Science.gov

Sample records for phoswich detector assembly

  1. Fast CsI-phoswich detector

    DOEpatents

    Langenbrunner, James R.

    1996-01-01

    An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI.

  2. Fast CsI-phoswich detector

    DOEpatents

    Langenbrunner, J.R.

    1996-05-07

    An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI. 5 figs.

  3. A phoswich well detector for radioxenon monitoring

    NASA Astrophysics Data System (ADS)

    Hennig, Wolfgang; Tan, Hui; Fallu-Labruyere, Anthony; Warburton, William K.; McIntyre, Justin I.; Gleyzer, Anshel

    2007-08-01

    One of several methods used to detect nuclear weapons testing is the monitoring of radioactive xenon in the atmosphere. For high sensitivity, monitoring stations use a complex system of separate beta and gamma detectors to detect beta-gamma coincidences from characteristic radioxenon isotopes in small amounts of xenon extracted from large volumes of air. We report a simpler approach that uses a single phoswich detector, comprising optically coupled plastic and CsI scintillators to absorb beta particles and gamma rays, respectively, and then detect coincidences by pulse shape analysis of the detector signal. Previous studies with a planar prototype detector have shown that the technique can clearly separate beta only, gamma only and coincidence events, does not degrade the energy resolution, and has an error rate for detecting coincidences of less than 0.1%. In this paper, we will present a new phoswich well detector design, consisting of a 1'' diameter plastic cell enclosed in a 3'' CsI crystal. Based on Monte Carlo modeling and experimental results, the design will be characterized in terms of energy resolution and its ability to separate beta and gamma only, and coincidence events.

  4. Beam Test of a Prototype Phoswich Detector Assembly forthe PoGOLite Astronomical Soft Gamma-ray Polarimeter

    SciTech Connect

    Kanai, Y.; Ueno, M.; Kataoka, J.; Arimoto, M.; Kawai, N.; Yamamoto, K.; Mizuno, T.; Fukazawa, Y.; Kiss, M.; Ylinen, T.; Bettolo, C.Marini; Carlson, P.; P.Chen d, B.Craig d, T.Kamae d, G.Madejski d, J.S.T.Ng; Rogers, R.; Tajima, H.; Thurston, T.S.; Saito, Y.; Takahashi, T. Gunji, S.; Bjornsson, C-I.; Larsson, S.; /Stockholm U. /Ecole Polytechnique /KEK, Tsukuba

    2007-01-17

    We report about the beam test on a prototype of the balloon-based astronomical soft gamma-ray polarimeter, PoGOLite (Polarized Gamma-ray Observer--Light Version) conducted at KEK Photon Factory, a synchrotron radiation facility in Japan. The synchrotron beam was set at 30, 50, and 70 keV and its polarization was monitored by a calibrated polarimeter. The goal of the experiment was to validate the flight design of the polarimeter. PoGOLite is designed to measure polarization by detecting a Compton scattering and the subsequent photo-absorption in an array of 217 well-type phoswich detector cells (PDCs). The test setup included a first flight model PDC and a front-end electronics to select and reconstruct valid Compton scattering events. The experiment has verified that the flight PDC can detect recoil electrons and select valid Compton scattering events down to 30 keV from background. The measure azimuthal modulations (34.4 %, 35.8 % and 37.2 % at 30, 50, and 70 keV, respectively) agreed within 10% (relative) with the predictions by Geant4 implemented with dependence on the initial and final photon polarizations.

  5. A phoswich detector for simultaneous alpha-gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Moghadam, S. Rajabi; Feghhi, S. A. H.; Safari, M. J.

    2015-11-01

    Phoswich detectors are of value for radiation spectroscopy, especially in cases where a low-cost solution for a mixed radiation field is desired. Meanwhile, simultaneous spectroscopy of alpha particles and gamma-rays has many applications in quantification and distinguishing the alpha-emitting radionuclides which usually occur in the analysis of environmental solid samples. Here, we have developed a system for detection of radioactive actinides (e.g., 241Am) based on the alpha-gamma coincidence technique. The underlying concept, is to assemble two appropriately selected scintillators (i.e., a fast and a slow one) together with a discriminating unit for analysis of their data. Detailed Monte Carlo simulation procedure has been developed using the GEANT4 toolkit to design and find enough knowledge about the response of the system in the studied radiation field. Various comparisons were made between experimental and simulation data which showed appropriate agreement between them. The calibration was performed and the MDA was estimated as 60 mBq for the phoswich system.

  6. Novel Beta-Gamma Coincidence Measurements Using Phoswich Detectors

    SciTech Connect

    Ely, James H.; Aalseth, Craig E.; Hayes, James C.; Heimbigner, Tom R.; McIntyre, Justin I.; Miley, Harry S.; Panisko, Mark E.; Ripplinger, Mike D.

    2003-09-30

    The PNNL has developed an Automated Radio-xenon Sampler/Analyzer (ARSA) for the CTBT to measure four radio-xenon isotopes using a beta-gamma coincidence counting detector. A novel method to measure beta-gamma coincidences using a phoswich detector with state-of-the-art pulse shape discrimination techniqueses has been investigated.

  7. A phoswich detector for high-energy neutrons.

    PubMed

    Takada, M; Nakamura, T

    2007-01-01

    A phoswich detector was developed to measure neutron energy spectra from a few MeV to a few hundreds MeV in aircrafts and space crafts. Radiation fields, which both crafts are exposured, consist of neutrons, gamma rays, protons, etc. The phoswich detector can measure neutrons separately from gamma rays and protons. The capability of particle discrimination was tested at HIMAC and was found to be excellent. Detector response functions to neutrons were simulated with the MCNPX code using the measured light outputs of charged particles and were measured with quasi-mono-energetic neutrons produced by the p-Li reaction at the NIRS cyclotron. Test flight measurements at high altitudes, 6.5 and 8.5 km, were performed above the middle part of Japan (cut-off rigidity, 12 GV).

  8. Comparison of Phoswich and ARSA-type detectors for Radioxenon Measurements

    SciTech Connect

    Ward, Rebecca; Biegalski, Steven R.; Haas, Derek A.; Hennig, Wolfgang

    2009-12-01

    The monitoring of atmospheric radioxenon to ensure compliance with the Comprehensive Nuclear Test Ban Treaty has driven the development of improved detectors for measuring xenon, including the development of a phoswich detector. This detector uses only one PMT to detect beta-gamma coincidence, thus greatly reducing the bulk and electronics of the detector in comparison to the ARSA-type detector. In this experiment, 135Xe was produced through neutron activation and a phoswich detector was used to attain spectra from the gas. These results were compared to similar results from an ARSA-type beta-gamma coincidence spectrum. The spectral characteristics and resolution were compared for the coincidence and beta spectra. Using these metrics, the overall performance of the phoswich detector for beta-gamma coincidence of radioxenon was evaluated.

  9. Timing performance measurements of Si-PM-based LGSO phoswich detectors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Kobayashi, Takahiro; Okumura, Satoshi; Yeom, Jung Yeol

    2016-06-01

    Since the timing resolution was significantly improved using silicon photomultipliers (Si-PMs) combined with fast scintillators, we expect that phoswich detectors will be used in future TOF-PET systems. However, no practical phoswich detector has been proposed for TOF-PET detectors. We conducted timing performance measurements of phoswich detectors comprised of two types of Ce-doped LGSO scintillators with different decay times coupled to Si-PMs and digitized the output signals using a high bandwidth digital oscilloscope. We prepared three types of LGSOs (LGSO-fast, LGSO-standard, and LGSO-slow) with different Ce concentrations. After measuring the decay time, the energy performance, and the timing performance of each LGSO, we conducted pulse shape analysis and timing resolution measurements for two versions of phoswich LGSOs: LGSO-standard/LGSO-fast and LGSO-slow/LGSO-fast combinations. The pulse shape spectra for a 10-mm-long crystal LGSO-slow/LGSO-fast combination showed good separation of the front and back crystals with a peak-to-valley ratio of 2.0. The timing resolutions for the 20-mm-long crystal LGSO-slow/LGSO-fast combination were ~300 ps FWHM. The timing resolutions for the phoswich LGSOs were slightly inferior than that measured with the individual LGSO fast, but the acquired timing resolution for the phoswich configuration, ~300 ps with a LGSO-slow/LGSO-fast combination, is adequate for TOF-PET systems. We conclude that LGSO phoswich detectors are promising for TOF-DOI-PET systems.

  10. Digital Pulse Shape Analysis with Phoswich Detectors to Simplify Coincidence Measurements of Radioactive Xenon

    SciTech Connect

    Hennig, Wolfgang; Tan, Hui; Warburton, William K.; McIntyre, Justin I.

    2005-08-31

    The Comprehensive Nuclear-Test-Ban Treaty establishes a network of monitoring stations to detect radioactive Xenon in the atmosphere from nuclear weapons testing. One such monitoring system is the Automated Radio-xenon Sampler/Analyzer (ARSA) developed at Pacific Northwest National Laboratory, which uses a complex arrangement of separate beta and gamma detectors to detect beta-gamma coincidences from the Xe isotopes of interest. The coincidence measurement is very sensitive, but the large number of detectors and photomultiplier tubes require careful calibration which makes the system hard to use. It has been suggested that beta-gamma coincidences could be detected with only a single photomultiplier tube and electronics channel by using a phoswich detector consisting of optically coupled beta and gamma detectors (Ely, 2003). In that work, rise time analysis of signals from a phoswich detector was explored as a method to determine if interactions occurred in either the beta or the gamma detector or in both simultaneously. However, this approach was not able to detect coincidences with the required sensitivity or to measure the beta and gamma energies with sufficient precision for Xenon monitoring. In this paper, we present a new algorithm to detect coincidences by pulse shape analysis of the signals from a BC-404/CsI(Tl) phoswich detector. Implemented on fast digital readout electronics, the algorithm achieves clear separation of beta only, gamma only and coincidence events, accurate measurement of both beta and gamma energies, and has an error rate for detecting coincidences of less than 0.1%. Monte Carlo simulations of radiation transport and light collection were performed to optimize design parameters for a replacement detector module for the ARSA system, obtaining an estimated coincidence detection efficiency of 82-92% and a background rejection rate better than 99%. The new phoswich/pulse shape analysis method is thus suitable to simplify the existing ARSA

  11. Wavelength Shifting Phoswich Detectors for Superior Depth-of-Interaction Resolution

    SciTech Connect

    Melcher, Charles L; Eriksson, Lars

    2012-10-25

    In order to simultaneously achieve both high spatial resolution and high sensitivity in small Positron Emission Tomography (PET) systems, scintillation detectors must be long in the radial direction as well as able to provide depth-of-interaction (DOI) information. DOI information is typically provided by constructing detectors from two or more layers of scintillators that are identifiable due to their different decay times. This approach has worked well in tomographs such as the High Resolution Research Tomograph (HRRT, CTI PET Systems, Inc.) in which the emission and excitation bands of the scintillator layers do not overlap each other. However, many potentially important pairs of scintillator crystals exist in which the emission of one crystal is, in fact, absorbed and re-emitted by the second crystal, thus impacting the pulse shape discrimination process used to identify the scintillator layers. These potentially useful pairs of scintillators are unlikely to be implemented in phoswich detectors without a comprehensive understanding of the complex emission that results when the light of one crystal is absorbed by the second crystal and then reemitted. Our objective is to develop a fundamental understanding of the optical phenomena that occur in phoswich detectors and to exploit these phenomena to achieve improved spatial resolution in small high sensitivity PET scanners.

  12. TraPET: High performance small animal PET with trapezoidal phoswich detector

    NASA Astrophysics Data System (ADS)

    Hyun Chung, Yong; Yeon Hwang, Ji; Baek, Cheol-Ha; Jung An, Su; Kim, Hyun-Il; Hyun Kim, Kwang

    2011-10-01

    In recent years, small-animal PET scanners with depth of interaction (DOI) capability have been developed for molecular imaging research. The aim of this study is to perform simulations to design a high performance small-animal PET, called TraPET. TraPET has an inner diameter of 76.21 mm with 6 dual-layer phoswich detector modules. Each module is composed of a 5.0-mm-thick trapezoidal-monolithic-LSO crystal with a front face (surface facing toward the inside of the scanner) of 44.0×44.0 mm 2 and a back face of 50.0×50.0 mm 2 and a 25×25 array of LuYAP crystals with a 2.0×2.0 mm 2 sensitive area with a 15.0 mm thickness. DOI information is extracted by a pulse shape discrimination method. The ability of event positioning in the trapezoidal-monolithic-LSO was evaluated by modeling the light distribution in the crystal using DETECT2000 and a 16×16 array of silicon photo-multipliers (SiPMs), with a 3.0 mm pixel size, selected as the photo-sensor. Also, the sensitivity and gap filling effect between modules were simulated using the Monte Carlo code, GATE. The new detector showed higher and more uniform sensitivity, as compared to scanners with rectangular-shaped detectors, because the trapezoidal-monolithic-LSO minimizes the dead space within the detector ring. In conclusion, our new detector proved to be a reliable design for small-animal PET with high spatial resolution by DOI information, and high sensitivity by high filling fraction.

  13. Imaging phoswich anger camera

    NASA Astrophysics Data System (ADS)

    Manchanda, R. K.; Sood, R. K.

    1991-08-01

    High angular resolution and low background are the primary requisites for detectors for future astronomy experiments in the low energy gamma-ray region. Scintillation counters are still the only available large area detector for studies in this energy range. Preliminary details of a large area phoswich anger camera designed for coded aperture imaging is described and its background and position characteristics are discussed.

  14. Prediction of background in low-energy spectrum of Phoswich detector.

    PubMed

    Arun, B; Manohari, M; Mathiyarasu, R; Rajagopal, V; Jose, M T

    2014-12-01

    In vivo monitoring of actinides in occupational workers is done using Phoswich detector by measuring the low-energy X ray and gamma rays. Quantification of actinides like plutonium and americium in the lungs is extremely difficult due to higher background in the low-energy regions, which is from ambient background as well as from the subject. In the latter case, it is mainly due to the Compton scattering of body potassium, which varies person-to-person. Hence, an accurate prediction of subject-specific background counts in the lower-energy regions is an essential element in the in vivo measurement of plutonium and americium. Empirical equations are established for the prediction of background count rate in (239)Pu and (241)Am lower-energy regions, called 'target regions', as a function of count rate in the monitoring region (97-130 keV)/(40)K region in the high-energy spectrum, weight-to-height ratio of the subject (scattering parameter) and the gender.

  15. A simple phoswich system

    NASA Astrophysics Data System (ADS)

    Ramsden, D.; Zhang, S. N.

    1988-06-01

    Normal phoswich detector systems use a combination of NaI(Tl) and CsI(Na) scintillators and require the application of careful pulse-shape discriminator techniques to resolve the two components in the scintillation light output which have decay constants of 250 and 630 ns respectively. These techniques provide a good anticoincidence veto efficiency for a relatively narrow range in the ratio of energy deposits in the two crytals and for a detector system whose temperature is carefully controlled. This paper describes the performance of a simple phoswich which makes use of the fast UV signal from a BaF 2 crystal to provide a prompt veto signal. The performance to be expected from various combinations of a BaF 2 anticoincidence crystal with other primary detectors is presented. These simulations have been verified by simple experimental tests.

  16. A High Resolution Phoswich Detector: LaBr{sub 3}(Ce) Coupled With LaCl{sub 3}(Ce)

    SciTech Connect

    Carmona-Gallardo, M.; Borge, M. J. G.; Briz, J. A.; Gugliermina, V.; Perea, A.; Tengblad, O.; Turrion, M.

    2010-04-26

    An innovative solution for the forward end-cap CALIFA calorimeter of R{sup 3}B is under investigation consisting of two scintillation crystals, LaBr{sub 3} and LaCl{sub 3}, stacked together in a phoswich configuration with one readout only. This dispositive should be capable of a good determination of the energy of protons and gamma radiation. This composite detector allows to deduce the initial energy of charged particles by DELTAE1+DELTAE2 identification. For gammas, the simulations show that there is a high probability that the first interaction occurs inside the scintillator at few centimeters, with a second layer, the rest of the energy is absorbed, or it can be used as veto event in case of no deposition in the first layer. One such a detector has been tested at the Centro de MicroAnalisis de Materiales (CMAM) in Madrid. Good resolution and time signal separation have been achieved.

  17. A High Resolution Phoswich Detector: LaBr3(Ce) Coupled With LaCl3(Ce)

    NASA Astrophysics Data System (ADS)

    Carmona-Gallardo, M.; Borge, M. J. G.; Briz, J. A.; Gugliermina, V.; Perea, A.; Tengblad, O.; Turrión, M.

    2010-04-01

    An innovative solution for the forward end-cap CALIFA calorimeter of R3B is under investigation consisting of two scintillation crystals, LaBr3 and LaCl3, stacked together in a phoswich configuration with one readout only. This dispositive should be capable of a good determination of the energy of protons and gamma radiation. This composite detector allows to deduce the initial energy of charged particles by ΔE1+ΔE2 identification. For gammas, the simulations show that there is a high probability that the first interaction occurs inside the scintillator at few centimeters, with a second layer, the rest of the energy is absorbed, or it can be used as veto event in case of no deposition in the first layer. One such a detector has been tested at the Centro de MicroAnálisis de Materiales (CMAM) in Madrid. Good resolution and time signal separation have been achieved.

  18. Neutron detection and multiplicity counting using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array

    SciTech Connect

    Miller, M.C.

    1998-03-01

    Neutron detection and multiplicity counting has been investigated using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array. Boron-loaded plastic combines neutron moderation (H) and detection ({sup 10}B) at the molecular level, thereby physically coupling increasing detection efficiency and decreasing die-away time with detector volume. Both of these characteristics address a fundamental limitation of thermal-neutron multiplicity counters, where {sup 3}He proportional counters are embedded in a polyethylene matrix. Separation of the phoswich response into its plastic scintillator and bismuth germanate components was accomplished on a pulse-by-pulse basis using custom integrator and timing circuits. In addition, a custom time-tag module was used to provide a time for each detector event. Analysis of the combined energy and time event stream was performed by calibrating each detector`s response and filtering based on the presence of a simultaneous energy deposition corresponding to the {sup 10}B(n,alpha) reaction products in the plastic scintillator (93 keV{sub ee}) and the accompanying neutron-capture gamma ray in the bismuth germanate (478 keV). Time-correlation analysis was subsequently performed on the filtered event stream to obtain shift-register-type singles and doubles count rates. Proof-of-principle measurements were conducted with a variety of gamma-ray and neutron sources including {sup 137}Cs, {sup 54}Mn, AmLi, and {sup 252}Cf. Results of this study indicate that a neutron-capture probability of {approximately}10% and a die-away time of {approximately}10 {micro}s are possible with a 4-detector array with a detector volume of 1600 cm{sup 3}. Simulations were performed that indicate neutron-capture probabilities on the order of 50% and die-away times of less than 4 {micro}s are realistically achievable. While further study will be required for practical application of such a detection system, the results obtained in this

  19. Development of EXITE2: a large-area imaging phoswich detector/telescope for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Manandhar, Raj P.; Lum, Kenneth S.; Eikenberry, Stephen S.; Krockenberger, Martin; Grindlay, Jonathan E.

    1993-11-01

    We review design considerations and present preliminary details of the performance of a new imaging system for hard X-ray astronomy in the 20 - 600 keV energy range. The detector is a 40 cm X 40 cm NaI(Tl)/CsI(Na) phoswich module, read out by a 7 X 7 array of square PMTs. The detector comprises the main part of the next generation Energetic X-ray Imaging Telescope Experiment (EXITE2), which had its first flight on 13 June 1993 from Palestine, Texas. Imaging is accomplished via the coded-aperture mask technique. The mask consists of 16 mm square lead/tin/copper pixels arranged in a cyclically repeated 13 X 11 uniformly redundant array pattern at a focal length of 2.5 m, giving 22 arcmin resolution. The field of view, determined by the lead/brass collimator (16 mm pitch) is 4.65 degrees FWHM. We anticipate a 3 sigma sensitivity of 1 X 10(superscript -5) photons cm(superscript -2) s(superscript -1) keV(superscript -1) at 100 keV in a 10(superscript 4) sec balloon observation. The electronics incorporate two on-board computers, providing a future capability to record the full data stream and telemeter compressed data. The design of the current detector and electronics allows an upgrade to EXITE3, which adds a proportional counter front-end to achieve lower background and better spatial and spectral resolution below approximately 100 keV.

  20. Characterization of PARIS LaBr3(Ce)-NaI(Tl) phoswich detectors up to Eγ ~ 22 MeV

    NASA Astrophysics Data System (ADS)

    Ghosh, C.; Nanal, V.; Pillay, R. G.; Anoop, K. V.; Dokania, N.; Pal, Sanjoy; Pose, M. S.; Mishra, G.; Rout, P. C.; Kumar, Suresh; Pandit, Deepak; Mondal, Debasish; Pal, Surajit; Banerjee, S. R.; Napiorkowski, P. J.; Dorvaux, O.; Kihel, S.; Mathieu, C.; Maj, A.

    2016-05-01

    In order to understand the performance of the PARIS (Photon Array for the studies with Radioactive Ion and Stable beams) detector, detailed characterization of two individual phoswich (LaBr3(Ce)-NaI(Tl)) elements has been carried out. The detector response is investigated over a wide range of Eγ = 0.6 to 22.6 MeV using radioactive sources and employing 11B(p,γ) reaction at Ep = 163 keV and Ep = 7.2 MeV . The linearity of energy response of the LaBr3(Ce) detector is tested upto 22.6 MeV using three different voltage dividers. The data acquisition system using CAEN digitizers is set up and optimized to get the best energy and time resolution. The energy resolution of ~ 2.1% at Eγ = 22.6 MeV is measured for the configuration giving best linearity up to high energy. Time resolution of the phoswich detector is measured with a 60Co source after implementing CFD algorithm for the digitized pulses and is found to be excellent (FWHM ~ 315 ps). In order to study the effect of count rate on detectors, the centroid position and width of the Eγ = 835 keV peak were measured upto 220 kHz count rate. The measured efficiency data with radioactive sources are in good agreement with GEANT4 based simulations. The total energy spectrum after the add-back of energy signals in phoswich components is also presented.

  1. Development of a three-layer phoswich alpha-beta-gamma imaging detector

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Ishibashi, Hiroyuki

    2015-06-01

    For radiation monitoring at the sites of such nuclear power plant accidents as Fukushima Daiichi, radiation detectors are needed not only for gamma photons but also for alpha and beta particles because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. In some applications, imaging detectors are required to detect the distribution of plutonium particles that emit alpha particles and radiocesium in foods that emits beta particles and gamma photons. To solve these requirements, we developed an imaging detector that can measure the distribution of alpha and beta particles as well as gamma photons. The imaging detector consists of three-layer scintillators optically coupled to each other and to a position sensitive photomultiplier tube (PSPMT). The first layer, which is made of a thin plastic scintillator (decay time: ~5 ns), detects alpha particles. The second layer, which is made of a thin Gd2SiO5 (GSO) scintillator with 1.5 mol% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol% Ce (decay time: 70 ns) detects gamma photons. Using pulse shape discrimination, the images of these layers can be separated. The position information is calculated by the Anger principle from 8×8 anode signals from the PSPMT. The images for the alpha and beta particles and the gamma photons are individually formed by the pulse shape discriminations for each layer. We detected alpha particle images in the first layer and beta particle images in the second layer. Gamma photon images were detected in the second and third layers. The spatial resolution for the alpha and beta particles was ~1.25 mm FWHM and less than 2 mm FWHM for the gamma photons. We conclude that our developed alpha-beta-gamma imaging detector is promising for imaging applications not only for the environmental monitoring of radionuclides but also for medical and molecular imaging.

  2. Phoswich solutions for the PET DOI problem

    NASA Astrophysics Data System (ADS)

    Eriksson, L.; Melcher, C. L.; Zhuravleva, M.; Eriksson, M.; Rothfuss, H.; Conti, M.

    2011-08-01

    A high spatial resolution in PET can be achieved by using small detector elements. To maintain good sensitivity these elements have to be quite long, thus introducing parallax error and making the spatial resolution non-uniform over the image volume. Uniformity of spatial resolution can be improved by utilizing depth-of-interaction (DOI) information to reduce the parallax error. In the present study we have focused on phoswich approaches based on interacting scintillators, that is, a phoswich combination in which one scintillator emits light in the excitation band of the other. We have looked at LaBr3:Ce and LaCl3:Ce and the interactions of those two scintillators with LSO:Ce, GSO:Ce and YSO:Ce. The reasons to use the two Lanthanum scintillators are twofold: light output is high and the two different emission wavelengths, 350 nm (LaCl3:Ce) and 380 nm (LaBr3:Ce) may produce different interactions with the three oxyorthosilicate scintillators. In addition a possible DOI detector comprising LuAG:Pr pixels with a thin LSO:Ce layer at one end has been evaluated.A Bollinger-Thomas set-up was used to measure luminescence rise and luminescence decay time characteristics in all cases. When using LaCl3:Ce, the phoswich combinations with YSO:Ce and GSO:Ce showed phoswich decay time characteristics as expected for a simple convolution of the decay times of the two phoswich components. A correction was needed, however, for the LaCl3:Ce-LSO:Ce phoswich due to the LSO:Ce intrinsic activity. For the LaBr3:Ce-LSO:Ce phoswich, corrections were needed for non-interacting LaBr3:Ce light in addition to the expected phoswich interaction.

  3. "Phoswich Wall": A charged-particle detector array for inverse-kinematic reactions with the Gretina/GRETA γ-ray arrays

    NASA Astrophysics Data System (ADS)

    Sarantites, D. G.; Reviol, W.; Elson, J. M.; Kinnison, J. E.; Izzo, C. J.; Manfredi, J.; Liu, J.; Jung, H. S.; Goerres, J.

    2015-08-01

    A high-efficiency, forward-hemisphere detector system for light charged particles and low-Z heavy ions, as obtained in an accelerator experiment, is described. It consists of four 8×8 pixel multianode photomultiplier tubes with 2.2-mm thick CsI(Tl) and 12 -μm thick fast-plastic scintillation detectors. Its phoswich structure allows individual Z resolution for 1H, 4He, 7Li, 4He+4He, 9Be, 11B, 12C, and 14N ions, which are target-like fragments detected in strongly inverse kinematics. The device design has been optimized for use with a 4π γ-ray array, and the main applications are transfer reactions and Coulomb excitation. A high-angular resolution for the detection of the target-like fragments is achieved which permits angular distributions to be measured in the rest frame of the projectile-like fragment with a resolution of ~ 2 °.

  4. Development of a Plastic Phoswich for Reaction Studies

    NASA Astrophysics Data System (ADS)

    Thornsberry, C.; Jones, K. L.; Partington, D.; Smith, K.; Febbraro, M.; O'Malley, P.; Kolata, J.; Becchetti, F.; TwinSol Collaboration

    2015-10-01

    In inverse kinematics, proton transfer reactions, such as (d,n), may be used to add a proton to a short-lived ion beam. By detecting the outgoing neutron, it is possible to extract spectroscopic information about the recoil nucleus. Plastic scintillators may be used for detecting these neutrons but are sensitive to gamma rays as well as neutrons, usually resulting in a large background. A clean tag on the recoil particle is often necessary for the removal of significant unwanted background from reactions with low cross sections. A plastic scintillator phoswich (phosphor-sandwich) was developed in order to separate the recoil nucleus from a radioactive ion beam cocktail. This phoswich is comprised of two layers of plastic scintillator, with two different pulse shape characteristics, fused together to produce a single assembly viewed by a PMT. Using pulse shape discrimination (PSD) on the resultant digitized light pulses allows for Z separation at rates of up to 1x106 pps. Since the recoil particle has one extra proton than the beam particle, it is only necessary to have separation in Z. This detector was successfully tested during a development experiment at the University of Notre Dame. An overview of the motivation, development, and analysis of this detector will be present.

  5. Fast phoswich scintillator endcap for gamma and proton detection

    SciTech Connect

    Sanchez del Rio, J.; Borge, M. J. G.; Nacher, E.; Perea, A.; Sanchez, J.; Tengblad, O.

    2013-06-10

    A phoswich configuration consists of LaBr{sub 3}(Ce) and LaCl{sub 3}(Ce) crystals optically coupled and stacked together with a common readout. Each crystal has different decay time response and different light yield which make possible the design of a high efficient gamma radiation and proton endcap detector, as a continuation of the CALIFA barrel.

  6. Basic performance evaluation of a Si-PM array-based LGSO phoswich DOI block detector for a high-resolution small animal PET system.

    PubMed

    Yamamoto, Seiichi

    2013-07-01

    The silicon photomultiplier (Si-PM) is a promising photodetector for PET. However, it remains unclear whether Si-PM can be used for a depth-of-interaction (DOI) detector based on the decay time differences of the scintillator where pulse shape analysis is used. For clarification, we tested the Hamamatsu 4 × 4 Si-PM array (S11065-025P) combined with scintillators that used different decay times to develop DOI block detectors using the pulse shape analysis. First, Ce-doped Gd(2)SiO(5) (GSO) scintillators of 0.5 mol% Ce were arranged in a 4 × 4 matrix and were optically coupled to the center of each pixel of the Si-PM array for measurement of the energy resolution as well as its gain variations according to the temperature. Then two types of Ce-doped Lu(1.9)Gd(0.1)Si0(5) (LGSO) scintillators, 0.025 mol% Ce (decay time: ~31 ns) and 0.75 mol% Ce (decay time: ~46 ns), were optically coupled in the DOI direction, arranged in a 11 × 7 matrix, and optically coupled to a Si-PM array for testing of the possibility of a high-resolution DOI detector. The energy resolution of the Si-PM array-based GSO block detector was 18 ± 4.4 % FWHM for a Cs-137 gamma source (662 keV). Less than 1 mm crystals were clearly resolved in the position map of the LGSO DOI block detector. The peak-to-valley ratio (P/V) derived from the pulse shape spectra of the LGSO DOI block detector was 2.2. These results confirmed that Si-PM array-based DOI block detectors are promising for high-resolution small animal PET systems.

  7. A Multi-Layer Phoswich Radioxenon Detection System

    SciTech Connect

    David M. Hamby

    2008-07-14

    Laboratory radioactive sources were used to characterize the phoswich detector. The CaF{sub 2} scintillator has a low light-yield and slow decay time, thus produces very small signals due to low-energy gamma rays or X-rays. Therefore, detection of 30 keV X-rays (from the xenon radioisotopes) using this layer and discriminating its very small signals from electronic noise was a challenging task. Several solutions were considered and experimentally evaluated. We found that the best solution would be extending the fast triangular filter from 10 taps to 30 taps. This will extend the peaking time of this filter from 25 nsec to 75 nsec. The digital filter is implemented in FPGA on our DPP2.0 and is used to trigger the detection system. Functionality of the new filter in capturing and discriminating 30 keV X-rays was confirmed by using a {sup 133}Ba gamma-ray source. Development of the DPP GUI software has continued with the addition of two new panels to display histograms of beta/gamma and beta/x-ray coincidence events. This includes coincidence events from a single channel, as well as two-channel, coincidence event. A pileup rejection algorithm has been implemented in the FPGA code, and controls to adjust its sensitivity have been added to the GUI. Work has begun on a new prototype system to develop a USB host interface between the PC and the FPGA to end reliance on Opal Kelly prototyping boards; the hardware for this system has been completely assembled, and the PC-side software is currently in development.

  8. RADIOXENON MEASUREMENTS WITH THE PHOSWATCH DETECTOR SYSTEM

    SciTech Connect

    Hennig, Wolfgang; Warburton, William K.; Fallu-Labruyere, A.; Sabourov, K.; Cooper, Matthew W.; McIntyre, Justin I.; Gleyzer, A.; Bean, Marc; Korpach, E.; Ungar, R. Kurt; Zhang, W.; Mekarski, P.; Ward, Rebecca; Biegalski, S.; Haas, Derek A.

    2009-09-22

    Many of the radioxenon detector systems used in the International Monitoring System and in other applications employ beta/gamma coincidence detection to achieve high sensitivity. In these systems, the coincidence detection is implemented by requiring simultaneous signals from separate beta and gamma detectors. While very sensitive to small amounts of radioxenon, this approach requires careful calibration and gain matching of several detectors and photomultiplier tubes. An alternative approach is the use of a phoswich detector in which beta-gamma coincidences are detected by pulse shape analysis. The phoswich requires only a single photomultiplier tube and thus is easier to set up and calibrate, and can be assembled into a more compact and robust system. In the past, we have developed a COTS detector system, named PhosWatch, which consists of a CsI(Tl)/BC-404 phoswich detector, digital readout electronics, and on-board software to perform the pulse shape analysis. Several units of this system have been manufactured and are now evaluated at several radioxenon research laboratories. In this paper, we will report results from production tests and some of the evaluations, including a side-by-side comparison of a SAUNA detector and a PhosWatch system using atmospheric radioxenon samples. In addition, we will show initial results obtained with a higher speed version of the readout electronics, digitizing at 500 MHz and thus able to better resolve the fast pulses from the BC-404.

  9. Ruggedization of CdZnTe detectors and detector assemblies for radiation detection applications

    NASA Astrophysics Data System (ADS)

    Lu, P. H.; Gomolchuk, P.; Chen, H.; Beitz, D.; Grosser, A. W.

    2015-06-01

    This paper described improvements in the ruggedization of CdZnTe detectors and detector assemblies for use in radiation detection applications. Research included experimenting with various conductive and underfill adhesive material systems suitable for CZT substrates. A detector design with encapsulation patterning was developed to protect detector surfaces and to control spacing between CZT anode and PCB carrier. Robustness of bare detectors was evaluated through temperature cycling and metallization shear testing. Attachment processes using well-chosen adhesives and PCB carrier materials were optimized to improve reliability of detector assemblies, resulted in Improved Attachment Detector Assembly. These detector assemblies were subjected to aggressive temperature cycling, and varying levels of drop/shock and vibration, in accordance with modified JEDEC, ANSI and FedEx testing standards, to assess their ruggedness. Further enhanced detector assembly ruggedization methods were investigated involving adhesive conformal coating, potting and dam filling on detector assemblies, which resulted in the Enhanced Ruggedization Detector Assembly. Large numbers of CZT detectors and detector assemblies with 5 mm and 15 mm thick, over 200 in total, were tested. Their performance was evaluated by exposure to various radioactive sources using comprehensive predefined detector specifications and testing protocols. Detector assemblies from improved attachment and enhanced ruggedization showed stable performances during the harsh environmental condition tests. In conclusion, significant progress has been made in improving the reliability and enhancing the ruggedness of CZT detector assemblies for radiation detection applications deployed in operational environments.

  10. Beta-cell Assembly for the Quad Gas Sampling Detector

    SciTech Connect

    Cooper, Matthew W.; Bowyer, Ted W.; McIntyre, Justin I.; Hayes, James C.; Heimbigner, Tom R.; Ripplinger, Michael D.; Thompson, Robert C.

    2008-05-05

    The beta-cells used in the beta-gamma detector have taken time to develop and to standardize the assembly of them. In making the assembly routine it is important to have step by step assembly instructions as well as a list of potential problems and their solutions. This document attempts to accomplish these goals.

  11. Gravity Probe B Detector Mount Assembly

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) detector mount assembly is shown in comparison to the size of a dime. The assembly is used to detect exactly how much starlight is coming through different beams from the beam splitter in the telescope. The measurements from the tiny chips inside are what keeps GP-B aimed at the guide star. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Paul Ehrensberger, Stanford University.)

  12. Fast response pyroelectric detector-preamplifier assembled device

    NASA Astrophysics Data System (ADS)

    Bai, PiJi; Tai, Yunjian; Liu, Huiping

    2008-03-01

    The pyroelectric detector is wide used for its simple structure and high performance to price ratio. It has been used in thermal detecting, infrared spectrum and laser testing. When the pyroelectric detector was applied in practice, fast reponse speed is need. For improving the response speed of the pyroelectric detector some specific technology has been used in the preamplifier schematic. High sense and fast response character of the pyroelectric detector-preamplifier assembled device had been achieved. When the device is applied in acute concussion condition, it must survive from the acute concussion condition testing. For it reliability some specific technology was used in the device fabricating procedure. At last the performance parameter testing result and simulation application condition result given in this paper show the performance of the pyroelectric detector-preamplifier assembled device had achieved the advance goal.

  13. High resolution phoswich gamma-ray imager utilizing monolithic MPPC arrays with submillimeter pixelized crystals

    NASA Astrophysics Data System (ADS)

    Kato, T.; Kataoka, J.; Nakamori, T.; Kishimoto, A.; Yamamoto, S.; Sato, K.; Ishikawa, Y.; Yamamura, K.; Kawabata, N.; Ikeda, H.; Kamada, K.

    2013-05-01

    We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 105 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to <= 400 kcps per channel. We selected Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) and a brand-new scintillator, Ce-doped Gd3Al2Ga3O12 (Ce:GAGG) due to their high light yield and density. To improve the spatial resolution, these scintillators were fabricated into 15 × 15 matrices of 0.5 × 0.5 mm2 pixels. The Ce:LYSO and Ce:GAGG scintillator matrices were assembled into phosphor sandwich (phoswich) detectors, and then coupled to the MPPC array along with an acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.

  14. In-core detector activation rate for a PWR assembly

    SciTech Connect

    Todosow, M.; Eisenhart, L.D.

    1982-01-01

    The in-core detector system is the principal source of information for determining relative assembly powers, and maximum fuel rod powers in a reactor core. The detector signals are used in conjunction with pre-calculated factors, and appropriate normalizations, to obtain measured power values. Considerable reliance is placed on the accuracy of in-core detector inferred power distributions in reactor operations, and in the verification of calculational methods. The objective of this study was to compare results from standard design codes for the in-core detector activation rate (and the fission rate distribution in an assembly), to results obtained from a detailed calculation performed with a continuous energy Monte Carlo program with ENDF/B-V nuclear data.

  15. Detector Assembly and the Ultralow-Temperature Refrigerator for XRS

    NASA Technical Reports Server (NTRS)

    Porter, F. S.; Dipirro, M. J.; Kelley, R. L.; Pham, T.; Stahle, C. K.; Szymkowiak, A. E.; Tuttle, J. G.; Audley, M. D.; Gendraau, K. C.; Brekosky, R. P.; Gysax, J. D.

    1999-01-01

    The X-ray spectrometer (XRS) on the Japanese Astro-E Spacecraft is the first ultra low temperature space borne instrument. The system utilizes a 900g Ferric Ammonium Alum (FAA) Adiabatic Demagnetization Refrigerator (ADR) with a helium-3 gas gap heat switch to cool the detector assembly to 0.060K. The system operates in a "single shot" configuration allowing the system to remain at its operating temperature for about 40 hours in the lab. The on-orbit performance is expected to be about 35 hours with a 97% duty cycle. The detector assembly for XRS consists of a 32 channel microcalorimeter array bias electronics, thermometry, and an anti-coincidence detector that are attached to the cold stage of the ADR. To thermally Isolate the detector system from the superfluid helium reservoir, the detector system is suspended by Kevlar cords and electrical connection in made by L30, 17-micron diameter, tensioned NbTi leads. The detectors are read out in a source-follower arrangement using FET amplifiers operating at 130K mounted in multiply-thermally-isolated assemblies that also use Kevlar and stainless steel wiring. The design and thermal performance of this system will be discussed and compared to the theoretical limits.

  16. Assembly Manual for the Berkeley Lab Cosmic Ray Detector

    SciTech Connect

    Collier, Michael

    2002-12-17

    The Berkeley Lab Cosmic Ray Detector consists of 3 main components that must be prepared separately before they can be assembled. These components are the scintillator, circuit board, and casing. They are described in the main sections of this report, which may be completed in any order. Preparing the scintillator paddles involves several steps--cutting the scintillator material to the appropriate size and shape, preparing and attaching Lucite cookies (optional), polishing the edges, gluing the end to the photomultiplier tube (optional), and wrapping the scintillator. Since the detector has 2 paddles, each of the sections needs to be repeated for the other paddle.

  17. Proton response of CEPA4: A novel LaBr3(Ce)-LaCl3(Ce) phoswich array for high-energy gamma and proton spectroscopy

    NASA Astrophysics Data System (ADS)

    Nácher, E.; Mårtensson, M.; Tengblad, O.; Álvarez-Pol, H.; Bendel, M.; Cortina-Gil, D.; Gernhäuser, R.; Le Bleis, T.; Maj, A.; Nilsson, T.; Perea, A.; Pietras, B.; Ribeiro, G.; Sánchez del Río, J.; Sánchez Rosado, J.; Heinz, A.; Szpak, B.; Winkel, M.; Zieblinski, M.

    2015-01-01

    A new phoswich array, for the detection of high-energy protons and gamma rays from nuclear reactions, has been built. This new detector consists of four individual closely packed scintillator detectors, each of them made of 4 cm of LaBr3(Ce) and 6 cm of LaCl3(Ce) in phoswich configuration (optically coupled and with a common readout). In this paper we report on the results of a beam test performed at the Bronowice Cyclotron Centre (CCB) in Krakow, showing the response of this versatile instrument to high energy protons (70-230 MeV). Furthermore, for the first time we prove that we can reconstruct the original energy of fast protons (E > 200 MeV) which pass through the total length of the crystal while still retaining a good energy resolution.

  18. Micro-Pocket Fission Detectors (MPFD) For Fuel Assembly Analysis

    SciTech Connect

    Troy Unruh; Michael Reichenberger; Phillip Ugorowski

    2013-09-01

    Neutron sensors capable of real-time measurement of thermal flux, fast flux, and temperature in a single miniaturized probe are needed in irradiation tests required to demonstrate the performance of candidate new fuels, and cladding materials. In-core ceramic-based miniature neutron detectors or “Micro-Pocket Fission Detectors” (MPFDs) have been studied at Kansas State University (KSU). The first MPFD prototypes were tested in various neutron fields at the KSU TRIGA research reactor with successful results. Currently, a United States Department of Energy-sponsored joint KSU/Idaho National Laboratory (INL) effort is underway to develop a high-temperature, high-pressure version of the MPFD using radiation-resistant, high temperature materials, which would be capable of withstanding irradiation test conditions in high performance material and test reactors (MTRs). Ultimately, this more compact, more accurate, and longer lifetime flux sensor for critical mock-ups, existing and advanced reactor designs, high performance MTRs, and transient test reactors has the potential to lead to higher accuracy and resolution data from irradiation testing, more detailed core flux measurements and enhanced fuel assembly processing. Prior evaluations by KSU indicate that these sensors could also be used to monitor burn-up of nuclear fuel. If integrated into nuclear fuel assemblies, MPFDs offer several advantages to current spent fuel management systems.

  19. Measurement of gamma and neutron radiations inside spent fuel assemblies with passive detectors

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Lahodová, Z.; Voljanskij, A.; Klupák, V.; Koleška, M.; Cabalka, M.; Turek, K.

    2011-10-01

    During operation of a fission nuclear reactor, many radionuclides are generated in fuel by fission and activation of 235U, 238U and other nuclides present in the assembly. After removal of a fuel assembly from the core, these radionuclides are sources of different types of radiation. Gamma and neutron radiation emitted from an assembly can be non-destructively detected with different types of detectors. In this paper, a new method of measurement of radiation from a spent fuel assembly is presented. It is based on usage of passive detectors, such as alanine dosimeters for gamma radiation and track detectors for neutron radiation. Measurements are made on the IRT-2M spent fuel assemblies used in the LVR-15 research reactor. During irradiation of detectors, the fuel assembly is located in a water storage pool at a depth of 6 m. Detectors are inserted into central hole of the assembly, irradiated for a defined time interval, and after the detectors removed from the assembly, gamma dose or neutron fluence are evaluated. Measured profiles of gamma dose rate and neutron fluence rate inside of the spent fuel assembly are presented. This measurement can be used to evaluate relative fuel burn-up.

  20. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Tehrani, N. Alipour; Arfaoui, S.; Benoit, M.; Dannheim, D.; Dette, K.; Hynds, D.; Kulis, S.; Perić, I.; Petrič, M.; Redford, S.; Sicking, E.; Valerio, P.

    2016-07-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor, where efficiencies of greater than 99% have been achieved at -60 V substrate bias, with a single hit resolution of 6.1 μm . Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  1. Prediction of in vivo background in phoswich lung count spectra

    SciTech Connect

    Richards, N.W. . Office of Radiation Protection)

    1999-05-01

    Phoswich scintillation counters are used to detect actinides deposited in the lungs. The resulting spectra, however, contain Compton background from the decay of [sup 40]K, which occurs naturally in the striated muscle tissue of the body. To determine the counts due to actinides in a lung count spectrum, the counts due to [sup 40]K scatter must first be subtracted out. The [sup 40]K background in the phoswich NaI(Tl) spectrum was predicted from an energy region of interest called the monitor region, which is above the [sup 238]Pu region and the [sup 241]Am region, where photopeaks from [sup 238]Pu and [sup 241]Am region, where photopeaks from [sup 238]Pu and [sup 241]Am occur. Empirical models were developed to predict the backgrounds in the [sup 238]Pu and [sup 241]Am regions by testing multiple linear and nonlinear regression models. The initial multiple regression models contain a monitor region variable as well as the variables gender, (weight/height)[sup [alpha

  2. A novel detector assembly for detecting thermal neutrons, fast neutrons and gamma rays

    NASA Astrophysics Data System (ADS)

    Cester, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pino, F.; Sajo-Bohus, L.; Stevanato, L.; Bonesso, I.; Turato, F.

    2016-09-01

    A new composite detector has been developed by combining two different commercial scintillators. The device has the capability to detect gamma rays as well as thermal and fast neutrons; the signal discrimination between the three types is performed on-line by means of waveform digitizers and PSD algorithms. This work describes the assembled detector and its discrimination performance to be employed in the applied field.

  3. A Student Assembled Spectrograph with a CCD Detector to Assist with Students' Understanding of Spectrometry

    ERIC Educational Resources Information Center

    Grove, T. T.; Masters, M. F.

    2007-01-01

    To help students develop an understanding of the proper use and function of spectrographs and monochromators we describe a student-assembled spectrograph using a "webcam" detector. The apparatus also works well as a low-cost demonstration, helping students make connections between an atomic spectrum observed by eye and a plot of the relative…

  4. Assembly and test of the gas pixel detector for X-ray polarimetry

    NASA Astrophysics Data System (ADS)

    Li, H.; Feng, H.; Muleri, F.; Bellazzini, R.; Minuti, M.; Soffitta, P.; Brez, A.; Spandre, G.; Pinchera, M.; Sgró, C.; Baldini, L.; She, R.; Costa, E.

    2015-12-01

    The gas pixel detector (GPD) dedicated for photoelectric X-ray polarimetry is selected as the focal plane detector for the ESA medium-class mission concept X-ray Imaging and Polarimetry Explorer (XIPE). Here we show the design, assembly, and preliminary test results of a small GPD for the purpose of gas mixture optimization needed for the phase A study of XIPE. The detector is assembled in house at Tsinghua University following a design by the INFN-Pisa group. The improved detector design results in a good uniformity for the electric field. Filled with pure dimethyl ether (DME) at 0.8 atm, the measured energy resolution is 18% at 6 keV and inversely scales with the square root of the X-ray energy. The measured modulation factor is well consistent with that from simulation, up to ~0.6 above 6 keV. The residual modulation is found to be 0.30 ± 0.15 % at 6 keV for the whole sensitive area, which can be translated into a systematic error of less than 1% for polarization measurement at a confidence level of 99%. The position resolution of the detector is about 80 μm in FWHM, consistent with previous studies and sufficient for XIPE requirements.

  5. Phase 1 Upgrade of the CMS Pixel Detector: Module Assembly and Testing

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish

    2014-03-01

    The CMS pixel detector is the innermost component of the all-silicon tracking system located closest to the interaction point and thus operates in a high-occupancy/high-radiation environment created by particle collisions. The performance of the current pixel detector has been excellent during Run 1 of the LHC. However, the foreseen increases of the instantaneous and integrated luminosities at the LHC necessitate an upgrade of the pixel detector in order to maintain the excellent tracking and physics performance of the CMS detector. The new pixel detector is expected to be installed during the extended end-of-year shutdown in 2016/17. The main new features of the upgraded pixel detector would be ultra-light mechanical design with four barrel layers and three end-caps on either side of the interaction point, digital readout chip with higher rate capability and new cooling system. These and other design improvements, along with the current status on module assembly and testing, will be discussed.

  6. Centroid Detector Assembly for the AXAF-I Alignment Test System

    NASA Technical Reports Server (NTRS)

    Glenn, Paul

    1995-01-01

    The High Resolution Mirror Assembly (HRMA) of the Advanced X-ray Astrophysics Facility (imaging) (AXAF-I) consists of four nested paraboloids and four nested hyperboloids, all of meter-class size, and all of which are to be assembled and aligned in a special 15 meter tower at Eastman Kodak Company in Rochester, NY. The goals of the alignment are (1) to make the images of the four telescopes coincident; (2) to remove coma from each image individually; and (3) to control and determine the final position of the composite focus. This will be accomplished by the HRMA Aligment Test System (HATS) which is essentially a scanning Hartmann test system. The scanning laser source and the focal plane of the HATS are part of the Centroid Detector Assembly (CDA) which also includes processing electronics and software. In this paper we discuss the design and the measured performance of the CDA.

  7. An engineering design study of the support platform assembly for the SSC SDC detector

    SciTech Connect

    Krebs, H.J.; Western, J.L. ); Wands, R.H. )

    1993-04-01

    A large angular acceptance high energy physics particle detector is presently being designed by the Solenoidal Detector Collaboration for the purposes of doing high pt physics at the Superconducting Super Collider Laboratory. The support platform assembly is the structural device which transfers the 30,000 tonne gravitational load of the octagonally shaped muon barrel toroid and the other detector components to the foundation below. The detector components are very sensitive to differential deflection and rely on the barrel toroid and support platform for stability. The operational load path is provided by two pairs of inclined longitudinal plates resting at 67.5[degree] on three pairs of plate girders that are positioned in-line in Z. The plate girders are held together laterally with 38 tie bars and supported vertically by the vertical adjustment system. The lateral stability of the inclined plates is provided by 22 stabilizer beams with cross bracing between each beam. The Z location of each split in the plate girder is coincident with the Z location of the gap in the calorimeter (4428 nun from the detector center.) The width of each split is 155 mm to allow installation of the alignment reference system. The collider beam line in the IR-8 underground experimental hall is oriented at a 2.16 mm/m slope from south to north as shown in Figure 2. The support is designed and installed to provide this slope at the top surface of the inclined plates. The assembled support rests on a ten foot thick steel reinforced 8000 psi concrete slab. The slab has a 2 mm differential deflection criteria under nominal gravitational loading.

  8. YALINA-booster subcritical assembly pulsed-neutron e xperiments: detector dead time and apatial corrections.

    SciTech Connect

    Cao, Y.; Gohar, Y.; Nuclear Engineering Division

    2010-10-11

    In almost every detector counting system, a minimal dead time is required to record two successive events as two separated pulses. Due to the random nature of neutron interactions in the subcritical assembly, there is always some probability that a true neutron event will not be recorded because it occurs too close to the preceding event. These losses may become rather severe for counting systems with high counting rates, and should be corrected before any utilization of the experimental data. This report examines the dead time effects for the pulsed neutron experiments of the YALINA-Booster subcritical assembly. The nonparalyzable model is utilized to correct the experimental data due to dead time. Overall, the reactivity values are increased by 0.19$ and 0.32$ after the spatial corrections for the YALINA-Booster 36% and 21% configurations respectively. The differences of the reactivities obtained with He-3 long or short detectors at the same detector channel diminish after the dead time corrections of the experimental data for the 36% YALINA-Booster configuration. In addition, better agreements between reactivities obtained from different experimental data sets are also observed after the dead time corrections for the 21% YALINA-Booster configuration.

  9. Fabrication of a Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors

    NASA Technical Reports Server (NTRS)

    Crowe, Erik J.; Bennett, Charles L.; Chuss, David T.; Denis, Kevin L.; Eimer, Joseph; Lourie, Nathan; Marriage, Tobias; Moseley, Samuel H.; Rostem, Karwan; Stevenson, Thomas R.; Towner, Deborah; U-Yen, Kongpop

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for evidence for gravitational waves from a posited epoch of inflation early in the Universe s history. This measurement will require integration of superconducting transition-edge sensors with microwave waveguide inputs with excellent control of systematic errors, such as unwanted coupling to stray signals at frequencies outside of a precisely defined microwave band. To address these needs we present work on the fabrication of micromachined silicon, producing conductive quarter-wave backshort assemblies for the CLASS 40 GHz focal plane. Each 40 GHz backshort assembly consists of three degeneratively doped silicon wafers. Two spacer wafers are micromachined with through-wafer vias to provide a 2.04 mm long square waveguide delay section. The third wafer terminates the waveguide delay in a short. The three wafers are bonded at the wafer level by Au-Au thermal compression bonding then aligned and flip chip bonded to the CLASS detector at the chip level. The micromachining techniques used have been optimized to create high aspect ratio waveguides, silicon pillars, and relief trenches with the goal of providing improved out of band signal rejection. We will discuss the fabrication of integrated CLASS superconducting detector chips with the quarter-wave backshort assemblies.

  10. Integration of wide field-of-view imagery functions in a detector dewar cooler assembly

    NASA Astrophysics Data System (ADS)

    Druart, Guillaume; de la Barriere, Florence; Guerineau, Nicolas; Lasfargues, Gilles; Fendler, Manuel; Lhermet, Nicolas; Taboury, Jean; Reibel, Yann; Moullec, Jean-Baptiste

    2012-06-01

    Today, both military and civilian applications require miniaturized optical systems in order to give an imagery function to vehicles with small payload capacity. After the development of megapixel focal plane arrays (FPA) with micro-sized pixels, this miniaturization will become feasible with the integration of optical functions in the detector area. In the field of cooled infrared imaging systems, the detector area is the Detector-Dewar-Cooler Assembly (DDCA). A dewar is a sealed environment where the detector is cooled on a cold plate. We show in this paper that wide field of view imagery functions can be simply added to the dewar. We investigate two ways of integration and make two demonstrators. The first one called FISBI consists in replacing the window by a fish-eye lens and in integrating a lens in the cold shield. This optical system has a field of view of 180°. The second one, called IR-Cam-on-Chip, consists in integrating the optics directly on the focal plane array. This optical system has a field of view of 120°. The additional mass of the optics is sufficiently small to be compatible with the cryogenic environment of the DDCA. The performance of these cameras will be discussed and several evolutions of these cameras will be introduced too.

  11. Energy resolution of LaBr3:Ce in a phoswich configuration with CsI:Na and NaI:Tl scintillator crystals

    NASA Astrophysics Data System (ADS)

    Hull, G.; Genolini, B.; Josselin, M.; Matea, I.; Peyré, J.; Pouthas, J.; Zerguerras, T.

    2012-12-01

    We studied the performances of the LaBr3:Ce scintillator when optically coupled to NaI:Tl and CsI:Na in a Phoswich detector for the R&D phase of the gamma ray calorimeter PARIS (Photon Array for the studies with Radioactive Ion and Stable beams). This detector has the purpose to measure γ-energies in a wide range (100 keV-40 MeV), and it will be used principally as a part of the SPIRAL2 instrumentation at GANIL. In this communication we report on the study of the light yield and energy resolution for gamma detection realized by coupling the phoswiches with various photomultiplier tubes, providing different characteristics. We were interested in investigating the possible degradation of the scintillation light produced by the LaBr3:Ce due to the presence of NaI:Tl/CsI:Na crystals, before being detected on the photocathode. For this purpose we realized all the measurements employing a standard ADC and QDC read-out system leading the possibility to perform a gate-based event selection. In this study we measured an energy resolution of 4.6% with an uncollimated 137Cs source for a 50.8×50.8×50.8 mm3 LaBr3:Ce coupled to a 50.8×50.8×152.4 mm3 NaI:Tl. This value is 30% bigger than the energy resolution measured for a 50.8×50.8×101.6 mm3 stand-alone LaBr3:Ce but still in the specifications for the PARIS collaboration physics list.

  12. Testing and assembly of the detectors for the Millimeter Bolometer Array Camera on ACT

    NASA Astrophysics Data System (ADS)

    Marriage, T. A.; Chervenak, J. A.; Doriese, W. B.

    2006-04-01

    The Millimeter Bolometer Array Camera (MBAC) for the Atacama Cosmology Telescope consists of three Transition Edge Sensor (TES) arrays to make simultaneous observations of the Cosmic Microwave Background in three frequency bands. MBAC TESs are NASA Goddard Pop-Up Detectors (PUD) which are read-out by NIST time-domain multiplexers. MBAC is constructed by stacking 1×32 TES columns to form the 32×32 element arrays. The arrays are modular (connectorized) at the 1×32 column level such that array assembly is reversible and camera repair possible. Prior to assembly, each column is tested in a quick (2h) cycling 4He/3He adsorption refrigerator. Tests include measurements of TES current voltage curves and TES complex impedance.

  13. Assembling and Using an LED-Based Detector to Monitor Absorbance Changes during Acid-Base Titrations

    ERIC Educational Resources Information Center

    Santos, Willy G.; Cavalheiro, E´der T. G.

    2015-01-01

    A simple photometric assembly based in an LED as a light source and a photodiode as a detector is proposed in order to follow the absorbance changes as a function of the titrant volume added during the course of acid-base titrations in the presence of a suitable visual indicator. The simplicity and low cost of the electronic device allow the…

  14. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  15. Ruggedizing infrared integrated Dewar-detector assemblies for harsh environmental conditions

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Ashush, Nataniel; Shlomovich, Baruch; Oppenhaim, Yaakov; Gridish, Yaakov; Kahanov, Ezra; Koifman, Alina; Tuito, Avi

    2014-06-01

    Cryogenically cooled infrared electro-optical payloads have to operate and survive frequent exposure to harsh vibrational and shock conditions typical of the modern battlefield. This necessitates the development of special approaches to ruggedizing their sensitive components. The ruggedization requirement holds true specifically for Integrated Dewar-Detector Assemblies (IDDA), where the infrared Focal Plane Array (FPA) is usually supported by a thin-walled cold finger enveloped by an evacuated tubular Dewar. Without sufficient ruggedization, harsh environmental vibration may give rise to structural resonance responses resulting in spoiled image quality and even mechanical fractures due to material fatigue. The authors present their approach for the ruggedization of the IDDA by attaching the FPA to a semi-rigid support extending from the dynamically damped Dewar envelope. A mathematical model relies on an experimentally evaluated set of frequency response functions for a reference system and a lumped model of a wideband dynamic absorber. By adding only 2% to the weight of the IDDA, the authors have managed to attenuate the relative deflection and absolute acceleration of the FPA by a factor of 3. The analytical predictions are in full agreement with experiment.

  16. Multi-slope warm-up calorimetry of Integrated Dewar-Detector Assemblies

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Shlomovich, Baruch; Tuito, Avi

    2015-05-01

    Boil-off isothermal calorimetry of Integrated Dewar-Detector Assemblies (IDDA) is a routine part of acceptance testing. In this traditional approach, the cryogenic liquid coolant (typically LN2) is allowed to naturally boil off from the Dewar well to the atmosphere. The parasitic heat load is then evaluated as the product of the latent heat of vaporization and the "last drop" boil-off rate monitored usually by a mass flow meter. An inherent limitation of this technique is that it is applicable only at the fixed boiling temperature of the chosen liquid coolant, for example, 77K for LN2. There is a need, therefore, to use other (often exotic) cryogenic liquids when calorimetry is needed at temperatures other than 77K. A further drawback is related to the transitional nature of last drop boiling, which manifests itself in development of enlarged bubbles, explosions and geysering. This results in an uneven flow rate and also affects the natural temperature gradient along the cold finger. Additionally, mass flow meters are known to have limited measurement accuracy. The above considerations especially hold true for advanced High Operational Temperature IDDAs, typically featuring short cold fingers and working at 150K and above. In this work, we adapt the well-known technique of dual-slope calorimetry and show how accurate calorimetry may be performed by precooling the IDDA and comparing the warm-up slopes of the thermal transient processes under different trial added heat loads. Because of the simplicity, accuracy and ability to perform calorimetry literally at any temperature of interest, this technique shows good potential for replacing traditional boil-off calorimetry.

  17. Artificial leaf structures as a UV detector formed by the self-assembly of ZnO nanoparticles.

    PubMed

    Wang, Fei; Zhao, Dongxu; Guo, Zhen; Liu, Lei; Zhang, Zhenzhong; Shen, Dezhen

    2013-04-01

    Artificial leaf structures have been fabricated by the self-assembly of ZnO nanoparticles. A hydrothermal method was used to synthesize the nanoparticles. The self-assembly patterns showed asymmetric dendritic morphologies, larger surface-to-volume ratios, a broad absorption band and high resistance. A non-equilibrium two-stage-formation process included diffusion limited aggregation, and the phase-field model was introduced to explain the formation mechanism of the pattern. A high-performance ultraviolet detector was fabricated on the artificial leaf structures, which showed that the current under the irradiation of a UV lamp (1.21 mW cm(-2)) was about 10(4) times greater than in the dark. The various and functional properties of the pattern show us the vast prospects of potential applications for light harvesting systems and other optical-electric devices. PMID:23446434

  18. A Tunable Terahertz Detector Based On Self Assembled Plasmonic Structure on a GaAs 2DEG

    NASA Astrophysics Data System (ADS)

    Bae, Chejin; George, Deepu; Singh, Rohit; Markelz, Andrea; Department of Physics, University at Buffalo, The State University of New York Team

    2013-03-01

    To improve detector sensitivity, tunability and remove polarization dependence, we develop the gated grid plasmonic structure on 2DEG by using nanosphere self-assembly lithography. The measured transmission clearly is not following Drude response, but rather has three sharp resonances corresponding fundamental, 3rd, and 5th harmonics of plasmon resonance respectively. Measurements at 80K show a large transmission change of 25%. We also confirmed a magneto plasmon dispersion of this device. In this paper we will discuss the radiative damping effect which affects enhanced absorption at the higher harmonics mode relative to fundamental and inductive grid resonance of this self-assembled plasmonic structure by demonstrating an angular dependence of transmission due to 2D plasmon.

  19. Long term instability in the defect assembly in irradiated high resistivity silicon detectors

    SciTech Connect

    Eremin, V.; Ivanov, A.; Verbitskaya, E.; Li, Z.; Schmidt, B.

    1996-05-01

    Different kinetic behavior has been revealed for the two types of irradiated high resistivity silicon detectors in the reactions of the interstitial carbon (C{sub i}) annealing and the formation of the C{sub i}-O{sub i} complex. In the detectors with an increased oxygen contents prolonged growth of the C{sub i}-O{sub i} complex concentration obeyed the second order reaction due to an additional source of C{sub i} atoms which were not detected by DLTS measurements. Transformation of carbon related defects has been analyzed concerning the long term instability of irradiated silicon detectors. 5 refs., 2 figs.

  20. Artificial leaf structures as a UV detector formed by the self-assembly of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhao, Dongxu; Guo, Zhen; Liu, Lei; Zhang, Zhenzhong; Shen, Dezhen

    2013-03-01

    Artificial leaf structures have been fabricated by the self-assembly of ZnO nanoparticles. A hydrothermal method was used to synthesize the nanoparticles. The self-assembly patterns showed asymmetric dendritic morphologies, larger surface-to-volume ratios, a broad absorption band and high resistance. A non-equilibrium two-stage-formation process included diffusion limited aggregation, and the phase-field model was introduced to explain the formation mechanism of the pattern. A high-performance ultraviolet detector was fabricated on the artificial leaf structures, which showed that the current under the irradiation of a UV lamp (1.21 mW cm-2) was about 104 times greater than in the dark. The various and functional properties of the pattern show us the vast prospects of potential applications for light harvesting systems and other optical-electric devices.Artificial leaf structures have been fabricated by the self-assembly of ZnO nanoparticles. A hydrothermal method was used to synthesize the nanoparticles. The self-assembly patterns showed asymmetric dendritic morphologies, larger surface-to-volume ratios, a broad absorption band and high resistance. A non-equilibrium two-stage-formation process included diffusion limited aggregation, and the phase-field model was introduced to explain the formation mechanism of the pattern. A high-performance ultraviolet detector was fabricated on the artificial leaf structures, which showed that the current under the irradiation of a UV lamp (1.21 mW cm-2) was about 104 times greater than in the dark. The various and functional properties of the pattern show us the vast prospects of potential applications for light harvesting systems and other optical-electric devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33748k

  1. Neutron Activation and Thermoluminescent Detector Responses to a Bare Pulse of the CEA Valduc SILENE Critical Assembly

    SciTech Connect

    Miller, Thomas Martin; Celik, Cihangir; McMahan, Kimberly L.; Lee, Yi-kang; Gagnier, Emmanuel; Authier, Nicolas; Piot, Jerome; Jacquet, Xavier; Rousseau, Guillaume; Reynolds, Kevin H.

    2015-09-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 11, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  2. Detector Dewar cooler assemblies trade-off with equipment needs: a key issue for cost reduction

    NASA Astrophysics Data System (ADS)

    Chatard, Jean-Pierre

    1996-06-01

    Low cost equipment is the universal motto with the decrease in military budgets. A large panoply exists to solve partially this problem, such as simplification of the process, industrialization and the use of a collective manufacturing concept; but this is not enough. In the field of IRFPA using Mercury Cadmium Telluride (MCT), Sofradir has spent a lot of time in order to develop a very simple process to ensure producibility which has been totally demonstrated today. The production of more than 25 complex IRFPA per month has also allowed us to industrialize the process. A key factor is quantities. Today the only solution to increase quantities is to standardize detectors but in the field of IRFPA it is not so easy because each imaging system is specific. One solution to decrease the cost is to obtain the best trade-off between the application and the technology. As an example, people focus on indium antimonide staring array detectors today as they consider them as less expensive than other cooled infrared detector technologies. This is just because people focus on the FPA only, not on the global cost of the equipment. It will be demonstrated in this paper that MCT is a material so flexible that it is possible to obtain InSb detector performance at a higher temperature which allows decreased cost, volume and weight of the infrared equipment.

  3. Background simulation of the X-ray detectors using Geant4 toolkit

    NASA Astrophysics Data System (ADS)

    Sarkar, R.; Mandal, S.; Nandi, A.; Debnath, D.; Chakrabarti, S. K.; Rao, A. R.

    We have studied the background noise of X-ray detectors using the Geant4 simulation toolkit. The main source of background noise for the X-ray detectors of low earth orbit is due to cosmic diffused background photons. We have calculated the background spectrum for the CZT of ASTROSAT as well as the phoswich detector of RT-2. Also we have studied the importance of the veto detector to reduce the Compton induced background photons. In this simulation ess we also have optimized the passive shielding to minimize the detector weight within the allowed limit of background counts.

  4. Fabrication of Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors

    NASA Technical Reports Server (NTRS)

    Crowe, E.; Bennett, C. L.; Chuss, D. T.; Denis, K. L.; Eimer, J.; Lourie, N.; Marriage, T.; Moseley, S. H.; Rostem, K.; Stevenson, T. R.; Towner, D.; U-Yen, K.; Wollack, E. J.

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for gravitational waves from a posited epoch of inflation early in the universe s history. We are currently developing detectors that address the challenges of this measurement by combining the excellent beam-forming attributes of feedhorns with the low-noise performance of Transition-Edge sensors. These detectors utilize a planar orthomode transducer that maps the horizontal and vertical linear polarized components in a dual-mode waveguide to separate microstrip lines. On-chip filters define the bandpass in each channel, and the signals are terminated in resistors that are thermally coupled to the transition-edge sensors operating at 150 mK.

  5. SOFRADIR detector dewar cooler assemblies evolution to fulfill new market requirements

    NASA Astrophysics Data System (ADS)

    Chatard, Jean-Pierre

    1994-10-01

    Sofradir IRFPAs using MCT material are generally cooled down with classical coolers such as regulated or non regulated Joule Thomson coolers, rotary or linear closed cycle Stirling machines. By using these coolers, it is possible to satisfy a large range of application requirements. Nevertheless, the requirements for new military equipment increased during the last two years putting more pressure on cooling system requirements. On the other hand, the continuous increase of the size of available IRFPA also puts more pressure on cooling system requirements. Finally, the reduction of military budgets and the potential commercial market forces one to propose new configurations. Therefore, Sofradir has worked in the following different fields: (1) development of a very small flat detector dewar using a flat Joule Thomson cooler for severe environmental conditions such as seeker applications; (2) development of a detector dewar using the IDCA (integrated dewar/cooler) concept for high performance, and low cost application; and (3) development of detector dewar using thermoelectric coolers for low cost application. Sofradir presents the results of these activities.

  6. Magnetic field detector consisting of magnetic and semiconducting nanoparticles co-assembled in a liquid crystalline matrix

    NASA Astrophysics Data System (ADS)

    Amaral, Jose; Rodarte, Andrea; Wan, Jacky; Ferri, Christopher; Quint, Makiko; Pandolfi, Ron; Scheibner, Michael; Hirst, Linda; Ghosh, Sayantani

    2015-03-01

    An exciting area of research is using nano-constituents to create artificial materials that are multifunctional and allow for modification post-fabrication and in situ. We are investigating the ensemble behavior of iron-oxide magnetic nanoparticles (MNPs) and CdSe/ZnS quantum dots (QDs) when dispersed in an electro-optically active liquid crystalline (LC) matrix. The directed assembly of NPs in the matrix is driven by the temperature-induced transition of the LC from the isotropic to the nematic phase as the NPs are mostly expelled into the isotropic regions, finally ending up clustered around LC defect points when the transition is complete. Our results show a two-fold intensity increase of QD photoluminescence intensity with low magnetic fields (less than 100 mT). We speculate this increase is due to MNP rearrangement which produces a compaction of the clusters, resulting in the detection of increased QD emission. The individual components work together to act as a magnetic field detector and since they are direct assembled in a LC medium, they could potentially be used in a wide range of fluid-based applications. This work was funded by NSF grants DMR-1056860 and ECC-1227034. This work was funded by NSF Grants DMR-1056860 and ECC-1227034.

  7. Design and Characterization of the CCD Detector Assemblies for ICON FUV

    NASA Astrophysics Data System (ADS)

    Champagne, J.; Syrstad, E. A.; Siegmund, O.; Darling, N.; Jelinsky, S. R.; Curtis, T.

    2015-12-01

    The Far Ultraviolet Imaging Spectrograph (FUV) on the upcoming Ionospheric Connection Explorer (ICON) mission uses dual image-intensified CCD camera systems, capable of detecting individual UV photons from both spectrometer channels (135.6 and 155 nm). Incident photons are converted to visible light using a sealed tube UV converter. The converter output is coupled to the CCD active area using a bonded fiber optic taper. The CCD (Teledyne DALSA FTT1010M) is a 1024x1024 frame transfer architecture. The camera readout electronics provide video imagery to the spacecraft over a 21 bit serialized LVDS interface, nominally at 10 frames per second and in 512x512 format (2x2 pixel binning). The CCD and primary electronics assembly reside in separate thermal zones, to minimize dark current without active cooling.Engineering and flight camera systems have been assembled, integrated, and tested under both ambient pressure and thermal vacuum environments. The CCD cameras have been fully characterized with both visible light (prior to integration with the UV converter) and UV photons (following system integration). Measured parameters include camera dark current, dark signal non-uniformity, read noise, linearity, gain, pulse height distribution, dynamic range, charge transfer efficiency, resolution, relative efficiency, quantum efficiency, and full well capacity. UV characterization of the camera systems over a range of microchannel plate (MCP) voltages during thermal vacuum testing demonstrates that camera performance will meet the critical on-orbit FUV dynamic range requirements. Flight camera integration with the FUV instrument and sensor calibration is planned for Fall 2015. Camera design and full performance data for the engineering and flight model cameras will be presented.

  8. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  9. Mapping of the thermal neutron distribution in the lead block assembly of the PS-211 experiment at CERN, using thermoluminescence and nuclear track detectors.

    PubMed

    Savvidis, E; Eleftheriadis, C A; Kitis, G

    2002-01-01

    The main purpose of the TARC (Transmutation by Adiabatic Resonance Crossing) experiment (PS-211), was to demonstrate the possibility to destroy efficiently Long-Lived Fission Fragments (LLFF) in Accelerator Driven Systems (ADS). The experimental set-up which consisted of a lead block with dimensions 3.3 x 3.3 x 3 m3, was installed in a CERN Proton Synchrotron (PS) beam line. The proton beam at 2.5 GeV/c and 3.5 GeV/c, was incident in the centre of the lead block assembly producing neutrons via spallation reactions. In this study, neutron flux measurements are presented in the lead block assembly using thermoluminescence and nuclear track detectors. The results are in good agreement with Monte Carlo calculations as well as with the results of the other methods used in the framework of the TARC experiment.

  10. Burst diaphragm leak detector

    NASA Technical Reports Server (NTRS)

    Pascolla, J. A.

    1969-01-01

    New method replaces flowmeter approach with readily available burst diaphragm leak detector assembly mounted to all drain ports. This allows simultaneous leak detection of all flange seals under operating conditions.

  11. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  12. Neutron detector

    SciTech Connect

    Stephan, Andrew C; Jardret, Vincent D

    2009-04-07

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  13. Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction

    NASA Astrophysics Data System (ADS)

    Zhu, Shiyang; Chu, H. S.; Lo, G. Q.; Bai, P.; Kwong, D. L.

    2012-02-01

    An all-silicon photodetector integrated in a silicon-on-insulator waveguide for the telecom regime is proposed. The device is based on internal photoemission from electrically floating metal silicide nanoparticles (NPs) embedded in the space charge region of a Si p-n junction. Numerical simulation indicates that the light absorption could be enhanced if localized surface plasmon resonances are excited on the metal silicide nanoparticles, thus enabling to shrink the detector's footprint to a submicron scale. A proof-of-concept detector fabricated using standard silicon complementary metal-oxide-semiconductor technology exhibits a peak responsivity of ˜30 mA/W at 5-V reverse bias and a 3-dB bandwidth of ˜6 GHz. It is expected that the overall performance would be significantly improved by optimization of both the detector's configuration and the fabrication parameters.

  14. Neutron detectors comprising boron powder

    SciTech Connect

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  15. Characterization of a sub-assembly of 3D position sensitive cadmium zinc telluride detectors and electronics from a sub-millimeter resolution PET system

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Gu, Yi; Reynolds, Paul D.; Levin, Craig S.

    2016-09-01

    Cadmium zinc telluride (CZT) offers key advantages for small animal positron emission tomography (PET), including high spatial and energy resolution and simple metal deposition for fabrication of very small pixel arrays. Previous studies have investigated the intrinsic spatial, energy, and timing resolution of an individual sub-millimeter resolution CZT detector. In this work we present the first characterization results of a system of these detectors. The 3D position sensitive dual-CZT detector module and readout electronics developed in our lab was scaled up to complete a significant portion of the final PET system. This sub-system was configured as two opposing detection panels containing a total of twelve 40~\\text{mm}× 40~\\text{mm}× 5 mm monolithic CZT crystals for proof of concept. System-level characterization studies, including optimizing the trigger threshold of each channel’s comparators, were performed. 68Ge and 137Cs radioactive isotopes were used to characterize the energy resolution of all 468 anode channels in the sub-system. The mean measured global 511 keV photopeak energy resolution over all anodes was found to be 7.35+/- 1.75 % FWHM after correction for photon interaction depth-dependent signal variation. The measured global time resolution was 37 ns FWHM, a parameter to be further optimized, and the intrinsic spatial resolution was 0.76 mm FWHM.

  16. A Multi-Layer Phoswich Radioxenon Detection System (7th Qtr Report), Reporting Period 10/01/07 - 12/31/07

    SciTech Connect

    David M. Hamby

    2008-01-29

    Description of activities conducted this report period: (1) Electronics Development--To improve the overall performance of the two-channel digital pulse processor (DPP2), the PCB has been redesigned and the new printed board is now under assembly. The system is enhanced with two new fast ADCs from Analog Devices (AD9230-250), each with a sampling rate of 250 MHz and a resolution of 12 bits. The data bus uses a high performance Low Voltage Differential Signaling (LVDS) standard. The offset and gain of each channel are separately controlled digitally by the GUI software. (2) GUI Software Development--A GUI is being developed using the Python programming language. All functions from the preceding MATLAB code have been re-implemented including basic waveform readout, pulse shape discrimination, and plotting of energy spectra. In addition, the GUI can be used to control sampling runs based on the number of pulses captured, either in real or live time. Calibration coefficients and pulse shape discrimination boundaries can be changed on the fly so that the detector may be characterized experimentally. Plots generated by the GUI can be exported as graphic data. At present, the software has only been tested using one channel, pending availability of the new DPP board (DPP2). However, the functions have been written to allow easy expansion to two channels. (3) Light Collection Modeling--The XEPHWICH design has been modeled to determine its light capture efficiency. Research in the 7th quarter includes additional simulations representing significant increase in data resolution, well over an order of magnitude greater than previous simulations. The final data set represents approximately 11 billion visible photons divided equally among 110 thousand data points. A laboratory experiment is being designed and executed to experimentally determine light capture efficiency as a function of position within the scintillators. (4) Radioxenon Fission Source--We have designed and

  17. Transmutation detectors

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Lahodová, Z.; Klupák, V.; Sus, F.; Kučera, J.; Kůs, P.; Marek, M.

    2011-03-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  18. Construction of the CDF silicon vertex detector

    SciTech Connect

    Skarha, J.; Barnett, B.; Boswell, C.; Snider, F.; Spies, A.; Tseng, J.; Vejcik, S.; Carter, H.; Flaugher, B.; Gonzales, B.; Hrycyk, M.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T.; Carithers, W.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester, W.; Wong, M.; Amidei, D.; Derwent, P.; Gold, M.; Matthews, J.; Bacchetta, N.; Bisello, D.; Busetto, G.; Castro, A.; Loreti, M.; Pescara, L.; Bedeschi, F.; Bolognesi, V.; Dell`Agnello, S.; Galeotti, S.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Risotri, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F. |; Bailey, M.; Garfinkel, A.; Shaw, N.; Tipton, P.; Watts, G.

    1992-04-01

    Technical details and methods used in constructing the CDF silicon vertex detector are presented. This description includes a discussion of the foam-carbon fiber composite structure used to silicon microstrip detectors and the procedure for achievement of 5 {mu}m detector alignment. The construction of the beryllium barrel structure, which houses the detector assemblies, is also described. In addition, the 10 {mu}m placement accuracy of the detectors in the barrel structure is discussed and the detector cooling and mounting systems are described. 12 refs.

  19. The UCSD high energy X-ray timing experiment cosmic ray particle anticoincidence detector

    NASA Technical Reports Server (NTRS)

    Hink, P. L.; Rothschild, R. E.; Pelling, M. R.; Macdonald, D. R.; Gruber, D. E.

    1991-01-01

    The HEXTE, part of the X-Ray Timing Explorer (XTE), is designed to make high sensitivity temporal and spectral measurements of X-rays with energies between 15 and 250 keV using NaI/CsI phoswich scintillation counters. To achieve the required sensitivity it is necessary to provide anticoincidence of charged cosmic ray particles incident upon the instrument, some of which interact to produce background X-rays. The proposed cosmic ray particle anticoincidence shield detector for HEXTE uses a novel design based on plastic scintillators and wavelength-shifter bars. It consists of five segments, each with a 7 mm thick plastic scintillator, roughly 50 cm x 50 cm in size, coupled to two wavelength-shifter bars viewed by 1/2 inch photomultiplier tubes. These segments are configured into a five-sided, box-like structure around the main detector system. Results of laboratory testing of a model segment, and calculations of the expected performance of the flight segments and particle anticoincidence detector system are presented to demonstrate that the above anticoincidence detector system satisfies its scientific requirements.

  20. On-orbit calibration status of the hard x-ray detector (HXD) onboard Suzaku

    NASA Astrophysics Data System (ADS)

    Nishino, S.; Fukazawa, Y.; Mizuno, T.; Takahashi, H.; Hayashi, K.; Hiragi, K.; Mizuno, M.; Yamada, S.; Kawaharada, M.; Kokubun, M.; Nakazawa, K.; Watanabe, S.; Tanaka, T.; Terada, Y.

    2010-07-01

    Hard X-ray Detector (HXD) onboard Suzaku, the Japanese 5th X-ray observatory, consists of 64 PIN photo diodes with 2 mm thickness (10-70 keV) and 16 phoswich detectors using 5 mm-thick GSO scintillators and BGO active collimators (40-600 keV), and these are surrounded by 20 units of BGO Active shields. All the detector units have been working well with no significant troubles in four and a half years since the launch on July 2005, and given many important scientific results. In this paper, we report the recent status of on-orbit calibrations for PIN/GSO detectors. For the PIN, analog/digital threshold levels of both in-orbit and on-ground are raised up to avoid the increasing noise events due to in-orbit radiation damage. For the GSO, the accuracy of the energy scale and modeling of gain variations are improved, and newly calibrated data set including background files and response matrices are released on April 2010.

  1. Infrared detectors for space applications

    NASA Astrophysics Data System (ADS)

    Fick, Wolfgang; Gassmann, Kai Uwe; Haas, Luis-Dieter; Haiml, Markus; Hanna, Stefan; Hübner, Dominique; Höhnemann, Holger; Nothaft, Hans-Peter; Thöt, Richard

    2013-12-01

    The motivation and intended benefits for the use of infrared (IR) detectors for space applications are highlighted. The actual status of state-of-the-art IR detectors for space applications is presented based on some of AIM's currently ongoing focal plane detector module developments covering the spectral range from the short-wavelength IR (SWIR) to the long-wavelength IR (LWIR) and very long-wavelength IR (VLWIR), where both imaging and spectroscopy applications will be addressed. In particular, the integrated detector cooler assemblies for a mid-wavelength IR (MWIR) push-broom imaging satellite mission, for the German hyperspectral satellite mission EnMAP and the IR detectors for the Sentinel 3 SLSTR will be elaborated. Additionally, dedicated detector modules for LWIR/VLWIR sounding, providing the possibility to have two different PVs driven by one ROIC, will be addressed.

  2. Gamma ray detector modules

    NASA Technical Reports Server (NTRS)

    Capote, M. Albert (Inventor); Lenos, Howard A. (Inventor)

    2009-01-01

    A radiation detector assembly has a semiconductor detector array substrate of CdZnTe or CdTe, having a plurality of detector cell pads on a first surface thereof, the pads having a contact metallization and a solder barrier metallization. An interposer card has planar dimensions no larger than planar dimensions of the semiconductor detector array substrate, a plurality of interconnect pads on a first surface thereof, at least one readout semiconductor chip and at least one connector on a second surface thereof, each having planar dimensions no larger than the planar dimensions of the interposer card. Solder columns extend from contacts on the interposer first surface to the plurality of pads on the semiconductor detector array substrate first surface, the solder columns having at least one solder having a melting point or liquidus less than 120 degrees C. An encapsulant is disposed between the interposer circuit card first surface and the semiconductor detector array substrate first surface, encapsulating the solder columns, the encapsulant curing at a temperature no greater than 120 degrees C.

  3. Refining Radchem Detectors: Iridium

    NASA Astrophysics Data System (ADS)

    Arnold, C. W.; Bredeweg, T. A.; Vieira, D. J.; Bond, E. M.; Jandel, M.; Rusev, G.; Moody, W. A.; Ullmann, J. L.; Couture, A. J.; Mosby, S.; O'Donnell, J. M.; Haight, R. C.

    2013-10-01

    Accurate determination of neutron fluence is an important diagnostic of nuclear device performance, whether the device is a commercial reactor, a critical assembly or an explosive device. One important method for neutron fluence determination, generally referred to as dosimetry, is based on exploiting various threshold reactions of elements such as iridium. It is possible to infer details about the integrated neutron energy spectrum to which the dosimetry sample or ``radiochemical detector'' was exposed by measuring specific activation products post-irradiation. The ability of radchem detectors like iridium to give accurate neutron fluence measurements is limited by the precision of the cross-sections in the production/destruction network (189Ir-193Ir). The Detector for Advanced Neutron Capture Experiments (DANCE) located at LANSCE is ideal for refining neutron capture cross sections of iridium isotopes. Recent results from a measurement of neutron capture on 193-Ir are promising. Plans to measure other iridium isotopes are underway.

  4. Smoke Detector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo, Fire Chief Jay Stout of Safety Harbor, Florida, is explaining to young Richard Davis the workings of the Honeywell smoke and fire detector which probably saved Richard's life and that of his teen-age brother. Alerted by the detector's warning, the pair were able to escape their burning home. The detector in the Davis home was one of 1,500 installed in Safety Harbor residences in a cooperative program conducted by the city and Honeywell Inc.

  5. Optical transcutaneous bilirubin detector

    DOEpatents

    Kronberg, J.W.

    1993-11-09

    A transcutaneous bilirubin detector is designed comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient. 6 figures.

  6. Optical transcutaneous bilirubin detector

    DOEpatents

    Kronberg, James W.

    1993-01-01

    A transcutaneous bilirubin detector comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient.

  7. Optical transcutaneous bilirubin detector

    DOEpatents

    Kronberg, J.W.

    1991-03-04

    This invention consists of a transcutaneous bilirubin detector comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient.

  8. The L3 silicon microvertex detector

    NASA Astrophysics Data System (ADS)

    Acciarri, M.; Adam, A.; Adriani, O.; Ahlen, S.; Alcaraz, J.; Ambrosi, G.; Babucci, E.; Baksay, L.; Baschirotto, A.; Battiston, R.; Baur, W.; Bay, A.; Bencze, Gy. L.; Bertucci, B.; Biasini, M.; Bilei, G. M.; Bobbink, G. J.; Boissevain, J. G.; Bosetti, M.; Brooks, M. L.; Burger, W. J.; Busenitz, J.; Camps, C.; Caria, M.; Castellini, G.; Castello, R.; Checcuccl, B.; Chen, A.; Coan, T. E.; Commichau, V.; DiBitonto, D.; Ding, J.; Duinker, P.; Djambazov, L.; Easo, S.; Extermann, P.; Fiandrini, E.; Gabbanini, A.; Goldstein, J.; Gougas, A.; Hangarter, K.; Hauviller, C.; Herve, A.; Hofer, M.; Hofer, T.; Hou, S.; Josa, M. I.; Kapustinsky, J. S.; Kim, D.; Kinnison, W. W.; Kirst, H.; Kornis, J.; Krastev, V. R.; Ladron, P.; Landi, G.; Lebeau, M.; Lecomte, P.; Lee, D. M.; Leiste, R.; Lejeune, E.; Lin, W. T.; Lohmann, W.; Marin, A.; Massetti, R.; Mills, G. B.; Nowak, H.; Okle, M.; Passaleva, G.; Paul, T.; Pauluzzi, M.; Pensotti, S.; Perrin, E.; Produit, N.; Rancoita, P. G.; Rattaggi, M.; Richeux, J.-P.; Santocchia, A.; Siedling, R.; Sachwitz, M.; Schmitz, P.; Schöneich, B.; Servoli, L.; Subham, K.; Susinno, G. F.; Terza, G.; Tesi, M.; Thompson, T.; Tonisch, F.; Toth, J.; Trowitzsch, G.; Viertel, G.; Tuchscherer, H.; Vogt, H.; Wang, S.; Waldmeier, S.; Weill, R.; Xu, J.; Yeh, S. C.; Zhou, B.; Zilizi, G.

    1994-12-01

    The design and construction of the silicon strip microvertex detector (SMD) of the L3 experiment at LEP are described. We present the sensors, readout electronics, data acquisition system, mechanical assembly and support, displacement monitoring systems and radiation monitoring system of the recently installed double-sided, double-layered SMD. This detector utilizes novel and sophisticated techniques for its readout.

  9. MTI Focal Plane Assembly Design and Performance

    SciTech Connect

    Ballard, M.; Rienstra, J.L.

    1999-06-17

    The focal plane assembly for the Multispectral Thermal Imager (MTI) consists of sensor chip assemblies, optical filters, and a vacuum enclosure. Sensor chip assemblies, composed of linear detector arrays and readout integrated circuits, provide spatial resolution in the cross-track direction for the pushbroom imager. Optical filters define 15 spectral bands in a range from 0.45 {micro}m to 10.7 {micro}m. All the detector arrays are mounted on a single focal plane and are designed to operate at 75 K. Three pairs of sensor chip assemblies (SCAs) are required to provide cross-track coverage in all 15 spectral bands. Each pair of SCAs includes detector arrays made from silicon, iridium antimonide, and mercury cadmium telluride. Read out integrated circuits multiplex the signals from the detectors to 18 separate video channels. Optical filter assemblies defining the spectral bands are mounted over the linear detector arrays. Each filter assembly consists of several filter strips bonded together side-by-side. The MTI focal plane assembly has been integrated with the rest of the payload and has undergone detailed testing and calibration. This paper includes representative test data for the various spectral bands and the overall performance of the focal plane assembly.

  10. Growing Crystals for Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1984-01-01

    Unidirectional solidification yields bulk crystals with compositional homogeneity. Unidirectionaly crystal-growth furnace assembly travels vertically so crystal grows upward from bottom tapered end of ampoule. Separately controlled furnaces used for hot (upper) and cold (lower) zones. New process produces ingots with radial compositional homogeneity suitable for fabricating infrared detectors.

  11. Monte Carlo Calculation of the Response of an External Detector to a Photon Source in the Lungs of a Heterogeneous Phantom.

    1980-05-19

    FANTOM calculates the response of a 20-cm-diameter phoswich (3 mm NaI(Tl) primary detector) to a source of low energy photons distributed in the lungs of a heterogeneous MIRD phantom, approximating ICRP Reference Man. The program considers the trunk region of the MIRD phantom which is made up of three types of tissues with different densities: skeletal tissue (1.85), lung tissue (0.3) and soft tissue (1). Each organ in the thorax region is described by simplemore » quadratic equations, with respect to a Cartesian coordinate system (X,Y,Z), the origin of which is located at the center of the base of the trunk, with positive Z-axis, Y-axis, and X-axis directed toward the head, posterior, and left side of the phantom, respectively.« less

  12. The Silicon Pixel Detector for ALICE Experiment

    SciTech Connect

    Fabris, D.; Bombonati, C.; Dima, R.; Lunardon, M.; Moretto, S.; Pepato, A.; Bohus, L. Sajo; Scarlassara, F.; Segato, G.; Shen, D.; Turrisi, R.; Viesti, G.; Anelli, G.; Boccardi, A.; Burns, M.; Campbell, M.; Ceresa, S.; Conrad, J.; Kluge, A.; Kral, M.

    2007-10-26

    The Inner Tracking System (ITS) of the ALICE experiment is made of position sensitive detectors which have to operate in a region where the track density may be as high as 50 tracks/cm{sup 2}. To handle such densities detectors with high precision and granularity are mandatory. The Silicon Pixel Detector (SPD), the innermost part of the ITS, has been designed to provide tracking information close to primary interaction point. The assembly of the entire SPD has been completed.

  13. Optical Detectors

    NASA Astrophysics Data System (ADS)

    Goushcha, Alexander; Tabbert, Bernd

    Optical detectors are applied in all fields of human activities - from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  14. Optical Detectors

    NASA Astrophysics Data System (ADS)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  15. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  16. Ultrafast neutron detector

    DOEpatents

    Wang, Ching L.

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  17. MS Detectors

    SciTech Connect

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.; Sperline, Roger P.; Hieftje, Gary M.; Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assess current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.

  18. Radio frequency detection assembly and method for detecting radio frequencies

    DOEpatents

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  19. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  20. Pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Haller, Eugene E.; Beeman, Jeffrey; Hansen, William L.; Hubbard, G. Scott; Mcmurray, Robert E., Jr.

    1990-01-01

    The multi-agency, long-term Global Change programs, and specifically NASA's Earth Observing system, will require some new and advanced photon detector technology which must be specifically tailored for long-term stability, broad spectral range, cooling constraints, and other parameters. Whereas MCT and GaAs alloy based photovoltaic detectors and detector arrays reach most impressive results to wavelengths as long as 12 microns when cooled to below 70 K, other materials, such as ferroelectrics and pyroelectrics, appear to offer special opportunities beyond 12 microns and above 70 K. These materials have found very broad use in a wide variety of room temperature applications. Little is known about these classes of materials at sub-room temperatures and no photon detector results have been reported. From the limited information available, researchers conclude that the room temperature values of D asterisk greater than or equal to 10(exp 9) cm Hz(exp 1/2)/W may be improved by one to two orders of magnitude upon cooling to temperatures around 70 K. Improvements of up to one order of magnitude appear feasible for temperatures achievable by passive cooling. The flat detector response over a wavelength range reaching from the visible to beyond 50 microns, which is an intrinsic advantage of bolometric devices, makes for easy calibration. The fact that these materials have been developed for reduced temperature applications makes ferro- and pyroelectric materials most attractive candidates for serious exploration.

  1. Building Detector Modules for the (S)CMS Pixel Barrel Detector

    NASA Astrophysics Data System (ADS)

    König, S.; PSI Pixel Group

    2009-12-01

    For the barrel part of the CMS pixel tracker about 800 silicon pixel detector modules are required. The modules are bump bonded, assembled and tested at the Paul Scherrer Institute. This article gives the production results of the module assembly for the CMS experiment and shows the evolution of the barrel pixel module design for the first phase of the LHC luminosity upgrade.

  2. Joint assembly

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2010-01-01

    A joint assembly is provided which includes a drive assembly and a swivel mechanism. The drive assembly features a motor operatively associated with a plurality of drive shafts for driving auxiliary elements, and a plurality of swivel shafts for pivoting the drive assembly. The swivel mechanism engages the swivel shafts and has a fixable element that may be attached to a foundation. The swivel mechanism is adapted to cooperate with the swivel shafts to pivot the drive assembly with at least two degrees of freedom relative to the foundation. The joint assembly allows for all components to remain encased in a tight, compact, and sealed package, making it ideal for space, exploratory, and commercial applications.

  3. PHASE DETECTOR

    DOEpatents

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  4. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  5. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  6. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  7. Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, Hartmut

    2014-03-01

    The use of silicon detectors has experienced an exponential growth in accelerator and space based experiments, similar to trends in the semiconductor industry as a whole, usually paraphrased as ``Moore's Law.'' Some of the essentials for this phenomenon will be presented, together with examples of the exciting science results which it enabled. With the establishment of a ``semiconductor culture'' in universities and laboratories around the world, an increased understanding of the sensors results in thinner, faster, more radiation-resistant detectors, spawning an amazing wealth of new technologies and applications, which will be the main subject of the presentation.

  8. Microwave detector

    SciTech Connect

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1986-12-02

    A detector is described for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations, the detector comprising: a B-dot loop linking the magnetic field of the microwave pulse; a biased ferrite, that produces a magnetization field flux that links the B-dot loop. The ferrite is positioned within the B-dot loop so that the magnetic field of the microwave pulse interacts with the ferrite and thereby participates in the formation of the magnetization field flux; and high-frequency insensitive means for measuring electric voltage or current induced in the B-dot loop.

  9. Optimization of a neutron detector design using adjoint transport simulation

    SciTech Connect

    Yi, C.; Manalo, K.; Huang, M.; Chin, M.; Edgar, C.; Applegate, S.; Sjoden, G.

    2012-07-01

    A synthetic aperture approach has been developed and investigated for Special Nuclear Materials (SNM) detection in vehicles passing a checkpoint at highway speeds. SNM is postulated to be stored in a moving vehicle and detector assemblies are placed on the road-side or in chambers embedded below the road surface. Neutron and gamma spectral awareness is important for the detector assembly design besides high efficiencies, so that different SNMs can be detected and identified with various possible shielding settings. The detector assembly design is composed of a CsI gamma-ray detector block and five neutron detector blocks, with peak efficiencies targeting different energy ranges determined by adjoint simulations. In this study, formulations are derived using adjoint transport simulations to estimate detector efficiencies. The formulations is applied to investigate several neutron detector designs for Block IV, which has its peak efficiency in the thermal range, and Block V, designed to maximize the total neutron counts over the entire energy spectrum. Other Blocks detect different neutron energies. All five neutron detector blocks and the gamma-ray block are assembled in both MCNP and deterministic simulation models, with detector responses calculated to validate the fully assembled design using a 30-group library. The simulation results show that the 30-group library, collapsed from an 80-group library using an adjoint-weighting approach with the YGROUP code, significantly reduced the computational cost while maintaining accuracy. (authors)

  10. Vertex detectors

    SciTech Connect

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10{sup {minus}13} s, among them the {tau} lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation.

  11. Non-streaming high-efficiency perforated semiconductor neutron detectors, methods of making same and measuring wand and detector modules utilizing same

    DOEpatents

    McGregor, Douglas S.; Shultis, John K.; Rice, Blake B.; McNeil, Walter J.; Solomon, Clell J.; Patterson, Eric L.; Bellinger, Steven L.

    2010-12-21

    Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.

  12. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  13. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  14. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  15. Crew Assembly

    NASA Video Gallery

    Train to improve your dexterity and hand-eye coordination by assembling a puzzle.The Train Like an Astronaut project uses the excitement of exploration to challenge students to set goals, practice ...

  16. Seal assembly

    SciTech Connect

    Johnson, Roger Neal; Longfritz, William David

    2001-01-01

    A seal assembly that seals a gap formed by a groove comprises a seal body, a biasing element, and a connection that connects the seal body to the biasing element to form the seal assembly. The seal assembly further comprises a concave-shaped center section and convex-shaped contact portions at each end of the seal body. The biasing element is formed from an elastic material and comprises a convex-shaped center section and concave-shaped biasing zones that are opposed to the convex-shaped contact portions. The biasing element is adapted to be compressed to change a width of the seal assembly from a first width to a second width that is smaller than the first width. In the compressed state, the seal assembly can be disposed in the groove. After release of the compressing force, the seal assembly expands. The contact portions will move toward a surface of the groove and the biasing zones will move into contact with another surface of the groove. The biasing zones will bias the contact portions of the seal body against the surface of the groove.

  17. Low radioactivity material for use in mounting radiation detectors

    NASA Technical Reports Server (NTRS)

    Fong, Marshall; Metzger, Albert E.; Fox, Richard L.

    1988-01-01

    Two materials, sapphire and synthetic quartz, have been found for use in Ge detector mounting assemblies. These materials combine desirable mechanical, thermal, and electrical properties with the radioactive cleanliness required to detect minimal amounts of K, Th, and U.

  18. The ZEUS micro-vertex detector

    NASA Astrophysics Data System (ADS)

    Chiochia, V.; ZEUS MVD Group

    2003-03-01

    During the HERA luminosity shutdown period 2000/2001 the tracking system of the ZEUS experiment has been upgraded with a silicon micro-vertex detector. The barrel part of the detector consists of three layers of single-sided silicon strip detectors, while the forward section is composed of four wheels. In this report we shortly present the assembly procedure and in more details the test beam results on the spatial resolution of half modules. The first results of a cosmic ray test are presented and the radiation monitor system is described.

  19. 3D IC for Future HEP Detectors

    SciTech Connect

    Thom, J.; Lipton, R.; Heintz, U.; Johnson, M.; Narain, M.; Badman, R.; Spiegel, L.; Triphati, M.; Deptuch, G.; Kenney, C.; Parker, S.; Ye, Z.; Siddons, D.

    2014-11-07

    Three dimensional integrated circuit technologies offer the possibility of fabricating large area arrays of sensors integrated with complex electronics with minimal dead area, which makes them ideally suited for applications at the LHC upgraded detectors and other future detectors. Here we describe ongoing R&D efforts to demonstrate functionality of components of such detectors. This also includes the study of integrated 3D electronics with active edge sensors to produce "active tiles" which can be tested and assembled into arrays of arbitrary size with high yield.

  20. Dust Detector

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    2001-01-01

    We discuss a recent sounding rocket experiment which found charged dust in the Earth's tropical mesosphere. The dust detector was designed to measure small (5000 - 10000 amu.) charged dust particles, most likely of meteoric origin. A 5 km thick layer of positively charged dust was found at an altitude of 90 km, in the vicinity of an observed sporadic sodium layer and sporadic E layer. The observed dust was positively charged in the bulk of the dust layer, but was negatively charged near the bottom.

  1. Ion detector

    DOEpatents

    Tullis, Andrew M.

    1987-01-01

    An improved ion detector device of the ionization detection device chamber ype comprises an ionization chamber having a central electrode therein surrounded by a cylindrical electrode member within the chamber with a collar frictionally fitted around at least one of the electrodes. The collar has electrical contact means carried in an annular groove in an inner bore of the collar to contact the outer surface of the electrode to provide electrical contact between an external terminal and the electrode without the need to solder leads to the electrode.

  2. ALICE detector in construction phase

    NASA Astrophysics Data System (ADS)

    Peryt, Wiktor S.

    2005-09-01

    ALICE1 collaboration, which prepares one of the biggest physics experiments in the history, came into production phase of its detector. The experiment will start at LHC2 at CERN in 2007/2008. In the meantime about 1000 people from ~70 institutions are involved in this enterprise. ALICE detector consists of many sub-detectors, designed and manufactured in many laboratories and commercial firms, located mainly in Europe, but also in U.S., India, China and Korea. To assure appropriate working environment for such a specific task, strictly related to tests of particular components, measurements and assembly procedures Detector Construction Database system has been designed and implemented at CERN and at some labs involved in these activities. In this paper special attention is paid to this topic not only due to fact of innovative approach to the problem. Another reason is the group of young computer scientists (mainly students) from the Warsaw University of Technology, leaded by the author, has designed and developed the system for the whole experiment3. Another very interesting subject is the Data Acquisition System which has to fulfill very hard requirements concerning speed and high bandwidth. Required technical performance is achieved thanks to using PCI bus (usually in previous high energy physics experiments VME standard has been used) and optical links. Very general overview of the whole detector and physics goals of ALICE experiment will also be given.

  3. Neutron detectors comprising ultra-thin layers of boron powder

    SciTech Connect

    Wang, Zhehul; Morris, Christopher

    2013-07-23

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material having a thickness of from about 50 nm to about 250 nm and comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  4. Hinge assembly

    DOEpatents

    Vandergriff, D.H.

    1999-08-31

    A hinge assembly is disclosed having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf. 8 figs.

  5. Hinge assembly

    DOEpatents

    Vandergriff, David Houston

    1999-01-01

    A hinge assembly having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf.

  6. Latch assembly

    DOEpatents

    Frederickson, James R.; Harper, William H.; Perez, Raymond

    1986-01-01

    A latch assembly for releasably securing an article in the form of a canister within a container housing. The assembly includes a cam pivotally mounted on the housing wall and biased into the housing interior. The cam is urged into a disabled position by the canister as it enters the housing and a latch release plate maintains the cam disabled when the canister is properly seated in the housing. Upon displacement of the release plate, the cam snaps into latching engagement against the canister for securing the same within the housing.

  7. Latch assembly

    DOEpatents

    Frederickson, J.R.; Harper, W.H.; Perez, R.

    1984-08-17

    A latch assembly for releasably securing an article in the form of a canister within a container housing. The assembly includes a cam pivotally mounted on the housing wall and biased into the housing interior. The cam is urged into a disabled position by the canister as it enters the housing and a latch release plate maintains the cam disabled when the canister is properly seated in the housing. Upon displacement of the release plate, the cam snaps into latching engagement against the canister for securing the same within the housing. 2 figs.

  8. Valve assembly

    SciTech Connect

    Marshala, D.L.

    1986-12-16

    This patent describes a subsurface pump actuated by a reciprocatable sucker rod for producing well liquids from a subsurface reservoir involving a piston adapted to reciprocate within a cylinder immersed in the reservoir, the piston being provided with a traveling valve. The improvement described here comprises valve means connected to the sucker tod for lifting a body of fluid during upstrokes of the sucker rod, the valve means comprising: a barrel assembly having an internal bore and comprising: a lower barrel member; and an upper barrel assembly connected to the lower barrel and having a beveled seating surface with at least one fluid port therethrough.

  9. Oscillator detector

    SciTech Connect

    Potter, B.M.

    1980-05-13

    An alien liquid detector employs a monitoring element and an oscillatory electronic circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. The output wave form, eg., frequency of oscillation or wave shape, of the oscillatory circuit depends upon the temperaturedependent electrical characteristic of the monitoring element. A predetermined change in the output waveform allows water to be discriminated from another liquid, eg., oil. Features of the invention employing two thermistors in two oscillatory circuits include positioning one thermistor for contact with water and the other thermistor above the oil-water interface to detect a layer of oil if present. Unique oscillatory circuit arrangements are shown that achieve effective thermistor action with an economy of parts and energizing power. These include an operational amplifier employed in an astable multivibrator circuit, a discrete transistor-powered tank circuit, and use of an integrated circuit chip.

  10. Furnace assembly

    DOEpatents

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  11. Furnace assembly

    DOEpatents

    Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  12. Flexible Generation Of Array-Detector Timing Signals

    NASA Technical Reports Server (NTRS)

    Travis, Jeffrey W.; Shu, Peter K.

    1991-01-01

    Assembly of custom-made electronic equipment and multipurpose commercial electronic equipment commonly found in electronics-development laboratories facilitates generation and modification of timing pattern signals for control of array detectors. Designed to serve as flexible electronic array-detector-testing apparatus configured via software; timing patterns created, stored, and changed easily. Assembly prepared for experimental evaluation of new detector design in much less time and less expense than necessary to construct special circuits to generate all timing patterns to be tried on new design.

  13. Sensor assembly

    DOEpatents

    Bennett, Thomas E.; Nelson, Drew V.

    2004-04-13

    A ribbon-like sensor assembly is described wherein a length of an optical fiber embedded within a similar lengths of a prepreg tow. The fiber is ""sandwiched"" by two layers of the prepreg tow which are merged to form a single consolidated ribbon. The consolidated ribbon achieving a generally uniform distribution of composite filaments near the embedded fiber such that excess resin does not ""pool"" around the periphery of the embedded fiber.

  14. HIgh Rate X-ray Fluorescence Detector

    SciTech Connect

    Grudberg, Peter Matthew

    2013-04-30

    associated preamplifiers; these detectors surpassed the performance we expected to get from the Ketek detectors, however they are housed in a sealed module, which does not offer the ease of repair and expandability wed hoped to achieve with the Ketek SDD's. Our packaging efforts were quite successful, as we came up with a very compact way to mount the detector and to house the associated electronics, as well as a very effective way to reliably take out the heat (from the electronics as well as the detector's Peltier coolers) without risk of condensation and without external airflow or vibration, which could create problems for the target applications. While we were able to design compact processing electronics that fit into the detector assembly, they are still at the prototype stage, and would require a significant redesign to achieve product status. We have not yet tested this detector at a synchrotron facility; we do still plan on working with some close contacts at the nearby Stanford Synchrotron Radiation Laboratory (SSRL) to get some testing with the beam (using existing commercial electronics for readout, as the integrated processor is not ready for use).

  15. Carbon nanotube IR detectors (SV)

    SciTech Connect

    Leonard, F. L.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  16. Detector simulation needs for detector designers

    SciTech Connect

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers.

  17. One hundred anode microchannel plate ion detector

    SciTech Connect

    He Yi; Poehlman, John F.; Alexander, Andrew W.; Boraas, Kirk; Reilly, James P.

    2011-08-15

    A one-hundred-anode microchannel plate detector is constructed on a 10 cm x 15 cm printed circuit board and attached to a homebuilt matrix assisted laser desorption ionization (MALDI) time-of-flight mass spectrometer. Ringing and cross talk between anodes have been successfully eliminated and preliminary mass spectra of peptide ions recorded. With one hundred anodes on the printed circuit board, spatial information about the ion beam can also be readily determined with this detector. During operation, the detector anode assembly loses sensitivity after ions strike it for a considerable period of time due to charging of the non-conductive regions between anodes. However, this effect can be minimized by deflecting matrix ions away from the detector.

  18. Spiral silicon drift detectors

    SciTech Connect

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs.

  19. Pushrod assembly

    DOEpatents

    Potter, J.D.

    1984-03-30

    A pushrod assembly including a carriage mounted on a shaft for movement therealong and carrying a pushrod engageable with a load to be moved is described. A magnet is mounted on a supporting bracket for movement along such shaft. Means are provided for adjustably spacing magnet away from the carriage to obtain a selected magnetic attractive or coupling force therebetween. Movement of the supporting bracket and the magnet carried thereby pulls the carriage along with it until the selected magnetic force is exceeded by a resistance load acting on the carriage.

  20. Pushrod assembly

    DOEpatents

    Potter, Jerry D.

    1987-01-01

    A pushrod assembly including a carriage mounted on a shaft for movement therealong and carrying a pushrod engageable with a load to be moved. A magnet is mounted on a supporting bracket for movement along such shaft. Means are provided for adjustably spacing said magnet away from said carriage to obtain a selected magnetic attractive or coupling force therebetween. Movement of the supporting bracket and the magnet carried thereby pulls the carriage along with it until the selected magnetic force is exceeded by a resistance load acting on the carriage.

  1. Shingle assembly

    DOEpatents

    Dinwoodie, Thomas L.

    2007-02-20

    A barrier, such as a PV module, is secured to a base by a support to create a shingle assembly with a venting region defined between the barrier and base for temperature regulation. The first edge of one base may be interengageable with the second edge of an adjacent base to be capable of resisting first and second disengaging forces oriented perpendicular to the edges and along planes oriented parallel to and perpendicular to the base. A deflector may be used to help reduce wind uplift forces.

  2. Dump assembly

    DOEpatents

    Goldmann, L.H.

    1984-12-06

    This is a claim for a dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough. 4 figs.

  3. A DOI Detector With Crystal Scatter Identification Capability for High Sensitivity and High Spatial Resolution PET Imaging

    PubMed Central

    Gu, Z.; Prout, D. L.; Silverman, R. W.; Herman, H.; Dooraghi, A.; Chatziioannou, A. F.

    2015-01-01

    A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can

  4. Assembly procedure for the silicon pixel ladder for PHENIX silicon vertex tracker.

    SciTech Connect

    Onuki, Y.; PHENIX Collaboration, et al.

    2009-05-08

    The silicon vertex tracker (VTX) will be installed in the summer of 2010 to enhance the physics capabilities of the Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) experiment at Brookhaven National Laboratory. The VTX consists of two types of silicon detectors: a pixel detector and a strip detector. The pixel detector consists of 30 pixel ladders placed on the two inner cylindrical layers of the VTX. The ladders are required to be assembled with high precision, however, they should be assembled in both cost and time efficient manner. We have developed an assembly bench for the ladder with several assembly fixtures and a quality assurance (Q/A) system using a 3D measurement machine. We have also developed an assembly procedure for the ladder, including a method for dispensing adhesive uniformly and encapsulation of bonding wires. The developed procedures were adopted in the assembly of the first pixel ladder and satisfy the requirements.

  5. Commissioning of the CMS Forward Pixel Detector

    SciTech Connect

    Kumar, Ashish; /SUNY, Buffalo

    2008-12-01

    The Compact Muon Solenoid (CMS) experiment is scheduled for physics data taking in summer 2009 after the commissioning of high energy proton-proton collisions at Large Hadron Collider (LHC). At the core of the CMS all-silicon tracker is the silicon pixel detector, comprising three barrel layers and two pixel disks in the forward and backward regions, accounting for a total of 66 million channels. The pixel detector will provide high-resolution, 3D tracking points, essential for pattern recognition and precise vertexing, while being embedded in a hostile radiation environment. The end disks of the pixel detector, known as the Forward Pixel detector, has been assembled and tested at Fermilab, USA. It has 18 million pixel cells with dimension 100 x 150 {micro}m{sup 2}. The complete forward pixel detector was shipped to CERN in December 2007, where it underwent extensive system tests for commissioning prior to the installation. The pixel system was put in its final place inside the CMS following the installation and bake out of the LHC beam pipe in July 2008. It has been integrated with other sub-detectors in the readout since September 2008 and participated in the cosmic data taking. This report covers the strategy and results from commissioning of CMS forward pixel detector at CERN.

  6. Integration of Radioactive Material with Microcalorimeter Detectors

    NASA Astrophysics Data System (ADS)

    Croce, M. P.; Bond, E. M.; Hoover, A. S.; Kunde, G. J.; Moody, W. A.; Rabin, M. W.; Bennett, D. A.; Hayes-Wehle, J.; Kotsubo, V.; Schmidt, D. R.; Ullom, J. N.

    2014-09-01

    Microcalorimeter detectors with embedded radioactive material offer many possibilities for new types of measurements and applications. We will discuss the designs and methods that we are developing for precise deposition of radioactive material and its encapsulation in the absorber of transition-edge sensor (TES) microcalorimeter detectors for two specific applications. The first application is total nuclear reaction energy (Q) spectroscopy for nuclear forensics measurements of trace actinide samples, where the goal is determination of ratios of isotopes with Q values in the range of 5-7 MeV. Simplified, rapid sample preparation and detector assembly is necessary for practical measurements, while maintaining good energy resolution. The second application is electron capture spectroscopy of isotopes with low Q values, such as Ho, for measurement of neutrino mass. Detectors for electron capture spectroscopy are designed for measuring energies up to approximately 6 keV. Their smaller heat capacity and physical size present unique challenges. Both applications require precise deposition of radioactive material and encapsulation in an absorber with optimized thermal properties and coupling to the TES. We have made detectors for both applications with a variety of designs and assembly methods, and will present their development.

  7. Advanced UV Detectors and Detector Arrays

    NASA Technical Reports Server (NTRS)

    Pankove, Jacques I.; Torvik, John

    1998-01-01

    Gallium Nitride (GaN) with its wide energy bandgap of 3.4 eV holds excellent promise for solar blind UV detectors. We have successfully designed, fabricated and tested GaN p-i-n detectors and detector arrays. The detectors have a peak responsivity of 0.14A/W at 363 nm (3.42 eV) at room temperature. This corresponds to an internal quantum efficiency of 56%. The responsivity decreases by several orders of magnitude to 0.008 A/W at 400 nm (3.10 eV) giving the excellent visible rejection ratio needed for solar-blind applications.

  8. Thermocouple assembly

    DOEpatents

    Thermos, Anthony Constantine; Rahal, Fadi Elias

    2002-01-01

    A thermocouple assembly includes a thermocouple; a plurality of lead wires extending from the thermocouple; an insulating jacket extending along and enclosing the plurality of leads; and at least one internally sealed area within the insulating jacket to prevent fluid leakage along and within the insulating jacket. The invention also provides a method of preventing leakage of a fluid along and through an insulating jacket of a thermocouple including the steps of a) attaching a plurality of lead wires to a thermocouple; b) adding a heat sensitive pseudo-wire to extend along the plurality of lead wires; c) enclosing the lead wires and pseudo-wire inside an insulating jacket; d) locally heating axially spaced portions of the insulating jacket to a temperature which melts the pseudo-wire and fuses it with an interior surface of the jacket.

  9. Swivel assembly

    DOEpatents

    Hall, David R.; Pixton, David S.; Briscoe, Michael; Bradford, Kline; Rawle, Michael; Bartholomew, David B.; McPherson, James

    2007-03-20

    A swivel assembly for a downhole tool string comprises a first and second coaxial housing cooperatively arranged. The first housing comprises a first transmission element in communication with surface equipment. The second housing comprises a second transmission element in communication with the first transmission element. The second housing further comprises a third transmission element adapted for communication with a network integrated into the downhole tool string. The second housing may be rotational and adapted to transmit a signal between the downhole network and the first housing. Electronic circuitry is in communication with at least one of the transmission elements. The electronic circuitry may be externally mounted to the first or second housing. Further, the electronic circuitry may be internally mounted in the second housing. The electronic circuitry may be disposed in a recess in either first or second housing of the swivel.

  10. Response of liquid scintillator assemblies as a function of angular orientation

    NASA Astrophysics Data System (ADS)

    Naeem, S. F.; Scarpelli, M.; Miller, E.; Clarke, S. D.; Pozzi, S. A.

    2014-06-01

    Liquid scintillator detector assemblies contain an inert nitrogen expansion volume to allow for expansion of the liquid with changing temperature. Measurements and Geant4 Monte Carlo simulations are performed to study the dependence of pulse height distribution shapes as a function of detector angle for two liquid scintillators assemblies filled with 97% organic-liquid cocktail and a 3% expansion volume. A 12.7-cm diameter by 12.7-cm long and a 7.6-cm diameter by 9.1-cm long EJ-309 liquid scintillator assemblies are investigated using a 137Cs gamma-ray source. Aside from the differences in dimensions, the detector assemblies also differed in the design of the active detector volume: there is no light guide in the 12.7-cm-diameter detector assembly, whereas the 7.6-cm-diameter detector contains a BK7 light guide between the scintillation liquid and optical coupling to the photomultiplier tube. Results for the 12.7-cm-diameter detector show a decrease in the position of the Compton edge ranges from 4% to 40% at detector orientations where the expansion volume exists between scintillating medium and the photomultiplier tube. Results for the 7.6-cm-diameter detector show that the position of the Compton edge is relatively unaffected at all detector orientations due to the presence of light guide.

  11. The TALE Tower Detector

    NASA Astrophysics Data System (ADS)

    Bergman, D. R.

    The TA Low Energy Extension will include a Tower FluorescenceDetector. Extensive air showers at the lowest usful energies for fluorescence detectors will in general be close to the detector. This requires viewing all elevation angles to be able to reconstruct showers. The TALE Tower Detector, operating in conjunction with other TALE detectors will view elevation angles up to above 70 degrees, with an azimuthal coverage of about 90 degrees. Results from a prototype mirror operated in conjunction with the HiRes detector will also be presented.

  12. GADRAS Detector Response Function.

    SciTech Connect

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  13. The upgraded DØ detector

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, D. L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S. N.; Ahn, S. H.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Anastasoaie, M.; Andeen, T.; Anderson, J. T.; Anderson, S.; Andrieu, B.; Angstadt, R.; Anosov, V.; Arnoud, Y.; Arov, M.; Askew, A.; Åsman, B.; Assis Jesus, A. C. S.; Atramentov, O.; Autermann, C.; Avila, C.; Babukhadia, L.; Bacon, T. C.; Badaud, F.; Baden, A.; Baffioni, S.; Bagby, L.; Baldin, B.; Balm, P. W.; Banerjee, P.; Banerjee, S.; Barberis, E.; Bardon, O.; Barg, W.; Bargassa, P.; Baringer, P.; Barnes, C.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bhattacharjee, M.; Baturitsky, M. A.; Bauer, D.; Bean, A.; Baumbaugh, B.; Beauceron, S.; Begalli, M.; Beaudette, F.; Begel, M.; Bellavance, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Besson, A.; Beuselinck, R.; Beutel, D.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Binder, M.; Biscarat, C.; Bishoff, A.; Black, K. M.; Blackler, I.; Blazey, G.; Blekman, F.; Blessing, S.; Bloch, D.; Blumenschein, U.; Bockenthien, E.; Bodyagin, V.; Boehnlein, A.; Boeriu, O.; Bolton, T. A.; Bonamy, P.; Bonifas, D.; Borcherding, F.; Borissov, G.; Bos, K.; Bose, T.; Boswell, C.; Bowden, M.; Brandt, A.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchanan, N. J.; Buchholz, D.; Buehler, M.; Buescher, V.; Burdin, S.; Burke, S.; Burnett, T. H.; Busato, E.; Buszello, C. P.; Butler, D.; Butler, J. M.; Cammin, J.; Caron, S.; Bystricky, J.; Canal, L.; Canelli, F.; Carvalho, W.; Casey, B. C. K.; Casey, D.; Cason, N. M.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapin, D.; Charles, F.; Cheu, E.; Chevalier, L.; Chi, E.; Chiche, R.; Cho, D. K.; Choate, R.; Choi, S.; Choudhary, B.; Chopra, S.; Christenson, J. H.; Christiansen, T.; Christofek, L.; Churin, I.; Cisko, G.; Claes, D.; Clark, A. R.; Clément, B.; Clément, C.; Coadou, Y.; Colling, D. J.; Coney, L.; Connolly, B.; Cooke, M.; Cooper, W. E.; Coppage, D.; Corcoran, M.; Coss, J.; Cothenet, A.; Cousinou, M.-C.; Cox, B.; Crépé-Renaudin, S.; Cristetiu, M.; Cummings, M. A. C.; Cutts, D.; da Motta, H.; Das, M.; Davies, B.; Davies, G.; Davis, G. A.; Davis, W.; De, K.; de Jong, P.; de Jong, S. J.; De La Cruz-Burelo, E.; De La Taille, C.; De Oliveira Martins, C.; Dean, S.; Degenhardt, J. D.; Déliot, F.; Delsart, P. A.; Del Signore, K.; DeMaat, R.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Doets, M.; Doidge, M.; Dong, H.; Doulas, S.; Dudko, L. V.; Duflot, L.; Dugad, S. R.; Duperrin, A.; Dvornikov, O.; Dyer, J.; Dyshkant, A.; Eads, M.; Edmunds, D.; Edwards, T.; Ellison, J.; Elmsheuser, J.; Eltzroth, J. T.; Elvira, V. D.; Eno, S.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, D.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fagan, J.; Fast, J.; Fatakia, S. N.; Fein, D.; Feligioni, L.; Ferapontov, A. V.; Ferbel, T.; Ferreira, M. J.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fleck, I.; Fitzpatrick, T.; Flattum, E.; Fleuret, F.; Flores, R.; Foglesong, J.; Fortner, M.; Fox, H.; Franklin, C.; Freeman, W.; Fu, S.; Fuess, S.; Gadfort, T.; Galea, C. F.; Gallas, E.; Galyaev, E.; Gao, M.; Garcia, C.; Garcia-Bellido, A.; Gardner, J.; Gavrilov, V.; Gay, A.; Gay, P.; Gelé, D.; Gelhaus, R.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Geurkov, G.; Ginther, G.; Gobbi, B.; Goldmann, K.; Golling, T.; Gollub, N.; Golovtsov, V.; Gómez, B.; Gomez, G.; Gomez, R.; Goodwin, R.; Gornushkin, Y.; Gounder, K.; Goussiou, A.; Graham, D.; Graham, G.; Grannis, P. D.; Gray, K.; Greder, S.; Green, D. R.; Green, J.; Green, J. A.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groer, L.; Grünendahl, S.; Grünewald, M. W.; Gu, W.; Guglielmo, J.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hadley, N. J.; Haggard, E.; Haggerty, H.; Hagopian, S.; Hall, I.; Hall, R. E.; Han, C.; Han, L.; Hance, R.; Hanagaki, K.; Hanlet, P.; Hansen, S.; Harder, K.; Harel, A.; Harrington, R.; Hauptman, J. M.; Hauser, R.; Hays, C.; Hays, J.; Hazen, E.; Hebbeker, T.; Hebert, C.; Hedin, D.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hensel, C.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hong, S. J.; Hooper, R.; Hou, S.; Houben, P.; Hu, Y.; Huang, J.; Huang, Y.; Hynek, V.; Huffman, D.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jacquier, Y.; Jaffré, M.; Jain, S.; Jain, V.; Jakobs, K.; Jayanti, R.; Jenkins, A.; Jesik, R.; Jiang, Y.; Johns, K.; Johnson, M.; Johnson, P.; Jonckheere, A.; Jonsson, P.; Jöstlein, H.; Jouravlev, N.; Juarez, M.; Juste, A.; Kaan, A. P.; Kado, M. M.; Käfer, D.; Kahl, W.; Kahn, S.; Kajfasz, E.; Kalinin, A. M.; Kalk, J.; Kalmani, S. D.; Karmanov, D.; Kasper, J.; Katsanos, I.; Kau, D.; Kaur, R.; Ke, Z.; Kehoe, R.; Kermiche, S.; Kesisoglou, S.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. M.; Kim, H.; Kim, K. H.; Kim, T. J.; Kirsch, N.; Klima, B.; Klute, M.; Kohli, J. M.; Konrath, J.-P.; Komissarov, E. V.; Kopal, M.; Korablev, V. M.; Kostritski, A.; Kotcher, J.; Kothari, B.; Kotwal, A. V.; Koubarovsky, A.; Kozelov, A. V.; Kozminski, J.; Kryemadhi, A.; Kouznetsov, O.; Krane, J.; Kravchuk, N.; Krempetz, K.; Krider, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kubinski, R.; Kuchinsky, N.; Kuleshov, S.; Kulik, Y.; Kumar, A.; Kunori, S.; Kupco, A.; Kurča, T.; Kvita, J.; Kuznetsov, V. E.; Kwarciany, R.; Lager, S.; Lahrichi, N.; Landsberg, G.; Larwill, M.; Laurens, P.; Lavigne, B.; Lazoflores, J.; Le Bihan, A.-C.; Le Meur, G.; Lebrun, P.; Lee, S. W.; Lee, W. M.; Leflat, A.; Leggett, C.; Lehner, F.; Leitner, R.; Leonidopoulos, C.; Leveque, J.; Lewis, P.; Li, J.; Li, Q. Z.; Li, X.; Lima, J. G. R.; Lincoln, D.; Lindenmeyer, C.; Linn, S. L.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Litmaath, M.; Lizarazo, J.; Lobo, L.; Lobodenko, A.; Lokajicek, M.; Lounis, A.; Love, P.; Lu, J.; Lubatti, H. J.; Lucotte, A.; Lueking, L.; Luo, C.; Lynker, M.; Lyon, A. L.; Machado, E.; Maciel, A. K. A.; Madaras, R. J.; Mättig, P.; Magass, C.; Magerkurth, A.; Magnan, A.-M.; Maity, M.; Makovec, N.; Mal, P. K.; Malbouisson, H. B.; Malik, S.; Malyshev, V. L.; Manakov, V.; Mao, H. S.; Maravin, Y.; Markley, D.; Markus, M.; Marshall, T.; Martens, M.; Martin, M.; Martin-Chassard, G.; Mattingly, S. E. K.; Matulik, M.; Mayorov, A. A.; McCarthy, R.; McCroskey, R.; McKenna, M.; McMahon, T.; Meder, D.; Melanson, H. L.; Melnitchouk, A.; Mendes, A.; Mendoza, D.; Mendoza, L.; Meng, X.; Merekov, Y. P.; Merkin, M.; Merritt, K. W.; Meyer, A.; Meyer, J.; Michaut, M.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mikhailov, V.; Miller, D.; Mitrevski, J.; Mokhov, N.; Molina, J.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Moulik, T.; Muanza, G. S.; Mostafa, M.; Moua, S.; Mulders, M.; Mundim, L.; Mutaf, Y. D.; Nagaraj, P.; Nagy, E.; Naimuddin, M.; Nang, F.; Narain, M.; Narasimhan, V. S.; Narayanan, A.; Naumann, N. A.; Neal, H. A.; Negret, J. P.; Nelson, S.; Neuenschwander, R. T.; Neustroev, P.; Noeding, C.; Nomerotski, A.; Novaes, S. F.; Nozdrin, A.; Nunnemann, T.; Nurczyk, A.; Nurse, E.; O'Dell, V.; O'Neil, D. C.; Oguri, V.; Olis, D.; Oliveira, N.; Olivier, B.; Olsen, J.; Oshima, N.; Oshinowo, B. O.; Otero y Garzón, G. J.; Padley, P.; Papageorgiou, K.; Parashar, N.; Park, J.; Park, S. K.; Parsons, J.; Partridge, R.; Parua, N.; Patwa, A.; Pawloski, G.; Perea, P. M.; Perez, E.; Peters, O.; Pétroff, P.; Petteni, M.; Phaf, L.; Piegaia, R.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Pogorelov, Y.; Pol, M.-E.; Pompoš, A.; Polosov, P.; Pope, B. G.; Popkov, E.; Porokhovoy, S.; Prado da Silva, W. L.; Pritchard, W.; Prokhorov, I.; Prosper, H. B.; Protopopescu, S.; Przybycien, M. B.; Qian, J.; Quadt, A.; Quinn, B.; Ramberg, E.; Ramirez-Gomez, R.; Rani, K. J.; Ranjan, K.; Rao, M. V. S.; Rapidis, P. A.; Rapisarda, S.; Raskowski, J.; Ratoff, P. N.; Ray, R. E.; Reay, N. W.; Rechenmacher, R.; Reddy, L. V.; Regan, T.; Renardy, J.-F.; Reucroft, S.; Rha, J.; Ridel, M.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Robinson, S.; Rodrigues, R. F.; Roco, M.; Rotolo, C.; Royon, C.; Rubinov, P.; Ruchti, R.; Rucinski, R.; Rud, V. I.; Russakovich, N.; Russo, P.; Sabirov, B.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santoro, A.; Satyanarayana, B.; Savage, G.; Sawyer, L.; Scanlon, T.; Schaile, D.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schieferdecker, P.; Schmitt, C.; Schwanenberger, C.; Schukin, A. A.; Schwartzman, A.; Schwienhorst, R.; Sengupta, S.; Severini, H.; Shabalina, E.; Shamim, M.; Shankar, H. C.; Shary, V.; Shchukin, A. A.; Sheahan, P.; Shephard, W. D.; Shivpuri, R. K.; Shishkin, A. A.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Simak, V.; Sirotenko, V.; Skow, D.; Skubic, P.; Slattery, P.; Smith, D. E.; Smith, R. P.; Smolek, K.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Song, X.; Song, Y.; Sonnenschein, L.; Sopczak, A.; Sorín, V.; Sosebee, M.; Soustruznik, K.; Souza, M.; Spartana, N.; Spurlock, B.; Stanton, N. R.; Stark, J.; Steele, J.; Stefanik, A.; Steinberg, J.; Steinbrück, G.; Stevenson, K.; Stolin, V.; Stone, A.; Stoyanova, D. A.; Strandberg, J.; Strang, M. A.; Strauss, M.; Ströhmer, R.; Strom, D.; Strovink, M.; Stutte, L.; Sumowidagdo, S.; Sznajder, A.; Talby, M.; Tentindo-Repond, S.; Tamburello, P.; Taylor, W.; Telford, P.; Temple, J.; Terentyev, N.; Teterin, V.; Thomas, E.; Thompson, J.; Thooris, B.; Titov, M.; Toback, D.; Tokmenin, V. V.; Tolian, C.; Tomoto, M.; Tompkins, D.; Toole, T.; Torborg, J.; Touze, F.; Towers, S.; Trefzger, T.; Trincaz-Duvoid, S.; Trippe, T. G.; Tsybychev, D.; Tuchming, B.; Tully, C.; Turcot, A. S.; Tuts, P. M.; Utes, M.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Vachon, B.; van den Berg, P. J.; van Gemmeren, P.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vartapetian, A.; Vasilyev, I. A.; Vaupel, M.; Vaz, M.; Verdier, P.; Vertogradov, L. S.; Verzocchi, M.; Vigneault, M.; Villeneuve-Seguier, F.; Vishwanath, P. R.; Vlimant, J.-R.; Von Toerne, E.; Vorobyov, A.; Vreeswijk, M.; Vu Anh, T.; Vysotsky, V.; Wahl, H. D.; Walker, R.; Wallace, N.; Wang, L.; Wang, Z.-M.; Warchol, J.; Warsinsky, M.; Watts, G.; Wayne, M.; Weber, M.; Weerts, H.; Wegner, M.; Wermes, N.; Wetstein, M.; White, A.; White, V.; Whiteson, D.; Wicke, D.; Wijnen, T.; Wijngaarden, D. A.; Wilcer, N.; Willutzki, H.; Wilson, G. W.; Wimpenny, S. J.; Wittlin, J.; Wlodek, T.; Wobisch, M.; Womersley, J.; Wood, D. R.; Wyatt, T. R.; Wu, Z.; Xie, Y.; Xu, Q.; Xuan, N.; Yacoob, S.; Yamada, R.; Yan, M.; Yarema, R.; Yasuda, T.; Yatsunenko, Y. A.; Yen, Y.; Yip, K.; Yoo, H. D.; Yoffe, F.; Youn, S. W.; Yu, J.; Yurkewicz, A.; Zabi, A.; Zanabria, M.; Zatserklyaniy, A.; Zdrazil, M.; Zeitnitz, C.; Zhang, B.; Zhang, D.; Zhang, X.; Zhao, T.; Zhao, Z.; Zheng, H.; Zhou, B.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zitoun, R.; Zmuda, T.; Zutshi, V.; Zviagintsev, S.; Zverev, E. G.; Zylberstejn, A.

    2006-09-01

    The DØ experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DØ.

  14. The MINOS detectors

    SciTech Connect

    Habig, A.; Grashorn, E.W.; /Minnesota U., Duluth

    2005-07-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment's primary goal is the precision measurement of the neutrino oscillation parameters in the atmospheric neutrino sector. This long-baseline experiment uses Fermilab's NuMI beam, measured with a Near Detector at Fermilab, and again 735 km later using a Far Detector in the Soudan Mine Underground Lab in northern Minnesota. The detectors are magnetized iron/scintillator calorimeters. The Far Detector has been operational for cosmic ray and atmospheric neutrino data from July of 2003, the Near Detector from September 2004, and the NuMI beam started in early 2005. This poster presents details of the two detectors.

  15. Tin Can Radiation Detector.

    ERIC Educational Resources Information Center

    Crull, John L.

    1986-01-01

    Provides instructions for making tin can radiation detectors from empty aluminum cans, aluminum foil, clear plastic, copper wire, silica gel, and fine, unwaxed dental floss put together with tape or glue. Also provides suggestions for activities using the detectors. (JN)

  16. Segmented pyroelector detector

    DOEpatents

    Stotlar, S.C.; McLellan, E.J.

    1981-01-21

    A pyroelectric detector is described which has increased voltage output and improved responsivity over equivalent size detectors. The device comprises a plurality of edge-type pyroelectric detectors which have a length which is much greater than the width of the segments between the edge-type electrodes. External circuitry connects the pyroelectric detector segments in parallel to provide a single output which maintains 50 ohm impedance characteristics.

  17. Electrical production testing of the D0 Silicon microstrip tracker detector modules

    SciTech Connect

    D0, SMT Production Testing Group; /Fermilab

    2006-03-01

    The D0 Silicon Microstrip Tracker (SMT) is the innermost system of the D0 detector in Run 2. It consists of 912 detector units, corresponding to 5 different types of assemblies, which add up to a system with 792,576 readout channels. The task entrusted to the Production Testing group was to thoroughly debug, test and grade each detector module before its installation in the tracker. This note describes the production testing sequence and the procedures by which the detector modules were electrically tested and characterized at the various stages of their assembly.

  18. LGB neutron detector

    NASA Astrophysics Data System (ADS)

    Quist, Nicole

    2012-10-01

    The double pulse signature of the Gadolinium Lithium Borate Cerium doped plastic detector suggests its effectiveness for analyzing neutrons while providing gamma ray insensitivity. To better understand this detector, a californium gamma/neutron time of flight facility was constructed in our lab. Reported here are efforts to understand the properties and applications of the LGB detector with regards to neutron spectroscopy.

  19. Tevatron Detector Upgrades

    SciTech Connect

    Lipton, Ronald

    2005-03-22

    The D0 and CDF experiments are in the process of upgrading their detectors to cope with the high luminosities projected for the remainder of Tevatron Run II. We discuss the expected Tevatron environment through 2009, the detector challenges due to increasing luminosity in this period, and the solutions undertaken by the two experiments to mitigate detector problems and maximize physics results.

  20. Tevatron detector upgrades

    SciTech Connect

    Lipton, R.; /Fermilab

    2005-01-01

    The D0 and CDF experiments are in the process of upgrading their detectors to cope with the high luminosities projected for the remainder of Tevatron Run II. They discuss the expected Tevatron environment through 2009, the detector challenges due to increasing luminosity in this period, and the solutions undertaken by the two experiments to mitigate detector problems and maximize physics results.

  1. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2010-09-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  2. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Ely, Justin

    2013-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  3. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Ely, Justin

    2012-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  4. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2011-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  5. COMBINED GAMMA-RAY AND NEUTRON DETECTOR FOR MEASURING THE CHEMICAL COMPOSITION OF AIRLESS PLANETARY BODIES.

    SciTech Connect

    Lawrence, David J. ,; Barraclough, B. L.; Feldman, W. C.; Prettyman, T. H.; Wiens, R. C.

    2001-01-01

    Galactic cosmic rays (GCR) constant1,y itnpinge all planetary bodies and produce characteristic gamma-ray lines and leakage neutrons as reaction products. Together with gamma-ray lines produced by radioactive decay, these nuclear emissions provide a powerful technique for remotely measuring the chemical composition of airless planetary surfaces. While lunar gamma-ray spectroscopy was first demonstrated with Apollo Gamma-Ray measurements, the full value of combined gamma-ray and neutron spectroscopy was shown for the first time with the Lunar Prospector Gamma-Ray (LP-GRS) and Neutron Spectrometers (LP-NS). Any new planetary mission will likely have the requirement that instrument mass and power be kept to a minimum. To satisfy such requirements, we have been designing a GR/NS instrument which combines all the functionality of the LP-GRS and LP-NS for a fraction of the mass and power. Specifically, our design uses a BGO scintillator crystal to measure gamma-rays from 0.5-10 MeV. A borated plastic scintillator and a lithium gliiss scintillator are used to separately measure thermal, epithermal, and fast neutrons as well as serve as an anticoincidence shield for the BGO. All three scintillators are packaged together in a compact phoswich design. Modifications to this design could include a CdZnTe gamma-ray detector for enhanced energy resolution at low energies (0.5-3 MeV). While care needs to be taken to ensure that an adequate count rate is achieved for specific mission designs, previous mission successes demonstrate that a cornbined GR/NS provides essential information about planetary surfaces.

  6. Survey of the Fermilab D0 detector collision hall

    SciTech Connect

    Babatunde O'Sheg Oshinowo

    2001-07-20

    The Fermilab D0 detector was used for the discovery of the top quark during Run I in 1996. It had been upgraded to exploit the physics potential to be presented by the Main Injector and the Tevatron Collider during Run II. The upgrade of the D0 detector was fully commissioned on March 1, 2001, and thus marked the official start of the Run II experiment. The detector which weighs about 5500 tons, was assembled in the Assembly Hall. Prior to moving the detector into the Collision Hall, the existing survey monuments were densified in the Collision Hall with new monuments. This paper discusses the survey of the Collision Hall using a combination of the Laser Tracker, BETS, V-Stars, and other Optical systems to within the specified accuracy of {+-}0.5mm.

  7. The ATLAS TRT end-cap detectors

    NASA Astrophysics Data System (ADS)

    ATLAS TRT Collaboration; Abat, E.; Addy, T. N.; Åkesson, T. P. A.; Alison, J.; Anghinolfi, F.; Arik, E.; Arik, M.; Atoian, G.; Auerbach, B.; Baker, O. K.; Banas, E.; Baron, S.; Bault, C.; Becerici, N.; Beddall, A.; Beddall, A. J.; Bendotti, J.; Benjamin, D. P.; Bertelsen, H.; Bingul, A.; Blampey, H.; Bocci, A.; Bochenek, M.; Bondarenko, V. G.; Bychkov, V.; Callahan, J.; Capeáns Garrido, M.; Cardiel Sas, L.; Catinaccio, A.; Cetin, S. A.; Chandler, T.; Chritin, R.; Cwetanski, P.; Dam, M.; Danielsson, H.; Danilevich, E.; David, E.; Degenhardt, J.; Di Girolamo, B.; Dittus, F.; Dixon, N.; Dobos, D.; Dogan, O. B.; Dolgoshein, B. A.; Dressnandt, N.; Driouchi, C.; Ebenstein, W. L.; Eerola, P.; Egede, U.; Egorov, K.; Evans, H.; Farthouat, P.; Fedin, O. L.; Fowler, A. J.; Fratina, S.; Froidevaux, D.; Fry, A.; Gagnon, P.; Gavrilenko, I. L.; Gay, C.; Ghodbane, N.; Godlewski, J.; Goulette, M.; Gousakov, I.; Grigalashvili, N.; Grishkevich, Y.; Grognuz, J.; Hajduk, Z.; Hance, M.; Hansen, F.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hare, G. A.; Harvey, A., Jr.; Hauviller, C.; High, A.; Hulsbergen, W.; Huta, W.; Issakov, V.; Istin, S.; Jain, V.; Jarlskog, G.; Jeanty, L.; Kantserov, V. A.; Kaplan, B.; Kapliy, A. S.; Katounine, S.; Kayumov, F.; Keener, P. T.; Kekelidze, G. D.; Khabarova, E.; Khristachev, A.; Kisielewski, B.; Kittelmann, T. H.; Kline, C.; Klinkby, E. B.; Klopov, N. V.; Ko, B. R.; Koffas, T.; Kondratieva, N. V.; Konovalov, S. P.; Koperny, S.; Korsmo, H.; Kovalenko, S.; Kowalski, T. Z.; Krüger, K.; Kramarenko, V.; Kudin, L. G.; LeBihan, A.-C.; LeGeyt, B. C.; Levterov, K.; Lichard, P.; Lindahl, A.; Lisan, V.; Lobastov, S.; Loginov, A.; Loh, C. W.; Lokwitz, S.; Long, M. C.; Lucas, S.; Lucotte, A.; Luehring, F.; Lundberg, B.; Mackeprang, R.; Maleev, V. P.; Manara, A.; Mandl, M.; Martin, A. J.; Martin, F. F.; Mashinistov, R.; Mayers, G. M.; McFarlane, K. W.; Mialkovski, V.; Mills, B. M.; Mindur, B.; Mitsou, V. A.; Mjörnmark, J. U.; Morozov, S. V.; Morris, E.; Mouraviev, S. V.; Muir, A. M.; Munar, A.; Nadtochi, A. V.; Nesterov, S. Y.; Newcomer, F. M.; Nikitin, N.; Novgorodova, O.; Novodvorski, E. G.; Ogren, H.; Oh, S. H.; Oleshko, S. B.; Olivito, D.; Olszowska, J.; Ostrowicz, W.; Passmore, M. S.; Patrichev, S.; Penwell, J.; Perez-Gomez, F.; Peshekhonov, V. D.; Petersen, T. C.; Petti, R.; Placci, A.; Poblaguev, A.; Pons, X.; Price, M. J.; hne, O. Rø; Reece, R. D.; Reilly, M. B.; Rembser, C.; Romaniouk, A.; Rousseau, D.; Rust, D.; Ryabov, Y. F.; Ryjov, V.; Söderberg, M.; Savenkov, A.; Saxon, J.; Scandurra, M.; Schegelsky, V. A.; Scherzer, M. I.; Schmidt, M. P.; Schmitt, C.; Sedykh, E.; Seliverstov, D. M.; Shin, T.; Shmeleva, A.; Sivoklokov, S.; Smirnov, S. Yu; Smirnova, L.; Smirnova, O.; Smith, P.; Sosnovtsev, V. V.; Sprachmann, G.; Subramania, S.; Suchkov, S. I.; Sulin, V. V.; Szczygiel, R. R.; Tartarelli, G.; Thomson, E.; Tikhomirov, V. O.; Tipton, P.; Valls Ferrer, J. A.; Van Berg, R.; Vassilakopoulos, V. I.; Vassilieva, L.; Wagner, P.; Wall, R.; Wang, C.; Whittington, D.; Williams, H. H.; Zhelezko, A.; Zhukov, K.

    2008-10-01

    The ATLAS TRT end-cap is a tracking drift chamber using 245,760 individual tubular drift tubes. It is a part of the TRT tracker which consist of the barrel and two end-caps. The TRT end-caps cover the forward and backward pseudo-rapidity region 1.0 < |η| < 2.0, while the TRT barrel central η region |η| < 1.0. The TRT system provides a combination of continuous tracking with many measurements in individual drift tubes (or straws) and of electron identification based on transition radiation from fibers or foils interleaved between the straws themselves. Along with other two sub-system, namely the Pixel detector and Semi Conductor Tracker (SCT), the TRT constitutes the ATLAS Inner Detector. This paper describes the recently completed and installed TRT end-cap detectors, their design, assembly, integration and the acceptance tests applied during the construction.

  8. High speed curved position sensitive detector

    DOEpatents

    Hendricks, Robert W.; Wilson, Jack W.

    1989-01-01

    A high speed curved position sensitive porportional counter detector for use in x-ray diffraction, the detection of 5-20 keV photons and the like. The detector employs a planar anode assembly of a plurality of parallel metallic wires. This anode assembly is supported between two cathode planes, with at least one of these cathode planes having a serpentine resistive path in the form of a meander having legs generally perpendicular to the anode wires. This meander is produced by special microelectronic fabrication techniques whereby the meander "wire" fans outwardly at the cathode ends to produce the curved aspect of the detector, and the legs of the meander are small in cross-section and very closely spaced whereby a spatial resolution of about 50 .mu.m can be achieved. All of the other performance characteristics are about as good or better than conventional position sensitive proportional counter type detectors. Count rates of up to 40,000 counts per second with 0.5 .mu.s shaping time constants are achieved.

  9. High-energy detector

    DOEpatents

    Bolotnikov, Aleksey E.; Camarda, Giuseppe; Cui, Yonggang; James, Ralph B.

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  10. Novel PbS detector chip pattern with extinction function

    NASA Astrophysics Data System (ADS)

    Chen, Fengjin; Si, Junjie; Su, Xianjun; Lv, Yanqiu; Shi, Zhengfeng

    2015-10-01

    A novel chip pattern with extinction function in Lead salt detectors is specified. Lead Sulfide (PbS) polycrystalline film is prepared by Chemical Bath Deposition (CMD) on a transparent substrate, then a special figure and structure is saved by lithography techonology on the substrate. As a quaternion detector chip that made by PbS thin film for example in this paper, whose performance including signal, noise, weak-peaks and the uniformity of the chip are too poor to meet the detecting system at the initial stage of research, and the qualified ratio of chips is only 3% .This paper explains the reason why the performance and qualified ratio of chips were so poor, focuses on a novel chip pattern with extinction which avoided the disadvantages of traditional one. the novel chip pattern has been applied in detectors. The novel chip pattern is prepared with PbS thin film which both "extinction slice" and detector chip are based on a same substrate , which not only had absorbed the jumbled light , improved the uniformity and other performance of photosensitive elements, but also had left out the assembly diffculty and precision demand when a extinction slice assembly in the restricted space of inswept detector chip, omitted the production process of extinction slice and shorten the assembly process of the detectors, and the qualified ratio of chips had been improved from 3% to 98%.

  11. Latching relay switch assembly

    DOEpatents

    Duimstra, Frederick A.

    1991-01-01

    A latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes at least one permanent magnet and at least one electromagnet. The respective sections are, generally, arranged in separate locations or cavities in the assembly. The switch is latched by a permanent magnet assembly and selectively switched by an overriding electromagnetic assembly.

  12. Belle II SVD ladder assembly procedure and electrical qualification

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, Varghese; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaya, I.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-07-01

    The Belle II experiment at the SuperKEKB asymmetric e+e- collider in Japan will operate at a luminosity approximately 50 times larger than its predecessor (Belle). At its heart lies a six-layer vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is time-dependent CP violation asymmetry, which hinges on a precise charged-track vertex determination. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision three dimensional coordinate measurements of the jigs used in assembly as well as of the final SVD modules.

  13. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  14. Study of silicon photosensor applicability for scintillator detectors

    NASA Astrophysics Data System (ADS)

    Khilya, V. M.; Voronov, S. A.

    2016-02-01

    The aim of the present work is the creation a prototype of anticoincidence system AC for gamma-telescope GAMMA-400. The detectors of AC are developed on the basis of plastic scintillator and silicon photomultipliers. This work is focuses on research of applicability of silicon photomultipliers SiPM by company SensL, type 60000 with BC-408 plastics for the prototype of anticoincidence system detector ACtop. In frame of project the assembly for measuring of the SiPM characteristics such as the linearity, boundary of saturation, the time resolution was developed. The final stage of work was the integration of the prototype of anticoincidence detector.

  15. Inlet nozzle assembly

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.

    1987-01-01

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  16. Inlet nozzle assembly

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.

    1985-09-09

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  17. Structural assembly in space

    NASA Technical Reports Server (NTRS)

    Stokes, J. W.; Pruett, E. C.

    1980-01-01

    A cost algorithm for predicting assembly costs for large space structures is given. Assembly scenarios are summarized which describe the erection, deployment, and fabrication tasks for five large space structures. The major activities that impact total costs for structure assembly from launch through deployment and assembly to scientific instrument installation and checkout are described. Individual cost elements such as assembly fixtures, handrails, or remote minipulators are also presented.

  18. D0 Silicon Upgrade: Ladder Assembly Sequences

    SciTech Connect

    Ratzmann, Paul; /Fermilab

    1994-08-17

    This is an abridged version of the assembly sequence described by the DO assembly subgroup of Cooper, Hrycyk, Kowalski, Rapidis, and Ratzmann. This primarily is used to indicate major steps during the sequence and to list fixturing requirements. Assembly - (1) Place support rails in (1) 3 Chip Ladder Construction fixture. The two rails get held under vacuum. (2) Apply adhesive to the region where contact will be made with the beryllium substrates. (3) Place underside beryllium pieces (active and dummy ends) into the (1) 3 Chip Ladder Construction fixture. These pieces get placed in the fixture against the appropriate pins to mimic final positioning in the bulkhead. Apply vacuum to the beryllium pieces. Allow to cure? (4) Align silicon in (1) 3 Chip Ladder Construction fixture. Reference features on the fixture will be parameterized. Holes in the fixture near the silicon center line will be targeted to set the silicon axis relative to the beryllium slot edge. Z positioning of the detectors will be achieved by shimming between the detectors and butting up the end of the silicon against the fixture. (5) Remove silicon detectors and apply adhesive to the rails and upper surfaces of the beryllium. (6) Replace silicon and check final position of the detectors. (7) Release vacuum on the rails so they cure in a stress-free state. Allow adhesive to cure. (8) Apply adhesive and align HDI to the silicon using (2) 3 Chip HDI Gluing fixture. The HDI will have tabs which are held by the fixture for location relative to the detectors. Allow adhesive to cure. (9) Move ladder to (3) 3 Chip Wirebonding Fixture. Transfer fixture to the wirebonder and bond chip-silicon and silicon-silicon.

  19. Tilt assembly for tracking solar collector assembly

    DOEpatents

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  20. Long-drift calorimeter modules for the Soudan 2 nucleon decay detector

    SciTech Connect

    Hoftiezer, J.

    1985-01-01

    The first full size 5-ton detector modules for the Soudan 2 nucleon decay experiment have been assembled and operated. Modules consist of a hexagonal array of drift tubes and corrugated steel, instrumented to read out three-dimensional track positions and pulse height. These will be assembled to form an isotropic, continuously sensitive, self-triggering detector. Details of the design, construction, operation and performance of the modules are discussed. 7 refs., 10 figs.

  1. Long-drift calorimeter modules for the Soudan 2 nucleon decay detector

    SciTech Connect

    Hoftiezer, J.

    1986-02-01

    The first full size 5-ton detector modules for the Soudan 2 nucleon decay experiment have been assembled and operated. Modules consist of a hexagonal array of drift tubes and corrugated steel, instrumented to read out three-dimensional track positions and pulse height. These will be assembled to form an isotropic, continuously sensitive, self-triggering detector. Details of the design, construction, operation and performance of the modules are discussed.

  2. Intelligent Detector Design

    SciTech Connect

    Graf, N.A.; /SLAC

    2012-06-11

    As the complexity and resolution of imaging detectors increases, the need for detailed simulation of the experimental setup also becomes more important. Designing the detectors requires efficient tools to simulate the detector response and reconstruct the events. We have developed efficient and flexible tools for detailed physics and detector response simulation as well as event reconstruction and analysis. The primary goal has been to develop a software toolkit and computing infrastructure to allow physicists from universities and labs to quickly and easily conduct physics analyses and contribute to detector research and development. The application harnesses the full power of the Geant4 toolkit without requiring the end user to have any experience with either Geant4 or C++, thereby allowing the user to concentrate on the physics of the detector system.

  3. Micromegas detectors for CLAS12

    SciTech Connect

    Charles, Gabriel

    2013-08-01

    The electron accelerator of the Thomas Jefferson Laboratory (VI, USA) will soon be upgraded to deliver 12 GeV high intensity beams. This increase in the performance will give the opportunity to study the nucleon structure with an unprecedented accuracy. To meet this end, new equipments will be installed in the experimental areas, particularly in the Hall B/CLAS spectrometer. One of the most challenging aspects is the installation of a Central Tracker surrounding the target, dedicated to the detection of particles emitted at large angles. Micromegas detectors have been chosen to be a major element of this new equipment, due to their high rate capability as well as their robustness and light material. Using the recent bulk technology, part of these gaseous detectors are planned to be assembled in thin cylinders to maximize the acceptance. On the other hand, the presence of a strong magnetic field either perpendicular or parallel to the readout strips has important consequences which need to be carefully investigated. Finally, resistive Micromegas have been studied to further improve the rate capability.

  4. Design and prototype studies of the TOTEM Roman pot detectors

    NASA Astrophysics Data System (ADS)

    Oriunno, Marco; Battistin, Michele; David, Eric; Guglielmini, Paolo; Joram, Christian; Radermacher, Ernst; Ruggiero, Gennaro; Wu, Jihao; Vacek, Vaclav; Vins, Vaclav

    2007-10-01

    The Roman pots of the TOTEM experiment at LHC will be equipped with edgeless silicon micro-strip detectors. A detector package consists of 10 detector planes cooled at -15C in vacuum. The detector resolution is 20 μm, the overall alignment precision has to be better than 30 μm. The detector planes are composed of a kapton hybrid glued on a substrate made of low expansion alloy, CE07 with 70% Si and 30% Al. An evaporative cooling system based on the fluorocarbon C3F8 with oil-free compressors has been adopted. The throttling of the fluid is done locally through capillaries. A thermo-mechanical prototype has been assembled. The results fully match the requirements and the expectations of calculations. They show a low thermal gradient on the cards and a uniform temperature distribution over the 10 planes.

  5. The calibration unit and detector system tests for MUSE

    NASA Astrophysics Data System (ADS)

    Kelz, A.; Bauer, S. M.; Biswas, I.; Fechner, T.; Hahn, T.; Olaya, J.-C.; Popow, E.; Roth, M. M.; Streicher, O.; Weilbacher, P.; Bacon, R.; Laurent, F.; Laux, U.; Lizon, J. L.; Loupias, M.; Reiss, R.; Rupprecht, G.

    2010-07-01

    The Multi-Unit Spectroscopic Explorer (MUSE) is an integral-field spectrograph for the ESO Very Large Telescope. After completion of the Final Design Review in 2009, MUSE is now in its manufacture and assembly phase. To achieve a relative large field-of-view with fine spatial sampling, MUSE features 24 identical spectrograph-detector units. The acceptance tests of the detector sub-systems, the design and manufacture of the calibration unit and the development of the Data Reduction Software for MUSE are under the responsibility of the AIP. The optical design of the spectrograph implies strict tolerances on the alignment of the detector systems to minimize aberrations. As part of the acceptance testing, all 24 detector systems, developed by ESO, are mounted to a MUSE reference spectrograph, which is illuminated by a set of precision pinholes. Thus the best focus is determined and the image quality of the spectrograph-detector subsystem across wavelength and field angle is measured.

  6. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  7. Detectors (4/5)

    ScienceCinema

    None

    2016-07-12

    This lecture will serve as an introduction to particle detectors and detection techniques. In the first lecture, a historic overview of particle detector development will be given. In the second lecture, some basic techniques and concepts for particle detection will be discussed. In the third lecture, the interaction of particles with matter, the basis of particle detection, will be presented. The fourth and fifth lectures will discuss different detector types used for particle tracking, energy measurement and particle identification.

  8. Detectors (5/5)

    ScienceCinema

    None

    2016-07-12

    This lecture will serve as an introduction to particle detectors and detection techniques. In the first lecture, a historic overview of particle detector development will be given. In the second lecture, some basic techniques and concepts for particle detection will be discussed. In the third lecture, the interaction of particles with matter, the basis of particle detection, will be presented. The fourth and fifth lectures will discuss different detector types used for particle tracking, energy measurement and particle identification.

  9. History of infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  10. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  11. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  12. The CDFII Silicon Detector

    SciTech Connect

    Julia Thom

    2004-07-23

    The CDFII silicon detector consists of 8 layers of double-sided silicon micro-strip sensors totaling 722,432 readout channels, making it one of the largest silicon detectors in present use by an HEP experiment. After two years of data taking, we report on our experience operating the complex device. The performance of the CDFII silicon detector is presented and its impact on physics analyses is discussed. We have already observed measurable effects from radiation damage. These results and their impact on the expected lifetime of the detector are briefly reviewed.

  13. Brief Introduction to the γ-DETECTOR Array at Institute of Modern Physics in Lanzhou

    NASA Astrophysics Data System (ADS)

    Hua, W.; Zhang, N. T.; Liu, M. L.; Zheng, Y.; Fang, Y. D.; Zhou, X. H.; Zhang, Y. H.; Lei, X. G.; Guo, Y. X.

    2013-11-01

    A new γ-detector array at Institute of modern physics in Lanzhou is now in construction. The spherical frame is designed using Solidworks, and is assembled by 4 kinds of irregular polygons. 32 detectors could be placed on this frame in maximum, which are arranged with 4-4-4-8-4-4-4 configuration.

  14. Autonomous electrochromic assembly

    SciTech Connect

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  15. Firearm trigger assembly

    SciTech Connect

    Crandall, David L.; Watson, Richard W.

    2010-02-16

    A firearm trigger assembly for use with a firearm includes a trigger mounted to a forestock of the firearm so that the trigger is movable between a rest position and a triggering position by a forwardly placed support hand of a user. An elongated trigger member operatively associated with the trigger operates a sear assembly of the firearm when the trigger is moved to the triggering position. An action release assembly operatively associated with the firearm trigger assembly and a movable assembly of the firearm prevents the trigger from being moved to the triggering position when the movable assembly is not in the locked position.

  16. Development of a fast multi-line x-ray CT detector for NDT

    NASA Astrophysics Data System (ADS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Neubauer, H.; Mühlbauer, J.; Schröpfer, S.; Ernst, J.; Firsching, M.; Schweiger, T.; Oberst, M.; Meyer, A.; Uhlmann, N.

    2015-04-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of

  17. MINOS far-detector coil design

    SciTech Connect

    Nelson, J.K.; Kilmer, J.; /Fermilab

    1999-08-01

    The MINOS far detector will be installed a half mile underground in the Soudan mine in northern Minnesota. The 5.4-kt structure is assembled from 8-m wide, 1- inch thick octagonal steel planes. The planes are made from low carbon (1006), hot rolled steel and are toroidally magnetized. The 486 steel planes are arranged as two 'supermodules' of 243 planes each, separated by a 1.5-m long gap to allow space for installation of two separate magnet coils. Each plane is hung by two 'ears', which are extensions of the octagonal plane structure, similar to the hanging files in a file drawer. The steel planes have a center-to-center spacing of 5.94 cm. This document has been prepared for the 8/99 Conceptual Design Review of the MINOS Far Detector Coils. Its main goal is to provide a set of references to previous documents and to assemble various design drawings and engineering calculations that have not been included in previous technical memos. It also provides some background material relevant for the coil implementation. Much of the text for this document is edited from the MINOS Detectors Technical Design Report.

  18. MINOS near-detector coil design

    SciTech Connect

    Nelson, J.K.; Kilmer, J.; /Fermilab

    1999-08-01

    The 980-ton MINOS near detector will be installed in the new NuMI near hall at 100m below grade at Fermilab. It will be assembled from 282 1-inch thick steel plates. The planes are made from low carbon (1006), hot rolled steel and are toroidally magnetized. Each plane will be hung by two 'ears', which are extensions of the octagonal plane structure, similar to the hanging files in a file drawer. The plates have a center-to-center spacing of 5.94 cm. This document has been prepared for the 8/99 Conceptual Design Review of the MINOS near detector coil. It's main goal is to provide a set of references to previous documents and to assemble various design drawings and engineering calculations that have not been included in previous technical memos. It also provides some background material relevant for the coil implementation. Much of the text for this document is edited from the MINOS Detectors Technical Design Report.

  19. SCINTILLATION EXPOSURE RATE DETECTOR

    DOEpatents

    Spears, W.G.

    1960-11-01

    A radiation detector for gamma and x rays is described. The detector comprises a scintillation crystal disposed between a tantalum shield and the input of a photomultiplier tube, the crystal and the shield cooperating so that their combined response to a given quantity of radiation at various energy levels is substantially constant.

  20. Smoke Detectors and Legislation.

    ERIC Educational Resources Information Center

    National Fire Prevention and Control Administration (DOC), Washington, DC.

    This manual, one of a series for use in public education, provides an in-depth review of the current status of state and local smoke detector legislation. First, for the community considering a smoke detector law or ordinance, six decision points are discussed: which residential occupancy sub-classes will be affected; what the time factors are for…

  1. Alkali ionization detector

    DOEpatents

    Hrizo, John; Bauerle, James E.; Witkowski, Robert E.

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  2. The CLAS Cherenkov detector

    SciTech Connect

    G. Adams; V. Burkert; R. Carl; T. Carstens; V. Frolov; L. Houghtlin; G. Jacobs; M. Kossov; M. Klusman; B. Kross; M. Onuk; J. Napolitano; J. W. Price; C. Riggs; Y. Sharabian; A. Stavinsky; L. C. Smith; W. A. Stephens; P. Stoler; W. Tuzel; K. Ullrich; A. Vlassovc; A. Weisenberger; M. Witkowski; B. Wojtekhowski; P. F. Yergin; C. Zorn

    2001-06-01

    The design, construction, and performance of the CLAS Cerenkov threshold gas detector at Jefferson Lab is described. The detector consists of 216 optical modules. Each module consists of 3 adjustable mirrors, of lightweight composite construction, a Winston light collecting cone, a 5-inch photomultiplier tube, and specially designed magnetic shielding.

  3. Future particle detector systems

    NASA Astrophysics Data System (ADS)

    Clark, Allan G.

    2000-09-01

    Starting with a short summary of the major new experimental physics programs, we attempt to motivate the reasons why existing general-purpose detectors at Hadron Colliders are what they are, why they are being upgraded, and why new facilities are being constructed. The CDF and ATLAS detectors are used to illustrate these motivations. Selected physics results from the CDF experiment provide evidence for limitations on the detector performance, and new physics opportunities motivate both machine and detector upgrades. This is discussed with emphasis on the improved physics reach of the CDF experiment at the Fermilab Tevatron (√s =2 TeV). From 2005, the Large Hadron Collider (LHC) at CERN will become operational at a collision energy of √s =14 TeV, seven times larger than at the Tevatron Collider. To exploit the physics capability of the LHC, several large detectors are being constructed. The detectors are significantly more complex than those at the Tevatron Collider because of physics and operational constraints. The detector design and technology of the aspects of the large general-purpose detector ATLAS is described.

  4. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  5. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  6. Particle impact location detector

    NASA Technical Reports Server (NTRS)

    Auer, S. O.

    1974-01-01

    Detector includes delay lines connected to each detector surface strip. When several particles strike different strips simultaneously, pulses generated by each strip are time delayed by certain intervals. Delay time for each strip is known. By observing time delay in pulse, it is possible to locate strip that is struck by particle.

  7. Scanning Seismic Intrusion Detector

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1982-01-01

    Scanning seismic intrusion detector employs array of automatically or manually scanned sensors to determine approximate location of intruder. Automatic-scanning feature enables one operator to tend system of many sensors. Typical sensors used with new system are moving-coil seismic pickups. Detector finds uses in industrial security systems.

  8. Nanomechanical resonance detector

    DOEpatents

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  9. Advanced far infrared detectors

    SciTech Connect

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > {lambda} > 50 {mu}m are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide.

  10. High photoresponse in hybrid graphene-carbon nanotube infrared detectors.

    PubMed

    Lu, Rongtao; Christianson, Caleb; Weintrub, Ben; Wu, Judy Z

    2013-11-27

    Efficient exciton dissociation is crucial to obtaining high photonic response in photodetectors. This work explores implementation of a novel exciton dissociation mechanism through heterojunctions self-assembled at the graphene/MWCNT (multiwall carbon nanotube) interfaces in graphene/MWCNT nanohybrids. Significantly enhanced near-infrared photoresponsivity by nearly an order of magnitude has been achieved on the graphene/MWCNT nanohybrids as compared to the best achieved so far on carbon nanotube (CNT) only infrared (IR) detectors. This leads to a high detectivity up to 1.5 × 10(7) cm·Hz(1/2)·W(-1) in the graphene/MWCNT nanohybrid, which represents a 500% improvement over the best D* achieved on MWCNT film IR detectors and may be further improved with optimization on the interfacial heterojunctions. This approach of the self-assembly of graphene/CNT nanohybrids provides a pathway toward high-performance and low-cost carbon nanostructure IR detectors.

  11. Membrane module assembly

    DOEpatents

    Kaschemekat, Jurgen

    1994-01-01

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  12. Cage redesign explains assembly

    PubMed Central

    Theil, Elizabeth C; Turano, Paola

    2013-01-01

    Control of protein self-assembly and disassembly, which is central to metabolism and engineering applications, remains challenging. Here, a perspicacious redesign of interfaces in the multisubunit ferritin protein cage provides single, modifiable subunits that assemble with Cu2+ templating and give insights into the cage assembly code. PMID:23416399

  13. Membrane module assembly

    DOEpatents

    Kaschemekat, J.

    1994-03-15

    A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

  14. The verification of reactor operating history using the fork detector

    SciTech Connect

    Menlove, H.O.; Reilly, T.D.; Siebelist, R.

    1996-07-01

    A technique has been developed for verification of light-water reactor operating history from measurements of irradiated fuel assemblies. The Fork detector is used to measure neutron and gross gamma-ray emissions from fuel assemblies. The measurements can be performed a few days after discharge or up to several years later. The neutron and gamma-ray ratios are used to check the consistency of the declared number of irradiated cycles for the assembly in the core. Reactor burnup calculation codes are used to correct the measured neutron rates for different initial enrichments and discontinuous irradiation histories. We have modified the Fork detector so that it can operate in the intense gamma-ray field emitted from freshly discharged fuel. This modification makes it possible to perform fuel verification during the annual fuel-reload and maintenance period.

  15. Why compton-suppressed germanium detector arrays?

    SciTech Connect

    Diamond, R.M.

    1993-10-01

    Nuclear spectroscopic studies have provided a strong incentive to obtain {gamma}-ray detectors with increasingly better energy resolution, higher full-energy peak efficiencies, and greater sensitivity or resolving power. A major step was the introduction of Ge detectors in the early 60`s. But because of the low atomic number of Ge they have a poor response function; a majority of interacting gamma rays of moderate energy Compton scatter out of the detector leaving a large low-energy background. The remedy was to add a Compton-suppression shield made of NaI around the Ge crystal, and if interactions occurred simultaneously in the NaI scintillator and in the Ge detector to veto that event. Efficiencies also increased greatly when an English-Danish collaboration assembled five Ge detectors, each with a NaI suppressor, into the first array at the end of 1980. Obviously, a system of five such detectors gave much better statistics than the usual two bare detectors used for obtaining coincidence data (by a factor of 10). A few years later, another major improvement came with replacement of the NaI suppressors with shields made of the much denser bismuth germanate (BGO) as scintillator, as these could be thinner leading to arrays with of order 20 detectors. Use of such a large number of detectors led to the realization that for cascades of coincident gamma rays, as in going down a band, the improvement in the peak/background ratio observed and already appreciated in going from singles spectra to gated (double-) coincidence spectra continued when doubly-gated triple-coincidence data were compared for the first time to singly-gated double-coincidence ones. The higher-gated spectra were much cleaner and more selective, though with poorer statistics, and the advantages of higher folds and efficiencies led to the proposals for the larger 4{pi} arrays of today, Eurogam and GASP in Europe and Gammasphere in the U.S.

  16. Sensor mount assemblies and sensor assemblies

    DOEpatents

    Miller, David H.

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  17. Detectors for Tomorrow's Instruments

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  18. ACCESS: Detector Performance

    NASA Astrophysics Data System (ADS)

    Morris, Matthew J.; Kaiser, M.; Rauscher, B. J.; Kimble, R. A.; Kruk, J. W.; Mott, D. B.; Wen, Y.; Foltz, R.; McCandliss, S. R.; Pelton, R. S.; Wright, E. L.; Feldman, P. D.; Moos, H. W.; Riess, A. G.; Benford, D. J.; Gardner, J. P.; Woodgate, B. E.; Bohlin, R.; Deustua, S. E.; Dixon, W. V.; Sahnow, D. J.; Kurucz, R. L.; Lampton, M.; Perlmutter, S.

    2013-01-01

    ACCESS, Absolute Color Calibration Experiment for Standard Stars, is a series of rocket-borne sub-orbital missions and ground-based experiments that will enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 to 1.7 micron bandpass (overview Kaiser et al.). The flight detector and detector spare have been integrated with their electronics and flight mount. The controller electronics have been flight qualified. Vibration testing to launch loads and thermal vacuum testing of the detector, mount, and housing have been performed. The flight detector controller boards have been installed into a ruggedized flight housing. They have been successfully vacuum tested for periods significantly longer than the flight length, and components have been heat-sunk and reinforced as necessary. Thermal stability tests have been performed, and results will be presented. Goddard Space Flight Center’s Detector Characterization Lab (DCL) executed initial characterization tests for the flight detector in 2007. These were repeated in 2012, to ensure and establish baseline performance. Current lab characterization tests at Johns Hopkins are ongoing, and results will be presented. NASA sounding rocket grant NNX08AI65G supports this work.

  19. Barrier infrared detectors

    NASA Astrophysics Data System (ADS)

    Martyniuk, P.; Kopytko, M.; Rogalski, A.

    2014-06-01

    In 1959, Lawson and co-workers publication triggered development of variable band gap Hg1-xCdxTe (HgCdTe) alloys providing an unprecedented degree of freedom in infrared detector design. Over the five decades, this material system has successfully fought off major challenges from different material systems, but despite that it has more competitors today than ever before. It is interesting however, that none of these competitors can compete in terms of fundamental properties. They may promise to be more manufacturable, but never to provide higher performance or, with the exception of thermal detectors, to operate at higher temperatures. In the last two decades a several new concepts of photodetectors to improve their performance have been proposed including trapping detectors, barrier detectors, unipolar barrier photodiodes, and multistage detectors. This paper describes the present status of infrared barrier detectors. It is especially addressed to the group of III-V compounds including type-II superlattice materials, although HgCdTe barrier detectors are also included. It seems to be clear that certain of these solutions have merged as a real competitions of HgCdTe photodetectors.

  20. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  1. Geoneutrinos and the Sno+ Detector

    NASA Astrophysics Data System (ADS)

    Tolich, N.

    2014-12-01

    When the SNO+ detector begins operation within two years, it will be a sensitive geo-neutrino detector. The detectors location in Sudbury, Canada, will allow us to study the geo-neutrino signal originating from the surrounding continental crust. Combining future results from the SNO+ detector with those from the KamLAND and Borexino geo-neutrino detectors, respectively in Japan and Italy, will allow us to study the variation in the geo-neutrino signal for detectors located in very different crust types. I will talk about the status of the SNO+ detector along with the potential geo-neutrino results from such a detector.

  2. Improved Position Calibration for the FAUST Detector

    NASA Astrophysics Data System (ADS)

    Bakhtiari, Layla; Heilborn, Lauren; Cammarata, Paul; McIntosh, Alan; Youngs, Mike; Chapman, Matthew; Yennello, Sherry

    2013-10-01

    The Forward Array Using Silicon Technology (FAUST), is a detector array used to measure charged particles resulting from heavy-ion reactions. Studying multifragmentation in these reactions can give insight into the Equation of State of nuclear matter, which is important for understanding concepts in astrophysics such as the formation of the atomic elements, neutron star development, and supernovae behavior. In order to characterize the events more fully, the current silicon detectors will be replaced with position sensitive Dual-Axis Dual-Lateral (DADL) detectors. To maximize the use of these new detectors, a procedure to perform position and energy calibrations with the fully assembled array had to be developed. Testing of the mask will be performed in two stages: a preliminary test with a single ring of the array, followed by a comprehensive test with all rings of FAUST. The new calibration procedure, including the custom designed mask and the in-beam testing results of a single ring, will be presented. This work was supported by the DOE and NSF-REU Program.

  3. Automatic Testing Of Infrared Detector Arrays

    NASA Astrophysics Data System (ADS)

    Jones, David A.

    1982-12-01

    Large scale infrared (IR) detector array production requires highly automated and accurate test equipment with data logging features. At Texas Instruments (TI), five different types of automatic test systems have been developed with a central computer data logging system. Two of these system types test the completed array in various stages of integration into the final assembly. These tests include responsivity, detectivity, and other characteristics. Since direct calibration for responsivity and detectivity is not available, close attention to the applicable formulas, an error budget, and calibration procedures is required. This paper first summarizes the many types of tests and test equipment that are used at TI in constructing a finished "Common Module" detector from raw mercury cadium telluride (MCT), then describes in more detail the test sets for automated testing of the array itself, and the factors affecting array test accuracy and calibration.

  4. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  5. PIN Diode Detectors

    NASA Astrophysics Data System (ADS)

    Ramírez-Jiménez, F. J.

    2008-07-01

    A review of the application of PIN diodes as radiation detectors in particle counting, X- and γ-ray spectroscopy, medical applications and charged particle spectroscopy is presented. As a practical example of its usefulness, a PIN diode and a low noise preamplifier are included in a nuclear spectroscopy chain for X-ray measurements. This is a laboratory session designed to review the main concepts needed to set up the detector-preamplifier array and to make measurements of X-ray energy spectra with a room temperature PIN diode. The results obtained are compared with those obtained with a high resolution cooled Si-Li detector.

  6. Interconnect assembly for an electronic assembly and assembly method therefor

    DOEpatents

    Gerbsch, Erich William

    2003-06-10

    An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.

  7. Telerobotic truss assembly

    NASA Technical Reports Server (NTRS)

    Sheridan, Philip L.

    1987-01-01

    The ACCESS truss was telerobotically assembled in order to gain experience with robotic assembly of hardware designed for astronaut extravehicular (EVA) assembly. Tight alignment constraints of the ACCESS hardware made telerobotic assembly difficult. A wider alignment envelope and a compliant end effector would have reduced the problem. The manipulator had no linear motion capability, but many of the assembly operations required straight line motion. The manipulator was attached to a motion table in order to provide the X, Y, and Z translations needed. A programmable robot with linear translation capability would have eliminated the need for the motion table and streamlined the assembly. Poor depth perception was a major problem. Shaded paint schemes and alignment lines were helpful in reducing this problem. The four cameras used worked well for only some operations. It was not possible to identify camera locations that worked well for all assembly steps. More cameras or movable cameras would have simplified some operations. The audio feedback system was useful.

  8. Performances of photodiode detectors for top and bottom counting detectors of ISS-CREAM experiment

    NASA Astrophysics Data System (ADS)

    Hyun, H. J.; Anderson, T.; Angelaszek, D.; Baek, S. J.; Copley, M.; Coutu, S.; Han, J. H.; Huh, H. G.; Hwang, Y. S.; Im, S.; Jeon, H. B.; Kah, D. H.; Kang, K. H.; Kim, H. J.; Kim, K. C.; Kwashnak, K.; Lee, J.; Lee, M. H.; Link, J. T.; Lutz, L.; Mitchell, J. W.; Nutter, S.; Ofoha, O.; Park, H.; Park, I. H.; Park, J. M.; Patterson, P.; Seo, E. S.; Wu, J.; Yoon, Y. S.

    2015-07-01

    The Cosmic Ray Energetics and Mass (CREAM) experiment at the International Space Station (ISS) aims to elucidate the source and acceleration mechanisms of high-energy cosmic rays by measuring the energy spectra from protons to iron. The instrument is planned for launch in 2015 at the ISS, and it comprises a silicon charge detector, a carbon target, top and bottom counting detectors, a calorimeter, and a boronated scintillator detector. The top and bottom counting detectors are developed for separating the electrons from the protons, and each of them comprises a plastic scintillator and a 20×20 silicon photodiode array. Each photodiode is 2.3 cm×2.3 cm in size and exhibits good electrical characteristics. The leakage current is measured to be less than 20 nA/cm2 at an operating voltage. The signal-to-noise ratio is measured to be better than 70 using commercial electronics, and the radiation hardness is tested using a proton beam. A signal from the photodiode is amplified by VLSI (very-large-scale integration) charge amp/hold circuits, the VA-TA viking chip. Environmental tests are performed using whole assembled photodiode detectors of a flight version. Herein, we present the characteristics of the developed photodiode along with the results of the environmental tests.

  9. Pocked surface neutron detector

    DOEpatents

    McGregor, Douglas; Klann, Raymond

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  10. Microwave Radiation Detector

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1984-01-01

    Direct photon detector responds to microwave frequencies. Method based on trapped-ion frequency-generation standards proposed to detect radio-frequency (RF) radiation at 40.5 GHz. Technique used for directdetection (RF) communication, radar, and radio astronomy.

  11. Multiple detectors "Influence Method".

    PubMed

    Rios, I J; Mayer, R E

    2016-05-01

    The "Influence Method" is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency and without the need to register coincidences of any kind. This method exploits the influence of the presence of one detector in the count rate of another detector, when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency (Rios and Mayer, 2015a). Its detailed mathematical description was recently published (Rios and Mayer, 2015b) and its practical implementation in the measurement of a moderated neutron flux arising from an isotopic neutron source was exemplified in (Rios and Mayer, 2016). With the objective of further reducing the measurement uncertainties, in this article we extend the method for the case of multiple detectors placed one behind the other. The new estimators for the number of particles and the detection efficiency are herein derived.

  12. Improved CO [lidar detector

    SciTech Connect

    Jacobson, P.L.; Busch, G.E.; Thompson, D.C.; Remelius, D.K.; Wells, F.D.

    1999-07-18

    A high sensitivity, CO{sub 2} lidar detector, based on recent advances in ultra-low noise, readout integrated circuits (ROIC), is being developed. This detector will combine a high speed, low noise focal plane array (FPA) with a dispersive grating spectrometer. The spectrometer will filter the large background flux, thereby reducing the limiting background photon shot noise. In order to achieve the desired low noise levels, the HgCdTe FPA will be cooled to {approximately}50K. High speed, short pulse operation of the lidar system should enable the detector to operate with the order of a few noise electrons in the combined detector/ ROIC output. Current receiver design concepts will be presented, along with their expected noise performance.

  13. The CBM RICH detector

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höohne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.

    2016-05-01

    The CBM RICH detector will use CO2 as radiator gas, focussing glass mirrors with Al+MgF2 reflective and protective coating and Hamamatsu H12700 MAPMTs as photon detectors. The detector will serve for electron to pion separation up to momenta of 8 GeV/c and thus enable in CBM the measurement of electromagnetic radiation from the early and dense fireball in A+A collisions at SIS 100. In this article, the current status of the CBM RICH development will be presented including new measurements of the radiation hardness of the H12700 MAPMT and WLS coatings with p-terphenyl, the new concept for the readout electronics, and optimizations ongoing with respect to the mirror mount structure and overall geometry. Prior to the usage in CBM, part of the already ordered MAPMTs will be used to upgrade the HADES RICH detector for a new measurement campaign at SIS 18 from 2018-2020.

  14. Multiple detectors "Influence Method".

    PubMed

    Rios, I J; Mayer, R E

    2016-05-01

    The "Influence Method" is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency and without the need to register coincidences of any kind. This method exploits the influence of the presence of one detector in the count rate of another detector, when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency (Rios and Mayer, 2015a). Its detailed mathematical description was recently published (Rios and Mayer, 2015b) and its practical implementation in the measurement of a moderated neutron flux arising from an isotopic neutron source was exemplified in (Rios and Mayer, 2016). With the objective of further reducing the measurement uncertainties, in this article we extend the method for the case of multiple detectors placed one behind the other. The new estimators for the number of particles and the detection efficiency are herein derived. PMID:26943904

  15. Ultrafast neutron detector

    DOEpatents

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  16. Subspace Detectors: Theory

    SciTech Connect

    Harris, D B

    2006-07-11

    Broadband subspace detectors are introduced for seismological applications that require the detection of repetitive sources that produce similar, yet significantly variable seismic signals. Like correlation detectors, of which they are a generalization, subspace detectors often permit remarkably sensitive detection of small events. The subspace detector derives its name from the fact that it projects a sliding window of data drawn from a continuous stream onto a vector signal subspace spanning the collection of signals expected to be generated by a particular source. Empirical procedures are presented for designing subspaces from clusters of events characterizing a source. Furthermore, a solution is presented for the problem of selecting the dimension of the subspace to maximize the probability of detecting repetitive events at a fixed false alarm rate. An example illustrates subspace design and detection using events in the 2002 San Ramon, California earthquake swarm.

  17. Pendulum detector testing device

    DOEpatents

    Gonsalves, J.M.

    1997-09-30

    A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs.

  18. Pendulum detector testing device

    DOEpatents

    Gonsalves, John M.

    1997-01-01

    A detector testing device which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: 1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, 2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and 3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements.

  19. Modular optical detector system

    DOEpatents

    Horn, Brent A.; Renzi, Ronald F.

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  20. Multi Electrode Semiconductor Detectors

    NASA Astrophysics Data System (ADS)

    Amendolia, S. R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foà, L.; Focardi, E.; Giazotto, A.; Giorgi, M. A.; Marrocchesi, P. S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M. L.

    1981-04-01

    Detectors with very high space resolution have been built in our laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments.

  1. Fiber optic detector

    NASA Astrophysics Data System (ADS)

    Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.

    1990-04-01

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  2. Fiber optic detector

    SciTech Connect

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  3. MONDE: MOmentum Neutron DEtector

    NASA Astrophysics Data System (ADS)

    Santa Rita, P.; Acosta, L.; Favela, F.; Huerta, A.; Ortiz, M. E.; Policroniades, R.; Chávez, E.

    2016-07-01

    MONDE is a large area neutron momentum detector, consisting of a 70x160x5 cm3 plastic scintillator slab surrounded by 16 photomultiplier tubes, standard NIM signal processing electronics and a CAMAC data acquisition system. In this work we present data from a characterization run using an external trigger. For that purpose, coincident gamma rays from a 60Co radioactive source were used together with a NaI external detector. First results with an "external" trigger are presented.

  4. Gaseous leak detector

    DOEpatents

    Juravic, Jr., Frank E.

    1988-01-01

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the non linear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  5. Improved gaseous leak detector

    DOEpatents

    Juravic, F.E. Jr.

    1983-10-06

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  6. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  7. Complementary barrier infrared detector (CBIRD) with double tunnel junction contact and quantum dot barrier infrared detector (QD-BIRD)

    NASA Astrophysics Data System (ADS)

    Ting, David Z.-Y.; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Höglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, B., , Sir; Hill, Cory J.; Gunapala, Sarath D.

    2013-07-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from ˜4.2 μm to 6 μm, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  8. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; Gunapala, Sarath D.

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  9. Progress in semiconductor drift detectors

    SciTech Connect

    Rehak, P.; Walton, J.; Gatti, E.; Longoni, A.; Sanpietro, M.; Kemmer, J.; Dietl, H.; Holl, P.; Klanner, R.; Lutz, G.

    1985-01-01

    Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements.

  10. Test bench for infrared detectors

    NASA Astrophysics Data System (ADS)

    Campos, Thierry

    2005-01-01

    The Bench for Infrared Detectors (BIRD 210) has been designed for testing IRFPA detectors up to 1024 x 1024 pixels. It is also suitable for single element detectors. The detectors are required to be equipped with their coolers (Stirling or thermo electrics) and cooler electronics.

  11. Verification of 235U enrichment of fresh VVER-440 fuel assemblies.

    PubMed

    Almási, I; Nguyen, C T; Zsigrai, J; Lakosi, L; Hlavathy, Z; Nagy, P; Buglyó, N

    2012-10-01

    Enrichment of uniformly and non-uniformly enriched ("profiled") fuel assemblies in a range of 1.6-4.4% was verified by gamma-ray spectrometry at a nuclear power plant (NPP). HPGe detectors and a CdZnTe (CZT) detector, the latter fitting into the central tube of the assemblies, were used for obtaining information from outer and inner fuel rods. A procedure which has minimal impact on the NPP work was developed for verifying freshly arrived assemblies under normal operational conditions, and is now in routine use.

  12. Wind turbine rotor assembly

    SciTech Connect

    Kaiser, H. W.

    1984-11-20

    A vertical axis wind turbine having a horizontal arm member which supports an upright blade assembly. Bearing structure coupling the blade assembly to the turbine arm permits blade movement about its longitudinal axis as well as flexing motion of the blade assembly about axes perpendicular to the longitudinal axis. A latching mechanism automatically locks the blade assembly to its supporting arm during normal turbine operation and automatically unlocks same when the turbine is at rest. For overspeed prevention, a centrifugally actuated arm functions to unlatch the blade assembly permitting same to slipstream or feather into the wind. Manually actuated means are also provided for unlatching the moving blade assembly. The turbine arm additionally carries a switching mechanism in circuit with a turbine generator with said mechanism functioning to open and hence protect the generator circuit in the event of an overspeed condition of the turbine.

  13. Effect of a metal electrode on the radiation tolerance of a SiC neutron detector

    NASA Astrophysics Data System (ADS)

    Park, Junesic; Shin, Hee-Sung; Kim, Ho-Dong; Kim, Han Soo; Park, Se Hwan; Lee, Cheol Ho; Kim, Yong Kyun

    2012-08-01

    The Korea Atomic Energy Research Institute (KAERI) has developed a silicon carbide (SiC) diode as a neutron detector that can be used in harsh environments such as nuclear reactor cores and spent fuel. The radiation tolerance of the SiC detector was studied in the present work. Especially, the effect of a metal electrode on the radiation tolerance of the SiC detector was studied. Four different types of SiC detectors were fabricated, and the operation properties of the detectors were measured and compared before and after neutron irradiations of 2.16 × 1015 n/cm2 and 5.40 × 1017 n/cm2. From the comparison, the detector with a Ti/Au electrode structure showed the highest radiation tolerance among detectors. A detector assembly was fabricated using two types of SiC p-i-n diode detectors: one containing 6LiF and the other without it. Signals from the detectors were measured in the current mode to minimize the noise of the detector. Signal currents from detectors were measured for neutron fluxes ranging from 5.54 × 106 n/cm2 s to 2.86 × 108 n/cm2 s and gamma doses up to 100 Gy/h.

  14. Crosstalk study of near infrared InGaAs detectors

    NASA Astrophysics Data System (ADS)

    Li, Xue; Tang, Hengjing; Li, Tao; Fan, Cui; Shao, Xiumei; Li, Jianwei; Wei, Jun; Gong, Haimei

    2016-05-01

    Crosstalk characteristics of high density FPA detectors attract widespread attention in the application of electro-optical systems. Crosstalk characteristics of near-infrared (NIR) InGaAs photodiodes and focal plane arrays (FPAs) were studied in this paper. The mesa type detector was investigated by using laser beam induced current technique (LBIC) to measure the absorption outside the designed photosensitive area, and the results show that the excess absorption enlarges the crosstalk of the adjacent pixels. The structure optimization using the effective absorption layer between the pixels can effectively reduce the crosstalk to 2.5%. The major crosstalk components of the optimization photodiode come from the electronic signal caused by carrier lateral diffusion. For the planar type detectors, test structures were used to compare the crosstalk of different structures, and the guard ring structure shows good suppression of the crosstalk. Then the back-illuminated 32x32 InGaAs photodiodes with 30μm pitch were designed, and LBIC was used to measure its lateral diffusion of the effective carriers and fill factor of photosensitive area. The results indicate that the fill factor of detectors can reach up to 98% when the diffusion region is optimized, and the minimum response exists between two neighborhood pixels. Based on these crosstalk measurement results and optimizing structure designs, the linear InGaAs photodiodes were designed and thus the InGaAs FPA assembly was fabricated. The assembly shows higher electro-optical performance and good improvement on crosstalk. The assembly was applied in infrared imaging system and modulation transfer function (MTF) of FPA assembly was calculated to be above 0.50. The clear image based on FPA assembly was obtained.

  15. Controlling molecular assemblies

    NASA Astrophysics Data System (ADS)

    Dameron, Arrelaine A.

    Using molecules designed to have only specific differences in their functionality, we have explored the influence of molecular conformation on the structural, electronic, and physical properties of self-assembled monolayers using both scanning probe and ensemble techniques. In the former case, we used two structurally similar molecules that differ in the degrees of freedom afforded to each. We found that this influenced the degree of order and conductance of self-assembled monolayers of each molecule, but had little influence of conductance switching of individual molecules inserted in alkanethiolate self-assembled monolayers. We further demonstrated how molecular structure influences phase separation, displace-ability, and molecular mobility of self-assembled monolayers by assembling 1-adamantanethiol on Au{111}. Molecular-resolution imaging of the self-assembled monolayers with the scanning tunneling microscopy confirmed a highly ordered hexagonally close-packed molecular lattice. We found that the 1-adamantanethiolate self-assembled monolayers were susceptible to replacement by the presence of another thiolated species, both from solution and vapor phases. Additionally, we determined that the displacement process is a nucleation and growth mechanism and the structure of the resulting self-assembled monolayers is dependent on the strength of the intermolecular interactions of the displacing molecules. It was hypothesized that 1-adamantanethiolate displacement was driven by a combination of energies gained from the exchange of one self-assembled monolayer for a denser self-assembled monolayer and from the increased stability due to intermolecular interaction forces. Exploiting the susceptibility of the 1-adamantanethiolate self-assembled monolayers to displacement, we have designed a novel patterning strategy, termed 'microdisplacement printing', by combining these sacrificial self-assembled monolayers with microcontact printing. During microdisplacement printing

  16. Composite turbine bucket assembly

    DOEpatents

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  17. Fiber optical assembly for fluorescence spectrometry

    DOEpatents

    Carpenter, II, Robert W.; Rubenstein, Richard; Piltch, Martin; Gray, Perry

    2010-12-07

    A system for analyzing a sample for the presence of an analyte in a sample. The system includes a sample holder for containing the sample; an excitation source, such as a laser, and at least one linear array radially disposed about the sample holder. Radiation from the excitation source is directed to the sample, and the radiation induces fluorescent light in the sample. Each linear array includes a plurality of fused silica optical fibers that receive the fluorescent light and transmits a fluorescent light signal from the first end to an optical end port of the linear array. An end port assembly having a photo-detector is optically coupled to the optical end port. The photo-detector detects the fluorescent light signal and converts the fluorescent light signal into an electrical signal.

  18. Nonequilibrium superconducting detectors

    NASA Astrophysics Data System (ADS)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  19. Detectors in Extreme Conditions

    SciTech Connect

    Blaj, G.; Carini, G.; Carron, S.; Haller, G.; Hart, P.; Hasi, J.; Herrmann, S.; Kenney, C.; Segal, J.; Tomada, A.

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 1012 - 1013 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impeding data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.

  20. Ship Effect Measurements With Fiber Optic Neutron Detector

    SciTech Connect

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-08-10

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  1. CMOS Detector Technology

    NASA Astrophysics Data System (ADS)

    Hoffman, Alan; Loose, Markus; Suntharalingam, Vyshnavi

    2005-01-01

    An entry level overview of state-of-the-art CMOS detector technology is presented. Operating principles and system architecture are explained in comparison to the well-established CCD technology, followed by a discussion of important benefits of modern CMOS-based detector arrays. A number of unique CMOS features including different shutter modes and scanning concepts are described. In addition, sub-field stitching is presented as a technique for producing very large imagers. After a brief introduction to the concept of monolithic CMOS sensors, hybrid detectors technology is introduced. A comparison of noise reduction methods for CMOS hybrids is presented. The final sections review CMOS fabrication processes for monolithic and vertically integrated image sensors.

  2. Semiconductor radiation detector

    DOEpatents

    Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.; Vilkelis, Gintas

    2002-01-01

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  3. JSATS Detector Field Manual

    SciTech Connect

    Choi, Eric Y.; Flory, Adam E.; Lamarche, Brian L.; Weiland, Mark A.

    2014-06-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) Detector is a software and hardware system that captures JSATS Acoustic Micro Transmitter (AMT) signals. The system uses hydrophones to capture acoustic signals in the water. This analog signal is then amplified and processed by the Analog to Digital Converter (ADC) and Digital Signal Processor (DSP) board in the computer. This board digitizes and processes the acoustic signal to determine if a possible JSATS tag is present. With this detection, the data will be saved to the computer for further analysis. This document details the features and functionality of the JSATS Detector software. The document covers how to install the software, setup and run the detector software. The document will also go over the raw binary waveform file format and CSV files containing RMS values

  4. Handheld CZT radiation detector

    DOEpatents

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  5. D0 Silicon Upgrade: D-Zero Assembly Hall ODH Analysis

    SciTech Connect

    Rucinski, Russ; /Fermilab

    1997-03-12

    The ODH analysis presented here covers the high bay and assembly hall docking area of the for the D-Zero detector. It includes the STand Alone helium Refrigerator (STAR) in the building. It also includes the D-Zero detector and it's associated cryogenic and gas systems. An ODH analysis is presented which shows that the D-Zero assembly building high bay including the detector docking area is ODH class O. Probabilities, leak rates, and fatality factors are generated for all items that are sources of inert gas. The scope of analysis included the calorimeter and gas components on the detector, the helium refrigerator/liquifier components, and the future solenoid and visible light photon counter cryogenics that will be added to the D-Zero detector. The analysis demonstrates that the calorimeter and helium refrigerator systems pose no ODH hazard to personnel.

  6. Thermal cycling reliability of indirect hybrid HgCdTe infrared detectors

    NASA Astrophysics Data System (ADS)

    Chen, Xing; He, Kai; Wang, Jian-xin; Zhang, Qin-yao

    2013-09-01

    Thermal cycling reliability is one of the most important issues whether the HgCdTe infrared focal plane array detectors can be applied to both military and civil fields. In this paper, a 3D finite element model for indirect hybrid HgCdTe infrared detectors is established. The thermal stress distribution and thermally induced warpage of the detector assembly as a function of the distance between the detector chip and Si-ROIC, the thickness and the materials properties of electrical lead board in cryogenic temperature are analyzed. The results show that all these parameters have influences on the thermal stress distribution and warpage of the detector assembly, especially the coefficient of thermal expansion(CTE) of electrical lead board. The thermal stress and warpage in the assembly can be avoided or minimized by choosing the appropriate electrical lead board. Additionally, the warpage of some indirect hybrid detectors assembly samples is measured in experiment. The experimental results are in good agreement with the simulation results, which verifies that the results are calculated by finite element method are reasonable.

  7. Radiation Detectors and Art

    NASA Astrophysics Data System (ADS)

    Denker, Andrea

    The use of radiation detectors in the analysis of art objects represents a very special application in a true interdisciplinary field. Radiation detectors employed in this field detect, e.g., x-rays, γ-rays, β particles, and protons. Analyzed materials range from stones, metals, over porcelain to paintings. The available nondestructive and noninvasive analytical methods cover a broad range of techniques. Hence, for the sake of brevity, this chapter will concentrate on few techniques: Proton Induced X-ray Emission (PIXE) and Proton Induced γ-ray Emission (PIGE).

  8. Future water Cherenkov detectors

    SciTech Connect

    Bergevin, Marc

    2015-05-15

    In these proceedings a review of the current proposed large-scale Warer Cherenkov experiments is given. An argument is made that future water Cherenkov detectors would benefit in the investment in neutron detection technology. A brief overview will be given of proposed water Cherenkov experiments such as HYPER-K and MEMPHYS and other R and D experiments to demonstrate neutron capture in water Cherenkov detectors. Finally, innovation developed in the context of the now defunct LBNE Water R and D option to improve Water Cherenkov technology will be described.

  9. High efficiency photoionization detector

    DOEpatents

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  10. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  11. Edgeless silicon pad detectors

    NASA Astrophysics Data System (ADS)

    Perea Solano, B.; Abreu, M. C.; Avati, V.; Boccali, T.; Boccone, V.; Bozzo, M.; Capra, R.; Casagrande, L.; Chen, W.; Eggert, K.; Heijne, E.; Klauke, S.; Li, Z.; Mäki, T.; Mirabito, L.; Morelli, A.; Niinikoski, T. O.; Oljemark, F.; Palmieri, V. G.; Rato Mendes, P.; Rodrigues, S.; Siegrist, P.; Silvestris, L.; Sousa, P.; Tapprogge, S.; Trocmé, B.

    2006-05-01

    We report measurements in a high-energy pion beam of the sensitivity of the edge region in "edgeless" planar silicon pad diode detectors diced through their contact implants. A large surface current on such an edge prevents the normal reverse biasing of the device, but the current can be sufficiently reduced by the use of a suitable cutting method, followed by edge treatment, and by operating the detector at low temperature. The depth of the dead layer at the diced edge is measured to be (12.5±8 stat..±6 syst.) μm.

  12. RADIATION WAVE DETECTOR

    DOEpatents

    Wouters, L.F.

    1958-10-28

    The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.

  13. Glow discharge detector

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2002-01-01

    A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured.

  14. Intelligent Detector Design

    SciTech Connect

    Graf, N.; Cassell, R.; Johnson, T.; McCormick, J.; Magill, S.; Kuhlmann, S.; /Argonne

    2007-02-13

    At a future e+e- linear collider, precision measurements of jets will be required in order to understand physics at and beyond the electroweak scale. Calorimetry will be used with other detectors in an optimal way to reconstruct particle 4-vectors with unprecedented precision. This Particle Flow Algorithm (PFA) approach is seen as the best way to achieve particle mass resolutions from dijet measurements in the range of {approx} 30%/{radical}E, resulting in innovative methods for choosing the calorimeter technology and optimizing the detector design.

  15. Dosimetry with diamond detectors

    NASA Astrophysics Data System (ADS)

    Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.

    2010-05-01

    In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.

  16. High efficiency photoionization detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  17. Ultrasonic liquid level detector

    DOEpatents

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  18. Fissile material detector

    DOEpatents

    Ivanov, Alexander I.; Lushchikov, Vladislav I.; Shabalin, Eugeny P.; Maznyy, Nikita G.; Khvastunov, Michael M.; Rowland, Mark

    2002-01-01

    A detector for fissile materials which provides for integrity monitoring of fissile materials and can be used for nondestructive assay to confirm the presence of a stable content of fissile material in items. The detector has a sample cavity large enough to enable assay of large items of arbitrary configuration, utilizes neutron sources fabricated in spatially extended shapes mounted on the endcaps of the sample cavity, incorporates a thermal neutron filter insert with reflector properties, and the electronics module includes a neutron multiplicity coincidence counter.

  19. Gaseous Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Sauli, Fabio

    2014-06-01

    1. Introduction; 2. Electromagnetic interactions of charged particles with matter; 3. Interactions of photons and neutrons with matter; 4. Drift and diffusion of charges in gases; 5. Collisional excitations and charge multiplication in uniform fields; 6. Parallel plate counters; 7. Proportional counters; 8. Multiwire proportional chambers; 9. Drift chambers; 10. Time projection chambers; 11. Multitube arrays; 12. Resistive plate chambers; 13. Micro-pattern gas detectors; 14. Cherenkov ring imaging; 15. Miscellaneous detectors and applications; 16. Time degeneracy and aging; Further reading; References; Index.

  20. Perspective: Geometrically frustrated assemblies

    NASA Astrophysics Data System (ADS)

    Grason, Gregory M.

    2016-09-01

    This perspective will overview an emerging paradigm for self-organized soft materials, geometrically frustrated assemblies, where interactions between self-assembling elements (e.g., particles, macromolecules, proteins) favor local packing motifs that are incompatible with uniform global order in the assembly. This classification applies to a broad range of material assemblies including self-twisting protein filament bundles, amyloid fibers, chiral smectics and membranes, particle-coated droplets, curved protein shells, and phase-separated lipid vesicles. In assemblies, geometric frustration leads to a host of anomalous structural and thermodynamic properties, including heterogeneous and internally stressed equilibrium structures, self-limiting assembly, and topological defects in the equilibrium assembly structures. The purpose of this perspective is to (1) highlight the unifying principles and consequences of geometric frustration in soft matter assemblies; (2) classify the known distinct modes of frustration and review corresponding experimental examples; and (3) describe outstanding questions not yet addressed about the unique properties and behaviors of this broad class of systems.

  1. Laser bottom hole assembly

    DOEpatents

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  2. High speed door assembly

    DOEpatents

    Shapiro, Carolyn

    1993-01-01

    A high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  3. High speed door assembly

    DOEpatents

    Shapiro, C.

    1993-04-27

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  4. Permanent magnet assembly

    DOEpatents

    Chell, Jeremy; Zimm, Carl B.

    2006-12-12

    A permanent magnet assembly is disclosed that is adapted to provide a magnetic field across an arc-shaped gap. Such a permanent magnet assembly can be used, for example, to provide a time-varying magnetic field to an annular region for use in a magnetic refrigerator.

  5. Liquid rocket valve assemblies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.

  6. Turbine disc sealing assembly

    DOEpatents

    Diakunchak, Ihor S.

    2013-03-05

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  7. Heterogeneous MEMS device assembly and integration

    NASA Astrophysics Data System (ADS)

    Topart, Patrice; Picard, Francis; Ilias, Samir; Alain, Christine; Chevalier, Claude; Fisette, Bruno; Paultre, Jacques E.; Généreux, Francis; Legros, Mathieu; Lepage, Jean-François; Laverdière, Christian; Ngo Phong, Linh; Caron, Jean-Sol; Desroches, Yan

    2014-03-01

    In recent years, smart phone applications have both raised the pressure for cost and time to market reduction, and the need for high performance MEMS devices. This trend has led the MEMS community to develop multi-die packaging of different functionalities or multi-technology (i.e. wafer) approaches to fabricate and assemble devices respectively. This paper reports on the fabrication, assembly and packaging at INO of various MEMS devices using heterogeneous assembly at chip and package-level. First, the performance of a giant (e.g. about 3 mm in diameter), electrostatically actuated beam steering mirror is presented. It can be rotated about two perpendicular axes to steer an optical beam within an angular cone of up to 60° in vector scan mode with an angular resolution of 1 mrad and a response time of 300 ms. To achieve such angular performance relative to mirror size, the microassembly was performed from sub-components fabricated from 4 different wafers. To combine infrared detection with inertial sensing, an electroplated proof mass was flip-chipped onto a 256×1 pixel uncooled bolometric FPA and released using laser ablation. In addition to the microassembly technology, performance results of packaged devices are presented. Finally, to simulate a 3072×3 pixel uncooled detector for cloud and fire imaging in mid and long-wave IR, the staggered assembly of six 512×3 pixel FPAs with a less than 50 micron pixel co-registration is reported.

  8. Assembly: a resource for assembled genomes at NCBI

    PubMed Central

    Kitts, Paul A.; Church, Deanna M.; Thibaud-Nissen, Françoise; Choi, Jinna; Hem, Vichet; Sapojnikov, Victor; Smith, Robert G.; Tatusova, Tatiana; Xiang, Charlie; Zherikov, Andrey; DiCuccio, Michael; Murphy, Terence D.; Pruitt, Kim D.; Kimchi, Avi

    2016-01-01

    The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site. PMID:26578580

  9. Mechanisms of Virus Assembly

    PubMed Central

    Perlmutter, Jason D.; Hagan, Michael F.

    2015-01-01

    Viruses are nanoscale entities containing a nucleic acid genome encased in a protein shell called a capsid, and in some cases surrounded by a lipid bilayer membrane. This review summarizes the physics that govern the processes by which capsids assembles within their host cells and in vitro. We describe the thermodynamics and kinetics for assembly of protein subunits into icosahedral capsid shells, and how these are modified in cases where the capsid assembles around a nucleic acid or on a lipid bilayer. We present experimental and theoretical techniques that have been used to characterize capsid assembly, and we highlight aspects of virus assembly which are likely to receive significant attention in the near future. PMID:25532951

  10. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  11. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  12. Modeling Viral Capsid Assembly

    PubMed Central

    2014-01-01

    I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722

  13. Constrained space camera assembly

    DOEpatents

    Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.

    1999-01-01

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.

  14. Automated assembly in space

    NASA Technical Reports Server (NTRS)

    Srivastava, Sandanand; Dwivedi, Suren N.; Soon, Toh Teck; Bandi, Reddy; Banerjee, Soumen; Hughes, Cecilia

    1989-01-01

    The installation of robots and their use of assembly in space will create an exciting and promising future for the U.S. Space Program. The concept of assembly in space is very complicated and error prone and it is not possible unless the various parts and modules are suitably designed for automation. Certain guidelines are developed for part designing and for an easy precision assembly. Major design problems associated with automated assembly are considered and solutions to resolve these problems are evaluated in the guidelines format. Methods for gripping and methods for part feeding are developed with regard to the absence of gravity in space. The guidelines for part orientation, adjustments, compliances and various assembly construction are discussed. Design modifications of various fasteners and fastening methods are also investigated.

  15. The Upgraded D0 detector

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Clermont-Ferrand U. /LPSC, Grenoble /Marseille, CPPM /Orsay, LAL /Paris U., VI-VII /DAPNIA, Saclay /Strasbourg, IReS

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  16. Room temperature X- and gamma-ray detectors using thallium bromide crystals

    NASA Astrophysics Data System (ADS)

    Hitomi, K.; Muroi, O.; Shoji, T.; Suehiro, T.; Hiratate, Y.

    1999-10-01

    Thallium bromide (TlBr) is a compound semiconductor with wide band gap (2.68eV) and high X- and γ-ray stopping power. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using purified material. Two types of room temperature X- and γ-ray detectors were fabricated from the TlBr crystals: TlBr detectors with high detection efficiency for positron annihilation γ-ray (511keV) detection and TlBr detectors with high-energy resolution for low-energy X-ray detection. The detector of the former type demonstrated energy resolution of 56keV FWHM (11%) for 511keV γ-rays. Energy resolution of 1.81keV FWHM for 5.9keV was obtained from the detector of the latter type. In order to analyze noise characteristics of the detector-preamplifier assembly, the equivalent noise charge (ENC) was measured as a function of the amplifier shaping time for the high-resolution detector. This analysis shows that parallel white noise and /1/f noise were dominant noise sources in the detector system. Current-voltage characteristics of the TlBr detector with a small Peltier cooler were also measured. Significant reduction of the detector leakage current was observed for the cooled detectors.

  17. Silicon subsystem mechanical engineering work for the solenoidal detector collaboration

    SciTech Connect

    Miller, W.O.; Barney, M.; Byrd, D.; Christensen, R.W.; Dransfield, G.; Elder, M.; Gamble, M.; Crastataro, C.; Hanlon, J.; Jones, D.C.

    1995-02-01

    The silicon tracking system (STS) for the Solenoidal Detector Collaboration (SDC) represented an order of magnitude increase in size over any silicon system that had been previously built or even planned. In order to meet its performance requirements, it could not simply be a linear scaling of earlier systems, but instead required completely new concepts. The small size of the early systems made it possible to simply move the support hardware and services largely outside the active volume of the system. For a system five meters long, that simply is not an option. The design of the STS for the SDC experiment was the result of numerous compromises between the capabilities required to do the physics and the limitations imposed by cost, material properties, and silicon strip detector characteristics. From the point of view of the physics, the silicon system should start as close to the interaction point as possible. In addition, the detectors should measure the position of particles passing through them with no errors, and should not deflect or interact with the particles in any way. However, cost, radiation damage, and other factors limiting detector performance dictated, other, more realistic values. Radiation damage limited the inner radius of the silicon detectors to about 9 cm, whereas cost limited the outer radius of the detectors to about 50 cm. Cost also limits the half length of the system to about 250 cm. To control the effects of radiation damage on the detectors required operating the system at a temperature of 0{degrees}C or below, and maintaining that temperature throughout life of the system. To summarize, the physics and properties of the silicon strip detectors requires that the detectors be operated at or below 0{degrees}C, be positioned very accurately during assembly and remain positionally stable throughout their operation, and that all materials used be radiation hard and have a large thickness for one radiation length.

  18. Evaluation of Detector-to-Detector and Mirror Side Differences for Terra MODIS Reflective Solar Bands Using Simultaneous MISR Observations

    NASA Technical Reports Server (NTRS)

    Wu, Aisheng; Xiong, Xiaoxiong; Angal, A.; Barnes, W.

    2011-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the five Earth-observing instruments on-board the National Aeronautics and Space Administration (NASA) Earth-Observing System(EOS) Terra spacecraft, launched in December 1999. It has 36 spectral bands with wavelengths ranging from 0.41 to 14.4 mm and collects data at three nadir spatial resolutions: 0.25 km for 2 bands with 40 detectors each, 0.5 km for 5 bands with 20 detectors each and 1 km for the remaining 29 bands with 10 detectors each. MODIS bands are located on four separate focal plane assemblies (FPAs) according to their spectral wavelengths and aligned in the cross-track direction. Detectors of each spectral band are aligned in the along-track direction. MODIS makes observations using a two-sided paddle-wheel scan mirror. Its on-board calibrators (OBCs) for the reflective solar bands (RSBs) include a solar diffuser (SD), a solar diffuser stability monitor (SDSM) and a spectral-radiometric calibration assembly (SRCA). Calibration is performed for each band, detector, sub-sample (for sub-kilometer resolution bands) and mirror side. In this study, a ratio approach is applied to MODIS observed Earth scene reflectances to track the detector-to-detector and mirror side differences. Simultaneous observed reflectances from the Multi-angle Imaging Spectroradiometer (MISR), also onboard the Terra spacecraft, are used with MODIS observed reflectances in this ratio approach for four closely matched spectral bands. Results show that the detector-to-detector difference between two adjacent detectors within each spectral band is typically less than 0.2% and, depending on the wavelengths, the maximum difference among all detectors varies from 0.5% to 0.8%. The mirror side differences are found to be very small for all bands except for band 3 at 0.44 mm. This is the band with the shortest wavelength among the selected matching bands, showing a time-dependent increase for the mirror side difference. This

  19. Fast Detector Simulation Using Lelaps, Detector Descriptions in GODL

    SciTech Connect

    Langeveld, Willy; /SLAC

    2005-07-06

    Lelaps is a fast detector simulation program which reads StdHep generator files and produces SIO or LCIO output files. It swims particles through detectors taking into account magnetic fields, multiple scattering and dE/dx energy loss. It simulates parameterized showers in EM and hadronic calorimeters and supports gamma conversions and decays. In addition to three built-in detector configurations, detector descriptions can also be read from files in the new GODL file format.

  20. Directional gamma detector

    DOEpatents

    LeVert, Francis E.; Cox, Samson A.

    1981-01-01

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  1. Smoke Detector Resource Catalog.

    ERIC Educational Resources Information Center

    Portugill, Jestyn, Ed.; Powell, Pamela, Ed.

    This manual is one of a series developed for public education on smoke detectors. First, basic facts are given including guidelines for selection and purchasing, installation, maintenance, and what to do if the alarm goes off. Second, five case studies are presented which are examples of public education programs. (The script to one slide…

  2. Smoke Detector Technology.

    ERIC Educational Resources Information Center

    Powell, Pamela, Ed.; Portugill, Jestyn, Ed.

    This manual, one in a series developed for public education, provides information on smoke detector selection, installation, operation, and maintenance. For the prospective buyer, the importance of looking for the seal of a recognized national testing laboratory--such as Underwriters' Laboratories, Inc. (UL)--indicating adequate laboratory testing…

  3. Leak detector uses ultrasonics

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.; Keir, A. R.

    1978-01-01

    Probe located on outer wall of vacuum-jacketed fluid lines detects leaks on inner wall. Probe picks up and amplifies vibrations that occur when gas rushes through leak and converts them to audible signal or CRT display. System is considerably simpler to use than helium leak detectors and allows rapid checks to be made as part of routine maintenance.

  4. Photovoltaic radiation detector element

    DOEpatents

    Agouridis, D.C.

    1980-12-17

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  5. Understanding the SNO+ Detector

    NASA Astrophysics Data System (ADS)

    Kamdin, K.

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, in which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.

  6. Understanding the SNO+ Detector

    SciTech Connect

    Kamdin, K.

    2015-03-24

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, in which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.

  7. Understanding the SNO+ Detector

    DOE PAGES

    Kamdin, K.

    2015-03-24

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, inmore » which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.« less

  8. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  9. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  10. Choosing a Motion Detector.

    ERIC Educational Resources Information Center

    Ballard, David M.

    1990-01-01

    Examines the characteristics of three types of motion detectors: Doppler radar, infrared, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)

  11. The Watchman Detector Design

    NASA Astrophysics Data System (ADS)

    Dazeley, Steven

    2014-03-01

    The Watchman collaboration is proposing a kiloton scale antineutrino detector of reactor-based antineutrinos for non-proliferation purposes. As an added bonus the detector will also have the capability to search for evidence of sterile neutrino oscillation, super-nova antineutrinos and, in a second phase, measure the neutrino mass hierarchy. Despite that fact that KamLAND demonstrated the feasibility of kiloton scale, long distance antineutrino detection with liquid scintillator, similar detectors at the megaton scale remain problematic for environmental, cost and light attenuation reasons. Water, with gadolinium added for neutron sensitivity, may be the detection medium of choice if its efficiency can be shown to be competitive with scintillator. The goal of the Watchman project, therefore, is to demonstrate medium distance reactor antineutrino detection, and thus demonstrate the feasibility of moving to water-based megaton scale antineutrino detectors in the future. In this talk I will describe the scope of the experiment, the physics and engineering challenges involved, the proposed design and the predicted performance of the experimental non-proliferation and high-energy physics program. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Release number LLNL-ABS-648381.

  12. Smoke Detectors Save Lives.

    ERIC Educational Resources Information Center

    Kominski, John

    This resource bulletin provides information which can be used in classrooms, at conferences, and at meetings with parents to increase public awareness and acceptance of a new New York City ordinance which requires the installation of smoke detectors in apartments. The booklet contains information on the following: (1) background information for…

  13. Gas Detectors, Volume 1.

    ERIC Educational Resources Information Center

    Defense Documentation Center, Alexandria, VA.

    The report contains annotated references on gas detectors compiled from the Defense Documentation Center's data bank. The range of the topics deals with detection of toxic propellants, odors, gas leaks, oxygen, etc. Included with the bibliographic reference are the corporate author-monitoring agency, subject, and title indexes. (Author/JR)

  14. Photovoltaic radiation detector element

    DOEpatents

    Agouridis, Dimitrios C.

    1983-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

  15. Electromagnetic radiation detector

    DOEpatents

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  16. The Friendship Detector

    ERIC Educational Resources Information Center

    Cox, Scott

    2012-01-01

    After years of using Rube Goldberg-inspired projects to teach concepts of simple machines, the author sought a comparable project to reinforce electricity lessons in his ninth-grade Science and Technology course. The Friendship Detector gives students a chance to design, test, and build a complex circuit with multiple switches and battery-powered…

  17. Chemochromic Hydrogen Leak Detectors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  18. Structural design of a high energy particle detector using liquid scintillator

    SciTech Connect

    Berg, Timothy John; /Minnesota U.

    1997-02-01

    This thesis presents a design for a 10,000 ton liquid scintillator neutrino detector being considered for the MINOS project at Fermilab. Details of designing, manufacturing, and assembling the active detector components are presented. The detector consists of 1080 magnetized steel absorber planes alternating with 1080 active detector planes. Each active plane is made up of plastic extrusions divided into nearly 400 cells for positional resolution. Life tests on the plastic extrusions determine their feasibility for containing the scintillator. The extrusions are sealed at the bottom, filled with liquid scintillator, and have an optical fiber running the entire length of each cell. The fibers terminate at the top of each extrusion in a manifold. An optical-fiber-light-guide connects the fibers in each manifold to a photo-detector. The photo-detector converts the light signals from the scintillator and optical fibers into electrical impulses for computer analysis.

  19. The development of an electrochemical technique for in situ calibrating of combustible gas detectors

    NASA Technical Reports Server (NTRS)

    Shumar, J. W.; Lantz, J. B.; Schubert, F. H.

    1976-01-01

    A program to determine the feasibility of performing in situ calibration of combustible gas detectors was successfully completed. Several possible techniques for performing the in situ calibration were proposed. The approach that showed the most promise involved the use of a miniature water vapor electrolysis cell for the generation of hydrogen within the flame arrestor of a combustible gas detector to be used for the purpose of calibrating the combustible gas detectors. A preliminary breadboard of the in situ calibration hardware was designed, fabricated and assembled. The breadboard equipment consisted of a commercially available combustible gas detector, modified to incorporate a water vapor electrolysis cell, and the instrumentation required for controlling the water vapor electrolysis and controlling and calibrating the combustible gas detector. The results showed that operation of the water vapor electrolysis at a given current density for a specific time period resulted in the attainment of a hydrogen concentration plateau within the flame arrestor of the combustible gas detector.

  20. A Silicon UCN Detector With Large Area and With Analysis of UCN Polarization

    PubMed Central

    Lasakov, M.; Serebrov, A.; Khusainov, A.; Pustovoit, A.; Borisov, Yu.; Fomin, A.; Geltenbort, P.; Kon’kov, O.; Kotina, I.; Shablii, A.; Solovei, V.; Vasiliev, A.

    2005-01-01

    A silicon ultracold neutron (UCN) detector with an area of 45 cm2 and with a 6LiF converter is developed at St. Petersburg Nuclear Physics Institute (PNPI). The spectral efficiency of the silicon UCN detector was measured by means of a gravitational spectrometer at Institut Max von Laue – Paul Langevin (ILL). The sandwich-type detector from two silicon plates with a 6LiF converter placed between them was also studied. Using this type of technology the UCN detector with analysis of polarization was developed and tested. The analyzing power of this detector assembly reaches up 75 % for the main part of UCN spectrum. This UCN detector with analysis of UCN polarization can be used in the new electric dipole moment (EDM) spectrometer. PMID:27308138

  1. Large-Area Liquid Scintillation Detector Slab

    NASA Astrophysics Data System (ADS)

    Crouch, M. F.; Gurr, H. S.; Hruschka, A. A.; Jenkins, T. L.; Kropp, W. P.; Reines, P.; Sobel, H.

    The following sections are included: * SUMMARY * INTRODUCTION * DETECTOR RESPONSE FUNCTION F(z) AND EVENT POSITION DETERMINATION * REFINEMENTS IN THE DETECTOR CONFIGURATION DESIGN * DETECTOR PERFORMANCE * APPENDIX * REFERENCES

  2. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S.; Rojeski, Ronald A.

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  3. Dynamic Nanoparticles Assemblies

    PubMed Central

    WANG, LIBING; XU, LIGUANG; KUANG, HUA; XU, CHUANLAI; KOTOV, NICHOLAS A.

    2012-01-01

    CONSPECTUS Importance Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple sizes of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously formed superstructures containing more than two inorganic nanoscale particles that display ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the ‘bottom-up’ fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies. Classification Superstructures of NPs (and those held together by similar intrinsic forces) are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable superstructures with a nearly constant number same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation and/or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of a molecule from atoms. Finer classification of NP assemblies in accord with established conventions

  4. Frequency discriminator/phase detector

    NASA Technical Reports Server (NTRS)

    Crow, R. B.

    1974-01-01

    Circuit provides dual function of frequency discriminator/phase detector which reduces frequency acquisition time without adding to circuit complexity. Both frequency discriminators, in evaluated frequency discriminator/phase detector circuits, are effective two decades above and below center frequency.

  5. A Very High Spatial Resolution Detector for Small Animal PET

    SciTech Connect

    Kanai Shah, M.S.

    2007-03-06

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated.

  6. Imaging characteristics of the Extreme Ultraviolet Explorer microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Kaplan, G. C.; Siegmund, O. H. W.; Lampton, M.; Malina, R. F.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) satellite will conduct an all-sky survey over the wavelength range from 70 A to 760 A using four grazing-incidence telescopes and seven microchannel-plate (MCP) detectors. The imaging photon-counting MCP detectors have active areas of 19.6 cm2. Photon arrival position is determined using a wedge-and-strip anode and associated pulse-encoding electronics. The imaging characteristics of the EUVE flight detectors are presented including image distortion, flat-field response, and spatial differential nonlinearity. Also included is a detailed discussion of image distortions due to the detector mechanical assembly, the wedge-and-strip anode, and the electronics. Model predictions of these distortions are compared to preflight calibration images which show distortions less than 1.3 percent rms of the detector diameter of 50 mm before correction. The plans for correcting these residual detector image distortions to less than 0.1 percent rms are also presented.

  7. Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Batra, A. K.; Guggilla, P.; Edwards, M. E.; Penn, B. G.; Currie, J. R., Jr.

    2010-01-01

    Uncooled pyroelectric detectors find applications in diverse and wide areas such as industrial production; automotive; aerospace applications for satellite-borne ozone sensors assembled with an infrared spectrometer; health care; space exploration; imaging systems for ships, cars, and aircraft; and military and security surveillance systems. These detectors are the prime candidates for NASA s thermal infrared detector requirements. In this Technical Memorandum, the physical phenomena underlying the operation and advantages of pyroelectric infrared detectors is introduced. A list and applications of important ferroelectrics is given, which is a subclass of pyroelectrics. The basic concepts of processing of important pyroelectrics in various forms are described: single crystal growth, ceramic processing, polymer-composites preparation, and thin- and thick-film fabrications. The present status of materials and their characteristics and detectors figures-of-merit are presented in detail. In the end, the unique techniques demonstrated for improving/enhancing the performance of pyroelectric detectors are illustrated. Emphasis is placed on recent advances and emerging technologies such as thin-film array devices and novel single crystal sensors.

  8. PIXSCAN: Pixel detector CT-scanner for small animal imaging

    NASA Astrophysics Data System (ADS)

    Delpierre, P.; Debarbieux, F.; Basolo, S.; Berar, J. F.; Bonissent, A.; Boudet, N.; Breugnon, P.; Caillot, B.; Cassol Brunner, F.; Chantepie, B.; Clemens, J. C.; Dinkespiler, B.; Khouri, R.; Koudobine, I.; Mararazzo, V.; Meessen, C.; Menouni, M.; Morel, C.; Mouget, C.; Pangaud, P.; Peyrin, F.; Rougon, G.; Sappey-Marinier, D.; Valton, S.; Vigeolas, E.

    2007-02-01

    The PIXSCAN is a small animal CT-scanner based on hybrid pixel detectors. These detectors provide very large dynamic range of photons counting at very low detector noise. They also provide high counting rates with fast image readout. Detection efficiency can be optimized by selecting the sensor medium according to the working energy range. Indeed, the use of CdTe allows a detection efficiency of 100% up to 50 keV. Altogether these characteristics are expected to improve the contrast of the CT-scanner, especially for soft tissues, and to reduce both the scan duration and the absorbed dose. A proof of principle has been performed by assembling into a PIXSCAN-XPAD2 prototype the photon counting pixel detector initially built for detection of X-ray synchrotron radiations. Despite the relatively large pixel size of this detector (330×330 μm 2), we can present three-dimensional tomographic reconstruction of mice at good contrast and spatial resolution. A new photon counting chip (XPAD3) is designed in sub-micronique technology to achieve 130×130 μm 2 pixels. This improved circuit has been equipped with an energy selection circuit to act as a band-pass emission filter. Furthermore, the PIXSCAN-XPAD3 hybrid pixel detectors will be combined with the Lausanne ClearPET scanner demonstrator. CT image reconstruction in this non-conventional geometry is under study for this purpose.

  9. Vancomycin assembly: nature's way.

    PubMed

    Hubbard, Brian K; Walsh, Christopher T

    2003-02-17

    Antibiotics are precious resources in the fight to combat bacterial infections caused by pathogenic organisms. Vancomycin is one of the antibiotics of last resort in the treatment of life-threatening infections by gram-positive bacteria. The rules by which nature assembles the glycopeptide (vancomycin) and lipoglycopeptide (teicoplanin) antibiotics are becoming elucidated and verified: first amino acids are synthesized, then joined together and cross-linked. This knowledge opens up approaches for reprogramming strategies at the level of altered monomers, swapped assembly lines, and different post-assembly tailoring enzymes.

  10. Protective helmet assembly

    NASA Technical Reports Server (NTRS)

    Dawn, Frederic S. (Inventor); Weiss, Fred R. (Inventor); Eck, John D. (Inventor)

    1992-01-01

    The invention is a protective helmet assembly with improved safety and impact resistance, high resistance to ignition and combustion, and reduced offgassing. The assembly comprises a hard rigid ballistic outer shell with one or more impact absorbing pads fitted to the interior surface. The pads are made of open cell flexible polyimide foam material, each of which is attached to the inner surface of the ballistic outer shell by cooperative VELCRO fastener strips of hook-and-loop material affixed respectively to the rigid outer shell and the impact absorbing pads. The helmet assembly with shell and pads is sized to fit relatively close over a wearer's head.

  11. TPX assembly plan

    SciTech Connect

    Knutson, D.

    1993-11-01

    The TPX machine will be assembled in the TFTR Test Cell at the Plasma Physics Laboratory, utilizing the existing TFTR machine foundation. Preparation of the area for assembly will begin after completion of the decontamination and decommissioning phase on TFTR and certification that the radiation levels remaining, if any, are consistent with the types of operations planned. Assembly operations begin with the arrival of the first components, and conclude, approximately 24 months later, with the successful completion of the integrated systems tests and the achievement of a first plasma.

  12. DC source assemblies

    DOEpatents

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  13. Position sensitive solid state detectors

    NASA Astrophysics Data System (ADS)

    Schnatterly, S. E.; Husk, D.

    1986-05-01

    Solid state detectors have been used for years as high quantum efficiency detectors for visible light. In this paper the use of PDA and CCD, solid state detectors, in the X-ray region will be discussed. In particular examples of data in the soft X-ray region are presented. Finally the use of phosphor coatings to enhance the sensitivity of solid state detectors is described.

  14. The PAMELA Transition Radiation Detector

    NASA Astrophysics Data System (ADS)

    Cafagna, Francesco

    A Transition Radiation Detector (TRD) has been developed for the PAMELA instrument. PAMELA is a satellite born magnetic spectrometer; its primary scientific objective is the study of antiparticles in cosmic rays. The TRD detector was developed to provide particle identification, in addition to calorimetric measurements. This detector is composed of 9 active layers made of proportional straw tubes, piled up with interleaved carbon fibers radiator layers. Detector description and test beam performances will be presented.

  15. Subspace Detectors: Efficient Implementation

    SciTech Connect

    Harris, D B; Paik, T

    2006-07-26

    The optimum detector for a known signal in white Gaussian background noise is the matched filter, also known as a correlation detector [Van Trees, 1968]. Correlation detectors offer exquisite sensitivity (high probability of detection at a fixed false alarm rate), but require perfect knowledge of the signal. The sensitivity of correlation detectors is increased by the availability of multichannel data, something common in seismic applications due to the prevalence of three-component stations and arrays. When the signal is imperfectly known, an extension of the correlation detector, the subspace detector, may be able to capture much of the performance of a matched filter [Harris, 2006]. In order to apply a subspace detector, the signal to be detected must be known to lie in a signal subspace of dimension d {ge} 1, which is defined by a set of d linearly-independent basis waveforms. The basis is constructed to span the range of signals anticipated to be emitted by a source of interest. Correlation detectors operate by computing a running correlation coefficient between a template waveform (the signal to be detected) and the data from a window sliding continuously along a data stream. The template waveform and the continuous data stream may be multichannel, as would be true for a three-component seismic station or an array. In such cases, the appropriate correlation operation computes the individual correlations channel-for-channel and sums the result (Figure 1). Both the waveform matching that occurs when a target signal is present and the cross-channel stacking provide processing gain. For a three-component station processing gain occurs from matching the time-history of the signals and their polarization structure. The projection operation that is at the heart of the subspace detector can be expensive to compute if implemented in a straightforward manner, i.e. with direct-form convolutions. The purpose of this report is to indicate how the projection can be

  16. ISS/IDS Detector Study

    SciTech Connect

    Cervera-Villanueva, A.

    2008-02-21

    This article summarises the results obtained by the detector working group of the 'International Scooping Study' (ISS) of a future neutrino oscillations facility. Special emphasis is put on far detectors, for which some of the main issues are identified. A detector R and D strategy in the context of the 'International Design Study' (IDS) for a neutrino factory is also presented.

  17. Characterisations of GEM detector prototype

    NASA Astrophysics Data System (ADS)

    Patra, Rajendra Nath; Nanda, Amit; Rudra, Sharmili; Bhattacharya, P.; Sahoo, Sumanya Sekhar; Biswas, S.; Mohanty, B.; Nayak, T. K.; Sahu, P. K.; Sahu, S.

    2016-07-01

    At NISER-IoP detector laboratory an initiative is taken to build and test Gas Electron Multiplier (GEM) detectors for ALICE experiment. The optimisation of the gas flow rate and the long-term stability test of the GEM detector are performed. The method and test results are presented.

  18. Complementary Barrier Infrared Detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Bandara, Sumith V.; Hill, Cory J.; Gunapala, Sarath D.

    2009-01-01

    The complementary barrier infrared detector (CBIRD) is designed to eliminate the major dark current sources in the superlattice infrared detector. The concept can also be applied to bulk semiconductor- based infrared detectors. CBIRD uses two different types of specially designed barriers: an electron barrier that blocks electrons but not holes, and a hole barrier that blocks holes but not electrons. The CBIRD structure consists of an n-contact, a hole barrier, an absorber, an electron barrier, and a p-contact. The barriers are placed at the contact-absorber junctions where, in a conventional p-i-n detector structure, there normally are depletion regions that produce generation-recombination (GR) dark currents due to Shockley-Read- Hall (SRH) processes. The wider-bandgap complementary barriers suppress G-R dark current. The barriers also block diffusion dark currents generated in the diffusion wings in the neutral regions. In addition, the wider gap barriers serve to reduce tunneling dark currents. In the case of a superlattice-based absorber, the superlattice itself can be designed to suppress dark currents due to Auger processes. At the same time, the barriers actually help to enhance the collection of photo-generated carriers by deflecting the photo-carriers that are diffusing in the wrong direction (i.e., away from collectors) and redirecting them toward the collecting contacts. The contact layers are made from materials with narrower bandgaps than the barriers. This allows good ohmic contacts to be made, resulting in lower contact resistances. Previously, THALES Research and Technology (France) demonstrated detectors with bulk InAsSb (specifically InAs0.91Sb0.09) absorber lattice-matched to GaSb substrates. The absorber is surrounded by two wider bandgap layers designed to minimize impedance to photocurrent flow. The wide bandgap materials also serve as contacts. The cutoff wavelength of the InAsSb absorber is fixed. CBIRD may be considered as a modified

  19. AIM cryocooler developments for HOT detectors

    NASA Astrophysics Data System (ADS)

    Rühlich, I.; Mai, M.; Withopf, A.; Rosenhagen, C.

    2014-06-01

    Significantly increased FPA temperatures for both Mid Wave and Long Wave IR detectors, i.e. HOT detectors, which have been developed in recent years are now leaving the development phase and are entering real application. HOT detectors allowing to push size weight and power (SWaP) of Integrated Detectors Cooler Assemblies (IDCA's) to a new level. Key component mainly driving achievable weight, volume and power consumption is the cryocooler. AIM cryocooler developments are focused on compact, lightweight linear cryocoolers driven by compact and high efficient digital cooler drive electronics (DCE) to also achieve highest MTTF targets. This technology is using moving magnet driving mechanisms and dual or single piston compressors. Whereas SX030 which was presented at SPIE in 2012 consuming less 3 WDC to operate a typical IDCA at 140K, next smaller cooler SX020 is designed to provide sufficient cooling power at detector temperature above 160K. The cooler weight of less than 200g and a total compressor length of 60mm makes it an ideal solution for all applications with limited weight and power budget, like in handheld applications. For operating a typical 640x512, 15μm MW IR detector the power consumption will be less than 1.5WDC. MTTF for the cooler will be in excess of 30,000h and thus achieving low maintenance cost also in 24/7 applications. The SX020 compressor is based on a single piston design with integrated passive balancer in a new design achieves very low exported vibration in the order of 100mN in the compressor axis. AIM is using a modular approach, allowing the chose between 5 different compressor types for one common Stirling expander. The 6mm expander with a total length of 74mm is now available in a new design that fits into standard dewar bores originally designed for rotary coolers. Also available is a 9mm coldfinger in both versions. In development is an ultra-short expander with around 35mm total length to achieve highest compactness. Technical

  20. Construction and commissioning of the SuperNEMO detector tracker

    NASA Astrophysics Data System (ADS)

    Cascella, Michele

    2016-07-01

    The SuperNEMO detector will search for neutrinoless double beta decay at the Modane Underground Laboratory; the detector design allows complete topological reconstruction of the decay event enabling excellent levels of background rejection and, in the event of a discovery, the ability to determine the nature of the lepton number violating process. In order to demonstrate the feasibility of the full experiment, we are building a Demonstrator Module containing 7 kg of 82Se, with an expected sensitivity of |mββ | < 0.2 - 0.4 eV after 2.5 yr. The demonstrator tracker is currently being assembled in the UK; the main challenge in the tracker design is the high radiopurity required to limit the background. For this reason the cell wiring is automated and every step of the tracker assembly happens in a clean environment. All components are carefully screened for radiopurity and each section of the tracker, once assembled, is sealed and checked for Radon emanation. We present the detector design, the current status of the construction and present the first results from the surface commissioning of one section of the Demonstrator Module tracker.

  1. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Wollack, Edward J.

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  2. Rnnotator Assembly Pipeline

    SciTech Connect

    Martin, Jeff

    2010-06-03

    Jeff Martin of the DOE Joint Genome Institute discusses a de novo transcriptome assembly pipeline from short RNA-Seq reads on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  3. Interlocked molecules: Aqueous assembly

    NASA Astrophysics Data System (ADS)

    Bai, Linyi; Zhao, Yanli

    2015-12-01

    The quantitative self-assembly of mechanically interlocked molecules in water, instead of organic solvents, opens up the possibility of such systems being used in a biological context where their functions can be interfaced with biomolecular systems.

  4. Integrated thruster assembly program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The program is reported which has provided technology for a long life, high performing, integrated ACPS thruster assembly suitable for use in 100 typical flights of a space shuttle vehicle over a ten year period. The four integrated thruster assemblies (ITA) fabricated consisted of: propellant injector; a capacitive discharge, air gap torch type igniter assembly; fast response igniter and main propellant valves; and a combined regen-dump film cooled chamber. These flightweight 6672 N (1500 lb) thruster assemblies employed GH2/GO2 as propellants at a chamber pressure of 207 N/sq cm (300 psia). Test data were obtained on thrusted performance, thermal and hydraulic characteristics, dynamic response in pulsing, and cycle life. One thruster was fired in excess of 42,000 times.

  5. External Tank Assembly

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This photograph shows the liquid hydrogen tank and liquid oxygen tank for the Space Shuttle external tank (ET) being assembled in the weld assembly area of the Michoud Assembly Facility (MAF). The ET provides liquid hydrogen and liquid oxygen to the Shuttle's three main engines during the first eight 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.

  6. Microtubule Self- Assembly

    NASA Astrophysics Data System (ADS)

    Jho, Yongseok; Choi, M. C.; Farago, O.; Kim, Mahnwon; Pincus, P. A.

    2008-03-01

    Microtubules are important structural elements for neurons. Microtubles are cylindrical pipes that are self-assembled from tubulin dimers, These structures are intimately related to the neuron transport system. Abnormal microtubule disintegration contributes to neuro-disease. For several decades, experimentalists investigated the structure of the microtubules using TEM and Cryo-EM. However, the detailed structure at a molecular level remain incompletely understood. . In this presentation, we report numerically studies of the self-assembly process using a toy model for tubulin dimers. We investigate the nature of the interactions which are essential to stabilize such the cylindrical assembly of protofilaments. We use Monte Carlo simulations to suggest the pathways for assembly and disassembly of the microtubules.

  7. Steam separator latch assembly

    DOEpatents

    Challberg, R.C.; Kobsa, I.R.

    1994-02-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

  8. Steam separator latch assembly

    DOEpatents

    Challberg, Roy C.; Kobsa, Irvin R.

    1994-01-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  9. Core assembly storage structure

    DOEpatents

    Jones, Jr., Charles E.; Brunings, Jay E.

    1988-01-01

    A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

  10. Station Assembly Animation

    NASA Video Gallery

    This animation depicts the assembly of the International Space Station since Nov. 20, 1998, with the delivery of the Zarya module, through May 16, 2011, with the delivery of the EXPRESS Logistics C...

  11. The proteasome assembly line

    PubMed Central

    Madura, Kiran

    2013-01-01

    The assembly of the proteasome — the cellular machine that eliminates unwanted proteins — is a carefully choreographed affair, involving a complex sequence of steps overseen by dedicated protein chaperones. PMID:19516331

  12. Swipe transfer assembly

    DOEpatents

    Christiansen, Robert M.; Mills, William C.

    1992-01-01

    The swipe transfer assembly is a mechanical assembly which is used in conjunction with glove boxes and other sealed containments. It is used to pass small samples into or out of glove boxes without an open breach of the containment, and includes a rotational cylinder inside a fixed cylinder, the inside cylinder being rotatable through an arc of approximately 240.degree. relative to the outer cylinder. An offset of 120.degree. from end to end allows only one port to be opened at a time. The assembly is made of stainless steel or aluminum and clear acrylic plastic to enable visual observation. The assembly allows transfer of swipes and smears from radiological and other specially controlled environments.

  13. Mesoscale Polymer Assemblies

    NASA Astrophysics Data System (ADS)

    Choudhary, Satyan; Pham, Jonathan; Crosby, Alfred

    2015-03-01

    Materials encompassing structural hierarchy and multi-functionality allow for remarkable physical properties across different length scales. Mesoscale Polymer (MSP) assemblies provide a critical link, from nanometer to centimeter scales, in the definition of such hierarchical structures. Recent focus has been on exploiting these MSP assemblies for optical, electronic, photonics and biological applications. We demonstrate a novel fabrication method for MSP assemblies. Current fabrication methods restrict the length scale and volume of such assemblies. A new method developed uses a simple piezo-actuated motion for de-pinning of a polymer solution trapped by capillary forces between a flexible blade and a rigid substrate. The advantages of new method include ability to make MSP of monodisperse length and to fabricate sufficient volumes of MSP to study their physical properties and functionality in liquid dispersions. We demonstrate the application of MSP as filler for soft materials, providing rheological studies of the MSP with surrounding matrices.

  14. Multisensor mine detector for peacekeeping: improved landmine detector concept (ILDC)

    NASA Astrophysics Data System (ADS)

    McFee, John E.; Carruthers, Al

    1996-05-01

    The Improved Landmine Detector Concept Project was initiated in Autumn 1994 to develop a prototype vehicle mounted mine detector for low metal content and nonmetallic mines for a peacekeeping role on roads. The system will consist of a teleoperated vehicle carrying a highly sensitive electromagnetic induction (EMI) detector, an infrared imager (IR), ground probing radar (GPR), and a thermal neutron activation (TNA) detector for confirmation. The IR, EMI and TNA detectors have been under test since 1995 and the GPR will be received in June 1996. Results of performance trials of the individual detectors are discussed. Various design configurations and their tradeoffs are discussed. Fusion of data from the detectors to reduce false alarm rate and increase probability of detection, a key element to the success of the system, is discussed. An advanced development model of the system is expected to be complete by Spring 1997.

  15. READOUT SYSTEM FOR ARRAYS OF FRISCH-RING CDZNTE DETECTORS.

    SciTech Connect

    CUI, Y.; BOLOTNIKOV, A.E.; CAMARDA, G.S.; DE GERONIMO, G.; O'CONNOR, P.; JAMES, R.B.; KARGAR, A.; HARRISON, M.J.; MCGREGOR, D.S.

    2006-10-29

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution for identifying isotopes, <1% FWHM at 662 keV, and good efficiency for detecting gamma rays. We will fabricate and test at Brookhaven National Laboratory an integrated module of a 64-element array of 6 x 6 x 12 mm{sup 3} Frisch-ring detectors, coupled with a readout electronics system. It supports 64 readout channels, and includes front-end electronics, signal processing circuit, USB interface and high-voltage power supply. The data-acquisition software is used to process the data stream, which includes amplitude and timing information for each detected event. This paper describes the design and assembly of the detector modules, readout electronics, and a conceptual prototype system. Some test results are also reported.

  16. Infrared focal plane detector modules for space applications at AIM

    NASA Astrophysics Data System (ADS)

    Hübner, Dominique; Hanna, Stefan; Thöt, Richard; Gassmann, Kai-Uwe; Haiml, Markus; Weber, Andreas; Haas, Luis-Dieter; Ziegler, Johann; Nothaft, Hans-Peter; Fick, Wolfgang

    2012-09-01

    In the framework of this paper, AIM presents the actual status of some of its currently ongoing focal plane detector module developments for space applications covering the spectral range from the short-wavelength infrared (SWIR) to the long-wavelength infrared (LWIR) and very-long-wavelength infrared (VLWIR), where both imaging and spectroscopy applications will be addressed. In particular, the integrated detector cooler assemblies for a mid-wavelength infrared (MWIR) push-broom imaging satellite mission, for the German hyperspectral satellite mission EnMAP will be elaborated. Additionally dedicated detector modules for LWIR/VLWIR sounding, providing the possibility to have two different PVs driven by one ROIC will be addressed.

  17. VIRUS instrument collimator assembly

    NASA Astrophysics Data System (ADS)

    Marshall, Jennifer L.; DePoy, Darren L.; Prochaska, Travis; Allen, Richard D.; Williams, Patrick; Rheault, Jean-Philippe; Li, Ting; Nagasawa, Daniel Q.; Akers, Christopher; Baker, David; Boster, Emily; Campbell, Caitlin; Cook, Erika; Elder, Alison; Gary, Alex; Glover, Joseph; James, Michael; Martin, Emily; Meador, Will; Mondrik, Nicholas; Rodriguez-Patino, Marisela; Villanueva, Steven; Hill, Gary J.; Tuttle, Sarah; Vattiat, Brian; Lee, Hanshin; Chonis, Taylor S.; Dalton, Gavin B.; Tacon, Mike

    2014-07-01

    The Visual Integral-Field Replicable Unit Spectrograph (VIRUS) instrument is a baseline array 150 identical fiber fed optical spectrographs designed to support observations for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). The collimator subassemblies of the instrument have been assembled in a production line and are now complete. Here we review the design choices and assembly practices used to produce a suite of identical low-cost spectrographs in a timely fashion using primarily unskilled labor.

  18. ASSEMBLY OF PARALLEL PLATES

    DOEpatents

    Groh, E.F.; Lennox, D.H.

    1963-04-23

    This invention is concerned with a rigid assembly of parallel plates in which keyways are stamped out along the edges of the plates and a self-retaining key is inserted into aligned keyways. Spacers having similar keyways are included between adjacent plates. The entire assembly is locked into a rigid structure by fastening only the outermost plates to the ends of the keys. (AEC)

  19. High speed door assembly

    SciTech Connect

    Shapiro, C.

    1991-12-31

    This invention is comprised of a high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  20. Recuperator assembly and procedures

    DOEpatents

    Kang, Yungmo; McKeirnan, Jr., Robert D.

    2008-08-26

    A construction of recuperator core segments is provided which insures proper assembly of the components of the recuperator core segment, and of a plurality of recuperator core segments. Each recuperator core segment must be constructed so as to prevent nesting of fin folds of the adjacent heat exchanger foils of the recuperator core segment. A plurality of recuperator core segments must be assembled together so as to prevent nesting of adjacent fin folds of adjacent recuperator core segments.

  1. Recuperator assembly and procedures

    DOEpatents

    Kang, Yungmo; McKeirnan, Jr., Robert D.

    2006-06-27

    A construction of recuperator core segments is provided which insures proper assembly of the components of the recuperator core segment, and of a plurality of recuperator core segments. Each recuperator core segment must be constructed so as to prevent nesting of fin folds of the adjacent heat exchanger foils of the recuperator core segment. A plurality of recuperator core segments must be assembled together so as to prevent nesting of adjacent fin folds of adjacent recuperator core segments.

  2. SUMC reconfigurable micro-assembler

    NASA Technical Reports Server (NTRS)

    Edwards, A. J.

    1973-01-01

    The development of a reconfigurable micro-assembler to provide the micro-programmer the capability to specify micro-instructions in concise, meaningful terms is discussed. The implementation plan for the development of the micro-assembler was predicted on the existing capabilities of the SUMC Reconfigurable Assembler. Utilizing the reconfigurable assembler as a base, new directives and existing directive modifications were implemented to provide the micro-assembly as a new capability of the reconfigurable assembler. The micro-assembler language allows the specification of all micro-instruction control field settings in one concise assembler source statement. The language appears very similar to a conventional machine instruction assembler language. The machine instruction assembler language has the characteristic of one operation specification per statement whereas, the micro-instruction assembler language allows multiple operations to be designated per statement.

  3. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2007-06-05

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stoke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  4. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2002-01-01

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  5. Precision synchrotron radiation detectors

    SciTech Connect

    Levi, M.; Rouse, F.; Butler, J.; Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Wormser, G.; Gomez, J.J.; Kent, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab.

  6. Integrated Dual Imaging Detector

    NASA Technical Reports Server (NTRS)

    Rust, David M.

    1999-01-01

    A new type of image detector was designed to simultaneously analyze the polarization of light at all picture elements in a scene. The integrated Dual Imaging detector (IDID) consists of a lenslet array and a polarizing beamsplitter bonded to a commercial charge coupled device (CCD). The IDID simplifies the design and operation of solar vector magnetographs and the imaging polarimeters and spectroscopic imagers used, for example, in atmosphere and solar research. When used in a solar telescope, the vector magnetic fields on the solar surface. Other applications include environmental monitoring, robot vision, and medical diagnoses (through the eye). Innovations in the IDID include (1) two interleaved imaging arrays (one for each polarization plane); (2) large dynamic range (well depth of 10(exp 5) electrons per pixel); (3) simultaneous readout and display of both images; and (4) laptop computer signal processing to produce polarization maps in field situations.

  7. Stable glow discharge detector

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2004-05-18

    A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) stable glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The stable glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma and a solid rod electrode. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured. The solid rod electrode provides greater stability and thus easier alignment.

  8. Underwater radiation detector

    DOEpatents

    Kruse, Lyle W.; McKnight, Richard P.

    1986-01-01

    A detector apparatus for differentiating between gamma and neutron radiation is provided. The detector includes a pair of differentially shielded Geiger-Mueller tubes. The first tube is wrapped in silver foil and the second tube is wrapped in lead foil. Both the silver and lead foils allow the passage of gamma rays at a constant rate in a gamma ray only field. When neutrons are present, however, the silver activates and emits beta radiation that is also detected by the silver wrapped Geiger-Mueller tube while the radiation detected by the lead wrapped Geiger-Mueller tube remains constant. The amount of radiation impinging on the separate Geiger-Mueller tubes is then correlated in order to distinguish between the neutron and gamma radiations.

  9. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  10. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  11. Pulsed neutron detector

    DOEpatents

    Robertson, deceased, J. Craig; Rowland, Mark S.

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  12. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  13. Gated strip proportional detector

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1987-01-01

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10.sup.6. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  14. Gated strip proportional detector

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1985-02-19

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10/sup 6/. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  15. Liquid level detector

    DOEpatents

    Tshishiku, Eugene M.

    2011-08-09

    A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

  16. Detector limitations, STAR

    SciTech Connect

    Underwood, D. G.

    1998-07-13

    Every detector has limitations in terms of solid angle, particular technologies chosen, cracks due to mechanical structure, etc. If all of the presently planned parts of STAR [Solenoidal Tracker At RHIC] were in place, these factors would not seriously limit our ability to exploit the spin physics possible in RHIC. What is of greater concern at the moment is the construction schedule for components such as the Electromagnetic Calorimeters, and the limited funding for various levels of triggers.

  17. Gas bubble detector

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Burchfield, David E. (Inventor); Hagey, John M. (Inventor)

    1995-01-01

    A gas bubble detector having a modulated IR source focused through a bandpass filter onto a venturi, formed in a sample tube, to illuminate the venturi with modulated filtered IR to detect the presence of gas bubbles as small as 0.01 cm or about 0.004 in diameter in liquid flowing through the venturi. Means are provided to determine the size of any detected bubble and to provide an alarm in the absence of liquid in the sample tube.

  18. Borehole Muon Detector Development

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.

  19. Lasers, Spectrographs, and Detectors

    NASA Astrophysics Data System (ADS)

    LaPlant, Fred

    The introduction of Raman spectroscopy into new fields has been driven largely by advances in the underlying technology. While the spectrometer is still comprised of a light source, a wavelength selector, and a detector, the improvement in functionality of each of these components has had dramatic impacts on areas where Raman was once thought impractical, if not impossible. In addition, esoteric techniques once confined to academic spectroscopy labs are now finding wide application.

  20. Development of Portable Detectors

    SciTech Connect

    2006-12-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the “Contractor”) and Sense Holdings, Inc. (the “Participant”) was for the development of hand-held detectors with high sensitivity and selectivity for the detection of explosives, toxic industrial chemicals and materials, and other materials of interest for security applications. The two parties built a series of demonstration and prototype handheld sensors based upon micoelectromechanical systems (MEMS) with electronic readout.

  1. Laser beam methane detector

    NASA Technical Reports Server (NTRS)

    Hinkley, E. D., Jr.

    1981-01-01

    Instrument uses infrared absorption to determine methane concentration in liquid natural gas vapor. Two sensors measure intensity of 3.39 mm laser beam after it passes through gas; absorption is proportional to concentration of methane. Instrument is used in modeling spread of LNG clouds and as leak detector on LNG carriers and installations. Unit includes wheels for mobility and is both vertically and horizontally operable.

  2. Vertex Detector Cable Considerations

    SciTech Connect

    Cooper, William E.; /Fermilab

    2009-02-01

    Vertex detector cable requirements are considered within the context of the SiD concept. Cable material should be limited so that the number of radiation lengths represented is consistent with the material budget. In order to take advantage of the proposed accelerator beam structure and allow cooling by flow of dry gas, 'pulsed power' is assumed. Potential approaches to power distribution, cable paths, and cable design for operation in a 5 T magnetic field are described.

  3. The LHCb detector upgrade

    NASA Astrophysics Data System (ADS)

    Schindler, H.

    2013-12-01

    The upgrade of the LHCb experiment, with its installation scheduled for the second long shutdown (LS2) of the Large Hadron Collider (LHC), will transform the data acquisition and processing architecture to a triggerless readout at 40 MHz with subsequent software-based event selection in a CPU farm. In this contribution, an overview of the detector technology options under consideration and the associated challenges is given and selected highlights of the ongoing R&D programme are presented.

  4. Biological detector and method

    DOEpatents

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2014-04-15

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  5. Biological detector and method

    DOEpatents

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  6. Biological detector and method

    DOEpatents

    Sillerud, Laurel; Alam, Todd M.; McDowell, Andrew F.

    2015-11-24

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  7. Seismic intrusion detector system

    DOEpatents

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  8. Directional fast-neutron detector

    DOEpatents

    Byrd, Roger C.

    1994-01-01

    A plurality of omnidirectional radiation detectors are arranged in a close packed symmetrical pattern to form a segmented detector. The output radiation counts from these detectors are arithmetically combined to provide the direction of a source of incident radiation. Directionality is achieved without the use of shielding to provide collimation and background reduction effects. Indeed, output counts from paired detectors are simply subtracted to yield a vector direction toward the radiation source. The counts from all of the detectors can be combined to yield an output signal functionally related to the radiation source strength.

  9. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  10. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  11. Detector Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor); Dusl, John (Inventor)

    2003-01-01

    Transceiver and methods are included that are especially suitable for detecting metallic materials, such as metallic mines, within an environment. The transceiver includes a digital waveform generator used to transmit a signal into the environment and a receiver that produces a digital received signal. A tracking module preferably compares an in-phase and quadrature transmitted signal with an in-phase and quadrature received signal to produce a spectral transfer function of the magnetic transceiver over a selected range of frequencies. The transceiver initially preferably creates a reference transfer function which is then stored in a memory. Subsequently measured transfer functions will vary depending on the presence of metal in the environment which was not in the environment when the reference transfer function was determined. The system may be utilized in the presence of other antennas, metal, and electronics which may comprise a plastic mine detector for detecting plastic mines. Despite the additional antennas and other metallic materials that may be in the environment due to the plastic mine detector, the magnetic transceiver remains highly sensitive to metallic material which may be located in various portions of the environment and which may be detected by sweeping the detector over ground that may contain metals or mines.

  12. The DAMPE Neutron Detector

    NASA Astrophysics Data System (ADS)

    Yan, Zhang; Tao, Ma; Yongyi, Huang

    2016-07-01

    The first Chinese space observatory DAMPE (DArk Matter Particle Explorer) was successfully launched on Dec. 17th, 2015. One major scientific object of DAMPE is to measure electrons between 5GeV to 10TeV with excellent energy resolution (1.5% at 800GeV) to search for possible dark matter signatures. The detector consists of four subsystems: a plastic scintillator detector (PSD), a silicon-tungsten tracker (STK), a BGO calorimeter (BGO), and a neutron detector (NUD). The NUD on board DAMPE is designed to detect moderated neutrons via the boron capture of thermal neutrons in boron-doped plastics. Given the fact that hadron showers initiated in the BGO calorimeter by incident nuclei tend to be followed by significantly more neutron activities comparing to electromagnetic cascades triggered by electrons, the NUD provides an additional order of magnitude hadron rejection capability to improve the overall e/p discrimination of DAMPE up to 10 ^{5}. Preliminary analysis of the in-orbit data is given, together with comparisons to the results obtained by a detailed GEANT4 simulation of the NUD instrument.

  13. Nanowire-based detector

    DOEpatents

    Berggren, Karl K; Hu, Xiaolong; Masciarelli, Daniele

    2014-06-24

    Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g., comprising an electrically insulating material), which can trap electromagnetic radiation within its boundaries, can be positioned proximate the nanowire(s). The resonance structure can include, at its boundaries, electrically conductive material positioned proximate the electrically superconductive nanowire such that light that would otherwise be transmitted through the sensor is redirected toward the nanowire(s) and detected. In addition, electrically conductive material can be positioned proximate the electrically superconductive nanowire (e.g. at the aperture of the resonant structure), such that light is directed by scattering from this structure into the nanowire.

  14. Optical ionization detector

    DOEpatents

    Wuest, C.R.; Lowry, M.E.

    1994-03-29

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.

  15. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  16. Optical ionization detector

    DOEpatents

    Wuest, Craig R.; Lowry, Mark E.

    1994-01-01

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

  17. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  18. An update on complex I assembly: the assembly of players

    PubMed Central

    Vartak, Rasika S.; Semwal, Manpreet Kaur; Bai, Yidong

    2015-01-01

    Defects in Complex I assembly is one of the emerging underlying causes of severe mitochondrial disorders. The assembly of Complex I has been difficult to understand due to its large size, dual genetic control and the number of proteins involved. Mutations in Complex I subunits as well as assembly factors have been reported to hinder its assembly and give rise to a range of mitochondria disorders. In this review, we summarize the recent progress made in understanding the Complex I assembly pathway. In particularly, we focus on the known as well as novel assembly factors and their role in assembly of Complex I and human disease. PMID:25030182

  19. Direct Detectors for Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Clough, R. N.; Moldovan, G.; Kirkland, A. I.

    2014-06-01

    There is interest in improving the detectors used to capture images in transmission electron microscopy. Detectors with an improved modulation transfer function at high spatial frequencies allow for higher resolution in images at lower magnification, which leads to an increased effective field of view. Detectors with improved detective quantum efficiency are important for low dose applications. One way in which these performance enhancements can be achieved is through direct detection, where primary electrons are converted directly into suitable electrical signals by the detector rather than relying on an indirect electron to photon conversion before detection. In this paper we present the characterisation of detector performance for a number of different direct detection technologies, and compare these technologies to traditional indirect detectors. Overall our results show that direct detection enables a significant improvement in all aspects of detector performance.

  20. Human Assisted Assembly Processes

    SciTech Connect

    CALTON,TERRI L.; PETERS,RALPH R.

    2000-01-01

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be a perfectly valid operations, but in reality the operations cannot physically be carried out by a human. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications; however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem HFFMs must be integrated with automated assembly planning to allow engineers to verify that assembly operations are possible and to see ways to make the designs even better. Factories will very likely put humans and robots together in cooperative environments to meet the demands for customized products, for purposes including robotic and automated assembly. For robots to work harmoniously within an integrated environment with humans the robots must have cooperative operational skills. For example, in a human only environment, humans may tolerate collisions with one another if they did not cause much pain. This level of tolerance may or may not apply to robot-human environments. Humans expect that robots will be able to operate and navigate in their environments without collisions or interference. The ability to accomplish this is linked to the sensing capabilities available. Current work in the field of cooperative

  1. State of the art in semiconductor detectors

    SciTech Connect

    Rehak, P. ); Gatti, E. )

    1989-01-01

    The state of the art in semiconductor detectors for elementary particle physics and x-ray astronomy is briefly reviewed. Semiconductor detectors are divided into two groups; classical semiconductor diode detectors; and semiconductor memory detectors. Principles of signal formation for both groups of detectors are described and their performance is compared. New developments of silicon detectors are reported here. 13 refs., 8 figs.

  2. Transport and photodetection in self-assembled semiconductor quantum dots.

    PubMed

    Razeghi, M; Lim, H; Tsao, S; Szafraniec, J; Zhang, W; Mi, K; Movaghar, B

    2005-02-01

    A great step forward in science and technology was made when it was discovered that lattice mismatch can be used to grow highly ordered, artificial atom-like structures called self-assembled quantum dots. Several groups have in the meantime successfully demonstrated useful infrared photodetection devices which are based on this technology. The new physics is fascinating, and there is no doubt that many new applications will be found when we have developed a better understanding of the underlying physical processes, and in particular when we have learned how to integrate the exciting new developments made in nanoscopic addressing and molecular self-assembly methods with semiconducting dots. In this paper we examine the scientific and technical questions encountered in current state of the art infrared detector technology and suggest ways of overcoming these difficulties. Promoting simple physical pictures, we focus in particular on the problem of high temperature detector operation and discuss the origin of dark current, noise, and photoresponse.

  3. Development of a personnel fast-neutron dosimeter based on CR-39 detectors

    NASA Astrophysics Data System (ADS)

    Mutiullah; Durrani, S. A.

    1987-07-01

    An energy- and direction-independent fast neutron dosimeter based on electrochemically etched (ECE) CR-39 detectors is presented. We describe, first, our theoretical and experimental work to achieve a nearly flat detector response (in terms of energy) over the range 0.1 to 19 MeV for normally incident neutrons. Here, we have used CR-39 detectors with an optimized front radiator stack consisting of polymers with different hydrogenous contents. Such a detector assembly is, however, found to have a response which is strongly dependent upon the neutron angle of incidence. The paper then proceeds to describe a method developed by us to overcome this problem by attaching a detector assembly to each of the three adjacent sides of a perspex support cube (of side ˜ 2.5 cm). By aggregating (or averaging) the response of all three detectors it is found that these cubical assemblies yield a response that is virtually independent of the orientation of the cube with respect to the neutron incidence direction.

  4. BWR spent-fuel measurements with the ION-1/fork detector and a calorimeter

    SciTech Connect

    Rinard, P.M.; Bosler, G.E.

    1986-08-01

    Gamma-ray and neutron measurements were made on about 50 irradiated boiling-water reactor (BWR) fuel assemblies using the Los Alamos National Laboratory ION-1/fork detector. The assemblies were placed in a dry storage cask (DOE's REA-2023) at the General Electric Morris Operation (GE-MO) as part of a program to evaluate the cask performance. Battelle Pacific Northwest Laboratory (PNL) conducted the program. PNL compared axial radiation profiles developed from ION-1/fork measurements with calculated profiles to interpret the temperature distributions within the cask. The gamma-ray profiles correlated with heat-emission rates measured with a calorimeter, which suggests that the ION-1/fork detector is much faster than the more direct calorimeter. In addition, the radiation profiles from the ION-1/fork detector can prevent cask loadings with undesirable heat source distributions. The detector also provides safeguards information by verifying the declared exposures and cooling times. The genuineness of the assemblies is thus confirmed just before the filling and sealing of a cask. The ION-1/fork detector was permanently installed in the GE-MO fuel storage pond for 1 year without any breakdowns or significant maintenance required. Data were gathered for 9 months and analyzed using techniques developed during previous measurement campaigns. A few anomalies were found in generally satisfactory results. The detector's ease of use, reliability, and reproducibility were excellent.

  5. Assemblies of Conformal Tanks

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2009-01-01

    Assemblies of tanks having shapes that conform to each other and/or conform to other proximate objects have been investigated for use in storing fuels and oxidizers in small available spaces in upper stages of spacecraft. Such assemblies might also prove useful in aircraft, automobiles, boats, and other terrestrial vehicles in which space available for tanks is limited. The basic concept of using conformal tanks to maximize the utilization of limited space is not new in itself: for example, conformal tanks are used in some automobiles to store windshield -washer liquid and coolant that overflows from radiators. The novelty of the present development lies in the concept of an assembly of smaller conformal tanks, as distinguished from a single larger conformal tank. In an assembly of smaller tanks, it would be possible to store different liquids in different tanks. Even if the same liquid were stored in all the tanks, the assembly would offer an advantage by reducing the mechanical disturbance caused by sloshing of fuel in a single larger tank: indeed, the requirement to reduce sloshing is critical in some applications. The figure shows a prototype assembly of conformal tanks. Each tank was fabricated by (1) copper plating a wax tank mandrel to form a liner and (2) wrapping and curing layers of graphite/epoxy composite to form a shell supporting the liner. In this case, the conformal tank surfaces are flat ones where they come in contact with the adjacent tanks. A band of fibers around the outside binds the tanks together tightly in the assembly, which has a quasi-toroidal shape. For proper functioning, it would be necessary to maintain equal pressure in all the tanks.

  6. Photovoltaic self-assembly.

    SciTech Connect

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  7. Constrained space camera assembly

    DOEpatents

    Heckendorn, F.M.; Anderson, E.K.; Robinson, C.W.; Haynes, H.B.

    1999-05-11

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity is disclosed. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras. 17 figs.

  8. Assembly Test Article (ATA)

    NASA Technical Reports Server (NTRS)

    Ricks, Glen A.

    1988-01-01

    The assembly test article (ATA) consisted of two live loaded redesigned solid rocket motor (RSRM) segments which were assembled and disassembled to simulate the actual flight segment stacking process. The test assembly joint was flight RSRM design, which included the J-joint insulation design and metal capture feature. The ATA test was performed mid-November through 24 December 1987, at Kennedy Space Center (KSC), Florida. The purpose of the test was: certification that vertical RSRM segment mating and separation could be accomplished without any damage; verification and modification of the procedures in the segment stacking/destacking documents; and certification of various GSE to be used for flight assembly and inspection. The RSRM vertical segment assembly/disassembly is possible without any damage to the insulation, metal parts, or seals. The insulation J-joint contact area was very close to the predicted values. Numerous deviations and changes to the planning documents were made to ensure the flight segments are effectively and correctly stacked. Various GSE were also certified for use on flight segments, and are discussed in detail.

  9. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  10. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  11. areaDetector: Software for 2-D Detectors in EPICS

    SciTech Connect

    Rivers, M.

    2011-09-23

    areaDetector is a new EPICS module designed to support 2-D detectors. It is modular C++ code that greatly simplifies the task of writing support for a new detector. It also supports plugins, which receive detector data from the driver and process it in some way. Existing plugins perform Region-Of-Interest extraction and analysis, file saving (in netCDF, HDF, TIFF and JPEG formats), color conversion, and export to EPICS records for image display in clients like ImageJ and IDL. Drivers have now been written for many of the detectors commonly used at synchrotron beamlines, including CCDs, pixel array and amorphous silicon detectors, and online image plates.

  12. areaDetector: Software for 2-D Detectors in EPICS

    SciTech Connect

    Rivers, Mark L.

    2010-06-23

    areaDetector is a new EPICS module designed to support 2-D detectors. It is modular C++ code that greatly simplifies the task of writing support for a new detector. It also supports plugins, which receive detector data from the driver and process it in some way. Existing plugins perform Region-Of-Interest extraction and analysis, file saving (in netCDF, HDF, TIFF and JPEG formats), color conversion, and export to EPICS records for image display in clients like ImageJ and IDL. Drivers have now been written for many of the detectors commonly used at synchrotron beamlines, including CCDs, pixel array and amorphous silicon detectors, and online image plates.

  13. Analysis of experimental measurements of PWR fresh and spent fuel assemblies using Self-Interrogation Neutron Resonance Densitometry

    NASA Astrophysics Data System (ADS)

    LaFleur, Adrienne M.; Menlove, Howard O.

    2015-05-01

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is a new NDA technique that was developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for LWR fuel assemblies. The SINRD detector consists of four fission chambers (FCs) wrapped with different absorber filters to isolate different parts of the neutron energy spectrum and one ion chamber (IC) to measure the gross gamma rate. As a result, two different techniques can be utilized using the same SINRD detector unit and hardware. These techniques are the Passive Neutron Multiplication Counter (PNMC) method and the SINRD method. The focus of the work described in this paper is the analysis of experimental measurements of fresh and spent PWR fuel assemblies that were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using the SINRD detector. The purpose of these experiments was to assess the following capabilities of the SINRD detector: 1) reproducibility of measurements to quantify systematic errors, 2) sensitivity to water gap between detector and fuel assembly, 3) sensitivity and penetrability to the removal of fuel rods from the assembly, and 4) use of PNMC/SINRD ratios to quantify neutron multiplication and/or fissile content. The results from these simulations and measurements provide valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies.

  14. Detector Mount Design for IGRINS

    NASA Astrophysics Data System (ADS)

    Oh, Jae Sok; Park, Chan; Cha, Sang-Mok; Yuk, In-Soo; Park, Kwijong; Kim, Kang-Min; Chun, Moo-Young; Ko, Kyeongyeon; Oh, Heeyoung; Jeong, Ueejeong; Nah, Jakyoung; Lee, Hanshin; Jaffe, Daniel T.

    2014-06-01

    The Immersion Grating Infrared Spectrometer (IGRINS) is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG Focal Plane Array (H2RG FPA) detectors. We present the design and fabrication of the detector mount for the H2RG detector. The detector mount consists of a detector housing, an ASIC housing, a Field Flattener Lens (FFL) mount, and a support base frame. The detector and the ASIC housing should be kept at 65 K and the support base frame at 130 K. Therefore they are thermally isolated by the support made of GFRP material. The detector mount is designed so that it has features of fine adjusting the position of the detector surface in the optical axis and of fine adjusting yaw and pitch angles in order to utilize as an optical system alignment compensator. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the structural and thermal analysis, the designed detector mount meets an optical stability tolerance and system thermal requirements. Actual detector mount fabricated based on the design has been installed into the IGRINS cryostat and successfully passed a vacuum test and a cold test.

  15. Gamma Detector Response and Analysis Software - Detector Response Function

    SciTech Connect

    2014-05-13

    GADRAS-DRF uses a Detector Response Function (DRF) to compute the response of gamma-ray detectors incident radiation. The application includes provision for plotting measured and computed spectra and for characterizing detector response parameters based on measurements of a series of calibration sources (e.g., Ba-133, Cs-137, Co-60, and Th-228). An application program interface enables other programs to access the dynamic-link library that is used to compute spectra.

  16. Micro UV detector

    NASA Astrophysics Data System (ADS)

    Cabalo, Jerry B.; Sickenberger, Richard; Underwood, William J.; Sickenberger, David W.

    2004-09-01

    A lightweight, tactical biological agent detection network offers the potential for a detect-to-warn capability against biological aerosol attacks. Ideally, this capability can be achieved by deploying the sensors upwind from the protected assets. The further the distance upwind, the greater the warning time. The technological challenge to this concept is the biological detection technology. Here, cost, size and power are major factors in selecting acceptable technologies. This is in part due to the increased field densities needed to cover the upwind area and the fact that the sensors, when deployed forward, must operate autonomously for long periods of time with little or no long-term logistical support. The Defense Advanced Research Project Agency"s (DARPA) Solid-state Ultraviolet Optical Source (SUVOS) program offers an enabling technology to achieving a detector compatible with this mission. As an optical source, these devices emit excitation wavelengths known to be useful in the detection of biological aerosols. The wavelength band is absorbed by the biological aerosol and results in visible fluorescence. Detection of a biological aerosol is based on the observed intensity of this fluorescence signal compared to a background reference. Historically this has been accomplished with emission sources that are outside the boundaries for low cost, low power sensors. The SUVOS technology, on the other hand, provides the same basic wavelengths needed for the detection process in a small, low power package. ECBC has initiated an effort to develop a network array based on micro UV detectors that utilize the SUVOS technology. This paper presents an overview of the micro UV detector and some of the findings to date. This includes the overall design philosophy, fluid flow calculations to maximize presentation of aerosol particles to the sources, and the fluorescence measurements.

  17. Micro-UV detector

    NASA Astrophysics Data System (ADS)

    Cabalo, Jerry B.; Sickenberger, Richard; Underwood, William J.; Sickenberger, David W.

    2004-12-01

    A lightweight, tactical biological agent detection network offers the potential for a detect-to-warn capability against biological aerosol attacks. Ideally, this capability can be achieved by deploying the sensors upwind from the protected assets. The further the distance upwind, the greater the warning time. The technological challenge to this concept is the biological detection technology. Here, cost, size and power are major factors in selecting acceptable technologies. This is in part due to the increased field densities needed to cover the upwind area and the fact that the sensors, when deployed forward, must operate autonomously for long periods of time with little or no long-term logistical support. The Defense Advanced Research Project Agency"s (DARPA) Solid-state Ultraviolet Optical Source (SUVOS) program offers an enabling technology to achieving a detector compatible with this mission. As an optical source, these devices emit excitation wavelengths known to be useful in the detection of biological aerosols. The wavelength band is absorbed by the biological aerosol and results in visible fluorescence. Detection of a biological aerosol is based on the observed intensity of this fluorescence signal compared to a background reference. Historically this has been accomplished with emission sources that are outside the boundaries for low cost, low power sensors. The SUVOS technology, on the other hand, provides the same basic wavelengths needed for the detection process in a small, low power package. ECBC has initiated an effort to develop a network array based on micro UV detectors that utilize the SUVOS technology. This paper presents an overview of the micro UV detector and some of the findings to date. This includes the overall design philosophy, fluid flow calculations to maximize presentation of aerosol particles to the sources, and the fluorescence measurements.

  18. Detector Arrays for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Alexander, David; Brambora, Clifford K.; Derro, Rebecca; Engler, Chuck; Fox, Ori; Garrison, Matthew B.; Henegar, Greg; Hill, robert J.; Johnson, Thomas; Lindler, Don J.; Manthripragada, Sridhar S.; Marshall, Ceryl; Mott, Brent; Parr, Thomas M.; Roher, Wayne D.; Shakoorzadeh, Kamdin B.; Smith, Miles; Waczynski, Augustyn; Wen, Yiting; Wilson, Donna; Xia-Serafino, Wei

    2007-01-01

    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 microns) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. In this article, we provide a brief introduction to NIRSpec, its detector subsystem (DS), detector readout in the space radiation environment, and present a snapshot of the developmental status of the NIRSpec DS as integration and testing of the engineering test unit begins.

  19. Power module assembly

    DOEpatents

    Campbell, Jeremy B.; Newson, Steve

    2011-11-15

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  20. Wrist joint assembly

    NASA Technical Reports Server (NTRS)

    Kersten, L.; Johnson, J. D. (Inventor)

    1978-01-01

    A wrist joint assembly is provided for use with a mechanical manipulator arm for finely positioning an end-effector carried by the wrist joint on the terminal end of the manipulator arm. The wrist joint assembly is pivotable about a first axis to produce a yaw motion, a second axis is to produce a pitch motion, and a third axis to produce a roll motion. The wrist joint assembly includes a disk segment affixed to the terminal end of the manipulator arm and a first housing member, a second housing member, and a third housing member. The third housing member and the mechanical end-effector are moved in the yaw, pitch, and roll motion. Drive means are provided for rotating each of the housings about their respective axis which includes a cluster of miniature motors having spur gears carried on the output drive shaft which mesh with a center drive gear affixed on the housing to be rotated.

  1. Blade attachment assembly

    DOEpatents

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell; Miller, Diane Patricia

    2016-05-03

    An assembly and method for affixing a turbomachine rotor blade to a rotor wheel are disclosed. In an embodiment, an adaptor member is provided disposed between the blade and the rotor wheel, the adaptor member including an adaptor attachment slot that is complementary to the blade attachment member, and an adaptor attachment member that is complementary to the rotor wheel attachment slot. A coverplate is provided, having a coverplate attachment member that is complementary to the rotor wheel attachment slot, and a hook for engaging the adaptor member. When assembled, the coverplate member matingly engages with the adaptor member, and retains the blade in the adaptor member, and the assembly in the rotor wheel.

  2. Liaison based assembly design

    SciTech Connect

    Ames, A.; Kholwadwala, D.; Wilson, R.H.

    1996-12-01

    Liaison Based Assembly Design extends the current information infrastructure to support design in terms of kinematic relationships between parts, or liaisons. These liaisons capture information regarding contact, degrees-of-freedom constraints and containment relationships between parts in an assembly. The project involved defining a useful collection of liaison representations, investigating their properties, and providing for maximum use of the data in downstream applications. We tested our ideas by implementing a prototype system involving extensions to Pro/Engineer and the Archimedes assembly planner. With an expanded product model, the design system is more able to capture design intent. When a product update is attempted, increased knowledge availability improves our ability to understand the effect of design changes. Manufacturing and analysis disciplines benefit from having liaison information available, so less time is wasted arguing over incomplete design specifications and our enterprise can be more completely integrated.

  3. Optical interconnect assembly

    DOEpatents

    Laughlin, Daric; Abel, Philip

    2015-06-09

    An optical assembly includes a substrate with a first row of apertures and a second row of apertures. A first optical die includes a first plurality of optical transducer elements and is mounted on the substrate such that an optical signal interface of each transducer element is aligned with an aperture of the first row of optical apertures. A second optical die includes a second plurality of optical transducer elements and is mounted on the substrate such that an optical signal interface of each of the second plurality of optical transducer elements is aligned with an aperture of the second row of optical apertures. A connector configured to mate with the optical assembly supports a plurality of optical fibers. A terminal end of each optical fiber protrudes from the connector and extends into one of the apertures when the connector is coupled with the optical assembly.

  4. Supported PV module assembly

    DOEpatents

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  5. In vitro kinetochore assembly

    PubMed Central

    Miell, Matthew D D; Straight, Aaron F

    2016-01-01

    The kinetochore is the primary site of interaction between chromosomes and microtubules of the mitotic spindle during chromosome segregation. The kinetochore is a complex of more than 100 proteins that transiently assemble during mitosis at a single defined region on each chromosome, known as the centromere. Kinetochore assembly and activity must be tightly regulated to ensure proper microtubule interaction and faithful chromosome segregation because perturbation of kinetochores often results in aneuploidy and cell lethality. As such, cell free and reconstituted systems to analyze kinetochore formation and function are invaluable in probing the biochemical activities of kinetochores. In vitro approaches to studying kinetochores have enabled the manipulation of kinetochore protein structure, function, interactions and regulation that are not possible in cells. Here we outline a cell-free approach for the assembly of centromeres and recruitment of functional kinetochores that enables their manipulation and analysis. PMID:27193846

  6. Moderate temperature detector development

    NASA Technical Reports Server (NTRS)

    Marciniec, J. W.; Briggs, R. J.; Sood, A. K.

    1981-01-01

    P-side backside reflecting constant, photodiode characterization, and photodiode diffusion and G-R currents were investigated in an effort to develop an 8 m to 12 m infrared quantum detector using mercury cadmium telluride. Anodization, phosphorus implantation, and the graded band gap concept were approaches considered for backside formation. Variable thickness diodes were fabricated with a back surface anodic oxide to investigate the effect of this surface preparation on the diffusion limited zero bias impedance. A modeling technique was refined to thoroughly model diode characteristics. Values for the surface recombination velocity in the depletion region were obtained. These values were improved by implementing better surface damage removal techniques.

  7. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  8. Wire-inhomogeneity detector

    DOEpatents

    Gibson, G.H.; Smits, R.G.; Eberhard, P.H.

    1982-08-31

    A device for uncovering imperfections in electrical conducting wire, particularly superconducting wire, by detecting variations in eddy currents. Eddy currents effect the magnetic field in a gap of an inductor, contained in a modified commercial ferrite core, through which the wire being tested is passed. A small increase or decrease in the amount of conductive material, such as copper, in a fixed cross section of wire will unbalance a bridge used to measure the impedance of the inductor, tripping a detector and sounding an alarm.

  9. Flexible composite radiation detector

    DOEpatents

    Cooke, D. Wayne; Bennett, Bryan L.; Muenchausen, Ross E.; Wrobleski, Debra A.; Orler, Edward B.

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  10. Active Pyroelectric Infrared Detector

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Zalameda, Joseph N. (Inventor); Mina, Joseph M. (Inventor)

    1995-01-01

    A noncontact pyroelectric infrared detector is described. A pyroelectric film that also has piezoelectric properties is held in place so that it is free to vibrate. It is electrically stimulated to vibrate at a resonance frequency. The vibrating film forms part of a balanced bridge circuit. As thermal radiation impinges on the film the pyroelectric effect causes the resonance frequency to change, thereby unbalancing the bridge circuit. A differential amplifier tracks the change in voltage across the bridge. The resulting voltage signal is further processed by a bandpass filter and a precision rectifier. The device allows for DC or static temperature measurements without the use of a mechanical chopping device.

  11. Response microcantilever thermal detector

    DOEpatents

    Cunningham, Joseph P.; Rajic, Slobodan; Datskos, Panagiotis G.; Evans III, Boyd M.

    2004-10-19

    A "folded leg" thermal detector microcantilever constructed of a substrate with at least one leg interposed between a fixed end and a deflective end, each leg having at least three essentially parallel leg segments interconnected on alternate opposing ends and aligned in a serpentine pattern with only the first leg segment attached to the fixed end and only the last leg segment attached to the deflective end. Alternate leg segment are coated on the pentalever with coating applied to the top of the first, third, and fifth leg segments of each leg and to the bottom of the second and fourth leg segments of each leg.

  12. Pyroelectric demodulating detector

    SciTech Connect

    Brocato, Robert W.

    2008-07-08

    A pyroelectric demodulating detector (also termed a pyroelectric demodulator) is disclosed which utilizes an electrical resistor stacked upon a pyroelectric element to demodulate an rf or microwave electrical input signal which is amplitude-modulated (AM). The pyroelectric demodulator, which can be formed as a hybrid or a monolithic device, has applications for use in AM radio receivers. Demodulation is performed by feeding the AM input signal into the resistor and converting the AM input signal into an AM heat signal which is conducted through the pyroelectric element and used to generate an electrical output signal containing AM information from the AM input signal.

  13. Ionizing Radiation Detector

    DOEpatents

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2003-11-18

    A CdZnTe (CZT) crystal provided with a native CdO dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals is disclosed. A two step process is provided for forming the dielectric coating which includes etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water after attaching electrical contacts to the crystal surface.

  14. High throughput microcantilever detector

    DOEpatents

    Thundat, Thomas G.; Ferrell, Thomas L.; Hansen, Karolyn M.; Tian, Fang

    2004-07-20

    In an improved uncoated microcantilever detector, the sample sites are placed on a separate semi-conducting substrate and the microcantilever element detects and measures the changes before and after a chemical interaction or hybridization of the sites by sensing differences of phase angle between an alternating voltage applied to the microcantilever element and vibration of the microcantilever element. In another embodiment of the invention, multiple sample sites are on a sample array wherein an array of microcantilever elements detect and measure the change before and after chemical interactions or hybridizations of the sample sites.

  15. Improved ion detector

    DOEpatents

    Tullis, A.M.

    1986-01-30

    An improved ion detector device of the ionization detection device chamber type comprises an ionization chamber having a central electrode therein surrounded by a cylindrical electrode member within the chamber with a collar frictionally fitted around at least one of the electrodes. The collar has electrical contact means carried in an annular groove in an inner bore of the collar to contact the outer surface of the electrode to provide electrical contact between an external terminal and the electrode without the need to solder leads to the electrode.

  16. Liquid level detector

    DOEpatents

    Grasso, A.P.

    1984-02-21

    A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  17. Liquid level detector

    DOEpatents

    Grasso, Albert P.

    1986-01-01

    A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  18. Low inductance connector assembly

    DOEpatents

    Holbrook, Meghan Ann; Carlson, Douglas S

    2013-07-09

    A busbar connector assembly for coupling first and second terminals on a two-terminal device to first and second contacts on a power module is provided. The first terminal resides proximate the first contact and the second terminal resides proximate the second contact. The assembly comprises a first bridge having a first end configured to be electrically coupled to the first terminal, and a second end configured to be electrically coupled to the second contact, and a second bridge substantially overlapping the first bridge and having a first end electrically coupled to the first contact, and a second end electrically coupled to the second terminal.

  19. Lightweight reflector assembly

    NASA Technical Reports Server (NTRS)

    Argoud, M. J.; Jolley, J.; Walker, W. L. (Inventor)

    1977-01-01

    An inexpensive, lightweight reflective assembly member having good optical quality and particularly adaptable to accommodating temperature variations without providing destructive thermal stresses and reflective slope errors is described. The reflective assembly consists of a thin sheet of glass with appropriate reflective coating and a cellular glass block substrate bonded together. The method of fabrication includes abrading the cellular substrate with an abrasive master die to form an appropriate concave surface. An adhesive is applied to the abraded surface and a lamina reflective surface is placed under a uniform pressure to conform the reflective surface onto the desired abraded surface of the substrate.

  20. Hand Controller Assembly

    NASA Technical Reports Server (NTRS)

    Bandera, Pablo (Inventor); Buchele, Paul (Inventor)

    2015-01-01

    A user input device for a vehicular electrical system is provided. The user input device includes a handle sized and shaped to be gripped by a human hand and a gimbal assembly within the handle. The gimbal assembly includes a first gimbal component, a second gimbal component coupled to the first gimbal component such that the second gimbal component is rotatable relative to the first gimbal component about a first axis, and a third gimbal component coupled to the second gimbal component such that the third gimbal component is rotatable relative to the second gimbal component about a second axis.

  1. Phylogenetic Comparative Assembly

    NASA Astrophysics Data System (ADS)

    Husemann, Peter; Stoye, Jens

    Recent high throughput sequencing technologies are capable of generating a huge amount of data for bacterial genome sequencing projects. Although current sequence assemblers successfully merge the overlapping reads, often several contigs remain which cannot be assembled any further. It is still costly and time consuming to close all the gaps in order to acquire the whole genomic sequence. Here we propose an algorithm that takes several related genomes and their phylogenetic relationships into account to create a contig adjacency graph. From this a layout graph can be computed which indicates putative adjacencies of the contigs in order to aid biologists in finishing the complete genomic sequence.

  2. Self assembling proteins

    DOEpatents

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  3. Photon detectors with gaseous amplification

    SciTech Connect

    Va`vra, J.

    1996-08-01

    Gaseous photon detectors, including very large 4{pi}-devices such as those incorporated in SLD and DELPHI, are finally delivering physics after many years of hard work. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photoelectrons. Among detector builders, there is hardly anybody who did not make mistakes in this area, and who does not have a healthy respect for the problems involved. This point is stressed in this paper, and it is suggested that only a very small operating phase space is available for running gaseous photon detectors in a very large system with good efficiency and few problems. In this paper the authors discuss what was done correctly or incorrectly in first generation photon detectors, and what would be their recommendations for second generation detectors. 56 refs., 11 figs.

  4. Digital detectors for electron microscopy

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; Cattermole, D. M.

    2002-02-01

    Film has traditionally been used for recording images in transmission electron microscopes but there is an essential need for computer-interfaced electronic detectors. Cooled-CCD detectors, developed over the past few years, though not ideal, are increasingly used as the preferred detection system in a number of applications. We describe briefly the design of CCD-based detectors, along with their main properties, which have been used in electron crystallography. A newer detector design with a much bigger sensitive area, incorporating a 2×2 tiled array of CCDs with tapered fibre optics will overcome some of the limitations of existing CCD detectors. We also describe some preliminary results for 8 keV imaging, from (direct detection) silicon hybrid pixel detectors, which offer advantages over CCDs in terms of better spatial resolution, faster readout with minimal noise.

  5. Characterizing mine detector performance over difficult soils

    NASA Astrophysics Data System (ADS)

    Bailey, R. C.; West, G. F.

    2006-05-01

    A variety of metal detectors are available for the detection of buried metallic targets in general and for humanitarian demining in particular. No one detector is optimal in all environments: variations in soil conductivity, and more importantly, frequency dependent soil magnetic susceptibility can favor one design over another. The use of computer modeling for assessing different designs is straightforward in principle, at least to first order, but still difficult in practice. The Geophysics Lab of the University of Toronto is attempting to address this problem in two ways. The first is by assembling the required computational algorithms to do this into a single simulation code with a straightforward GUI, intended to be public domain as a MATLAB code. The second, the subject of a companion paper in this conference, is by making measurements of the electromagnetic properties of difficult soils, and finding semi-analytic representations of these responses suitable for modeling purposes. The final version of the code, when completed, is to handle single or multiple transmitter and receiver coils of circular or polygonal shape, general transmitter current waveforms, arbitrary transmitter orientations and survey paths, small targets with frequency-dependent anisotropic responses (permitting both magnetic and inductive responses to be calculated), embedded in multi-layered half spaces with both conductivity and frequency-dependent susceptibility (so-called "difficult soils"). The current state of the simulation code and examples of its use will be described in this paper.

  6. Interim cryo-cooler/detector report

    SciTech Connect

    Neufeld, K.; Ruhter, W.; Anderson, E.

    1995-04-19

    This report describes development of an electronic system designed to reduce vibration generated by a cryocooler. The diminished vibration makes it practical to use the active cooler to extract heat from a portable gamma ray detector instrument. The system was developed for a Sunpower cryocooler with an integrated counterbalance mass. The overall momentum cancellation approach is also applicable to other similar cryocoolers. The cancellation system is an assembly of several components tailored to accomplish the required vibration reduction with minimum power consumption and volume. It is designed to be powered by a 18--32 Volt battery. Up to ten harmonics of the 58.65 Hz drive frequency are controlled. In addition to the vibration cancellation, the electronic system produces the drive signal for the cryocooler and regulates the cooler temperature. The system employs a sinusoidal drive to reduce the amount of higher harmonic vibration. A digital signal processor (DSP) is used to perform the high speed vibration control. The Texas Instruments TMS320C31 processor is housed on a third-party board. A second board has analog-to-digital (A/D) and digital-to-analog (D/A) converters. The DSP was programmed in C. The physical system consists of two sets of electronics. The first is housed in a case that is separate from the detector unit.

  7. CZT detector technological development and balloon testing .

    NASA Astrophysics Data System (ADS)

    Quadrini, E.; Caroli, E.

    We report latest results obtained in the frame of the R&D activity on the CZT detectors financed from November 2006 to July 2007 by Italian Space Agency (ASI). Future improvements aA439, pp. 625-633 (re envisaged after the recent INAF support (PRIN '07) and the expected second R&D phase supposed for the beginning of 2009. Target of the R&D activity is an end to end system for domestic growth CZT Crystals and related read out architecture to provide an effective 3D focal plane. Our requirements are: good resolution in terms of Space ({<}mm ), Time (few tens of {mu }s), Energy (2% @100keV) over a range: 7- 400keV for single layer. Few layers assembled in a Compton multilayer structure can extend the detection up to the MeV region with efficiency close to 80%. Finally, in the spirit of the 1ST WORKSHOP on Science And Technology through long duration balloons, we discuss the possibility to test our subsequent prototypes in both Photon Parallel Field (PPF) and Photon Transverse Field (PTF) detectors disposition and propose our desired test plan.

  8. Neutron field parameter measurements on the JET tokamak by means of super-heated fluid detectors

    SciTech Connect

    Gherendi, M.; Craciunescu, T.; Pantea, A.; Zoita, V. L.; Johnson, M. Gatu; Hellesen, C.; Conroy, S.; Baltog, I.; Edlington, T.; Kiptily, V.; Popovichev, S.; Murari, A.; Collaboration: JET EFDA Contributors

    2012-10-15

    The neutron field parameters (fluence and energy distribution) at a specific location outside the JET Torus Hall have been measured by means of super-heated fluid detectors (or 'bubble detectors') in combination with an independent, time-of-flight, technique. The bubble detector assemblies were placed at the end of a vertical line of sight at about 16 m from the tokamak mid plane. Spatial distributions of the neutron fluence along the radial and toroidal directions have been obtained using two-dimensional arrays of bubble detectors. Using a set of three bubble detector spectrometers the neutron energy distribution was determined over a broad energy range, from about 10 keV to above 10 MeV, with an energy resolution of about 30% at 2.5 MeV. The very broad energy response allowed for the identification of energy features far from the main fusion component (around 2.45 MeV for deuterium discharges).

  9. The TALE Fluorescence Detectors

    NASA Astrophysics Data System (ADS)

    Jui, Charles

    2009-05-01

    The TALE fluorescence detectors are designed to extend the threshold for fluorescence observation by TA down to 3x10^16 eV. It will comprise two main components. The first is a set of 24 telescopes working in stereo, with an existing TA FD station at ˜6 km separation. These will cover between 3-31 degrees in elevation and have azimuthal coverage maximizing the stereo aperture in the 10^18-10^19 eV energy range. The second component consists of 15 telescopes equipped with 4m diameter mirrors and covering the sky between 31 and 73 degrees in elevation. The larger mirror size pushes the physics threshold down to 3x10^16 eV, and provides view of the shower maximum for the lower energy events. The Tower detector will cover one quadrant in azimuth and operate in hybrid mode with the TALE infill array to provide redundant composition measurements from both shower maximum information and muon-to-electron ratio.

  10. New passive helicopter detector

    SciTech Connect

    Elliott, G.R.

    1985-01-01

    Sandia has developed a new helicopter detector. The device relies on the correlation between the acoustic wave from the helicopter and the resulting coupled seismic wave. A significant feature of this approach is that the detector is completely passive; there is no radio frequency radiation. Intended for deployment as a perimeter sensor around a site, the unit offers a low nuisance/false alarm rate and a high probability of detection for a wide range of helicopters. Reliable detection occurs when the target is at high altitude and also very near the earth's surface. Detection ranges start at one kilometer for the small, four-place, civilian helicopter and approach five kilometers for heavier, military types. The system has two parts: a transducer package containing a microphone and a geophone and a digital processor. Development is underway for a model which will be AC powered and well suited to permanent facilities. A prototype unit using a lightweight, battery powered processor is being constructed for rapid-deployment applications. 6 figs.

  11. PAU camera: detectors characterization

    NASA Astrophysics Data System (ADS)

    Casas, Ricard; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; Jiménez, Jorge; Maiorino, Marino; Pío, Cristóbal; Sevilla, Ignacio; de Vicente, Juan

    2012-07-01

    The PAU Camera (PAUCam) [1,2] is a wide field camera that will be mounted at the corrected prime focus of the William Herschel Telescope (Observatorio del Roque de los Muchachos, Canary Islands, Spain) in the next months. The focal plane of PAUCam is composed by a mosaic of 18 CCD detectors of 2,048 x 4,176 pixels each one with a pixel size of 15 microns, manufactured by Hamamatsu Photonics K. K. This mosaic covers a field of view (FoV) of 60 arcmin (minutes of arc), 40 of them are unvignetted. The behaviour of these 18 devices, plus four spares, and their electronic response should be characterized and optimized for the use in PAUCam. This job is being carried out in the laboratories of the ICE/IFAE and the CIEMAT. The electronic optimization of the CCD detectors is being carried out by means of an OG (Output Gate) scan and maximizing it CTE (Charge Transfer Efficiency) while the read-out noise is minimized. The device characterization itself is obtained with different tests. The photon transfer curve (PTC) that allows to obtain the electronic gain, the linearity vs. light stimulus, the full-well capacity and the cosmetic defects. The read-out noise, the dark current, the stability vs. temperature and the light remanence.

  12. Barrier infrared detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2012-01-01

    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.

  13. Advanced Radiation Detector Development

    SciTech Connect

    The University of Michigan

    1998-07-01

    Since our last progress report, the project at The University of Michigan has continued to concentrate on the development of gamma ray spectrometers fabricated from cadmium zinc telluride (CZT). This material is capable of providing energy resolution that is superior to that of scintillation detectors, while avoiding the necessity for cooling associated with germanium systems. In our past reports, we have described one approach (the coplanar grid electrode) that we have used to partially overcome some of the major limitations on charge collection that is found in samples of CZT. This approach largely eliminates the effect of hole motion in the formation of the output signal, and therefore leads to pulses that depend only on the motion of a single carrier (electrons). Since electrons move much more readily through CZT than do holes, much better energy resolution can be achieved under these conditions. In our past reports, we have described a 1 cm cube CZT spectrometer fitted with coplanar grids that achieved an energy resolution of 1.8% from the entire volume of the crystal. This still represents, to our knowledge, the best energy resolution ever demonstrated in a CZT detector of this size.

  14. Graphene based GHz detectors

    NASA Astrophysics Data System (ADS)

    Boyd, Anthony K.; El Fatimy, Abdel; Barbara, Paola; Nath, Anindya; Campbell, Paul M.; Myers-Ward, Rachael; Daniels, Kevin; Gaskill, D. Kurt

    Graphene demonstrates great promise as a detector over a wide spectral range especially in the GHz range. This is because absorption is enhanced due to the Drude contribution. In the GHz range there are viable detection mechanisms for graphene devices. With this in mind, two types of GHz detectors are fabricated on epitaxial graphene using a lift off resist-based clean lithography process to produce low contact resistance. Both device types use asymmetry for detection, consistent with recent thoughts of the photothermoelectric effect (PTE) mechanism. The first is an antenna coupled device. It utilizes two dissimilar contact metals and the work function difference produces the asymmetry. The other device is a field effect transistor constructed with an asymmetric top gate that creates a PN junction and facilitates tuning the photovoltaic response. The response of both device types, tested from 100GHz to 170GHz, are reported. This work was sponsored by the U.S. Office of Naval Research (Award Number N000141310865).

  15. Apfel's superheated drop detector

    NASA Astrophysics Data System (ADS)

    D'Errico, Francesco

    2001-05-01

    The introduction of new approaches for radiation dosimetry is rare. A similar breakthrough occurred in 1979, when Robert Apfel invented the superheated drop detector, a miniature relative of the bubble chamber. A fundamental in high-energy particle physics, the bubble chamber utilizes a liquid briefly brought to a transient, radiation-sensitive superheated state by reducing its pressure. Mass boiling of the liquid is prevented by cyclic pressurization, drastically limiting the detection efficiency. In Apfel's detector, the liquid is kept in a steady superheated state by fractionating it into droplets and dispersing them in an immiscible host fluid, a perfectly smooth and clean container. The approach extends the lifetime of the metastable droplets to the point that practical application in radiation dosimetry is possible. Bubble formation is measured from the volume of vapor or by detecting individual vaporizations acoustically. Various halocarbons are employed and this permits a wide range of applications. Moderately superheated halocarbons are used for neutron measurements, since they are only nucleated by energetic neutron recoil particles. Highly superheated halocarbons nucleate with much smaller energy deposition and are used to detect photons and electrons. This paper reviews the radiation physics of superheated emulsions and their manifold applications.

  16. Fire resistant PV shingle assembly

    SciTech Connect

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  17. Advances in pyroelectric infrared detectors.

    NASA Technical Reports Server (NTRS)

    Beerman, H. P.; Schwarz, F.; Weiner, S.

    1972-01-01

    Recent improvements in the pyroelectric detector have been due to the development of locked-in polarization, further reduction of the FET leakage current, and reduction of short circuit noise. The pyroelectric detector has been successfully employed in these typical applications: (1) thermograph using a single detector and X-Y scanner, (2) focal plane reticle scanner, (3) linear array thermal imaging system, (4) pyroelectric image tube, (5) radiometers (vertical temperature profile radiometer, carbon dioxide sensor), (6) high speed spectrometer, and (7) laser detector.

  18. The Physics of Particle Detectors

    NASA Astrophysics Data System (ADS)

    Green, Dan

    2000-08-01

    Here is a comprehensive introduction to the physical principles and design of particle detectors, covering all major detector types in use today. After discussing the size and energy scales involved in different physical processes, the book considers nondestructive methods, including the photoelectric effect, photomultipliers, scintillators, Cerenkov and transition radiation, scattering and ionization, and the use of magnetic fields in drift and wire chambers. A complete chapter is devoted to silicon detectors. In the final part of the book, Green discusses destructive measurement techniques. Throughout, he emphasizes the physical principles underlying detection and shows, through appropriate examples, how those principles are best utilized in real detectors. Exercises and detailed further reading lists are included.

  19. Rotary shaft sealing assembly

    DOEpatents

    Dietle, Lannie L.; Schroeder, John E.; Kalsi, Manmohan S.; Alvarez, Patricio D.

    2010-09-21

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  20. Rotary shaft sealing assembly

    SciTech Connect

    Dietle, Lannie L; Schroeder, John E; Kalsi, Manmohan S; Alvarez, Patricio D

    2013-08-13

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  1. Corium protection assembly

    DOEpatents

    Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A corium protection assembly includes a perforated base grid disposed below a pressure vessel containing a nuclear reactor core and spaced vertically above a containment vessel floor to define a sump therebetween. A plurality of layers of protective blocks are disposed on the grid for protecting the containment vessel floor from the corium.

  2. Modeling Protein Self Assembly

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton Buck; Hull, Elizabeth

    2004-01-01

    Understanding the structure and function of proteins is an important part of the standards-based science curriculum. Proteins serve vital roles within the cell and malfunctions in protein self assembly are implicated in degenerative diseases. Experience indicates that this topic is a difficult one for many students. We have found that the concept…

  3. Turbomachine blade assembly

    DOEpatents

    Garcia Crespo, Andres Jose

    2016-11-01

    Embodiments of the present disclosure include a system comprising a turbomachine blade assembly having a blade portion, a shank portion, and a mounting portion, wherein the blade portion, the shank portion, and the mounting portion comprise a first plurality of plies extending from a tip of the airfoil to a base of the dovetail.

  4. ELEMENTARY SCHOOL ASSEMBLY.

    ERIC Educational Resources Information Center

    DONAHOE, THOMAS J.; MARTIN, RICHARD G.

    SURVEY OF THE SPRINGFIELD, MASSACHUSETTS, SCHOOLS AND GOVERNMENT. THESE WILL FORM THE BASIS FOR DISCUSSION IN ALL SIXTH GRADE CLASSES DURING A 2-MONTH PERIOD. THE CLASSES WILL CHOOSE A STUDENT REPRESENTATIVE TO ATTEND A CITY-WIDE ASSEMBLY OF STUDENTS TO PRESENT THE RESULTS OF THE CLASS DISCUSSIONS. THE QUESTIONS ARE IN THREE AREAS--THE SCHOOL'S…

  5. Lageos assembly operation plan

    NASA Technical Reports Server (NTRS)

    Brueger, J.

    1975-01-01

    Guidelines and constraints procedures for LAGEOS assembly, operation, and design performance are given. Special attention was given to thermal, optical, and dynamic analysis and testing. The operation procedures illustrate the interrelation and sequence of tasks in a flow diagram. The diagram also includes quality assurance functions for verification of operation tasks.

  6. Beyond the Assembly Line.

    ERIC Educational Resources Information Center

    Weitz, Rebecca; Guild, Todd

    1985-01-01

    Describes how Hughes Aircraft trainers followed four steps in meeting the challenges of a flexible manufacturing environment: needs assessment, design strategy, pilot evaluation, and follow-through. Within this environment, 50 self-paced training products were developed for one of the company's wire and back plane harness assembly departments. (CT)

  7. The International Assembly.

    ERIC Educational Resources Information Center

    Gerlach, Jeanne Marcum, Ed.

    2000-01-01

    Looks at the missions and goals of the International Assembly of the National Council of Teachers of English, a global multicultural network promoting communication and cooperation for international exchange of teaching practices, literature, literacy, curriculum development, and research in English. Suggests some criteria to look at when…

  8. Solar collector assembly

    SciTech Connect

    Murphy, J.A.

    1980-09-09

    A solar collector assembly includes shingles which have integral tubes projecting therefrom, and which are mounted in overlapping parallel array. Mounting brackets for the shingles are engaged on roof rafters or the like, and interlocked light transmissive plates overlie the shingles. The plates are also engaged with shingle components. A special fitting for the tube ends is provided.

  9. Walking boot assembly

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.; Chambers, A. B.; Stjohn, R. H. (Inventor)

    1977-01-01

    A walking boot assembly particularly suited for use with a positively pressurized spacesuit is presented. A bootie adapted to be secured to the foot of a wearer, an hermetically sealed boot for receiving the bootie having a walking sole, an inner sole, and an upper portion adapted to be attached to an ankle joint of a spacesuit, are also described.

  10. Dump valve assembly

    DOEpatents

    Owen, T.J.

    1984-01-01

    A dump valve assembly comprising a body having a bore defined by a tapered wall and a truncated spherical valve member adapted to seat along a spherical surface portion thereof against said tapered wall. Means are provided for pivoting said valve member between a closed position engagable with said tapered wall and an open position disengaged therefrom.

  11. Segmented stator assembly

    SciTech Connect

    Lokhandwalla, Murtuza; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Shah, Manoj Ramprasad; Quirion, Owen Scott

    2013-04-02

    An electric machine and stator assembly are provided that include a continuous stator portion having stator teeth, and a tooth tip portion including tooth tips corresponding to the stator teeth of the continuous stator portion, respectively. The tooth tip portion is mounted onto the continuous stator portion.

  12. Detector developments at DESY.

    PubMed

    Wunderer, Cornelia B; Allahgholi, Aschkan; Bayer, Matthias; Bianco, Laura; Correa, Jonathan; Delfs, Annette; Göttlicher, Peter; Hirsemann, Helmut; Jack, Stefanie; Klyuev, Alexander; Lange, Sabine; Marras, Alessandro; Niemann, Magdalena; Pithan, Florian; Reza, Salim; Sheviakov, Igor; Smoljanin, Sergej; Tennert, Maximilian; Trunk, Ulrich; Xia, Qingqing; Zhang, Jiaguo; Zimmer, Manfred; Das, Dipayan; Guerrini, Nicola; Marsh, Ben; Sedgwick, Iain; Turchetta, Renato; Cautero, Giuseppe; Giuressi, Dario; Menk, Ralf; Khromova, Anastasiya; Pinaroli, Giovanni; Stebel, Luigi; Marchal, Julien; Pedersen, Ulrik; Rees, Nick; Steadman, Paul; Sussmuth, Mark; Tartoni, Nicola; Yousef, Hazem; Hyun, HyoJung; Kim, KyungSook; Rah, Seungyu; Dinapoli, Roberto; Greiffenberg, Dominic; Mezza, Davide; Mozzanica, Aldo; Schmitt, Bernd; Shi, Xintian; Krueger, Hans; Klanner, Robert; Schwandt, Joem; Graafsma, Heinz

    2016-01-01

    With the increased brilliance of state-of-the-art synchrotron radiation sources and the advent of free-electron lasers (FELs) enabling revolutionary science with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon sensitivity with low probability of false positives and (multi)-megapixels. At DESY, one ongoing development project - in collaboration with RAL/STFC, Elettra Sincrotrone Trieste, Diamond, and Pohang Accelerator Laboratory - is the CMOS-based soft X-ray imager PERCIVAL. PERCIVAL is a monolithic active-pixel sensor back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to preliminary specifications, the roughly 10 cm × 10 cm, 3.5k × 3.7k monolithic sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within 27 µm pixels to measure 1 to ∼100000 (500 eV) simultaneously arriving photons. DESY is also leading the development of the AGIPD, a high-speed detector based on hybrid pixel technology intended for use at the European XFEL. This system is being developed in collaboration with PSI, University of Hamburg, and University of Bonn. The AGIPD allows single-pulse imaging at 4.5 MHz frame rate into a 352-frame buffer, with a dynamic range allowing single-photon detection and detection of more than 10000 photons at 12.4 keV in the same image. Modules of 65k pixels each are configured to make up (multi)megapixel cameras. This review describes the AGIPD and the PERCIVAL concepts and systems, including some recent results and a summary of their current status. It also gives a short overview over other FEL-relevant developments where the Photon Science Detector Group at DESY is involved. PMID:26698052

  13. Preliminary detector design ST862-prototype neutron detector

    SciTech Connect

    Miller, S.D.; Affinito, J.D.; Sisk, D.R.

    1993-12-01

    The detection of fast neutrons has been accomplished with commercially available liquid scintillators in detectors. Liquid scintillators discriminate fast neutrons from gamma radiation by discarding pulses with short decay constants. However, pulse-timing methods require expensive, bulky equipment and a high degree of technical sophistication in the user. Researchers at Pacific Northwest Laboratory have developed a new class of scintillating material, polymerizing crystals of CaF{sub 2}(Eu) and liquid acrylate monomers with matched indexes of refraction. The new detectors avoid the pulse-timing methods of liquid detectors and allow detectors to be large and relatively light. Fast neutrons can be discriminated from gamma radiation solely on the basis of pulse height (i.e., energy deposition). Using these detectors, a hand-held neutron detection instrument is proposed that can operate on battery power for 8 to 12 hours and be easily used in field conditions for surveying vehicles and structures.

  14. PET detector modules based on novel detector technologies

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.; Budinger, T.F.

    1994-05-01

    A successful PET detector module must identify 511 keV photons with: high efficiency (>85%), high spatial resolution (<5 mm fwhm), low cost (<$600 / in{sup 2}), low dead time (<4 {mu}s in{sup 2}), good timing resolution (<5 ns fwhm for conventional PET, <200 ps fwhm for time of flight), and good energy resolution (<100 keV fwhm), where these requirements are listed in decreasing order of importance. The ``high efficiency`` requirement also implies that the detector modules must pack together without inactive gaps. Several novel and emerging radiation detector technologies could improve the performance of PET detectors. Avalanche photodiodes, PIN photodiodes, metal channel dynode photomultiplier tubes, and new scintillators all have the potential to improve PET detectors significantly.

  15. Multispectral Focal Plane Assembly for Satellite Remote Sensing

    SciTech Connect

    Rienstra, J.; Ballard, M.

    1997-12-31

    Sandia National Laboratories and several subsystem contractors are developing technologies applicable to multispectral remote sensing from space. A proof of concept multispectral sensor system is under development. The objective of building this sensor is to demonstrate and evaluate multispectral imaging technologies for various applications. The three major subsystems making up the sensor are the focal plane assembly (FPA), the cryocooler, and the telescope. This paper covers the focal plane assembly, which is the basis of the sensor system. The focal plane assembly includes sensor chip assemblies, optical filters, and a vacuum enclosure with cold shielding. Linear detector arrays provide spatial resolution in the cross-track direction for a pushbroom imager configuration. The optical filters define 15 spectral bands in a range from 0.45 microns to 10.7 microns. All the detector arrays are mounted on a single focal plane and are designed to operate at 75 K. No beam splitters are used. The four spectral bands covering the visible to near infrared have roughly 2400 pixels each, and the remaining 11 spectral bands have roughly 600 pixels each. The average total rate of multispectral data from the FPA is approximately 15.4 megapixels per second. At the time this paper is being written, the multispectral focal plane assembly is in the fabrication phase. A thermal/mechanical mockup has been built and tested for the vibration environment and to determine the thermal load. Some of the sensor chip assemblies and filters have been built and tested. Several notable features of the design are covered in the paper as well as preliminary test data.

  16. Temperature profile detector

    DOEpatents

    Tokarz, R.D.

    1983-10-11

    Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

  17. Laser pulse detector

    DOEpatents

    Mashburn, Douglas N.; Akerman, M. Alfred

    1981-01-01

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  18. Laser pulse detector

    DOEpatents

    Mashburn, D.N.; Akerman, M.A.

    1979-08-13

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  19. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, Victor

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.

  20. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  1. Physics and Detector Simulations

    SciTech Connect

    Graf, N.

    2004-10-11

    The simulation tools session was divided into three main areas of concentration: physics event simulation and event generators, full detector simulation and event reconstruction frameworks, and fast simulation and physics analysis frameworks. Although the primary purpose of the plenary session talk was to summarize the contents of the parallel session presentations for those unable to attend, the intent of this write-up is to attempt to point out features in common among the ongoing efforts and present a personal view of some goals for the future. The reader is directed to the individual write-ups for details on the specific topics discussed during the workshop. A brief summary and synthesis of topics presented during the tools parallel sessions.

  2. Temperature profile detector

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles.

  3. Event counting alpha detector

    DOEpatents

    Bolton, R.D.; MacArthur, D.W.

    1996-08-27

    An electrostatic detector is disclosed for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure. 6 figs.

  4. Fiber optic fluid detector

    DOEpatents

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  5. Fiber optic fluid detector

    DOEpatents

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  6. Volatile chemical reagent detector

    DOEpatents

    Chen, Liaohai; McBranch, Duncan; Wang, Rong; Whitten, David

    2004-08-24

    A device for detecting volatile chemical reagents based on fluorescence quenching analysis that is capable of detecting neutral electron acceptor molecules. The device includes a fluorescent material, a contact region, a light source, and an optical detector. The fluorescent material includes at least one polymer-surfactant complex. The polymer-surfactant complex is formed by combining a fluorescent ionic conjugated polymer with an oppositely charged surfactant. The polymer-surfactant complex may be formed in a polar solvent and included in the fluorescent material as a solution. Alternatively, the complex may be included in the fluorescent material as a thin film. The use of a polymer-surfactant complex in the fluorescent material allows the device to detect both neutral and ionic acceptor molecules. The use of a polymer-surfactant complex film allows the device and the fluorescent material to be reusable after exposing the fluorescent material to a vacuum for limited time.

  7. Event counting alpha detector

    DOEpatents

    Bolton, Richard D.; MacArthur, Duncan W.

    1996-01-01

    An electrostatic detector for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure.

  8. Imaging alpha particle detector

    DOEpatents

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  9. Imaging alpha particle detector

    DOEpatents

    Anderson, David F.

    1985-01-01

    A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  10. Porous material neutron detector

    DOEpatents

    Diawara, Yacouba; Kocsis, Menyhert

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  11. Neutron detector and fabrication method thereof

    DOEpatents

    Bhandari, Harish B.; Nagarkar, Vivek V.; Ovechkina, Olena E.

    2016-08-16

    A neutron detector and a method for fabricating a neutron detector. The neutron detector includes a photodetector, and a solid-state scintillator operatively coupled to the photodetector. In one aspect, the method for fabricating a neutron detector includes providing a photodetector, and depositing a solid-state scintillator on the photodetector to form a detector structure.

  12. Neutrinos from the NuMI beamline in the MiniBooNE detector

    SciTech Connect

    Aguilar-Arevalo, Alexis A.

    2006-07-11

    With the startup of the NuMI beamline early in 2005, the MiniBooNE detector has the unique opportunity to be the first user of an off-axis neutrino beam (110 mrad off-axis). MiniBooNE is assembling a rich sample of neutrino interactions from this source.

  13. Space-based detectors

    NASA Astrophysics Data System (ADS)

    Sesana, A.; Weber, W. J.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Ward, H.; Fitzsimons, E. D.; Bryant, J.; Cruise, A. M.; Dixon, G.; Hoyland, D.; Smith, D.; Bogenstahl, J.; McNamara, P. W.; Gerndt, R.; Flatscher, R.; Hechenblaikner, G.; Hewitson, M.; Gerberding, O.; Barke, S.; Brause, N.; Bykov, I.; Danzmann, K.; Enggaard, A.; Gianolio, A.; Vendt Hansen, T.; Heinzel, G.; Hornstrup, A.; Jennrich, O.; Kullmann, J.; Møller-Pedersen, S.; Rasmussen, T.; Reiche, J.; Sodnik, Z.; Suess, M.; Armano, M.; Sumner, T.; Bender, P. L.; Akutsu, T.; Sathyaprakash, B. S.

    2014-12-01

    The parallel session C5 on Space-Based Detectors gave a broad overview over the planned space missions related to gravitational wave detection. Overviews of the revolutionary science to be expected from LISA was given by Alberto Sesana and Sasha Buchman. The launch of LISA Pathfinder (LPF) is planned for 2015. This mission and its payload "LISA Technology Package" will demonstrate key technologies for LISA. In this context, reference masses in free fall for LISA, and gravitational physics in general, was described by William Weber, laser interferometry at the pico-metre level and the optical bench of LPF was presented by Christian Killow and the performance of the LPF optical metrology system by Paul McNamara. While LPF will not yet be sensitive to gravitational waves, it may nevertheless be used to explore fundamental physics questions, which was discussed by Michele Armano. Some parts of the LISA technology that are not going to be demonstrated by LPF, but under intensive development at the moment, were presented by Oliver Jennrich and Oliver Gerberding. Looking into the future, Japan is studying the design of a mid-frequency detector called DECIGO, which was discussed by Tomotada Akutsu. Using atom interferometry for gravitational wave detection has also been recently proposed, and it was critically reviewed by Peter Bender. In the nearer future, the launch of GRACE Follow-On (for Earth gravity observation) is scheduled for 2017, and it will include a Laser Ranging Interferometer as technology demonstrator. This will be the first inter-spacecraft laser interferometer and has many aspects in common with the LISA long arm, as discussed by Andrew Sutton.

  14. Interconnect and bonding techniques for pixelated X-ray and gamma-ray detectors

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Veale, M. C.; Duarte, D. D.; Bell, S. J.; Wilson, M. D.; Lipp, J. D.; Seller, P.

    2015-02-01

    In the last decade, the Detector Development Group at the Technology Department of the Science and Technology Facilities Council (STFC), U.K., established a variety of fabrication and bonding techniques to build pixelated X-ray and γ-ray detector systems such as the spectroscopic X-ray imaging detector HEXITEC [1]. The fabrication and bonding of such devices comprises a range of processes including material surface preparation, photolithography, stencil printing, flip-chip and wire bonding of detectors to application-specific integrated circuits (ASIC). This paper presents interconnect and bonding techniques used in the fabrication chain for pixelated detectors assembled at STFC. For this purpose, detector dies (~ 20× 20 mm2) of high quality, single crystal semiconductors, such as cadmium zinc telluride (CZT) are cut to the required thickness (up to 5mm). The die surfaces are lapped and polished to a mirror-finish and then individually processed by electroless gold deposition combined with photolithography to form 74× 74 arrays of 200 μ m × 200 μ m pixels with 250 μ m pitch. Owing to a lack of availability of CZT wafers, lithography is commonly carried out on individual detector dies which represents a significant technical challenge as the edge of the pixel array and the surrounding guard band lies close to the physical edge of the crystal. Further, such detector dies are flip-chip bonded to readout ASIC using low-temperature curing silver-loaded epoxy so that the stress between the bonded detector die and the ASIC is minimized. In addition, this reduces crystalline modifications of the detector die that occur at temperature greater than 150\\r{ }C and have adverse effects on the detector performance. To allow smaller pitch detectors to be bonded, STFC has also developed a compression cold-weld indium bump bonding technique utilising bumps formed by a photolithographic lift-off technique.

  15. Micro-channel plate detector

    SciTech Connect

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.

  16. ACCESS: Detector Control and Performance

    NASA Astrophysics Data System (ADS)

    Morris, Matthew J.; Kaiser, M.; McCandliss, S. R.; Rauscher, B. J.; Kimble, R. A.; Kruk, J. W.; Wright, E. L.; Bohlin, R.; Kurucz, R. L.; Riess, A. G.; Pelton, R.; Deustua, S. E.; Dixon, W. V.; Sahnow, D. J.; Mott, D. B.; Wen, Y.; Benford, D. J.; Gardner, J. P.; Feldman, P. D.; Moos, H. W.; Lampton, M.; Perlmutter, S.; Woodgate, B. E.

    2014-01-01

    ACCESS, Absolute Color Calibration Experiment for Standard Stars, is a series of rocket-borne sub-orbital missions and ground-based experiments that will enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 to 1.7 micron bandpass (companion poster, Kaiser et al.). The flight detector and detector spare have been selected and integrated with their electronics and flight mount. The controller electronics have been flight qualified. Vibration testing to launch loads and thermal vacuum testing of the detector, mount, and housing have been successfully performed. Further improvements to the flight controller housing have been made. A cryogenic ground test system has been built. Dark current and read noise tests have been performed, yielding results consistent with the initial characterization tests of the detector performed by Goddard Space Flight Center’s Detector Characterization Lab (DCL). Detector control software has been developed and implemented for ground testing. Performance and integration of the detector and controller with the flight software will be presented. NASA APRA sounding rocket grant NNX08AI65G supports this work.

  17. Fast Detector Simulation Using Lelaps

    SciTech Connect

    Langeveld, W

    2004-08-20

    Lelaps is a fast detector simulation program which reads StdHep generator files and produces SIO or LCIO output files. It swims particles through detectors taking into account magnetic fields, multiple scattering and dE/dx energy loss. It simulates parameterized showers in EM and hadronic calorimeters and supports gamma conversions and decays.

  18. Detector simulation for the SSC

    SciTech Connect

    Price, L.E.

    1991-01-01

    Detector simulation activities for SSC detector designs are described. Topics include the extensive work to date using existing programs. In addition, the several efforts to extend the capabilities of today's programs are described, as the practical and experimental use of new computing platforms for simulation. Finally, progress in the field is compared with the recommendations of the first workshop in this series in 1987.

  19. Detector Arrays For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1988-01-01

    Paper describes status of program for developing integrated infrared detectors for astronomy. Program covers variety of detectors, including extrinsic silicon, extrinsic germanium, and indium antimonide devices with hybrid silicon multiplexers. Paper notes for arrays to reach background noise limit in cryogenic telescope, continued reductions in readout noise and dark current needed.

  20. School Assemblies: The Lost Art.

    ERIC Educational Resources Information Center

    Beach, Daniel R.

    1979-01-01

    Guidelines and suggestions are offered for successful school assemblies. The school assembly should be a positive event; an occasion for developing unity, group loyalty, and desirable audience habits. (Author/MLF)