along with SAR data, of the zinc metalloprotease domain of BoNT/A bound to a potent peptidomimetic inhibitor (Ki = 41 nM) that resembles the local sequence of the SNAP-25 substrate. Surprisingly, the inhibitor adopts a helical conformation around the cleavage site, in contrast to the extended conformation of the native substrate. The backbone of the inhibitor's P1 residue displaces the putative catalytic water molecule and concomitantly interacts with the 'proton shuttle' E224. This mechanism of inhibition is aided by residue contacts in the conserved S1' pocket of the substrate binding cleft, and the induction of new hydrophobic pockets, which are not present in the apo form, especially for the P2' residue of the inhibitor. Our inhibitor is specific for BoNT/A as it does not inhibit other BoNT serotypes or thermolysin.

  8. Synthesis and molecular modeling studies of derivatives of a highly potent peptidomimetic vinyl ester as falcipain-2 inhibitors.

    PubMed

    Ettari, Roberta; Micale, Nicola; Grazioso, Giovanni; Bova, Floriana; Schirmeister, Tanja; Grasso, Silvana; Zappalà, Maria

    2012-09-01

    Herein we report the synthesis of a set of constrained peptidomimetics endowed with an electrophilic vinyl ester warhead and structurally related to a previously identified lead compound, a potent and irreversible inhibitor of falcipain-2 (FP-2). FP-2 is the main hemoglobinase of the malaria parasite P. falciparum. The new compounds were evaluated for their inhibition against FP-2, and the results were rationalized on the basis of docking experiments. These studies underscore the pivotal role of both the ester function at the P1' site and the trifluoromethyl group of the P3 side chain in determining the correct orientation of the Michael acceptor warhead in the catalytic site, and as a consequence, the potency of the inhibitors as well as their reversible or irreversible mode of inhibition.

  9. The Synthetic Amphipathic Peptidomimetic LTX109 Is a Potent Fungicide That Disturbs Plasma Membrane Integrity in a Sphingolipid Dependent Manner

    PubMed Central

    Larsen, Camilla Eggert; Folkesson, Anders; Regenberg, Birgitte

    2013-01-01

    The peptidomimetic LTX109 (arginine-tertbutyl tryptophan-arginine-phenylethan) was previously shown to have antibacterial properties. Here, we investigated the activity of this novel antimicrobial peptidomimetic on the yeast Saccharomyces cerevisiae. We found that LTX109 was an efficient fungicide that killed all viable cells in an exponentially growing population as well as a large proportion of cells in biofilm formed on an abiotic surface. LTX109 had similar killing kinetics to the membrane-permeabilizing fungicide amphotericin B, which led us to investigate the ability of LTX109 to disrupt plasma membrane integrity. S. cerevisiae cells exposed to a high concentration of LTX109 showed rapid release of potassium and amino acids, suggesting that LTX109 acted by destabilizing the plasma membrane. This was supported by the finding that cells were permeable to the fluorescent nucleic acid stain SYTOX Green after a few minutes of LTX109 treatment. We screened a haploid S. cerevisiae gene deletion library for mutants resistant to LTX109 to uncover potential molecular targets. Eight genes conferred LTX109 resistance when deleted and six were involved in the sphingolipid biosynthetic pathway (SUR1, SUR2, SKN1, IPT1, FEN1 and ORM2). The involvement of all of these genes in the biosynthetic pathway for the fungal-specific lipids mannosylinositol phosphorylceramide (MIPC) and mannosyl di-(inositol phosphoryl) ceramide (M(IP)2C) suggested that these lipids were essential for LTX109 sensitivity. Our observations are consistent with a model in which LTX109 kills S. cerevisiae by nonspecific destabilization of the plasma membrane through direct or indirect interaction with the sphingolipids. PMID:23874964

  10. The synthetic amphipathic peptidomimetic LTX109 is a potent fungicide that disturbs plasma membrane integrity in a sphingolipid dependent manner.

    PubMed

    Bojsen, Rasmus; Torbensen, Rasmus; Larsen, Camilla Eggert; Folkesson, Anders; Regenberg, Birgitte

    2013-01-01

    The peptidomimetic LTX109 (arginine-tertbutyl tryptophan-arginine-phenylethan) was previously shown to have antibacterial properties. Here, we investigated the activity of this novel antimicrobial peptidomimetic on the yeast Saccharomyces cerevisiae. We found that LTX109 was an efficient fungicide that killed all viable cells in an exponentially growing population as well as a large proportion of cells in biofilm formed on an abiotic surface. LTX109 had similar killing kinetics to the membrane-permeabilizing fungicide amphotericin B, which led us to investigate the ability of LTX109 to disrupt plasma membrane integrity. S. cerevisiae cells exposed to a high concentration of LTX109 showed rapid release of potassium and amino acids, suggesting that LTX109 acted by destabilizing the plasma membrane. This was supported by the finding that cells were permeable to the fluorescent nucleic acid stain SYTOX Green after a few minutes of LTX109 treatment. We screened a haploid S. cerevisiae gene deletion library for mutants resistant to LTX109 to uncover potential molecular targets. Eight genes conferred LTX109 resistance when deleted and six were involved in the sphingolipid biosynthetic pathway (SUR1, SUR2, SKN1, IPT1, FEN1 and ORM2). The involvement of all of these genes in the biosynthetic pathway for the fungal-specific lipids mannosylinositol phosphorylceramide (MIPC) and mannosyl di-(inositol phosphoryl) ceramide (M(IP)2C) suggested that these lipids were essential for LTX109 sensitivity. Our observations are consistent with a model in which LTX109 kills S. cerevisiae by nonspecific destabilization of the plasma membrane through direct or indirect interaction with the sphingolipids.

  11. Use of enzyme inhibitors to evaluate the conversion pathways of ester and amide prodrugs: a case study example with the prodrug ceftobiprole medocaril.

    PubMed

    Eichenbaum, Gary; Skibbe, Jennifer; Parkinson, Andrew; Johnson, Mark D; Baumgardner, Dawn; Ogilvie, Brian; Usuki, Etsuko; Tonelli, Fred; Holsapple, Jeff; Schmitt-Hoffmann, Anne

    2012-03-01

    An approach was developed that uses enzyme inhibitors to support the assessment of the pathways that are responsible for the conversion of intravenously administered ester and amide prodrugs in different biological matrices. The methodology was applied to ceftobiprole medocaril (BAL5788), the prodrug of the cephalosporin antibiotic, ceftobiprole. The prodrug was incubated in plasma, postmitochondrial supernatant fractions from human liver (impaired and nonimpaired), kidney, and intestine as well as erythrocytes, in the presence and absence of different enzyme inhibitors (acetylcholinesterase, pseudocholinesterase, retinyl palmitoyl hydrolase, serine esterases, amidases, and cholinesterase). Hydrolysis was rapid, extensive, and not dependent on the presence of β-nicotinamide-adenine dinucleotide phosphate (reduced form) in all matrices tested, suggesting the involvement of carboxylesterases but not P450 enzymes. Hydrolysis in healthy human plasma was rapid and complete and only partially inhibited in the presence of paraoxonase inhibitors or in liver from hepatic impaired patients, suggesting involvement of nonparaoxonase pathways. The results demonstrate the utility of this approach in confirming the presence of multiple conversion pathways of intravenously administered prodrugs and in the case of BAL5788 demonstrated that this prodrug is unlikely to be affected by genetic polymorphisms, drug interactions, or other environmental factors that might inhibit or induce the enzymes involved in its conversion.

  12. Enzyme prodrug therapy designed to target L-methioninase to the tumor vasculature.

    PubMed

    Van Rite, Brent D; Lazrak, Yahya A; Pagnon, Magali L; Palwai, Naveen R; Neves, Luís F F; McFetridge, Peter S; Harrison, Roger G

    2011-02-28

    A new approach for enzyme prodrug therapy for cancer was tested using human endothelial cells and two breast cancer cell lines in vitro. The concept is to use the human annexin V protein to selectively target the enzyme L-methioninase to the tumor vasculature. The major finding was that enzyme prodrug treatment using the L-methioninase-annexin V fusion protein and selenomethionine as the prodrug over 3 days was shown to be lethal to the endothelial cells and the cancer cells, while having little or no effect with the prodrug but with no fusion protein present. Thus, this new approach appears promising. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Increasing oral absorption of polar neuraminidase inhibitors: a prodrug transporter approach applied to oseltamivir analogue.

    PubMed

    Gupta, Deepak; Varghese Gupta, Sheeba; Dahan, Arik; Tsume, Yasuhiro; Hilfinger, John; Lee, Kyung-Dall; Amidon, Gordon L

    2013-02-04

    Poor oral absorption is one of the limiting factors in utilizing the full potential of polar antiviral agents. The neuraminidase target site requires a polar chemical structure for high affinity binding, thus limiting oral efficacy of many high affinity ligands. The aim of this study was to overcome this poor oral absorption barrier, utilizing prodrug to target the apical brush border peptide transporter 1 (PEPT1). Guanidine oseltamivir carboxylate (GOCarb) is a highly active polar antiviral agent with insufficient oral bioavailability (4%) to be an effective therapeutic agent. In this report we utilize a carrier-mediated targeted prodrug approach to improve the oral absorption of GOCarb. Acyloxy(alkyl) ester based amino acid linked prodrugs were synthesized and evaluated as potential substrates of mucosal transporters, e.g., PEPT1. Prodrugs were also evaluated for their chemical and enzymatic stability. PEPT1 transport studies included [(3)H]Gly-Sar uptake inhibition in Caco-2 cells and cellular uptake experiments using HeLa cells overexpressing PEPT1. The intestinal membrane permeabilities of the selected prodrugs and the parent drug were then evaluated for epithelial cell transport across Caco-2 monolayers, and in the in situ rat intestinal jejunal perfusion model. Prodrugs exhibited a pH dependent stability with higher stability at acidic pHs. Significant inhibition of uptake (IC(50) <1 mM) was observed for l-valyl and l-isoleucyl amino acid prodrugs in competition experiments with [(3)H]Gly-Sar, indicating a 3-6 times higher affinity for PEPT1 compared to valacyclovir, a well-known PEPT1 substrate and >30-fold increase in affinity compared to GOCarb. The l-valyl prodrug exhibited significant enhancement of uptake in PEPT1/HeLa cells and compared favorably with the well-absorbed valacyclovir. Transepithelial permeability across Caco-2 monolayers showed that these amino acid prodrugs have a 2-5-fold increase in permeability as compared to the parent drug and

  14. Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation

    PubMed Central

    Gaudana, Ripal; Parenky, Ashwin; Vaishya, Ravi; Samanta, Swapan K.; Mitra, Ashim K.

    2015-01-01

    The objective of this study was to develop and characterize a nanoparticulate-based sustained release formulation of a water soluble dipeptide prodrug of dexamethasone, valine–valine-dexamethasone (VVD). Being hydrophilic in nature, it readily leaches out in the external aqueous medium and hence partitions poorly into the polymeric matrix resulting in minimal entrapment in nanoparticles. Hence, hydrophobic ion pairing (HIP) complexation of the prodrug was employed with dextran sulphate as a complexing polymer. A novel, solid in oil in water emulsion method was employed to encapsulate the prodrug in HIP complex form in poly(lactic-co-glycolic acid) matrix. Nanoparticles were characterized with respect to size, zeta potential, crystallinity of entrapped drug and surface morphology. A significant enhancement in the entrapment of the prodrug in nanoparticles was achieved. Finally, a simple yet novel method was developed which can also be applicable to encapsulate other charged hydrophilic molecules, such as peptides and proteins. PMID:20939702

  15. Spacer/Linker Based Synthesis and Biological Evaluation of Mutual Prodrugs as Antiinflammatory Agents

    PubMed Central

    Velingkar, V. S.; Jain, D. R.; Ahire, D. C.

    2010-01-01

    Mutual prodrugs of some antiinflammatory agents were synthesized with the aim of improving the therapeutic index through prevention of gastrointestinal complications and to check the efficiency of release of the parent drug in presence of spacer. These mutual prodrugs were synthesized by direct condensation method using dicyclohexyl carbodiimide as a coupling agent and glycine as a spacer. The title compounds were characterized by spectral techniques and the release of the parent drug from mutual prodrug was studied in two different non-enzymatic buffer solutions at pH 1.2, pH 7.4 and in 80% human plasma. All mutual prodrugs exhibited encouraging hydrolysis profile in 80% human plasma. Biological activity of title compounds was studied by carrageenan-induced paw edema method. From the results obtained, it was concluded that these compounds retain the antiinflammatory action. PMID:21694998

  16. Esterase-sensitive sulfur dioxide prodrugs inspired by modified Julia olefination.

    PubMed

    Wang, Wenyi; Wang, Binghe

    2017-09-12

    Sulfur dioxide (SO2) is an endogenously produced gaseous molecule, and is emerging as a potential gasotransmitter. Herein, we describe the first series of esterase-sensitive prodrugs inspired by modified Julia olefination as SO2 donors.

  17. Ester prodrug-loaded electrospun cellulose acetate fiber mats as transdermal drug delivery systems.

    PubMed

    Wu, Xiao-mei; Branford-White, Christopher J; Zhu, Li-min; Chatterton, Nichoals P; Yu, Deng-guang

    2010-08-01

    Cellulose acetate (CA) fibers loaded with the ester prodrugs of naproxen, including methyl ester, ethyl ester and isopropyl ester, were prepared through electrospinning using acetone/N,N-dimethylacetamide(DMAc)/ethanol (4:1:1, v/v/v) as solvent. The chemical and morphological characterizations of the medicated fibers were investigated by means of SEM, DSC, XRD and FTIR, as well as the studies of the drug release properties. The results indicated that the morphology and diameter of the fibers were influenced by the concentration of spinning solution, applied voltage, electrospun solvent and the surfactants. The average diameters of the fibers ranged between 100 and 500 nm for three prodrugs. There was good compatibility between CA and three prodrugs in the blended fibers, respectively. In vitro release indicated that constant drug release from the fiber was observed over 6 days. The prodrugs were successfully encapsulated into the fibers, and this system was stable in terms of effectiveness in release.

  18. Improved buccal delivery of opioid analgesics and antagonists with bitterless prodrugs.

    PubMed

    Hussain, M A; Aungst, B J; Koval, C A; Shefter, E

    1988-09-01

    Buccal delivery of opioid analgesics and antagonists is a useful way of improving bioavailability relative to the oral route. These compounds taste bitter, however. Various prodrugs of nalbuphine, naloxone, naltrexone, oxymorphone, butorphanol, and levallorphan, in which the 3-phenolic hydroxyl group was esterified, lacked a bitter taste. This taste difference was not due to differences in water solubility, suggesting that for these compounds the phenolic functional group is important for interaction with the taste receptor. In rats, nalbuphine, naloxone, and naltrexone administered buccally as prodrugs exhibited up to 90% bioavailability. In dogs, the bitter taste of buccally administered nalbuphine and naloxone caused salivation and swallowing, and bioavailability was low. Buccal dosing of the prodrugs of these compounds caused no adverse effects and the bioavailability ranged from 35 to 50%, a significant improvement relative to the oral bioavailability, which is 5% or less. The feasibility of buccal prodrug delivery using an adhesive patch formulation was demonstrated.

  19. Synthesis and evaluation of mutual prodrugs of ibuprofen with menthol, thymol and eugenol.

    PubMed

    Redasani, Vivekkumar K; Bari, Sanjay B

    2012-10-01

    The present works deals with simple and efficient method of improving therapeutic efficacy of racemic ibuprofen by retarding gastrointestinal side effects through masking of carboxylic group chemically. This is achieved by synthesis and evaluation of ester derivatives of ibuprofen as mutual prodrugs with naturally occurring phenolic and alcoholic compounds. Promoieties like menthol; thymol and eugenol were selected with the aim of getting synergistic effect as these are natural analgesic having traditional medicinal values. Prodrugs are found to be highly lipophilic as compared to parent drug. All the prodrugs are found to be highly stable at acidic pH while undergoes hydrolysis at neutral and alkaline pH as indicated by their t(1/2) values. Synthesized prodrugs derivatives show increased anti-inflammatory activity that might be attributed to synergistic effect as ibuprofen conjugates to natural analgesics. Ulcer index shows much reduction in gastric ulceration compared to ibuprofen concluding the successful masking of acidic group.

  20. Methioninase cancer gene therapy with selenomethionine as suicide prodrug substrate.

    PubMed

    Miki, K; Xu, M; Gupta, A; Ba, Y; Tan, Y; Al-Refaie, W; Bouvet, M; Makuuchi, M; Moossa, A R; Hoffman, R M

    2001-09-15

    In this study, we report a novel approach to gene-directed enzyme prodrug therapy for cancer. This gene therapy strategy exploits the toxic pro-oxidant property of methylselenol, which is released from selenomethionine (SeMET) by cancer cells with the adenoviral-delivered methionine alpha,gamma-lyase (MET) gene cloned from Pseudomonas putida. In MET-transduced tumor cells, the cytotoxicity of SeMET is increased up to 1000-fold compared with nontransduced cells. A strong bystander effect occurred because of methylselenol release from MET gene-transduced cells and uptake by surrounding tumor cells. Methylselenol damaged the mitochondria via oxidative stress and caused cytochrome c release into the cytosol, thereby activating the caspase cascade and apoptosis. Adenoviral MET-gene/SeMET treatment also inhibited tumor growth in rodents and significantly prolonged their survival. Recombinant adenovirus-encoding MET gene-SeMET treatment thereby offers a new paradigm for cancer gene therapy.

  1. Evaluating Prodrug Strategies for Esterase-Triggered Release of Alcohols

    PubMed Central

    Perez, Christian; Daniel, Kevin B.

    2013-01-01

    Prodrugs are effective tools in overcoming drawbacks typically associated with drug formulation and delivery. Those employing esterase-triggered functional groups are frequently utilized to mask polar carboxylic acids and phenols, increasing drug-like properties such as lipophilicity. Herein we detail a comprehensive assessment for strategies that effectively release hydroxyl and phenolic moieties in the presence of an esterase. Matrix metalloproteinases (MMPs) serve as our proof-of-concept target. Three distinct ester-responsive protecting groups are incorporated into MMP proinhibitors containing hydroxyl moieties. Analytical evaluation of the proinhibitors demonstrates that the use of a benzyl ether group appended to the esterase trigger leads to considerably faster kinetics of conversion and enhanced aqueous stability when compared to more conventional approaches where the trigger is directly attached to the inhibitor. Biological assays confirm that all protecting groups effectively cleave in the presence of esterase to generate the active inhibitor. PMID:23929690

  2. Pt(IV) complexes as prodrugs for cisplatin.

    PubMed

    Shi, Yi; Liu, Shu-An; Kerwood, Deborah J; Goodisman, Jerry; Dabrowiak, James C

    2012-02-01

    The antitumor effects of platinum(IV) complexes, considered prodrugs for cisplatin, are believed to be due to biological reduction of Pt(IV) to Pt(II), with the reduction products binding to DNA and other cellular targets. In this work we used pBR322 DNA to capture the products of reduction of oxoplatin, c,t,c-[PtCl(2)(OH)(2)(NH(3))(2)], 3, and a carboxylate-modified analog, c,t,c-[PtCl(2)(OH)(O(2)CCH(2)CH(2)CO(2)H)(NH(3))(2)], 4, by ascorbic acid (AsA) or glutathione (GSH). Since carbonate plays a significant role in the speciation of platinum complexes in solution, we also investigated the effects of carbonate on the reduction/DNA-binding process. In pH 7.4 buffer in the absence of carbonate, both 3 and 4 are reduced by AsA to cisplatin (confirmed using ((195))Pt NMR), which binds to and unwinds closed circular DNA in a manner consistent with the formation of the well-known 1, 2 intrastrand DNA crosslink. However, when GSH is used as the reducing agent for 3 and 4, ((195))Pt NMR shows that cisplatin is not produced in the reaction medium. Although the Pt(II) products bind to closed circular DNA, their effect on the mobility of Form I DNA is different from that produced by cisplatin. When physiological carbonate is present in the reduction medium, ((13))C NMR shows that Pt(II) carbonato complexes form which block or impede platinum binding to DNA. The results of the study vis-à-vis the ability of the Pt(IV) complexes to act as prodrugs for cisplatin are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Opioid Peptidomimetics: Leads for the Design of Bioavailable Mixed Efficacy Mu Opioid Receptor (MOR) Agonist/Delta Opioid Receptor (DOR) Antagonist Ligands

    PubMed Central

    Mosberg, Henry I.; Yeomans, Larisa; Harland, Aubrie A.; Bender, Aaron M.; Sobczyk-Kojiro, Katarzyna; Anand, Jessica P.; Clark, Mary J.; Jutkiewicz, Emily M.; Traynor, John R.

    2013-01-01

    We have previously described opioid peptidomimetic, 1, employing a tetrahydroquinoline scaffold and modeled on a series of cyclic tetrapeptide opioid agonists. We have recently described modifications to these peptides that confer a mu opioid receptor (MOR) agonist, delta opioid receptor (DOR) antagonist profile, which has been shown to reduce the development of tolerance to the analgesic actions of MOR agonists. Several such bifunctional ligands have been reported, but none has been demonstrated to cross the blood brain barrier. Here we describe the transfer of structural features that evoked MOR agonist/DOR antagonist behavior in the cyclic peptides to the tetrahydroquinoline scaffold and show that the resulting peptidomimetics maintain the desired pharmacological profile. Further, the 4R diastereomer of 1 was fully efficacious and approximately equipotent to morphine in the mouse warm water tail withdrawal assay following intraperitoneal administration and thus a promising lead for the development of opioid analgesics with reduced tolerance. PMID:23419026

  4. Synthesis, in vitro evaluation, and antileishmanial activity of water-soluble prodrugs of buparvaquone.

    PubMed

    Mäntylä, Antti; Garnier, Tracy; Rautio, Jarkko; Nevalainen, Tapio; Vepsälainen, Jouko; Koskinen, Ari; Croft, Simon L; Järvinen, Tomi

    2004-01-01

    Water-soluble phosphate prodrugs of buparvaquone (1), containing a hydroxynaphthoquinone structure, were synthesized and evaluated in vitro for improved topical and oral drug delivery against cutaneous and visceral leishmaniasis. The successful prodrug synthesis involved a strong base; e.g., sodium hydride. Buparvaquone-3-phosphate (4a) and 3-phosphonooxymethyl-buparvaquone (4b) prodrugs possessed significantly higher aqueous solubilities (>3.5 mg/mL) than the parent drug (prodrugs for the improved topical and oral bioavailability of 1. Buparvaquone and its prodrugs showed nanomolar or low-micromolar ED(50) activity values against species that cause cutaneous leishmaniasis, e.g., L. major, L. amazonensis, L. aethiopica, L. mexicana, and L. panamensis and also L. donovani, which is the causative agent of visceral leishmaniasis. From these results, the human skin permeation of the prodrugs 4a and 4b were studied in vitro. While no buparvaquone permeated across post mortem skin in vitro during 72 h of experiments, both prodrugs 4a and 4b permeated readily through the skin. In addition, 4b easily released the parent drug in human skin homogenate and, therefore, is a promising prodrug candidate to deliver buparvaquone through the skin for the treatment of cutaneous leishmaniasis.

  5. Synthesis and antiviral evaluation of 2-amino-6-carbamoylpurine dioxolane nucleoside derivatives and their phosphoramidates prodrugs.

    PubMed

    Cho, Jong Hyun; Bondana, Lavanya; Detorio, Mervi A; Montero, Cathy; Bassit, Leda C; Amblard, Franck; Coats, Steven J; Schinazi, Raymond F

    2014-12-01

    The synthesis of 9-(β-d-1,3-dioxolan-4-yl)2,6-diaminopurine nucleoside phosphoramidate prodrugs as well as various 2-amino-6-carbamoylpurine dioxolane derivatives and their phosphoramidates prodrugs is reported. Their ability to block HIV and HBV replication along with their cytotoxicity toward HepG2, human lymphocyte, CEM and Vero cells was also assessed. Published by Elsevier Ltd.

  6. Anti-HIV Nucleoside Phosphonate GS-9148 and Its Prodrug GS-9131: Scale Up of a 2'-F Modified Cyclic Nucleoside Phosphonate and Synthesis of Selected Amidate Prodrugs.

    PubMed

    Mackman, Richard L

    2014-03-26

    Nucleoside phosphonate analogs are an important class of antiviral drugs for the treatment of HIV and HBV. The most recent nucleoside phosphonate to progress to clinical development is GS-9131, a cyclic nucleoside phosphonate (CNP). This unit contains procedures for the synthesis of the parent CNP 2'-Fd4AP (GS-9148) and selected monoamidate and bisamidate prodrugs, including the monoamidate clinical prodrug GS-9131. The first basic protocol of this unit details improved procedures for the preparation of 2'-Fd4AP and related phosphonate esters by introduction of a hydroxylmethyl phosphonate ester regioselectively and stereoselectively onto a furanose core via a glycal intermediate. The method described is believed to be robust and flexible, allowing for a variety of analogs with other nucleobases or furanose 2'-ring substitutions to be prepared. The preparation of monoamidate and bisamidate prodrugs either on the phosphonate diacid or its monophenyl ester is then described in the second and third basic protocols of this unit.

  7. Crystal Structure of Human E-Cadherin-EC1EC2 in Complex with a Peptidomimetic Competitive Inhibitor of Cadherin Homophilic Interaction.

    PubMed

    Nardone, Valentina; Lucarelli, Anna Paola; Dalle Vedove, Andrea; Fanelli, Roberto; Tomassetti, Antonella; Belvisi, Laura; Civera, Monica; Parisini, Emilio

    2016-05-26

    Cadherins are transmembrane cell adhesion proteins whose aberrant expression often correlates with cancer development and proliferation. We report the crystal structure of an E-cadherin extracellular fragment in complex with a peptidomimetic compound that was previously shown to partially inhibit cadherin homophilic adhesion. The structure reveals an unexpected binding mode and allows the identification of a druggable cadherin interface, thus paving the way to a future structure-guided design of cell adhesion inhibitors against cadherin-expressing solid tumors.

  8. Activity of phosphatase-sensitive 5-aminolevulinic acid prodrugs in cancer cell lines.

    PubMed

    Herceg, Viktorija; Lange, Norbert; Allémann, Eric; Babič, Andrej

    2017-06-01

    5-aminolevulinc acid (5-ALA)-based photodynamic therapy (PDT) and photodiagnosis (PD) present many advantages over treatments with conventional photosensitizers (PS). It offers great tumor specificity, reduced photosensitivity reactions caused by PS accumulation in non-targeted tissues and also inherent PS metabolism into endogenous non-fluorescent heme. However, chemical instability, low bioavailability and poor pharmacokinetic profile limit systemic efficacy of 5-ALA. Here, we present a comprehensive in vitro evaluation of novel phosphatase-sensitive prodrugs of 5-ALA. These prodrugs are designed to be activated by ubiquitously expressed phosphatases with much improved chemical stability and reduced acute toxicity profile. PpIX kinetic measurements and flow cytometry show accumulation of PpIX upon incubation with phosphatase-sensitive prodrugs in PC3 human prostate cell cancer, MCF7 breast adenocarcinoma, U87MG glioblastoma, T24 bladder cancer and A549 lung carcinoma cells. They revealed a different fluorescence kinetics and dose-response curves for the different types of 5-ALA prodrugs. These experiments have allowed us to identify the most promising cancer cell types for phospho- 5-ALA prodrugs. Confocal fluorescence microscopy provided further evidence of fluorescent protoporphyrin IX accumulation and sub-cellular localisation. These findings, together with the low toxicity profile of phosphatase-sensitive prodrugs of 5-ALA and good response to PDT provide solid basis for future translational development in PC3, MCF7 and U87MG cancer types. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Sustained release of metformin via red blood cell accumulated sulfenamide prodrug.

    PubMed

    Peura, Lauri; Huttunen, Kristiina M

    2014-07-01

    Metformin is a first-line antidiabetic drug to treat type 2 diabetes. It is rapidly eliminated from plasma but also accumulated into red blood cells (RBCs) from which it is slowly released back into plasma. The aim of the study was to evaluate whether the amount of metformin in the RBCs could be increased by a sulfenamide prodrug approach, which could provide longer duration of metformin in systemic circulation. Pharmacokinetic properties of metformin and its cyclohexyl sulfenamide prodrug were evaluated in plasma and in whole blood after intravenous and oral administration in rats. Once the sulfenamide prodrug reached the bloodstream, it was rapidly and efficiently accumulated into the RBCs, where it was converted to metformin by free thiols. The RBC-whole blood ratio of metformin was increased approximately from 42% to 96% when metformin was administered intravenously as its sulfenamide prodrug, and the proportion of metformin in the RBCs was found to be concentration and time independent. Because metformin was slowly liberated into plasma, the prodrug showed a sustained-release pharmacokinetic profile and longer plasma half-life for metformin after oral administration. Therefore, this sulfenamide prodrug has great potential to improve metformin therapy as the daily doses could be reduced.

  10. Assessment of the cellular internalization of thermolytic phosphorothioate DNA oligonucleotide prodrugs.

    PubMed

    Jain, Harsh V; Takeda, Kazuyo; Tami, Cecilia; Verthelyi, Daniela; Beaucage, Serge L

    2013-10-15

    The bioactivity of a CpG-containing phosphorothioate DNA oligonucleotide with thermolytic 2-(N-formyl-N-methylamino)ethyl (fma) thiophosphate groups in mice led us to investigate the parameters affecting the internalization of these thermosensitive DNA prodrugs in various cell lines. Flow cytometry and confocal microscopy analyses indicate that 5'-fluoresceinated fma-phosphorothioate DNA sequences are poorly internalized in Vero, HeLa and GC-2 cells. However, when four fma-thiophosphate groups of a 15-nucleotide long oligothymidylate prodrug are replaced with 3-(N,N-dimethylamino)prop-1-yl thiophosphate functions, internalization of the positively charged prodrug, under physiological conditions, increased fourfold in HeLa and 40-fold in Vero or GC-2 cells. No cytotoxic effects are observed in Vero cells even at an extracellular prodrug concentration of 50 μM over a period of 72 h. Confocal microscopy studies show that internalization of the positively charged oligothymidylate prodrug in Vero cells is time-dependent with early trafficking of the DNA sequence through endosomal vesicles and, eventually, to the nucleus of the cells. Thus, the incorporation of four 3-(N,N-dimethylamino)prop-1-yl thiophosphate groups into thermosentive fma-phosphorothioate DNA prodrugs is an attractive strategy for efficient cellular internalization of these nucleic acid-based drugs for potential therapeutic indications.

  11. Prodrugs for targeted tumor therapies: recent developments in ADEPT, GDEPT and PMT.

    PubMed

    Tietze, Lutz F; Schmuck, Kianga

    2011-01-01

    The treatment of cancer with common anti-proliferative agents generally suffers from an insufficient differentiation between normal and malignant cells which results in extensive side effects. To enhance the efficacy and reduce the normal tissue toxicity of anticancer drugs, numerous selective tumor therapies have emerged including the highly promising approaches ADEPT (Antibody-Directed Enzyme Prodrug Therapy), GDEPT (Gene-Directed Enzyme Prodrug Therapy) and PMT (Prodrug Monotherapy). These allow a selective release of cytotoxic agents from non-toxic prodrugs at the tumor site either by targeted antibody-enzyme conjugates, enzyme encoding genes or by exploiting physiological and metabolic aberrations in cancerous tissue. Herein, recent developments in the design and biological evaluation of prodrugs for use in ADEPT, GDEPT and PMT are reviewed. As a highlight, a series of novel glycosidic prodrugs based on the natural antibiotics CC-1065 and the duocarmycins will be discussed which show a therapeutic window of up to one million. Notably, the corresponding drugs have tremendously high cytotoxicities with IC(50) values of down to 110 fM.

  12. Dipeptidyl peptidase IV (DPPIV/CD26)-based prodrugs of hydroxy-containing drugs.

    PubMed

    Diez-Torrubia, Alberto; Cabrera, Silvia; Lambeir, Anne-Marie; Balzarini, Jan; Camarasa, María-José; Velázquez, Sonsoles

    2012-04-01

    We previously described a novel prodrug approach in which a di- or tetrapeptide moiety is linked to a wide variety of amine-containing drugs through an amide bond, which is specifically cleaved by dipeptidyl peptidase IV (DPPIV/CD26) activity. Herein we report the application of this prodrug approach to a variety of hydroxy-containing drugs (primary, secondary, tertiary, or aromatic hydroxy groups). We designed and studied tripartite prodrugs containing a dipeptide moiety (cleavable by DPPIV/CD26) and a valine as a hetero-bifunctional connector to link the dipeptide to the hydroxy group of the drug through a metabolically labile ester bond. The hydroxy-containing prodrugs showed various susceptibilities to hydrolysis by DPPIV/CD26 and serum, depending on the nature of the compound. Prodrugs of compounds containing a primary hydroxy group (as in didanosine) or a hydroxy moiety on an aromatic entity (as in acetaminophen) were most efficiently converted. In contrast, a tertiary hydroxy group was much less susceptible to conversion into its parent drug by DPPIV/CD26 or serum. A number of the prodrugs showed remarkable increases in water solubility relative to their parent drugs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Metronidazole prodrugs: synthesis, physicochemical properties, stability, and ex vivo release studies.

    PubMed

    Mura, Carla; Valenti, Donatella; Floris, Costantino; Sanna, Roberta; De Luca, Maria Antonietta; Fadda, Anna Maria; Loy, Giuseppe

    2011-09-01

    The aim of the present study was to develop a colon targeted delivery system for metronidazole using polymeric prodrug formulation. Two chitosan amide conjugates of metronidazole were prepared by using two different spacers to covalently link the drug to the amino group of the chitosan glucosamine units. Glutaric and succinic hemiesters of metronidazole were thus prepared and then coupled to chitosan to obtain metronidazole-glutaryl- and metronidazole-succinyl-chitosan conjugates. Polymeric prodrugs were characterized by solid state NMR method, namely carbon 13 cross polarization magic angle spinning ((13)C NMR CPMAS). Prodrug stability study was carried out in acid (pH = 1.2) and in alkaline (pH = 7.4) buffers in a thermostatic bath at 37 °C. Drug release from the two prodrugs was studied by incubating each of them with 10% w/v cecal and colonic content of rats. Obtained results showed that both prodrugs were adequately stable in acid environment, while the succinyl conjugate was more stable than the glutaryl one in alkaline buffer. Both the prodrugs released the drug in cecal and colonic content, showing that the two systems could serve as colon specific delivery systems of metronidazole. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. Metabolism evaluation of biomimetic prodrugs by in vitro models and mass spectrometry.

    PubMed

    Lalanne, Muriel; Khoury, Hania; Deroussent, Alain; Bosquet, Nathalie; Benech, Henri; Clayette, Pascal; Couvreur, Patrick; Vassal, Gilles; Paci, Angelo; Andrieux, Karine

    2009-09-11

    Glycerolipidic prodrug is an interesting concept to enhance lymphatic absorption of polar drugs intended to oral delivery such as didanosine (ddI). In order to improve ddI bioavailability, two didanosine glycerolipidic prodrugs, the phosphorylated (ProddIP) and the non-phosphorylated derivatives (ProddINP) were synthesized to follow triglyceride metabolism. The biomimetism approach of these prodrugs has been studied in vitro at two steps. First, liposomal formulation of each prodrug was incubated with a lipolysis model based on pancreatin and analysed using liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). These experiments evidenced that both didanosine prodrugs were recognized by the lipases; as expected, they were cleaved at both positions sn-1 and sn-3 of glycerol. ProddIP was metabolised twice more rapidly than ProddINP suggesting an implication of some phospholipases in ProddIP degradation. Secondly, the detection of dideoxyadenosine triphosphate (ddA-TP) into HIV-1 infected cells after their incubation with ProddINP loaded liposomes evidenced their ability to release ddI that could penetrate into the cells and be metabolised by intracellular kinases. These results confirmed that the synthesized glycerolipidic prodrugs of didanosine could be investigated for a biomimetic approach with final aiming of increasing the drug oral bioavailability by enhancing intestinal absorption.

  15. Ester prodrugs of morphine improve transdermal drug delivery: a mechanistic study.

    PubMed

    Wang, Jhi-Joung; Sung, K C; Huang, Jeng-Fen; Yeh, Chih-Hui; Fang, Jia-You

    2007-07-01

    Two alkyl esters of morphine, morphine propionate (MPR) and morphine enanthate (MEN), were synthesized as potential prodrugs for transdermal delivery. The ester prodrugs could enhance transdermal morphine delivery. The mechanisms of this enhancing effect were elucidated in this study. Both prodrugs were more lipophilic than their parent drug as evaluated by the skin/vehicle partition coefficient (log P) and capacity factor (log K'). The in-vitro skin permeation of morphine and its prodrugs from pH 6 buffer was in the order of MEN > MPR > morphine. MPR and MEN respectively enhanced the transdermal delivery of morphine by 2- and 5-fold. A contrary result was observed when using sesame oil as the vehicle. The prodrugs were stable against chemical hydrolysis in an aqueous solution, but were readily hydrolysed to the parent drug when exposed to skin homogenate and esterase. Approximately 98% MPR and approximately 75% MEN were converted to morphine in an in-vitro permeation experiment. The viable epidermis/dermis contributed to a significant resistance to the permeation of ester prodrugs. According to the data of skin permeation across ethanol-, alpha-terpineol-, and oleic acid-pretreated skin, MEN was predominantly transported via lipid bilayer lamellae in the stratum corneum. The intercellular pathway was not important for either morphine or MPR permeation.

  16. Enhancement of Curcumin Bioavailability Via the Prodrug Approach: Challenges and Prospects.

    PubMed

    Ratnatilaka Na Bhuket, Pahweenvaj; El-Magboub, Asma; Haworth, Ian S; Rojsitthisak, Pornchai

    2017-06-01

    Curcumin is a natural product with many interesting pharmacological properties. However, these are offset by the particularly poor biopharmaceutical properties. The oral bioavailability of curcumin in humans is very low, mainly due to low solubility, poor stability, and extensive metabolism. This has led to multiple approaches to improve bioavailability, including administration of curcumin with metabolism inhibitors, formulation into nanoparticles, modification of the curcumin structure, and development of curcumin prodrugs. In this paper, we focus on the pharmacokinetic outcomes of these approaches. Pharmacokinetic parameters of curcumin after release from prodrugs are dependent on the linker between curcumin and the promoiety, and the release itself may depend on the physiological and enzymatic environment at the site of cleavage. This is an area in which more data are required for rational design of improved linkers. Cytotoxicity of curcumin prodrugs seems to correlate well with cellular uptake in vitro, but the in vivo relevance is uncertain. We conclude that improved experimental and theoretical models of absorption of curcumin prodrugs, development of accurate analytical methods for simultaneous measurement of plasma levels of prodrug and released curcumin, and acquisition of more pharmacokinetic data in animal models for dose prediction in humans are required to facilitate movement of curcumin prodrugs into clinical trials.

  17. Hypoxia-activated prodrugs: paths forward in the era of personalised medicine

    PubMed Central

    Hunter, Francis W; Wouters, Bradly G; Wilson, William R

    2016-01-01

    Tumour hypoxia has been pursued as a cancer drug target for over 30 years, most notably using bioreductive (hypoxia-activated) prodrugs that target antineoplastic agents to low-oxygen tumour compartments. Despite compelling evidence linking hypoxia with treatment resistance and adverse prognosis, a number of such prodrugs have recently failed to demonstrate efficacy in pivotal clinical trials; an outcome that demands reflection on the discovery and development of these compounds. In this review, we discuss a clear disconnect between the pathobiology of tumour hypoxia, the pharmacology of hypoxia-activated prodrugs and the manner in which they have been taken into clinical development. Hypoxia-activated prodrugs have been evaluated in the manner of broad-spectrum cytotoxic agents, yet a growing body of evidence suggests that their activity is likely to be dependent on the coincidence of tumour hypoxia, expression of specific prodrug-activating reductases and intrinsic sensitivity of malignant clones to the cytotoxic effector. Hypoxia itself is highly variable between and within individual tumours and is not treatment-limiting in all cancer subtypes. Defining predictive biomarkers for hypoxia-activated prodrugs and overcoming the technical challenges of assaying them in clinical settings will be essential to deploying these agents in the era of personalised cancer medicine. PMID:27070712

  18. Synthesis and Pharmacological Evaluation of Acrylate-Based Gastrosparing NSAID Prodrugs.

    PubMed

    Rasheed, Arun; Yalavarthi, Prasanna Raju; Cheramparambil, Haseena; Peesa, Jaya Preethi; Abdul Khareem, Azeem

    2017-04-01

    Dexibuprofen and aceclofenac are well-known NSAID molecules, their oral use leads to gastrointestinal (GI) toxicity. To circumvent that GI toxicity, the prodrug approach is a better alternative. Hence, this research was undertaken to synthesize prodrugs of dexibuprofen and aceclofenac using acrylic polymers with degradable ester bonds. Dexibuprofen was linked to 2-hydroxypropyl methacrylate by an activated ester technique. The resulting material was copolymerized with 2-hydroxyethyl methacrylate and methyl methacrylate (in 1:3 mole ratios) by the free radical polymerization method, utilizing azoisobutyronitrile at 65-70°C. Similarly aceclofenac was also processed. The resulting prodrugs were characterized by IR, NMR, and elemental analysis. The synthesized prodrugs possess optimal physicochemical characteristics such as the intended molecular weight, lipophilicity, partition coefficient, and protein binding. The drug release on hydrolysis was studied in various fluids such as SGF (pH 1.2), SIF (pH 7.4), and SCF (pH 6.8), to establish the drug release kinetics. Pharmacological evaluation exhibited anti-inflammatory activity with remarkable reduction in ulcerogenicity compared to the parent drug. Under the conditions used, the prodrugs showed no antigenicity in Wistar rats. Thus, it was concluded that acrylic-based prodrugs were efficient in drug localization in the stomach, without gastric problems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Macrocyclic Prodrugs of a Selective Nonpeptidic Direct Thrombin Inhibitor Display High Permeability, Efficient Bioconversion but Low Bioavailability.

    PubMed

    Andersson, Vincent; Bergström, Fredrik; Brånalt, Jonas; Grönberg, Gunnar; Gustafsson, David; Karlsson, Staffan; Polla, Magnus; Bergman, Joakim; Kihlberg, Jan

    2016-07-28

    The only oral direct thrombin inhibitors that have reached the market, ximelagatran and dabigatran etexilat, are double prodrugs with low bioavailability in humans. We have evaluated an alternative strategy: the preparation of a nonpeptidic, polar direct thrombin inhibitor as a single, macrocyclic esterase-cleavable (acyloxy)alkoxy prodrug. Two homologous prodrugs were synthesized and displayed high solubilities and Caco-2 cell permeabilities, suggesting high absorption from the intestine. In addition, they were rapidly and completely converted to the active zwitterionic thrombin inhibitor in human hepatocytes. Unexpectedly, the most promising prodrug displayed only moderately higher oral bioavailability in rat than the polar direct thrombin inhibitor, most likely due to rapid metabolism in the intestine or the intestinal wall. To the best of our knowledge, this is the first in vivo ADME study of macrocyclic (acyloxy)alkoxy prodrugs, and it remains to be established if the modest increase in bioavailability is a general feature of this category of prodrugs or not.

  20. An In Silico Insight into Novel Therapeutic Interaction of LTNF Peptide-LT10 and Design of Structure Based Peptidomimetics for Putative Anti-Diabetic Activity

    PubMed Central

    Chavan, Sonali Gopichand; Deobagkar, Deepti Dileep

    2015-01-01

    Lethal Toxin Neutralizing Factor (LTNF) obtained from Opossum serum (Didephis virginiana) is known to exhibit toxin-neutralizing activity for envenomation caused by animals, plants and bacteria. Small synthetic peptide- LT10 (10mer) derived from N-terminal fraction of LTNF exhibit similar anti-lethal and anti-allergic property. In our in silico study, we identified Insulin Degrading Enzyme (IDE) as a potential target of LT10 peptide followed by molecular docking and molecular dynamic (MD) simulation studies which revealed relatively stable interaction of LT10 peptide with IDE. Moreover, their detailed interaction analyses dictate IDE-inhibitory interactions of LT10 peptide. This prediction ofLT10 peptide as a novel putative IDE-inhibitor suggests its possible role in anti-diabetic treatment since IDE- inhibitors are known to assist treatment of Diabetes mellitus by enhancing insulin signalling. Furthermore, series of structure based peptidomimetics were designed from LT10 peptide and screened for their inhibitory interactions which ultimately led to a small set of peptidomimetic inhibitors of IDE. These peptidomimetic thus might provide a new class of IDE-inhibitors, those derived from LT10 peptide. PMID:25816209

  1. Molecular docking and 3D-QSAR studies on the binding mechanism of statine-based peptidomimetics with beta-secretase.

    PubMed

    Zuo, Zhili; Luo, Xiaomin; Zhu, Weiliang; Shen, Jianhua; Shen, Xu; Jiang, Hualiang; Chen, Kaixian

    2005-03-15

    beta-Secretase is an important protease in the pathogenesis of Alzheimer's disease. Some statine-based peptidomimetics show inhibitory activities to the beta-secretase. To explore the inhibitory mechanism, molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies on these analogues were performed. The Lamarckian Genetic Algorithm (LGA) was applied to locate the binding orientations and conformations of the peptidomimetics with the beta-secretase. A good correlation between the calculated binding free energies and the experimental inhibitory activities suggests that the identified binding conformations of these potential inhibitors are reliable. Based on the binding conformations, highly predictive 3D-QSAR models were developed with q(2) values of 0.582 and 0.622 for CoMFA and CoMSIA, respectively. The predictive abilities of these models were validated by some compounds that were not included in the training set. Furthermore, the 3D-QSAR models were mapped back to the binding site of the beta-secretase, to get a better understanding of vital interactions between the statine-based peptidomimetics and the protease. Both the CoMFA and the CoMSIA field distributions are in well agreement with the structural characteristics of the binding groove of the beta-secretase. Therefore, the final 3D-QSAR models and the information of the inhibitor-enzyme interaction would be useful in developing new drug leads against Alzheimer's disease.

  2. Src homology 2 domain-containing phosphotyrosine phosphatase 2 (Shp2) controls surface GluA1 protein in synaptic homeostasis.

    PubMed

    Zhang, Bin; Lu, Wen

    2017-09-15

    Src Homology 2 domain-containing phosphotyrosine phosphatase 2 (Shp2) functions in synaptic plasticity, learning, and memory. However, the precise mechanisms by which this multifunctional protein contributes to synaptic function remains largely unknown. Homeostatic plasticity may be viewed as a process of bidirectional synaptic scaling, up or down. Through this process, neuronal circuitry stability is maintained so that changes in synaptic strength may be preserved under changing conditions. A better understanding of these processes is needed. In this regard, we report that phosphorylation of Shp2 at tyrosine 542 and its translocation to the postsynaptic compartment are integral processes in synaptic scaling. Furthermore, we show, using both pharmacological and genetic approaches, that Shp2 phosphatase activity is critical to the regulation of Ser(P)(845) GluA1 and surface expression of this AMPA receptor subunit during synaptic scaling. Thus, Shp2 may contribute meaningfully to synaptic homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. The oncogenic 70Z Cbl mutation blocks the phosphotyrosine binding domain-dependent negative regulation of ZAP-70 by c-Cbl in Jurkat T cells.

    PubMed

    van Leeuwen, J E; Paik, P K; Samelson, L E

    1999-10-01

    T-cell receptor (TCR) engagement results in the activation of Src family (Lck and Fyn) and ZAP-70 protein tyrosine kinases, leading to tyrosine phosphorylation of multiple cellular substrates including the complex adapter protein c-Cbl. Moreover, Cbl is tyrosine phosphorylated upon engagement of growth factor receptors, cytokine receptors, and immunoreceptors and functions as a negative regulator of tyrosine kinase signalling pathways. Cbl associates via its phosphotyrosine binding (PTB) domain to the ZAP-70 pY292 negative regulatory phosphotyrosine. We recently demonstrated that the oncogenic Cbl mutant, 70Z Cbl, requires its PTB domain to upregulate NFAT in unstimulated Jurkat T cells. Here, we demonstrate that kinase-dead but not wild-type forms of Fyn, Lck, and ZAP-70 block 70Z Cbl-mediated NFAT activation. Moreover, 70Z Cbl does not upregulate NFAT in the ZAP-70-deficient P116 Jurkat T-cell line. The requirement for Fyn, Lck, and ZAP-70 is not due to tyrosine phosphorylation of 70Z Cbl, as mutation of all tyrosines in, or deletion of, the C-terminal region of 70Z Cbl (amino acids 655 to 906) blocks 70Z Cbl tyrosine phosphorylation but enhances 70Z Cbl-mediated NFAT activation. Further, 70Z Cbl does not cooperate with ZAP-70 Y292F to upregulate NFAT, indicating that 70Z Cbl and ZAP-70 do not activate parallel signalling pathways. Finally, the upregulation of NFAT observed upon ZAP-70 overexpression is blocked by Cbl in a PTB domain-dependent manner. We conclude that oncogenic 70Z Cbl acts as a dominant negative to block the PTB domain-dependent negative regulatory role of endogenous Cbl on ZAP-70, leading to constitutive ZAP-70 signalling and activation of transcription factors.

  4. Acetal-linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy.

    PubMed

    Gu, Yudan; Zhong, Yinan; Meng, Fenghua; Cheng, Ru; Deng, Chao; Zhong, Zhiyuan

    2013-08-12

    Endosomal pH-activatable paclitaxel (PTX) prodrug micellar nanoparticles were designed and prepared by conjugating PTX onto water-soluble poly(ethylene glycol)-b-poly(acrylic acid) (PEG-PAA) block copolymers via an acid-labile acetal bond to the PAA block and investigated for potent growth inhibition of human cancer cells in vitro. PTX was readily conjugated to PEG-PAA with high drug contents of 21.6, 27.0, and 42.8 wt % (denoted as PTX prodrugs 1, 2, and 3, respectively) using ethyl glycol vinyl ether (EGVE) as a linker. The resulting PTX conjugates had defined molecular weights and self-assembled in phosphate buffer (PB, pH 7.4, 10 mM) into monodisperse micellar nanoparticles with average sizes of 158.3-180.3 nm depending on PTX contents. The in vitro release studies showed that drug release from PTX prodrug nanoparticles was highly pH-dependent, in which ca. 86.9%, 66.4% and 29.0% of PTX was released from PTX prodrug 3 at 37 °C in 48 h at pH 5.0, 6.0, and pH 7.4, respectively. MTT assays showed that these pH-sensitive PTX prodrug nanoparticles exhibited high antitumor effect to KB and HeLa cells (IC(50) = 0.18 and 0.9 μg PTX equiv/mL, respectively) as well as PTX-resistant A549 cells. Notably, folate-decorated PTX prodrug micellar nanoparticles based on PTX prodrug 3 and 20 wt % folate-poly(ethylene glycol)-b-poly(D,L-lactide) (FA-PEG-PLA) displayed apparent targetability to folate receptor-overexpressing KB cells with IC(50) over 12 times lower than nontargeting PTX prodrug 3 under otherwise the same conditions. Furthermore, PTX prodrug nanoparticles could also load doxorubicin (DOX) to simultaneously release PTX and DOX under mildly acidic pH. These acetal-linked PTX prodrug micellar nanoparticles have appeared as a highly versatile and potent platform for cancer therapy.

  5. Polyphosphoester-Camptothecin Prodrug with Reduction-Response Prepared via Michael Addition Polymerization and Click Reaction.

    PubMed

    Du, Xueqiong; Sun, Yue; Zhang, Mingzu; He, Jinlin; Ni, Peihong

    2017-04-26

    Polyphosphoesters (PPEs), as potential candidates for biocompatible and biodegradable polymers, play an important role in material science. Various synthetic methods have been employed in the preparation of PPEs such as polycondensation, polyaddition, ring-opening polymerization, and olefin metathesis polymerization. In this study, a series of linear PPEs has been prepared via one-step Michael addition polymerization. Subsequently, camptothecin (CPT) derivatives containing disulfide bonds and azido groups were linked onto the side chain of the PPE through Cu(I)-catalyzed azidealkyne cyclo-addition "click" chemistry to yield a reduction-responsive polymeric prodrug P(EAEP-PPA)-g-ss-CPT. The chemical structures were characterized by nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared, ultraviolet-visible spectrophotometer, and high performance liquid chromatograph analyses, respectively. The amphiphilic prodrug could self-assemble into micelles in aqueous solution. The average particle size and morphology of the prodrug micelles were measured by dynamic light scattering and transmission electron microscopy, respectively. The results of size change under different conditions indicate that the micelles possess a favorable stability in physiological conditions and can be degraded in reductive medium. Moreover, the studies of in vitro drug release behavior confirm the reduction-responsive degradation of the prodrug micelles. A methyl thiazolyl tetrazolium assay verifies the good biocompatibility of P(EAEP-PPA) not only for normal cells, but also for tumor cells. The results of cytotoxicity and the intracellular uptake about prodrug micelles further demonstrate that the prodrug micelles can efficiently release CPT into 4T1 or HepG2 cells to inhibit the cell proliferation. All these results show that the polyphosphoester-based prodrug can be used for triggered drug delivery system in cancer treatment.

  6. Peptide Prodrugs: Improved Oral Absorption of Lopinavir, a HIV Protease Inhibitor

    PubMed Central

    Agarwal, Sheetal; Boddu, S.H.S.; Jain, Ritesh; Samanta, Swapan; Pal, Dhananjay; Mitra, Ashim K.

    2008-01-01

    Lopinavir (LVR) is extensively metabolized by CYP3A4 and is prevented from entering the cells by membrane efflux pumps such as P-gp and MRP2. In an approach to evade the first-pass metabolism and efflux of LVR, peptide prodrugs of LVR [valine-valine-lopinavir (VVL) and glycine-valine-lopinavir (GVL)] were synthesized. Prodrugs were identified with 1H and 13C NMR spectra and LC/MS/MS was employed to evaluate their mass and purity. Solubility studies indicated that the prodrugs have much greater solubility as compared with LVR in water. In vitro evaluations were performed to determine affinities for efflux proteins (P-gp and MRP2) and CYP3A4 and permeabilities across intestinal barrier. Accumulation and transport data of VVL and GVL across MDCKII-MDR1 and MDCKII-MRP2 cells indicated evasion of prodrugs’ efflux by P-gp and MRP2 significantly. Permeability studies across Caco-2 cells indicated that the prodrugs are transported by peptide transporters and have increased permeability as compared with LVR. VVL and GVL exhibited significantly better degradation rate constants as compared with LVR in rat liver microsomes. Enzymatic stability studies in Caco-2 cell homogenate indicated that the peptide prodrugs are first converted to the ester intermediate and then finally to the parent drug. Overall, the advantages of utilizing peptide prodrugs include chemical modification of the compound to achieve targeted delivery via peptide transporters present across the intestinal epithelium, significant evasion of efflux and CYP3A4 mediated metabolism and significantly better solubility profiles. Therefore, in vitro studies demonstrated that peptide prodrug derivatization of LVR may be an effective strategy for bypassing its efflux and enhancing its systemic bioavailability. PMID:18455890

  7. Flurbiprofen–antioxidant mutual prodrugs as safer nonsteroidal anti-inflammatory drugs: synthesis, pharmacological investigation, and computational molecular modeling

    PubMed Central

    Ashraf, Zaman; Alamgeer; Kanwal, Munazza; Hassan, Mubashir; Abdullah, Sahar; Waheed, Mamuna; Ahsan, Haseeb; Kim, Song Ja

    2016-01-01

    Flurbiprofen–antioxidant mutual prodrugs were synthesized to reduce the gastrointestinal (GI) effects associated with flurbiprofen. For reducing the GI toxicity, the free carboxylic group (–COOH) was temporarily masked by esterification with phenolic –OH of natural antioxidants vanillin, thymol, umbelliferone, and sesamol. The in vitro hydrolysis of synthesized prodrugs showed that they were stable in buffer solution at pH 1.2, indicating their stability in the stomach. The synthesized prodrugs undergo significant hydrolysis in 80% human plasma and thus release free flurbiprofen. The minimum reversion was observed at pH 1.2, suggesting that prodrugs are less irritating to the stomach than flurbiprofen. The anti-inflammatory, analgesic, antipyretic, and ulcerogenic activities of prodrugs were evaluated. All the synthesized prodrugs significantly (P<0.001) reduced the inflammation against carrageenan and egg albumin-induced paw edema at 4 hours of study. The reduction in the size of the inflamed paw showed that most of the compounds inhibited the later phase of inflammation. The prodrug 2-oxo-2H-chromen-7-yl-2-(2-fluorobiphenyl-4-yl)propanoate (4b) showed significant reduction in paw licking with percentage inhibition of 58%. It also exhibited higher analgesic activity, reducing the number of writhes with a percentage of 75%, whereas flurbiprofen showed 69% inhibition. Antipyretic activity was investigated using brewer’s yeast-induced pyrexia model, and significant (P<0.001) reduction in rectal temperature was shown by all prodrugs at all times of assessment. The results of ulcerogenic activity showed that all prodrugs produced less GI irritation than flurbiprofen. Molecular docking and simulation studies were carried out with cyclooxygenase (COX-1 and COX-2) proteins, and it was observed that our prodrugs have more potential to selectively bind to COX-2 than to COX-1. It is concluded that the synthesized prodrugs have promising pharmacological activities

  8. Anticancer Drug Released from Near IR-activated Prodrug Overcomes Spatiotemporal Limits of Singlet Oxygen

    PubMed Central

    Rajaputra, Pallavi; Bio, Moses; Nkepang, Gregory; Thapa, Pritam; Woo, Sukyung; You, Youngjae

    2016-01-01

    Photodynamic therapy (PDT) is a cancer treatment modality where photosensitizer (PS) is activated by visible and near IR light to produce singlet oxygen (1O2). However, 1O2 has a short lifetime (< 40 ns) and cannot diffuse (< 20 nm) beyond the cell diameter (e.g., ~ 1,800 nm). Thus, 1O2 damage is both spatially and temporally limited and does not produce bystander effect. In a heterogeneous tumor, cells escaping 1O2 damage can regrow after PDT treatment. To overcome these limitations, we developed a prodrug concept (PS-L-D) composed of a photosensitizer (PS), an anti-cancer drug (D), and an 1O2-cleavable linker (L). Upon illumination of the prodrug, 1O2 is generated, which damages the tumor and also releases anticancer drug. The locally released drug could cause spatially broader and temporally sustained damage, killing the surviving cancer cells after the PDT damage. In our previous report, we presented the superior activity of our prodrug of CA4 (combretastatin A-4), Pc-(L-CA4)2, compared to its non-cleavable analog, Pc-(NCL-CA4)2, that produced only PDT effects. Here, we provide clear evidence demonstrating that the released anticancer drug, CA4, indeed damages the surviving cancer cells over and beyond the spatial and temporal limits of 1O2. In the limited light illumination experiment, cells in the entire well were killed due to the effect of released anticancer drug, whereas only a partial damage was observed in the pseudo-prodrug treated wells. A time-dependent cell survival study showed more cell death in the prodrug-treated cells due to the sustained damage by the released CA4. Cell cycle analysis and microscopic imaging data demonstrated the typical damage patterns by CA4 in the prodrug treated cells. A time-dependent histological study showed that prodrug-treated tumors lacked mitotic bodies, and the prodrug caused broader and sustained tumor size reduction compared to those seen in the tumors treated with the pseudo-prodrug. This data consistently

  9. Anticancer drug released from near IR-activated prodrug overcomes spatiotemporal limits of singlet oxygen.

    PubMed

    Rajaputra, Pallavi; Bio, Moses; Nkepang, Gregory; Thapa, Pritam; Woo, Sukyung; You, Youngjae

    2016-04-01

    Photodynamic therapy (PDT) is a cancer treatment modality where photosensitizer (PS) is activated by visible and near IR light to produce singlet oxygen ((1)O2). However, (1)O2 has a short lifetime (<40 ns) and cannot diffuse (<20 nm) beyond the cell diameter (e.g., ∼ 1800 nm). Thus, (1)O2 damage is both spatially and temporally limited and does not produce bystander effect. In a heterogeneous tumor, cells escaping (1)O2 damage can regrow after PDT treatment. To overcome these limitations, we developed a prodrug concept (PS-L-D) composed of a photosensitizer (PS), an anti-cancer drug (D), and an (1)O2-cleavable linker (L). Upon illumination of the prodrug, (1)O2 is generated, which damages the tumor and also releases anticancer drug. The locally released drug could cause spatially broader and temporally sustained damage, killing the surviving cancer cells after the PDT damage. In our previous report, we presented the superior activity of our prodrug of CA4 (combretastatin A-4), Pc-(L-CA4)2, compared to its non-cleavable analog, Pc-(NCL-CA4)2, that produced only PDT effects. Here, we provide clear evidence demonstrating that the released anticancer drug, CA4, indeed damages the surviving cancer cells over and beyond the spatial and temporal limits of (1)O2. In the limited light illumination experiment, cells in the entire well were killed due to the effect of released anti-cancer drug, whereas only a partial damage was observed in the pseudo-prodrug treated wells. A time-dependent cell survival study showed more cell death in the prodrug-treated cells due to the sustained damage by the released CA4. Cell cycle analysis and microscopic imaging data demonstrated the typical damage patterns by CA4 in the prodrug treated cells. A time-dependent histological study showed that prodrug-treated tumors lacked mitotic bodies, and the prodrug caused broader and sustained tumor size reduction compared to those seen in the tumors treated with the pseudo-prodrug. This data

  10. Synthesis, stereoselective enzymatic hydrolysis, and skin permeation of diastereomeric propranolol ester prodrugs.

    PubMed

    Udata, C; Tirucherai, G; Mitra, A K

    1999-05-01

    Four diastereomeric propranolol ester prodrugs (1S2S, 1S2R, 1R2S, 1R2R) were synthesized by treating pure R- and S-propranolol hydrochloride with pure enantiomers R- and S-phenylbutyryl chloride. A HPLC technique using alpha-1 acid glycoprotein (chiral AGP) column was developed to study the racemization of propranolol enantiomers during synthesis and hydrolysis studies. A reversed phase HPLC method was also developed to simultaneously analyze propranolol and the ester prodrug. Hydrolysis of these esters was studied in different rat tissue homogenates, i.e., liver, intestine, plasma, skin, brain, and pure plasma cholinesterases, i.e., butyryl cholinesterase (EC 3.1.1.8) and acetyl cholinesterase (EC 3.1.1.7). In vitro percutaneous permeation studies across full thickness shaved rat skin were performed using standard side-by-side diffusion cells at 37 degrees C. The disappearance of the diastereomeric ester prodrugs in rat tissue homogenates followed apparent first-order kinetics and was stereoselective. The ratio of brain to plasma hydrolytic rate constants are 27.8, 5.58, 6.07, and 2.97 for 1S2S, 1R2R, 1R2S, and 1S2R esters, respectively. Hydrolysis of all four diastereomeric ester prodrugs was faster by acetyl cholinesterase than butyryl cholinesterase and is stereoselective. The permeability coefficients [Kp x 10(3) (cm h-1)] are 1.40 +/- 0.30, 1.41 +/- 0.27, 42.20 +/- 1.24, 29.26 +/- 3.41, 16.27 +/- 3.12, 12.99 +/- 2.84 for (R)-propranolol, (S)-propranolol, 1S2S, 1R2S, 1S2R, and 1R2R ester prodrugs, respectively. The results indicate that the 1R2S diastereomeric ester prodrug of propranolol shows greatest stability in liver and intestinal tissues while it exhibits fairly rapid conversion in plasma. The results also suggest the configuration on the second chiral carbon atom to be the determinant in the rate of hydrolysis of all the diastereomeric prodrugs in all biological media examined. The Kp of all four prodrugs markedly increased compared to that of the

  11. Stability of penethamate, a benzylpenicillin ester prodrug, in oily vehicles.

    PubMed

    Jain, Rohit; Bork, Olaf; Tucker, Ian G

    2015-01-01

    Penethamate (PNT) is an ester prodrug of benzylpenicillin which is marketed as dry powder for reconstitution with aqueous vehicle prior to injection. The purpose of this paper was to investigate the chemical stability of PNT in oily formulations to provide a basis for a ready-to-use (RTU) oil-based PNT formulation. The chemical stability of PNT solutions and suspensions in light liquid paraffin (LP), medium chain triglyceride (MIG), ethyl oleate (EO) and sunflower oil (SO) was investigated at 30 °C. Solid state stability of PNT powder and stability of PNT in EO suspensions with different moisture contents were also evaluated. The solubility of PNT in the oils was in order SO > EO > MIG > LP. Degradation of PNT was rapid in oily solutions and less than 10% remained after 7-15 days. Stability of PNT decreased with increase in moisture content in ethyl oleate suspensions. PNT was stable over four weeks in the solid state. Hydrolysis, due to moisture in the oil formulation is not the only degradation mechanism. PNT stability (% drug remaining) in oily suspensions after 3.5 months was in the order LP (96.2%) > MIG (95.4%) > EO (94.1%) > SO (86%). A shelf-life of up to 5.5 years at 30 °C may be achieved for PNT suspension in these oils.

  12. Synthesis and in vitro studies on a potential dopamine prodrug.

    PubMed

    Giannola, L I; De Caro, V; Giandalia, G; Siragusa, M G; Lamartina, L

    2008-10-01

    Dopamine delivery to the central nervous system (CNS) undergoes the permeability limitations of blood-brain barrier (BBB) which is a selective interface that excludes most water-soluble molecules from entering the brain. Neutral amino acids permeate the BBB by specific transport systems. Condensation of dopamine with neutral amino acids could afford potential prodrugs able to interact with the BBB endogenous transporters and easily enter the brain. The synthesis and characterization of the dopamine derivative 2-amino-N-[2-(3,4-dihydroxy-phenyl)-ethyl]-3-phenyl-propionamide (7) is described. The chemical and enzymatic stability of 7 was evaluated. The molecular weight (300 Da) and Log Papp (0.76) indicated that the physico-chemical characteristics of compound 7 are adequate to cross biological membranes. Compound 7 was enzymatically cleaved to free dopamine in rat brain homogenate (t1/2 = 460 min). In human plasma, the t1/2 of 7 was estimated comparable to that reported for L-DOPA. In view of a possible oral administration of 7, studies of its chemical behavior under conditions simulating those of the gastrointestinal tract showed that no dopamine production occurred; furthermore, 7 is able to permeate through a simulated intestinal mucosal membrane. The collected data suggest that compound 7 could beconsidered a very valuable candidate for subsequent in vivo evaluation.

  13. Electronic structural investigations of ruthenium compounds and anticancer prodrugs.

    PubMed

    Harris, Travis V; Szilagyi, Robert K; McFarlane Holman, Karen L

    2009-08-01

    Several Ru(III) compounds are propitious anticancer agents although the precise mechanisms of action remain unknown. With this paper we start to establish an experimental library of X-ray absorption spectroscopy (XAS) data for ten Ru compounds wherein the ligands [Cl(-), dimethyl sulfoxide, imidazole, and indazole] were varied systematically to provide electronic structural information for future use in correlating spectroscopic signatures with chemical properties. Despite the considerable difference in the coordination environments of the complexes studied, the overall differences in spectral features and electronic structures calculated using density functional theory are unexpectedly small. However, the differences in the electronic structure of the Ru(III) prodrugs KP1019 ([IndH][trans-RuCl(4)(Ind)(2)], Ind is indazole) and ICR ([ImH][trans-RuCl(4)(Im)(2)], Im is imidazole) observed in the XAS data show correlation with known chemical and biological activities in addition to the donor abilities of imidazole compared with indazole and reduction potentials of the complexes. These semiquantitative results lay the groundwork for future biochemical studies into the structure-function relationships of Ru-based anticancer drugs.

  14. Click synthesis of a polyamidoamine dendrimer-based camptothecin prodrug

    PubMed Central

    Zolotarskaya, Olga Yu.; Xu, Leyuan; Valerie, Kristoffer; Yang, Hu

    2015-01-01

    In the present work we report on the click synthesis of a new camptothecin (CPT) prodrug based on anionic polyamidoamine (PAMAM) dendrimer intended for cancer therapy. We applied ‘click’ chemistry to improve polymer-drug coupling reaction efficiency. Specifically, CPT was functionalized with a spacer, 1-azido-3,6,9,12,15-pentaoxaoctadecan-18-oic acid (APO), via EDC/DMAP coupling reaction. In parallel, propargylamine (PPA) and methoxypoly(ethylene glycol) amine were conjugated to PAMAM dendrimer G4.5 in sequence using an effective coupling agent 4-(4,6-dimethoxy-(1,3,5)triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM). CPT-APO was then coupled to PEGylated PAMAM dendrimer G4.5-PPA via a click reaction using copper bromide/2,2’-bipyridine/ dimethyl sulfoxide (catalyst/ligand/solvent). Human glioma cells were exposed to the CPT-conjugate to determine toxicity and cell cycle effects using WST-1 assay and flow cytometry. The CPT-conjugate displayed a dose-dependent toxicity with an IC50 of 5 μM, a 185-fold increase relative to free CPT, presumably as a result of slow release. As expected, conjugated CPT resulted in G2/M arrest and cell death while the dendrimer itself had little to no toxicity. Altogether, highly efficient click chemistry allows for the synthesis of multifunctional dendrimers for sustained drug delivery. PMID:26640689

  15. Membrane-permeable Triphosphate Prodrugs of Nucleoside Analogues.

    PubMed

    Gollnest, Tristan; Dinis de Oliveira, Thiago; Rath, Anna; Hauber, Ilona; Schols, Dominique; Balzarini, Jan; Meier, Chris

    2016-04-18

    The metabolic conversion of nucleoside analogues into their triphosphates often proceeds insufficiently. Rate-limitations can be at the mono-, but also at the di- and triphosphorylation steps. We developed a nucleoside triphosphate (NTP) delivery system (TriPPPro-approach). In this approach, NTPs are masked by two bioreversible units at the γ-phosphate. Using a procedure involving H-phosphonate chemistry, a series of derivatives bearing approved, as well as potentially antivirally active, nucleoside analogues was synthesized. The enzyme-triggered delivery of NTPs was demonstrated by pig liver esterase, in human T-lymphocyte cell extracts and by a polymerase chain reaction using a prodrug of thymidine triphosphate. The TriPPPro-compounds of some HIV-inactive nucleoside analogues showed marked anti-HIV activity. For cellular uptake studies, a fluorescent TriPPPro-compound was prepared that delivered the triphosphorylated metabolite to intact CEM cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nanoassemblies from amphiphilic cytarabine prodrug for leukemia targeted therapy.

    PubMed

    Liu, Jing; Zhao, Dujuan; He, Wenxiu; Zhang, Huiyuan; Li, Zhonghao; Luan, Yuxia

    2017-02-01

    The anti-leukemia effect of cytarabine (Ara-C) is severely restricted by its high hydrophilic properties and rapid plasma degradation. Herein, a novel amphiphilic small molecular prodrug of Ara-C was developed by coupling a short aliphatic chain, hexanoic acid (HA) to 4-NH2 of the parent drug. Based on the amphiphilic nature, the resulting bioconjugate (HA-Ara) could spontaneously self-assemble into stable spherical nanoassemblies (NAs) with an extremely high drug loading (∼71wt%). Moreover, folate receptor (FR)-targeting NAs with high grafting efficient folic acid - bovine serum albumin (FA-BSA) conjugate immobilized on the surface (NAs/FA-BSA) was prepared. The results of MTT assays on FR-positive K562 cells and FR-negative A549 cells demonstrated higher cytotoxicity of HA-Ara NAs than the native drug. Especially, the IC50 values revealed that NAs/FA-BSA was 3 and 2-fold effective than non-targeted NAs after 24 and 48h treatment with K562 cells, respectively indicating FR-mediated enhanced anti-tumor efficacy. In vitro cellular uptake, larger accumulation of HA-Ara NAs were observed in comparative with the free FITC and the results further confirmed the selective uptake of NAs/FA-BSA in folate receptor enriched cancer cells. Above all, self-assembled HA-Ara NAs exhibited potential superiority for Ara-C delivery and FA-modified NAs would be an excellent candidate for targeting leukemia therapy.

  17. Mechanism of brain targeting by dexibuprofen prodrugs modified with ethanolamine-related structures

    PubMed Central

    Li, Yanping; Zhou, Yangyang; Jiang, Jiayu; Wang, Xinyi; Fu, Yao; Gong, Tao; Sun, Xun; Zhang, Zhirong

    2015-01-01

    The first molecular insights into how prodrugs modified with ethanolamine-related structures target the brain were generated using an in vitro BBB model and in situ perfusion technique. Prodrugs were delivered safely and efficiently to the brain through tight interaction with the anionic membrane of brain capillary endothelial cells, observed as a shift in zeta potential, followed by uptake into the cells. Prodrugs III and IV carrying primary and secondary amine modifications appeared to enter the brain via energy-independent passive diffusion. In contrast, besides the passive diffusion, prodrugs I and II carrying tertiary amine modifications also appeared to enter via an active process that was energy and pH dependent but was independent of sodium or membrane potential. This active process involved, at least in part, the pyrilamine-sensitive H+/OC antiporter, for which the N,N-diethyl-based compound II showed a much lower affinity than the N,N-dimethyl-based compound I, likely due to steric hindrance. These new insights into brain-targeting mechanisms may help guide efforts to design new prodrugs. PMID:26154870

  18. Annexin V-Directed Enzyme Prodrug Therapy Plus Docetaxel for the Targeted Treatment of Pancreatic Cancer.

    PubMed

    Guillen, Katrin P; Restuccia, Antonietta; Kurkjian, Carla; Harrison, Roger G

    2015-08-01

    The bleak prognosis associated with pancreatic cancer (PDAC) drives the need for the development of novel treatment methodologies. Here, we evaluate the applicability of 3 enzyme prodrug therapies for PDAC, which are simultaneously targeted to the tumor, tumor vasculature, and metastases via annexin V. In these therapies, annexin V is fused to an enzyme, creating a fusion protein that converts nontoxic drug precursors, prodrugs, into anticancer compounds while bound to the tumor, therefore mitigating the risk of side effects. The binding strength of fusion proteins to the human PDAC cell lines Panc-1 and Capan-1 was measured via streptavidin-horseradish peroxidase binding to biotinylated fusion proteins. Cytotoxic efficacy was evaluated by treatment with saturating concentrations of fusion protein followed by varying concentrations of the corresponding prodrug plus docetaxel. All fusion proteins exhibited strong binding to PDAC cells, with dissociation constants between 0.02 and 1.15 nM. Cytotoxic efficacy was determined to be very good for 2 of the systems, both of which achieved complete cell death on at least 1 cell line at physiologically attainable prodrug concentrations. Strong binding of fusion proteins to PDAC cells and effective cytotoxicity demonstrate the potential applicability of enzyme prodrug therapy to the treatment of PDAC.

  19. Interaction of lipophilic gemcitabine prodrugs with biomembrane models studied by Langmuir-Blodgett technique.

    PubMed

    Castelli, Francesco; Sarpietro, Maria Grazia; Rocco, Flavio; Ceruti, Maurizio; Cattel, Luigi

    2007-09-01

    The stability and bioavailability of anticancer agents, such as gemcitabine, can be increased by forming prodrugs. Gemcitabine is rapidly deaminated to the inactive metabolite (2('),2(')-difluorodeoxyuridine), thus to improve its stability a series of increasingly lipophilic gemcitabine prodrugs linked through the 4-amino group to valeroyl, lauroyl, and stearoyl acyl chains were synthesized. Studies of monolayer properties are important to improve understanding of biological phenomena involving lipid/gemcitabine or lipid/gemcitabine derivative interactions. The interfacial behavior of monolayers constituted by DMPC plus gemcitabine or lipophilic gemcitabine prodrugs at increasing molar fractions was studied at the air/water interface at temperatures below (10 degrees C) and above (37 degrees C) the lipid phase transition. The effect of the hydrophobic chain length of gemcitabine derivatives on the isotherm of pure DMPC was investigated by surface tension measurement, and the results are reported as molar fractions as a function of mean molecular area per molecule. The results show that the compounds interact with DMPC producing mixed monolayers that are subject to an expansion effect, depending on the prodrug chain length. The results give useful hints of the interaction of these prodrugs with biological membranes and increase knowledge on the incorporation site of such compounds, as a function of their lipophilicity, in a lipid carrier; they may lead to improved liposomal formulation design.

  20. Computer-assisted design of pro-drugs for antimalarial atovaquone.

    PubMed

    Karaman, Rafik; Hallak, Hussein

    2010-10-01

    Density Functional Theory (DFT) and ab initio calculation results for the proton transfer reaction in Kirby's enzyme models 1-6 reveal that the reaction rate is largely dependent on the existence of a hydrogen bonding net in the reactants and the corresponding transition states. Further, the distance between the two reacting centers and the angle of the hydrogen bonding formed along the reaction path has profound effects on the rate. Hence, the study on the systems reported herein could provide a good basis for designing antimalarial (atovaquone) pro-drug systems that can be used to release the parent drug in a controlled manner. For example, based on the calculated log EM, the cleavage process for pro-drug 1Pro may be predicted to be about 10¹¹ times faster than that for a pro-drug 4Pro and about 10⁴ times faster than pro-drug 2Pro: rate (1Pro) > rate (2Pro > rate (4Pro). Thus, the rate by which the pro-drug releases the antimalarial drug can be determined according to the nature of the linker (Kirby's enzyme model 1-6).

  1. Synthesis and Evaluation as Prodrugs of Hydrophilic Carbamate Ester Analogues of Resveratrol.

    PubMed

    Azzolini, Michele; Mattarei, Andrea; La Spina, Martina; Marotta, Ester; Zoratti, Mario; Paradisi, Cristina; Biasutto, Lucia

    2015-09-08

    Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is an unfulfilled promise for health care: its exploitation is hindered by rapid conjugative metabolism in enterocytes and hepatocytes; low water solubility is a serious practical problem. To advantageously modify the physicochemical properties of the compound we have developed prodrugs in which all or part of the hydroxyl groups are linked via an N-monosubstituted carbamate ester bond to promoieties derived from glycerol or galactose, conferring higher water solubility. Kinetic studies of hydrolysis in aqueous solutions and in blood indicated that regeneration of resveratrol takes place in an appropriate time frame for delivery via oral administration. Despite their hydrophilicity some of the synthesized compounds were absorbed in the gastrointestinal tract of rats. In these cases the species found in blood after administration of a bolus consisted mainly of partially deprotected resveratrol derivatives and of the products of their glucuronidation, thus providing proof-of-principle evidence of behavior as prodrugs. The soluble compounds largely reached the lower intestinal tract. Upon administration of resveratrol, the major species found in this region was dihydroresveratrol, produced by enzymes of the intestinal flora. In experiments with a fully protected (trisubstituted) deoxygalactose containing prodrug, the major species were the prodrug itself and partially deprotected derivatives, along with small amounts of dihydroresveratrol. We conclude that the N-monosubstituted carbamate moiety is suitable for use in prodrugs of polyphenols.

  2. Somatostatin receptor-mediated specific delivery of paclitaxel prodrugs for efficient cancer therapy.

    PubMed

    Huo, Meirong; Zhu, Qinnv; Wu, Qu; Yin, Tingjie; Wang, Lei; Yin, Lifang; Zhou, Jianping

    2015-06-01

    In this study, a novel PTX prodrug, octreotide(Phe)-polyethene glycol-paclitaxel [OCT(Phe)-PEG-PTX], was successfully synthesized and used for targeted cancer therapy. A nontargeting conjugate, mPEG-PTX, was also synthesized and used as a control. Chemical structures of OCT(Phe)-PEG-PTX and mPEG-PTX were confirmed using (1) H nuclear magnetic resonance and circular dichroism. The drug contents in both the conjugates were 12.0% and 14.0%, respectively. Compared with the parent drug (PTX), OCT(Phe)-PEG-PTX, and mPEG-PTX prodrugs showed a 20,000- and 30,000-fold increase in water solubility, respectively. PTX release from mPEG-PTX and OCT(Phe)-PEG-PTX exhibited a pH-dependent profile. Moreover, compared with mPEG-PTX, OCT(Phe)-PEG-PTX exhibited significantly stronger cytotoxicity against NCI-H446 cells (SSTR overexpression) but comparable cytotoxicity against WI-38 cells (no SSTR expression). Results of confocal laser scanning microscopy revealed that the targeting prodrug labeled with fluorescence probe was selectively taken into tumor cells via SSTR-mediated endocytosis. In vivo investigation of prodrugs in nude mice bearing NCI-H446 cancer xenografts confirmed that OCT(Phe)-PEG-PTX prodrug exhibited stronger antitumor efficacy and lower systemic toxicity than mPEG-PTX and commercial Taxol. These results suggested that OCT(Phe)-PEG-PTX is a promising anticancer drug delivery system for targeted cancer therapy.

  3. Zanamivir Amidoxime- and N-Hydroxyguanidine-Based Prodrug Approaches to Tackle Poor Oral Bioavailability.

    PubMed

    Schade, Dennis; Kotthaus, Jürke; Riebling, Lukas; Kotthaus, Joscha; Müller-Fielitz, Helge; Raasch, Walter; Hoffmann, Anja; Schmidtke, Michaela; Clement, Bernd

    2015-09-01

    The neuraminidase (NA) inhibitor zanamivir (1) is potently active against a broad panel of influenza A and B strains, including mutant viruses, but suffers from pharmacokinetic (PK) shortcomings. Here, distinct prodrug approaches are described that aimed at overcoming zanamivir's lack of oral bioavailability. Lowering the high basicity of the 4-guanidino group in zanamivir and of a bioisosteric 4-acetamidine analog (5) by N-hydroxylation was deemed to be a plausible tactic. The carboxylic acid and glycerol side chain were also masked with different ester groups. The bioisosteric amidine 5 turned out to be potently active against a panel of H1N1 (IC50 = 2-10 nM) and H3N2 (IC50 = 5-10 nM) influenza A viruses (NA inhibition assay). In vitro PK studies showed that all prodrugs were highly soluble, exhibited low protein binding, and were bioactivated by N-reduction to the respective guanidines and amidines. The most promising prodrug candidates, amidoxime ester 7 and N-hydroxyguanidine ester 8, were subjected to in vivo bioavailability studies. Unfortunately, both prodrugs were not orally bioavailable to a convincing degree (F ≤ 3.7%, rats). This finding questions the general feasibility of improving the oral bioavailability of 1 by lipophilicity-increasing prodrug strategies, and suggests that intrinsic structural features represent key hurdles.

  4. Integrase Inhibitor Prodrugs: Approaches to Enhancing the Anti-HIV Activity of β-Diketo Acids.

    PubMed

    Nair, Vasu; Okello, Maurice

    2015-07-13

    HIV integrase, encoded at the 3'-end of the HIV pol gene, is essential for HIV replication. This enzyme catalyzes the incorporation of HIV DNA into human DNA, which represents the point of "no-return" in HIV infection. Integrase is a significant target in anti-HIV drug discovery. This review article focuses largely on the design of integrase inhibitors that are β-diketo acids constructed on pyridinone scaffolds. Methodologies for synthesis of these compounds are discussed. Integrase inhibition data for the strand transfer (ST) step are compared with in vitro anti-HIV data. The review also examines the issue of the lack of correlation between the ST enzymology data and anti-HIV assay results. Because this disconnect appeared to be a problem associated with permeability, prodrugs of these inhibitors were designed and synthesized. Prodrugs dramatically improved the anti-HIV activity data. For example, for compound, 96, the anti-HIV activity (EC50) improved from 500 nM for this diketo acid to 9 nM for its prodrug 116. In addition, there was excellent correlation between the IC50 and IC90 ST enzymology data for 96 (6 nM and 97 nM, respectively) and the EC50 and EC90 anti-HIV data for its prodrug 116 (9 nM and 94 nM, respectively). Finally, it was confirmed that the prodrug 116 was rapidly hydrolyzed in cells to the active compound 96.

  5. Amorphous Solid Dispersions or Prodrugs: Complementary Strategies to Increase Drug Absorption.

    PubMed

    Rumondor, Alfred C F; Dhareshwar, Sundeep S; Kesisoglou, Filippos

    2016-09-01

    Maximizing oral bioavailability of drug candidates represents a challenge in the pharmaceutical industry. In recent years, there has been an increase in the use of amorphous solid dispersions (ASDs) to address this issue, where a growing number of solid dispersion formulations have been introduced to the market. However, an increase in solubility or dissolution rate through ASD does not always result in sufficient improvement of oral absorption because solubility limitations may still exist at high doses. Chemical modification in the form of a prodrug may offer an alternative approach for these cases. Although prodrugs have been primarily used to improve membrane permeability, examples are available in which prodrugs have been used to increase drug solubility beyond what can be achieved via formulation approaches. In this mini review, the role of ASDs and prodrugs as 2 complementary approaches in improving oral bioavailability of drug candidates is discussed. We discuss the fundamental principles of absorption and bioavailability, and review available literature on both solid dispersions and prodrugs, providing a summary of their use and examples of successful applications, and cover some of the biopharmaceutics evaluation aspects for these approaches.

  6. Development of an In Vitro Model to Screen CYP1B1-Targeted Anticancer Prodrugs.

    PubMed

    Wang, Zhiying; Chen, Yao; Drbohlav, Laura M; Wu, Judy Qiju; Wang, Michael Zhuo

    2016-12-01

    Cytochrome P450 1B1 (CYP1B1) is an anticancer therapeutic target due to its overexpression in a number of steroid hormone-related cancers. One anticancer drug discovery strategy is to develop prodrugs specifically activated by CYP1B1 in malignant tissues to cytotoxic metabolites. Here, we aimed to develop an in vitro screening model for CYP1B1-targeted anticancer prodrugs using the KLE human endometrial carcinoma cell line. KLE cells demonstrated superior stability of CYP1B1 expression relative to transiently transfected cells and did not express any appreciable amount of cognate CYP1A1 or CYP1A2, which would have compromised the specificity of the screening assay. The effect of two CYP1B1-targeted probe prodrugs on KLE cells was evaluated in the absence and presence of a CYP1B1 inhibitor to chemically "knock out" CYP1B1 activity (CYP1B1 inhibited). Both probe prodrugs were more toxic to KLE cells than to CYP1B1-inhibited KLE cells and significantly induced G0/G1 arrest and decreased the S phase in KLE cells. They also exhibited pro-apoptotic effects in KLE cells, which were attenuated in CYP1B1-inhibited KLE cells. In summary, a KLE cell-based model has been characterized to be suitable for identifying CYP1B1-targeted anticancer prodrugs and should be further developed and employed for screening chemical libraries.

  7. Design, Synthesis, and In Vitro Kinetics Study of Atenolol Prodrugs for the Use in Aqueous Formulations

    PubMed Central

    Qtait, Alaa; Dajani, Khulod Khayyat; Abu Lafi, Saleh

    2014-01-01

    Based on DFT, MP2, and the density functional from Truhlar group (hybrid GGA: MPW1k) calculations for an acid-catalyzed hydrolysis of nine Kirby's N-alkylmaleamic acids and two atenolol prodrugs were designed. The calculations demonstrated that the amide bond cleavage is due to intramolecular nucleophilic catalysis by the adjacent carboxylic acid group and the rate-limiting step is determined based on the nature of the amine leaving group. In addition, a linear correlation of the calculated and experimental rate values has drawn credible basis for designing atenolol prodrugs that are bitterless, are stable in neutral aqueous solutions, and have the potential to release the parent drug in a sustained release manner. For example, based on the calculated B3LYP/6-31 G (d,p) rates, the predicted t 1/2 (a time needed for 50% of the prodrug to be converted into drug) values for atenolol prodrugs ProD 1-ProD 2 at pH 2 were 65.3 hours (6.3 hours as calculated by GGA: MPW1K) and 11.8 minutes, respectively. In vitro kinetic study of atenolol prodrug ProD 1 demonstrated that the t 1/2 was largely affected by the pH of the medium. The determined t 1/2 values in 1N HCl, buffer pH 2, and buffer pH 5 were 2.53, 3.82, and 133 hours, respectively. PMID:24526887

  8. Eco-Friendly Insecticide Discovery via Peptidomimetics: Design, Synthesis, and Aphicidal Activity of Novel Insect Kinin Analogues.

    PubMed

    Zhang, Chuanliang; Qu, Yanyan; Wu, Xiaoqing; Song, Dunlun; Ling, Yun; Yang, Xinling

    2015-05-13

    Insect kinin neuropeptides are pleiotropic peptides that are involved in the regulation of hindgut contraction, diuresis, and digestive enzyme release. They share a common C-terminal pentapeptide sequence of Phe(1)-Xaa(2)-Yaa(3)-Trp(4)-Gly(5)-NH2 (where Xaa(2) = His, Asn, Phe, Ser, or Tyr; Yaa(3) = Pro, Ser, or Ala). Recently, the aphicidal activity of insect kinin analogues has attracted the attention of researchers. Our previous work demonstrated that the sequence-simplified insect kinin pentapeptide analogue Phe-Phe-[Aib]-Trp-Gly-NH2 could retain good aphicidal activity and be the lead compound for the further discovery of eco-friendly insecticides which encompassed a broad array of biochemicals derived from micro-organisms and other natural sources. Using the peptidomimetics strategy, we chose Phe-Phe-[Aib]-Trp-Gly-NH2 as the lead compound, and we designed and synthesized three series, including 31 novel insect kinin analogues. The aphicidal activity of the new analogues against soybean aphid was determined. The results showed that all of the analogues exhibited aphicidal activity. Of particular interest was the analogue II-1, which exhibited improved aphicidal activity with an LC50 of 0.019 mmol/L compared with the lead compound (LC50 = 0.045 mmol/L) or the commercial insecticide pymetrozine (LC50 = 0.034 mmol/L). This suggests that the analogue II-1 could be used as a new lead for the discovery of potential eco-friendly insecticides.

  9. The peptidomimetic Lau-(Lys-βNSpe)6-NH2 antagonizes formyl peptide receptor 2 expressed in mouse neutrophils.

    PubMed

    Skovbakke, Sarah Line; Winther, Malene; Gabl, Michael; Holdfeldt, André; Linden, Sara; Wang, Ji Ming; Dahlgren, Claes; Franzyk, Henrik; Forsman, Huamei

    2016-11-01

    The formyl peptide receptor (FPR) gene family has a complex evolutionary history and comprises eight murine members but only three human representatives. To enable translation of results obtained in mouse models of human diseases, more comprehensive knowledge of the pharmacological similarities/differences between the human and murine FPR family members is required. Compared to FPR1 and FPR2 expressed by human neutrophils, very little is known about agonist/antagonist recognition patterns for their murine orthologues, but now we have identified two potent and selective formylated peptide agonists (fMIFL and PSMα2) for Fpr1 and Fpr2, respectively. These peptides were used to determine the inhibition profile of a set of antagonists with known specificities for the two FPRs in relation to the corresponding murine receptors. Some of the most potent and selective antagonists for the human receptors proved to be devoid of effect on their murine orthologues as determined by their inability to inhibit superoxide release from murine neutrophils upon stimulation with receptor-specific agonists. The Boc-FLFLF peptide was found to be a selective antagonist for Fpr1, whereas the lipidated peptidomimetic Lau-(Lys-βNSpe)6-NH2 and the hexapeptide WRW4 were identified as Fpr2-selective antagonists. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Peptide vaccines and peptidomimetics targeting HER and VEGF proteins may offer a potentially new paradigm in cancer immunotherapy

    PubMed Central

    Kaumaya, Pravin TP; Foy, Kevin Chu

    2013-01-01

    The ErbB family (HER-1, HER-2, HER-3 and HER-4) of receptor tyrosine kinases has been the focus of cancer immunotherapeutic strategies while antiangiogenic therapies have focused on VEGF and its receptors VEGFR-1 and VEGFR-2. Agents targeting receptor tyrosine kinases in oncology include therapeutic antibodies to receptor tyrosine kinase ligands or the receptors themselves, and small-molecule inhibitors. Many of the US FDA-approved therapies targeting HER-2 and VEGF exhibit unacceptable toxicities, and show problems of efficacy, development of resistance and unacceptable safety profiles that continue to hamper their clinical progress. The combination of dif ferent peptide vaccines and peptidomimetics targeting specific molecular pathways that are dysregulated in tumors may potentiate anticancer immune responses, bypass immune tolerance and circumvent resistance mechanisms. The focus of this review is to discuss efforts in our laboratory spanning two decades of rationally developing peptide vaccines and therapeutics for breast cancer. This review highlights the prospective benefit of a new, untapped category of therapies biologically targeted to EGF receptor (HER-1), HER-2 and VEGF with potential peptide ‘blockbusters‘ that could lay the foundation of a new paradigm in cancer immunotherapy by creating clinical breakthroughs for safe and efficacious cancer cures. PMID:22894670

  11. Light Activation of a Cysteine Protease Inhibitor: Caging of a Peptidomimetic Nitrile with RuII(bpy)2

    PubMed Central

    Respondek, Tomasz; Garner, Robert N.; Herroon, Mackenzie K.; Podgorski, Izabela; Turro, Claudia; Kodanko, Jeremy J.

    2013-01-01

    A novel method for caging protease inhibitors is described. The complex [RuII(bpy)2(1)2](PF6)2 (2) was prepared from the nitrile-based peptidomimetic inhibitor Ac-Phe-NHCH2CN (1). 1H NMR, UV-vis and IR spectroscopic and mass spectrometric data confirm that two equiv of inhibitor 1 bind to RuII through the nitrile functional group. Complex 2 shows excellent stability in aqueous solution in the dark and fast release of 1 upon irradiation with visible light. Due to binding to the RuII center, the nitriles of complex 2 are caged, and 2 does not act as a potent enzyme inhibitor. However, when 2 is irradiated, it releases 1 that inhibits the cysteine proteases papain and cathepsins B, K and L, up to two times more potently than 1 alone. Ratios for IC50 values for 2 range from 6:1 to 33:1 under dark vs. light conditions, against isolated enzymes and in human cell lysates, confirming a high level of photoinduced enzyme inhibition is obtained with this method. PMID:21973207

  12. Insight into selectivity of peptidomimetic inhibitors with modified statine core for plasmepsin II of Plasmodium falciparum over human cathepsin D.

    PubMed

    Dali, Brice; Keita, Melalie; Megnassan, Eugene; Frecer, Vladimir; Miertus, Stanislav

    2012-04-01

    Plasmepsin II (PlmII), an aspartic protease expressed in the food vacuole of Plasmodium falciparum (pf), cleaves the hemoglobin of the host during the erythrocytic stage of the parasite life cycle. Various peptidomimetic inhibitors of PlmII reported so far discriminate poorly between the drug target and aspartic proteases of the host organism, e.g., human cathepsinD (hCatD). hCatD is a protein digestion enzyme and signaling molecule involved in a variety of physiological processes; therefore, inhibition of hCatD by PlmII inhibitors may lead to pathophysiological conditions. In this study, binding of PlmII inhibitors has been modeled using the crystal structures of pfPlmII and hCatD complexes to gain insight into structural requirements underlying the target selectivity. A series of 26 inhibitors were modeled in the binding clefts of the pfPlmII and hCatD to establish QSAR models of the protease inhibition. In addition, 3D-QSAR pharmacophore models were generated for each enzyme. It was concluded that the contributions of the P(2) and P(3') residues to the inhibitor's binding affinity are responsible for the target selectivity. Based on these findings, new inhibitor candidates were designed with predicted inhibition constants K (pre)(i PlmII) reaching 0.2nm and selectivity index (S.I.)=K(pre)(i PlmII) >1200.

  13. Rapid Synthesis of Boc-2′,6′-dimethyl-l-tyrosine and Derivatives and Incorporation into Opioid Peptidomimetics

    PubMed Central

    2015-01-01

    The unnatural amino acid 2′,6′-dimethyl-l-tyrosine has found widespread use in the development of synthetic opioid ligands. Opioids featuring this residue at the N-terminus often display superior potency at one or more of the opioid receptor types, but the availability of the compound is hampered by its cost and difficult synthesis. We report here a short, three-step synthesis of Boc-2′,6′-dimethyl-l-tyrosine (3a) utilizing a microwave-assisted Negishi coupling for the key carbon–carbon bond forming step, and employ this chemistry for the expedient synthesis of other unnatural tyrosine derivatives. Three of these derivatives (3c, 3d, 3f) have not previously been examined as Tyr1 replacements in opioid ligands. We describe the incorporation of these tyrosine derivatives in a series of opioid peptidomimetics employing our previously reported tetrahydroquinoline (THQ) scaffold, and the binding and relative efficacy of each of the analogues at the three opioid receptor subtypes: mu (MOR), delta (DOR), and kappa (KOR). PMID:26713104

  14. Cyclopropane pipecolic acids as templates for linear and cyclic peptidomimetics: application in the synthesis of an Arg-Gly-Asp (RGD)-containing peptide as an αvβ3 integrin ligand.

    PubMed

    Sernissi, Lorenzo; Petrović, Martina; Scarpi, Dina; Guarna, Antonio; Trabocchi, Andrea; Bianchini, Francesca; Occhiato, Ernesto G

    2014-08-25

    The synthesis and evaluation of substituted cyclopropane pipecolic acids (CPA) as conformationally restricted templates for linear and cyclic peptidomimetics is reported. A variety of differently substituted (poly)hydroxy- and amino-2-azabicyclo[4.1.0]heptane-1-carboxylic acids were prepared by means of the Pd-catalyzed methoxycarbonylation of suitably functionalized lactam-derived enol phosphates, followed by OH-directed cyclopropanation. CPAs were successfully introduced into a linear peptide sequence to assess the cis/trans isomerism about the pipecolic acid peptide bond, and in a cyclic peptidomimetic that bore the Arg-Gly-Asp (RGD) sequence, which displayed nanomolar activity as antagonist of the αvβ3 integrin in M21 human melanoma cells. Thus, CPAs appear to be suitable for the generation of novel peptidomimetics for drug discovery.

  15. Synthesis of a highly water-soluble acacetin prodrug for treating experimental atrial fibrillation in beagle dogs.

    PubMed

    Liu, Hui; Wang, Ya-Jing; Yang, Lei; Zhou, Mei; Jin, Man-Wen; Xiao, Guo-Sheng; Wang, Yan; Sun, Hai-Ying; Li, Gui-Rong

    2016-05-10

    We previously reported that duodenal administration of the natural flavone acacetin can effectively prevent the induction of experimental atrial fibrillation (AF) in canines; however, it may not be used intravenously to terminate AF due to its poor water-solubility. The present study was to design a water-soluble prodrug of acacetin and investigate its anti-AF effect in beagle dogs. Acacetin prodrug was synthesized by a three-step procedure. Aqueous solubility, bioconversion and anti-AF efficacy of acacetin prodrug were determined with different methodologies. Our results demonstrated that the synthesized phosphate sodium salt of acacetin prodrug had a remarkable increase of aqueous solubility in H2O and clinically acceptable solution (5% glucose or 0.9% NaCl). The acacetin prodrug was effectively converted into acacetin in ex vivo rat plasma and liver microsome, and in vivo beagle dogs. Intravenous infusion of acacetin prodrug (3, 6 and 12 mg/kg) terminated experimental AF without increasing ECG QTc interval in beagle dogs. The intravenous LD50 of acacetin prodrug was 721 mg/kg in mice. Our preclinical study indicates that the synthesized acacetin prodrug is highly water-soluble and safe; it effectively terminates experimental AF in beagle dogs and therefore may be a promising drug candidate for clinical trial to treat patients with acute AF.

  16. A prodrug approach involving in situ depot formation to achieve localized and sustained action of diclofenac after joint injection.

    PubMed

    Thing, Mette; Ågårdh, Li; Larsen, Susan; Rasmussen, Rune; Pallesen, Jakob; Mertz, Nina; Kristensen, Jesper; Hansen, Martin; Ostergaard, Jesper; Larsen, Claus Selch

    2014-12-01

    Long-acting nonsteroidal anti-inflammatory drug formulations for intra-articular injection might be effective in the management of joint pain and inflammation associated sports injuries and osteoarthritis. In this study, a prodrug-based delivery system was evaluated. The synthesized diclofenac ester prodrug, a weak base (pKa 7.52), has relatively high solubility at low pH (6.5 mg mL(-1) at pH 4) and much lower solubility at physiological pH (4.5 μg mL(-1) at pH 7.4) at 37°C. In biological media including 80% (v/v) human synovial fluid (SF), the prodrug was cleaved to diclofenac mediated by esterases. In situ precipitation of the prodrug was observed upon addition of a concentrated slightly acidic prodrug solution to phosphate buffer or SF at pH 7.4. The degree of supersaturation accompanying the precipitation process was more pronounced in SF than in phosphate buffer. In the rotating dialysis cell model, a slightly acidic prodrug solution was added to the donor cell containing 80% SF resulting in a continuous appearance of diclofenac in the acceptor phase for more than 43 h after an initial lag period of 8 h. Detectable amounts of prodrug were found in the rat joint up to 8 days after knee injection of the acidic prodrug solution.

  17. Synthesis and evaluation of water-soluble prodrugs of ursodeoxycholic acid (UDCA), an anti-apoptotic bile acid.

    PubMed

    Dosa, Peter I; Ward, Tim; Castro, Rui E; Rodrigues, Cecília M P; Steer, Clifford J

    2013-06-01

    Ursodeoxycholic acid (UDCA) is a bile acid with demonstrated anti-apoptotic activity in both in vitro and in vivo models. However, its utility is hampered by limited aqueous solubility. As such, water-soluble prodrugs of UDCA could have an advantage over the parent bile acid in indications where intravenous administration might be preferable, such as decreasing damage from stroke or acute kidney injury. Five phosphate prodrugs were synthesized, including one incorporating a novel phosphoryloxymethyl carboxylate (POMC) moiety. These prodrugs were highly water-soluble, but showed significant differences in chemical stability, with oxymethylphosphate prodrugs being the most unstable. In a series of NMR experiments, the POMC prodrug was bioactivated to UDCA by alkaline phosphatase (AP) faster than a prodrug containing a phosphate directly attached to the alcohol at the 3-position of UDCA. Both of these prodrugs showed significant anti-apoptotic activity in a series of in vitro assays, although the POMC prodrug required the addition of AP for activity, while the other compound was active without exogenous AP.

  18. Poly(ethylene glycol)-Prodrug Conjugates: Concept, Design, and Applications

    PubMed Central

    Banerjee, Shashwat S.; Aher, Naval; Patil, Rajesh; Khandare, Jayant

    2012-01-01

    Poly(ethylene glycol) (PEG) is the most widely used polymer in delivering anticancer drugs clinically. PEGylation (i.e., the covalent attachment of PEG) of peptides proteins, drugs, and bioactives is known to enhance the aqueous solubility of hydrophobic drugs, prolong circulation time, minimize nonspecific uptake, and achieve specific tumor targetability through the enhanced permeability and retention effect. Numerous PEG-based therapeutics have been developed, and several have received market approval. A vast amount of clinical experience has been gained which has helped to design PEG prodrug conjugates with improved therapeutic efficacy and reduced systemic toxicity. However, more efforts in designing PEG-based prodrug conjugates are anticipated. In light of this, the current paper highlights the synthetic advances in PEG prodrug conjugation methodologies with varied bioactive components of clinical relevance. In addition, this paper discusses FDA-approved PEGylated delivery systems, their intended clinical applications, and formulations under clinical trials. PMID:22645686

  19. Drug-Initiated Synthesis of Polymer Prodrugs: Combining Simplicity and Efficacy in Drug Delivery.

    PubMed

    Nicolas, Julien

    2016-03-22

    In the field of nanomedicine, the global trend over the past few years has been toward the design of highly sophisticated drug delivery systems with active targeting and/or imaging capabilities, as well as responsiveness to various stimuli to increase their therapeutic efficacy. However, providing sophistication generally increases complexity that could be detrimental in regards to potential pharmaceutical development. An emerging concept to design efficient yet simple drug delivery systems, termed the "drug-initiated" method, consists of growing short polymer chains from drugs in a controlled fashion to yield well-defined drug-polymer prodrugs. These materials are obtained in a reduced amount of synthetic steps and can be self-assembled into polymer prodrug nanoparticles, be incorporated into lipid nanocarriers or be used as water-soluble polymer prodrugs. This Perspective article will capture the recent achievements from the "drug-initiated" method and highlight the great biomedical potential of these materials.

  20. Riluzole prodrugs for melanoma and ALS: design, synthesis, and in vitro metabolic profiling

    PubMed Central

    McDonnell, Mark E.; Vera, Matthew D.; Blass, Benjamin E.; Pelletier, Jeffrey C.; King, Richard C.; Fernandez-Metzler, Carmen; Smith, Garry R.; Wrobel, Jay; Chen, Suzie; Reitz, Allen B.

    2012-01-01

    Riluzole (1) is an approved therapeutic for the treatment of ALS and has also demonstrated antimelanoma activity in metabotropic glutamate GRM1 positive cell lines, a mouse xenograft assay and human clinical trials. Highly variable drug exposure following oral administration among patients, likely due to variable first pass effects from heterogeneous CYP1A2 expression, hinders its clinical use. In an effort to mitigate effects of this clearance pathway and uniformly administer riluzole at efficacious exposure levels, several classes of prodrugs of riluzole were designed, synthesized, and evaluated in multiple in vitro stability assays to predict in vivo drug levels. The optimal prodrug would possess the following profile: stability while transiting the digestive system, stability towards first pass metabolism, and metabolic lability in the plasma releasing riluzole. (S)-O-Benzyl serine derivative 9 was identified as the most promising therapeutically acceptable prodrug. PMID:22892214

  1. Novel multifunctional acyloxyalkyl ester prodrugs of 5-aminolevulinic acid display improved anticancer activity dependent on photoactivation

    NASA Astrophysics Data System (ADS)

    Berkovitch, G.; Nudelman, A.; Ehenberg, B.; Rephaeli, A.; Malik, Z.

    2009-06-01

    New approaches to PDT using multifunctional 5-aminolevulinic acid (ALA) based prodrugs activating mutual routes of toxicity are described. We investigated the mutual anti-cancer activity of ALA prodrugs which upon metabolic hydrolysis by unspecific esterases release ALA, formaldehyde or acetaldehye and the histone deacetylase inhibitor (HDACI) butyric acid. The most potent prodrug in this study was butyryloxyethyl 5-amino-4-oxopentanoate (AN-233) that stimulated a rapid biosynthesis of protoporphyrin IX (PpIX) in human glioblastoma U-251 cells and generated an efficient photodynamic destruction. AN-233 induced a considerable high level of intracellular ROS in the cells following light irradiation, reduction of mitochondrial activity, dissipation of the mitochondrial membrane potential resulting in necrotic and apoptotic cell death. The main advantage of AN-233 over ALA stems from its ability to induce photodamage at a significantly lower dose than ALA.

  2. Glutathione- and pH-responsive nonporous silica prodrug nanoparticles for controlled release and cancer therapy

    NASA Astrophysics Data System (ADS)

    Xu, Zhigang; Liu, Shiying; Kang, Yuejun; Wang, Mingfeng

    2015-03-01

    A myriad of drug delivery systems such as liposomes, micelles, polymers and inorganic nanoparticles (NPs) have been developed for cancer therapy. Very few of them, however, have the ability to integrate multiple functionalities such as specific delivery, high circulation stability, controllable release and good biocompatibility and biodegradability in a single system to improve the therapeutic efficacy. Herein, we report two types of stimuli-responsive nonporous silica prodrug NPs towards this goal for controlled release of anticancer drugs and efficient combinatorial cancer therapy. As a proof of concept, anticancer drugs camptothecin (CPT) and doxorubicin (DOX) were covalently encapsulated into silica matrices through glutathione (GSH)-responsive disulfide and pH-responsive hydrazone bonds, respectively, resulting in NPs with sizes tunable in the range of 50-200 nm. Both silica prodrug NPs showed stimuli-responsive controlled release upon exposure to a GSH-rich or acidic environment, resulting in improved anticancer efficacy. Notably, two prodrug NPs simultaneously taken up by HeLa cells showed a remarkable combinatorial efficacy compared to free drug pairs. These results suggest that the stimuli-responsive silica prodrug NPs are promising anticancer drug carriers for efficient cancer therapy.A myriad of drug delivery systems such as liposomes, micelles, polymers and inorganic nanoparticles (NPs) have been developed for cancer therapy. Very few of them, however, have the ability to integrate multiple functionalities such as specific delivery, high circulation stability, controllable release and good biocompatibility and biodegradability in a single system to improve the therapeutic efficacy. Herein, we report two types of stimuli-responsive nonporous silica prodrug NPs towards this goal for controlled release of anticancer drugs and efficient combinatorial cancer therapy. As a proof of concept, anticancer drugs camptothecin (CPT) and doxorubicin (DOX) were

  3. Suppression of peak tailing of phosphate prodrugs in reversed-phase liquid chromatography.

    PubMed

    Zhang, Jin; Wang, Qinggang; Kleintop, Brent; Raglione, Thomas

    2014-09-01

    Peak tailing of phosphate prodrugs in acidic mobile phases was thoroughly investigated. The results indicated that both metal-phosphate interactions and silanophilic interactions contributed to the observed peak tailing. Column pretreatment with phosphate buffers was demonstrated to be an effective and robust approach in suppressing metal-phosphate interaction. Silanophilic interactions, such as hydrogen bonding interactions between protonated isolated silanol groups and partially deprotonated phosphate groups were mobile phase pH dependent. The combination of column pretreatment and volatile low pH mobile phase buffers can be used to mitigate peak tailing issues in developing MS compatible RPLC methods for phosphate prodrugs. The use of non-endcapped columns should be avoided in RPLC analysis for phosphate prodrugs due to large amount of residual silanol groups in the stationary phases.

  4. Design, Synthesis, and Evaluation of Novel Prodrugs of Transition State Inhibitors of Norovirus 3CL Protease.

    PubMed

    Galasiti Kankanamalage, Anushka C; Kim, Yunjeong; Rathnayake, Athri D; Alliston, Kevin R; Butler, Michelle M; Cardinale, Steven C; Bowlin, Terry L; Groutas, William C; Chang, Kyeong-Ok

    2017-07-27

    Ester and carbamate prodrugs of aldehyde bisulfite adduct inhibitors were synthesized in order to improve their pharmacokinetic and pharmacodynamic properties. The inhibitory activity of the compounds against norovirus 3C-like protease in enzyme and cell-based assays was determined. The ester and carbamate prodrugs displayed equivalent potency to those of the precursor aldehyde bisulfite adducts and precursor aldehydes. Furthermore, the rate of ester cleavage was found to be dependent on alkyl chain length. The generated prodrugs exhibited low cytotoxicity and satisfactory liver microsomes stability and plasma protein binding. The methodology described herein has wide applicability and can be extended to the bisulfite adducts of common warheads employed in the design of transition state inhibitors of serine and cysteine proteases of medical relevance.

  5. Synthesis and Characterization of a New Peptide Prodrug of Glucosamine with Enhanced Gut Permeability

    PubMed Central

    Gilzad Kohan, Hamed; Kaur, Kamaljit; Jamali, Fakhreddin

    2015-01-01

    The aim of this study was to synthesize a peptide prodrug of glucosamine (GlcN) with increased gut permeability through the gut peptide transporter 1 (PepT1). Glycine-Valine ester derivative of GlcN (GVG) was synthesised using solid phase synthesis followed by characterization and evaluation of its physicochemical and intestinal stability. In addition, GVG was evaluated for its ability to be biotransformed to GlcN in the liver homogenate. In vitro absorption of the new prodrug through everted rat gut was also assessed. GVG demonstrated significant and meaningful increased gut permeability as compared with GlcN. It showed favorable stability in the gut and a quick cleavage to GlcN after exposure to the liver homogenate. In conclusion, a novel prodrug of glucosamine with superior gut permeability compared to GlcN was developed and successfully tested in vitro. PMID:25978315

  6. A core cross-linked polymeric micellar platium(IV) prodrug with enhanced anticancer efficiency.

    PubMed

    Hou, Jie; Shang, Jincai; Jiao, Chengbin; Jiang, Peiyue; Xiao, Huijie; Luo, Lan; Liu, Tongjun

    2013-07-01

    A core cross-linked polymeric micellar cisplatin(IV) conjugate prodrug is prepared by attaching the cisplatin(IV) to mPEG-b-PLL biodegradable copolymers to form micellar nanoparticles that can disintegrate to release the active anticancer agent cisplatin(II) in a mild reducing environment. Moreover, in vitro studies show that this cisplatin(IV) conjugate prodrug displays enhanced cytotoxicity against HepG2 cancer cells compared with cisplatin(II). Further studies demonstrate that the high cellular uptake and platinum-DNA adduct of this cisplatin(IV) conjugate prodrug can induce more cancer-cell apoptosis than cisplatin(II), which is responsible for its enhanced anticancer activity.

  7. Development of Platinum(iv) Complexes as Anticancer Prodrugs: the Story so Far

    NASA Astrophysics Data System (ADS)

    Wong, Daniel Yuan Qiang; Ang, Wee Han

    2012-06-01

    The serendipitous discovery of the antitumor properties of cisplatin by Barnett Rosenberg some forty years ago brought about a paradigm shift in the field of medicinal chemistry and challenged conventional thinking regarding the role of potentially toxic heavy metals in drugs. Platinum(II)-based anticancer drugs have since become some of the most effective and widely-used drugs in a clinician's arsenal and have saved countless lives. However, they are limited by high toxicity, severe side-effects and the incidence of drug resistance. In recent years, attention has shifted to stable platinum(IV) complexes as anticancer prodrugs. By exploiting the unique chemical and structural attributes of their scaffolds, these platinum(IV) prodrugs offer new strategies of targeting and killing cancer cells. This review summarizes the development of anticancer platinum(IV) prodrugs to date and some of the exciting strategies that utilise the platinum(IV) construct as targeted chemotherapeutic agents against cancer.

  8. Gastric-sparing nitric oxide-releasable 'true' prodrugs of aspirin and naproxen.

    PubMed

    Gund, Machhindra; Gaikwad, Parikshit; Borhade, Namdev; Burhan, Aslam; Desai, Dattatraya C; Sharma, Ankur; Dhiman, Mini; Patil, Mohan; Sheikh, Javed; Thakre, Gajanan; Tipparam, Santhosh G; Sharma, Somesh; Nemmani, Kumar V S; Satyam, Apparao

    2014-12-15

    Nitric oxide-releasing non-steroidal anti-inflammatory drugs (NO-NSAIDs) are gaining attention as potentially gastric-sparing NSAIDs. Herein, we report a novel class of '1-(nitrooxy)ethyl ester' group-containing NSAIDS as efficient NO releasing 'true' prodrugs of aspirin and naproxen. While an aspirin prodrug exhibited comparable oral bioavailability and antiplatelet activity (i.e., TXB2 inhibition) to those of aspirin, a naproxen prodrug exhibited better bioavailability than naproxen. These promising NO-NSAIDs protected experimental rats from gastric damage. We therefore believe that these promising NO-NSAIDs could represent a new class of potentially 'Safe NSAIDs' for the treatment of arthritic pain, inflammation and cardiovascular disorders in the case of NO-aspirin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Amphiphilic naproxen prodrugs: differential scanning calorimetry study on their interaction with phospholipid bilayers.

    PubMed

    Giuffrida, Maria Chiara; Pignatello, Rosario; Castelli, Francesco; Sarpietro, Maria Grazia

    2017-09-01

    Naproxen, a nonsteroid anti-inflammatory drug studied for Alzheimer's disease, was conjugated with lipoamino acids (LAA) directly or through a diethylamine (EDA) spacer to improve the drug lipophilicity and the interaction with phospholipid bilayers. The interaction of naproxen and its prodrugs with biomembrane models consisting of dimyristoylphosphatidylcholine multilamellar vesicles was studied by differential scanning calorimetry. The transfer of prodrugs from a lipophilic carrier to a biomembrane model was also studied. Naproxen conjugation to lipoamino acids improves its interaction with biomembrane models and affects the transfer from a lipophilic carrier to biomembrane model. LAA portion may localize between the phospholipid chains; the entity of the interaction depends not only on the presence of the spacer but also on the LAA chain length. Variation of LAA portion can modulate the naproxen prodrugs affinity towards the biological membrane as well as towards the lipophilic carrier. © 2017 Royal Pharmaceutical Society.

  10. Synthesis and in vitro Evaluation of Polymeric Prodrug of Ibuprofen with Amino Acid Spacer.

    PubMed

    Redasani, Vivekkumar K; Bari, Sanjay B

    2015-01-01

    The present work is an agreement with simple and efficient method of improving the therapeutic efficacy of ibuprofen by masking its acidic moiety. It aims to reduce gastrointestinal side effects by controlling the rate, duration and site of release. This is achieved by synthesis and evaluation of polymeric prodrug of ibuprofen with natural polymer sodium alginate. The synthesis was supported by N-protected serine as spacer due to chemical incompatibility of drug and polymer. Synthesized prodrug was characterized for confirmation of said structures. The in-vitro dissolution profile of ibuprofen-alginate prodrug showed that the release of the drug is significantly higher in case of pH 7.2 buffer as compared to ibuprofen, which might be due to ester group adjacent to drug get hydrolyzed. The hydrolysis was found to be with faster rate in alkaline media than that of in acidic media.

  11. Modulation of Activity Profiles for Largazole-Based HDAC Inhibitors through Alteration of Prodrug Properties

    PubMed Central

    2014-01-01

    Largazole is a potent and class I-selective histone deacetylase (HDAC) inhibitor purified from marine cyanobacteria and was demonstrated to possess antitumor activity. Largazole employs a unique prodrug strategy, via a thioester moiety, to liberate the bioactive species largazole thiol. Here we report alternate prodrug strategies to modulate the pharmacokinetic and pharmacodynamics profiles of new largazole-based compounds. The in vitro effects of largazole analogues on cancer cell proliferation and enzymatic activities of purified HDACs were comparable to the natural product. However, in vitro and in vivo histone hyperacetylation in HCT116 cells and implanted tumors, respectively, showed differences, particularly in the onset of action and oral bioavailability. These results indicate that, by employing a different approach to disguise the “warhead” moiety, the functional consequence of these prodrugs can be significantly modulated. Our data corroborate the role of the pharmacokinetic properties of this class of compounds to elicit the desired and timely functional response. PMID:25147612

  12. Drug-Initiated Synthesis of Polymer Prodrugs: Combining Simplicity and Efficacy in Drug Delivery†

    PubMed Central

    2016-01-01

    In the field of nanomedicine, the global trend over the past few years has been toward the design of highly sophisticated drug delivery systems with active targeting and/or imaging capabilities, as well as responsiveness to various stimuli to increase their therapeutic efficacy. However, providing sophistication generally increases complexity that could be detrimental in regards to potential pharmaceutical development. An emerging concept to design efficient yet simple drug delivery systems, termed the “drug-initiated” method, consists of growing short polymer chains from drugs in a controlled fashion to yield well-defined drug–polymer prodrugs. These materials are obtained in a reduced amount of synthetic steps and can be self-assembled into polymer prodrug nanoparticles, be incorporated into lipid nanocarriers or be used as water-soluble polymer prodrugs. This Perspective article will capture the recent achievements from the “drug-initiated” method and highlight the great biomedical potential of these materials. PMID:27041820

  13. Synthesis of 1-O-(2'-acetoxy)benzoyl-alpha-D-2-deoxyglucopyranose, a novel aspirin prodrug.

    PubMed

    Truelove, J E; Hussain, A A; Kostenbauder, H B

    1980-02-01

    The synthesis and characterization of 1-O-(2'-acetoxy)benzoyl-alpha-D-2-deoxyglucopyranose, a novel aspirin prodrug, are described. 3,4,6-Tri-O-benzyl-alpha-D-2-deoxyglucopyranose was synthesized by methylating the anomeric hydroxyl group of 2-deoxyglucose, benzylating the 3-, 4-, and 6-hydroxy functional grups, and cleaving hydrolytically the anomeric methyl group. Reaction of the tribenzylated sugar with the acid chloride of aspirin and subsequent hydrogenolysis of the benzyl groups resulted in the prodrug, mp 128 degrees. The compound was further characterized by elemental analysis and PMR and 13C-NMR spectroscopy. In vitro, the compound cleaved to aspirin with a half-life of 7 min at 37 degrees. Prodrug cleavage was independent of pH over the pH 3--9 range.

  14. Crystal Structures of HLA-A*0201 Complexed with Melan-A/MART-1[subscript 26(27L)-35] Peptidomimetics Reveal Conformational Heterogeneity and Highlight Degeneracy of T Cell Recognition

    SciTech Connect

    Douat-Casassus, Celine; Borbulevych, Oleg; Tarbe, Marion; Gervois, Nadine; Jotereau, Francine; Baker, Brian M.; Quideau, Stphane

    2010-10-07

    There is growing interest in using tumor associated antigens presented by class I major histocompatibility complex (MHC-I) proteins as cancer vaccines. As native peptides are poorly stable in biological fluids, researchers have sought to engineer synthetic peptidomimetics with greater biostability. Here, we demonstrate that antigenic peptidomimetics of the Melan-A/MART-1{sub 26(27L)-35} melanoma antigen adopt strikingly different conformations when bound to MHC-I, highlighting the degeneracy of T cell recognition and revealing the challenges associated with mimicking native peptide conformation.

  15. Surface coating of siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers: enhanced gene silencing and reduced adverse effects in vitro

    NASA Astrophysics Data System (ADS)

    Zeng, Xianghui; de Groot, Anne Marit; Sijts, Alice J. A. M.; Broere, Femke; Oude Blenke, Erik; Colombo, Stefano; van Eden, Willem; Franzyk, Henrik; Nielsen, Hanne Mørck; Foged, Camilla

    2015-11-01

    Cationic vectors have demonstrated the potential to facilitate intracellular delivery of therapeutic oligonucleotides. However, enhanced transfection efficiency is usually associated with adverse effects, which also proves to be a challenge for vectors based on cationic peptides. In this study a series of proteolytically stable palmitoylated α-peptide/β-peptoid peptidomimetics with a systematically varied number of repeating lysine and homoarginine residues was shown to self-assemble with small interfering RNA (siRNA). The resulting well-defined nanocomplexes were coated with anionic lipids giving rise to net anionic liposomes. These complexes and the corresponding liposomes were optimized towards efficient gene silencing and low adverse effects. The optimal anionic liposomes mediated a high silencing effect, which was comparable to that of the control (cationic Lipofectamine 2000), and did not display any noticeable cytotoxicity and immunogenicity in vitro. In contrast, the corresponding nanocomplexes mediated a reduced silencing effect with a more narrow safety window. The surface coating with anionic lipid bilayers led to partial decomplexation of the siRNA-peptidomimetic nanocomplex core of the liposomes, which facilitated siRNA release. Additionally, the optimal anionic liposomes showed efficient intracellular uptake and endosomal escape. Therefore, these findings suggest that a more efficacious and safe formulation can be achieved by surface coating of the siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers.Cationic vectors have demonstrated the potential to facilitate intracellular delivery of therapeutic oligonucleotides. However, enhanced transfection efficiency is usually associated with adverse effects, which also proves to be a challenge for vectors based on cationic peptides. In this study a series of proteolytically stable palmitoylated α-peptide/β-peptoid peptidomimetics with a systematically varied number of repeating lysine

  16. Combination therapy with bioengineered miR-34a prodrug and doxorubicin synergistically suppresses osteosarcoma growth

    PubMed Central

    Zhao, Yong; Tu, Mei-Juan; Yu, Yi-Feng; Wang, Wei-Peng; Chen, Qiu-Xia; Qiu, Jing-Xin; Yu, Ai-Xi; Yu, Ai-Ming

    2016-01-01

    Osteosarcoma (OS) is the most common form of primary malignant bone tumor and prevalent among children and young adults. Recently we have established a novel approach to bioengineering large quantity of microRNA-34a (miR-34a) prodrug for miRNA replacement therapy. This study is to evaluate combination treatment with miR-34a prodrug and doxorubicin, which may synergistically suppress human OS cell growth via RNA interference and DNA intercalation. Synergistic effects were indeed obvious between miR-34a prodrug and doxorubicin for the suppression of OS cell proliferation, as defined by Chou-Talalay method. The strongest antiproliferative synergism was achieved when both agents were administered simultaneously to the cells at early stage, which was associated with much greater degrees of late apoptosis, necrosis, and G2 cell cycle arrest. Alteration of OS cellular processes and invasion capacity was linked to the reduction of protein levels of miR-34a targeted (proto-)oncogenes including SIRT1, c-MET, and CDK6. Moreover, orthotopic OS xenograft tumor growth was repressed to a significantly greater degree in mouse models when miR-34a prodrug and doxorubicin were co-administered intravenously. In addition, multiple doses of miR-34a prodrug and doxorubicin had no or minimal effects on mouse blood chemistry profiles. The results demonstrate that combination of doxorubicin chemotherapy and miR-34a replacement therapy produces synergistic antiproliferative effects and it is more effective than monotherapy in suppressing OS xenograft tumor growth. These findings support the development of mechanism-based combination therapy to combat OS and bioengineered miR-34a prodrug represents a new natural miRNA agent. PMID:26518752

  17. Design, synthesis, and evaluation of new cyclophosphamide-based anticancer prodrugs

    SciTech Connect

    Moon, Ki-Young.

    1993-01-01

    Cyclophosphamide (CP,1) is a prodrug that is activated by hepatic microsomal mixed-function oxidase (MFO) catalyzed C[sub 4]-hydroxylation. The resulting 4-hydroxycyclophosphamide (4-OH-CP) undergoes ring opening to aldophosphamide (Aldo), followed by generation of cytotoxic phosphoramide mustard (PDA,2) and acrolein by [beta]-elimination. The cytotoxic activity of CP is attributed to the aziridinium ion species derived from PDA that cross-links interstrand DNA. The aim of this research is to design, synthesize, and evaluate new cyclophosphamide-based alkylating agents to achieve improved therapeutic efficacy against neoplastic cells. Benzyl phosphoramide mustard (Benzyl PDA,4), 2.4-difluorobenzyl phosphoramide mustard (2,4-Difluorobenzyl PDA,5) and methyl phosphoramide mustard (Methyl PDA,6) were examined as lipophilic, chemically stable prodrugs of PDA (2). These phosphorodiamidic esters were designed to undergo biotransformation by hepatic microsomal enzymes to produce 2 without generation of acrolein and to be active against CP-resistant tumor cells. Several N-methyl-4-(alkylthio)cyclophosphamide derivatives were synthesized and examined as chemically stable, biooxidative prodrugs of 4-OH-CP, the activated species of CP. All of the prodrugs underwent N-demethylation in a time-dependent manner when incubated with rat hepatic microsomes, which resulted in formation of formaldehyde as well as alkylating species. Among the prodrugs, N-methyl-4-(diethyldithiocarbamoyl)cyclophosphamide (N-CH[sub 3]-4-DDTC-CP,15) showed exceptional in vitro cytotoxicity against 3T3 cells as well as against a panel of human tumor cell lines, with a particular sensitivity to leukemia and small cell lung cancer cell lines. Preliminary in vivo antitumor evaluation against L1210 leukemia in mice showed that all of the prodrugs were active.

  18. Hydrophilic Prodrug Approach for Reduced Pigment Binding and Enhanced Transscleral Retinal Delivery of Celecoxib

    PubMed Central

    Malik, Pradip; Kadam, Rajendra S.; Cheruvu, Narayan P.S.; Kompella, Uday B.

    2012-01-01

    Purpose Transscleral retinal delivery of celecoxib, an anti-inflammatory and anti-VEGF agent is restricted by its poor solubility and binding to the melanin pigment in choroid-RPE. The purpose of this study was to develop soluble prodrugs of celecoxib with reduced pigment binding and enhanced retinal delivery. Methods Three hydrophilic amide prodrugs of celecoxib were synthesized and characterized for solubility and lipophilicity. In vitro melanin binding to natural melanin (Sepia Officinalis) was estimated for all three prodrugs. In vitro transport studies across isolated bovine sclera and sclera-choroid-RPE (SCRPE) were performed. Prodrug with the highest permeability across SCRPE was characterized for metabolism and cytotoxicity and its in vivo transscleral delivery in pigmented rats. Results Celecoxib succinamidic acid (CSA), celecoxib maleamidic acid (CMA), and celecoxib acetamide (CAA) were synthesized and characterized. Aqueous solubilities of CSA, CMA, and CAA were 300-, 182-, and 76-fold higher, respectively, than celecoxib. Melanin binding affinity and capacity was significantly lower than celecoxib for all three prodrugs. Rank order for the % in vitro transport across bovine sclera and SCRPE was CSA > CMA ~ CAA ~ celecoxib, with the transport being 8-fold higher for CSA than celecoxib. CSA was further assessed for its metabolic stability and in vivo delivery. CSA showed optimum metabolic stability in all eye tissues with only 10–20 % conversion to parent celecoxib in 30 minutes. Metabolic enzymes responsible for bioconversion included amidases, esterase, and cytochrome P-450. In vivo delivery in pigmented BN rats showed that CSA had 4.7-, 1.4-, 3.3-, 6.0-, and 4.5- fold higher delivery to sclera, choroid-RPE, retina, vitreous, and lens than celecoxib. CSA has no cytotoxicity in ARPE-19 cells in the concentration range of 0.1 to 1000 μM. Conclusions Celecoxib succinamidic acid is a soluble prodrug of celecoxib with reduced melanin binding which

  19. Lipophilic Prodrugs of SN38: Synthesis and in Vitro Characterization toward Oral Chemotherapy.

    PubMed

    Bala, Vaskor; Rao, Shasha; Li, Peng; Wang, Shudong; Prestidge, Clive A

    2016-01-04

    SN38 (7-ethyl-10-hydroxy camptothecin) is a potent anticancer agent belonging to the camptothecin family; however, its oral delivery is extensively restricted by poor solubility in pharmaceutically acceptable excipients and low transmucosal permeability. Lipid-based carriers are well-known for their ability to improve oral absorption and bioavailability of lipid soluble and highly permeable compounds. Thus, this study has focused on improving solubility in lipid excipients, controlling stability, and enhancing transmucosal permeability of SN38 by specific chemical modification. To achieve these aims, a series of lipophilic prodrugs were designed and synthesized by esterification at the C10 and/or C20 positon(s) of SN38 with dietary fatty acids of diverse hydrocarbon chain lengths. The solubility of these novel prodrugs in long-chain triglycerides was increased up to 444-fold, and cytotoxicity was significantly reduced in comparison to SN38. The prodrugs were stable in simulated gastric fluids but exhibited different rates of hydrolysis (t1/2 < 5 min to t1/2 > 2 h) in simulated intestinal fluids (in the presence of enzymes) depending on the alkyl chain length and the position modified. A predictable reconversion of prodrugs to SN38 in plasma was also confirmed. On the basis of these studies, SN38-undecanoate (C20) was identified as the optimal prodrug. Finally, in vitro permeability and uptake studies in rat intestinal mucosal membrane using an Ussing chamber showed significant improvement in transepithelial drug transport and cellular uptake. Together, these results indicate that well designed lipophilic prodrugs have potential for the efficacious and safe oral delivery of SN38.

  20. Delivery of a Protease-Activated Cytolytic Peptide Prodrug by Perfluorocarbon Nanoparticles.

    PubMed

    Jallouk, Andrew P; Palekar, Rohun U; Marsh, Jon N; Pan, Hua; Pham, Christine T N; Schlesinger, Paul H; Wickline, Samuel A

    2015-08-19

    Melittin is a cytolytic peptide derived from bee venom that inserts into lipid membranes and oligomerizes to form membrane pores. Although this peptide is an attractive candidate for treatment of cancers and infectious processes, its nonspecific cytotoxicity and hemolytic activity have limited its therapeutic applications. Several groups have reported the development of cytolytic peptide prodrugs that only exhibit cytotoxicity following activation by site-specific proteases. However, systemic administration of these constructs has proven difficult because of their poor pharmacokinetic properties. Here, we present a platform for the design of protease-activated melittin derivatives that may be used in conjunction with a perfluorocarbon nanoparticle delivery system. Although native melittin was substantially hemolytic (HD50: 1.9 μM) and cytotoxic (IC50: 2.4 μM), the prodrug exhibited 2 orders of magnitude less hemolytic activity (HD50: > 100 μM) and cytotoxicity (IC50: > 100 μM). Incubation with matrix metalloproteinase-9 (MMP-9) led to cleavage of the prodrug at the expected site and restoration of hemolytic activity (HD50: 3.4 μM) and cytotoxicity (IC50: 8.1 μM). Incubation of the prodrug with perfluorocarbon nanoparticles led to stable loading of 10,250 peptides per nanoparticle. Nanoparticle-bound prodrug was also cleaved and activated by MMP-9, albeit at a fourfold slower rate. Intravenous administration of prodrug-loaded nanoparticles in a mouse model of melanoma significantly decreased tumor growth rate (p = 0.01). Because MMPs and other proteases play a key role in cancer invasion and metastasis, this platform holds promise for the development of personalized cancer therapies directed toward a patient's individual protease expression profile.

  1. An overview of prodrug technology and its application for developing abuse-deterrent opioids.

    PubMed

    Gudin, Jeffrey A; Nalamachu, Srinivas R

    2016-01-01

    The Centers for Disease Control and Prevention has classified prescription drug abuse and overdose deaths as an epidemic. Prescription drug overdose is now the leading cause of injury death, with rates that have more than doubled since 1999. This crisis has developed concurrently with the increased prescribing and availability analgesic drugs, especially opioids, resulting from an effort on the part of clinicians to address a critical need for improved pain assessment and treatment. Clinicians have recognized that oftentimes, opioid analgesics are one of the few remaining options for patients who suffer with severe pain. A 2015 fact sheet issued by the Office of National Drug Policy stated: "While we must ensure better access to prescription medications to alleviate suffering, it is also vital that we do all we can to reduce the diversion and abuse of pharmaceuticals." The US Food and Drug Administration has issued guidance that encourages the research and development of abuse-deterrent formulation of opioids which have the potential to curtail abuse. Included among the recommended formulations for development of abuse-deterrent opioids are prodrugs. Prodrugs are chemically modified versions of pharmacological agents that must undergo a biochemical conversion following administration, often by enzymatic cleavage, to free the active drug. Prodrugs may be inherently abuse-deterrent because they are inactive or significantly less active until conversion to the active drug. This requirement for conversion in the GI tract can modify the pharmacokinetic profile and eliminate or reduce the euphoria when abusers change the route of administration. Abusers often attempt to extract the active drug for injection or insufflation. Prodrugs can be designed to be resistant to crushing or dissolving. In this article, we review the concept of prodrugs and introduce and examine the potential of abuse-deterrent opioid prodrugs.

  2. Combination therapy with bioengineered miR-34a prodrug and doxorubicin synergistically suppresses osteosarcoma growth.

    PubMed

    Zhao, Yong; Tu, Mei-Juan; Yu, Yi-Feng; Wang, Wei-Peng; Chen, Qiu-Xia; Qiu, Jing-Xin; Yu, Ai-Xi; Yu, Ai-Ming

    2015-12-15

    Osteosarcoma (OS) is the most common form of primary malignant bone tumor and prevalent among children and young adults. Recently we have established a novel approach to bioengineering large quantity of microRNA-34a (miR-34a) prodrug for miRNA replacement therapy. This study is to evaluate combination treatment with miR-34a prodrug and doxorubicin, which may synergistically suppress human OS cell growth via RNA interference and DNA intercalation. Synergistic effects were indeed obvious between miR-34a prodrug and doxorubicin for the suppression of OS cell proliferation, as defined by Chou-Talalay method. The strongest antiproliferative synergism was achieved when both agents were administered simultaneously to the cells at early stage, which was associated with much greater degrees of late apoptosis, necrosis, and G2 cell cycle arrest. Alteration of OS cellular processes and invasion capacity was linked to the reduction of protein levels of miR-34a targeted (proto-)oncogenes including SIRT1, c-MET, and CDK6. Moreover, orthotopic OS xenograft tumor growth was repressed to a significantly greater degree in mouse models when miR-34a prodrug and doxorubicin were co-administered intravenously. In addition, multiple doses of miR-34a prodrug and doxorubicin had no or minimal effects on mouse blood chemistry profiles. The results demonstrate that combination of doxorubicin chemotherapy and miR-34a replacement therapy produces synergistic antiproliferative effects and it is more effective than monotherapy in suppressing OS xenograft tumor growth. These findings support the development of mechanism-based combination therapy to combat OS and bioengineered miR-34a prodrug represents a new natural miRNA agent. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Hydrophilic prodrug approach for reduced pigment binding and enhanced transscleral retinal delivery of celecoxib.

    PubMed

    Malik, Pradip; Kadam, Rajendra S; Cheruvu, Narayan P S; Kompella, Uday B

    2012-03-05

    Transscleral retinal delivery of celecoxib, an anti-inflammatory and anti-VEGF agent, is restricted by its poor solubility and binding to the melanin pigment in choroid-RPE. The purpose of this study was to develop soluble prodrugs of celecoxib with reduced pigment binding and enhanced retinal delivery. Three hydrophilic amide prodrugs of celecoxib, celecoxib succinamidic acid (CSA), celecoxib maleamidic acid (CMA), and celecoxib acetamide (CAA) were synthesized and characterized for solubility and lipophilicity. In vitro melanin binding to natural melanin (Sepia officinalis) was estimated for all three prodrugs. In vitro transport studies across isolated bovine sclera and sclera-choroid-RPE (SCRPE) were performed. Prodrug with the highest permeability across SCRPE was characterized for metabolism and cytotoxicity and its in vivo transscleral delivery in pigmented rats. Aqueous solubilities of CSA, CMA, and CAA were 300-, 182-, and 76-fold higher, respectively, than celecoxib. Melanin binding affinity and capacity were significantly lower than for celecoxib for all three prodrugs. Rank order for the % in vitro transport across bovine sclera and SCRPE was CSA > CMA ~ CAA ~ celecoxib, with the transport being 8-fold higher for CSA than celecoxib. CSA was further assessed for its metabolic stability and in vivo delivery. CSA showed optimum metabolic stability in all eye tissues with only 10-20% conversion to parent celecoxib in 30 min. Metabolic enzymes responsible for bioconversion included amidases, esterase, and cytochrome P-450. In vivo delivery in pigmented BN rats showed that CSA had 4.7-, 1.4-, 3.3-, 6.0-, and 4.5-fold higher delivery to sclera, choroid-RPE, retina, vitreous, and lens than celecoxib. CSA has no cytotoxicity in ARPE-19 cells in the concentration range of 0.1 to 1000 μM. Celecoxib succinamidic acid, a soluble prodrug of celecoxib with reduced melanin binding, enhances transscleral retinal delivery of celecoxib.

  4. Design, synthesis and crystallographic analysis of nitrile-based broad-spectrum peptidomimetic inhibitors for coronavirus 3C-like proteases.

    PubMed

    Chuck, Chi-Pang; Chen, Chao; Ke, Zhihai; Wan, David Chi-Cheong; Chow, Hak-Fun; Wong, Kam-Bo

    2013-01-01

    Coronaviral infection is associated with up to 5% of respiratory tract diseases. The 3C-like protease (3CL(pro)) of coronaviruses is required for proteolytic processing of polyproteins and viral replication, and is a promising target for the development of drugs against coronaviral infection. We designed and synthesized four nitrile-based peptidomimetic inhibitors with different N-terminal protective groups and different peptide length, and examined their inhibitory effect on the in-vitro enzymatic activity of 3CL(pro) of severe-acute-respiratory-syndrome-coronavirus. The IC(50) values of the inhibitors were in the range of 4.6-49 μM, demonstrating that the nitrile warhead can effectively inactivate the 3CL(pro) autocleavage process. The best inhibitor, Cbz-AVLQ-CN with an N-terminal carbobenzyloxy group, was ~10x more potent than the other inhibitors tested. Crystal structures of the enzyme-inhibitor complexes showed that the nitrile warhead inhibits 3CL(pro) by forming a covalent bond with the catalytic Cys145 residue, while the AVLQ peptide forms a number of favourable interactions with the S1-S4 substrate-binding pockets. We have further showed that the peptidomimetic inhibitor, Cbz-AVLQ-CN, has broad-spectrum inhibition against 3CL(pro) from human coronavirus strains 229E, NL63, OC43, HKU1, and infectious bronchitis virus, with IC(50) values ranging from 1.3 to 3.7 μM, but no detectable inhibition against caspase-3. In summary, we have shown that the nitrile-based peptidomimetic inhibitors are effective against 3CL(pro), and they inhibit 3CL(pro) from a broad range of coronaviruses. Our results provide further insights into the future design of drugs that could serve as a first line defence against coronaviral infection.

  5. Biological activities of the natural imidazole-containing peptidomimetics n-acetylcarnosine, carcinine and L-carnosine in ophthalmic and skin care products.

    PubMed

    Babizhayev, Mark A

    2006-04-11

    Apart from genetically programmed cell aging, different external aggressors related to oxidative stress and lipid peroxidation (LPO) can accelerate the skin aging phenomenon. Oxidative stress associated with the formation of lipid peroxides is suggested to contribute to pathological processes in aging and systemic diseases known as the risk factors for cataract. Despite the fact that L-carnosine-related peptidomimetics N-acetylcarnosine (N-acetyl-beta-alanyl-L-histidine) (NAC) and carcinine (beta-alanylhistamine) are metabolically related to L-carnosine and have been demonstrated to occur in tissues of many vertebrates, including humans, these compounds were shown resistant toward enzymatic hydrolysis. A series of related biocompatible imidazole-containing peptidomimetics were synthesized in order to confer resistance to enzymatic hydrolysis and ex vivo improvement of protective antioxidative properties related to L-carnosine. The included findings revealed a greater role of N-acetylcarnosine (NAC) and carcinine ex vivo in the prolongation and potentiation of physiological responses to the therapeutical and cosmetics treatments with L-carnosine as antioxidant. 3-D molecular conformation studies proposed the antioxidant activity of peptidomimetics (carcinine, L-prolylhistamine, N-acetylcarnosine, L-carnosine) for metal ion binding, quenching of a number free radicals, and binding of hydroperoxide or aldehyde (including dialdehyde LPO products) in an imidazole-peroxide adducts. NAC can act as a time release (carrier) stable version of L-carnosine during application in ophthalmic pharmaceutical and cosmetics formulations which include lubricants. Carcinine, L-prolylhistamine show efficient deactivation of lipid hydroperoxides monitored by HPLC and protection of membrane phospholipids and water soluble proteins from the lipid peroxides-induced damages. This activity is superior over the lipophilic antioxidant vitamin E. The biologically significant applications of

  6. Acetal-linked polymeric prodrug micelles for enhanced curcumin delivery.

    PubMed

    Li, Man; Gao, Min; Fu, Yunlan; Chen, Chao; Meng, Xuan; Fan, Aiping; Kong, Deling; Wang, Zheng; Zhao, Yanjun

    2016-04-01

    On-demand curcumin delivery via stimuli-responsive micellar nanocarriers holds promise for addressing its solubility and stability problem. Polymer-curcumin prodrug conjugate micelle is one of such nanosystems. The diversity of linker and conjugation chemistry enabled the generation and optimization of different curcumin micelles with tunable stimuli-responsiveness and delivery efficiency. The aim of the current work was to generate and assess acetal-linked polymeric micelles to enrich the pH-responsive curcumin delivery platforms. Curcumin was slightly modified prior to conjugating to amphiphilic methoxy poly(ethylene glycol)-poly(lactic acid) (mPEG-PLA) copolymer via an acetal bond, whereas an ester bond-linked conjugate was used as the control. The acetal-containing micelles showed a hydrodynamic diameter of 91.1 ± 2.9(nm) and the accompanying core size of 63.5 ± 7.1 (nm) with a zeta potential of -10.9 ± 0.7(mV). Both control and pH-labile micelles displayed similar critical micelle concentration at 1.6 μM. The acetal-containing nanocarriers exhibited a pH-dependent drug release behavior, which was faster at lower pH values. The cytotoxicity study in HepG2 cells revealed a significantly lower IC50 at 51.7 ± 9.0(μM) for acetal-linked micelles in contrast to the control at 103.0 ± 17.8(μM), but the polymer residue showed no cytotoxicity upon drug release. The acetal-linked micellar nanocarrier could be a useful addition to the spectrum of currently available stimuli-responsive curcumin nano-formulations.

  7. Facile synthesis of the NNRTI microbicide MC-1220 and synthesis of its phosphoramidate prodrugs.

    PubMed

    Loksha, Yasser M; Pedersen, Erik B; La Colla, Paolo; Loddo, Roberta

    2016-01-21

    A facile and novel synthetic route to MC-1220 was achieved by condensation of 4,6-dichloro-N,N-5-trimethylpyrimidin-2-amine (1) with the sodium salt of 2,6-difluorophenylacetonitrile, followed by methylation and strong acidic hydrolysis. The prodrugs of MC-1220 were synthesized by reaction of chlorophosphoramidate derivatives (7a-e) or α-acetobromoglucose with the sodium salt of MC-1220. The stability and anti-HIV-1 activity of phosphoramidate prodrugs turned out to be comparable to those of the parent drug MC-1220.

  8. Antitumor activity of an enzyme prodrug therapy targeted to the breast tumor vasculature.

    PubMed

    Van Rite, Brent D; Krais, John J; Cherry, Mohamad; Sikavitsas, Vassilios I; Kurkjian, Carla; Harrison, Roger G

    2013-10-01

    The L-methioninase-annexin V/selenomethionine enzyme prodrug system, designed to target the tumor vasculature and release the methylselenol anticancer drug in the tumor, was tested in mice with implanted MBA-MB-231 breast tumors. This therapy was able to cause a reduction in the size of the tumors during the treatment period. It was shown that L-methioninase-annexin V was uniformly bound at the blood vessel surface in the tumor and also that there was a substantial cutoff of blood flowing through the treated tumor, consistent with the therapy's design. This new approach for enzyme prodrug therapy of breast cancer appears promising.

  9. Platinum(IV) Carboxylate Prodrug Complexes as Versatile Platforms for Targeted Chemotherapy.

    PubMed

    Ong, Jun Xiang; Yap, Siew Qi; Wong, Daniel Yuan Qiang; Chin, Chee Fei; Ang, Wee Han

    2015-01-01

    Kinetically-inert Pt(IV) carboxylate complexes have emerged in recent years as candidates for the development of next-generation platinum anticancer drugs. Being native prodrugs of clinically-important Pt(II) chemotherapeutic agents, the Pt(IV) scaffold can be exploited to incorporate additional functionalities while keeping the Pt(II) pharmacophore intact. This mini-review examines recent work performed to illuminate the mechanism of Pt(IV) prodrug activation and their use as versatile platforms for targeted chemotherapy.

  10. Medicinal chemistry of antiviral/anticancer prodrugs subjected to phosphate conjugation.

    PubMed

    Kalász, H; Adem, A; Hasan, M Y; Adeghate, E; Ram, N; Gulyás, Zs; Tekes, K

    2010-08-01

    Certain xenobiotics are given in the "prodrug" form. Either the human body, or one compartment of the body, or the targeted virus itself metabolizes the prodrug into its active form. The bioprecursor form of drugs is used for a wide variety of reasons, namely: to make drug penetration into the target organ (mainly to the brain through the blood-brain-barrier) possible, eliminate unpleasant taste, alter (either increasing or decreasing) the half life of the active component or supply more than one active components to the body.

  11. A novel aspirin prodrug inhibits NFκB activity and breast cancer stem cell properties.

    PubMed

    Kastrati, Irida; Litosh, Vladislav A; Zhao, Shuangping; Alvarez, Manuel; Thatcher, Gregory R J; Frasor, Jonna

    2015-11-04

    Activation of cyclooxygenase (COX)/prostaglandin and nuclear factor κB (NFκB) pathways can promote breast tumor initiation, growth, and progression to drug resistance and metastasis. Thus, anti-inflammatory drugs have been widely explored as chemopreventive and antineoplastic agents. Aspirin (ASA), in particular, is associated with reduced breast cancer incidence but gastrointestinal toxicity has limited its usefulness. To improve potency and minimize toxicity, ASA ester prodrugs have been developed, in which the carboxylic acid of ASA is masked and ancillary pharmacophores can be incorporated. To date, the effects of ASA and ASA prodrugs have been largely attributed to COX inhibition and reduced prostaglandin production. However, ASA has also been reported to inhibit the NFκB pathway at very high doses. Whether ASA prodrugs can inhibit NFκB signaling remains relatively unexplored. A library of ASA prodrugs was synthesized and screened for inhibition of NFκB activity and cancer stem-like cell (CSC) properties, an important PGE2-and NFκB-dependent phenotype of aggressive breast cancers. Inhibition of NFκB activity was determined by dual luciferase assay, RT-QPCR, p65 DNA binding activity and Western blots. Inhibition of CSC properties was determined by mammosphere growth, CD44(+)CD24(-)immunophenotype and tumorigenicity at limiting dilution. While we identified multiple ASA prodrugs that are capable of inhibiting the NFκB pathway, several were associated with cytotoxicity. Of particular interest was GTCpFE, an ASA prodrug with fumarate as the ancillary pharmacophore. This prodrug potently inhibits NFκB activity without innate cytotoxicity. In addition, GTCpFE exhibited selective anti-CSC activity by reducing mammosphere growth and the CD44(+)CD24(-)immunophenotype. Moreover, GTCpFE pre-treated cells were less tumorigenic and, when tumors did form, latency was increased and growth rate was reduced. Structure-activity relationships for GTCpFE indicate that

  12. Identification and characterization of NYGGF4, a novel gene containing a phosphotyrosine-binding (PTB) domain that stimulates 3T3-L1 preadipocytes proliferation.

    PubMed

    Wang, Bin; Zhang, Min; Ni, Yu-hui; Liu, Feng; Fan, Hong-qi; Fei, Li; Pan, Xiao-qing; Guo, Mei; Chen, Rong-hua; Guo, Xi-rong

    2006-09-01

    A novel gene named NYGGF4, which was expressed at a higher level in obese subjects, was isolated and characterized. It is a 1527-bp cDNA, containing 753 nucleotides of an ORF (open reading frame) predicting 250 amino acids with a molecular mass of 28.27 kDa. Amino acid sequence analysis revealed NYGGF4 has a phosphotyrosine-binding (PTB) domain. Northern blot analysis revealed NYGGF4 is expressed primarily in adipose tissue, heart, and skeletal muscle but not in any other tissue examined. Confocal imagery analyses with green fluorescent protein-tagged protein transiently expressed in 3T3-L1 preadipocytes and 293-T cells show that NYGGF4 localizes in the cytoplasm. Furthermore, ectopic expression of NYGGF4 dramatically increases the proliferation of 3T3-L1 peadipocytes without affecting adipocytic differentiation. And the NYGGF4 expression 3T3-L1 cells had a greater number of cells in S-phase. Our data suggest that NYGGF4 might be a signaling molecule and could play a role in cell growth and adipogenesis process.

  13. Activation of Src in human breast tumor cell lines: elevated levels of phosphotyrosine phosphatase activity that preferentially recognizes the Src carboxy terminal negative regulatory tyrosine 530.

    PubMed

    Egan, C; Pang, A; Durda, D; Cheng, H C; Wang, J H; Fujita, D J

    1999-02-04

    Elevated levels of Src kinase activity have been reported in a number of human cancers, including colon and breast cancer. We have analysed four human breast tumor cell lines that exhibit high levels of Src kinase activity, and have determined that these cell lines also exhibit a high level of a phosphotyrosine phosphatase activity that recognizes the Src carboxy-terminal P-Tyr530 negative regulatory site. Total Src kinase activity in these cell lines is elevated as much as 30-fold over activity in normal control cells and specific activity is elevated as much as 5.6-fold. When the breast tumor cells were grown in the presence of the tyrosine phosphatase inhibitor vanadate, Src kinase activity was reduced in all four breast tumor cell lines, suggesting that Src was being activated by a phosphatase which could recognize the Tyr530 negative regulatory site. In fractionated cell extracts from the breast tumor cells, we found elevated levels of a membrane associated tyrosine phosphatase activity that preferentially dephosphorylated a Src family carboxy-terminal phosphopeptide containing the regulatory tyrosine 530 site. Src was hypophosphorylated in vivo at tyrosine 530 in at least two of the tumor cell lines, further suggesting that Src was being activated by a phosphatase in these cells. In preliminary immunoprecipitation and antibody depletion experiments, we were unable to correlate the major portion of this phosphatase activity with several known phosphatases.

  14. Synthesis and Characterization of Silicate Ester Prodrugs and Poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) Block Copolymers for Formulation into Prodrug-Loaded Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wohl, Adam Richard

    Fine control of the physical and chemical properties of customized materials is a field that is rapidly advancing. This is especially critical in pursuits to develop and optimize novel nanoparticle drug delivery. Specifically, I aim to apply chemistry concepts to test the hypothesis "Silicate ester prodrugs of paclitaxel, customized to have the proper hydrophobicity and hydrolytic lability, can be formulated with well-defined, biocompatible, amphiphilic block copolymers into nanoparticles that are effective drugs." Chapter 1 briefly describes the context and motivation of the scientific pursuits described in this thesis. In Chapter 2, a family of model silicate esters is synthesized, the hydrolysis rate of each compound is benchmarked, and trends are established based upon the steric bulk and leaving group ability of the silicate substituents. These trends are then applied to the synthesis of labile silicate ester prodrugs in Chapter 3. The bulk of this chapter focuses on the synthesis, hydrolysis, and cytotoxicity of prodrugs based on paclitaxel, a widely used chemotherapeutic agent. In Chapter 4, a new methodology for the synthesis of narrowly dispersed, "random" poly(lactic-co-glycolic acid) polymers by a constant infusion of the glycolide monomer is detailed. Using poly(ethylene glycol) as a macroinitiator, amphiphilic block copolymers were synthesized. Co-formulating a paclitaxel silicate and an amphiphilic block copolymer via flash nanoprecipitation led to highly prodrug-loaded, kinetically trapped nanoparticles. Studies to determine the structure, morphology, behavior, and efficacy of these nanoparticles are described in Chapter 5. Efforts to develop a general strategy for the selective end-functionalization of the polyether block of these amphiphilic block copolymers are discussed in Chapter 6. Examples of this strategy include functionalization of the polyether with an azide or a maleimide. Finally, Chapter 7 provides an outlook for future development of

  15. Selection of molecular descriptors with artificial intelligence for the understanding of HIV-1 protease peptidomimetic inhibitors-activity.

    PubMed

    Sirois, S; Tsoukas, C M; Chou, Kuo-Chen; Wei, Dongqing; Boucher, C; Hatzakis, G E

    2005-03-01

    Quantitative Structure Activity Relationship (QSAR) techniques are used routinely by computational chemists in drug discovery and development to analyze datasets of compounds. Quantitative numerical methods like Partial Least Squares (PLS) and Artificial Neural Networks (ANN) have been used on QSAR to establish correlations between molecular properties and bioactivity. However, ANN may be advantageous over PLS because it considers the interrelations of the modeled variables. This study focused on the HIV-1 Protease (HIV-1 Pr) inhibitors belonging to the peptidomimetic class of compounds. The main objective was to select molecular descriptors with the best predictive value for antiviral potency (Ki). PLS and ANN were used to predict Ki activity of HIV-1 Pr inhibitors and the results were compared. To address the issue of dimensionality reduction, Genetic Algorithms (GA) were used for variable selection and their performance was compared against that of ANN. Finally, the structure of the optimum ANN achieving the highest Pearson's-R coefficient was determined. On the basis of Pearson's-R, PLS and ANN were compared to determine which exhibits maximum performance. Training and validation of models was performed on 15 random split sets of the master dataset consisted of 231 compounds. For each compound 192 molecular descriptors were considered. The molecular structure and constant of inhibition (Ki) were selected from the NIAID database. Study findings suggested that non-covalent interactions such as hydrophobicity, shape and hydrogen bonding describe well the antiviral activity of the HIV-1 Pr compounds. The significance of lipophilicity and relationship to HIV-1 associated hyperlipidemia and lipodystrophy syndrome warrant further investigation.

  16. Resistance of herpes simplex virus type 1 to peptidomimetic ribonucleotide reductase inhibitors: selection and characterization of mutant isolates.

    PubMed Central

    Bonneau, A M; Kibler, P; White, P; Bousquet, C; Dansereau, N; Cordingley, M G

    1996-01-01

    Herpes simplex virus (HSV) encodes its own ribonucleotide reductase (RR), which provides the high levels of deoxynucleoside triphosphates required for viral DNA replication in infected cells. HSV RR is composed of two distinct subunits, R1 and R2, whose association is required for enzymatic activity. Peptidomimetic inhibitors that mimic the C-terminal amino acids of R2 inhibit HSV RR by preventing the association of R1 and R2. These compounds are candidate antiviral therapeutic agents. Here we describe the in vitro selection of HSV type 1 KOS variants with three- to ninefold-decreased sensitivity to the RR inhibitor BILD 733. The resistant isolates have growth properties in vitro similar to those of wild-type KOS but are more sensitive to acyclovir, possibly as a consequence of functional impairment of their RRs. A single amino acid substitution in R1 (Ala-1091 to Ser) was associated with threefold resistance to BILD 733, whereas an additional substitution (Pro-1090 to Leu) was required for higher levels of resistance. These mutations were reintroduced into HSV type 1 KOS and shown to be sufficient to confer the resistance phenotype. Studies in vitro with RRs isolated from cells infected with these mutant viruses demonstrated that these RRs bind BILD 733 more weakly than the wild-type enzyme and are also functionally impaired, exhibiting an elevated dissociation constant (Kd) for R1-R2 subunit association and/or reduced activity (kcat). This work provides evidence that the C-terminal end of HSV R1 (residues 1090 and 1091) is involved in R2 binding interactions and demonstrates that resistance to subunit association inhibitors may be associated with compromised activity of the target enzyme. PMID:8551616

  17. Click and Release: A Chemical Strategy toward Developing Gasotransmitter Prodrugs by Using an Intramolecular Diels-Alder Reaction.

    PubMed

    Ji, Xingyue; Zhou, Cheng; Ji, Kaili; Aghoghovbia, Robert E; Pan, Zhixiang; Chittavong, Vayou; Ke, Bowen; Wang, Binghe

    2016-12-19

    Prodrug strategies have been proven to be a very effective way of addressing delivery problems. Much of the chemistry in prodrug development relies on the ability to mask an appropriate functional group, which can be removed under appropriate conditions. However, developing organic prodrugs of gasotransmitters represent unique challenges. This is especially true with carbon monoxide, which does not have an easy "handle" for bioreversible derivatization. By taking advantage of an intramolecular Diels-Alder reaction, we have developed a prodrug strategy for preparations of organic CO prodrugs that are stable during synthesis and storage, and yet readily release CO with tunable release rates under near physiological conditions. The effectiveness of the CO prodrug system in delivering a sufficient quantity of CO for possible therapeutic applications has been studied using a cell culture anti-inflammatory assay and a colitis animal model. These studies fully demonstrate the proof of concept, and lay a strong foundation for further medicinal chemistry work in developing organic CO prodrugs. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Testosterone 17beta-N,N-dimethylglycinate hydrochloride: A prodrug with a potential for nasal delivery of testosterone.

    PubMed

    Hussain, Anwar A; Al-Bayatti, Ansam A; Dakkuri, Adnan; Okochi, Kazuhiro; Hussain, Munir A

    2002-03-01

    The purpose of this study was to examine the potential of the nasal route for the systemic delivery of the poorly water-soluble drug testosterone (TS) using a water-soluble prodrug, TS 17beta-N,N-dimethylglycinate hydrochloride. The physicochemical properties of the prodrug, in vitro hydrolysis in human liver homogenate, and in vivo nasal and intravenous experiments were performed in rats. The aqueous solubility of the prodrug was more than 100 mg/mL, compared with 0.01 mg/mL for TS, and its log partition coefficient between 0.05 M, phosphate buffer (pH 6) and octanol was 2.4. The prodrug was found to generate TS in 33% human liver homogenate and was absorbed from the nasal cavity rapidly and quantitatively. The bioavailabilities of both the prodrug and TS after nasal administration of the prodrug were similar to that after equivalent intravenous doses. These studies in rats suggest that this water-soluble prodrug of TS may have therapeutic utility for the management of TS deficiency.

  19. Novel water-soluble prodrugs of acyclovir cleavable by the dipeptidyl-peptidase IV (DPP IV/CD26) enzyme.

    PubMed

    Diez-Torrubia, Alberto; Cabrera, Silvia; de Castro, Sonia; García-Aparicio, Carlos; Mulder, Gwenn; De Meester, Ingrid; Camarasa, María-José; Balzarini, Jan; Velázquez, Sonsoles

    2013-01-01

    We herein report for the first time the successful use of the dipeptidyl peptidase IV (DPPIV/CD26) prodrug approach to guanine derivatives such as the antiviral acyclovir (ACV). The solution- and solid-phase synthesis of the tetrapeptide amide prodrug 3 and the tripeptide ester conjugate 4 of acyclovir are reported. The synthesis of the demanding tetrapeptide amide prodrug of ACV 3 was first established in solution and successfully transferred onto solid support by using Ellman's dihydropyran (DHP) resin. In contrast with the valyl ester prodrug (valacyclovir, VACV), the tetrapeptide amide prodrug 3 and the tripeptide ester conjugate 4 of ACV proved fully stable in PBS. Both prodrugs converted to VACV (for 4) or ACV (for 3) upon exposure to purified DPPIV/CD26 or human or bovine serum. Vildagliptin, a potent inhibitor of DPPIV/CD26 efficiently inhibited the DPPIV/CD26-catalysed hydrolysis reaction. Both amide and ester prodrugs of ACV showed pronounced anti-herpetic activity in cell culture and significantly improved the water solubility in comparison with the parent drug. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Advances in the use of prodrugs for drug delivery to the eye.

    PubMed

    Taskar, Pranjal; Tatke, Akshaya; Majumdar, Soumyajit

    2017-01-01

    Ocular drug delivery is presented with many challenges, taking into account the distinctive structure of the eye. The prodrug approach has been, and is being, employed to overcome such barriers for some drug molecules, utilizing a chemical modification approach rather than a formulation-based approach. A prodrug strategy involves modification of the active moiety into various derivatives in a fashion that imparts some advantage, such as membrane permeability, site specificity, transporter targeting and improved aqueous solubility, over the parent compound. Areas covered: The following review is a comprehensive summary of various novel methodologies and strategies reported over the past few years in the area of ocular drug delivery. Some of the strategies discussed involve polymer and lipid conjugation with the drug moiety to impart hydrophilicity or lipophilicity, or to target nutrient transporters by conjugation with transporter-specific moieties and retrometabolic drug design. Expert opinion: The application of prodrug strategies provides an option for enhancing drug penetration into the ocular tissues, and overall ocular bioavailability, with minimum disruption of the ocular diffusion barriers. Although success of the prodrug strategy is contingent on various factors, such as the chemical structure of the parent molecule, aqueous solubility and solution stability, capacity of targeted transporters and bioreversion characteristics, this approach has been successfully utilized, commercially and therapeutically, in several cases.

  1. A DT-diaphorase responsive theranostic prodrug for diagnosis, drug release monitoring and therapy.

    PubMed

    Liu, Peilian; Xu, Jiangsheng; Yan, Donghang; Zhang, Peisheng; Zeng, Fang; Li, Bowen; Wu, Shuizhu

    2015-06-11

    A DT-diaphorase-activatable theranostic prodrug, which contains camptothecin, a self-immolative linker and a trigger group, has been developed for the detection of DT-diaphorase, tracking of drug release and selectively killing cancer cells over-expressed with DT-diaphorase. This strategy may offer a new approach for the development of enzyme-catalyzed theranostic anticancer therapeutics.

  2. Nasal chitosan microparticles target a zidovudine prodrug to brain HIV sanctuaries.

    PubMed

    Dalpiaz, Alessandro; Fogagnolo, Marco; Ferraro, Luca; Capuzzo, Antonio; Pavan, Barbara; Rassu, Giovanna; Salis, Andrea; Giunchedi, Paolo; Gavini, Elisabetta

    2015-11-01

    Zidovudine (AZT) is an antiretroviral drug that is a substrate of active efflux transporters (AETs) that extrude the drug from the central nervous system (CNS) and macrophages, which are considered to be sanctuaries of HIV. The conjugation of AZT to ursodeoxycholic acid is known to produce a prodrug (UDCA-AZT) that is able to elude the AET systems, indicating the potential ability of this prodrug to act as a carrier of AZT in the CNS and in macrophages. Here, we demonstrate that UDCA-AZT is able to permeate and remain in murine macrophages with an efficiency twenty times higher than that of AZT. Moreover, we propose the nasal administration of this prodrug in order to induce its uptake into the CNS. Chitosan chloride-based microparticles (CP) were prepared by spray-drying and were characterized with respect to size, morphology, density, water uptake and the dissolution profile of UDCA-AZT. The CP sample was then nasally administered to rats. All in vitro and in vivo measurements were also performed for a CP parent physical mixture. The CP sample was able to increase the dissolution rate of UDCA-AZT and to reduce water uptake with respect to its parent physical mixture, inducing better uptake of UDCA-AZT into the cerebrospinal fluid of rats, where the prodrug can act as an AZT carrier in macrophages.

  3. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing lipophilic gemcitabine prodrugs.

    PubMed

    Immordino, Maria Laura; Brusa, Paola; Rocco, Flavio; Arpicco, Silvia; Ceruti, Maurizio; Cattel, Luigi

    2004-12-10

    Gemcitabine is a known anticancer agent rapidly deaminated to the inactive metabolite 2',2'-difluorodeoxyuridine; it must therefore be administered at very high dose. Many different approaches have been tried to improve the metabolic stability; we synthesized a series of increasingly lipophilic prodrugs of gemcitabine by linking the 4-amino group with valeroyl, heptanoyl, lauroyl and stearoyl linear acyl derivatives. We studied their stability at storage, in plasma and with the lysosomal intracellular enzyme cathepsins. We studied incorporation of these lipophilic prodrugs in liposomes, where their encapsulation efficiency (EE) closely depends on the length of the saturated 4-(N)-acyl chain, the phospholipids chosen and the presence of cholesterol. A maximum EE of 98% was determined for 4-(N)-stearoyl-gemcitabine incorporated in DSPC/DSPG 9:1. This formulation was correlated with the highest stability in vitro and in vivo. Cytotoxicity of gemcitabine prodrugs, free or encapsulated in liposomes, was between two- and sevenfold that of free gemcitabine. Encapsulation of long-chain lipophilic prodrugs of gemcitabine in liposomes protected the drug from degradation in plasma, assuring a long plasma half-time and intracellular release of the free drug.

  4. A Novel Doxorubicin Prodrug with Controllable Photolysis Activation for Cancer Chemotherapy

    PubMed Central

    Zahavy, Eran; Wrasdilo, Wolf; Berns, Michael; Chan, Michael; Esener, Sadik

    2010-01-01

    ABSTRACT Purpose Doxorubicin (DOX) is a very effective anticancer agent. However, in its pure form, its application is limited by significant cardiotoxic side effects. The purpose of this study was to develop a controllably activatable chemotherapy prodrug of DOX created by blocking its free amine group with a biotinylated photocleavable blocking group (PCB). Methods An n-hydroxy succunamide protecting group on the PCB allowed selective binding at the DOX active amine group. The PCB included an ortho-nitrophenyl group for photo cleavability and a water-soluble glycol spacer arm ending in a biotin group for enhanced membrane interaction. Results This novel DOX-PCB prodrug had a 200-fold decrease in cytotoxicity compared to free DOX and could release active DOX upon exposure to UV light at 350 nm. Unlike DOX, DOX-PCB stayed in the cell cytoplasm, did not enter the nucleus, and did not stain the exposed DNA during mitosis. Human liver microsome incubation with DOX-PCB indicated stability against liver metabolic breakdown. Conclusions The development of the DOX-PCB prodrug demonstrates the possibility of using light as a method of prodrug activation in deep internal tissues without relying on inherent physical or biochemical differences between the tumor and healthy tissue for use as the trigger. PMID:20596761

  5. Combined strategies of apomorphine diester prodrugs and nanostructured lipid carriers for efficient brain targeting

    NASA Astrophysics Data System (ADS)

    Liu, Kuo-Sheng; Wen, Chih-Jen; Yen, Tzu-Chen; Sung, K. C.; Ku, Ming-Chuan; Wang, Jhi-Joung; Fang, Jia-You

    2012-03-01

    Our aim is to develop nanostructured lipid carriers (NLCs) for loading the apomorphine diester prodrugs, diacetyl apomorphine (DAA) and diisobutyryl apomorphine (DIA), into the brain. NLCs were prepared using sesame oil/cetyl palmitate as the lipid matrices. Experiments were performed with the objective of evaluating the physicochemical characteristics, drug release, safety and brain-targeting efficacy of the NLCs. The size of regular NLCs (N-NLCs) was 214 nm. The addition of Forestall (FE) and polyethylene glycol (PEG) to the NLCs (P-NLCs) increased the particle diameter to 250 nm. The zeta potentials of N-NLCs and P-NLCs were respectively shown to be - 21 and 48 mV. Diester prodrugs were more lipophilic and more chemically stable than the parent apomorphine. The hydrolysis study indicated that the prodrugs underwent bioconversion in plasma and brain extract, with DAA exhibiting faster degradation than DIA. Sustained release was achieved through the synergistic effect of integrating strategies of prodrugs and NLCs, with the longer carbon chain showing the slower release (DIA < DAA). None of the NLCs tested here exhibited a toxicity problem according to the examination of neutrophil lactate dehydrogenase (LDH) release and hemolysis. Results of a bioimaging study in mice showed that P-NLCs largely accumulated in the brain. The distribution duration of the fluorescent dye in the brain region was also prolonged by the nanocarriers.

  6. A versatile prodrug approach for liposomal core-loading of water-insoluble camptothecin anticancer drugs.

    PubMed

    Liu, Xinli; Lynn, Bert C; Zhang, Junhong; Song, Lin; Bom, David; Du, Wu; Curran, Dennis P; Burke, Thomas G

    2002-07-03

    We describe a versatile prodrug strategy for loading the liposomal lumen with water-insoluble camptothecins. The procedure involves conversion of an active camptothecin analogue to a 20-OR omega-aminoalkanoanic ester prodrug in which R = CO[CH(2)](n)()NH(2) and n = 1-3. The basic amino group of the prodrug serves three roles. First, at pH ranges of 3-5, the amine enhances aqueous solubility. Second, it enhances responsiveness to a transmembrane ammonium sulfate gradient across the liposomal bilayer, thereby facilitating active loading of the agent into the liposomal aqueous core. Third, at a physiological pH of 7 or above (the pH to be encountered following drug release at the tumor site), the nucleophilicity of the amine manifests itself and cyclization to the C-21 carbonyl carbon occurs. This cyclization triggers a rapid and convenient nonenzymatic decomposition process that releases active camptothecin. Accordingly, this novel liposomal approach offers a potential system for tumor-targeting prodrugs of many water-insoluble camptothecins, including the highly lipophilic and clinically attractive analogues SN-38, 9-nitrocamptothecin and DB-67. The rate of formation of the active agent at the tumor site can be controlled through the selection of n (the length of the alkyl spacer group).

  7. "Project ALERT's" Effects on Adolescents' Prodrug Beliefs: A Replication and Extension Study

    ERIC Educational Resources Information Center

    Clark, Heddy Kovach; Ringwalt, Chris L.; Hanley, Sean; Shamblen, Stephen R.

    2010-01-01

    This article represents a replication and extension of previous studies of the effects of "Project ALERT", a school-based substance use prevention program, on the prodrug beliefs of adolescents. Specifically, the authors' research examined "Project ALERT's" effects on adolescents' intentions to use substances in the future, beliefs about substance…

  8. Synthesis, Screening and Pharmacokinetic Evaluation of Potential Prodrugs of Bupropion. Part One: In Vitro Development

    PubMed Central

    O’Byrne, Paul Matthew; Williams, Robert; Walsh, John J.; Gilmer, John F.

    2014-01-01

    In general, prodrugs are developed to circumvent deficiencies associated with the absorption, distribution, metabolism, excretion or toxicological (ADMET) profile associated with the active drug. In our study, we select bupropion, a drug with broad pharmacology incorporating dopaminergic, noradrenergic, nicotinic and cytokine modulation properties, but which is rapidly metabolized in vivo. We exploited its carbonyl and secondary amine functionality to facilitate the synthesis of bioprecursor prodrug forms with the sole objective of identifying analogues with enhanced properties over bupropion. A range of analogues were synthesized, ranging from N-methyl, N-benzyl, oximes, enol acetate and ether forms to examples where both functional groups were utilized to form oxadiazine, oxadiazinone, oxazolone and acetylated derivatives. We then developed an in vitro metabolic screen to simulate the human oral delivery route for these analogues. The selection of media in the screens contained a variety of pH, enzymatic and co-factor systems which mimic metabolic in vivo environments that drugs encounter when delivered orally. By coupling our in vitro screening tool to a selective hyphenated technique such as LC-MS, we were able to quickly select potential prodrugs for further in vitro and in vivo development. From the data generated, the N-alkylated bupropion analogues were shown to have the highest potential to act as bioprecursor prodrugs of bupropion. PMID:24830986

  9. Baclofen ester and carbamate prodrug candidates: a simultaneous chromatographic assay, resolution optimized with DryLab.

    PubMed

    Hanafi, Rasha; Mosad, Salwa; Abouzid, Khaled; Niess, Raimund; Spahn-Langguth, Hilde

    2011-11-01

    Baclofen exhibits insufficient CNS-availability when dosed systemically. Hence, prodrug candidates (methyl, ethyl, 1-propyl, 2-propyl and butyl 4-(tert-butoxycarbonyl amino)-3-(4-chlorophenyl) butanoate) were synthesized aiming at CNS-levels appropriate for the treatment of spastic disorders. The characterization of some biopharmaceutically highly relevant physicochemical properties (LogP and aqueous solubility) and the evaluation of biophase levels represent one important component of the project. The overall research aim was to generate an HPLC optimized method using DryLab, a simulation software for the optimization of a RP-HPLC method, which was optimized using a simulation software (DryLab), for the simultaneous determination of baclofen and ten synthesized prodrug candidates. The chromatographic resolution predicted and obtained via the simulation is Rs >1.5 for all baclofen derivatives, as well as, with parent baclofen. The method was used to assay the prodrugs and determine their purities, solubility and lipophilicity parameters. The designed analytical method also permits the tracking of the new prodrug candidates' hydrolysis in vitro and in vivo. The determined physicochemical properties indicate for some of the compounds that they might be suitable for CNS-targeting which was exemplified by the detection of significant baclofen levels in rat brain tissues following an i.p. dose of ethyl carbamate (vs. ethyl ester, for which only traces of baclofen were detected).

  10. Nucleotide Analog Prodrug, Tenofovir Disoproxil, Enhances Lymphoid Cell Loading Following Oral Administration in Monkeys

    PubMed Central

    Durand-Gasselin, Lucie; Van Rompay, Koen K.A.; Vela, Jennifer E.; Henne, Ilana N.; Lee, William A.; Rhodes, Gerry R.; Ray, Adrian S.

    2009-01-01

    The antiviral drug tenofovir (TFV) is orally administered as the fumarate salt of its disoproxil prodrug (TFV disoproxil fumarate (TDF)). TFV is a di-anion at physiological pH and, as a result, has poor lipid membrane permeability. Administration of the lipophilic and cell permeable prodrug, TFV disoproxil, enhances the oral absorption of TFV. In order to determine if oral administration of TDF also increases distribution to sites of viral infection, the plasma and circulating lymphoid cell pharmacokinetics of TFV and its phosphorylated metabolites were assessed following a single oral TDF or subcutaneous TFV administration at doses yielding equivalent plasma exposures to TFV in macaques. Despite TFV disoproxil’s lack of plasma stability and undetectable levels in the first plasma samples taken, oral administration of TDF resulted in 7.9-fold higher peripheral blood mononuclear cell exposures to the active metabolite, TFV-diphosphate. The apparent plasma terminal half-life (t1/2) of TFV was also longer following oral TDF relative to subcutaneous TFV administration (median t1/2 of 15.3 and 3.9 h, respectively), suggesting broader distribution to cells and tissues outside of the central plasma compartment. In conclusion, the disoproxil pro-moiety not only enhances the oral absorption of TFV but also tissue and lymphoid cell loading. These results illustrate that administration of even a fleeting prodrug can increase target tissue loading and gives valuable insight for future prodrug development. PMID:19545170

  11. Naloxone pro-drug rescues morphine induced respiratory depression in Sprague-Dawley rats.

    PubMed

    Wallisch, Michael; El Rody, Nehad M; Huang, Baohua; Koop, Dennis R; Baker, James R; Olsen, George D

    2012-01-15

    Respiratory depression is the main obstacle for the safe administration of morphine for acute pain after injury. Due to this complication, new delivery methods are needed to insure that safe and effective doses of opioid analgesics are administered during emergencies. A depot formulation containing a naloxone pro-drug was designed to release the antidote when morphine causes dangerous hypoxic conditions in the blood. The aim of this work was to test the naloxone release in vivo in response to a severe overdose of morphine in the Sprague-Dawley rat model. Non-invasive two-chamber plethysmography was used to monitor and record respiration and to test the capability of the naloxone pro-drug to respond to and rescue morphine-induced respiratory depression in the animal. We show that the pro-drug formulation can both prevent and reverse severe morphine induced respiratory depression. The animal model demonstrates that co-administration of the naloxone pro-drug reliably antagonizes profound respiratory depressive effects of morphine.

  12. Application of a Microfluidic Reactor for Screening Cancer Prodrug Activation Using Silica-Immobilized Nitrobenzene Nitroreductase

    DTIC Science & Technology

    2006-01-01

    the corresponding electron- donating hydroxylamine is useful in a variety of biotechnological applications. Activation of prodrugs for cancer...withdrawing nitro group to the correspond- ing electron-donating hydroxylamine results in a very large electronic change, providing an effective enzyme... hydroxylamine derivative by bacterial nitroreductases.2-4 DEPT using Escherichia coli ni- troreductase and CB1954 has been demonstrated to be an

  13. Prodrugs of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs), More Than Meets the Eye: A Critical Review

    PubMed Central

    Qandil, Amjad M.

    2012-01-01

    The design and the synthesis of prodrugs for nonsteroidal anti-inflammatory drugs (NSAIDs) have been given much attention by medicinal chemists, especially in the last decade. As a therapeutic group, NSAIDs are among the most widely used prescribed and over the counter (OTC) medications. The rich literature about potential NSAID prodrugs clearly shows a shift from alkyl, aryalkyl or aryl esters with the sole role of masking the carboxylic acid group, to more elaborate conjugates that contain carefully chosen groups to serve specific purposes, such as enhancement of water solubility and dissolution, nitric oxide release, hydrogen sulfide release, antioxidant activity, anticholinergic and acetylcholinesterase inhibitory (AChEI) activity and site-specific targeting and delivery. This review will focus on NSAID prodrugs that have been designed or were, later, found to possess intrinsic pharmacological activity as an intact chemical entity. Such intrinsic activity might augment the anti-inflammatory activity of the NSAID, reduce its side effects or transform the potential therapeutic use from classical anti-inflammatory action to something else. Reports discussed in this review will be those of NO-NSAIDs, anticholinergic and AChEI-NSAIDs, Phospho-NSAIDs and some miscellaneous agents. In most cases, this review will cover literature dealing with these NSAID prodrugs from the year 2006 and later. Older literature will be used when necessary, e.g., to explain the chemical and biological mechanisms of action. PMID:23247285

  14. A five-membered lactone prodrug of CBI-based analogs of the duocarmycins

    PubMed Central

    Uematsu, Mika; Brody, Daniel M.; Boger, Dale L.

    2014-01-01

    The preparation, characterization and examination of the CBI-based 5-membered lactone 5 capable of serving as a prodrug or protein (antibody) conjugation reagent are disclosed along with its incorporation into the corresponding CC-1065 and duocarmycin analog 6, and the establishment of their properties. PMID:26069351

  15. "Project ALERT's" Effects on Adolescents' Prodrug Beliefs: A Replication and Extension Study

    ERIC Educational Resources Information Center

    Clark, Heddy Kovach; Ringwalt, Chris L.; Hanley, Sean; Shamblen, Stephen R.

    2010-01-01

    This article represents a replication and extension of previous studies of the effects of "Project ALERT", a school-based substance use prevention program, on the prodrug beliefs of adolescents. Specifically, the authors' research examined "Project ALERT's" effects on adolescents' intentions to use substances in the future, beliefs about substance…

  16. Fabrication of potential macromolecular prodrugs of aspirin and diclofenac with dextran.

    PubMed

    Hussain, Muhammad Ajaz; Hassan, Zahid; Haseeb, Muhammad Tahir; Iqbal, Mohammad Saeed; Sher, Muhammad; Tahir, Muhammad Nawaz; Tremel, Wolfgung; Bashir, Sajid; Ahmad, Riaz

    2011-10-01

    Aspirin and diclofenac conjugates with dextran were synthesized as potential macromolecular prodrugs under homogeneous reaction conditions by using 4-methyl-benzenesulfonyl chloride as an acylating agent in the presence of triethylamine as a base. Highly pure conjugates with good yields were synthesized by this acylation method. All of the products were found soluble in aqueous medium as well as in dimethylsulfoxide and N,N-dimethylacetamide. The UV/Vis spectrophotometry has indicated the incorporation of drugs in conjugates and extent of substitution of drug onto dextran polymer. Covalent attachment of the drug onto the drug carrier polymer (dextran) was verified by (1)H NMR and Fourier transform infrared (FTIR) spectroscopic analysis. The prodrugs were analysed by powder X-ray diffraction (XRD) measurements. Phase changes were noticed by powder XRD for all macromolecular prodrugs indicating the change of state of matter towards more crystallinity. Therefore, fabricated macromolecular prodrugs are potential candidates to show better pharmacokinetic profile. All of the products were thoroughly characterized by using different spectroscopic techniques.

  17. Chemotherapeutic Potential of Diazeniumdiolate-based Aspirin Prodrugs in Breast Cancer

    PubMed Central

    Basudhar, Debashree; Cheng, Robert C.; Bharadwaj, Gaurav; Ridnour, Lisa A.; Wink, David A.; Miranda, Katrina M.

    2015-01-01

    Diazeniumdiolate-based aspirin prodrugs have previously been shown to retain the anti-inflammatory properties of aspirin while protecting against the common side effect of stomach ulceration. Initial analysis of two new prodrugs of aspirin that also release either nitroxyl (HNO) or nitric oxide (NO) demonstrated increased cytotoxicity toward human lung carcinoma cells compared to either aspirin or the parent nitrogen oxide donor. In addition, cytotoxicity was significantly lower in endothelial cells, suggesting cancer-specific sensitivity. To assess the chemotherapeutic potential of these new prodrugs in breast cancer, we studied their effect both in cultured cells and in a nude mouse model. Both prodrugs reduced growth of breast adenocarcinoma cells more effectively than the parent compounds while not being appreciably cytotoxic in a related non-tumorigenic cell line (MCF-10A). The HNO donor also was more cytotoxic than the related NO donor. The basis for the observed specificity was investigated in terms of impact on metabolism, DNA damage and repair, apoptosis, angiogenesis and metastasis. The results suggest a significant pharmacological potential for treatment of breast cancer. PMID:25659932

  18. Utilization of Enzyme-Immobilized Mesoporous Silica Nanocontainers (IBN-4) in Prodrug-Activated Cancer Theranostics

    PubMed Central

    Hung, Bau-Yen; Kuthati, Yaswanth; Kankala, Ranjith Kumar; Kankala, Shravankumar; Deng, Jin-Pei; Liu, Chen-Lun; Lee, Chia-Hung

    2015-01-01

    To develop a carrier for use in enzyme prodrug therapy, Horseradish peroxidase (HRP) was immobilized onto mesoporous silica nanoparticles (IBN-4: Institute of Bioengineering and Nanotechnology), where the nanoparticle surfaces were functionalized with 3-aminopropyltrimethoxysilane and further conjugated with glutaraldehyde. Consequently, the enzymes could be stabilized in nanochannels through the formation of covalent imine bonds. This strategy was used to protect HRP from immune exclusion, degradation and denaturation under biological conditions. Furthermore, immobilization of HRP in the nanochannels of IBN-4 nanomaterials exhibited good functional stability upon repetitive use and long-term storage (60 days) at 4 °C. The generation of functionalized and HRP-immobilized nanomaterials was further verified using various characterization techniques. The possibility of using HRP-encapsulated IBN-4 materials in prodrug cancer therapy was also demonstrated by evaluating their ability to convert a prodrug (indole-3-acetic acid (IAA)) into cytotoxic radicals, which triggered tumor cell apoptosis in human colon carcinoma (HT-29 cell line) cells. A lactate dehydrogenase (LDH) assay revealed that cells could be exposed to the IBN-4 nanocomposites without damaging their membranes, confirming apoptotic cell death. In summary, we demonstrated the potential of utilizing large porous mesoporous silica nanomaterials (IBN-4) as enzyme carriers for prodrug therapy. PMID:28347114

  19. Spiral assembly of amphiphilic cytarabine prodrug assisted by probe sonication: Enhanced therapy index for leukemia.

    PubMed

    Liu, Jing; Ma, Naxin; Zhao, Dujuan; Li, Zhonghao; Luan, Yuxia

    2015-12-01

    In order to overcome the drawbacks of cytarabine (Ara-C), such as low lipophilicity as well as short plasma half-life and rapid inactivation, a new derivative of Ara-C was designed by incorporation into the non-toxic material, oleic acid (OA), obtaining an amphiphilic small molecular weight prodrug (OA-Ara). By a simple amidation reaction, OA-Ara was synthesized successfully with a yield up to 61.32%. It was for the first time to see that the novel prodrug molecules could assemble into the unexpectedly spiral assembly under probe ultrasonication in aqueous solution. The oil/water partition coefficient (Ko/w) and the permeability of cell membrane of the prodrug were significantly increased compared with Ara-C molecules. In addition, OA-Ara molecules were stable in various pH solutions and artificial digestives, which indicated that it could be administrated orally. Cell viability assay showed that the prodrug displayed much higher antiproliferative effect against K562 and HL60 cells due to its improvement of the lipophilicity and penetrability of cell membrane. These findings demonstrate the feasibility of utilizing structural modification to broaden the clinic application of Ara-C and thus provide an effective new therapeutic alternative for leukemia.

  20. Phosphinophosphonates and Their Tris-pivaloyloxymethyl Prodrugs Reveal a Negatively Cooperative Butyrophilin Activation Mechanism.

    PubMed

    Shippy, Rebekah R; Lin, Xiaochen; Agabiti, Sherry S; Li, Jin; Zangari, Brendan M; Foust, Benjamin J; Poe, Michael M; Hsiao, Chia-Hung Christine; Vinogradova, Olga; Wiemer, David F; Wiemer, Andrew J

    2017-03-23

    Butyrophilin 3A1 (BTN3A1) binds small phosphorus-containing molecules, which initiates transmembrane signaling and activates butyrophilin-responsive cells. We synthesized several phosphinophosphonates and their corresponding tris-pivaloyloxymethyl (tris-POM) prodrugs and examined their effects on BTN3A1. An analog of (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) bound to BTN3A1 with intermediate affinity, which was enthalpy-driven. Docking studies revealed binding to the basic surface pocket and interactions between the allylic hydroxyl group and the BTN3A1 backbone. The phosphinophosphonate stimulated proliferation of Vγ9Vδ2 T cells with moderate activity (EC50 = 26 μM). Cellular potency was enhanced >600-fold in the tris-POM prodrug (EC50 = 0.041 μM). The novel prodrug also induced T cell mediated leukemia cell lysis. Analysis of dose-response data reveals HMBPP-induced Hill coefficients of 0.69 for target cell lysis and 0.68 in interferon secretion. Together, tris-POM prodrugs enhance the cellular activity of phosphinophosphonates, reveal structure-activity relationships of butyrophilin ligands, and support a negatively cooperative model of cellular butyrophilin activation.

  1. Water-soluble acacetin prodrug confers significant cardioprotection against ischemia/reperfusion injury

    PubMed Central

    Liu, Hui; Yang, Lei; Wu, Hui-Jun; Chen, Kui-Hao; Lin, Feng; Li, Gang; Sun, Hai-Ying; Xiao, Guo-Sheng; Wang, Yan; Li, Gui-Rong

    2016-01-01

    The morbidity and mortality of patients with ischemic cardiomyopathy resulted from ischemia/reperfusion injury are very high. The present study investigates whether our previously synthesized water-soluble phosphate prodrug of acacetin was cardioprotective against ischemia/reperfusion injury in an in vivo rat model. We found that intravenous administration of acacetin prodrug (10 mg/kg) decreased the ventricular arrhythmia score and duration, reduced ventricular fibrillation and infarct size, and improved the impaired heart function induced by myocardial ischemia/reperfusion injury in anesthetized rats. The cardioprotective effects were further confirmed with the parent compound acacetin in an ex vivo rat regional ischemia/reperfusion heart model. Molecular mechanism analysis revealed that acacetin prevented the ischemia/reperfusion-induced reduction of the anti-oxidative proteins SOD-2 and thioredoxin, suppressed the release of inflammation cytokines TLR4, IL-6 and TNFα, and decreased myocyte apoptosis induced by ischemia/reperfusion. Our results demonstrate the novel evidence that acacetin prodrug confer significant in vivo cardioprotective effect against ischemia/reperfusion injury by preventing the reduction of endogenous anti-oxidants and the release of inflammatory cytokines, thereby inhibiting cardiomyocytes apoptosis, which suggests that the water-soluble acacetin prodrug is likely useful in the future as a new drug candidate for treating patients with acute coronary syndrome. PMID:27819271

  2. Membrane adsorption and binding, cellular uptake and cytotoxicity of cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone: effects of hydrogen bonding and α-chirality in the β-peptoid residues.

    PubMed

    Jing, Xiaona; Yang, Mingjun; Kasimova, Marina R; Malmsten, Martin; Franzyk, Henrik; Jorgensen, Lene; Foged, Camilla; Nielsen, Hanne M

    2012-11-01

    Cell-penetrating peptides (CPPs) provide a promising approach for enhancing intracellular delivery of therapeutic biomacromolecules by increasing transport through membrane barriers. Here, proteolytically stable cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone were studied to evaluate the effect of α-chirality in the β-peptoid residues and the presence of guanidinium groups in the α-amino acid residues on membrane interaction. The molecular properties of the peptidomimetics in solution (surface and intramolecular hydrogen bonding, aqueous diffusion rate and molecular size) were studied along with their adsorption to lipid bilayers, cellular uptake, and toxicity. The surface hydrogen bonding ability of the peptidomimetics reflected their adsorbed amounts onto lipid bilayers as well as with their cellular uptake, indicating the importance of hydrogen bonding for their membrane interaction and cellular uptake. Ellipsometry studies further demonstrated that the presence of chiral centers in the β-peptoid residues promotes a higher adsorption to anionic lipid bilayers, whereas circular dichroism results showed that α-chirality influences their overall mean residue ellipticity. The presence of guanidinium groups and α-chiral β-peptoid residues was also found to have a significant positive effect on uptake in living cells. Together, the findings provide an improved understanding on the behavior of cell-penetrating peptidomimetics in the presence of lipid bilayers and live cells.

  3. Thiazole-valine peptidomimetic (TTT-28) antagonizes multidrug resistance in vitro and in vivo by selectively inhibiting the efflux activity of ABCB1

    PubMed Central

    Wang, Yi-Jun; Patel, Bhargav A.; Anreddy, Nagaraju; Zhang, Yun-Kai; Zhang, Guan-Nan; Alqahtani, Saeed; Singh, Satyakam; Shukla, Suneet; Kaddoumi, Amal; Ambudkar, Suresh V.; Talele, Tanaji T.; Chen, Zhe-Sheng

    2017-01-01

    Multidrug resistance (MDR) attenuates the chemotherapy efficacy and increases the probability of cancer recurrence. The accelerated drug efflux mediated by ATP-binding cassette (ABC) transporters is one of the major MDR mechanisms. This study investigated if TTT-28, a newly synthesized thiazole-valine peptidomimetic, could reverse ABCB1-mediated MDR in vitro and in vivo. TTT-28 reversed the ABCB1-mediated MDR and increased the accumulation of [3H]-paclitaxel in ABCB1 overexpressing cells by selectively blocking the efflux function of ABCB1, but not interfering with the expression level and localization of ABCB1. Animal study revealed that TTT-28 enhanced the intratumoral concentration of paclitaxel and promoted apoptosis, thereby potently inhibiting the growth of ABCB1 overexpressing tumors. But TTT-28 did not induce the toxicity (cardiotoxicity/myelosuppression) of paclitaxel in mice. In this study, we synthesized and evaluated a novel selective inhibitor of ABCB1 (TTT-28) with high efficacy and low toxicity. The identification and characterization of this new thiazole-valine peptidomimetic will facilitate design and synthesis of a new generation of ABCB1 inhibitors, leading to further research on multidrug resistance and combination chemotherapy. Furthermore, the strategy that co-administer MDR-ABCB1 inhibitor to overcome the resistance of one FDA approved, widely used chemotherapeutic paclitaxel, may be promising direction for the field of adjuvant chemotherapy. PMID:28181548

  4. Efficient activation of a visible light-activatable CA4 prodrug through intermolecular photo-unclick chemistry in mitochondria.

    PubMed

    Bio, Moses; Rajaputra, Pallavi; Lim, Irene; Thapa, Pritam; Tienabeso, Bomaonye; Hurst, Robert E; You, Youngjae

    2017-02-07

    Photo-unclick chemistry mediates visible and near IR-controlled drug release via a singlet oxygen (SO)-cleavable linker. Due to the limited diffusion distance of SO in biological systems, a photosensitizer and the SO-cleavable linker have been conjugated in one molecule or mixed in nano-drug delivery systems. In this communication, we demonstrate a new strategy to activate prodrugs with photo-unclick chemistry in an intermolecular fashion using an SO-cleavable CA4 prodrug and a mitochondria-specific photosensitizer, protoporphyrin IX, formed from prodrug hexyl-5-aminolevulinate.

  5. Water-soluble phosphate prodrugs of pleuromutilin analogues with potent in vivo antibacterial activity against Gram-positive pathogens.

    PubMed

    Fu, Liqiang; Jiang, Zhiteng; Cai, Zhan; Liu, Xin; He, Huili; Yang, Yushe

    2009-09-15

    A phosphate prodrug strategy was investigated to address the problem of poor aqueous solubility of pleuromutilin analogues. Water-soluble phosphate prodrugs 6a, 6b and 6c of pleuromutilin analogues were designed and synthesized. Three compounds all exhibited excellent aqueous solubility (>50mg/mL) at near-neutral pH and sufficient stability in buffer solution. In particular, the phenol pleuromutilin prodrug 6c displayed favourable pharmacokinetic profiles and comparable potency with vancomycin against MSSA and MRSA strains in vivo.

  6. Synthesis and in vitro stability of amino acid prodrugs of 6-β-naltrexol for microneedle-enhanced transdermal delivery

    PubMed Central

    Eldridge, Joshua A.; Milewski, Mikolaj; Stinchcomb, Audra L.; Crooks, Peter A.

    2014-01-01

    A small library of amino acid ester prodrugs of 6-β-naltrexol (NTXOL, 1) was prepared in order to investigate the candidacy of these prodrugs for microneedle-enhanced transdermal delivery. Six amino acid ester prodrugs were synthesized (6a-f). 6b, 6d, and 6e were stable enough at skin pH (pH 5.0) to move forward to studies in 50% human plasma. The lead compound (6e) exhibited the most rapid bioconversion to NTXOL in human plasma (t½ = 2.2 ± 0.1 h). PMID:25442314

  7. Carboxypeptidase-G2-based gene-directed enzyme-prodrug therapy: a new weapon in the GDEPT armoury.

    PubMed

    Hedley, Douglas; Ogilvie, Lesley; Springer, Caroline

    2007-11-01

    Gene-directed enzyme-prodrug therapy (GDEPT) aims to improve the therapeutic ratio (benefit versus toxic side-effects) of cancer chemotherapy. A gene encoding a 'suicide' enzyme is introduced into the tumour to convert a subsequently administered non-toxic prodrug into an active drug selectively in the tumour, but not in normal tissues. Significant effects can now be achieved in vitro and in targeted experimental models, and GDEPT therapies are entering the clinic. Our group has developed a GDEPT system that uses the bacterial enzyme carboxypeptidase G2 to convert nitrogen mustard prodrugs into potent DNA crosslinking agents, and a clinical trial of this system is pending.

  8. Comparative efficacies of 2 cysteine prodrugs and a glutathione delivery agent in a colitis model

    PubMed Central

    OZ, HELIEH S.; CHEN, THERESA S.; NAGASAWA, HERBERT

    2007-01-01

    Oxidant-mediated injury plays an important role in the pathophysiology of inflammatory bowel disease (IBD). Recently, antioxidants were shown to modulate colitis in mice. In this study, the protective effects of L-cysteine and glutathione (GSH) prodrugs are further evaluated against progression of colitis in a murine model. ICR mice were fed compounds incorporated into chow as follows: Group (A) received chow supplemented with vehicle. Group (B) was provided 2-(RS)-n-propylthiazolidine-4(R)-carboxylic-acid (PTCA), a cysteine prodrug. Group (C) received D-ribose-L-cysteine (RibCys), another cysteine prodrug that releases L-cysteine. Group (D) was fed L-cysteine-glutathione mixed sulfide (CySSG), a ubiquitous GSH derivative present in mammalian cells. After 3 days, the animals were further provided with normal drinking water or water supplemented with dextran sodium sulfate (DSS). Mice administered DSS developed severe colitis and suffered weight loss. Colonic lesions significantly improved in animals treated with PTCA and RibCys and, to a lesser extent, with CySSG therapy. Hepatic GSH levels were depleted in colitis animals (control vs DSS, P < 0.001), and normalized with prodrug therapies (control vs treatments, P > 0.05). Protein expressions of serum amyloid A and inflammatory cytokines [interleukin (IL)-6, IL-12, tumor necrosis factor-alpha (TNF-α), osteopontin (OPN)] were significantly increased in colitis animals and improved with therapies. Immunohistochemistry and Western blot analyses showed significant upregulation of the macrophage-specific markers, COX-2 and CD68, which suggests macrophage activation and infiltration in the colonic lamina propria in colitis animals. These abnormalities were attenuated in prodrug-treated mice. In conclusion, these data strongly support the novel action of the PTCA against colitis, which further supports a possible therapeutic application for IBD patients. PMID:17656332

  9. Kinetics and mechanisms of activation of alpha-amino acid ester prodrugs of camptothecins.

    PubMed

    Song, Lin; Bevins, Robert; Anderson, Bradley D

    2006-07-13

    The alpha-amino acid ester prodrugs of the antitumor agent camptothecin and a more potent, lipophilic silatecan analogue, DB-67, have been shown by NMR spectroscopy and quantitative kinetic analyses to undergo quantitative conversion to their pharmacologically active lactones via a nonenzymatic mechanism that at pH 7.4 is favored over direct hydrolysis. The alternate pathway involves the reversible intramolecular nucleophilic amine attack at the camptothecin E-ring carbonyl to generate a lactam (I) followed by a second intramolecular reaction to produce a bicyclic hemiortho ester (I'). The intermediates were isolated and shown to exist in an apparent equilibrium dominated by the hemiortho ester in DMSO using NMR spectroscopy. The conversion of prodrugs of camptothecin or DB-67 containing either alpha-NH(2) or alpha-NHCH(3) and their corresponding hemiortho esters were monitored versus time in aqueous buffer (pH 3.0 and 7.4) at 37 degrees C, and the kinetic data were fit to a model based on the proposed mechanism. The results indicated that while the prodrugs are relatively stable at pH 3, facile lactone release occurs from both the prodrugs and their corresponding hemiortho ester intermediates under physiological conditions (pH 7.4). The glycinate esters and their hemiortho esters were found to be more cytotoxic than the N-methylglycinates or their corresponding hemiortho ester intermediates in vitro using a human breast cancer cell line (MDA-MB-435S), consistent with their more rapid conversion to active lactone. The pH dependence of the nonenzymatic pathway for conversion of these alpha-amino acid ester prodrugs suggests that they may be useful for tumor-targeting via liposomes, as they can be stabilized in an acidic environment in the core of liposomes and readily convert to the active lactone following their intratumoral release.

  10. Comparative plasma disposition kinetics of albendazole and its new benzimidazol prodrug in dog.

    PubMed

    Khalil, Z; El Karbane, M; Faouzi, M E A; Ansar, M; Azougagh, M; El Harti, J; Taoufik, J

    2016-01-01

    The comparative pharmacokinetic behavior of albendazole (ABZ) and its new benzimidazol prodrug [1-tert-butyloxycarbonyl-5-propylthio-1-H-benzimidazol-2ylcarbamate of methyl] (ABZBoc), following their oral administration (10mg/kg) to healthy dogs was explored. Blood samples were obtained serially over a 24h period after treatment, then the plasma was analyzed by high-performance liquid chromatography (HPLC) to search the albendazole metabolites (ABZSO and ABZSO2). However, the albendazole parent drug was not detectable at any time after both treatments (ABZ and ABZBoc). By albendazole metabolites (ABZSO and ABZSO2) were the analytes recovered in the plasma after oral administration of ABZ and ABZBoc. Furthermore, some amounts of ABZBoc were also available in the plasma samples treated with this new produg. The plasma profile of each analyte followed a similar pattern after both treatments, the active metabolite (ABZSO) was the major analyte recovered in plasma (between 1 and 24h post-treatment). The pharmacokinetic parameters of both groups were calculated (Cmax, Tmax, t1/2, AUC0-›∞), and analyzed using the Student's t-test, P<0.05. Thus,the pharmacokinetic analysis indicated four statistically significant changes in the pharmacokinetic parameters defined above of the albendazole metabolites (ABZSO, ABZSO2) between the group treated with albendazole (group A) and that treated with ABZBoc prodrug (group B). Hence, the levels of the various pharmacokinetics parameters were low in the group treated with prodrug, as well they did not reach equivalent concentrations to that of albendazole. These differences between albendazole and its new prodrug may be explained by the fact that ABZBoc prodrug was not effectively reduced in the intestine of dogs. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  11. Stepwise-activable multifunctional peptide-guided prodrug micelles for cancerous cells intracellular drug release

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Li, Mengfei; Yuan, Zhefan; Wu, Dan; Chen, Jia-da; Feng, Jie

    2016-10-01

    A novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for cancerous cells intracellular drug release. Deca-lysine sequence (K10), a type of cell-penetrating peptide, was synthesized and terminated with azido-glycine. Then a new kind of molecule, alkyne modified doxorubicin (DOX) connecting through disulfide bond (DOX-SS-alkyne), was synthesized. After coupling via Cu-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry reaction, reduction-sensitive peptide-guided prodrug was obtained. Due to the amphiphilic property of the prodrug, it can assemble to form micelles. To prevent the nanocarriers from unspecific cellular uptake, the prodrug micelles were subsequently modified with 2,3-dimethyl maleic anhydride to obtain MPPM with a negatively charged outer shell. In vitro studies showed that MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would be activated by charge reversal of the micelles via hydrolysis of acid-labile β-carboxylic amides and regeneration of K10, which enabled efficient internalization of MPPM by tumor cells as well as following glutathione- and protease-induced drug release inside the cancerous cells. Furthermore, since the guide peptide sequences can be accurately designed and synthesized, it can be easily changed for various functions, such as targeting peptide, apoptotic peptide, even aptamers, only need to be terminated with azido-glycine. This method can be used as a template for reduction-sensitive peptide-guided prodrug for cancer therapy.

  12. Synergistic antitumor activity of a self-assembling camptothecin and capecitabine hybrid prodrug for improved efficacy.

    PubMed

    Ma, Wang; Su, Hao; Cheetham, Andrew G; Zhang, Weifang; Wang, Yuzhu; Kan, QuanCheng; Cui, Honggang

    2017-01-10

    The direct use of anticancer drugs to create their own nanostructures is an emerging concept in the field of drug delivery to obtain nanomedicines of high drug loading and high reproducibility, and the combination use of two or more drugs has been a proven clinical strategy to enhance therapeutic outcomes. We report here the synthesis, assembly and cytotoxicity evaluation of self-assembling hybrid prodrugs containing both camptothecin (CPT) and a capecitabine (Cap) analogue. CPT and Cap molecules were conjugated onto a short β-sheet-forming peptide (Sup35) to yield three different self-assembling prodrugs (dCPT-Sup35, CPT-Cap-Sup35 and dCap-Sup35). We found that the chemical structure of conjugated drugs could strongly influence their assembled morphology as well as their structural stability in aqueous solution. With a decrease in number of CPT units, the resulting nanostructures exhibited a morphological transformation from nanofibers (dCPT-Sup35) to filaments (CPT-Cap-Sup35) then to spherical particles (dCap-Sup35). Notably, the hybrid CPT-Cap prodrug showed a synergistic effect and significantly enhanced potency against three esophageal adenocarcinoma cell lines compared with the two homo-prodrugs (dCPT-Sup35 and dCap-Sup35) as well as free parent drugs (CPT, 5-Fu and CPT/5-FU mixture (1:1)). We believe this work represents a conceptual advancement in integrating two structurally distinct drugs of different action mechanisms into a single self-assembling hybrid prodrug to construct self-deliverable nanomedicines for more effective combination chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Kinetics and Mechanisms of Activation of α-Amino Acid Ester Prodrugs of Camptothecins

    PubMed Central

    Song, Lin; Bevins, Robert; Anderson, Bradley D.

    2008-01-01

    The α-amino acid ester prodrugs of the antitumor agent camptothecin and a more potent, lipophilic silatecan analog, DB-67, have been shown by NMR spectroscopy and quantitative kinetic analyses to undergo quantitative conversion to their pharmacologically active lactones via a non-enzymatic mechanism that at pH 7.4 is favored over direct hydrolysis. The alternate pathway involves the reversible intramolecular nucleophilic amine attack at the camptothecin E-ring carbonyl to generate a lactam (I) followed by a second intramolecular reaction to produce a bicyclic hemiorthoester (I′). The intermediates were isolated and shown to exist in an apparent equilibrium dominated by the hemiorthoester in DMSO using NMR spectroscopy. The conversion of prodrugs of camptothecin or DB-67 containing either α-NH2 or α-NHCH3 and their corresponding hemiorthoesters were monitored versus time in aqueous buffer (pH 3.0 and 7.4) at 37°C and the kinetic data were fit to a model based on the proposed mechanism. The results indicated that while the prodrugs are relatively stable at pH 3, facile lactone release occurs from both the prodrugs and their corresponding hemiorthoester intermediates under physiological conditions (pH 7.4). The glycinate esters and their hemiorthoesters were found to be more cytotoxic than the N-methylglycinates or their corresponding hemiorthoester intermediates in vitro using a human breast cancer cell line (MDA-MB-435S), consistent with their more rapid conversion to active lactone. The pH dependence of the non-enzymatic pathway for conversion of these α-amino acid ester prodrugs suggests that they may be useful for tumor-targeting via liposomes, as they can be stabilized in an acidic environment in the core of liposomes and readily convert to the active lactone following their intratumoral release. PMID:16821794

  14. Folate receptor-mediated enhanced and specific delivery of far-red light-activatable prodrugs of combretastatin A-4 to FR-positive tumor.

    PubMed

    Nkepang, Gregory; Bio, Moses; Rajaputra, Pallavi; Awuah, Samuel G; You, Youngjae

    2014-12-17

    We examined the concept of a novel prodrug strategy in which anticancer drug can be locally released by visible/near IR light, taking advantage of the photodynamic process and photo-unclick chemistry. Our most recently formulated prodrug of combretastatin A-4, Pc-(L-CA4)2, showed multifunctionality for fluorescence imaging, light-activated drug release, and the combined effects of PDT and local chemotherapy. In this formulation, L is a singlet oxygen cleavable linker. Here, we advanced this multifunctional prodrug by adding a tumor-targeting group, folic acid (FA). We designed and prepared four FA-conjugated prodrugs 1-4 (CA4-L-Pc-PEGn-FA: n = 0, 2, 18, ∼45) and one non-FA-conjugated prodrug 5 (CA4-L-Pc-PEG18-boc). Prodrugs 3 and 4 had a longer PEG spacer and showed higher hydrophilicity, enhanced uptake to colon 26 cells via FR-mediated mechanisms, and more specific localization to SC colon 26 tumors in Balb/c mice than prodrugs 1 and 2. Prodrug 4 also showed higher and more specific uptake to tumors, resulting in selective tumor damage and more effective antitumor efficacy than non-FA-conjugated prodrug 5. FR-mediated targeting seemed to be an effective strategy to spare normal tissues surrounding tumors in the illuminated area during treatment with this prodrug.

  15. Folate Receptor-Mediated Enhanced and Specific Delivery of Far-Red Light-Activatable Prodrugs of Combretastatin A-4 to FR-Positive Tumor

    PubMed Central

    2015-01-01

    We examined the concept of a novel prodrug strategy in which anticancer drug can be locally released by visible/near IR light, taking advantage of the photodynamic process and photo-unclick chemistry. Our most recently formulated prodrug of combretastatin A-4, Pc-(L-CA4)2, showed multifunctionality for fluorescence imaging, light-activated drug release, and the combined effects of PDT and local chemotherapy. In this formulation, L is a singlet oxygen cleavable linker. Here, we advanced this multifunctional prodrug by adding a tumor-targeting group, folic acid (FA). We designed and prepared four FA-conjugated prodrugs 1–4 (CA4-L-Pc-PEGn-FA: n = 0, 2, 18, ∼45) and one non-FA-conjugated prodrug 5 (CA4-L-Pc-PEG18-boc). Prodrugs 3 and 4 had a longer PEG spacer and showed higher hydrophilicity, enhanced uptake to colon 26 cells via FR-mediated mechanisms, and more specific localization to SC colon 26 tumors in Balb/c mice than prodrugs 1 and 2. Prodrug 4 also showed higher and more specific uptake to tumors, resulting in selective tumor damage and more effective antitumor efficacy than non-FA-conjugated prodrug 5. FR-mediated targeting seemed to be an effective strategy to spare normal tissues surrounding tumors in the illuminated area during treatment with this prodrug. PMID:25351441

  16. A non-canonical ESCRT pathway, including histidine domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC class I.

    PubMed

    Parkinson, Michael D J; Piper, Siân C; Bright, Nicholas A; Evans, Jennifer L; Boname, Jessica M; Bowers, Katherine; Lehner, Paul J; Luzio, J Paul

    2015-10-01

    The Kaposi's sarcoma-associated herpes virus (KSHV) K3 viral gene product effectively down-regulates cell surface MHC class I. K3 is an E3 ubiquitin ligase that promotes Lys(63)-linked polyubiquitination of MHC class I, providing the signal for clathrin-mediated endocytosis. Endocytosis is followed by sorting into the intralumenal vesicles (ILVs) of multivesicular bodies (MVBs) and eventual delivery to lysosomes. The sorting of MHC class I into MVBs requires many individual proteins of the four endosomal sorting complexes required for transport (ESCRTs). In HeLa cells expressing the KSHV K3 ubiquitin ligase, the effect of RNAi-mediated depletion of individual proteins of the ESCRT-0 and ESCRT-I complexes and three ESCRT-III proteins showed that these are required to down-regulate MHC class I. However, depletion of proteins of the ESCRT-II complex or of the ESCRT-III protein, VPS20 (vacuolar protein sorting 20)/CHMP6 (charged MVB protein 6), failed to prevent the loss of MHC class I from the cell surface. Depletion of histidine domain phosphotyrosine phosphatase (HD-PTP) resulted in an increase in the cell surface concentration of MHC class I in HeLa cells expressing the KSHV K3 ubiquitin ligase. Rescue experiments with wild-type (WT) and mutant HD-PTP supported the conclusion that HD-PTP acts as an alternative to ESCRT-II and VPS20/CHMP6 as a link between the ESCRT-I and those ESCRT-III protein(s) necessary for ILV formation. Thus, the down-regulation of cell surface MHC class I, polyubiquitinated by the KSHV K3 ubiquitin ligase, does not employ the canonical ESCRT pathway, but instead utilizes an alternative pathway in which HD-PTP replaces ESCRT-II and VPS20/CHMP6.

  17. Large-scale phosphotyrosine proteomic profiling of rat renal collecting duct epithelium reveals predominance of proteins involved in cell polarity determination.

    PubMed

    Zhao, Boyang; Knepper, Mark A; Chou, Chung-Lin; Pisitkun, Trairak

    2012-01-01

    Although extensive phosphoproteomic information is available for renal epithelial cells, previous emphasis has been on phosphorylation of serines and threonines with little focus on tyrosine phosphorylation. Here we have carried out large-scale identification of phosphotyrosine sites in pervanadate-treated native inner medullary collecting ducts of rat, with a view towards identification of physiological processes in epithelial cells that are potentially regulated by tyrosine phosphorylation. The method combined antibody-based affinity purification of tyrosine phosphorylated peptides coupled with immobilized metal ion chromatography to enrich tyrosine phosphopeptides, which were identified by LC-MS/MS. A total of 418 unique tyrosine phosphorylation sites in 273 proteins were identified. A large fraction of these sites have not been previously reported on standard phosphoproteomic databases. All results are accessible via an online database: http://helixweb.nih.gov/ESBL/Database/iPY/. Analysis of surrounding sequences revealed four overrepresented motifs: [D/E]xxY*, Y*xxP, DY*, and Y*E, where the asterisk symbol indicates the site of phosphorylation. These motifs plus contextual information, integrated using the NetworKIN tool, suggest that the protein tyrosine kinases involved include members of the insulin- and ephrin-receptor kinase families. Analysis of the gene ontology (GO) terms and KEGG pathways whose protein elements are overrepresented in our data set point to structures involved in epithelial cell-cell and cell-matrix interactions ("adherens junction," "tight junction," and "focal adhesion") and to components of the actin cytoskeleton as major sites of tyrosine phosphorylation in these cells. In general, these findings mesh well with evidence that tyrosine phosphorylation plays a key role in epithelial polarity determination.

  18. Platelet-activating factor stimulation of tyrosine kinase and its relationship to phospholipase C in rabbit platelets: Studies with genistein and monoclonal antibody to phosphotyrosine

    SciTech Connect

    Dhar, A.; Paul, A.K.; Shukla, S.D. )

    1990-04-01

    Platelet-activating factor (PAF) is a proinflammatory lipid that has platelet-stimulating property. PAF receptor-coupled activation of phosphoinositide-specific phospholipase C (PLC) and phosphorylation of several proteins has already been established in our laboratory. To investigate further the molecular mechanism and relationship between activation of PLC and protein phosphorylation, we have used Genistein (a putative inhibitor of tyrosine-specific protein kinases), phosphotyrosine antibody, and phosphoamino acid analysis to probe the involvement of tyrosine kinase in this process. Washed rabbit platelets were loaded with myo-(2-3H)inositol and challenged with PAF (100 nM) after pretreatment with Genistein. PLC-mediated production of radioactive inositol monophosphate, inositol diphosphate, and inositol triphosphate was monitored. PAF alone caused stimulation of PLC activity (( 3H)inositol triphosphate production), whereas pretreatment with Genistein (0.5 mM) diminished PAF-stimulated PLC activity to basal level. Genistein also blocked PAF-stimulated platelet aggregation at this dose. In contrast to Genistein, staurosporine which inhibits protein kinase C, potentiated PAF-stimulated (3H)inositol triphosphate production. Genistein substantially inhibited the combined effects of staurosporine and PAF on inositol triphosphate production. Genistein also reduced PAF-induced phosphorylation of Mr 20,000 and 50,000 proteins. Phorbol 12-myristate 13-acetate-induced Mr 40,000 protein phosphorylation was also affected by Genistein. The above results suggested that Genistein inhibited tyrosine kinase at an early stage of signal transduction by inhibiting PLC. This, in turn, decreased the activation of protein kinase C and, therefore, caused a reduction in Mr 40,000 protein phosphorylation.

  19. Synthesis and biological evaluation of phosphate prodrugs of 4-phospho-D-erythronohydroxamic acid, an inhibitor of 6-phosphogluconate dehydrogenase.

    PubMed

    Ruda, Gian Filippo; Alibu, Vincent P; Mitsos, Christos; Bidet, Olivier; Kaiser, Marcel; Brun, Reto; Barrett, Michael P; Gilbert, Ian H

    2007-08-01

    We have previously reported the discovery of potent and selective inhibitors of 6-phosphogluconate dehydrogenase, the third enzyme of the phosphate pentose pathway, from Trypanosoma brucei, the causative organism of human African trypanosomiasis. These inhibitors were charged phosphate derivatives with restricted capacity to enter cells. Herein, we report the synthesis of five different classes of prodrugs: phosphoramidate; bis-S-acyl thioethyl esters (bis-SATE); bis-pivaloxymethyl (bis-POM); CycloSaligenyl; and phenyl, S-acyl thioethyl mixed phosphate esters (mix-SATE). Prodrugs were studied for stability and activity against the intact parasites. Most prodrugs caused inhibition of the growth of the parasites. The activity of the prodrugs against the parasites appeared to be related to their stability in aqueous buffer.

  20. Nanostructured nanoparticles of self-assembled lipid pro-drugs as a route to improved chemotherapeutic agents

    SciTech Connect

    Sagnella, Sharon M.; Gong, Xiaojuan; Moghaddam, Minoo J.; Conn, Charlotte E.; Kimpton, Kathleen; Waddington, Lynne J.; Krodkiewska, Irena; Drummond, Calum J.

    2014-09-24

    We demonstrate that oral delivery of self-assembled nanostructured nanoparticles consisting of 5-fluorouracil (5-FU) lipid prodrugs results in a highly effective, target-activated, chemotherapeutic agent, and offers significantly enhanced efficacy over a commercially available alternative that does not self-assemble. The lipid prodrug nanoparticles have been found to significantly slow the growth of a highly aggressive mouse 4T1 breast tumour, and essentially halt the growth of a human MDA-MB-231 breast tumour in mouse xenografts. Systemic toxicity is avoided as prodrug activation requires a three-step, enzymatic conversion to 5-FU, with the third step occurring preferentially at the tumour site. Additionally, differences in the lipid prodrug chemical structure and internal nanostructure of the nanoparticle dictate the enzymatic conversion rate and can be used to control sustained release profiles. Thus, we have developed novel oral nanomedicines that combine sustained release properties with target-selective activation.

  1. Design and synthesis of imidazole N-H substituted amide prodrugs as inhibitors of hepatitis C virus replication.

    PubMed

    Zong, Xi; Cai, Jin; Chen, Junqing; Wang, Peng; Zhou, Gaoxin; Chen, Bo; Li, Wei; Ji, Min

    2015-08-15

    Twenty-five novel imidazole N-H substituted Daclatasvir (BMS-790052, DCV) analogues (8a-8y) were designed and synthesized as potential prodrugs. Structure modifications were performed in order to improve potency and pharmacokinetic (PK) properties. All target compounds were evaluated in a hepatitis C virus (HCV) genotype 1b replicon, and the 2-oxoethyl acetate substituted compound 8t showed similar anti-HCV activity (EC50 = 0.08 nM) to that of the lead compound Daclatasvir. Moreover, the utility of prodrug 8t was demonstrated through similar exposure of the parent compound when the prodrugs were dosed in vivo. PK studies showed that prodrug 8t was an ideal candidate for a slower and sustained release form of Daclatasvir.

  2. Nanostructured nanoparticles of self-assembled lipid pro-drugs as a route to improved chemotherapeutic agents

    NASA Astrophysics Data System (ADS)

    Sagnella, Sharon M.; Gong, Xiaojuan; Moghaddam, Minoo J.; Conn, Charlotte E.; Kimpton, Kathleen; Waddington, Lynne J.; Krodkiewska, Irena; Drummond, Calum J.

    2011-03-01

    We demonstrate that oral delivery of self-assembled nanostructured nanoparticles consisting of 5-fluorouracil (5-FU) lipid prodrugs results in a highly effective, target-activated, chemotherapeutic agent, and offers significantly enhanced efficacy over a commercially available alternative that does not self-assemble. The lipid prodrug nanoparticles have been found to significantly slow the growth of a highly aggressive mouse 4T1 breast tumour, and essentially halt the growth of a human MDA-MB-231 breast tumour in mouse xenografts. Systemic toxicity is avoided as prodrug activation requires a three-step, enzymatic conversion to 5-FU, with the third step occurring preferentially at the tumour site. Additionally, differences in the lipid prodrug chemical structure and internal nanostructure of the nanoparticle dictate the enzymatic conversion rate and can be used to control sustained release profiles. Thus, we have developed novel oral nanomedicines that combine sustained release properties with target-selective activation.

  3. Synthesis and characterization of brain penetrant prodrug of neuroprotective D-264: Potential therapeutic application in the treatment of Parkinson's disease.

    PubMed

    Dholkawala, Fahd; Voshavar, Chandrashekhar; Dutta, Aloke K

    2016-06-01

    Parkinson's disease (PD) is one of the major debilitating neurodegenerative disorders affecting millions of people worldwide. Progressive loss of dopamine neurons resulting in development of motor dysfunction and other related non-motor symptoms is the hallmark of PD. Previously, we have reported on the neuroprotective property of a potent D3 preferring agonist D-264. In our goal to increase the bioavailability of D-264 in the brain, we have synthesized a modified cysteine based prodrug of D-264 and evaluated its potential in crossing the blood-brain barrier. Herein, we report the synthesis of a novel modified cysteine conjugated prodrug of potent neuroprotective D3 preferring agonist D-264 and systematic evaluation of the hydrolysis pattern of the prodrug to yield D-264 at different time intervals in rat plasma and brain homogenates using HPLC analysis. Furthermore, we have also performed in vivo experiments with the prodrug to evaluate its enhanced brain penetration ability.

  4. Preparation and Pharmacological Evaluation of Novel Orally Active Ester Prodrugs of Ketoprofen with Non-Ulcerogenic Property.

    PubMed

    Dhakane, Valmik D; Thakare, Vishnu N; Dongare, Sakharam B; Bhale, Pravin S; Mule, Yoginath B; Bandgar, Babasaheb P; Chavan, Hemant V

    2016-06-01

    This study investigates anti-inflammatory activity with improved pharmacokinetic and non-ulcerogenic properties of various novel synthesized prodrugs of ketoprofen in experimental animals. Prodrugs 3a, 3f and 3k were found to possess significant anti-inflammatory activity with almost non-ulcerogenic potential than standard drug ketoprofen (1) in both normal and inflammation-induced rats. The experimental findings elicited higher AUC and plasma concentration at 1 and 2 h indicating improved oral bioavailability as compared to parent drug ketoprofen. These prodrugs are found to have no gastric ulceration with retained anti-inflammatory activity. Therefore, present experimental findings demonstrated significant improvement of various pharmacokinetic properties with non-ulcerogenic potential of ester prodrugs of ketoprofen.

  5. Topical iontophoretic delivery of ionizable, biolabile aciclovir prodrugs: A rational approach to improve cutaneous bioavailability.

    PubMed

    Chen, Yong; Alberti, Ingo; Kalia, Yogeshvar N

    2016-02-01

    The objective was to investigate the topical iontophoretic delivery of a series of amino acid ester prodrugs of aciclovir (ACV-X, where ACV=aciclovir and X=Arg, Gly, Ile, Phe, Trp and Val) as a means to enhance cutaneous delivery of ACV. The newly synthesized prodrugs were characterized by (1)H NMR and high resolution mass spectrometry. Analytical methods using HPLC-UV were developed for their quantification and each method was validated. Investigation of solution stability as a function of pH showed that all ACV-X prodrugs were relatively stable in acid conditions at pH 2.0 and pH 5.5 for up to 8h but susceptible to extensive hydrolysis at pH 7.4 and under alkaline conditions (pH 10). No ACV-X hydrolysis was observed after contact for 2h with the external surface of porcine stratum corneum. However, there was significant hydrolysis following contact with the dermal surface of dermatomed porcine skin, in particular, for ACV-Arg. Passive transport of ACV and ACV-X prodrugs from aqueous solution after 2h was below the limit of detection. Iontophoresis of ACV at 0.5 mA/cm(2) for 2h led to modest ACV skin deposition (QDEP,ACV) of 4.6 ± 0.3 nmol/cm(2). In contrast, iontophoresis of ACV-X prodrugs under the same conditions produced order of magnitude increases in cutaneous deposition of ACV species, that is, QDEP,TOTAL=QDEP,ACV+QDEP,ACV-X. QDEP,TOTAL for ACV-Gly, ACV-Val, ACV-Ile, ACV-Phe, ACV-Trp and ACV-Arg was 412.8 ± 44.0, 358.8 ± 66.8, 434.1 ± 68.2, 249.8 ± 81.4, 156.1 ± 76.3, 785.9 ± 78.1 nmol/cm(2), respectively. The extent of bioconversion of ACV-X to ACV in the skin was high and the proportion of ACV present ranged from 81% to 100%. The skin retention ratio, a measure of the selectivity of ACV species for deposition over permeation after iontophoretic delivery of ACV-X prodrugs, was dependent on both the rate of transport and the susceptibility to hydrolysis of the prodrugs. Skin deposition of ACV and its six prodrugs were investigated further as a

  6. Design, synthesis and in vitro/in vivo evaluation of orally bioavailable prodrugs of a catechol-O-methyltransferase inhibitor.

    PubMed

    Rautio, Jarkko; Leppänen, Jukka; Lehtonen, Marko; Laine, Krista; Koskinen, Mikko; Pystynen, Jarmo; Savolainen, Jouko; Sairanen, Mikko

    2010-04-15

    Compound 1 is an investigational, nanomolar inhibitor of catechol-O-methyltransferase (COMT) that suffers from poor oral bioavailability, most probably due to its low lipophilicity throughout most of the gastrointestinal tract and, to a lesser extent, its rapid systemic clearance. Several lipophilic esters were designed as prodrugs and synthesized in an attempt to optimize presystemic drug absorption. A modest twofold increase in 6-h exposure of 1 was observed with two prodrugs, compared to that of 1, after oral treatment in rats.

  7. Identification of novel enzyme-prodrug combinations for use in cytochrome P450-based gene therapy for cancer.

    PubMed

    Baldwin, Alex; Huang, Zeqi; Jounaidi, Youssef; Waxman, David J

    2003-01-01

    Gene-directed enzyme prodrug therapy can be used to increase the therapeutic activity of anti-cancer prodrugs that undergo liver cytochrome P450 (CYP)-catalyzed prodrug to active drug conversion. The present report describes a cell-culture-based assay to identify CYP gene-CYP prodrug combinations that generate bystander cytotoxic metabolites and that may potentially be useful for CYP-based gene therapy for cancer. A panel of rat liver microsomes, comprising distinct subsets of drug-inducible hepatic CYPs, was evaluated for prodrug activation in a four-day 9L gliosarcoma cell growth inhibition assay. A strong NADPH- and liver microsome-dependent increase in 9L cytotoxicity was observed for the CYP prodrugs cyclophosphamide, ifosfamide, and methoxymorpholinyl doxorubicin (MMDX) but not with three other CYP prodrugs, procarbazine, dacarbazine, and tamoxifen. MMDX activation was potentiated approximately 250-fold by liver microsomes from dexamethasone-induced rats (IC(50) (MMDX) approximately 0.1nM), suggesting that dexamethasone-inducible CYP3A enzymes contribute to activation of this novel anthracycline anti-tumor agent. This CYP3A dependence was verified in studies using liver microsomes from uninduced male and female rats and by using the CYP3A-selective inhibitors troleandomycin and ketoconazole. These findings highlight the advantages of using cell culture assays to identify novel CYP prodrug-CYP gene combinations that are characterized by production of cell-permeable, cytotoxic metabolites and that may potentially be incorporated into CYP-based gene therapies for cancer treatment.

  8. Pharmacokinetics of amino acid ester prodrugs of acyclovir after oral administration: interaction with the transporters on Caco-2 cells.

    PubMed

    Katragadda, Suresh; Jain, Ritesh; Kwatra, Deep; Hariharan, Sudharshan; Mitra, Ashim K

    2008-10-01

    In vivo systemic absorption of the amino acid prodrugs of acyclovir (ACV) after oral administration was evaluated in rats. Stability of the prodrugs, L-alanine-ACV (AACV), L-serine-ACV (SACV), L-isoleucine-ACV (IACV), gamma-glutamate-ACV (EACV) and L-valine-ACV (VACV) was evaluated in various tissues. Interaction of these prodrugs with the transporters on Caco-2 cells was studied. In vivo systemic bioavailability of these prodrugs upon oral administration was evaluated in jugular vein cannulated rats. The amino acid ester prodrugs showed affinity towards various amino acid transporters as well as the peptide transporter on the Caco-2 cells. In terms of stability, EACV was most enzymatically stable compared to other prodrugs especially in liver homogenate. In oral absorption studies, ACV and AACV showed high terminal elimination rate constants (lambda(z)). SACV and VACV exhibited approximately five-fold increase in area under the curve (AUC) values relative to ACV (p<0.05). C(max(T)) (maximum concentration) of SACV was observed to be 39+/-22 microM in plasma which is 2 times better than VACV and 15 times better than ACV. C(last(T)) (concentration at the last time point) of SACV was observed to be 0.18+/-0.06 microM in plasma which is two times better than VACV and three times better than ACV. Amino acid ester prodrugs of ACV were absorbed at varying amounts (C(max)) and eliminated at varying rates (lambda(z)) thereby leading to varying extents (AUC). The amino acid ester prodrug SACV owing to its enhanced stability, higher AUC and better concentration at last time point seems to be a promising candidate for the oral treatment of herpes infections.

  9. Water-soluble nitric-oxide-releasing acetylsalicylic acid (ASA) prodrugs.

    PubMed

    Rolando, Barbara; Lazzarato, Loretta; Donnola, Monica; Marini, Elisabetta; Joseph, Sony; Morini, Giuseppina; Pozzoli, Cristina; Fruttero, Roberta; Gasco, Alberto

    2013-07-01

    A series of water-soluble (benzoyloxy)methyl esters of acetylsalicylic acid (ASA), commonly known as aspirin, are described. The new derivatives each have alkyl chains containing a nitric oxide (NO)-releasing nitrooxy group and a solubilizing moiety bonded to the benzoyl ring. The compounds were synthesized and evaluated as ASA prodrugs. After conversion to the appropriate salt, most of the derivatives are solid at room temperature and all possess good water solubility. They are quite stable in acid solution (pH 1) and less stable at physiological pH. In human serum, these compounds are immediately metabolized by esterases, producing a mixture of ASA, salicylic acid (SA), and of the related NO-donor benzoic acids, along with other minor products. Due to ASA release, the prodrugs are capable of inhibiting collagen-induced platelet aggregation of human platelet-rich plasma. Simple NO-donor benzoic acids 3-hydroxy-4-(3-nitrooxypropoxy)benzoic acid (28) and 3-(morpholin-4-ylmethyl)-4-[3-(nitrooxy)propoxy]benzoic acid (48) were also studied as representative models of the whole class of benzoic acids formed following metabolism of the prodrugs in serum. These simplified derivatives did not trigger antiaggregatory activity when tested at 300 μM. Only 28 displays quite potent NO-dependent vasodilatatory action. Further in vivo evaluation of two selected prodrugs, {[2-(acetyloxy)benzoyl]oxy}methyl-3-[(3-[aminopropanoyl)oxy]-4-[3-(nitrooxy)propoxy]benzoate⋅HCl (38) and {[2-(acetyloxy)benzoyl]oxy}methyl 3-(morpholin-4-ylmethyl)-4-[3-(nitrooxy)propoxy]benzoate oxalate (49), revealed that their anti-inflammatory activities are similar to that of ASA when tested in the carrageenan-induced paw edema assay in rats. The gastrotoxicity of the two prodrugs was also determined to be lower than that of ASA in a lesion model in rats. Taken together, these results indicated that these NO-donor ASA prodrugs warrant further investigation for clinical application.

  10. Synthesis, stability studies, anti-inflammatory activity and ulcerogenicity of morpholinoalkyl ester prodrugs of niflumic acid.

    PubMed

    Talath, Sirajunisa; Gadad, Andanappa K

    2006-01-01

    In search for potential prodrugs for anti-inflammatory drug candidates in the niflumate series, novel morpholinoalkyl ester prodrugs of niflumic acid (CAS 4394-00-7) 5a-b were prepared by esterification of appropriate morpholinylalkyl alcohols 3a-b with niflumic acid 4 in the presence of dicyclohexyl carbodiimide (DCC) and catalyst dimethylamino pyridine (DMAP) at 0-5 degrees C. The structures were confirmed by elemental and spectral data (UV, IR, 1H-NMR, 13C-NMR, and EI-MS). The ester prodrugs 5a-b showed better solubility than the parent drug niflumic acid 4 in simulated gastric fluid (SGF) and phosphate buffer (pH 7.4). The in vitro hydrolysis studies were conducted at pH 1.3 (SGF), phosphate buffer (pH 7.4) and in human plasma diluted with phosphate buffer (pH 7.4) at 37+/-0.5 degrees C using HPLC with UV detection. The ester prodrugs 5a-b were quantitatively hydrolyzed to the parent drug niflumic acid 4 by enzymatic and/or chemical means. It is observed that an increase in the carbon chain length rendered the prodrugs 5a-b more stable in phosphate buffer (pH 7.4) than in pH 1.3 (SGF), but they were rapidly hydrolyzed in human plasma at 37+/-0.5 degrees C. They exhibited longer hydrolytic half-lives of 16.11-53.30 h in aqueous buffer solutions (pH 1.3 and 7.4) and 1.63-2.73 min in human plasma, respectively. The title compounds were evaluated in vivo for anti-inflammatory activity in carrageenan induced rat paw oedema model in rats at the doses 45, 90, 150 mg/kg b.w. The test compounds exhibited good anti-inflammatory activity (46.6-53.2 % at the dose of 150 mg/kg b. w.) with respect to niflumic acid (78.7 % at the dose of 90 mg/kg b.w.). The compounds were also screened for in vivo ulcerogenicity, it was observed that the prodrug 5b was significantly less irritating to gastric mucosa than compound 5a and the parent drug niflumic acid 4 following single and chronic oral administration in rats.

  11. Targeted anti-cancer prodrug based on carbon nanotube with photodynamic therapeutic effect and pH-triggered drug release

    NASA Astrophysics Data System (ADS)

    Fan, Jianquan; Zeng, Fang; Xu, Jiangsheng; Wu, Shuizhu

    2013-09-01

    Herein, we describe a multifunctional anti-cancer prodrug system based on water-dispersible carbon nanotube (CNT); this prodrug system features active targeting, pH-triggered drug release, and photodynamic therapeutic properties. For this prodrug system (with the size of 100-300 nm), an anti-cancer drug, doxorubicin (DOX), was incorporated onto CNT via a cleavable hydrazone bond; and a targeting ligand (folic acid) was also coupled onto CNT. This prodrug can preferably enter folate receptor (FR)-positive cancer cells and undergo intracellular release of the drug triggered by the reduced pH. The targeted CNT-based prodrug system can cause lower cell viability toward FR-positive cells compared to the non-targeted ones. Moreover, the CNT carrier exhibits photodynamic therapeutic (PDT) action; and the cell viability of FR-positive cancer cells can be further reduced upon light irradiation. The dual effects of pH-triggered drug release and PDT increase the therapeutic efficacy of the DOX-CNT prodrug. This study may offer some useful insights on designing and improving the applicability of CNT for other drug delivery systems.

  12. NIR Fluorogenic Dye as a Modular Platform for Prodrug Assembly: Real-Time in vivo Monitoring of Drug Release.

    PubMed

    Redy-Keisar, Orit; Ferber, Shiran; Satchi-Fainaro, Ronit; Shabat, Doron

    2015-06-01

    The ability to monitor drug release in vivo provides essential pharmacological information. We developed a new modular approach for the preparation of theranostic prodrugs with a turn-ON near-infrared (NIR) fluorescence mode of action. The prodrugs release their chemotherapeutic cargo and an active cyanine fluorophore upon reaction with a specific analyte. The prodrug platform is based on the fluorogenic dye QCy7; upon removal of a triggering substrate, the dye fluoresces, and the free drug is released. The evaluated camptothecin prodrug was activated by endogenous hydrogen peroxide produced in tumor cells in vitro and in vivo. Drug release and in vitro cytotoxicity were correlated with the emitted fluorescence. The prodrug activation was effectively imaged in real time in mice bearing tumors. The modular design of the QCy7 fluorogenic platform should allow the preparation of numerous other prodrugs with various triggering substrates and chemotherapeutic agents. We anticipate that the development of real-time in vivo monitoring tools such as that described herein will pave the way for personalized therapy.

  13. Constitutive Triglyceride Turnover into the Mesenteric Lymph Is Unable to Support Efficient Lymphatic Transport of a Biomimetic Triglyceride Prodrug.

    PubMed

    Han, Sifei; Hu, Luojuan; Quach, Tim; Simpson, Jamie S; Trevaskis, Natalie L; Porter, Christopher J H

    2016-02-01

    The triglyceride (TG) mimetic prodrug (1,3-dipalmitoyl-2-mycophenoloyl glycerol, 2-MPA-TG) biochemically integrates into intestinal lipid transport and lipoprotein assembly pathways and thereby promotes the delivery of mycophenolic acid (MPA) into the lymphatic system. As lipoprotein (LP) formation occurs constitutively, even in the fasted state, the current study aimed to determine whether lymphatic transport of 2-MPA-TG was dependent on coadministered exogenous lipid. In vitro incubation of the prodrug with rat digestive fluid and in situ intestinal perfusion experiments revealed that hydrolysis and absorption of the prodrug were relatively unaffected by the quantity of lipid in formulations. In vivo studies in rats, however, showed that the lymphatic transport of TG and 2-MPA-TG was significantly higher following administration with higher quantities of lipid and that oleic acid (C18:1) was more effective in promoting prodrug transport than lipids with higher degrees of unsaturation. The recovery of 2-MPA-TG and TG in lymph correlated strongly (R(2) = 0.99) and more than 97% of the prodrug was associated with chylomicrons. Inhibition of LP assembly by Pluronic L81 simultaneously inhibited the lymphatic transport of 2-MPA-TG and TG. In conclusion, although the TG mimetic prodrug effectively incorporates into TG resynthetic pathways, lipid coadministration is still required to support efficient lymphatic transport.

  14. Drug Delivery Nanoparticles with Locally Tunable Toxicity Made Entirely from a Light-Activatable Prodrug of Doxorubicin.

    PubMed

    Schutt, Carolyn; Ibsen, Stuart; Zahavy, Eran; Aryal, Santosh; Kuo, Stacey; Esener, Selin; Berns, Michael; Esener, Sadik

    2017-08-08

    A major challenge facing nanoparticle-based delivery of chemotherapy agents is the natural and unavoidable accumulation of these particles in healthy tissue resulting in local toxicity and dose-limiting side effects. To address this issue, we have designed and characterized a new prodrug nanoparticle with controllable toxicity allowing a locally-delivered light trigger to convert the payload of the particle from a low to a high toxicity state. The nanoparticles are created entirely from light-activatable prodrug molecules using a nanoprecipitation process. The prodrug is a conjugate of doxorubicin and photocleavable biotin (DOX-PCB). These DOX-PCB nanoparticles are 30 times less toxic to cells than doxorubicin, but can be activated to release pure therapeutic doxorubicin when exposed to 365 nm light. These nanoparticles have an average diameter of around 100 nm and achieve the maximum possible prodrug loading capacity since no support structure or coating is required to prevent loss of prodrug from the nanoparticle. These light activatable nanoparticles demonstrate tunable toxicity and can be used to facilitate future therapy development whereby light delivered specifically to the tumor tissue would locally convert the nanoparticles to doxorubicin while leaving nanoparticles accumulated in healthy tissue in the less toxic prodrug form.

  15. Regulating the alky chain length of fatty acid-didanosine prodrugs and evaluating its role in albumin binding.

    PubMed

    Chen, Hongxiang; Wang, Gang; Sun, Lanzhen; Zhang, Huicong; Sun, Mengchi; Sun, Jin; Shang, Lei; Luo, Cong

    2017-09-24

    Rational design of prodrugs for efficient albumin binding shows distinct advantages in drug delivery in terms of drug availability, systemic circulation, and potential targeting effect. And fatty acids are good candidates due to their high affinity to albumin. However, how the alkyl chain length of fatty acids affects the binding dynamics between prodrugs and albumin, despite its importance, is still unclear. In the present study, three prodrugs of didanosine (DDI) and fatty acids were designed and synthesized to evaluate the effect of the alkyl chain length on prodrug-albumin binding process, including capric acid-didanosine (CA-DDI), myristic acid-didanosine (MA-DDI), and stearic acid-didanosine (SA-DDI). The binding dynamics between these prodrugs with bovine serum albumin (BSA) were studied by fluorometry, circular dichroism (CD), UV analysis, and molecular docking. It turned out that DDI itself showed poor binding affinity to BSA. In contrast, CA-DDI, MA-DDI, and SA-DDI demonstrated significantly improved binding affinity. Interestingly, the binding affinity between DDI prodrugs and BSA was correlated with the alkyl chain length of fatty acids, and the binding constant significantly increased with the extension of alkyl chain length (KCA-DDI = 5.86 × 103 M(-1), KMA-DDI = 8.57 × 103 M(-1), and KSA-DDI = 11.42 × 103 M(-1) at 298 K).

  16. Development and Evaluation of Small Peptidomimetic Ligands to Protease-Activated Receptor-2 (PAR2) through the Use of Lipid Tethering

    PubMed Central

    Boitano, Scott; Hoffman, Justin; Tillu, Dipti V.; Asiedu, Marina N.; Zhang, Zhenyu; Sherwood, Cara L.; Wang, Yan; Dong, Xinzhong; Price, Theodore J.; Vagner, Josef

    2014-01-01

    Protease-activated receptor-2 (PAR2) is a G-Protein Coupled Receptor (GPCR) activated by proteolytic cleavage to expose an attached, tethered ligand (SLIGRL). We evaluated the ability for lipid-tethered-peptidomimetics to activate PAR2 with in vitro physiological and Ca2+ signaling assays to determine minimal components necessary for potent, specific and full PAR2 activation. A known PAR2 activating compound containing a hexadecyl (Hdc) lipid via three polyethylene glycol (PEG) linkers (2at-LIGRL-PEG3-Hdc) provided a potent agonist starting point (physiological EC50 = 1.4 nM; 95% CI: 1.2–2.3 nM). In a set of truncated analogs, 2at-LIGR-PEG3-Hdc retained potency (EC50 = 2.1 nM; 1.3–3.4 nM) with improved selectivity for PAR2 over Mas1 related G-protein coupled receptor type C11, a GPCR that can be activated by the PAR2 peptide agonist, SLIGRL-NH2. 2at-LIG-PEG3-Hdc was the smallest full PAR2 agonist, albeit with a reduced EC50 (46 nM; 20–100 nM). 2at-LI-PEG3-Hdc retained specific activity for PAR2 with reduced EC50 (310 nM; 260–360 nM) but displayed partial PAR2 activation in both physiological and Ca2+ signaling assays. Further truncation (2at-L-PEG3-Hdc and 2at-PEG3-Hdc) eliminated in vitro activity. When used in vivo, full and partial PAR2 in vitro agonists evoked mechanical hypersensitivity at a 15 pmole dose while 2at-L-PEG3-Hdc lacked efficacy. Minimum peptidomimetic PAR2 agonists were developed with known heterocycle substitutes for Ser1 (isoxazole or aminothiazoyl) and cyclohexylalanine (Cha) as a substitute for Leu2. Both heterocycle-tetrapeptide and heterocycle-dipeptides displayed PAR2 specificity, however, only the heterocycle-tetrapeptides displayed full PAR2 agonism. Using the lipid-tethered-peptidomimetic approach we have developed novel structure activity relationships for PAR2 that allows for selective probing of PAR2 function across a broad range of physiological systems. PMID:24927179

  17. Self-assemblies of pH-activatable PEGylated multiarm poly(lactic acid-co-glycolic acid)-doxorubicin prodrugs with improved long-term antitumor efficacies.

    PubMed

    Ding, Jianxun; Li, Di; Zhuang, Xiuli; Chen, Xuesi

    2013-10-01

    Two pH-activatable star-shaped prodrugs are synthesized through the condensation reaction between Y- or dumbbell-shaped poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PEG-PLGA) copolymer and acid-sensitive cis-aconityl-doxorubicin. The prodrugs self-assemble into micelles with favorable hydrodynamic radii and relatively low critical micelle concentrations. In vitro DOX release from prodrug micelles is accelerated by the decrease of the PLGA content or at the late endosomal pH. The efficient cellular uptake and intracellular DOX release of the prodrug micelles are confirmed and the improved long-term anti-proliferative activities of prodrug micelles are revealed. These features suggest that the prodrugs provide a favorable approach to construct effective polymeric drug delivery systems for malignancy therapy.

  18. Galactosyl prodrug of palmitoylethanolamide: synthesis, stability, cell permeation and cytoprotective activity.

    PubMed

    Luongo, Elvira; Russo, Roberto; Avagliano, Carmen; Santoro, Anna; Melisi, Daniela; Orefice, Nicola Salvatore; Raso, Giuseppina Mattace; Meli, Rosaria; Magliocca, Salvatore; Nieddu, Maria; Santiago, Gilvandete Maria Pinheiro; Boatto, Gianpiero; Calignano, Antonio; Rimoli, Maria Grazia

    2014-10-01

    N-Palmitoylethanolamide (PEA) is emerging as a novel therapeutic agent in the treatment of neuropathic pain and neurodegenerative diseases. Unfortunately, PEA poorly reaches the central nervous system (CNS), after peripheral administration, since it is inactivated through intracellular hydrolysis by lipid amidases. Since prodrug approach is one of the most popular methods used to increase cell permeability, the aim of this paper consists in the synthesis of a new galactosyl prodrug of PEA, the palmitoylethanolamide-succinamyl-D-galactos-6'-yl ester (PEAGAL). Biological experiments both in neuroblastoma and in C6 glioma cells, together with quantitative analyses performed through a LC-MS-MS technique, demonstrate the better efficacy of PEAGAL compared to PEA and its higher cell permeation. Our results encourage further experiments in animal models of neuropathic pain and of neurological disorders and/or neurodegenerative diseases, in order to promote a more effective peripherally administrated derivative of PEA.

  19. Chemotherapy pro-drug activation by biocatalytic virus-like nanoparticles containing cytochrome P450.

    PubMed

    Sánchez-Sánchez, Lorena; Cadena-Nava, Rubén D; Palomares, Laura A; Ruiz-Garcia, Jaime; Koay, Melissa S T; Cornelissen, Jeroen J M T; Vazquez-Duhalt, Rafael

    2014-06-10

    This work shows, for the first time, the encapsulation of a highly relevant protein in the biomedical field into virus-like particles (VLPs). A bacterial CYP variant was effectively encapsulated in VLPs constituted of coat protein from cowpea chlorotic mottle virus (CCMV). The catalytic VLPs are able to transform the chemotherapeutic pro-drug, tamoxifen, and the emerging pro-drug resveratrol. The chemical nature of the products was identified, confirming similar active products than those obtained with human CYP. The enzymatic VLPs remain stable after the catalytic reaction. The potential use of these biocatalytic nanoparticles as targeted CYP carriers for the activation of chemotherapy drugs is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Polymer prodrug nanoparticles based on naturally occurring isoprenoid for anticancer therapy.

    PubMed

    Trung Bui, Duc; Maksimenko, Andrei; Desmaële, Didier; Harrisson, Simon; Vauthier, Christine; Couvreur, Patrick; Nicolas, Julien

    2013-08-12

    The synthesis of a novel class of polymer prodrug nanoparticles with anticancer activity is reported by using squalene, a naturally occurring isoprenoid, as a building block by the reversible addition-fragmentation (RAFT) technique. The RAFT agent was functionalized by gemcitabine (Gem) as anticancer drug, and the polymerization of squalenyl-methacrylate (SqMA) led to well-defined macromolecular prodrugs comprising one Gem at the extremity of each polymer chain. The amphiphilic nature of the resulting Gem-PSqMA conjugates allowed them to self-assemble into long-term stable and narrowly dispersed nanoparticles with significant anticancer activity in vitro on various cancer cell lines. To confer stealth properties on these nanoparticles, their PEGylation was successfully performed, as confirmed by X-ray photoelectron spectroscopy (XPS) and complement activation assay. It was also shown that the PEGylated nanoparticles could be internalized in cancer cells to a greater extent than their non-PEGylated counterparts.

  1. Design, synthesis, and application of novel triclosan prodrugs as potential antimalarial and antibacterial agents.

    PubMed

    Mishra, Satyendra; Karmodiya, Krishanpal; Parasuraman, Prasanna; Surolia, Avadhesha; Surolia, Namita

    2008-05-15

    A number of new triclosan-conjugated analogs bearing biodegradable ester linkage have been synthesized, characterized and evaluated for their antimalarial and antibacterial activities. Many of these compounds exhibit good inhibition against Plasmodium falciparum and Escherichia coli. Among them tertiary amine containing triclosan-conjugated prodrug (5) inhibited both P. falciparum (IC(50); 0.62microM) and E. coli (IC(50); 0.26microM) at lower concentrations as compared to triclosan. Owing to the presence of a cleavable ester moiety, these new prodrugs are hydrolyzed under physiological conditions and parent molecule, triclosan, is released. Further, introduction of tertiary/quaternary functionality increases their cellular uptake. These properties impart them with higher potency to their antimalarial as well as antibacterial activities. The best compound among them 5 shows close to four-fold enhanced activities against P. falciparum and E. coli cultures as compared to triclosan.

  2. Inhibition of epithelial ovarian cancer by Minnelide, a water-soluble pro-drug.

    PubMed

    Rivard, Colleen; Geller, Melissa; Schnettler, Erica; Saluja, Manju; Vogel, Rachel Isaksson; Saluja, Ashok; Ramakrishnan, Sundaram

    2014-11-01

    Minnelide is a water-soluble pro-drug of triptolide, a natural product. The goal of this study was to evaluate the effectiveness of Minnelide on ovarian cancer growth in vitro and in vivo. The effect of Minnelide on ovarian cancer cell proliferation was determined by real time electrical impedance measurements. Multiple mouse models with C200 and A2780 epithelial ovarian cancer cell lines were used to assess the efficacy of Minnelide in inhibiting ovarian cancer growth. Minnelide decreased cell viability of both platinum sensitive and resistant epithelial ovarian cancer cells in vitro. Minnelide with carboplatin showed additive effects in vitro. Minnelide monotherapy increased the survival of mice bearing established ovarian tumors. Minnelide, in combination with carboplatin and paclitaxel, improved overall survival of mice. Minnelide is a promising pro-drug for the treatment of ovarian cancer, especially when combined with standard chemotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Copper-free click-chemistry platform to functionalize cisplatin prodrugs.

    PubMed

    Pathak, Rakesh K; McNitt, Christopher D; Popik, Vladimir V; Dhar, Shanta

    2014-06-02

    The ability to rationally design and construct a platform technology to develop new platinum(IV) [Pt(IV)] prodrugs with functionalities for installation of targeting moieties, delivery systems, fluorescent reporters from a single precursor with the ability to release biologically active cisplatin by using well-defined chemistry is critical for discovering new platinum-based therapeutics. With limited numbers of possibilities considering the sensitivity of Pt(IV) centers, we used a strain-promoted azide-alkyne cycloaddition approach to provide a platform, in which new functionalities can easily be installed on cisplatin prodrugs from a single Pt(IV) precursor. The ability of this platform to be incorporated in nanodelivery vehicle and conjugation to fluorescent reporters were also investigated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Versatile Bioorthogonal Copper-free Click Chemistry Platform to Functionalize Cisplatin Prodrugs

    PubMed Central

    Pathak, Rakesh K.; McNitt, Christopher D.; Popik, Vladimir V.; Dhar, Shanta

    2015-01-01

    The ability to rationally design and construct a platform technology to develop new platinum(IV) [Pt(IV)] prodrugs with functionalities for installation of targeting moieties, delivery systems, fluorescent reporters from a single precursor with the ability to release biologically active cisplatin using well-defined chemistry is critical for discovering new platinum-based therapeutics. With limited numbers of possibilities by considering the sensitivity of Pt(IV) centers to reduction, thiols, etc, we used a strain promoted azide alkyne cycloaddition (SPAAC) approach to provide a novel platform where new functionalities can easily be installed on cisplatin prodrugs from a single Pt(IV) precursor. The ability of this platform to be incorporated in nano-delivery vehicle and conjugation to fluorescent reporters were also investigated. PMID:24756923

  5. Isosorbide-based aspirin prodrugs: integration of nitric oxide releasing groups.

    PubMed

    Jones, Michael; Inkielewicz, Iwona; Medina, Carlos; Santos-Martinez, Maria Jose; Radomski, Anna; Radomski, Marek W; Lally, Maeve N; Moriarty, Louise M; Gaynor, Joanne; Carolan, Ciaran G; Khan, Denise; O'Byrne, Paul; Harmon, Shona; Holland, Valerie; Clancy, John M; Gilmer, John F

    2009-11-12

    Aspirin prodrugs and related nitric oxide releasing compounds hold significant therapeutic promise, but they are hard to design because aspirin esterification renders its acetate group very susceptible to plasma esterase mediated hydrolysis. Isosorbide-2-aspirinate-5-salicylate is a true aspirin prodrug in human blood because it can be effectively hydrolyzed to aspirin upon interaction with plasma BuChE. We show that the identity of the remote 5-ester dictates whether aspirin is among the products of plasma-mediated hydrolysis. By observing the requirements for aspirin release from an initial panel of isosorbide-based esters, we were able to introduce nitroxymethyl groups at the 5-position while maintaining ability to release aspirin. Several of these compounds are potent inhibitors of platelet aggregation. The design of these compounds will allow better exploration of cross-talk between COX inhibition and nitric oxide release and potentially lead to the development of selective COX-1 acetylating drugs without gastric toxicity.

  6. Chemoenzymatic Syntheses and Anti-HIV-1 Activity of Glucose-Nucleoside Conjugates as Prodrugs

    PubMed Central

    Rodríguez-Pérez, Tatiana; Fernández, Susana; Sanghvi, Yogesh S.; Detorio, Mervi; Schinazi, Raymond F.; Gotor, Vicente; Ferrero, Miguel

    2010-01-01

    Phosphodiester linked conjugates of various nucleosides such as d4U, d4T, IdUrd, ddI, ddA, virazole, ara-A and ara-C containing a glucosyl moiety have been described. These compounds were designed to act as prodrugs, where the corresponding 5′-monophosphates may be generated intracellularly. The synthesis of the glycoconjugates was achieved in good yields by condensation of a glucosyl phosphoramidite 7 with nucleosides in the presence of an activating agent. It was demonstrated that the glucose-conjugates improve water solubility of the nucleoside analogues, for example up to 31-fold for ara-A conjugate compared to ara-A alone. The new conjugates were tested for their anti-HIV-1 activity in human lymphocytes. These derivatives offer a convenient design for potential prodrug candidates with the possibility to improve the physicochemical properties and therapeutic activity of nucleoside analogues. PMID:21077659

  7. Discovery of a new HIV-1 inhibitor scaffold and synthesis of potential prodrugs of indazoles.

    PubMed

    Kim, Se-Ho; Markovitz, Benjamin; Trovato, Richard; Murphy, Brett R; Austin, Harry; Willardsen, Adam J; Baichwal, Vijay; Morham, Scott; Bajji, Ashok

    2013-05-15

    A new oxazole scaffold showing great promise in HIV-1 inhibition has been discovered by cell-based screening of an in-house library and scaffold modification. Follow-up SAR study focusing on the 5-aryl substituent of the oxazole core has identified 4k (EC50=0.42μM, TI=50) as a potent inhibitor. However, the analogues suffered from poor aqueous solubility. To address this issue, we have developed broadly applicable potential prodrugs of indazoles. Among them, N-acyloxymethyl analogue 11b displayed promising results (i.e., increased aqueous solubility and susceptibility to enzymatic hydrolysis). Further studies are warranted to fully evaluate the analogues as the potential prodrugs with improved physiochemical and PK properties.

  8. Preparation of well-defined ibuprofen prodrug micelles by RAFT polymerization.

    PubMed

    Hasegawa, Urara; van der Vlies, André J; Wandrey, Christine; Hubbell, Jeffrey A

    2013-09-09

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used to treat acute pain, fever, and inflammation and are being explored in a new indication in cancer. Side effects associated with long-term use of NSAIDs such as gastrointestinal damage and elevated risk of stroke, however, can limit their use and exploration in new indications. Here we report a facile method to prepare well-defined amphiphilic diblock copolymer NSAID prodrugs by direct reversible addition-fragmentation transfer (RAFT) polymerization of the acrylamide derivative of ibuprofen (IBU), a widely used NSAID. The synthesis and self-assembling behavior of amphiphilic diblock copolymers (PEG-PIBU) having a hydrophilic poly(ethylene glycol) block and a hydrophobic IBU-bearing prodrug block were investigated. Release profiles of IBU from the micelles by hydrolysis were evaluated. Furthermore, the antiproliferative action of the IBU-containing micelles in human cervical carcinoma (HeLa) and murine melanoma (B16-F10) cells was assessed.

  9. Far-Red Light Activatable, Multifunctional Prodrug for Fluorescence Optical Imaging and Combinational Treatment

    PubMed Central

    2015-01-01

    We recently developed “photo-unclick chemistry”, a novel chemical tool involving the cleavage of aminoacrylate by singlet oxygen, and demonstrated its application to visible light-activatable prodrugs. In this study, we prepared an advanced multifunctional prodrug, Pc-(L-CA4)2, composed of the fluorescent photosensitizer phthalocyanine (Pc), an SO-labile aminoacrylate linker (L), and a cytotoxic drug combretastatin A-4 (CA4). Pc-(L-CA4)2 had reduced dark toxicity compared with CA4. However, once illuminated, it showed improved toxicity similar to CA4 and displayed bystander effects in vitro. We monitored the time-dependent distribution of Pc-(L-CA4)2 using optical imaging with live mice. We also effectively ablated tumors by the illumination with far-red light to the mice, presumably through the combined effects of photodynamic therapy (PDT) and released chemotherapy drug, without any sign of acute systemic toxicity. PMID:24694092

  10. Methylselenol prodrug enhances MDV3100 efficacy for treatment of castration-resistant prostate cancer.

    PubMed

    Zhan, Yang; Cao, Bo; Qi, Yanfeng; Liu, Shuang; Zhang, Qi; Zhou, Weidong; Xu, Duo; Lu, Hua; Sartor, Oliver; Kong, Wei; Zhang, Haitao; Dong, Yan

    2013-11-01

    The next-generation antiandrogen MDV3100 prolongs overall survival of patients with metastatic castration-resistant prostate cancer (CRPC). However, patient responses are variable, and survival benefit remains relatively small. Developing effective modality to improve MDV3100 efficacy is urgently needed. Recent evidence suggests that constitutively active androgen receptor splice variants (AR-Vs) drive resistance to MDV3100. In our study, we show that methylselenol prodrug downregulates the expression and activity of both the full-length AR (AR-FL) and AR-Vs. The downregulation is independent of androgen and could be attributable to repressed transcription of the AR gene. Cotreatment with methylselenol prodrug and MDV3100 suppresses AR signaling more dramatically than either agent alone, and synergistically inhibits the growth of CRPC cells in vitro. The combinatorial efficacy is observed in not only AR-V-expressing cells but also cells expressing predominantly AR-FL, likely owing to the ability of the two drugs to block the AR signaling cascade at distinct steps. Ectopic expression of AR-FL or AR-V7 attenuates the combinatorial efficacy, indicating that downregulating AR-FL and AR-V7 is importantly involved in mediating the combinatorial efficacy. Significantly, methylselenol prodrug also downregulates AR-FL and AR-Vs in vivo and substantially improves the antitumor efficacy of MDV3100. These findings support a potential combination therapy for improving MDV3100 efficacy, and provide a rationale for evaluating the clinical application of combining methylselenol prodrug with MDV3100 for the treatment of CRPC. © 2013 UICC.

  11. Methylselenol prodrug enhances MDV3100 efficacy for treatment of castration-resistant prostate cancer

    PubMed Central

    Zhan, Yang; Cao, Bo; Qi, Yanfeng; Liu, Shuang; Zhang, Qi; Zhou, Weidong; Xu, Duo; Lu, Hua; Sartor, Oliver; Kong, Wei; Zhang, Haitao; Dong, Yan

    2013-01-01

    The next-generation antiandrogen MDV3100 prolongs overall survival of patients with metastatic castration-resistant prostate cancer (CRPC). However, patient responses are variable, and survival benefit remains relatively small. Developing effective modality to improve MDV3100 efficacy is urgently needed. Recent evidence suggests that constitutively active androgen receptor splice variants (AR-Vs) drive resistance to MDV3100. In our study, we show that methylselenol prodrug downregulates the expression and activity of both the full-length AR (AR-FL) and AR-Vs. The downregulation is independent of androgen and could be attributable to repressed transcription of the AR gene. Cotreatment with methylselenol prodrug and MDV3100 suppresses AR signaling more dramatically than either agent alone, and synergistically inhibits the growth of CRPC cells in vitro. The combinatorial efficacy is observed in not only AR-V-expressing cells but also cells expressing predominantly AR-FL, likely owing to the ability of the two drugs to block the AR signaling cascade at distinct steps. Ectopic expression of AR-FL or AR-V7 attenuates the combinatorial efficacy, indicating that downregulating AR-FL and AR-V7 is importantly involved in mediating the combinatorial efficacy. Significantly, methylselenol prodrug also downregulates AR-FL and AR-Vs in vivo and substantially improves the antitumor efficacy of MDV3100. These findings support a potential combination therapy for improving MDV3100 efficacy, and provide a rationale for evaluating the clinical application of combining methylselenol prodrug with MDV3100 for the treatment of CRPC. PMID:23575870

  12. Platinum(IV) prodrug conjugated Pd@Au nanoplates for chemotherapy and photothermal therapy.

    PubMed

    Shi, Saige; Chen, Xiaolan; Wei, Jingping; Huang, Yizhuan; Weng, Jian; Zheng, Nanfeng

    2016-03-14

    Owing to the excellent near infrared (NIR) light absorption and efficient passive targeting toward tumor tissue, two-dimensional (2D) core-shell PEGylated Pd@Au nanoplates have great potential in both photothermal therapy and drug delivery systems. In this work, we successfully conjugate Pd@Au nanoplates with a platinum(IV) prodrug c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to obtain a nanocomposite (Pd@Au-PEG-Pt) for combined photothermal-chemotherapy. The prepared Pd@Au-PEG-Pt nanocomposite showed excellent stability in physiological solutions and efficient Pt(IV) prodrug loading. Once injected into biological tissue, the Pt(IV) prodrug was easily reduced by physiological reductants (e.g. ascorbic acid or glutathione) into its cytotoxic and hydrophilic Pt(II) form and released from the original nanocomposite, and the NIR laser irradiation could accelerate the release of Pt(II) species. More importantly, Pd@Au-PEG-Pt has high tumor accumulation (29%ID per g), which makes excellent therapeutic efficiency at relatively low power density possible. The in vivo results suggested that, compared with single therapy the combined thermo-chemotherapy treatment with Pd@Au-PEG-Pt resulted in complete destruction of the tumor tissue without recurrence, while chemotherapy using Pd@Au-PEG-Pt without irradiation or photothermal treatment using Pd@Au-PEG alone did not. Our work highlights the prospects of a feasible drug delivery strategy of the Pt prodrug by using 2D Pd@Au nanoplates as drug delivery carriers for multimode cancer treatment.

  13. Synthesis and in Vitro Evaluation of Bile Acid Prodrugs of Floxuridine to Target the Liver

    PubMed Central

    Vivian, Diana; Polli, James E.

    2014-01-01

    Floxuridine is often used to treat metastatic liver disease and is given as an infusion directly into the hepatic artery