Sample records for photoactivation experiments selected

  1. METHODS FOR DEVELOPING THE NEXT GENERATION OF AQUATIC LIFE CRITERIA

    EPA Science Inventory

    New experiments and studies are being conducted on selected criteria uncertainties that cannot be addressed with current knowledge, including the importance of dietary metal exposure to toxic response and the significance of increased toxicity from photo-activation of PAHs in nat...

  2. Photoactivable antibody binding protein: site-selective and covalent coupling of antibody.

    PubMed

    Jung, Yongwon; Lee, Jeong Min; Kim, Jung-won; Yoon, Jeongwon; Cho, Hyunmin; Chung, Bong Hyun

    2009-02-01

    Here we report new photoactivable antibody binding proteins, which site-selectively capture antibodies and form covalent conjugates with captured antibodies upon irradiation. The proteins allow the site-selective tagging and/or immobilization of antibodies with a highly preferred orientation and omit the need for prior antibody modifications. The minimal Fc-binding domain of protein G, a widely used antibody binding protein, was genetically and chemically engineered to contain a site-specific photo cross-linker, benzophenone. In addition, the domain was further mutated to have an enhanced Fc-targeting ability. This small engineered protein was successfully cross-linked only to the Fc region of the antibody without any nonspecific reactivity. SPR analysis indicated that antibodies can be site-selectively biotinylated through the present photoactivable protein. Furthermore, the system enabled light-induced covalent immobilization of antibodies directly on various solid surfaces, such as those of glass slides, gold chips, and small particles. Antibody coupling via photoactivable antibody binding proteins overcomes several limitations of conventional approaches, such as random chemical reactions or reversible protein binding, and offers a versatile tool for the field of immunosensors.

  3. In vivo marking of single cells in chick embryos using photoactivation of GFP.

    PubMed

    Stark, D A; Kulesa, P M

    2005-10-01

    Selective marking of a single cell within a living embryo is often difficult due to the inaccuracy and invasiveness of standard techniques. This unit describes a minimally invasive optical protocol that uses 405-nm laser light to photoactivate a variant of green fluorescent protein (PAGFP). This method takes advantage of the accessibility of the chick embryo to inject PAGFP into a region of interest and uses electroporation to deliver the construct into cells. This unit describes in detail how single and small groups of cells (n<10) that express PAGFP can be made visually distinguishable from the host population using the photoactivation process. Included is a means to maximize the fluorescence increase due to photoactivated GFP signal and to reduce photobleaching. Briefly outlined are previously developed chick culture and time-lapse imaging techniques to allow for the subsequent monitoring of photoactivated cell migratory behaviors. The technique has the potential to be a less-invasive, accurate tool for in vivo studies that involve following cell lineage and cell migration.

  4. Method for improved selectivity in photo-activation and detection of molecular diagnostic agents

    DOEpatents

    Wachter, Eric A.; Fisher, Walter G.; Dees, H. Craig

    1998-01-01

    A method for the imaging of a particular volume of plant or animal tissue, wherein the plant or animal tissue contains at least one photo-active molecular agent. The method includes the steps of treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of the photo-active molecular agent contained in the particular volume of the plant or animal tissue, photo-activating at least one of the at least one photo-active molecular agent in the particular volume of the plant or animal tissue, thereby producing at least one photo-activated molecular agent, wherein the at least one photo-activated molecular agent emits energy, detecting the energy emitted by the at least one photo-activated molecular agent, and producing a detected energy signal which is characteristic of the particular volume of plant or animal tissue. The present invention is also a method for the imaging of a particular volume of material, wherein the material contains at least one photo-active molecular agent.

  5. Method for improved selectivity in photo-activation and detection of molecular diagnostic agents

    DOEpatents

    Wachter, E.A.; Fisher, W.G.; Dees, H.C.

    1998-11-10

    A method for the imaging of a particular volume of plant or animal tissue, wherein the plant or animal tissue contains at least one photo-active molecular agent. The method includes the steps of treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of the photo-active molecular agent contained in the particular volume of the plant or animal tissue, photo-activating at least one of the at least one photo-active molecular agent in the particular volume of the plant or animal tissue, thereby producing at least one photo-activated molecular agent, wherein the at least one photo-activated molecular agent emits energy, detecting the energy emitted by the at least one photo-activated molecular agent, and producing a detected energy signal which is characteristic of the particular volume of plant or animal tissue. The present invention is also a method for the imaging of a particular volume of material, wherein the material contains at least one photo-active molecular agent. 13 figs.

  6. Methods for improved selectivity in photo-activation and detection of molecular diagnostic agents

    DOEpatents

    Wachter, Eric A [Oak Ridge, TN; Fisher, Walter G [Knoxville, TN; Dees, H Craig [Knoxville, TN

    2008-03-18

    A method for the imaging of a particular volume of plant or animal tissue, wherein the plant or animal tissue contains at least one photo-active molecular agent. The method comprises the steps of treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of the photo-active molecular agent contained in the particular volume of the plant or animal tissue, photo-activating at least one of the at least one photo-active molecular agent in the particular volume of the plant or animal tissue, thereby producing at least one photo-activated molecular agent, wherein the at least one photo-activated molecular agent emits energy, detecting the energy emitted by the at least one photo-activated molecular agent, and producing a detected energy signal which is characteristic of the particular volume of plant or animal tissue. The present invention also provides a method for the imaging of a particular volume of material, wherein the material contains at least one photo-active molecular agent.

  7. Two-photon Photoactivation to Measure Histone Exchange Dynamics in Plant Root Cells.

    PubMed

    Rosa, Stefanie; Shaw, Peter

    2015-10-20

    Chromatin-binding proteins play a crucial role in chromatin structure and gene expression. Direct binding of chromatin proteins both maintains and regulates transcriptional states. It is therefore important to study the binding properties of these proteins in vivo within the natural environment of the nucleus. Photobleaching, photoactivation and photoconversion (photoswitching) can provide a non-invasive experimental approach to study dynamic properties of living cells and organisms. We used photoactivation to determine exchange dynamics of histone H2B in plant stem cells of the root (Rosa et al. , 2014). The stem cells of the root are located in the middle of the tissue, which made it impossible to carry out photoactivation of sufficiently small and well-defined sub-cellular regions with conventional laser illumination in the confocal microscope, mainly because scattering and refraction effects within the root tissue dispersed the focal spot and caused photoactivation of too large a region. We therefore used 2-photon activation, which has much better inherent resolution of the illuminated region. This is because the activation depends on simultaneous absorption of two or more photons, which in turns depends on the square (or higher power) of the intensity-a much sharper peak. In this protocol we will describe the experimental procedure to perform two-photon photoactivation experiments and the corresponding image analysis. This protocol can be used for nuclear proteins tagged with photoactivable GFP (PA-GFP) expressed in root tissues.

  8. LABORATORY AND FIELD STUDIES TO EVALUATE RISKS TO LARVAL FISH FROM PHOTO-ACTIVATED TOXICITY OF PAHS

    EPA Science Inventory

    Hazard from photo-activation of PAHs has been well documented in aquatic organisms. Far less certain is the degree to which risk actually occurs in the field. This presentation outlines a series of laboratory and field experiments conducted to better understand the dosimetry and ...

  9. Computational Analysis of Hybrid Two-Photon Absorbers with Excited State Absorption

    DTIC Science & Technology

    2007-03-01

    level. This hybrid arrangement creates a complex dynamical system in which the electron carrier concentration of every photo-activated energy level...spatiotemporal details of the electron population densities of each photo-activated energy level as well as the pulse shape in space and time. The main...experiments at low input energy . However, further additions must be done to the calculation of the optical path for high input energy . 1 15. SUBJECT TERM

  10. Optimized two-color super resolution imaging of Drp1 during mitochondrial fission with a slow-switching Dronpa variant.

    PubMed

    Rosenbloom, Alyssa B; Lee, Sang-Hyuk; To, Milton; Lee, Antony; Shin, Jae Yen; Bustamante, Carlos

    2014-09-09

    We studied the single-molecule photo-switching properties of Dronpa, a green photo-switchable fluorescent protein and a popular marker for photoactivated localization microscopy. We found the excitation light photoactivates as well as deactivates Dronpa single molecules, hindering temporal separation and limiting super resolution. To resolve this limitation, we have developed a slow-switching Dronpa variant, rsKame, featuring a V157L amino acid substitution proximal to the chromophore. The increased steric hindrance generated by the substitution reduced the excitation light-induced photoactivation from the dark to fluorescent state. To demonstrate applicability, we paired rsKame with PAmCherry1 in a two-color photoactivated localization microscopy imaging method to observe the inner and outer mitochondrial membrane structures and selectively labeled dynamin related protein 1 (Drp1), responsible for membrane scission during mitochondrial fission. We determined the diameter and length of Drp1 helical rings encircling mitochondria during fission and showed that, whereas their lengths along mitochondria were not significantly changed, their diameters decreased significantly. These results suggest support for the twistase model of Drp1 constriction, with potential loss of subunits at the helical ends.

  11. Site-specific photoconjugation of antibodies using chemically synthesized IgG-binding domains.

    PubMed

    Perols, Anna; Karlström, Amelie Eriksson

    2014-03-19

    Site-specific labeling of antibodies can be performed using the immunoglobulin-binding Z domain, derived from staphylococcal protein A (SpA), which has a well-characterized binding site in the Fc region of antibodies. By introducing a photoactivable probe in the Z domain, a covalent bond can be formed between the Z domain and the antibody by irradiation with UV light. The aim of this study was to improve the conjugation yield for labeling of different subclasses of IgG having different sequence composition, using a photoactivated Z domain variant. Four different variants of the Z domain (Z5BPA, Z5BBA, Z32BPA, and Z32BBA) were synthesized to investigate the influence of the position of the photoactivable probe and the presence of a flexible linker between the probe and the protein. For two of the variants, the photoreactive benzophenone group was introduced as part of an amino acid side chain by incorporation of the unnatural amino acid benzoylphenylalanine (BPA) during peptide synthesis. For the other two variants, the photoreactive benzophenone group was attached via a flexible linker by coupling of benzoylbenzoic acid (BBA) to the ε-amino group of a selectively deprotected lysine residue. Photoconjugation experiments using human IgG1, mouse IgG1, and mouse IgG2A demonstrated efficient conjugation for all antibodies. It was shown that differences in linker length had a large impact on the conjugation efficiency for labeling of mouse IgG1, whereas the positioning of the photoactivable probe in the sequence of the protein had a larger effect for mouse IgG2A. Conjugation to human IgG1 was only to a minor extent affected by position or linker length. For each subclass of antibody, the best variant tested using a standard conjugation protocol resulted in conjugation efficiencies of 41-66%, which corresponds to on average approximately one Z domain attached to each antibody. As a combination of the two best performing variants, Z5BBA and Z32BPA, a Z domain variant with two photoactivable probes (Z5BBA32BPA) was also synthesized with the aim of targeting a wider panel of antibody subclasses and species. This new reagent could efficiently couple to all antibody subclasses that were targeted by the single benzophenone-labeled Z domain variants, with conjugation efficiencies of 26-41%.

  12. High pressure chemistry of red phosphorus by photoactivated simple molecules

    NASA Astrophysics Data System (ADS)

    Ceppatelli, Matteo; Bini, Roberto; Fanetti, Samuele; Caporali, Maria; Peruzzini, Maurizio

    2013-06-01

    High pressure (HP) is very effective in reducing intermolecular distances and inducing unexpected chemical reactions. In particular the photoactivation of the reactants in HP conditions can lead to very efficient and selective processes. The chemistry of phosphorus is currently based on the white molecular form. The red polymeric allotrope, despite more stable and much less toxic, has not attracted much attention so far. However, switching from the white to the red form would benefit any industrial procedure, especially from an environmental point of view. On the other side, water and ethanol are renewable, environmental friendly and largely available molecules, usable as reactants and photoactivators in HP conditions. Here we report a study on the HP photoinduced reactivity of red phosphorus with water and ethanol, showing the possibility of very efficient and selective processes, leading to molecular hydrogen and valuable phosphorus compounds. The reactions have been studied by means of FTIR and Raman spectroscopy and pressure has been generated using DAC and SAC. HP reactivity has been activated by the two-photon absorption of near-UV wavelengths and occured in total absence of solvents, catalysts and radical initiators, at room T and mild pressure conditions (0.2-1.5 GPa).

  13. A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways

    NASA Astrophysics Data System (ADS)

    Spring, Bryan Q.; Bryan Sears, R.; Zheng, Lei Zak; Mai, Zhiming; Watanabe, Reika; Sherwood, Margaret E.; Schoenfeld, David A.; Pogue, Brian W.; Pereira, Stephen P.; Villa, Elizabeth; Hasan, Tayyaba

    2016-04-01

    Nanoscale drug delivery vehicles can facilitate multimodal therapies of cancer by promoting tumour-selective drug release. However, few are effective because cancer cells develop ways to resist and evade treatment. Here, we introduce a photoactivable multi-inhibitor nanoliposome (PMIL) that imparts light-induced cytotoxicity in synchrony with a photoinitiated and sustained release of inhibitors that suppress tumour regrowth and treatment escape signalling pathways. The PMIL consists of a nanoliposome doped with a photoactivable chromophore (benzoporphyrin derivative, BPD) in the lipid bilayer, and a nanoparticle containing cabozantinib (XL184)—a multikinase inhibitor—encapsulated inside. Near-infrared tumour irradiation, following intravenous PMIL administration, triggers photodynamic damage of tumour cells and microvessels, and simultaneously initiates release of XL184 inside the tumour. A single PMIL treatment achieves prolonged tumour reduction in two mouse models and suppresses metastatic escape in an orthotopic pancreatic tumour model. The PMIL offers new prospects for cancer therapy by enabling spatiotemporal control of drug release while reducing systemic drug exposure and associated toxicities.

  14. Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome.

    PubMed

    Piatkevich, Kiryl D; Subach, Fedor V; Verkhusha, Vladislav V

    2013-01-01

    The ability to modulate the fluorescence of optical probes can be used to enhance signal-to-noise ratios for imaging within highly autofluorescent environments, such as intact tissues and living organisms. Here, we report two bacteriophytochrome-based photoactivatable near-infrared fluorescent proteins, named PAiRFP1 and PAiRFP2. PAiRFPs utilize haem-derived biliverdin, ubiquitous in mammalian tissues, as the chromophore. Initially weakly fluorescent PAiRFPs undergo photoconversion into a highly fluorescent state with excitation/emission at 690/717 nm following a brief irradiation with far-red light. After photoactivation, PAiRFPs slowly revert back to initial state, enabling multiple photoactivation-relaxation cycles. Low-temperature optical spectroscopy reveals several intermediates involved in PAiRFP photocycles, which all differ from that of the bacteriophytochrome precursor. PAiRFPs can be photoactivated in a spatially selective manner in mouse tissues, and optical modulation of their fluorescence allows for substantial contrast enhancement, making PAiRFPs advantageous over permanently fluorescent probes for in vivo imaging conditions of high autofluorescence and low signal levels.

  15. High pressure chemistry of red phosphorus by photo-activated simple molecules

    NASA Astrophysics Data System (ADS)

    Ceppatelli, M.; Fanetti, S.; Bini, R.; Caporali, M.; Peruzzini, M.

    2014-05-01

    High pressure (HP) is very effective in reducing intermolecular distances and inducing unexpected chemical reactions. In addition the photo-activation of the reactants in HP conditions can lead to very efficient and selective processes. The chemistry of phosphorus is currently based on the white molecular form. The red polymeric allotrope, despite more stable and much less toxic, has not attracted much attention so far. However, switching from the white to the red form would benefit any industrial procedure, especially from an environmental point of view. On the other side, water and ethanol are renewable, environmental friendly and largely available molecules, usable as reactants and photo-activators in HP conditions. Here we report a study on the HP photo-induced reactivity of red phosphorus with water and ethanol, showing the possibility of very efficient and selective processes, leading to molecular hydrogen and valuable phosphorus compounds. The reactions have been studied by means of FTIR and Raman spectroscopy and pressure has been generated using membrane Diamond (DAC) and Sapphire (SAC) anvil cells. HP reactivity has been activated by the two-photon absorption of near-UV wavelengths and occurred in total absence of solvents, catalysts and radical initiators, at room T and mild pressure conditions (0.2-1.5 GPa).

  16. The combined effects of real or simulated microgravity and red-light photoactivation on plant root meristematic cells.

    PubMed

    Valbuena, Miguel A; Manzano, Aránzazu; Vandenbrink, Joshua P; Pereda-Loth, Veronica; Carnero-Diaz, Eugénie; Edelmann, Richard E; Kiss, John Z; Herranz, Raúl; Medina, F Javier

    2018-06-08

    Red light is able to compensate for deleterious effects of microgravity on root cell growth and proliferation. Partial gravity combined with red light produces differential signals during the early plant development. Light and gravity are environmental cues used by plants throughout evolution to guide their development. We have investigated the cross-talk between phototropism and gravitropism under altered gravity in space. The focus was on the effects on the meristematic balance between cell growth and proliferation, which is disrupted under microgravity in the dark. In our spaceflight experiments, seedlings of three Arabidopsis thaliana genotypes, namely the wild type and mutants of phytochrome A and B, were grown for 6 days, including red-light photoactivation for the last 2 days. Apart from the microgravity and the 1g on-board control conditions, fractional gravity (nominally 0.1g, 0.3g, and 0.5g) was created with on-board centrifuges. In addition, a simulated microgravity (random positioning machine, RPM) experiment was performed on ground, including both dark-grown and photostimulated samples. Photoactivated samples in spaceflight and RPM experiments showed an increase in the root length consistent with phototropic response to red light, but, as gravity increased, a gradual decrease in this response was observed. Uncoupling of cell growth and proliferation was detected under microgravity in darkness by transcriptomic and microscopic methods, but red-light photoactivation produced a significant reversion. In contrast, the combination of red light and partial gravity produced small but consistent variations in the molecular markers of cell growth and proliferation, suggesting an antagonistic effect between light and gravity signals at the early plant development. Understanding these parameters of plant growth and development in microgravity will be important as bioregenerative life support systems for the colonization of the Moon and Mars.

  17. Purification and preconcentration of genomic DNA from whole cell lysates using photoactivated polycarbonate (PPC) microfluidic chips

    PubMed Central

    Witek, Małgorzata A.; Llopis, Shawn D.; Wheatley, Abigail; McCarley, Robin L.; Soper, Steven A.

    2006-01-01

    We discuss the use of a photoactivated polycarbonate (PPC) microfluidic chip for the solid-phase, reversible immobilization (SPRI) and purification of genomic DNA (gDNA) from whole cell lysates. The surface of polycarbonate was activated by UV radiation resulting in a photo-oxidation reaction, which produced a channel surface containing carboxylate groups. The gDNA was selectively captured on this photoactivated surface in an immobilization buffer, which consisted of 3% polyethylene glycol, 0.4 M NaCl and 70% ethanol. The methodology reported herein is similar to conventional SPRI in that surface-confined carboxylate groups are used for the selective immobilization of DNA; however, no magnetic beads or a magnetic field are required. As observed by UV spectroscopy, a load of ∼7.6 ± 1.6 µg/ml of gDNA was immobilized onto the PPC bed. The recovery of DNA following purification was estimated to be 85 ± 5%. The immobilization and purification assay using this PPC microchip could be performed within ∼25 min as follows: (i) DNA immobilization ∼6 min, (ii) chip washout with ethanol 10 min, and (iii) drying and gDNA desorption ∼6 min. The PPC microchip could also be used for subsequent assays with no substantial loss in recovery, no observable carryover and no need for ‘reactivation’ of the PC surface with UV light. PMID:16757572

  18. Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds

    DOEpatents

    Dinh, Tuan V.

    1996-01-01

    A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate therethrough to the photo-activator and thereby form the complex.

  19. Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds

    DOEpatents

    Dinh, T.V.

    1996-06-11

    A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate there through to the photo-activator and thereby form the complex. 23 figs.

  20. Comparison of Riboflavin and Toluidine Blue O as Photosensitizers for Photoactivated Disinfection on Endodontic and Periodontal Pathogens In Vitro.

    PubMed

    Nielsen, Henrik Krarup; Garcia, Javier; Væth, Michael; Schlafer, Sebastian

    2015-01-01

    Photoactivated disinfection has a strong local antimicrobial effect. In the field of dentistry it is an emerging adjunct to mechanical debridement during endodontic and periodontal treatment. In the present study, we investigate the effect of photoactivated disinfection using riboflavin as a photosensitizer and blue LED light for activation, and compare it to photoactivated disinfection with the widely used combination of toluidine blue O and red light. Riboflavin is highly biocompatible and can be activated with LED lamps at hand in the dental office. To date, no reports are available on the antimicrobial effect of photoactivated disinfection using riboflavin/blue light on oral microorganisms. Planktonic cultures of eight organisms frequently isolated from periodontal and/or endodontic lesions (Aggregatibacter actinomycetemcomitans, Candida albicans, Enterococcus faecalis, Escherischia coli, Lactobacillus paracasei, Porphyromonas gingivalis, Prevotella intermedia and Propionibacterium acnes) were subjected to photoactivated disinfection with riboflavin/blue light and toluidine blue O/red light, and survival rates were determined by CFU counts. Within the limited irradiation time of one minute, photoactivated disinfection with riboflavin/blue light only resulted in minor reductions in CFU counts, whereas full kills were achieved for all organisms when using toluidine blue O/red light. The black pigmented anaerobes P. gingivalis and P. intermedia were eradicated completely by riboflavin/blue light, but also by blue light treatment alone, suggesting that endogenous chromophores acted as photosensitizers in these bacteria. On the basis of our results, riboflavin cannot be recommended as a photosensitizer used for photoactivated disinfection of periodontal or endodontic infections.

  1. The effect of bleaching gel and (940 nm and 980 nm) diode lasers photoactivation on intrapulpal temperature and teeth whitening efficiency.

    PubMed

    Al-Karadaghi, Tamara S; Al-Saedi, Asmaa A; Al-Maliky, Mohammed A; Mahmood, Ali S

    2016-12-01

    This in vitro study aimed to investigate the whitening efficacy of 940 nm and 980 nm diode laser photoactivation in tooth bleaching by analysing pulp chamber temperature, as well as the change in tooth colour. Root canals of thirty extracted human lower premolars were prepared. Laserwhite* 20 bleaching agent containing 38% of hydrogen peroxide was photoactivated with 7 W output power of 940 nm and 980 nm diode lasers for 120 s. Bleaching gel reduced 27-29% of the temperature from reaching the pulp chamber. For shade assessment, only the groups photoactivated using diode lasers showed statistically significant differences from control group P < 0.001. Within the studied parameters, both 940 nm and 980 nm diode lasers produced a safe pulp temperature increase. Diode laser photoactivation of bleaching gel resulted in more efficient teeth whitening. Photoactivation with 940 nm diode laser yielded the highest change in colour with only minor increase in pulp chamber temperature. © 2016 Australian Society of Endodontology Inc.

  2. The effect of photo-activated glazes on the microhardness of acrylic baseplate resins.

    PubMed

    Emmanouil, J K; Kavouras, P; Kehagias, Th

    2002-01-01

    A comparative investigation of acrylic denture base surface microhardness, induced through glazing with different photo-activated liquids. Thermopolymerized acrylic resin Paladon 65 (Kulzer) was used for this study. The samples were mechanically thinned by silicon carbide grinding papers and finally, mechanically polished by alumina pastes. The samples were then glazed with Palaseal, Plaquit and Lightplast-Lack photo-activated liquids. Microhardness tests were carried out via a Zeiss optical microscope equipped with an Anton Paar microhardness tester fitted with a Knoop indenter. Microhardness testing performed on surfaces glazed by Plaquit, Lightplast-Lack, and Palaseal photo-activated liquids showed enhanced microhardness values compared to the mechanically polished acrylic resin denture base material. Comparative microhardness tests performed on acrylic base resin treated with photo-activated acrylic glazes showed that all increases the surface microhardness. The enhancement of surface microhardness of acrylic denture bases suggests that they are likely to resist wear during service.

  3. Sealing Penetrating Eye Injuries with Photoactivated Bonding

    DTIC Science & Technology

    2012-09-01

    light treatment parameters for sealing a variety of penetrating eye wounds and have demonstrated that these repair procedures are safe to ocular...AWARD NUMBER: W81XWH-09-2-0050 TITLE: Sealing Penetrating Eye Injuries with Photoactivated...TYPE Final 3. DATES COVERED (From - To) 1 Sep 2009-31 Aug 2012 4. TITLE AND SUBTITLE Sealing Penetrating Eye Injuries with Photoactivated Bonding

  4. Rhodopsin photoactivation dynamics revealed by quasi-elastic neutron scattering

    DOE PAGES

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchithranga M.d.c.; ...

    2015-01-27

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision under dim light conditions. During rhodopsin photoactivation, the chromophore retinal undergoes cis-trans isomerization, and subsequently dissociates from the protein yielding the opsin apoprotein [1]. What are the changes in protein dynamics that occur during the rhodopsin photoactivation process? Here, we studied the microscopic dynamics of the dark-state rhodopsin and the ligand-free opsin using quasi-elastic neutron scattering (QENS). The QENS technique tracks the individual hydrogen atom motions in the protein molecules, because the neutron scattering cross-section of hydrogen is much higher than other atoms [2-4]. We used protein (rhodopsin/opsin) samples with CHAPSmore » detergent hydrated with heavy water. The solvent signal is suppressed due to the heavy water, so that only the signals from proteins and detergents are detected. The activation of proteins is confirmed at low temperatures up to 300 K by the mean-square displacement (MSD) analysis. Our QENS experiments conducted at temperatures ranging from 220 K to 300 K clearly indicate that the protein dynamic behavior increases with temperature. The relaxation time for the ligand-bound protein rhodopsin was longer compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which forms a band around the protein molecule in the micelle. Unlike the protein, the CHAPS detergent manifests localized motions that are the same as in the bulk empty micelles. Furthermore QENS provides unique understanding of the key dynamics involved in the activation of the GPCR involved in the visual process.« less

  5. Synthesis of gold nanochains via photoactivation technique and their catalytic applications.

    PubMed

    Sinha, Arun Kumar; Basu, Mrinmoyee; Sarkar, Sougata; Pradhan, Mukul; Pal, Tarasankar

    2013-05-15

    The article reports a simple photoactivation technique for the synthesis of chain like assembly of spherical Au nanocrystals using a nontoxic biochemical, β-cyclodextrin under ~365 nm UV-light irradiation. Under UV irradiation, β-cyclodextrin acts as a reducing as well as capping agent and eventually becomes a stabilizing linker for Au nanoparticles. The UV-visible spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and X-ray photoelectron spectroscopic techniques are employed to systematically characterize the Au nanochains. Additionally, it is shown that the Au nanocrystals act as an effective catalyst for the reduction in nitrobenzene to aniline and methylene blue to leuco methylene blue in presence of suitable reducing agent. The catalytic reduction reactions and kinetic parameters are evaluated from UV-visible spectroscopy. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. 3-dimensional imaging at nanometer resolutions

    DOEpatents

    Werner, James H.; Goodwin, Peter M.; Shreve, Andrew P.

    2010-03-09

    An apparatus and method for enabling precise, 3-dimensional, photoactivation localization microscopy (PALM) using selective, two-photon activation of fluorophores in a single z-slice of a sample in cooperation with time-gated imaging for reducing the background radiation from other image planes to levels suitable for single-molecule detection and spatial location, are described.

  7. Impact of adhesive and photoactivation method on sealant integrity and polymer network formation.

    PubMed

    Borges, Boniek Castillo Dutra; Pereira, Fabrício Lopes da Rocha; Alonso, Roberta Caroline Bruschi; Braz, Rodivan; Montes, Marcos Antônio Japiassú Resende; Pinheiro, Isauremi Vieira de Assunção; Santos, Alex José Souza dos

    2012-01-01

    We evaluated the influence of photoactivation method and hydrophobic resin (HR) application on the marginal and internal adaptation, hardness (KHN), and crosslink density (CLD) of a resin-based fissure sealant. Model fissures were created in bovine enamel fragments (n = 10) and sealed using one of the following protocols: no adhesive system + photoactivation of the sealant using continuous light (CL), no adhesive system + photoactivation of the sealant using the soft-start method (SS), HR + CL, or HR + SS. Marginal and internal gaps and KHN were assessed after storage in water for 24 h. The CLD was indirectly assessed by repeating the KHN measurement after 24 h of immersion in 100% ethanol. There was no difference among the samples with regard to marginal or internal adaptation. The KHN and CLD were similar for samples cured using either photoactivation method. Use of a hydrophobic resin prior to placement of fissure sealants and curing the sealant using the soft-start method may not provide any positive influence on integrity or crosslink density.

  8. Delayed photo-activation and addition of thio-urethane: Impact on polymerization kinetics and stress of dual-cured resin cements.

    PubMed

    Faria-E-Silva, André L; Pfeifer, Carmem S

    2017-10-01

    1) to determine the moment during the redox polymerization reaction of dual cure cements at which to photo-activate the material in order to reduce the polymerization stress, and 2) to evaluate possible synergistic effects between adding chain transfer agents and delayed photo-activation. The two pastes of an experimental dual-cure material were mixed, and the polymerization kinetics of the redox phase was followed. The moment when the material reached its maximum rate of redox polymerization (MRRP) of cement was determined. The degree of conversion (DC) and maximum rates of polymerization (Rp max ) were assessed for materials where: the photoactivation immediately followed material mixing, at MRRP, 1min before and 1min after MRRP. Thio-urethane (TU) additives were synthesized and added to the cement (20% wt), which was then cured under the same conditions. The polymerization kinetics was evaluated for both cements photo-activated immediately or at MRRP, followed by measurements of polymerization stress, flexural strength (FS) and elastic modulus (EM). Knoop hardness was measured before and after ethanol storage. Photo-activating the cement at or after MRRP reduced the Rp max and the polymerization stress. Addition of TU promoted additional and more significant reduction, while not affecting the Rp max . Greater hardness loss was observed for cements with TU, but the final hardness was similar for all experimental conditions. Addition of TU slightly reduced the EM and did not affect the FS. Delayed photo-activation and addition of TU significantly reduce the polymerization stress of dual-cured cements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Light Activated Cell Migration in Synthetic Extracellular Matrices

    PubMed Central

    Guo, Qiongyu; Wang, Xiaobo; Tibbitt, Mark W.; Anseth, Kristi S.; Montell, Denise J.; Elisseeff, Jennifer H.

    2012-01-01

    Synthetic extracellular matrices provide a framework in which cells can be exposed to defined physical and biological cues. However no method exists to manipulate single cells within these matrices. It is desirable to develop such methods in order to understand fundamental principles of cell migration and define conditions that support or inhibit cell movement within these matrices. Here, we present a strategy for manipulating individual mammalian stem cells in defined synthetic hydrogels through selective optical activation of Rac, which is an intracellular signaling protein that plays a key role in cell migration. Photoactivated cell migration in synthetic hydrogels depended on mechanical and biological cues in the biomaterial. Real-time hydrogel photodegradation was employed to create geometrically defined channels and spaces in which cells could be photoactivated to migrate. Cell migration speed was significantly higher in the photo-etched channels and cells could easily change direction of movement compared to the bulk hydrogels. PMID:22889487

  10. Effect of Photoactivation Timing on the Mechanical Properties of Resin Cements and Bond Strength of Fiberglass Post to Root Dentin.

    PubMed

    Pereira, R D; Valdívia, A D C M; Bicalho, A A; Franco, S D; Tantbirojn, D; Versluis, A; Soares, C J

    2015-01-01

    This study tested the hypothesis that photoactivation timing and resin cement affect mechanical properties and bond strength of fiberglass posts to root dentin at different depths. Fiberglass posts (Exacto, Angelus) were luted with RelyX Unicem (3M ESPE), Panavia F 2.0 (Kuraray), or RelyX ARC (3M ESPE) using three photoactivation timings: light curing immediately, after three minutes, or after five minutes. Push-out bonding strength, PBS (n=10) was measured on each root region (coronal, middle, apical). The elastic modulus (E) and Vickers hardness (VHN) of the cement layer along the root canal were determined using dynamic indentation (n=5). A strain-gauge test was used to measure post-gel shrinkage of each cement (n=10). Residual shrinkage stress was assessed with finite element analysis. Data were analyzed with two-way analysis of variance in a split-plot arrangement and a Tukey test (α=0.05). Multiple linear regression analysis was used to determine the influence of study factors. The five-minute delay photoactivation timing significantly increased the PBS for all resin cements evaluated. The PBS decreased significantly from coronal to apical root canal regions. The mean values for E and VHN increased significantly with the delayed photoactivation for RelyX Unicem and decreased from coronal to apical root regions for all resin cements with the immediate-curing timing. The PBS of fiber posts to root dentin, E, and VHN values were affected by the root canal region, photoactivation timing, and resin cement type. Shrinkage stress values decreased gradually with delayed photoactivation for all the cements.

  11. Photodynamic Nanomedicine in the Treatment of Solid Tumors: Perspectives and Challenges

    PubMed Central

    Master, Alyssa; Livingston, Megan; Gupta, Anirban Sen

    2013-01-01

    Photodynamic therapy (PDT) is a promising treatment strategy where activation of photosensitizer drugs with specific wavelengths of light results in energy transfer cascades that ultimately yield cytotoxic reactive oxygen species which can render apoptotic and necrotic cell death. Without light the photosensitizer drugs are minimally toxic and the photoactivating light itself is non-ionizing. Therefore, harnessing this mechanism in tumors provides a safe and novel way to selectively eradicate tumor with reduced systemic toxicity and side effects on healthy tissues. For successful PDT of solid tumors, it is necessary to ensure tumor-selective delivery of the photosensitizers, as well as, the photoactivating light and to establish dosimetric correlation of light and drug parameters to PDT-induced tumor response. To this end, the nanomedicine approach provides a promising way towards enhanced control of photosensitizer biodistribution and tumor-selective delivery. In addition, refinement of nanoparticle designs can also allow incorporation of imaging agents, light delivery components and dosimetric components. This review aims at describing the current state-of-the-art regarding nanomedicine strategies in PDT, with a comprehensive narrative of the research that has been carried out in vitro and in vivo, with a discussion of the nanoformulation design aspects and a perspective on the promise and challenges of PDT regarding successful translation into clinical application. PMID:23474028

  12. Effect of Hyp delivery system on PKCα activity: What will happen after pkcα gene silencing and Hyp photo-activation?

    NASA Astrophysics Data System (ADS)

    Misuth, Matus; Joniova, Jaroslava; Ferencakova, Michaela; Miskovsky, Pavol; Nadova, Zuzana

    2015-08-01

    Low density lipoproteins (LDL) are considered as suitable natural in vivo delivery system for hydrophobic photosensitizers (pts) such as hypericin (Hyp) and it was shown that over expression of LDL-receptors in tumor cells can be used for specific targeting. Activation of pts by irradiation results in a formation of reactive oxygen species (ROS) at the place of light application and starts destructive mechanism. PKCα plays a key role in the cell survival and its overexpression was observed in glioma cell lines. In the present study we aim to present the effectivity of the pts delivery in the glioma cells and consequences of silencing pkcα gene on cell death/survival after Hyp photo-activation. Pts can be delivered through two pathways: endocytosis - when cells are incubated with LDL/Hyp complex and Hyp transport through cellular membrane without any carrier. Preliminary results show that incubation of cells with or without LDL leads to PKCα activation. Photo-activated Hyp seems to be more effective in terms of apoptosis induction when compared to photo-activated LDL/Hyp complex. We have evaluated the influence of photo-activated Hyp on cell death in non-transfected and transfected (PKCα-) human glioma cells (U87-MG). Level of ROS production and type of cell death was notably affected by silencing pkca gene resulting in significant increase of necrosis after Hyp photo-activation.

  13. Dose rate estimation around a 60Co gamma-ray irradiation source by means of 115mIn photoactivation.

    PubMed

    Murataka, Ayanori; Endo, Satoru; Kojima, Yasuaki; Shizuma, Kiyoshi

    2010-01-01

    Photoactivation of nuclear isomer (115m)In with a halflife of 4.48 h occurs by (60)Co gamma-ray irradiation. This is because the resonance gamma-ray absorption occurs at 1078 keV level for stable (115)In, and that energy gamma-rays are produced by Compton scattering of (60)Co primary gamma-rays. In this work, photoactivation of (115m)In was applied to estimate the dose rate distribution around a (60)Co irradiation source utilizing a standard dose rate taken by alanine dosimeter. The (115m)In photoactivation was measured at 10 to 160 cm from the (60)Co source. The derived dose rate distribution shows a good agreement with both alanine dosimeter data and Monte Carlo simulation. It is found that angular distribution of the dose rate along a circumference at radius 2.8 cm from the central axis shows +/- 10% periodical variation reflecting the radioactive strength of the source rods, but less periodic distribution at radius 10 and 20 cm. The (115m)In photoactivation along the vertical direction in the central irradiation port strongly depends on the height and radius as indicated by Monte Carlo simulation. It is demonstrated that (115m)In photoactivation is a convenient method to estimate the dose rate distribution around a (60)Co source.

  14. Halogen and LED light curing of composite: temperature increase and Knoop hardness.

    PubMed

    Schneider, L F; Consani, S; Correr-Sobrinho, L; Correr, A B; Sinhoreti, M A

    2006-03-01

    This study assessed the Knoop hardness and temperature increase provided by three light curing units when using (1) the manufacturers' recommended times of photo-activation and (2) standardizing total energy density. One halogen--XL2500 (3M/ESPE)--and two light-emitting diode (LED) curing units--Freelight (3M/ESPE) and Ultrablue IS (DMC)--were used. A type-K thermocouple registered the temperature change produced by the composite photo-activation in a mold. Twenty-four hours after the photo-activation procedures, the composite specimens were submitted to a hardness test. Both temperature increase and hardness data were submitted to ANOVA and Tukey's test (5% significance). Using the first set of photo-activation conditions, the halogen unit produced a statistically higher temperature increase than did both LED units, and the Freelight LED resulted in a lower hardness than did the other curing units. When applying the second set of photo-activation conditions, the two LED units produced statistically greater temperature increase than did the halogen unit, whereas there were no statistical differences in hardness among the curing units.

  15. Conjugates of a Photoactivated Rhodamine with Biopolymers for Cell Staining

    PubMed Central

    Zaitsev, Sergei Yu.; Shaposhnikov, Mikhail N.; Solovyeva, Daria O.; Solovyeva, Valeria V.; Rizvanov, Albert A.

    2014-01-01

    Conjugates of the photoactivated rhodamine dyes with biopolymers (proteins, polysaccharides, and nucleic acids) are important tools for microscopic investigation of biological tissue. In this study, a precursor of the photoactivated fluorescent dye (PFD) has been successfully used for staining of numerous mammalian cells lines and for conjugate formation with chitosan (“Chitosan-PFD”) and histone H1 (“Histone H1.3-PFD”). The intensive fluorescence has been observed after photoactivation of these conjugates inside cells (A431, HaCaT, HEK239, HBL-100, and MDCK). Developed procedures and obtained data are important for further application of novel precursors of fluorescent dyes (“caged” dyes) for microscopic probing of biological objects. Thus, the synthesized “Chitosan-PFD” and “Histone H1-PFD” have been successfully applied in this study for intracellular transport visualization by fluorescent microscopy. PMID:25383365

  16. Photoactivation of imatinib-antibody conjugate using low-energy visible light from Ru(ii)-polypyridyl cages.

    PubMed

    Rohrabaugh, Thomas N; Rohrabaugh, Ashley M; Kodanko, Jeremy J; White, Jessica K; Turro, Claudia

    2018-05-17

    Ru(ii)-polypyridyl cages with sterically bulky bidentate ligands provide efficient photochemical release of the anticancer drug imatinib using low energy visible light, imparting spatiotemporal control over drug bioavailability. The light-activated drug release is maintained when the Ru(ii) cage is covalently coupled to an antibody, which is expected to localize selectively on the tumor.

  17. Energetic aspects of the light activation of two chloroplast enzymes: fructose-1,6-bisphosphatase and NADP-malate dehydrogenase.

    PubMed

    Miginiac-Maslow, M; Jacquot, J P; Droux, M

    1985-09-01

    The light energy requirements for photoactivation of two chloroplast enzymes: fructose-1,6-bisphosphatase and NADP-malate dehydrogenase were studied in a reconstituted chloroplast system. This system comprised isolated pea thylakoids, ferredoxin (Fd), ferredoxin-thioredoxin reductase (FTR) thioredoxinm and f (Tdm, Tdf) and the photoactivatable enzyme. Light-saturation curves of the photoactivation process were established with once washed thylakoids which did not require the addition of Td for light activation. They exhibited a plateau at 10 W·m(-2) under nitrogen and 50 W·m(-2) under air, while NADP photoreduction was saturated at 240 W·m(-2). Cyclic and pseudocyclic phosphorylations saturated at identical levels as enzyme photoactivations. All these observations suggested that the shift of the light saturation plateau towards higher values under air was due to competing oxygen-dependent reactions. With twice washed thylakoids, which required Td for enzyme light-activation, photophosphorylation was stimulated under N2 by the addition of the components of the photoactivation system. Its rate increased with increasing Td concentrations, just as did the enzyme photoactivation rate, while varying the target enzyme concentration had only a weak effect. Considering that Td concentrations were in a large excess over target enzyme concentrations, it may be assumed that the observed ATP synthesis was essentially dependent on the rate of Td reduction.Under air, Fd-dependent pseudo-cyclic photophosphorylation was not stimulated by the addition of the other enzyme photoactivation components, suggesting that an important site of action of O2 was located at the level of Fd.

  18. Influence of photoactivation method and mold for restoration on the Knoop hardness of resin composite restorations.

    PubMed

    Brandt, William Cunha; Silva-Concilio, Lais Regiane; Neves, Ana Christina Claro; de Souza-Junior, Eduardo Jose Carvalho; Sinhoreti, Mario Alexandre Coelho

    2013-09-01

    The aim of this study was to evaluate in vitro the Knoop hardness in the top and bottom of composite photo activated by different methods when different mold materials were used. Z250 (3M ESPE) and XL2500 halogen unit (3M ESPE) were used. For hardness test, conical restorations were made in extracted bovine incisors (tooth mold) and also metal mold (approximately 2 mm top diameter × 1.5 mm bottom diameter × 2 mm in height). Different photoactivation methods were tested: high-intensity continuous (HIC), low-intensity continuous (LIC), soft-start, or pulse-delay (PD), with constant radiant exposure. Knoop readings were performed on top and bottom restoration surfaces. Data were submitted to two-way ANOVA and Tukey's test (p = 0.05). On the top, regardless of the mold used, no significant difference in the Knoop hardness (Knoop hardness number, in kilograms-force per square millimeter) was observed between the photoactivation methods. On the bottom surface, the photoactivation method HIC shows higher means of hardness than LIC when tooth and metal were used. Significant differences of hardness on the top and in the bottom were detected between tooth and metal. The photoactivation method LIC and the material mold can interfere in the hardness values of composite restorations.

  19. Method for improved selectivity in photo-activation of molecular agents

    DOEpatents

    Fisher, Walter G.; Wachter, Eric A.; Dees, H. Craig

    1998-01-01

    A method for the treatment of a particular volume of plant or animal tissue comprising the steps of treating the plant or animal tissue with at least one photo-active molecular agent, wherein the particular volume of the plant or animal tissue retains at least a portion of the at least one photo-active molecular agent, and then treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of at least one of the at least one photo-active molecular agent retained in the particular volume of the plant or animal tissue, wherein the at least one photo-active molecular agent becomes active in the particular volume of the plant or animal tissue. There is also disclosed a method for the treatment of cancer in plant or animal tissue and a method for producing at least one photo-activated molecular agent in a particular volume of a material.

  20. Method for improved selectivity in photo-activation of molecular agents

    DOEpatents

    Fisher, Walter G.; Wachter, Eric A.; Dees, H. Craig

    1999-01-01

    A method for the treatment of a particular volume of plant or animal tissue comprising the steps of treating the plant or animal tissue with at least one photo-active molecular agent, wherein the particular volume of the plant or animal tissue retains at least a portion of the at least one photo-active molecular agent, and then treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of at least one of the at least one photo-active molecular agent retained in the particular volume of the plant or animal tissue, wherein the at least one photo-active molecular agent becomes active in the particular volume of the plant or animal tissue. There is also disclosed a method for the treatment of cancer in plant or animal tissue and a method for producing at least one photo-activated molecular agent in a particular volume of a material.

  1. Method for improved selectivity in photo-activation of molecular agents

    DOEpatents

    Fisher, W.G.; Wachter, E.A.; Dees, H.C.

    1998-11-03

    A method for the treatment of a particular volume of plant or animal tissue comprising the steps of treating the plant or animal tissue with at least one photo-active molecular agent, wherein the particular volume of the plant or animal tissue retains at least a portion of the at least one photo-active molecular agent, and then treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of at least one of the at least one photo-active molecular agent retained in the particular volume of the plant or animal tissue, wherein the at least one photo-active molecular agent becomes active in the particular volume of the plant or animal tissue. There is also disclosed a method for the treatment of cancer in plant or animal tissue and a method for producing at least one photo-activated molecular agent in a particular volume of a material. 23 figs.

  2. DIRECT AND PHOTOACTIVATED TOXICITY OF A COMPLEX PETROLEUM MIXTURE: A COMPARISON OF SOLUBILIZATION METHODS

    EPA Science Inventory

    This work addresses several issues associated with the toxicity of a complex petroleum mixture (combined kerosene/diesel and crude oil), including developmental effects and early lifestage mortality, method of solubilization, and potential photo-activated and photo-modified toxic...

  3. EARLY LIFESTAGE EFFECTS OF PAH PHOTOACTIVATED TOXICITY IN MEDAKA (ORYZIAS LATIPES)

    EPA Science Inventory

    Two critical questions have yet to be sufficiently addressed for risk assessments of photoactived PAH toxicity to be completed. These include standrdized methods for quantifying the dose of activating radiation received by target organisms, and the potential for early lifestage e...

  4. Scientific Computation Application Partnerships in Materials and Chemical Sciences, Charge Transfer and Charge Transport in Photoactivated Systems, Developing Electron-Correlated Methods for Excited State Structure and Dynamics in the NWChem Software Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, Christopher J.

    Charge transfer and charge transport in photoactivated systems are fundamental processes that underlie solar energy capture, solar energy conversion, and photoactivated catalysis, both organometallic and enzymatic. We developed methods, algorithms, and software tools needed for reliable treatment of the underlying physics for charge transfer and charge transport, an undertaking with broad applicability to the goals of the fundamental-interaction component of the Department of Energy Office of Basic Energy Sciences and the exascale initiative of the Office of Advanced Scientific Computing Research.

  5. PHOTOACTIVATED TOXICITY IN AMPHIPODS COLLECTED FROM POLYCYCLIC AROMATIC HYDROCARBON-CONTAMINATED SITES

    EPA Science Inventory

    The risk of photo-activated PAH toxicity in contaminated aquatic systems has not been well characterized. To better indicate this potential, amphipods (Gammarus spp.) were collected from two PAH contaminated sites (Hog Island and USX), as well as a reference site (Chipmunk Cove)...

  6. PHOTOACTIVATED POLYCYCLIC AROMATIC HYDROCARBON TOXICITY IN MEDAKA (ORYZIAS LATIPES) EMBRYOS: RELEVANCE TO ENVIRONMENTAL RISK IN CONTAMINATED SITES

    EPA Science Inventory

    The hazard for photoactivated toxicity of polycyclic aromatic hydrocarbons (PAHs) has been clearly demonstrated; however, to our knowledge, the risk in contaminated systems has not been characterized. To address this question, a median lethal dose (LD50) for fluoranthene photoa...

  7. LINKING EXPOSURE AND DOSIMETRY TO RISK FROM PHOTO-ACTIVATED TOXICITY OF PAHS

    EPA Science Inventory

    Hazard from photo-activation of PAHs has been well documented in aquatic organisms. Far less certain is the degree to which risk actually occurs in the field. One of the key difficulties in understanding this risk lies in quantifying exposure/dosimetry for both PAHs and UV radiat...

  8. Can extended photoactivation time of resin-based fissure sealer materials improve ultimate tensile strength and decrease water sorption/solubility?

    PubMed

    Borges, Boniek Castillo Dutra; Souza-Júnior, Eduardo José; Catelan, Anderson; Paulillo, Luís Alexandre Maffei Sartini; Aguiar, Flávio Henrique Baggio

    2012-10-01

    This study aimed to evaluate the impact of extended photoactivation time on ultimate tensile strength (UTS), water sorption (WS) and solubility (WSB) of resin-based materials used as fissure-sealants. A fissure-sealant (Fluroshield) and a flowable composite (Permaflo) polymerized for 20 and 60 seconds were tested. For UTS, 20 hourglass shaped samples were prepared representing two materials and two photoactivation time (n=5). After 24-h dry-storage, samples were tested in tension using a universal testing machine at a cross-head speed of 0.5 mm/min (UTS was calculated in MPa). For WS and WSB, 20 disks with 5 mm diameter and 1 mm height (n=5) were prepared and volumes were calculated (mm(3)). They were transferred to desiccators until a constant mass was obtained (m1) and were subsequently immersed in distilled water until no alteration in mass was detected (m2). Samples were reconditioned to constant mass in desiccators (m3). WS and WSB were determined using the equations m2-m3/V and m1-m3/V, respectively. Data were subjected to two-way ANOVA and Tukey's HSD test (P<.05). There was no significant difference between materials or photoactivation times for the UTS and WS. Permaflo presented lower but negative WSB compared to Fluroshield. Extended photoactivation time did not improve the physical properties tested. Fluroshield presented physical properties that were similar to or better than Permaflo.

  9. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy

    NASA Astrophysics Data System (ADS)

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-01

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.

  10. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy.

    PubMed

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-09

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.

  11. DNA mismatch-specific targeting and hypersensitivity of mismatch-repair-deficient cells to bulky rhodium(III) intercalators

    PubMed Central

    Hart, Jonathan R.; Glebov, Oleg; Ernst, Russell J.; Kirsch, Ilan R.; Barton, Jacqueline K.

    2006-01-01

    Mismatch repair (MMR) is critical to maintaining the integrity of the genome, and deficiencies in MMR are correlated with cancerous transformations. Bulky rhodium intercalators target DNA base mismatches with high specificity. Here we describe the application of bulky rhodium intercalators to inhibit cellular proliferation differentially in MMR-deficient cells compared with cells that are MMR-proficient. Preferential inhibition by the rhodium complexes associated with MMR deficiency is seen both in a human colon cancer cell line and in normal mouse fibroblast cells; the inhibition of cellular proliferation depends strictly on the MMR deficiency of the cell. Furthermore, our assay of cellular proliferation is found to correlate with DNA mismatch targeting by the bulky metallointercalators. It is the Δ-isomer that is active both in targeting base mismatches and in inhibiting DNA synthesis. Additionally, the rhodium intercalators promote strand cleavage at the mismatch site with photoactivation, and we observe that the cellular response is enhanced with photoactivation. Targeting DNA mismatches may therefore provide a cell-selective strategy for chemotherapeutic design. PMID:17030786

  12. Enhancement of photoassembly of the functionally active water-oxidizing complex in Mn-depleted photosystem II membranes upon transition to anaerobic conditions.

    PubMed

    Khorobrykh, A A; Yanykin, D V; Klimov, V V

    2016-10-01

    It has been shown earlier (Khorobrykh and Klimov, 2015) that molecular oxygen is directly involved in the general mechanism of the donor side photoinhibition of photosystem II (PSII) membranes. In the present work the effect of oxygen on photoassembly ("photoactivation") of the functionally active inorganic core of the water-oxidizing complex (WOC) in Mn-depleted PSII preparations (apo-WOC-PSII) in the presence of exogenous Mn(2+), Ca(2+) as well as ferricyanide was investigated. It was revealed that the efficiency of the photoassembly of the WOC was considerably increased upon removal of oxygen from the medium during photoactivation procedure using the enzymatic oxygen trap or argon flow. The lowering of O2 concentration from 250μM to 75μM, 10μM and near 0μM results in 29%, 71% and 92%, respectively, stimulation of the rate of O2 evolution measured after the photoactivation. The increase in the intensity of light used during the photoactivation was accompanied by a decrease of both the efficiency of photoassembly of the WOC and the stimulation effect of removal of O2 (that may be due to the enhancement of the processes leading to the photodamage to PSII). It is concluded that the enhancement in photoactivation of oxygen-evolving activity of apo-WOC-PSII induced by oxygen removal from the medium is due to the suppression of the donor side photoinhibition of PSII in which molecular oxygen can be involved. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Mitochondria-specific photoactivation to monitor local sphingosine metabolism and function

    PubMed Central

    Feng, Suihan; Harayama, Takeshi; Montessuit, Sylvie; David, Fabrice PA; Winssinger, Nicolas; Martinou, Jean-Claude

    2018-01-01

    Photoactivation ('uncaging’) is a powerful approach for releasing bioactive small-molecules in living cells. Current uncaging methods are limited by the random distribution of caged molecules within cells. We have developed a mitochondria-specific photoactivation method, which permitted us to release free sphingosine inside mitochondria and thereafter monitor local sphingosine metabolism by lipidomics. Our results indicate that sphingosine was quickly phosphorylated into sphingosine 1-phosphate (S1P) driven by sphingosine kinases. In time-course studies, the mitochondria-specific uncaged sphingosine demonstrated distinct metabolic patterns compared to globally-released sphingosine, and did not induce calcium spikes. Our data provide direct evidence that sphingolipid metabolism and signaling are highly dependent on the subcellular location and opens up new possibilities to study the effects of lipid localization on signaling and metabolic fate. PMID:29376826

  14. Helix formation in arrestin accompanies recognition of photoactivated rhodopsin.

    PubMed

    Feuerstein, Sophie E; Pulvermüller, Alexander; Hartmann, Rudolf; Granzin, Joachim; Stoldt, Matthias; Henklein, Peter; Ernst, Oliver P; Heck, Martin; Willbold, Dieter; Koenig, Bernd W

    2009-11-17

    Binding of arrestin to photoactivated phosphorylated rhodopsin terminates the amplification of visual signals in photoreceptor cells. Currently, there is no crystal structure of a rhodopsin-arrestin complex available, although structures of unbound rhodopsin and arrestin have been determined. High-affinity receptor binding is dependent on distinct arrestin sites responsible for recognition of rhodopsin activation and phosphorylation. The loop connecting beta-strands V and VI in rod arrestin has been implicated in the recognition of active rhodopsin. We report the structure of receptor-bound arrestin peptide Arr(67-77) mimicking this loop based on solution NMR data. The peptide binds photoactivated rhodopsin in the unphosphorylated and phosphorylated form with similar affinities and stabilizes the metarhodopsin II photointermediate. A largely alpha-helical conformation of the receptor-bound peptide is observed.

  15. Method of bistable optical information storage using antiferroelectric phase PLZT ceramics

    DOEpatents

    Land, Cecil E.

    1990-01-01

    A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field.

  16. Method of bistable optical information storage using antiferroelectric phase PLZT ceramics

    DOEpatents

    Land, C.E.

    1990-07-31

    A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field. 8 figs.

  17. Acceleration Of Wound Healing Ny Photodynamic Therapy

    DOEpatents

    Hasan, Tayyaba; Hamblin, Michael R.; Trauner, Kenneth

    2000-08-22

    Disclosed is a method for accelerating wound healing in a mammal. The method includes identifying an unhealed wound site or partially-healed wound site in a mammal; administering a photosensitizer to the mammal; waiting for a time period wherein the photosensitizer reaches an effective tissue concentration at the wound site; and photoactivating the photosensitizer at the wound site. The dose of photodynamic therapy is selected to stimulate the production of one or more growth factor by cells at the wound site, without causing tissue destruction.

  18. Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors.

    PubMed

    Sommer, Martha E; Hofmann, Klaus Peter; Heck, Martin

    2011-03-04

    In the rod cell of the retina, arrestin is responsible for blocking signaling of the G-protein-coupled receptor rhodopsin. The general visual signal transduction model implies that arrestin must be able to interact with a single light-activated, phosphorylated rhodopsin molecule (Rho*P), as would be generated at physiologically relevant low light levels. However, the elongated bi-lobed structure of arrestin suggests that it might be able to accommodate two rhodopsin molecules. In this study, we directly addressed the question of binding stoichiometry by quantifying arrestin binding to Rho*P in isolated rod outer segment membranes. We manipulated the "photoactivation density," i.e. the percentage of active receptors in the membrane, with the use of a light flash or by partially regenerating membranes containing phosphorylated opsin with 11-cis-retinal. Curiously, we found that the apparent arrestin-Rho*P binding stoichiometry was linearly dependent on the photoactivation density, with one-to-one binding at low photoactivation density and one-to-two binding at high photoactivation density. We also observed that, irrespective of the photoactivation density, a single arrestin molecule was able to stabilize the active metarhodopsin II conformation of only a single Rho*P. We hypothesize that, although arrestin requires at least a single Rho*P to bind the membrane, a single arrestin can actually interact with a pair of receptors. The ability of arrestin to interact with heterogeneous receptor pairs composed of two different photo-intermediate states would be well suited to the rod cell, which functions at low light intensity but is routinely exposed to several orders of magnitude more light.

  19. Sealing Penetrating Eye Injuries Using Photoactivated Bonding

    DTIC Science & Technology

    2011-09-01

    of the rabbit pushed the viscoeastic out of the eye during the laser phase of the treatment . This interfered with the bonding of the amnion...ANSI Std. Z39.18 Sealing Penetrating Eye Injuries Using Photoactivated Bonding W81XWH-09-2-0059 1 Sep 2010 - 31 Aug 2011Annual01-09-2011 Anthony...called PTB) with the potential to decrease vision loss and ocular complications in warfighters sustaining penetrating eye injuries. Scope: In

  20. Two-photon-based photoactivation in live zebrafish embryos.

    PubMed

    Russek-Blum, Niva; Nabel-Rosen, Helit; Levkowitz, Gil

    2010-12-24

    Photoactivation of target compounds in a living organism has proven a valuable approach to investigate various biological processes such as embryonic development, cellular signaling and adult physiology. In this respect, the use of multi-photon microscopy enables quantitative photoactivation of a given light responsive agent in deep tissues at a single cell resolution. As zebrafish embryos are optically transparent, their development can be monitored in vivo. These traits make the zebrafish a perfect model organism for controlling the activity of a variety of chemical agents and proteins by focused light. Here we describe the use of two-photon microscopy to induce the activation of chemically caged fluorescein, which in turn allows us to follow cell's destiny in live zebrafish embryos. We use embryos expressing a live genetic landmark (GFP) to locate and precisely target any cells of interest. This procedure can be similarly used for precise light induced activation of proteins, hormones, small molecules and other caged compounds.

  1. Simultaneous quantification of actin monomer and filament dynamics with modeling-assisted analysis of photoactivation

    PubMed Central

    Kapustina, Maryna; Read, Tracy-Ann

    2016-01-01

    ABSTRACT Photoactivation allows one to pulse-label molecules and obtain quantitative data about their behavior. We have devised a new modeling-based analysis for photoactivatable actin experiments that simultaneously measures properties of monomeric and filamentous actin in a three-dimensional cellular environment. We use this method to determine differences in the dynamic behavior of β- and γ-actin isoforms, showing that both inhabit filaments that depolymerize at equal rates but that β-actin exists in a higher monomer-to-filament ratio. We also demonstrate that cofilin (cofilin 1) equally accelerates depolymerization of filaments made from both isoforms, but is only required to maintain the β-actin monomer pool. Finally, we used modeling-based analysis to assess actin dynamics in axon-like projections of differentiating neuroblastoma cells, showing that the actin monomer concentration is significantly depleted as the axon develops. Importantly, these results would not have been obtained using traditional half-time analysis. Given that parameters of the publicly available modeling platform can be adjusted to suit the experimental system of the user, this method can easily be used to quantify actin dynamics in many different cell types and subcellular compartments. PMID:27831495

  2. Conformational dynamics of activation for the pentameric complex of dimeric G protein – coupled receptor and heterotrimeric G protein

    PubMed Central

    Orban, Tivadar; Jastrzebska, Beata; Gupta, Sayan; Wang, Benlian; Miyagi, Masaru; Chance, Mark R.; Palczewski, Krzysztof

    2012-01-01

    Summary Photoactivation of rhodopsin (Rho), a G protein-coupled receptor (GPCR), causes conformational changes that provide a specific binding site for the rod G protein, Gt. In this work we employed structural mass spectrometry (MS) techniques to elucidate the structural changes accompanying transition of ground state Rho to photoactivated Rho (Rho*) and in the pentameric complex between dimeric Rho* and heterotrimeric Gt. Observed differences in hydroxyl radical labeling and deuterium uptake between Rho* and the (Rho*)2-Gt complex suggest that photoactivation causes structural relaxation of Rho following its initial tightening upon Gt coupling. In contrast, nucleotide-free Gt in the complex is significantly more accessible to deuterium uptake allowing it to accept GTP and mediating complex dissociation. Thus, we provide direct evidence that in the critical step of signal amplification, Rho* and Gt exhibit dissimilar conformational changes when they are coupled in the (Rho*)2-Gt complex. PMID:22579250

  3. Local and global structural drivers for the photoactivation of the orange carotenoid protein

    DOE PAGES

    Gupta, Sayan; Guttman, Miklos; Leverenz, Ryan L.; ...

    2015-09-18

    Here, photoprotective mechanisms are of fundamental importance for the survival of photosynthetic organisms. In cyanobacteria, the orange carotenoid protein (OCP), when activated by intense blue light, binds to the light-harvesting antenna and triggers the dissipation of excess captured light energy. Using a combination of small angle X-ray scattering (SAXS), X-ray hydroxyl radical footprinting, circular dichroism, and H/D exchange mass spectrometry, we identified both the local and global structural changes in the OCP upon photoactivation. SAXS and H/D exchange data showed that global tertiary structural changes, including complete domain dissociation, occur upon photoactivation, but with alteration of secondary structure confined tomore » only the N terminus of the OCP. Microsecond radiolytic labeling identified rearrangement of the H-bonding network associated with conserved residues and structural water molecules. Collectively, these data provide experimental evidence for an ensemble of local and global structural changes, upon activation of the OCP, that are essential for photoprotection.« less

  4. Lysosome acidification by photoactivated nanoparticles restores autophagy under lipotoxicity.

    PubMed

    Trudeau, Kyle M; Colby, Aaron H; Zeng, Jialiu; Las, Guy; Feng, Jiazuo H; Grinstaff, Mark W; Shirihai, Orian S

    2016-07-04

    In pancreatic β-cells, liver hepatocytes, and cardiomyocytes, chronic exposure to high levels of fatty acids (lipotoxicity) inhibits autophagic flux and concomitantly decreases lysosomal acidity. Whether impaired lysosomal acidification is causally inhibiting autophagic flux and cellular functions could not, up to the present, be determined because of the lack of an approach to modify lysosomal acidity. To address this question, lysosome-localizing nanoparticles are described that, upon UV photoactivation, enable controlled acidification of impaired lysosomes. The photoactivatable, acidifying nanoparticles (paNPs) demonstrate lysosomal uptake in INS1 and mouse β-cells. Photoactivation of paNPs in fatty acid-treated INS1 cells enhances lysosomal acidity and function while decreasing p62 and LC3-II levels, indicating rescue of autophagic flux upon acute lysosomal acidification. Furthermore, paNPs improve glucose-stimulated insulin secretion that is reduced under lipotoxicity in INS1 cells and mouse islets. These results establish a causative role for impaired lysosomal acidification in the deregulation of autophagy and β-cell function under lipotoxicity. © 2016 Trudeau et al.

  5. Local and global structural drivers for the photoactivation of the orange carotenoid protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Sayan; Guttman, Miklos; Leverenz, Ryan L.

    Here, photoprotective mechanisms are of fundamental importance for the survival of photosynthetic organisms. In cyanobacteria, the orange carotenoid protein (OCP), when activated by intense blue light, binds to the light-harvesting antenna and triggers the dissipation of excess captured light energy. Using a combination of small angle X-ray scattering (SAXS), X-ray hydroxyl radical footprinting, circular dichroism, and H/D exchange mass spectrometry, we identified both the local and global structural changes in the OCP upon photoactivation. SAXS and H/D exchange data showed that global tertiary structural changes, including complete domain dissociation, occur upon photoactivation, but with alteration of secondary structure confined tomore » only the N terminus of the OCP. Microsecond radiolytic labeling identified rearrangement of the H-bonding network associated with conserved residues and structural water molecules. Collectively, these data provide experimental evidence for an ensemble of local and global structural changes, upon activation of the OCP, that are essential for photoprotection.« less

  6. Conformational equilibria of light-activated rhodopsin in nanodiscs

    PubMed Central

    Van Eps, Ned; Caro, Lydia N.; Morizumi, Takefumi; Kusnetzow, Ana Karin; Szczepek, Michal; Hofmann, Klaus Peter; Bayburt, Timothy H.; Sligar, Stephen G.; Ernst, Oliver P.; Hubbell, Wayne L.

    2017-01-01

    Conformational equilibria of G-protein–coupled receptors (GPCRs) are intimately involved in intracellular signaling. Here conformational substates of the GPCR rhodopsin are investigated in micelles of dodecyl maltoside (DDM) and in phospholipid nanodiscs by monitoring the spatial positions of transmembrane helices 6 and 7 at the cytoplasmic surface using site-directed spin labeling and double electron–electron resonance spectroscopy. The photoactivated receptor in DDM is dominated by one conformation with weak pH dependence. In nanodiscs, however, an ensemble of pH-dependent conformational substates is observed, even at pH 6.0 where the MIIbH+ form defined by proton uptake and optical spectroscopic methods is reported to be the sole species present in native disk membranes. In nanodiscs, the ensemble of substates in the photoactivated receptor spontaneously decays to that characteristic of the inactive state with a lifetime of ∼16 min at 20 °C. Importantly, transducin binding to the activated receptor selects a subset of the ensemble in which multiple substates are apparently retained. The results indicate that in a native-like lipid environment rhodopsin activation is not analogous to a simple binary switch between two defined conformations, but the activated receptor is in equilibrium between multiple conformers that in principle could recognize different binding partners. PMID:28373559

  7. Photo-activated disinfection based on indocyanine green against cell viability and biofilm formation of Porphyromonas gingivalis.

    PubMed

    Pourhajibagher, Maryam; Chiniforush, Nasim; Ghorbanzadeh, Roghayeh; Bahador, Abbas

    2017-03-01

    Photo-activated disinfection (PAD) is a novel treatment approach, in which bacteria in the root canal system may be exposed to sub-lethal doses of PAD. Such exposure can affect bacterial survival and virulence features, such as biofilm formation ability. The aim of this study was to evaluate the effects of sub-lethal doses of PAD (sPAD) using indocyanine green (ICG) on load and biofilm formation ability of Porphyromonas gingivalis as an anaerobic bacterium associated with endodontic infection. The anti-bacterial and anti-biofilm potential of sPAD against P. gingivalis at sub-lethal doses of ICG as a photosensitizer and using 810nm wavelength of diode laser light via colony forming unit and crystal violet assays, respectively, was determined. High concentrations of ICG and light irradiation time significantly reduced bacteria. High doses of sPAD markedly reduced the number of bacteria and the formation of biofilm, up to 30.4% and 25.1%, respectively. High doses of sPAD affected cell viability and the biofilm formation ability of P. gingivalis; lower doses did not. Thus, selection of appropriate PAD dosage should be considered for the successful treatment of endodontic in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Phenothiazinium based photosensitisers--photodynamic agents with a multiplicity of cellular targets and clinical applications.

    PubMed

    Harris, F; Chatfield, L K; Phoenix, D A

    2005-08-01

    PhBPs show selectivity for tumour and microbial cells, which appears to be based on electrostatic interactions between the positive charge generally carried by these molecules and the negative charge found on the outer surface of these target cells. In some cases, a site of action for photoactivated PhBPs is the outer membrane/envelope of the target cell. Such action can involve the modification of membrane lipid and/or lipopolysaccharide, and the inactivation of essential proteins and enzymes, with these effects usually leading to cell lysis and death. However, more often, PhBPs are internalised by target cells, promoted by a variety of factors, including low pH and enzymatic reduction, and upon photoactivation, internalised, PhBPs are able to inflict damage on a number of intracellular targets. In tumour cells, PhBPs can photodamage DNA and the membranes of organelles, thereby inducing necrosis and/or apoptosis. In bacterial cells, whilst DNA is generally a primary target of PhBPs, these compounds can exhibit multiple sites of action within a given cell and show different sites of action between different bacterial species. This variable targeting makes PhBPs attractive propositions as alternatives to conventional antibiotics in that the emergence of bacterial strains with acquired resistance to these compounds appears to be highly unlikely.

  9. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds

  10. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Vo-Dinh, Tuan

    1993-01-01

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds.

  11. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Vo-Dinh, T.

    1994-06-07

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds. 14 figs.

  12. Spectral Phasor approach for fingerprinting of photo-activatable fluorescent proteins Dronpa, Kaede and KikGR

    PubMed Central

    Cutrale, Francesco; Salih, Anya; Gratton, Enrico

    2013-01-01

    The phasor global analysis algorithm is common for fluorescence lifetime applications, but has only been recently proposed for spectral analysis. Here the phasor representation and fingerprinting is exploited in its second harmonic to determine the number and spectra of photo-activated states as well as their conversion dynamics. We follow the sequence of photo-activation of proteins over time by rapidly collecting multiple spectral images. The phasor representation of the cumulative images provides easy identification of the spectral signatures of each photo-activatable protein. PMID:24040513

  13. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Tuan Vodinh.

    1993-12-21

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds. 14 figures.

  14. Toxicity and photoactivation of PAH mixtures in marine sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, R.; Ferraro, S.; Lamberson, J.

    1995-12-31

    The toxicity and toxicological photoactivation of mixtures of sediment-associated fluoranthene, phenanthrene, pyrene, and acenaphthene were determined using standard 10 d sediment toxicity tests with the marine amphipod, Rhepoxynius abronius. The four PAHs were spiked into sediment in a concentration series of either single compounds or an equitoxic mixture. Spiked sediment was stored at 4 C for 28 d before testing. Toxicity tests were conducted under fluorescent lighting. Survivors after 10 d in PAH-contaminated sediment were exposed for 1 h to UV light in the absence of sediment and then tested for their ability to bury in clean sediment. The 10more » d LC50s for single PAHs were 3.3, 2.2, 2.8, and 2.3 mg/g oc for fluoranthene, phenanthrene, pyrene, and acenaphthene, respectively. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the equitoxic mixture treatments. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicological interaction of the four PAHs in the mixture was additive, the {Sigma}TU LC50 should equal 1.0. The observed {Sigma}TU LC50 in the mixture was 1.55, indicating the interaction was slightly less than additive. UV enhancement of toxic effects of individual PAHs was correctly predicted by photophysical properties, i.e. pyrene and fluoranthene were photoactivated and phenanthrene and acenaphthene were not. UV effects in the mixture of four PAHs can be explained by the photoactivation of pyrene and fluoranthene alone.« less

  15. Photoactivated methods for enabling cartilage-to-cartilage tissue fixation

    NASA Astrophysics Data System (ADS)

    Sitterle, Valerie B.; Roberts, David W.

    2003-06-01

    The present study investigates whether photoactivated attachment of cartilage can provide a viable method for more effective repair of damaged articular surfaces by providing an alternative to sutures, barbs, or fibrin glues for initial fixation. Unlike artificial materials, biological constructs do not possess the initial strength for press-fitting and are instead sutured or pinned in place, typically inducing even more tissue trauma. A possible alternative involves the application of a photosensitive material, which is then photoactivated with a laser source to attach the implant and host tissues together in either a photothermal or photochemical process. The photothermal version of this method shows potential, but has been almost entirely applied to vascularized tissues. Cartilage, however, exhibits several characteristics that produce appreciable differences between applying and refining these techniques when compared to previous efforts involving vascularized tissues. Preliminary investigations involving photochemical photosensitizers based on singlet oxygen and electron transfer mechanisms are discussed, and characterization of the photodynamic effects on bulk collagen gels as a simplified model system using FTIR is performed. Previous efforts using photothermal welding applied to cartilaginous tissues are reviewed.

  16. A Photoactivated Gas Detector for Toluene Sensing at Room Temperature Based on New Coral-Like ZnO Nanostructure Arrays

    PubMed Central

    Yeh, Li-Ko; Luo, Jie-Chun; Chen, Min-Chun; Wu, Chih-Hung; Chen, Jian-Zhang; Cheng, I-Chun; Hsu, Cheng-Che; Tian, Wei-Cheng

    2016-01-01

    A photoactivated gas detector operated at room temperature was microfabricated using a simple hydrothermal method. We report that the photoactivated gas detector can detect toluene using a UV illumination of 2 μW/cm2. By ultraviolet (UV) illumination, gas detectors sense toluene at room temperature without heating. A significant enhancement of detector sensitivity is achieved because of the high surface-area-to-volume ratio of the morphology of the coral-like ZnO nanorods arrays (NRAs) and the increased number of photo-induced oxygen ions under UV illumination. The corresponding sensitivity (ΔR/R0) of the detector based on coral-like ZnO NRAs is enhanced by approximately 1022% compared to that of thin-film detectors. The proposed detector greatly extends the dynamic range of detection of metal-oxide-based detectors for gas sensing applications. We report the first-ever detection of toluene with a novel coral-like NRAs gas detector at room temperature. A sensing mechanism model is also proposed to explain the sensing responses of gas detectors based on coral-like ZnO NRAs. PMID:27809222

  17. Photocatalytic bacterial inactivation by TiO2-coated surfaces

    PubMed Central

    2013-01-01

    The aim of this study was the evaluation of the photoactivated antibacterial activity of titanium dioxide (TiO2)-coated surfaces. Bacterial inactivation was evaluated using TiO2-coated Petri dishes. The experimental conditions optimized with Petri dishes were used to test the antibacterial effect of TiO2-coated ceramic tiles. The best antibacterial effect with Petri dishes was observed at 180, 60, 30 and 20 min of exposure for Escherichia coli, Staphylococcus aureus, Pseudomonas putida and Listeria innocua, respectively. The ceramic tiles demonstrated a photoactivated bactericidal effect at the same exposure time. In general, no differences were observed between the antibacterial effect obtained with Petri dishes and tiles. However, the photochemical activity of Petri dishes was greater than the activity of the tiles. Results obtained indicates that the TiO2-coated surfaces showed a photoactivated bactericidal effect with all bacteria tested highlighting that the titania could be used in the ceramic and building industry for the production of coated surfaces to be placed in microbiologically sensitive environments, such as the hospital and food industry. PMID:24090112

  18. A Photoactivated Gas Detector for Toluene Sensing at Room Temperature Based on New Coral-Like ZnO Nanostructure Arrays.

    PubMed

    Yeh, Li-Ko; Luo, Jie-Chun; Chen, Min-Chun; Wu, Chih-Hung; Chen, Jian-Zhang; Cheng, I-Chun; Hsu, Cheng-Che; Tian, Wei-Cheng

    2016-10-31

    A photoactivated gas detector operated at room temperature was microfabricated using a simple hydrothermal method. We report that the photoactivated gas detector can detect toluene using a UV illumination of 2 μW/cm². By ultraviolet (UV) illumination, gas detectors sense toluene at room temperature without heating. A significant enhancement of detector sensitivity is achieved because of the high surface-area-to-volume ratio of the morphology of the coral-like ZnO nanorods arrays (NRAs) and the increased number of photo-induced oxygen ions under UV illumination. The corresponding sensitivity (ΔR/R₀) of the detector based on coral-like ZnO NRAs is enhanced by approximately 1022% compared to that of thin-film detectors. The proposed detector greatly extends the dynamic range of detection of metal-oxide-based detectors for gas sensing applications. We report the first-ever detection of toluene with a novel coral-like NRAs gas detector at room temperature. A sensing mechanism model is also proposed to explain the sensing responses of gas detectors based on coral-like ZnO NRAs.

  19. Accurate Construction of Photoactivated Localization Microscopy (PALM) Images for Quantitative Measurements

    PubMed Central

    Coltharp, Carla; Kessler, Rene P.; Xiao, Jie

    2012-01-01

    Localization-based superresolution microscopy techniques such as Photoactivated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) have allowed investigations of cellular structures with unprecedented optical resolutions. One major obstacle to interpreting superresolution images, however, is the overcounting of molecule numbers caused by fluorophore photoblinking. Using both experimental and simulated images, we determined the effects of photoblinking on the accurate reconstruction of superresolution images and on quantitative measurements of structural dimension and molecule density made from those images. We found that structural dimension and relative density measurements can be made reliably from images that contain photoblinking-related overcounting, but accurate absolute density measurements, and consequently faithful representations of molecule counts and positions in cellular structures, require the application of a clustering algorithm to group localizations that originate from the same molecule. We analyzed how applying a simple algorithm with different clustering thresholds (tThresh and dThresh) affects the accuracy of reconstructed images, and developed an easy method to select optimal thresholds. We also identified an empirical criterion to evaluate whether an imaging condition is appropriate for accurate superresolution image reconstruction with the clustering algorithm. Both the threshold selection method and imaging condition criterion are easy to implement within existing PALM clustering algorithms and experimental conditions. The main advantage of our method is that it generates a superresolution image and molecule position list that faithfully represents molecule counts and positions within a cellular structure, rather than only summarizing structural properties into ensemble parameters. This feature makes it particularly useful for cellular structures of heterogeneous densities and irregular geometries, and allows a variety of quantitative measurements tailored to specific needs of different biological systems. PMID:23251611

  20. Optogenetic identification of hypothalamic orexin neuron projections to paraventricular spinally projecting neurons.

    PubMed

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2017-04-01

    Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested ( n = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function. NEW & NOTEWORTHY This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not GABAergic, neurotransmission in these pathways. Copyright © 2017 the American Physiological Society.

  1. UVA photoactivation of DNA containing halogenated thiopyrimidines induces cytotoxic DNA lesions

    PubMed Central

    Brem, Reto; Zhang, Xiaohui; Xu, Yao-Zhong; Karran, Peter

    2015-01-01

    Photochemotherapy, the combination of a photosensitiser and ultraviolet (UV) or visible light, is an effective treatment for skin conditions including cancer. The high mutagenicity and non-selectivity of photochemotherapy regimes warrants the development of alternative approaches. We demonstrate that the thiopyrimidine nucleosides 5-bromo-4-thiodeoxyuridine (SBrdU) and 5-iodo-4-thiodeoxyuridine (SIdU) are incorporated into the DNA of cultured human and mouse cells where they synergistically sensitise killing by low doses of UVA radiation. The DNA halothiopyrimidine/UVA combinations induce DNA interstrand crosslinks, DNA-protein crosslinks, DNA strand breaks, nucleobase damage and lesions that resemble UV-induced pyrimidine(6-4)pyrimidone photoproducts. These are potentially lethal DNA lesions and cells defective in their repair are hypersensitive to killing by SBrdU/UVA and SIdU/UVA. DNA SIdU and SBrdU generate lethal DNA photodamage by partially distinct mechanisms that reflect the different photolabilities of their C–I and C–Br bonds. Although singlet oxygen is involved in photolesion formation, DNA SBrdU and SIdU photoactivation does not detectably increase DNA 8-oxoguanine levels. The absence of significant collateral damage to normal guanine suggests that UVA activation of DNA SIdU or SBrdU might offer a strategy to target hyperproliferative skin conditions that avoids the extensive formation of a known mutagenic DNA lesion. PMID:25747491

  2. Signaling States of Rhodopsin in Rod Disk Membranes Lacking Transducin βγ-Complex

    PubMed Central

    Lomonosova, Elena; Kolesnikov, Alexander V.; Kefalov, Vladimir J.

    2012-01-01

    Purpose. To characterize the possible role of transducin Gtβγ-complex in modulating the signaling properties of photoactivated rhodopsin and its lifetime in rod disc membranes and intact rods. Methods. Rhodopsin photolysis was studied using UV-visible spectroscopy and rapid scanning spectroscopy in the presence of hydroxylamine in highly purified wild-type and Gtγ-deficient mouse rod disc membranes. Complex formation between photoactivated rhodopsin and transducin was measured by extra-metarhodopsin (meta) II assay. Recovery of dark current and flash sensitivity in individual intact wild-type and Gtγ-deficient mouse rods was measured by single-cell suction recordings. Results. Photoconversion of rhodopsin to meta I/meta II equilibrium proceeds normally after elimination of the Gtβγ-complex. The meta I/meta II ratio, the rate of meta II decay, the reactivity of meta II toward hydroxylamine, and the rate of meta III formation in Gtγ-deficient rod disc membranes were identical with those observed in wild-type samples. Under low-intensity illumination, the amount of extra–meta II in Gtγ-deficient discs was significantly reduced. The initial rate of dark current recovery after 12% rhodopsin bleach was three times faster in Gtγ-deficient rods, whereas the rate of the late current recovery was largely unchanged. Mutant rods also exhibited faster postbleach recovery of flash sensitivity. Conclusions. Photoactivation and thermal decay of rhodopsin proceed similarly in wild-type and Gtγ-deficient mouse rods, but the complex formation between photoactivated rhodopsin and transducin is severely compromised in the absence of Gtβγ. The resultant lower transduction activation contributes to faster photoresponse recovery after a moderate pigment bleach in Gtγ-deficient rods. PMID:22266510

  3. Eradication of C. albicans and T. rubrum with photoactivated indocyanine green, Citrus aurantifolia essential oil and fluconazole.

    PubMed

    Fekrazad, Reza; Poorsattar Bejeh Mir, Arash; Ghasemi Barghi, Vadood; Shams-Ghahfarokhi, Masoomeh

    2015-06-01

    We aimed to evaluate the efficacy of alternative therapies rather than the current antifungal conventional therapy and with assessing the hypothesis of photoactivation of citrus essential oil, fluconazole and Indocyanine green to treat two common mucocutaneous fungal infections. Suspensions of Candida albicans and Tricophyton rubrum containing 10(6)cells/ml was prepared. Equal samples were treated with infrared (IR) laser irradiation (810 nm, 55 J/cm(2)) in the presence of Indocyanine green (Emundo, 1 mg/ml) (IRLE), photoactivated Citrus aurantifolia essential oil (EO) with sequential exposure to natural and tungsten lights (CE), control non-activated essential oil (CC), laser alone (IRL), indocyanine green alone (E) and neither of treatments as the control group (C). Additional fluconazole (FL, 25.6 μg/ml) and IR activated fluconazole (IRLFL) groups were designed for T. rubrum fungi. Inoculums were serially diluted to 10(-2) and 10(-4) and streaked on Sabouraud dextrose agar plates. Final outcomes were assessed as the percent of reduction. Cell reduction rates (%) in C. albicans groups were 99.99 (CE), 91.67 (IRLE), 86.67 (CC), 72.37 (E) and 67.27 (RL). Whereas, a 99.99 (CE), 89.99 (CC), 74.5 (IRLE), 64.5 (E), 38.5 (IRLF), 37.5 (RL), and 31 (FL) percent eradication was achieved in T. rubrum groups. Photoactivation of Citrus EO increased the killing capability by 10-13%. A modest 7.5% augmented effect was observed with IR activation of Fluconazole. Both Citrus EO and photothermal-photodynamic therapy with ICG and IR diode laser exhibited remarkable lethal effect on fungal cells. Candida viable cells are more susceptible to laser only and ICG only treatments than Tricophyton cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Influence of composite type and light irradiance on color stability after immersion in different beverages.

    PubMed

    Alberton Da Silva, Victória; Alberton Da Silva, Simone; Pecho, Oscar E; Bacchi, Atais

    2018-06-19

    The aim of this study was to evaluate the color stability of two resin-based composites photo-activated by two light curing units (LCU) with different irradiances. Hundred disc-shaped specimens (2-mm thick) of a nanofilled (FZ- Filtek TM Z350 XT, 3M ESPE) and a microhybrid (ED-Empress ® Direct, Ivoclar Vivadent) composites were photo-activated with two LCU: Valo ® Cordless, Ultradent (VA-1800 mW/cm 2 ) or Radii-cal, SDI (RA-900 mW/cm 2 ). Samples (n = 5) were immersed during 12 days in distilled water (WT), orange juice (OJ), red wine (RW), coffee (CF), or Brazilian tea (BT). CIELAB coordinates were obtained using a spectrophotometer (Easyshade 4.0, Vita Zahnfabrik) before (T 0 ) and after (T 1 ) immersion. CIEDE2000 color difference (ΔE 00 ) and whiteness index for dentistry (WI D ) were calculated. Data was analyzed by two-way ANOVA and Tukey's test (α = 0.05%). FZ light-activated by VA showed higher L* and WI D values (T 0 ) and lower ΔE 00 values after immersion in WT, OJ, and RW. However, there was no effect of both factors on ΔE 00 when samples were immersed in BT and CF. ED light-activated by RA showed significant higher C* values (p ≤ .05). The nanofilled composite photo-activated with higher irradiance showed greater L* and WI D values and better color stability. However, all samples immersed in colored beverages showed ΔE 00 values above the acceptability threshold. Initial color of resin-based composites can change after immersion in staining beverages. However, the best color stability was obtained by the nanocomposite photo-activated by a light-curing unit of higher irradiance. © 2018 Wiley Periodicals, Inc.

  5. Movement maintains forebrain neurogenesis via peripheral neural feedback in larval zebrafish

    PubMed Central

    Hall, Zachary Jonas

    2018-01-01

    The postembryonic brain exhibits experience-dependent development, in which sensory experience guides normal brain growth. This neuroplasticity is thought to occur primarily through structural and functional changes in pre-existing neurons. Whether neurogenesis also mediates the effects of experience on brain growth is unclear. Here, we characterized the importance of motor experience on postembryonic neurogenesis in larval zebrafish. We found that movement maintains an expanded pool of forebrain neural precursors by promoting progenitor self-renewal over the production of neurons. Physical cues associated with swimming (bodily movement) increase neurogenesis and these cues appear to be conveyed by dorsal root ganglia (DRG) in the zebrafish body: DRG-deficient larvae exhibit attenuated neurogenic responses to movement and targeted photoactivation of DRG in immobilized larvae expands the pallial pool of proliferative cells. Our results demonstrate the importance of movement in neurogenic brain growth and reveal a fundamental sensorimotor association that may couple early motor and brain development. PMID:29528285

  6. Chromophore photophysics and dynamics in fluorescent proteins of the GFP family

    NASA Astrophysics Data System (ADS)

    Nienhaus, Karin; Nienhaus, G. Ulrich

    2016-11-01

    Proteins of the green fluorescent protein (GFP) family are indispensable for fluorescence imaging experiments in the life sciences, particularly of living specimens. Their essential role as genetically encoded fluorescence markers has motivated many researchers over the last 20 years to further advance and optimize these proteins by using protein engineering. Amino acids can be exchanged by site-specific mutagenesis, starting with naturally occurring proteins as templates. Optical properties of the fluorescent chromophore are strongly tuned by the surrounding protein environment, and a targeted modification of chromophore-protein interactions requires a profound knowledge of the underlying photophysics and photochemistry, which has by now been well established from a large number of structural and spectroscopic experiments and molecular-mechanical and quantum-mechanical computations on many variants of fluorescent proteins. Nevertheless, such rational engineering often does not meet with success and thus is complemented by random mutagenesis and selection based on the optical properties. In this topical review, we present an overview of the key structural and spectroscopic properties of fluorescent proteins. We address protein-chromophore interactions that govern ground state optical properties as well as processes occurring in the electronically excited state. Special emphasis is placed on photoactivation of fluorescent proteins. These light-induced reactions result in large structural changes that drastically alter the fluorescence properties of the protein, which enables some of the most exciting applications, including single particle tracking, pulse chase imaging and super-resolution imaging. We also present a few examples of fluorescent protein application in live-cell imaging experiments.

  7. Pyropheophorbide 2-deoxyglucosamide: a new photosensitizer targeting glucose transporters.

    PubMed

    Zhang, Min; Zhang, Zhihong; Blessington, Dana; Li, Hui; Busch, Theresa M; Madrak, Vanessa; Miles, Jeremy; Chance, Britton; Glickson, Jerry D; Zheng, Gang

    2003-01-01

    To prepare near-infrared fluorescence imaging and photodynamic therapy agents targeted at glucose transporters, pyropheophorbide 2-deoxyglucosamide (Pyro-2DG) was synthesized and evaluated in a 9L glioma rat model. Fluorescence imaging studies demonstrate that Pyro-2DG is selectively accumulated in the tumor. Upon its photoactivation, we demonstrate that this agent efficiently causes selective mitochondrial damage to the region of a tumor that was photoirradiated after administration of this agent, but does not affect tissues photoirradiated in the absence of the agent or tissues treated with the agent that are not photoirradiated. Preliminary confocal microscopy studies suggest that Pyro-2DG is delivered and trapped in tumor cells via the GLUT/hexokinase pathway and therefore is useful both as a tumor-targeted NIR fluorescence imaging probe and as a PDT agent for the destruction of cancer.

  8. FRAP and Photoconversion in Multiple Arbitrary Regions of Interest Using a Programmable Array Microscope (PAM)

    PubMed Central

    Hagen, Guy M.; Caarls, Wouter; Lidke, Keith A.; de Vries, Anthony H. B.; Fritsch, Cornelia; Barisas, B. George; Arndt-Jovin, Donna J.; Jovin, Thomas M.

    2011-01-01

    Photomanipulation (photobleaching, photoactivation, or photoconversion) is an essential tool in fluorescence microscopy. Fluorescence recovery after photobleaching (FRAP) is commonly used for the determination of lateral diffusion constants of membrane proteins, and can be conveniently implemented in confocal laser scanning microscopy (CLSM). Such determinations provide important information on molecular dynamics in live cells. However, the CLSM platform is inherently limited for FRAP because of its inflexible raster (spot) scanning format. We have implemented FRAP and photoactivation protocols using structured illumination and detection in a programmable array microscope (PAM). The patterns are arbitrary in number and shape, dynamic and adjustable to and by the sample characteristics. We have used multi-spot PAM-FRAP to measure the lateral diffusion of the erbB3 (HER3) receptor tyrosine kinase labeled by fusion with mCitrine on untreated cells and after treatment with reagents that perturb the cytoskeleton or plasma membrane or activate co-expressed erbB1 (HER1, the EGF receptor EGFR). We also show the versatility of the PAM for photoactivation in arbitrary regions of interest, in cells expressing erbB3 fused with the photoconvertible fluorescent protein dronpa. PMID:19208387

  9. Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation.

    PubMed

    Blakeley, Lorie R; Chen, Chunhe; Chen, Ching-Kang; Chen, Jeannie; Crouch, Rosalie K; Travis, Gabriel H; Koutalos, Yiannis

    2011-06-01

    The reactive aldehyde all-trans retinal is released in rod photoreceptor outer segments by photoactivated rhodopsin and is eliminated through reduction to all-trans retinol. This study was undertaken to determine whether all-trans retinol formation depends on Abca4, arrestin, rhodopsin kinase, and the palmitylation of rhodopsin, all of which are factors that affect the release and sequestration of all-trans retinal. Experiments were performed in isolated retinas and single living rods derived from 129/sv wild-type mice and Abca4-, arrestin-, and rhodopsin kinase-deficient mice and in genetically modified mice containing unpalmitylated rhodopsin. Formation of all-trans retinol was measured by imaging its fluorescence and by HPLC of retina extracts. The release of all-trans retinal from photoactivated rhodopsin was measured in purified rod outer segment membranes according to the increase in tryptophan fluorescence. All experiments were performed at 37°C. The kinetics of all-trans retinol formation in the different types of genetically modified mice are in reasonable agreement with those in wild-type animals. The kinetics of all-trans retinol formation in 129/sv mice are similar to those in C57BL/6, although the latter are known to regenerate rhodopsin much more slowly. The release of all-trans retinal from rhodopsin in purified membranes is significantly faster than the formation of all-trans retinol in intact cells and is independent of the presence of the palmitate groups. The regeneration of rhodopsin and the recycling of its chromophore are not strongly coupled. Neither the activities of Abca4, rhodopsin kinase, and arrestin, nor the palmitylation of rhodopsin affects the formation of all-trans retinol.

  10. Selective photocatalytic transformations on microporous titanosilicate ETS-10 driven by size and polarity of molecules.

    PubMed

    Shiraishi, Yasuhiro; Tsukamoto, Daijiro; Hirai, Takayuki

    2008-11-04

    Photocatalytic activity of microporous titanosilicate ETS-10 has been studied in water. The photoactivated ETS-10 shows catalytic activity driven by size and polarity of substrates. ETS-10 efficiently catalyzes a conversion of substrates with a size larger than the pore diameter of ETS-10. In contrast, the reactivity of small substrates depends strongly on substrate polarity; less polar substrates show higher reactivity on ETS-10. Electron spin resonance analysis reveals that large substrates or less polar substrates scarcely diffuse inside the highly polarized micropores of ETS-10 and, hence, react efficiently with hydroxyl radicals (*OH) formed on titanol (Ti-OH) groups exposed on the external surface of ETS-10. In contrast, small polar substrates diffuse easily inside the micropores of ETS-10 and scarcely react with *OH, resulting in low reactivity. The photocatalytic activity of ETS-10 is successfully applicable to selective transformations of large reactants or less polar reactants to small polar products, enabling highly selective dehalogenation and hydroxylation of aromatics.

  11. Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake.

    PubMed

    Chicca, Andrea; Nicolussi, Simon; Bartholomäus, Ruben; Blunder, Martina; Aparisi Rey, Alejandro; Petrucci, Vanessa; Reynoso-Moreno, Ines Del Carmen; Viveros-Paredes, Juan Manuel; Dalghi Gens, Marianela; Lutz, Beat; Schiöth, Helgi B; Soeberdt, Michael; Abels, Christoph; Charles, Roch-Philippe; Altmann, Karl-Heinz; Gertsch, Jürg

    2017-06-20

    The extracellular effects of the endocannabinoids anandamide and 2-arachidonoyl glycerol are terminated by enzymatic hydrolysis after crossing cellular membranes by facilitated diffusion. The lack of potent and selective inhibitors for endocannabinoid transport has prevented the molecular characterization of this process, thus hindering its biochemical investigation and pharmacological exploitation. Here, we report the design, chemical synthesis, and biological profiling of natural product-derived N -substituted 2,4-dodecadienamides as a selective endocannabinoid uptake inhibitor. The highly potent (IC 50 = 10 nM) inhibitor N -(3,4-dimethoxyphenyl)ethyl amide (WOBE437) exerted pronounced cannabinoid receptor-dependent anxiolytic, antiinflammatory, and analgesic effects in mice by increasing endocannabinoid levels. A tailored WOBE437-derived diazirine-containing photoaffinity probe (RX-055) irreversibly blocked membrane transport of both endocannabinoids, providing mechanistic insights into this complex process. Moreover, RX-055 exerted site-specific anxiolytic effects on in situ photoactivation in the brain. This study describes suitable inhibitors to target endocannabinoid membrane trafficking and uncovers an alternative endocannabinoid pharmacology.

  12. The effect of antimicrobial agents on bond strength of orthodontic adhesives: a meta-analysis of in vitro studies.

    PubMed

    Altmann, A S P; Collares, F M; Leitune, V C B; Samuel, S M W

    2016-02-01

    Antimicrobial orthodontic adhesives aim to reduce white spot lesions' incidence in orthodontic patients, but they should not jeopardizing its properties. Systematic review and meta-analysis were performed to answer the question whether the association of antimicrobial agents with orthodontic adhesives compromises its mechanical properties and whether there is a superior antimicrobial agent. PubMed and Scopus databases. In vitro studies comparing shear bond strength of conventional photo-activated orthodontic adhesives to antimicrobial photo-activated orthodontic adhesives were considered eligible. Search terms included the following: orthodontics, orthodontic, antimicrobial, antibacterial, bactericidal, adhesive, resin, resin composite, bonding agent, bonding system, and bond strength. The searches yielded 494 citations, which turned into 467 after duplicates were discarded. Titles and abstracts were read and 13 publications were selected for full-text reading. Twelve studies were included in the meta-analysis. The global analysis showed no statistically significant difference between control and experimental groups. In the subgroup analysis, only the chlorhexidine subgroup showed a statistically significant difference, where the control groups had higher bond strength than the experimental groups. Many studies on in vitro orthodontic bond strength fail to report test conditions that could affect their outcomes. The pooled in vitro data suggest that adding an antimicrobial agent to an orthodontic adhesive system does not influence bond strength to enamel. It is not possible to state which antimicrobial agent is better to be associated. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Zirconium oxocluster/polymer hybrid nanoparticles prepared by photoactivated miniemulsion copolymerization

    NASA Astrophysics Data System (ADS)

    Benedetti, Cesare; Flouda, Paraskevi; Antonello, Alice; Rosenauer, Christine; Pérez-Pla, Francisco F.; Landfester, Katharina; Gross, Silvia; Muñoz-Espí, Rafael

    2017-09-01

    The photoactivated free radical miniemulsion copolymerization of methyl methacrylate (MMA) and the zirconium oxocluster Zr4O2(methacrylate)12 is used as an effective and fast preparation method for polymer/inorganic hybrid nanoparticles. The oxoclusters, covalently anchored to the polymer network, act as metal-organic cross-linkers, thus improving the thermomechanical properties of the resulting hybrid nanoparticles. Benzoin carbonyl organic compounds were used as photoinitiators. The obtained materials are compared in terms of cross-linking, effectiveness of cluster incorporation, and size distribution with the analogous nanoparticles produced by using conventional thermally induced free radical miniemulsion copolymerization. The kinetics of the polymerization process in the absence and in the presence of the oxocluster is also investigated.

  14. Vaginal Speculum For Photodynamic Therapy And Method Of Using The Same

    DOEpatents

    Tadir, Yona; Berns, Michael W.; Monk, Brad J.; Profeta, Glen; Tromberg, Bruce J.

    1995-10-17

    An improved vaginal speculum for photodynamic therapy of intraepithelial tissue and in particular vaginal, cervical and vulvar neoplasia utilizes a precisely and accurately positionable optic fiber through which a predetermined dose of light in the range of 620 to 700 nanometers is delivered over a controlled area which has been previously treated with photodynamic therapeutic substances. In particular, the neoplastic area has been treated with hematoporphyrin derivatives and other photosensitizers which are selectively taken into the cancerous tissue. Exposure to the appropriate wavelength laser light photoactivates the absorbed hematoporphyrins causing the release of singlet oxygen which internally oxidizes and ultimately causes cell death. The fiber optic tip from which the laser light is transmitted is precisely positioned within the body cavity at a predetermined distance from the intraepithelial neoplasia in order to obtain the appropriate spot size and location to minimize damage to healthy tissue and maximize damage to the selectively impregnated cancerous tissue.

  15. Evaluation of degree of conversion and hardness of dental composites photo-activated with different light guide tips.

    PubMed

    Galvão, Marília Regalado; Caldas, Sergei Godeiro Fernandes Rabelo; Bagnato, Vanderlei Salvador; de Souza Rastelli, Alessandra Nara; de Andrade, Marcelo Ferrarezi

    2013-01-01

    The aim of this study was to evaluate the degree of conversion and hardness of different composite resins, photo-activated for 40 s with two different light guide tips, fiber optic and polymer. Five specimens were made for each group evaluated. The percentage of unreacted carbon double bonds (% C═C) was determined from the ratio of absorbance intensities of aliphatic C═C (peak at 1637 cm(-1)) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm(-1)). The Vickers hardness measurements were performed in a universal testing machine. A 50 gf load was used and the indenter with a dwell time of 30 seconds. The degree of conversion and hardness mean values were analyzed separately by ANOVA and Tukey's test, with a significance level set at 5%. The mean values of degree of conversion for the polymer and fiber optic light guide tip were statistically different (P<.001). The hardness mean values were statistically different among the light guide tips (P<.001), but also there was difference between top and bottom surfaces (P<.001). The results showed that the resins photo-activated with the fiber optic light guide tip promoted higher values for degree of conversion and hardness.

  16. Photo-activated porphyrin in combination with antibiotics: therapies against Staphylococci

    PubMed Central

    Dastgheyb, Sana S.; Eckmann, David M.; Composto, Russell J.

    2013-01-01

    Staphylococcal infections have become difficult to treat due to antibiotic insensitivity and resistance. Antimicrobial combination therapies may minimize acquisition of resistance and photodynamic therapy is an attractive candidate for these combinations. In this manuscript, we explore combined use of antibiotics and meso-tetra (4-aminophenyl) porphine (TAPP), a cationic porphyrin, for treatment of Staphylococcus aureus contamination. We characterize the antimicrobial activity of photoactivated TAPP and show that activity is largely lost in the presence of a radical scavenger. Importantly, TAPP can be reactivated with continued, albeit attenuated, antibacterial activity. We then show that the antimicrobial activity of illuminated TAPP is additive with chloramphenicol and tobramycin for Staphylococcus aureus and Escherichia coli, and synergistic for MRSA and Staphylococcus epidermidis. Chloramphenicol + methylene blue, another photosensitizer, also show additivity against Staphylococcus aureus. In contrast, ceftriaxone and vancomycin do not strongly augment the low level effects of TAPP against S. aureus. Eukaryotic cells exhibit a dose-dependent toxicity with illuminated TAPP. Our results suggest that even sub-minimum inhibitory concentration levels of photo-activated TAPP could be used to boost the activity of waning antibiotics. This may play an important role in treatments reliant on antibiotic controlled release systems where augmentation with photo-active agents could extend their efficacy. PMID:24148969

  17. Evaluation of degree of conversion and hardness of dental composites photo-activated with different light guide tips

    PubMed Central

    Galvão, Marília Regalado; Caldas, Sergei Godeiro Fernandes Rabelo; Bagnato, Vanderlei Salvador; de Souza Rastelli, Alessandra Nara; de Andrade, Marcelo Ferrarezi

    2013-01-01

    Objective: The aim of this study was to evaluate the degree of conversion and hardness of different composite resins, photo-activated for 40 s with two different light guide tips, fiber optic and polymer. Methods: Five specimens were made for each group evaluated. The percentage of unreacted carbon double bonds (% C═C) was determined from the ratio of absorbance intensities of aliphatic C═C (peak at 1637 cm−1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm−1). The Vickers hardness measurements were performed in a universal testing machine. A 50 gf load was used and the indenter with a dwell time of 30 seconds. The degree of conversion and hardness mean values were analyzed separately by ANOVA and Tukey’s test, with a significance level set at 5%. Results: The mean values of degree of conversion for the polymer and fiber optic light guide tip were statistically different (P<.001). The hardness mean values were statistically different among the light guide tips (P<.001), but also there was difference between top and bottom surfaces (P<.001). Conclusions: The results showed that the resins photo-activated with the fiber optic light guide tip promoted higher values for degree of conversion and hardness. PMID:23407620

  18. Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons

    PubMed Central

    Aizenberg, Mark; Mwilambwe-Tshilobo, Laetitia; Briguglio, John J.; Natan, Ryan G.; Geffen, Maria N.

    2015-01-01

    The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC) respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discrimination remains poorly understood. Here, we find that the level of activity of inhibitory neurons in AC controls frequency specificity in innate and learned auditory behaviors that rely on frequency discrimination. Photoactivation of parvalbumin-positive interneurons (PVs) improved the ability of the mouse to detect a shift in tone frequency, whereas photosuppression of PVs impaired the performance. Furthermore, photosuppression of PVs during discriminative auditory fear conditioning increased generalization of conditioned response across tone frequencies, whereas PV photoactivation preserved normal specificity of learning. The observed changes in behavioral performance were correlated with bidirectional changes in the magnitude of tone-evoked responses, consistent with predictions of a model of a coupled excitatory-inhibitory cortical network. Direct photoactivation of excitatory neurons, which did not change tone-evoked response magnitude, did not affect behavioral performance in either task. Our results identify a new function for inhibition in the auditory cortex, demonstrating that it can improve or impair acuity of innate and learned auditory behaviors that rely on frequency discrimination. PMID:26629746

  19. Evidence for Tautomerisation of Glutamine in BLUF Blue Light Receptors by Vibrational Spectroscopy and Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Domratcheva, Tatiana; Hartmann, Elisabeth; Schlichting, Ilme; Kottke, Tilman

    2016-03-01

    BLUF (blue light sensor using flavin) domains regulate the activity of various enzymatic effector domains in bacteria and euglenids. BLUF features a unique photoactivation through restructuring of the hydrogen-bonding network as opposed to a redox reaction or an isomerization of the chromophore. A conserved glutamine residue close to the flavin chromophore plays a central role in the light response, but the underlying modification is still unclear. We labelled this glutamine with 15N in two representative BLUF domains and performed time-resolved infrared double difference spectroscopy. The assignment of the signals was conducted by extensive quantum chemical calculations on large models with 187 atoms reproducing the UV-vis and infrared signatures of BLUF photoactivation. In the dark state, the comparatively low frequency of 1,667 cm-1 is assigned to the glutamine C=O accepting a hydrogen bond from tyrosine. In the light state, the signature of a tautomerised glutamine was extracted with the C=N stretch at ~1,691 cm-1 exhibiting the characteristic strong downshift by 15N labelling. Moreover, an indirect isotope effect on the flavin C4=O stretch was found. We conclude that photoactivation of the BLUF receptor does not only involve a rearrangement of hydrogen bonds but includes a change in covalent bonds of the protein.

  20. Photoactivation mechanism of PAmCherry based on crystal structures of the protein in the dark and fluorescent states.

    PubMed

    Subach, Fedor V; Malashkevich, Vladimir N; Zencheck, Wendy D; Xiao, Hui; Filonov, Grigory S; Almo, Steven C; Verkhusha, Vladislav V

    2009-12-15

    Photoactivatable fluorescent proteins (PAFPs) are required for super-resolution imaging of live cells. Recently, the first red PAFP, PAmCherry1, was reported, which complements the photo-activatable GFP by providing a red super-resolution color. PAmCherry1 is originally "dark" but exhibits red fluorescence after UV-violet light irradiation. To define the structural basis of PAmCherry1 photoactivation, we determined its crystal structure in the dark and red fluorescent states at 1.50 A and 1.65 A, respectively. The non-coplanar structure of the chromophore in the dark PAmChery1 suggests the presence of an N-acylimine functionality and a single non-oxidized C(alpha)-C(beta) bond in the Tyr-67 side chain in the cyclized Met-66-Tyr-67-Gly-68 tripeptide. MS data of the chromophore-bearing peptide indicates the loss of 20 Da upon maturation, whereas tandem MS reveals the C(alpha)-N bond in Met-66 is oxidized. These data indicate that PAmCherry1 in the dark state possesses the chromophore N-[(E)-(5-hydroxy-1H-imidazol-2-yl)methylidene]acetamide, which, to our knowledge, has not been previously observed in PAFPs. The photoactivated PAmCherry1 exhibits a non-coplanar anionic DsRed-like chromophore but in the trans configuration. Based on the crystallographic analysis, MS data, and biochemical analysis of the PAmCherry1 mutants, we propose the detailed photoactivation mechanism. In this mechanism, the excited-state PAmCherry1 chromophore acts as the oxidant to release CO(2) molecule from Glu-215 via a Koble-like radical reaction. The Glu-215 decarboxylation directs the carbanion formation resulting in the oxidation of the Tyr-67 C(alpha)-C(beta) bond. The double bond extends the pi-conjugation between the phenolic ring of Tyr-67, the imidazolone, and the N-acylimine, resulting in the red fluorescent chromophore.

  1. Dental composite polymerization: a three different sources comparison

    NASA Astrophysics Data System (ADS)

    Sozzi, Michele; Fornaini, Carlo; Lagori, Giuseppe; Merigo, Elisabetta; Cucinotta, Annamaria; Vescovi, Paolo; Selleri, Stefano

    2015-02-01

    The introduction of photo-activators, with absorption spectra in the violet region, in composite resins raised interest in the use of 405 nm diode lasers for polymerization. The purpose of this research is the evaluation of the resins polymerization by means of violet diode laser compared to traditional lamps. Two different resins have been used for the experiments: Filtek Supreme XT flow (3M ESPE, USA) and Tetric Evo flow (Ivoclar, Vivadent). The photo-activator used is Camphoroquinone, alone, or in combination with Lucirin TPO. The resins have been cured with an halogen lamp (Heliolux DXL, Vivadent Ivoclar, Austria), a broadband LED curing light (Valo Ultradent, USA) and a 405 nm laser (Euphoton, Italy). The measure of cure depth, of the volumetric shrinkage, and the conversion degree (DC%) of the double bond during the curing process have been evaluated. A composite layer of 3 mm was cured in Filtek Supreme resin (Camphoroquinone activator), lower if compared to the use of the other two light sources. Tests on Tetric Evo (Camphoroquinone + Lucirin) didn't show any improvement of the use of laser compared to the halogen lamp and the broadband LED. By measuring the volumetric shrinkage the laser induced the lower change with both the composites. In terms of DC% the lower performance was obtained with the laser. Considering that the polymerization process strongly depends on the kind of composite used the effectiveness of 405 nm laser proved to be lower than halogen lamps and broadband LEDs.

  2. Method for improved selectivity in photo-activation of molecular agents

    DOEpatents

    Fisher, Walter G.; Wachter, Eric A.; Dees, H. Craig

    2000-01-01

    An apparatus for the treatment of a particular volume of plant or animal tissue by treating the plant or animal tissue with at least one photo-active molecular agent, wherein the particular volume of the plant or animal tissue retains at least a portion of the at least one photo-active molecular agent, and then treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of at least one of the at least one photo-active molecular agent retained in the particular volume of the plant or animal tissue, wherein the at least one photo-active molecular agent becomes active in the particular volume of the plant or animal tissue.

  3. Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells.

    PubMed

    Subach, Fedor V; Patterson, George H; Renz, Malte; Lippincott-Schwartz, Jennifer; Verkhusha, Vladislav V

    2010-05-12

    Rapidly emerging techniques of super-resolution single-molecule microscopy of living cells rely on the continued development of genetically encoded photoactivatable fluorescent proteins. On the basis of monomeric TagRFP, we have developed a photoactivatable TagRFP protein that is initially dark but becomes red fluorescent after violet light irradiation. Compared to other monomeric dark-to-red photoactivatable proteins including PAmCherry, PATagRFP has substantially higher molecular brightness, better pH stability, substantially less sensitivity to blue light, and better photostability in both ensemble and single-molecule modes. Spectroscopic analysis suggests that PATagRFP photoactivation is a two-step photochemical process involving sequential one-photon absorbance by two distinct chromophore forms. True monomeric behavior, absence of green fluorescence, and single-molecule performance in live cells make PATagRFP an excellent protein tag for two-color imaging techniques, including conventional diffraction-limited photoactivation microscopy, super-resolution photoactivated localization microscopy (PALM), and single particle tracking PALM (sptPALM) of living cells. Two-color sptPALM imaging was demonstrated using several PATagRFP tagged transmembrane proteins together with PAGFP-tagged clathrin light chain. Analysis of the resulting sptPALM images revealed that single-molecule transmembrane proteins, which are internalized into a cell via endocytosis, colocalize in space and time with plasma membrane domains enriched in clathrin light-chain molecules.

  4. Simultaneous measurement and quantitation of 4-hydroxyphenylacetic acid and dopamine with fast-scan cyclic voltammetry.

    PubMed

    Shin, Mimi; Kaplan, Sam V; Raider, Kayla D; Johnson, Michael A

    2015-05-07

    Caged compounds have been used extensively to investigate neuronal function in a variety of preparations, including cell culture, ex vivo tissue samples, and in vivo. As a first step toward electrochemically measuring the extent of caged compound photoactivation while also measuring the release of the catecholamine neurotransmitter, dopamine, fast-scan cyclic voltammetry at carbon-fiber microelectrodes (FSCV) was used to electrochemically characterize 4-hydroxyphenylacetic acid (4HPAA) in the absence and presence of dopamine. 4HPAA is a by-product formed during the process of photoactivation of p-hydroxyphenacyl-based caged compounds, such as p-hydroxyphenylglutamate (pHP-Glu). Our data suggest that the oxidation of 4HPAA occurs through the formation of a conjugated species. Moreover, we found that a triangular waveform of -0.4 V to +1.3 V to -0.4 V at 600 V s(-1), repeated every 100 ms, provided an oxidation current of 4HPAA that was enhanced with a limit of detection of 100 nM, while also allowing the detection and quantitation of dopamine within the same scan. Along with quantifying 4HPAA in biological preparations, the results from this work will allow the electrochemical measurement of photoactivation reactions that generate 4HPAA as a by-product as well as provide a framework for measuring the photorelease of electroactive by-products from caged compounds that incorporate other chromophores.

  5. Simultaneous Measurement and Quantitation of 4-Hydroxyphenylacetic acid and Dopamine with Fast-Scan Cyclic Voltammetry

    PubMed Central

    Shin, Mimi; Kaplan, Sam V.; Raider, Kayla D.; Johnson, Michael A.

    2015-01-01

    Caged compounds have been used extensively to investigate neuronal function in a variety of preparations, including cell culture, ex vivo tissue samples, and in vivo. As a first step toward electrochemically measuring the extent of caged compound photoactivation while also measuring the release of the catecholamine neurotransmitter, dopamine, fast-scan cyclic voltammetry at carbon-fiber microelectrodes (FSCV) was used to electrochemically characterize 4-hydroxyphenylacetic acid (4HPAA) in the absence and presence of dopamine. 4HPAA is a by-product formed during the process of photoactivation of p-hydroxyphenylacyl-based caged compounds, such as p-hydroxyphenylglutamate (pHP-Glu). Our data suggest that the oxidation of 4HPAA occurs through the formation of a conjugated species. Moreover, we found that a triangular waveform of −0.4 V to +1.3 V to −0.4 V at 600 V/s, repeated every 100 ms, provided an oxidation current of 4HPAA that was enhanced with a limit of detection of 100 nM, while also allowing the detection and quantitation of dopamine within the same scan. Along with quantifying 4HPAA in biological preparations, the results from this work will allow the electrochemical measurement of photoactivation reactions that generate 4HPAA as a by-product as well as provide a framework for measuring the photorelease of electroactive by-products from caged compounds that incorporate other chromophores. PMID:25785694

  6. Evidence for Tautomerisation of Glutamine in BLUF Blue Light Receptors by Vibrational Spectroscopy and Computational Chemistry

    PubMed Central

    Domratcheva, Tatiana; Hartmann, Elisabeth; Schlichting, Ilme; Kottke, Tilman

    2016-01-01

    BLUF (blue light sensor using flavin) domains regulate the activity of various enzymatic effector domains in bacteria and euglenids. BLUF features a unique photoactivation through restructuring of the hydrogen-bonding network as opposed to a redox reaction or an isomerization of the chromophore. A conserved glutamine residue close to the flavin chromophore plays a central role in the light response, but the underlying modification is still unclear. We labelled this glutamine with 15N in two representative BLUF domains and performed time-resolved infrared double difference spectroscopy. The assignment of the signals was conducted by extensive quantum chemical calculations on large models with 187 atoms reproducing the UV-vis and infrared signatures of BLUF photoactivation. In the dark state, the comparatively low frequency of 1,667 cm−1 is assigned to the glutamine C=O accepting a hydrogen bond from tyrosine. In the light state, the signature of a tautomerised glutamine was extracted with the C=N stretch at ~1,691 cm−1 exhibiting the characteristic strong downshift by 15N labelling. Moreover, an indirect isotope effect on the flavin C4=O stretch was found. We conclude that photoactivation of the BLUF receptor does not only involve a rearrangement of hydrogen bonds but includes a change in covalent bonds of the protein. PMID:26947391

  7. Identification of potentially cytotoxic lesions induced by UVA photoactivation of DNA 4-thiothymidine in human cells

    PubMed Central

    Reelfs, Olivier; Macpherson, Peter; Ren, Xiaolin; Xu, Yao-Zhong; Karran, Peter; Young, Antony R.

    2011-01-01

    Photochemotherapy—in which a photosensitizing drug is combined with ultraviolet or visible radiation—has proven therapeutic effectiveness. Existing approaches have drawbacks, however, and there is a clinical need to develop alternatives offering improved target cell selectivity. DNA substitution by 4-thiothymidine (S4TdR) sensitizes cells to killing by ultraviolet A (UVA) radiation. Here, we demonstrate that UVA photoactivation of DNA S4TdR does not generate reactive oxygen or cause direct DNA breakage and is only minimally mutagenic. In an organotypic human skin model, UVA penetration is sufficiently robust to kill S4TdR-photosensitized epidermal cells. We have investigated the DNA lesions responsible for toxicity. Although thymidine is the predominant UVA photoproduct of S4TdR in dilute solution, more complex lesions are formed when S4TdR-containing oligonucleotides are irradiated. One of these, a thietane/S5-(6-4)T:T, is structurally related to the (6-4) pyrimidine:pyrimidone [(6-4) Py:Py] photoproducts induced by UVB/C radiation. These lesions are detectable in DNA from S4TdR/UVA-treated cells and are excised from DNA more efficiently by keratinocytes than by leukaemia cells. UVA irradiation also induces DNA interstrand crosslinking of S4TdR-containing duplex oligonucleotides. Cells defective in repairing (6-4) Py:Py DNA adducts or processing DNA crosslinks are extremely sensitive to S4TdR/UVA indicating that these lesions contribute significantly to S4TdR/UVA cytotoxicity. PMID:21890905

  8. Photoactivated Mixed In-Plane and Edge-Enriched p-Type MoS2 Flake-Based NO2 Sensor Working at Room Temperature.

    PubMed

    Agrawal, Abhay V; Kumar, Rahul; Venkatesan, Swaminathan; Zakhidov, Alex; Yang, Guang; Bao, Jiming; Kumar, Mahesh; Kumar, Mukesh

    2018-05-25

    Toxic gases are produced during the burning of fossil fuels. Room temperature (RT) fast detection of toxic gases is still challenging. Recently, MoS 2 transition metal dichalcogenides have sparked great attention in the research community due to their performance in gas sensing applications. However, MoS 2 based gas sensors still suffer from long response and recovery times, especially at RT. Considering this challenge, here, we report photoactivated highly reversible and fast detection of NO 2 sensors at room temperature (RT) by using mixed in-plane and edge-enriched p-MoS 2 flakes (mixed MoS 2 ). The sensor showed fast response with good sensitivity of ∼10.36% for 10 ppm of NO 2 at RT without complete recovery. However, complete recovery was obtained with better sensor performance under UV light illumination at RT. The UV assisted NO 2 sensing showed improved performance in terms of fast response and recovery kinetics with enhanced sensitivity to 10 ppm NO 2 concentration. The sensor performance is also investigated under thermal energy, and a better sensor performance with reduced sensitivity and high selectivity toward NO 2 was observed. A detailed gas sensing mechanism based on the density functional theory (DFT) calculations for favorable NO 2 adsorption sites on in-plane and edge-enriched MoS 2 flakes is proposed. This study revealed the role of favorable adsorption sites in MoS 2 flakes for the enhanced interaction of target gases and developed a highly sensitive, reversible, and fast gas sensor for next-generation toxic gases at room temperature.

  9. Three-Dimensional Photoactivated Localization Microscopy with Genetically Expressed Probes

    PubMed Central

    Temprine, Kelsey; York, Andrew G.; Shroff, Hari

    2017-01-01

    Photoactivated localization microscopy (PALM) and related single-molecule imaging techniques enable biological image acquisition at ~20 nm lateral and ~50–100 nm axial resolution. Although such techniques were originally demonstrated on single imaging planes close to the coverslip surface, recent technical developments now enable the 3D imaging of whole fixed cells. We describe methods for converting a 2D PALM into a system capable of acquiring such 3D images, with a particular emphasis on instrumentation that is compatible with choosing relatively dim, genetically expressed photoactivatable fluorescent proteins (PA-FPs) as PALM probes. After reviewing the basics of 2D PALM, we detail astigmatic and multiphoton imaging approaches well suited to working with PA-FPs. We also discuss the use of open-source localization software appropriate for 3D PALM. PMID:25391803

  10. Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission.

    PubMed

    Piatkevich, Kiryl D; Verkhusha, Vladislav V

    2010-02-01

    Monomeric fluorescent proteins of different colors are widely used to study behavior and targeting of proteins in living cells. Fluorescent proteins that irreversibly change their spectral properties in response to light irradiation of a specific wavelength, or photoactivate, have become increasingly popular to image intracellular dynamics and superresolution protein localization. Until recently, however, no optimized monomeric red fluorescent proteins and red photoactivatable proteins have been available. Furthermore, monomeric fluorescent proteins, which change emission from blue to red simply with time, so-called fluorescent timers, were developed to study protein age and turnover. Understanding of chemical mechanisms of the chromophore maturation or photoactivation into a red form will further advance engineering of fluorescent timers and photoactivatable proteins with enhanced and novel properties. 2009 Elsevier Ltd. All rights reserved.

  11. Visible-light-driven Efficient Photocatalytic Reduction of Organic Azides to Amines over CdS Sheet-rGO Nanocomposite.

    PubMed

    Singha, Krishnadipti; Mondal, Aniruddha; Ghosh, Subhash Chandra; Panda, Asit Baran

    2018-02-02

    CdS sheet-rGO nanocomposite as a heterogeneous photocatalyst enables visible-light-induced photocatalytic reduction of aromatic, heteroaromatic, aliphatic and sulfonyl azides to the corresponding amines using hydrazine hydrate as a reductant. The reaction shows excellent conversion and chemoselectivity towards the formation of the amine without self-photoactivated azo compounds. In the adopted strategy, CdS not only accelerates the formation of nitrene through photoactivation of azide but also enhances the decomposition of azide to a certain extent, which entirely suppressed formation of the azo compound. The developed CdS sheet-rGO nanocomposite catalyst is very active, providing excellent results under irradiation with a 40 W simple household CFL lamp. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Degree of conversion of nanofilled and microhybrid composite resins photo-activated by different generations of LEDs.

    PubMed

    Ribeiro, Benicia Carolina Iaskieviscz; Boaventura, Juliana Maria Capelozza; Brito-Gonçalves, Joel de; Rastelli, Alessandra Nara de Souza; Bagnato, Vanderlei Salvador; Saad, José Roberto Cury

    2012-01-01

    This study aimed at evaluating the degree of conversion (DC) of four composite resins, being one nanofilled and 3 microhybrid resins, photo-activated with second- and third-generation light-emitting diodes (LEDs). Filtek™ Z350 nanofilled composite resins and Amelogen® Plus, Vit-l-escence™ and Opallis microhybrid resins were photo-activated with two second-generation LEDs (Radii-cal and Elipar Free Light™ 2) and one third-generation LED (Ultra-Lume LED 5) by continuous light mode, and a quartz halogen-tungsten bulb (QHT, control). After 24 h of storage, the samples were pulverized into fine powder and 5 mg of each material were mixed with 100 mg of potassium bromide (KBr). After homogenization, they were pressed, which resulted in a pellet that was evaluated using an infrared spectromer (Nexus 470, Thermo Nicolet) equipped with TGS detector using diffuse reflectance (32 scans, resolution of 4 cm(-1)) coupled to a computer. The percentage of unreacted carbon-carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1). The ANOVA showed a significant effect on the interaction between the light-curing units (LCUs) and the composite resins (p<0.001). The Tukey’s test showed that the nanofilled resin (Filtek™ Z350) and Opallis when photo-activated by the halogen lamp (QTH) had the lowest DC compared with the other microhybrid composite resins. The DC of the nanofilled resin (Filtek™ Z350) was also lower using LEDs. The highest degrees of conversion were obtained using the third-generation LED and one of second-generation LEDs (Elipar Free Light™ 2). The nanofilled resin showed the lowest DC, and the Vit-l-escence™ microhybrid composite resin showed the highest DC. Among the LCUs, it was not possible to establish an order, even though the second-generation LED Radii-cal provided the lowest DC.

  13. Degree of conversion of nanofilled and microhybrid composite resins photo-activated by different generations of LEDs

    PubMed Central

    RIBEIRO, Benicia Carolina Iaskieviscz; BOAVENTURA, Juliana Maria Capelozza; de BRITO-GONÇALVES, Joel; RASTELLI, Alessandra Nara de Souza; BAGNATO, Vanderlei Salvador; SAAD, José Roberto Cury

    2012-01-01

    Objective This study aimed at evaluating the degree of conversion (DC) of four composite resins, being one nanofilled and 3 microhybrid resins, photo-activated with second- and third-generation light-emitting diodes (LEDs). Material and methods FiltekTM Z350 nanofilled composite resins and Amelogen® Plus, Vit-l-escenceTM and Opallis microhybrid resins were photo-activated with two second-generation LEDs (Radii-cal and Elipar Free LightTM 2) and one third-generation LED (Ultra-Lume LED 5) by continuous light mode, and a quartz halogen-tungsten bulb (QHT, control). After 24 h of storage, the samples were pulverized into fine powder and 5 mg of each material were mixed with 100 mg of potassium bromide (KBr). After homogenization, they were pressed, which resulted in a pellet that was evaluated using an infrared spectromer (Nexus 470, Thermo Nicolet) equipped with TGS detector using diffuse reflectance (32 scans, resolution of 4 cm-1) coupled to a computer. The percentage of unreacted carbon-carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1). Results The ANOVA showed a significant effect on the interaction between the light-curing units (LCUs) and the composite resins (p<0.001). The Tukey's test showed that the nanofilled resin (FiltekTM Z350) and Opallis when photo-activated by the halogen lamp (QTH) had the lowest DC compared with the other microhybrid composite resins. The DC of the nanofilled resin (FiltekTM Z350) was also lower using LEDs. The highest degrees of conversion were obtained using the third-generation LED and one of second-generation LEDs (Elipar Free LightTM 2). Conclusions The nanofilled resin showed the lowest DC, and the Vit-l-escenceTM microhybrid composite resin showed the highest DC. Among the LCUs, it was not possible to establish an order, even though the second-generation LED Radii-cal provided the lowest DC. PMID:22666839

  14. Measurement of energy transitions for the decay radiations of 75Ge and 69Ge in a high purity germanium detector

    NASA Astrophysics Data System (ADS)

    Aydın, Güral; Usta, Metin; Oktay, Adem

    2018-06-01

    Photoactivation experiments have a wide range of application areas in nuclear, particle physics, and medical physics such as measuring energy levels and half-lifes of nuclei, experiments for understanding imaging methods in medicine, isotope production for patient treatment, radiation security and transportation, radiation therapy, and astrophysics processes. In this study, some energy transition values of the decay radiations of 75Ge and 69Ge, which are the products of photonuclear reactions (γ, n) with germanium isotopes (75Ge and 69Ge), were measured. The gamma spectrum as a result of atomic transitions were analysed by using a high purity semiconductor germanium detector and the energy transition values which are presented here were compared with the ones which are the best in literature. It was observed that the results presented are in agreement with literature in error range and some results have better precisions.

  15. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling.

    PubMed

    Holtkotte, Xu; Ponnu, Jathish; Ahmad, Margaret; Hoecker, Ute

    2017-10-01

    Plants constantly adjust their growth, development and metabolism to the ambient light environment. Blue light is sensed by the Arabidopsis photoreceptors CRY1 and CRY2 which subsequently initiate light signal transduction by repressing the COP1/SPA E3 ubiquitin ligase. While the interaction between cryptochromes and SPA is blue light-dependent, it was proposed that CRY1 interacts with COP1 constitutively, i.e. also in darkness. Here, our in vivo co-immunoprecipitation experiments suggest that CRY1 and CRY2 form a complex with COP1 only after seedlings were exposed to blue light. No association between COP1 and CRY1 or CRY2 was observed in dark-grown seedlings. Thus, our results suggest that cryptochromes bind the COP1/SPA complex after photoactivation by blue light. In a spa quadruple mutant that is devoid of all four SPA proteins, CRY1 and COP1 did not interact in vivo, neither in dark-grown nor in blue light-grown seedlings. Hence, SPA proteins are required for the high-affinity interaction between CRY1 and COP1 in blue light. Yeast three-hybrid experiments also show that SPA1 enhances the CRY1-COP1 interaction. The coiled-coil domain of SPA1 which is responsible for COP1-binding was necessary to mediate a CRY1-SPA1 interaction in vivo, implying that-in turn-COP1 may be necessary for a CRY1-SPA1 complex formation. Hence, SPA1 and COP1 may act cooperatively in recognizing and binding photoactivated CRY1. In contrast, the blue light-induced association between CRY2 and COP1 was not dependent on SPA proteins in vivo. Similarly, ΔCC-SPA1 interacted with CRY2, though with a much lower affinity than wild-type SPA1. In total, our results demonstrate that CRY1 and CRY2 strongly differ in their blue light-induced interaction with the COP1/SPA complex.

  16. Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification

    NASA Astrophysics Data System (ADS)

    Roy, Nitish; Hirano, Yuiri; Kuriyama, Haruo; Sudhagar, Pitchaimuthu; Suzuki, Norihiro; Katsumata, Ken-Ichi; Nakata, Kazuya; Kondo, Takeshi; Yuasa, Makoto; Serizawa, Izumi; Takayama, Tomoaki; Kudo, Akihiko; Fujishima, Akira; Terashima, Chiaki

    2016-11-01

    Competitive hydrogen evolution and multiple proton-coupled electron transfer reactions limit photoelectrochemical CO2 reduction in aqueous electrolyte. Here, oxygen-terminated lightly boron-doped diamond (BDDL) thin films were synthesized as a semiconductor electron source to accelerate CO2 reduction. However, BDDL alone could not stabilize the intermediates of CO2 reduction, yielding a negligible amount of reduction products. Silver nanoparticles were then deposited on BDDL because of their selective electrochemical CO2 reduction ability. Excellent selectivity (estimated CO:H2 mass ratio of 318:1) and recyclability (stable for five cycles of 3 h each) for photoelectrochemical CO2 reduction were obtained for the optimum silver nanoparticle-modified BDDL electrode at -1.1 V vs. RHE under 222-nm irradiation. The high efficiency and stability of this catalyst are ascribed to the in situ photoactivation of the BDDL surface during the photoelectrochemical reaction. The present work reveals the potential of BDDL as a high-energy electron source for use with co-catalysts in photochemical conversion.

  17. Photodynamic therapy for the treatment of osteoarthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trauner, Kenneth; Hasan, Tayyaba

    A method of treating a patient who has osteoarthritic disease by administering a therapeutic composition containing a photoactivatable compound, or a precursor thereof, and administering light of a photoactivating wavelength that activates the compound.

  18. The effect of the polymerization initiator and light source on the elution of residual Bis-GMA and TEGDMA monomers: A study using liquid chromatography with UV detection.

    PubMed

    Denis, Aline B; Diagone, Cristina A; Plepis, Ana M G; Viana, Rommel B

    2015-12-05

    A method for the extraction and quantification of two residual monomers, bisphenol glycidyl dimethacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA), that were evaluated using high efficiency liquid chromatography with UV detection was developed and validated in this study. Three types of solvents were applied in the extraction of the monomers (methanol, ethanol and acetonitrile), where the highest extraction efficiency was obtained using acetonitrile. The different resins were prepared by photoactivation of Bis-GMA and TEGDMA monomers. Additionally, the effects of the addition of two photoinitiators (camphorquinone (CQ) and phenyl propanodione (PPD) and that of a co-initiator (N,N-dimethyl-p-toluidine) were also analyzed. When only the CQ photoinitiator was used, a smaller amount of residual monomers was obtained, whereas a larger amount was obtained with PPD. When the two photoinitiators were used in the same matrix, however, no significant changes were observed in relation to the amount of residual TEGDMA monomers. For the addition of the co-initiator, there were no large changes in the extraction of residual monomers. The effect of the two photoactivation sources (halogen lamp and LED) led to small differences in the elution of the two monomers, although all of the resins differed significantly when photoactivated with a LED. Quantum chemical calculations using Density Functional Theory were carried out to characterize several molecular properties of each monomer. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Phosphorylation-Induced Conformational Changes of Photoactivated Rhodopsin Probed by Fluorescent Labeling at Cys140 and Cys316.

    PubMed

    Rodríguez, Sheerly; Silva, May-Li; Benaím, Gustavo; Bubis, José

    2018-05-03

    In order to monitor conformational changes following photoactivation and phosphorylation of bovine rhodopsin, the two reactive sulfhydryl groups at Cys 140 and Cys 316 were specifically labeled with the monobromobimane (mBBr) fluorophore. Although alterations in conformation after light exposure of rhodopsin were not detected by fluorescence excitation scans (300-450 nm) of the mBBr-labeled protein, the fluorescence signal was reduced ∼ 90% in samples containing photoactivated phosphorhodopsin. Predominant labeling at either Cys 140 or Cys 316 in light-activated and phosphorylated rhodopsin merely generated a decrease of ∼ 38% and 28%, respectively, in the fluorescence excitation intensity. Thus, neither mBBr-modified Cys 140 nor mBBr-modified Cys 316 were involved single-handedly in the remarkable fall seen on the signal following phosphorylation of the protein; rather, the incorporation of phosphate groups on the mBBr-labeled light-activated rhodopsin appeared to affect its fluorescence signal in a cooperative or synergistic manner. These findings demonstrated that the phosphorylation of specific hydroxyl groups at the carboxyl terminal tail of rhodopsin causes definite conformational changes in the three-dimensional fold of the protein. Apparently, amino acid residues that are buried in the interior of the inactive protein become accessible following bleaching and phosphorylation of rhodopsin, quenching in turn the fluorescence excitation signal of mBBr-modified rhodopsin. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. Photodynamic N-TiO2 Nanoparticle Treatment Induces Controlled ROS-mediated Autophagy and Terminal Differentiation of Leukemia Cells

    PubMed Central

    Moosavi, Mohammad Amin; Sharifi, Maryam; Ghafary, Soroush Moasses; Mohammadalipour, Zahra; Khataee, Alireza; Rahmati, Marveh; Hajjaran, Sadaf; Łos, Marek J.; Klonisch, Thomas; Ghavami, Saeid

    2016-01-01

    In this study, we used nitrogen-doped titanium dioxide (N-TiO2) NPs in conjugation with visible light, and show that both reactive oxygen species (ROS) and autophagy are induced by this novel NP-based photodynamic therapy (PDT) system. While well-dispersed N-TiO2 NPs (≤100 μg/ml) were inert, their photo-activation with visible light led to ROS-mediated autophagy in leukemia K562 cells and normal peripheral lymphocytes, and this increased in parallel with increasing NP concentrations and light doses. At a constant light energy (12 J/cm2), increasing N-TiO2 NP concentrations increased ROS levels to trigger autophagy-dependent megakaryocytic terminal differentiation in K562 cells. By contrast, an ROS challenge induced by high N-TiO2 NP concentrations led to autophagy-associated apoptotic cell death. Using chemical autophagy inhibitors (3-methyladenine and Bafilomycin A1), we confirmed that autophagy is required for both terminal differentiation and apoptosis induced by photo-activated N-TiO2. Pre-incubation of leukemic cells with ROS scavengers muted the effect of N-TiO2 NP-based PDT on cell fate, highlighting the upstream role of ROS in our system. In summary, PDT using N-TiO2 NPs provides an effective method of priming autophagy by ROS induction. The capability of photo-activated N-TiO2 NPs in obtaining desirable cellular outcomes represents a novel therapeutic strategy of cancer cells. PMID:27698385

  1. Molecular Mechanism of Photoactivation and Structural Location of the Cyanobacterial Orange Carotenoid Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hao; Liu, Haijun; Niedzwiedzki, Dariusz M.

    The orange carotenoid protein (OCP) plays a photoprotective role in cyanobacterial photosynthesis similar to that of nonphotochemical quenching in higher plants. Under high-light conditions, the OCP binds to the phycobilisome (PBS) and reduces the extent of transfer of energy to the photosystems. The protective cycle starts from a light-induced activation of the OCP. Detailed information about the molecular mechanism of this process as well as the subsequent recruitment of the active OCP to the phycobilisome are not known. We report here our investigation on the OCP photoactivation from the cyanobacterium Synechocystis sp. PCC 6803 by using a combination of nativemore » electrospray mass spectrometry (MS) and protein cross-linking. We demonstrate that native MS can capture the OCP with its intact pigment and further reveal that the OCP undergoes a dimer-to-monomer transition upon light illumination. The reversion of the activated form of the OCP to the inactive, dark form was also observed by using native MS. Furthermore, in vitro reconstitution of the OCP and PBS allowed us to perform protein chemical cross-linking experiments. Liquid chromatography–MS/MS analysis identified cross-linking species between the OCP and the PBS core components. Our result indicates that the N-terminal domain of the OCP is closely involved in the association with a site formed by two allophycocyanin trimers in the basal cylinders of the phycobilisome core. This report improves our understanding of the activation mechanism of the OCP and the structural binding site of the OCP during the cyanobacterial nonphotochemical quenching process.« less

  2. UV laser photoactivation of hexachloroplatinate bound to individual nucleobases in vacuo as molecular level probes of a model photopharmaceutical.

    PubMed

    Matthews, Edward; Sen, Ananya; Yoshikawa, Naruo; Bergström, Ed; Dessent, Caroline E H

    2016-06-01

    Isolated molecular clusters of adenine, cytosine, thymine and uracil bound to hexachloroplatinate, PtCl6(2-), have been studied using laser electronic photodissociation spectroscopy to investigate photoactivation of a platinum complex in the vicinity of a nucleobase. These metal complex-nucleobase clusters represent model systems for identifying the fundamental photochemical processes occurring in photodynamic platinum drug therapies that target DNA. This is the first study to explore the specific role of a strongly photoactive platinum compound in the aggregate complex. Each of the clusters studied displays a broadly similar absorption spectra, with a strong λmax ∼ 4.6 eV absorption band and a subsequent increase in the absorption intensity towards higher spectral-energy. The absorption bands are traced to ligand-to-metal-charge-transfer excitations on the PtCl6(2-) moiety within the cluster, and result in Cl(-)·nucleobase and PtCl5(-) as primary photofragments. These results demonstrate how selective photoexcitation can drive distinctive photodecay channels for a model photo-pharmaceutical. In addition, cluster absorption due to excitation of nucleobase-centred chromophores is observed in the region around 5 eV. For the uracil cluster, photofragments consistent with ultrafast decay of the excited state and vibrational predissociation on the ground-state surface are observed. However, this decay channel becomes successively weaker on going from thymine to cytosine to adenine, due to differential coupling of the excited states to the electron detachment continuum. These effects demonstrate the distinctive photophysical characteristics of the different nucleobases, and are discussed in the context of the recently recorded photoelectron spectra of theses clusters.

  3. Photodynamic therapy for the treatment of osteoarthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trauner, K.; Hasan, T.

    A method is disclosed of treating a patient who has osteoarthritic disease by administering a therapeutic composition containing a photoactivatable compound, or a precursor thereof, and administering light of a photoactivating wavelength that activates the compound. 5 figs.

  4. Photodynamic therapy for the treatment of osteoarthritis

    DOEpatents

    Trauner, K.; Hasan, T.

    1999-08-24

    A method is disclosed of treating a patient who has osteoarthritic disease by administering a therapeutic composition containing a photoactivatable compound, or a precursor thereof, and administering light of a photoactivating wavelength that activates the compound. 5 figs.

  5. Nanoparticle chemisorption printing technique for conductive silver patterning with submicron resolution

    PubMed Central

    Yamada, Toshikazu; Fukuhara, Katsuo; Matsuoka, Ken; Minemawari, Hiromi; Tsutsumi, Jun'ya; Fukuda, Nobuko; Aoshima, Keisuke; Arai, Shunto; Makita, Yuichi; Kubo, Hitoshi; Enomoto, Takao; Togashi, Takanari; Kurihara, Masato; Hasegawa, Tatsuo

    2016-01-01

    Silver nanocolloid, a dense suspension of ligand-encapsulated silver nanoparticles, is an important material for printing-based device production technologies. However, printed conductive patterns of sufficiently high quality and resolution for industrial products have not yet been achieved, as the use of conventional printing techniques is severely limiting. Here we report a printing technique to manufacture ultrafine conductive patterns utilizing the exclusive chemisorption phenomenon of weakly encapsulated silver nanoparticles on a photoactivated surface. The process includes masked irradiation of vacuum ultraviolet light on an amorphous perfluorinated polymer layer to photoactivate the surface with pendant carboxylate groups, and subsequent coating of alkylamine-encapsulated silver nanocolloids, which causes amine–carboxylate conversion to trigger the spontaneous formation of a self-fused solid silver layer. The technique can produce silver patterns of submicron fineness adhered strongly to substrates, thus enabling manufacture of flexible transparent conductive sheets. This printing technique could replace conventional vacuum- and photolithography-based device processing. PMID:27091238

  6. Orbital Engineering: Photoactivation of an Organofunctionalized Polyoxotungstate.

    PubMed

    Cameron, Jamie M; Fujimoto, Satomi; Kastner, Katharina; Wei, Rong-Jia; Robinson, David; Sans, Victor; Newton, Graham N; Oshio, H Hiroki

    2017-01-01

    Tungsten-based polyoxometalates (POMs) have been employed as UV-driven photo-catalysts for a range of organic transformations. Their photoactivity is dependent on electronic transitions between frontier orbitals and thus manipulation of orbital energy levels provides a promising means of extending their utility into the visible regime. Herein, an organic-inorganic hybrid polyoxometalate, K 6 [P 2 W 17 O 57 (PO 5 H 5 C 7 ) 2 ]⋅6 C 4 H 9 NO, was found to exhibit enhanced redox behaviour and photochemistry compared to its purely inorganic counterparts. Hybridization with electron-withdrawing moieties was shown to tune the frontier orbital energy levels and reduce the HOMO-LUMO gap, leading to direct visible-light photoactivation of the hybrid and establishing a simple, cheap and effective approach to the generation of visible-light-activated hybrid nanomaterials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Simple Approach to the Visible-Light Photoactivation of Molecular Metal Oxides.

    PubMed

    Fujimoto, Satomi; Cameron, Jamie M; Wei, Rong-Jia; Kastner, Katharina; Robinson, David; Sans, Victor; Newton, Graham N; Oshio, Hiroki

    2017-10-16

    This study explores a new method to maximize the visible-light-driven photocatalytic performance of organic-inorganic hybrid polyoxometalates (POMs). Experimental and theoretical investigations of a family of phosphonate-substituted POMs show that modification of grafted organic moieties can be used to tune the electronic structure and photoactivity of the metal oxide component. Unlike fully inorganic polyoxotungstates, these organic-inorganic hybrid species are responsive to visible light and function as photocatalysts (λ > 420 nm) in the decomposition of a model environmental pollutant. The degree of photoactivation is shown to be dependent on the nature of the inductive effect exerted by the covalently grafted substituent groups. This study emphasizes the untapped potential that lies in an orbital engineering approach to hybrid-POM design and helps to underpin the next generation of bespoke, robust, and cost-effective molecular metal oxide photoactive materials and catalysts.

  8. Investigation of the influence of the photodynamic effect on micro-organisms using the laser photothermal cytometry method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapotko, D O; Kuchinskii, G S; Zharov, V P

    1999-12-31

    An investigation of the influence of the photodynamic effect on S.aureus and E.coli bacteria in the presence of blood cells was made by the laser photothermal cytometry method. Elements of the theory of the photothermal method are considered for the case of pulsed lasers used in microscopy. Chlorin in doses of 0.02 mg litre{sup -1} was used as a photosensitiser. The results of the investigation made it possible to propose the possibility of an immunomodulation effect caused by introducing photoactivated chlorin into the cell - microbe system. It was found that the photothermal parameters of the cells interacting with microbesmore » in the presence of photoactivated chlorin differed from the parameters of intact cells much less than in the absence of chlorin. However, a more pronounced bactericidal effect was observed in the samples treated with chlorin. (lasers in medicine)« less

  9. LASERS IN MEDICINE: Investigation of the influence of the photodynamic effect on micro-organisms using the laser photothermal cytometry method

    NASA Astrophysics Data System (ADS)

    Lapotko, D. O.; Zharov, V. P.; Romanovskaya, T. R.; Kuchinskii, G. S.

    1999-12-01

    An investigation of the influence of the photodynamic effect on S.aureus and E.coli bacteria in the presence of blood cells was made by the laser photothermal cytometry method. Elements of the theory of the photothermal method are considered for the case of pulsed lasers used in microscopy. Chlorin in doses of 0.02 mg litre-1 was used as a photosensitiser. The results of the investigation made it possible to propose the possibility of an immunomodulation effect caused by introducing photoactivated chlorin into the cell — microbe system. It was found that the photothermal parameters of the cells interacting with microbes in the presence of photoactivated chlorin differed from the parameters of intact cells much less than in the absence of chlorin. However, a more pronounced bactericidal effect was observed in the samples treated with chlorin.

  10. A Double Decarboxylation in Superfolder Green Fluorescent Protein Leads to High Contrast Photoactivation.

    PubMed

    Slocum, Joshua D; Webb, Lauren J

    2017-07-06

    A photoactivatable variant of superfolder green fluorescent protein (GFP) was created by replacing the threonine at position 203 with aspartic acid. Photoactivation by exposure of this mutant to UV light resulted in conversion of the fluorophore from the neutral to the negatively charged form, accompanied by a ∼95-fold increase in fluorescence under 488 nm excitation. Mass spectrometry before and after exposure to UV light revealed a change in mass of 88 Da, attributed to the double decarboxylation of Glu 222 and Asp 203. Kinetics studies and nonlinear power-dependence of the initial rate of photoconversion indicated that the double decarboxylation occurred via a multiphoton absorption process at 254 nm. In addition to providing a photoactivatable GFP with robust folding properties, a detailed mechanistic understanding of this double decarboxylation in GFP will lead to a better understanding of charge transfer in fluorescent proteins.

  11. Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Wegner, Berthold; Lee, Kyung Min; Fusella, Michael A.; Zhang, Fengyu; Moudgil, Karttikay; Rand, Barry P.; Barlow, Stephen; Marder, Seth R.; Koch, Norbert; Kahn, Antoine

    2017-12-01

    Chemical doping of organic semiconductors using molecular dopants plays a key role in the fabrication of efficient organic electronic devices. Although a variety of stable molecular p-dopants have been developed and successfully deployed in devices in the past decade, air-stable molecular n-dopants suitable for materials with low electron affinity are still elusive. Here we demonstrate that photo-activation of a cleavable air-stable dimeric dopant can result in kinetically stable and efficient n-doping of host semiconductors, whose reduction potentials are beyond the thermodynamic reach of the dimer’s effective reducing strength. Electron-transport layers doped in this manner are used to fabricate high-efficiency organic light-emitting diodes. Our strategy thus enables a new paradigm for using air-stable molecular dopants to improve conductivity in, and provide ohmic contacts to, organic semiconductors with very low electron affinity.

  12. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Manzi, Lucio; Barrow, Andrew S.; Scott, Daniel; Layfield, Robert; Wright, Timothy G.; Moses, John E.; Oldham, Neil J.

    2016-11-01

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  13. PHOTOACTIVATED TOXICITY IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Most aquatic organisms have evolved mechanisms to minimize damage by ultraviolet (UV) radiation. Many terrestrial species have additionally had to adapt to plant compounds (e.g. furanocoumarins) that are extremely toxic when activated by UV radiation. Over evolutionary time, it i...

  14. Effective photosensitization-based inactivation of Gram (-) food pathogens and molds using the chlorophyllin-chitosan complex: towards photoactive edible coatings to preserve strawberries.

    PubMed

    Buchovec, Irina; Lukseviciute, Viktorija; Marsalka, Arunas; Reklaitis, Ignas; Luksiene, Zivile

    2016-04-01

    This study is focused on the novel approaches to enhance the inactivation of the Gram (-) food pathogen Salmonella enterica and harmful molds in vitro and on the surface of strawberries using the chlorophyllin-chitosan complex. Salmonella enterica (∼1 × 10(7) CFU mL(-1)) was incubated with chlorophyllin 1.5 × 10(-5) M (Chl, food additive), chitosan 0.1% (CHS, food supplement) or the chlorophyllin-chitosan complex (1.5 × 10(-5) M Chl-0.1% CHS) and illuminated with visible light (λ = 405 nm, light dose 38 J cm(-2)) in vitro. Chlorophyllin (Chl)-based photosensitization inactivated Salmonella just by 1.8 log. Chitosan (CHS) alone incubated for 2 h with Salmonella reduced viability 2.15 log, whereas photoactivated Chl-CHS diminished bacterial viability by 7 log. SEM images indicate that the Chl-CHS complex under these experimental conditions covered the entire bacterial surface. Significant cell membrane disintegration was the main lethal injury induced in Gram (-) bacteria by this treatment. Analysis of strawberry decontamination from surface-inoculated Salmonella indicated that photoactivated Chl-CHS (1.5 × 10(-5) M Chl-0.1% CHS, 30 min incubation, light dose 38 J cm(-2)) coatings diminished the pathogen population on the surface of strawberries by 2.2 log. Decontamination of strawberries from naturally distributed yeasts/molds revealed that chitosan alone reduced the population of yeasts/molds just by 0.4 log, Chl-based photosensitization just by 0.9 log, whereas photoactivated Chl-CHS coatings reduced yeasts/molds on the surface of strawberries by 1.4 log. Electron paramagnetic resonance spectroscopy confirmed that no additional photosensitization-induced free radicals have been found in the strawberry matrix. Visual quality (color, texture) of the treated strawberries was not affected either. In conclusion, photoactive Chl-CHS exhibited strong antimicrobial action against more resistant to photosensitization Gram (-) Salmonella enterica in comparison with Gram (+) bacteria in vitro. It reduced significantly the viability of strawberry surface-attached yeasts/molds and inoculated Salmonella without any negative impact on the visual quality of berries. Experimental data support the idea that photoactivated Chl-CHS can be a useful tool for the future development of edible photoactive antimicrobial coatings which can preserve strawberries and prolong their shelf-life according to requirements of "clean green technology".

  15. Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions

    PubMed Central

    Carrillo-Reid, Luis; Bando, Yuki; Peterka, Darcy S

    2018-01-01

    The simultaneous imaging and manipulating of neural activity could enable the functional dissection of neural circuits. Here we have combined two-photon optogenetics with simultaneous volumetric two-photon calcium imaging to measure and manipulate neural activity in mouse neocortex in vivo in three-dimensions (3D) with cellular resolution. Using a hybrid holographic approach, we simultaneously photostimulate more than 80 neurons over 150 μm in depth in layer 2/3 of the mouse visual cortex, while simultaneously imaging the activity of the surrounding neurons. We validate the usefulness of the method by photoactivating in 3D selected groups of interneurons, suppressing the response of nearby pyramidal neurons to visual stimuli in awake animals. Our all-optical approach could be used as a general platform to read and write neuronal activity. PMID:29412138

  16. Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man

    PubMed Central

    Cideciyan, Artur V.; Zhao, Xinyu; Nielsen, Lori; Khani, Shahrokh C.; Jacobson, Samuel G.; Palczewski, Krzysztof

    1998-01-01

    Rhodopsin kinase (RK), a specialized G-protein-coupled receptor kinase expressed in retina, is involved in quenching of light-induced signal transduction in photoreceptors. The role of RK in recovery after photoactivation has been explored in vitro and in vivo experimentally but has not been specifically defined in humans. We investigated the effects on human vision of a mutation in the RK gene causing Oguchi disease, a recessively inherited retinopathy. In vitro experiments demonstrated that the mutation, a deletion of exon 5, abolishes the enzymatic activity of RK and is likely a null. Both a homozygote and heterozygote with this RK mutation had recovery phase abnormalities of rod-isolated photoresponses by electroretinography (ERG); photoactivation was normal. Kinetics of rod bleaching adaptation by psychophysics were dramatically slowed in the homozygote but normal final thresholds were attained. Light adaptation was normal at low backgrounds but became abnormal at higher backgrounds. A slight slowing of cone deactivation kinetics in the homozygote was detected by ERG. Cone bleaching adaptation and background adaptation were normal. In this human in vivo condition without a functional RK and probable lack of phosphorylation and arrestin binding to activated rhodopsin, reduction of photolyzed chromophore and regeneration processes with 11-cis-retinal probably constitute the sole pathway for recovery of rod sensitivity. The role of RK in rods would thus be to accelerate inactivation of activated rhodopsin molecules that in concert with regeneration leads to the normal rate of recovery of sensitivity. Cones may rely mainly on regeneration for the inactivation of photolyzed visual pigment, but RK also contributes to cone recovery. PMID:9419375

  17. Chemotactic signal integration in bacteria.

    PubMed Central

    Khan, S; Spudich, J L; McCray, J A; Trentham, D R

    1995-01-01

    Chemotactic signaling in Escherichia coli involves transmission of both negative and positive signals. In order to examine mechanisms of signal processing, behavioral responses to dual inputs have been measured by using photoactivable "caged" compounds, computer video analysis, and chemoreceptor deletion mutants. Signaling from Tar and Tsr, two receptors that sense amino acids and pH, was studied. In a Tar deletion mutant the photoactivated release of protons, a Tsr repellent, and of serine, a Tsr attractant, in separate experiments at pH 7.0 resulted in tumbling (negative) or smooth-swimming (positive) responses in ca. 50 and 140 ms, respectively. Simultaneous photorelease of protons and serine resulted in a single tumbling or smooth-swimming response, depending on the relative amounts of the two effectors. In contrast, in wild-type E. coli, proton release at pH 7.0 resulted in a biphasic response that was attributed to Tsr-mediated tumbling followed by Tar-mediated smooth-swimming. In wild-type E. coli at more alkaline pH values the Tar-mediated signal was stronger than the Tsr signal, resulting in a strong smooth-swimming response preceded by a diminished tumbling response. These observations imply that (i) a single receptor time-averages the binding of different chemotactic ligands generating a single response; (ii) ligand binding to different receptors can result in a nonintegrated response with the tumbling response preceding the smooth-swimming response; (iii) however, chemotactic signals of different intensities derived from different receptors can also result in an apparently integrated response; and (iv) the different chemotactic responses to protons at neutral and alkaline pH may contribute to E. coli migration toward neutrality. Images Fig. 6 PMID:7568212

  18. PHOTOACTIVATION AND TOXICITY OF MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN MARINE SEDIMENT

    EPA Science Inventory

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...

  19. Human infrared vision is triggered by two-photon chromophore isomerization

    PubMed Central

    Palczewska, Grazyna; Vinberg, Frans; Stremplewski, Patrycjusz; Bircher, Martin P.; Salom, David; Komar, Katarzyna; Zhang, Jianye; Cascella, Michele; Wojtkowski, Maciej; Kefalov, Vladimir J.; Palczewski, Krzysztof

    2014-01-01

    Vision relies on photoactivation of visual pigments in rod and cone photoreceptor cells of the retina. The human eye structure and the absorption spectra of pigments limit our visual perception of light. Our visual perception is most responsive to stimulating light in the 400- to 720-nm (visible) range. First, we demonstrate by psychophysical experiments that humans can perceive infrared laser emission as visible light. Moreover, we show that mammalian photoreceptors can be directly activated by near infrared light with a sensitivity that paradoxically increases at wavelengths above 900 nm, and display quadratic dependence on laser power, indicating a nonlinear optical process. Biochemical experiments with rhodopsin, cone visual pigments, and a chromophore model compound 11-cis-retinyl-propylamine Schiff base demonstrate the direct isomerization of visual chromophore by a two-photon chromophore isomerization. Indeed, quantum mechanics modeling indicates the feasibility of this mechanism. Together, these findings clearly show that human visual perception of near infrared light occurs by two-photon isomerization of visual pigments. PMID:25453064

  20. Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation

    PubMed Central

    He, Lian; Zhang, Yuanwei; Ma, Guolin; Tan, Peng; Li, Zhanjun; Zang, Shengbing; Wu, Xiang; Jing, Ji; Fang, Shaohai; Zhou, Lijuan; Wang, Youjun; Huang, Yun; Hogan, Patrick G; Han, Gang; Zhou, Yubin

    2015-01-01

    The application of current channelrhodopsin-based optogenetic tools is limited by the lack of strict ion selectivity and the inability to extend the spectra sensitivity into the near-infrared (NIR) tissue transmissible range. Here we present an NIR-stimulable optogenetic platform (termed 'Opto-CRAC') that selectively and remotely controls Ca2+ oscillations and Ca2+-responsive gene expression to regulate the function of non-excitable cells, including T lymphocytes, macrophages and dendritic cells. When coupled to upconversion nanoparticles, the optogenetic operation window is shifted from the visible range to NIR wavelengths to enable wireless photoactivation of Ca2+-dependent signaling and optogenetic modulation of immunoinflammatory responses. In a mouse model of melanoma by using ovalbumin as surrogate tumor antigen, Opto-CRAC has been shown to act as a genetically-encoded 'photoactivatable adjuvant' to improve antigen-specific immune responses to specifically destruct tumor cells. Our study represents a solid step forward towards the goal of achieving remote and wireless control of Ca2+-modulated activities with tailored function. DOI: http://dx.doi.org/10.7554/eLife.10024.001 PMID:26646180

  1. ASSESSING RISKS FROM PHOTOACTIVATED TOXICITY OF PAHS TO AQUATIC ORGANISMS

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most ubiquitous classes of environmental contaminants. Although most PAHs are toxic only at concentrations large enough to cause narcosis, the toxicity of some can be greatly enhanced through mechanisms that involve molecul...

  2. Photo-Activated Psoralen Binds the ErbB2 Catalytic Kinase Domain, Blocking ErbB2 Signaling and Triggering Tumor Cell Apoptosis

    PubMed Central

    Xia, Wenle; Gooden, David; Liu, Leihua; Zhao, Sumin; Soderblom, Erik J.; Toone, Eric J.; Beyer, Wayne F.; Walder, Harold; Spector, Neil L.

    2014-01-01

    Photo-activation of psoralen with UVA irradiation, referred to as PUVA, is used in the treatment of proliferative skin disorders. The anti-proliferative effects of PUVA have been largely attributed to psoralen intercalation of DNA, which upon UV treatment, triggers the formation of interstrand DNA crosslinks (ICL) that inhibit transcription and DNA replication. Here, we show that PUVA exerts antitumor effects in models of human breast cancer that overexpress the ErbB2 receptor tyrosine kinase oncogene, through a new mechanism. Independent of ICL formation, the antitumor effects of PUVA in ErbB2+ breast cancer models can instead be mediated through inhibition of ErbB2 activation and signaling. Using a mass spectroscopy-based approach, we show for the first time that photo-activated 8MOP (8-methoxypsoralen) interacts with the ErbB2 catalytic autokinase domain. Furthermore, PUVA can reverse therapeutic resistance to lapatinib and other ErbB2 targeted therapies, including resistance mediated via expression of a phosphorylated, truncated form of ErbB2 (p85ErbB2) that is preferentially expressed in tumor cell nuclei. Current ErbB2 targeted therapies, small molecule kinase inhibitors or antibodies, do not block the phosphorylated, activated state of p85ErbB2. Here we show that PUVA reduced p85ErbB2 phosphorylation leading to tumor cell apoptosis. Thus, in addition to its effects on DNA and the formation of ICL, PUVA represents a novel ErbB2 targeted therapy for the treatment of ErbB2+ breast cancers, including those that have developed resistance to other ErbB2 targeted therapies. PMID:24551203

  3. The effect of polymerization mode on monomer conversion, free radical entrapment, and interaction with hydroxyapatite of commercial self-adhesive cements.

    PubMed

    D'Alpino, Paulo Henrique Perlatti; Silva, Marília Santos; Vismara, Marcus Vinícius Gonçalves; Di Hipólito, Vinicius; Miranda González, Alejandra Hortencia; de Oliveira Graeff, Carlos Frederico

    2015-06-01

    This study evaluated the degree of conversion, the free radical entrapment, and the chemical interaction of self-adhesive resin cements mixed with pure hydroxyapatite, as a function of the polymerization activation mode among a variety of commercial self-adhesive cements. Four cements (Embrace WetBond, MaxCem Elite, Bifix SE, and RelyX U200) were mixed, combined with hydroxyapatite, dispensed into molds, and distributed into three groups, according to polymerization protocols: IP (photoactivation for 40s); DP (delayed photoactivation, 10 min self-curing plus 40s light-activated); and CA (chemical activation, no light exposure). Infrared (IR) spectra were obtained and monomer conversion (%) was calculated by comparing the aliphatic-to-aromatic IR absorption peak ratio before and after polymerization (n=10). The free radical entrapment values of the resin cements were characterized using Electron Paramagnetic Resonance (EPR) and the concentration of spins (number of spins/mass) calculated (n=3). Values were compared using two-way ANOVA and Tukey's post-hoc test (α=5%). X-ray diffraction (XRD) characterized the crystallinity of hydroxyapatite as a function of the chemical interactions with the resin cements. The tested parameters varied as a function of resin cement and polymerization protocol. Embrace WetBond and RelyX U200 demonstrated dependence on photoactivation (immediate or delayed), whereas MaxCem Elite exhibited dependence on the chemical activation mode. Bifix SE presented the best balance based on the parameters analyzed, irrespective of the activation protocol. Choice of polymerization protocol affects the degree of conversion, free radical entrapment, and the chemical interaction between hydroxyapatite and self-adhesive resin cement mixtures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. FTIR Study of the Photoactivation Process of Xenopus (6-4) Photolyase†

    PubMed Central

    Yamada, Daichi; Zhang, Yu; Iwata, Tatsuya; Hitomi, Kenichi; Getzoff, Elizabeth D.; Kandori, Hideki

    2012-01-01

    Photolyases (PHRs) are blue-light activated DNA repair enzymes that maintain genetic integrity by reverting UV-induced photoproducts into normal bases. The FAD chromophore of PHRs has four different redox states: oxidized (FADox), anion radical (FAD•−), neutral radical (FADH•) and fully reduced (FADH−). We combined difference Fourier-transform infrared (FTIR) spectroscopy with UV-visible spectroscopy to study the detailed photoactivation process of Xenopus (6-4) PHR. Two photons produce the enzymatically active, fully reduced PHR from oxidized FAD: FADox is converted to semiquinone via light-induced one-electron and one-proton transfers, and then to FADH− by light-induced one-electron transfer. We successfully trapped FAD•− at 200 K, where electron transfer occurs, but proton transfer does not. UV-visible spectroscopy following 450-nm illumination of FADox at 277 K defined the FADH•/FADH− mixture and allowed calculation of difference FTIR spectra among the four redox states. The absence of a characteristic C=O stretching vibration indicated that the proton donor is not a protonated carboxylic acid. Structural changes in Trp and Tyr are suggested from UV-visible and FTIR analysis of FAD•− at 200 K. Spectral analysis of amide-I vibrations revealed structural perturbation of the protein’s β-sheet during initial electron transfer (FAD•− formation), transient increase in α-helicity during proton transfer (FADH• formation) and reversion to the initial amide-I signal following subsequent electron transfer (FADH− formation). Consequently, in (6-4) PHR, unlike cryptochrome-DASH, formation of enzymatically active FADH− did not perturb α-helicity. Protein structural changes in the photoactivation of (6-4) PHR are discussed on the basis of the present FTIR observations. PMID:22747528

  5. Effect of lipstick on composite resin color at different application times

    PubMed Central

    GALVÃO, Avilmar Passos; JACQUES, Letícia Borges; DANTAS, Luciana; MATHIAS, Paula; MALLMANN, André

    2010-01-01

    Objectives The aim of this study was to evaluate the influence of the contact of two lipsticks, one with common fixer and one with ultra fixer, on the color of a composite resin immediately, 30 min and 24 h after photoactivation. Material and methods Ninety specimens were prepared with a composite resin, Filtek-Z350. Specimens were polished and divided into 9 groups (n=10) according to time elapsed after photoactivation (A- immediately; B- 30 min; C- 24 h) and the contact with lipstick (UF- lipstick with ultra fixer; F- lipstick with common fixer). The control group was represented by specimens that did not have any contact with lipstick (C- without lipstick). Color measurements of the specimens were carried out using a spectrophotometer (Easyshade - CIE L* a* b* system). For UF and F groups, the baseline color of the specimens was measured immediately before pigmentation and the lipsticks were applied dry after 1 hour. The excess lipstick was removed with absorbent paper and final color checking was performed, including the control group. Differences between the final and baseline color measurements were calculated and data were analyzed statistically by the Kruskal-Wallis test at 5%. Results The means between the differences of color values were: AUF: 16.0; AF: 12.4; AC: 1.07; BUF: 9.51; BF: 8.3; BC: 0.91; CUF: 17.7; CF: 12.41; CC: 0.82. Conclusion Groups where lipstick was applied showed greater staining than the control group at the three evaluation times. The lipstick with ultra fixer stained more than the lipstick with common fixer. Time elapsed between photoactivation and contact with lipstick had a similar influence on the groups that received lipstick application. PMID:21308286

  6. Effect of lipstick on composite resin color at different application times.

    PubMed

    Galvão, Avilmar Passos; Jacques, Letícia Borges; Dantas, Luciana; Mathias, Paula; Mallmann, André

    2010-12-01

    The aim of this study was to evaluate the influence of the contact of two lipsticks, one with common fixer and one with ultra fixer, on the color of a composite resin immediately, 30 min and 24 h after photoactivation. Ninety specimens were prepared with a composite resin, Filtek-Z350. Specimens were polished and divided into 9 groups (n=10) according to time elapsed after photoactivation (A- immediately; B- 30 min; C- 24 h) and the contact with lipstick (UF- lipstick with ultra fixer; F- lipstick with common fixer). The control group was represented by specimens that did not have any contact with lipstick (C- without lipstick). Color measurements of the specimens were carried out using a spectrophotometer (Easyshade - CIE L* a* b* system). For UF and F groups, the baseline color of the specimens was measured immediately before pigmentation and the lipsticks were applied dry after 1 hour. The excess lipstick was removed with absorbent paper and final color checking was performed, including the control group. Differences between the final and baseline color measurements were calculated and data were analyzed statistically by the Kruskal-Wallis test at 5%. The means between the differences of color values were: AUF: 16.0; AF: 12.4; AC: 1.07; BUF: 9.51; BF: 8.3; BC: 0.91; CUF: 17.7; CF: 12.41; CC: 0.82. Groups where lipstick was applied showed greater staining than the control group at the three evaluation times. The lipstick with ultra fixer stained more than the lipstick with common fixer. Time elapsed between photoactivation and contact with lipstick had a similar influence on the groups that received lipstick application.

  7. Structure and function in rhodopsin: Rhodopsin mutants with a neutral amino acid at E134 have a partially activated conformation in the dark state*

    PubMed Central

    Kim, Jong-Myoung; Altenbach, Christian; Thurmond, Robin L.; Khorana, H. Gobind; Hubbell, Wayne L.

    1997-01-01

    The Glu-134–Arg-135 residues in rhodopsin, located near the cytoplasmic end of the C helix, are involved in G protein binding, or activation, or both. Furthermore, the charge-neutralizing mutation Glu-134 to Gln-134 produces hyperactivity in the activated state and produces constitutive activity in opsin. The Glu/Asp-Arg charge pair is highly conserved in equivalent positions in other G protein-coupled receptors. To investigate the structural consequences of charge-neutralizing mutations at Glu-134 and Arg-135 in rhodopsin, single spin-labeled side chains were introduced at sites in the cytoplasmic domains of helices C (140), E (227), F (250), or G (316) to serve as “molecular sensors” of the local helix bundle conformation. In each of the spin-labeled rhodopsins, a Gln substitution was introduced at either Glu-134 or Arg-135, and the electron paramagnetic resonance spectrum of the spin label was used to monitor the structural response of the helix bundle. The results indicate that a Gln substitution at Glu-134 induces a photoactivated conformation around helices C and G even in the dark state, an observation of potential relevance to the hyperactivity and constitutive activity of the mutant. In contrast, little change is induced in helix F, which has been shown to undergo a dominant motion upon photoactivation. This result implies that the multiple helix motions accompanying photoactivation are not strongly coupled and can be induced to take place independently. Gln substitution at Arg-135 produces only minor structural changes in the dark- or light-activated conformation, suggesting that this residue is not a determinant of structure in the regions investigated, although it may be functionally important. PMID:9405602

  8. CHARACTERIZATION OF FLAME-SYNTHESIZED FE, CO, OR MN-DOPED TITANIA NANOSTRUCTURED PARTICLES

    EPA Science Inventory

    The flame-synthesized catalysts have higher surface areas than commercial-grade titania and are composed of nanometer-sized primary particles with low internal porosity. Preliminary studies suggest that flame-synthesized iron-doped titania may be photoactivated in the visible lig...

  9. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions

    PubMed Central

    Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra

    2016-01-01

    Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min−1. The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics. PMID:27991512

  10. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions

    NASA Astrophysics Data System (ADS)

    Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra

    2016-12-01

    Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min-1. The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics.

  11. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions.

    PubMed

    Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra

    2016-12-19

    Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min -1 . The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics.

  12. Asymmetric activation mechanism of a homodimeric red light regulated photoreceptor.

    PubMed

    Gourinchas, Geoffrey; Heintz, Udo; Winkler, Andreas

    2018-06-05

    Organisms adapt to environmental cues using diverse signaling networks. In order to sense and integrate light for regulating various biological functions, photoreceptor proteins have evolved in a modular way. This modularity is targeted in the development of optogenetic tools enabling the control of cellular events with high spatiotemporal precision. However, the limited understanding of signaling mechanisms impedes the rational design of innovative photoreceptor-effector couples. Here we reveal molecular details of signal transduction in phytochrome-regulated diguanylyl-cyclases. Asymmetric structural changes of the full-length homodimer result in a functional heterodimer featuring two different photoactivation states. Structural changes around the cofactors result in a quasi-translational rearrangement of the distant coiled-coil sensor-effector linker. Eventually, this regulates enzymatic activity by modulating the dimer interface of the output domains. Considering the importance of phytochrome heterodimerization in plant signaling, our mechanistic details of asymmetric photoactivation in a bacterial system reveal novel aspects of the evolutionary adaptation of phytochromes. © 2018, Gourinchas et al.

  13. Engineering a hyper-catalytic enzyme by photo-activated conformation modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Pratul K

    2012-01-01

    Enzyme engineering for improved catalysis has wide implications. We describe a novel chemical modification of Candida antarctica lipase B that allows modulation of the enzyme conformation to promote catalysis. Computational modeling was used to identify dynamical enzyme regions that impact the catalytic mechanism. Surface loop regions located distal to active site but showing dynamical coupling to the reaction were connected by a chemical bridge between Lys136 and Pro192, containing a derivative of azobenzene. The conformational modulation of the enzyme was achieved using two sources of light that alternated the azobenzene moiety in cis and trans conformations. Computational model predicted thatmore » mechanical energy from the conformational fluctuations facilitate the reaction in the active-site. The results were consistent with predictions as the activity of the engineered enzyme was found to be enhanced with photoactivation. Preliminary estimations indicate that the engineered enzyme achieved 8-52 fold better catalytic activity than the unmodulated enzyme.« less

  14. Crystal Structure of Deinococcus Phytochrome in the Photoactivated State Reveals a Cascade of Structural Rearrangements during Photoconversion.

    PubMed

    Burgie, E Sethe; Zhang, Junrui; Vierstra, Richard D

    2016-03-01

    Phytochromes are photochromic photoreceptors responsible for a myriad of red/far-red light-dependent processes in plants and microorganisms. Interconversion is initially driven by photoreversible isomerization of bilin, but how this alteration directs the photostate-dependent changes within the protein to actuate signaling is poorly understood. Here, we describe the structure of the Deinococcus phytochrome photosensory module in its near complete far-red light-absorbing Pfr state. In addition to confirming the 180° rotation of the D-pyrrole ring, the dimeric structure clearly identifies downstream rearrangements that trigger large-scale conformational differences between the dark-adapted and photoactivated states. Mutational analyses verified the importance of residues surrounding the bilin in Pfr stabilization, and protease sensitivity assays corroborated photostate alterations that propagate along the dimeric interface. Collectively, these data support a cooperative "toggle" model for phytochrome photoconversion and advance our understanding of the allosteric connection between the photosensory and output modules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Quantification of DNA-associated proteins inside eukaryotic cells using single-molecule localization microscopy

    PubMed Central

    Etheridge, Thomas J.; Boulineau, Rémi L.; Herbert, Alex; Watson, Adam T.; Daigaku, Yasukazu; Tucker, Jem; George, Sophie; Jönsson, Peter; Palayret, Matthieu; Lando, David; Laue, Ernest; Osborne, Mark A.; Klenerman, David; Lee, Steven F.; Carr, Antony M.

    2014-01-01

    Development of single-molecule localization microscopy techniques has allowed nanometre scale localization accuracy inside cells, permitting the resolution of ultra-fine cell structure and the elucidation of crucial molecular mechanisms. Application of these methodologies to understanding processes underlying DNA replication and repair has been limited to defined in vitro biochemical analysis and prokaryotic cells. In order to expand these techniques to eukaryotic systems, we have further developed a photo-activated localization microscopy-based method to directly visualize DNA-associated proteins in unfixed eukaryotic cells. We demonstrate that motion blurring of fluorescence due to protein diffusivity can be used to selectively image the DNA-bound population of proteins. We designed and tested a simple methodology and show that it can be used to detect changes in DNA binding of a replicative helicase subunit, Mcm4, and the replication sliding clamp, PCNA, between different stages of the cell cycle and between distinct genetic backgrounds. PMID:25106872

  16. THE EFFECT OF IRRADIANCE SPECTRA ON THE PHOTOACTIVATED TOXICITY OF THREE POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light recieved. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...

  17. BRAIN MICROGLIA (BV2) RESPONSE TO NON-PHOTOACTIVATED TIO2 NANOPARTICLES: IMPLICATIONS FOR NANOPARTICLE NEUROTOXICITY.

    EPA Science Inventory

    Engineered nanoparticles are attractive for use in medical, industrial, and military sectors, but little is known of their interactions with biological systems. Recent studies indicate that some are not completely benign to biological and environmental targets. Here, the respon...

  18. Photoactivatable Lipid-based Nanoparticles as a Vehicle for Dual Agent Delivery | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute (NCI) RNA Biology Laboratory have developed nanoparticles that can deliver an agent (i.e., therapeutic or imaging) and release the agent upon targeted photoactivation allowing for controlled temporal and localized release of the agent.

  19. Optical phase conjugation assisted scattering lens: variable focusing and 3D patterning

    PubMed Central

    Ryu, Jihee; Jang, Mooseok; Eom, Tae Joong; Yang, Changhuei; Chung, Euiheon

    2016-01-01

    Variable light focusing is the ability to flexibly select the focal distance of a lens. This feature presents technical challenges, but is significant for optical interrogation of three-dimensional objects. Numerous lens designs have been proposed to provide flexible light focusing, including zoom, fluid, and liquid-crystal lenses. Although these lenses are useful for macroscale applications, they have limited utility in micron-scale applications due to restricted modulation range and exacting requirements for fabrication and control. Here, we present a holographic focusing method that enables variable light focusing without any physical modification to the lens element. In this method, a scattering layer couples low-angle (transverse wave vector) components into a full angular spectrum, and a digital optical phase conjugation (DOPC) system characterizes and plays back the wavefront that focuses through the scattering layer. We demonstrate micron-scale light focusing and patterning over a wide range of focal distances of 22–51 mm. The interferometric nature of the focusing scheme also enables an aberration-free scattering lens. The proposed method provides a unique variable focusing capability for imaging thick specimens or selective photoactivation of neuronal networks. PMID:27049442

  20. Optical-to-optical interface device

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.; Bleha, W. P.; Miller, L.; Grinberg, J.; Fraas, L.; Margerum, D.

    1975-01-01

    An investigation was conducted to develop an optical-to-optical interface device capable of performing real-time incoherent-to-incoherent optical image conversion. The photoactivated liquid crystal light valve developed earlier represented a prototype liquid crystal light valve device capable of performing these functions. A device was developed which had high performance and extended lifetime.

  1. RELATING DAILY SOLAR ULTRAVIOLET RADIATION DOSE IN SALT MARSH-ASSOCIATED ESTUARINE SYSTEMS TO LABORATORY ASSESSMENTS OF PHOTOACTIVATED POLYCYCLIC AROMATIC HYDROCARBON TOXICITY

    EPA Science Inventory

    Estuaries of the southeastern United States not only serve an important nursery function but also are common repositories of polycyclic aromatic hydrocarbons (PAHs) derived from upland activities. Thus, these habitats may be at risk for PAHphototoxicity. To better characterize ...

  2. Dopamine Receptor DOP-4 Modulates Habituation to Repetitive Photoactivation of a "C. elegans" Polymodal Nociceptor

    ERIC Educational Resources Information Center

    Ardiel, Evan L.; Giles, Andrew C.; Yu, Alex J.; Lindsay, Theodore H.; Lockery, Shawn R.; Rankin, Catharine H.

    2016-01-01

    Habituation is a highly conserved phenomenon that remains poorly understood at the molecular level. Invertebrate model systems, like "Caenorhabditis elegans," can be a powerful tool for investigating this fundamental process. Here we established a high-throughput learning assay that used real-time computer vision software for behavioral…

  3. Photoluminescence Probing of Complex H2O Adsorption on InGaN/GaN Nanowires.

    PubMed

    Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Teubert, Jörg; Eickhoff, Martin

    2017-02-08

    We demonstrate that the complex adsorption behavior of H 2 O on InGaN/GaN nanowire arrays is directly revealed by their ambient-dependent photoluminescence properties. Under low-humidity, ambient-temperature, and low-excitation-light conditions, H 2 O adsorbates cause a quenching of the photoluminescence. In contrast, for high humidity levels, elevated temperature, and high excitation intensity, H 2 O adsorbates act as efficient photoluminescence enhancers. We show that this behavior, which can only be detected due to the low operation temperature of the InGaN/GaN nanowires, can be explained on the basis of single H 2 O adsorbates forming surface recombination centers and multiple H 2 O adsorbates forming surface passivation layers. Reversible creation of such passivation layers is induced by the photoelectrochemical splitting of adsorbed water molecules and by the interaction of reactive H 3 O + and OH - ions with photoactivated InGaN surfaces. Due to electronic coupling of adsorbing molecules with photoactivated surfaces, InGaN/GaN nanowires act as sensitive nanooptical probes for the analysis of photoelectrochemical surface processes.

  4. Kinetics of photo-activated charge carriers in Sn:CdS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patidar, Manju Mishra, E-mail: manjumishra.iuc@gmail.com; Gorli, V. R.; Gangrade, Mohan

    2016-05-23

    Kinetics of the photo-activated charge carriers has been investigated in Tin substituted Cadmium Sulphide, Cd{sub 1-x}Sn{sub x}S (x=0, 0.05, 0.10 and 0.15), thin films prepared by spray pyrolysis. X-Ray Diffraction shows an increase in strain that resulted in the decreased crystallite size upon Sn substitution. At the first sight, the photo current characteristics show a quenching effect on Sn substitution. However, survival of persistent photocurrents is seen even up to 15% of Sn substitution. Transient photo current decay could be explained with a 2τ relaxation model. CdS normally has an n-type character and the Sn doping expected to inject holemore » carriers. The two fold increase in τ{sub 1}, increase in activation energy and the decrease in photocurrents upon Sn substitution point towards a band gap cleaning scenario that include compensation and associated carrier injection dynamics. In addition Atomic Force Microscopy shows a drastic change in microstructure that modulates the carrier dynamics as a whole.« less

  5. Probing transcription factor diffusion dynamics in the living mammalian embryo with photoactivatable fluorescence correlation spectroscopy.

    PubMed

    Kaur, Gurpreet; Costa, Mauro W; Nefzger, Christian M; Silva, Juan; Fierro-González, Juan Carlos; Polo, Jose M; Bell, Toby D M; Plachta, Nicolas

    2013-01-01

    Transcription factors use diffusion to search the DNA, yet the mechanisms controlling transcription factor diffusion during mammalian development remain poorly understood. Here we combine photoactivation and fluorescence correlation spectroscopy to study transcription factor diffusion in developing mouse embryos. We show that the pluripotency-associated transcription factor Oct4 displays both fast and Brownian and slower subdiffusive behaviours that are controlled by DNA interactions. Following cell lineage specification, the slower DNA-interacting diffusion fraction distinguishes pluripotent from extraembryonic cell nuclei. Similar to Oct4, Sox2 shows slower diffusion in pluripotent cells while Cdx2 displays opposite dynamics, suggesting that slow diffusion may represent a general feature of transcription factors in lineages where they are essential. Slow Oct4 subdiffusive behaviours are conserved in embryonic stem cells and induced pluripotent stem cells (iPS cells), and lost during differentiation. We also show that Oct4 diffusion depends on its interaction with ERG-associated protein with SET domain. Photoactivation and fluorescence correlation spectroscopy provides a new intravital approach to study transcription factor diffusion in complex in vivo systems.

  6. Upconverting fluorescent nanoparticles for biodetection and photoactivation

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Li, WenKai; Jayakumar, Muthu Kumara Gnanasammandhan; Zhang, Yong

    2013-03-01

    Fluorophores including fluorescent dyes/proteins and quantum dots (QDs) are used for fluorescence-based imaging and detection. These are based on `downconversion fluorescence' and have several drawbacks: photobleaching, autofluorescence, short tissue penetration depth and tissue photo-damage. Upconversion fluorescent nanoparticles (UCNs) emit detectable photons of higher energy in the short wavelength range upon irradiation with near-infrared (NIR) light based on a process termed `upconversion'. UCNs show absolute photostability, negligible autofluorescence, high penetration depth and minimum photodamage to biological tissues. Lanthanide doped nanocrystals with nearinfrared NIR-to-NIR and/or NIR-to-VIS and/or NIR-to-UV upconversion fluorescence emission have been synthesized. The nanocrystals with small size and tunable multi-color emission have been developed. The emission can be tuned by doping different upconverting lanthanide ions into the nanocrystals. The nanocrystals with core-shell structure have also been prepared to tune the emission color. The surfaces of these nanocrystals have been modified to render them water dispersible and biocompatible. They can be used for ultrasensitive interference-free biodetection because most biomolecules do not have upconversion properties. UCNs are also useful for light based therapy with enhanced efficiency, for example, photoactivation.

  7. Three-dimensional Super Resolution Microscopy of F-actin Filaments by Interferometric PhotoActivated Localization Microscopy (iPALM).

    PubMed

    Wang, Yilin; Kanchanawong, Pakorn

    2016-12-01

    Fluorescence microscopy enables direct visualization of specific biomolecules within cells. However, for conventional fluorescence microscopy, the spatial resolution is restricted by diffraction to ~ 200 nm within the image plane and > 500 nm along the optical axis. As a result, fluorescence microscopy has long been severely limited in the observation of ultrastructural features within cells. The recent development of super resolution microscopy methods has overcome this limitation. In particular, the advent of photoswitchable fluorophores enables localization-based super resolution microscopy, which provides resolving power approaching the molecular-length scale. Here, we describe the application of a three-dimensional super resolution microscopy method based on single-molecule localization microscopy and multiphase interferometry, called interferometric PhotoActivated Localization Microscopy (iPALM). This method provides nearly isotropic resolution on the order of 20 nm in all three dimensions. Protocols for visualizing the filamentous actin cytoskeleton, including specimen preparation and operation of the iPALM instrument, are described here. These protocols are also readily adaptable and instructive for the study of other ultrastructural features in cells.

  8. Applying Superresolution Localization-Based Microscopy to Neurons

    PubMed Central

    ZHONG, HAINING

    2016-01-01

    Proper brain function requires the precise localization of proteins and signaling molecules on a nanometer scale. The examination of molecular organization at this scale has been difficult in part because it is beyond the reach of conventional, diffraction-limited light microscopy. The recently developed method of superresolution, localization-based fluorescent microscopy (LBM), such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), has demonstrated a resolving power at a 10 nm scale and is poised to become a vital tool in modern neuroscience research. Indeed, LBM has revealed previously unknown cellular architectures and organizational principles in neurons. Here, we discuss the principles of LBM, its current applications in neuroscience, and the challenges that must be met before its full potential is achieved. We also present the unpublished results of our own experiments to establish a sample preparation procedure for applying LBM to study brain tissue. PMID:25648102

  9. Some Secrets of Fluorescent Proteins: Distinct Bleaching in Various Mounting Fluids and Photoactivation of Cyan Fluorescent Proteins at YFP-Excitation

    PubMed Central

    Malkani, Naila; Schmid, Johannes A.

    2011-01-01

    Background The use of spectrally distinct variants of green fluorescent protein (GFP) such as cyan or yellow mutants (CFP and YFP, respectively) is very common in all different fields of life sciences, e.g. for marking specific proteins or cells or to determine protein interactions. In the latter case, the quantum physical phenomenon of fluorescence resonance energy transfer (FRET) is exploited by specific microscopy techniques to visualize proximity of proteins. Methodology/Principal Findings When we applied a commonly used FRET microscopy technique - the increase in donor (CFP)-fluorescence after bleaching of acceptor fluorophores (YFP), we obtained good signals in live cells, but very weak signals for the same samples after fixation and mounting in commercial microscopy mounting fluids. This observation could be traced back to much faster bleaching of CFP in these mounting media. Strikingly, the opposite effect of the mounting fluid was observed for YFP and also for other proteins such as Cerulean, TFP or Venus. The changes in photostability of CFP and YFP were not caused by the fixation but directly dependent on the mounting fluid. Furthermore we made the interesting observation that the CFP-fluorescence intensity increases by about 10 - 15% after illumination at the YFP-excitation wavelength – a phenomenon, which was also observed for Cerulean. This photoactivation of cyan fluorescent proteins at the YFP-excitation can cause false-positive signals in the FRET-microscopy technique that is based on bleaching of a yellow FRET acceptor. Conclusions/Significance Our results show that photostability of fluorescent proteins differs significantly for various media and that CFP bleaches significantly faster in commercial mounting fluids, while the opposite is observed for YFP and some other proteins. Moreover, we show that the FRET microscopy technique that is based on bleaching of the YFP is prone to artifacts due to photoactivation of cyan fluorescent proteins under these conditions. PMID:21490932

  10. Some secrets of fluorescent proteins: distinct bleaching in various mounting fluids and photoactivation of cyan fluorescent proteins at YFP-excitation.

    PubMed

    Malkani, Naila; Schmid, Johannes A

    2011-04-07

    The use of spectrally distinct variants of green fluorescent protein (GFP) such as cyan or yellow mutants (CFP and YFP, respectively) is very common in all different fields of life sciences, e.g. for marking specific proteins or cells or to determine protein interactions. In the latter case, the quantum physical phenomenon of fluorescence resonance energy transfer (FRET) is exploited by specific microscopy techniques to visualize proximity of proteins. When we applied a commonly used FRET microscopy technique--the increase in donor (CFP)-fluorescence after bleaching of acceptor fluorophores (YFP), we obtained good signals in live cells, but very weak signals for the same samples after fixation and mounting in commercial microscopy mounting fluids. This observation could be traced back to much faster bleaching of CFP in these mounting media. Strikingly, the opposite effect of the mounting fluid was observed for YFP and also for other proteins such as Cerulean, TFP or Venus. The changes in photostability of CFP and YFP were not caused by the fixation but directly dependent on the mounting fluid. Furthermore we made the interesting observation that the CFP-fluorescence intensity increases by about 10-15% after illumination at the YFP-excitation wavelength--a phenomenon, which was also observed for Cerulean. This photoactivation of cyan fluorescent proteins at the YFP-excitation can cause false-positive signals in the FRET-microscopy technique that is based on bleaching of a yellow FRET acceptor. Our results show that photostability of fluorescent proteins differs significantly for various media and that CFP bleaches significantly faster in commercial mounting fluids, while the opposite is observed for YFP and some other proteins. Moreover, we show that the FRET microscopy technique that is based on bleaching of the YFP is prone to artifacts due to photoactivation of cyan fluorescent proteins under these conditions.

  11. Effect of different photoinitiators and reducing agents on cure efficiency and color stability of resin-based composites using different LED wavelengths.

    PubMed

    de Oliveira, Dayane Carvalho Ramos Salles; Rocha, Mateus Garcia; Gatti, Alexandre; Correr, Americo Bortolazzo; Ferracane, Jack Liborio; Sinhoret, Mario Alexandre Coelho

    2015-12-01

    To evaluate the effect of photoinitiators and reducing agents on cure efficiency and color stability of resin-based composites using different LED wavelengths. Model resin-based composites were associated with diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO), phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide (BAPO) or camphorquinone (CQ) associated with 2-(dimethylamino) ethyl methacrylate (DMAEMA), ethyl 4-(dimethyamino) benzoate (EDMAB) or 4-(N,N-dimethylamino) phenethyl alcohol (DMPOH). A narrow (Smartlite, Dentisply) and a broad spectrum (Bluephase G2, Ivoclar Vivadent) LEDs were used for photo-activation (20 J/cm(2)). Fourier transform infrared spectroscopy (FT-IR) was used to evaluate the cure efficiency for each composite, and CIELab parameters to evaluated color stability (ΔE00) after aging. The UV-vis absorption spectrophotometric analysis of each photoinitiator and reducing agent was determined. Data were analyzed using two-way ANOVA and Tukey's test for multiple comparisons (α=0.05). Higher cure efficiency was found for type-I photoinitiators photo-activated with a broad spectrum light, and for CQ-systems with a narrow band spectrum light, except when combined with an aliphatic amine (DMAEMA). Also, when combined with aromatic amines (EDMAB and DMPOH), similar cure efficiency with both wavelength LEDs was found. TPO had no cure efficiency when light-cured exclusively with a blue narrowband spectrum. CQ-systems presented higher color stability than type-I photoinitiators, especially when combined with DMPOH. After aging, CQ-based composites became more yellow and BAPO and TPO lighter and less yellow. However, CQ-systems presented higher color stability than type-I photoinitiators, as BAPO- and TPO-, despite their higher cure efficiency when photo-activated with corresponding wavelength range. Color matching is initially important, but color change over time will be one of the major reasons for replacing esthetic restorations; despite the less yellowing of these alternative photoinitiators, camphorquinone presented higher color stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Probing the electronic structure and photoactivation process of nitrogen-doped TiO2 using DRS, PL, and EPR.

    PubMed

    Zhang, Zizhong; Long, Jinlin; Xie, Xiuqiang; Lin, Huan; Zhou, Yangen; Yuan, Rusheng; Dai, Wenxin; Ding, Zhengxin; Wang, Xuxu; Fu, Xianzhi

    2012-04-23

    The electronic structure and photoactivation process in N-doped TiO(2) is investigated. Diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and electron paramagnetic resonance (EPR) are employed to monitor the change of optical absorption ability and the formation of N species and defects in the heat- and photoinduced N-doped TiO(2) catalyst. Under thermal treatment below 573 K in vacuum, no nitrogen dopant is removed from the doped samples but oxygen vacancies and Ti(3+) states are formed to enhance the optical absorption in the visible-light region, especially at wavelengths above 500 nm with increasing temperature. In the photoactivation processes of N-doped TiO(2), the DRS absorption and PL emission in the visible spectral region of 450-700 nm increase with prolonged irradiation time. The EPR results reveal that paramagnetic nitrogen species (N(s)·, oxygen vacancies with one electron (V(o)·), and Ti(3+) ions are produced with light irradiation and the intensity of N(s)· species is dependent on the excitation light wavelength and power. The combined characterization results confirm that the energy level of doped N species is localized above the valence band of TiO(2) corresponding to the main absorption band at 410 nm of N-doped TiO(2), but oxygen vacancies and Ti(3+) states as defects contribute to the visible-light absorption above 500 nm in the overall absorption of the doped samples. Thus, a detailed picture of the electronic structure of N-doped TiO(2) is proposed and discussed. On the other hand, the transfer of charge carriers between nitrogen species and defects is reversible on the catalyst surface. The presence of oxygen-vacancy-related defects leads to quenching of paramagnetic N(s)· species but they stabilize the active nitrogen species N(s)(-). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Studies of the augmentation of reaction rates via laser irradiation in the infrared. Final report, 1 Sep 1973--31 Aug 1976. [H/sub 3/BPF/sub 3/ adduct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, S.H.; Lory, E.R.; Chien, K.

    1976-10-15

    The objective of this research project, to discover a reaction, involving a sizable substrate (more than three atoms) the rate of which is selectively augmented by infrared laser radiation, has been achieved. A preliminary analysis led to criteria for the selection of an optimum reaction type, and for setting the most suitable experimental parameters. The self-scavenging decomposition was studied for a borane adduct: 2 H/sub 3/BPF/sub 3/ yields B/sub 2/H/sub 6/ + 2PF/sub 3/. The relative photolytic efficiencies of the various lines emitted by a CO2 laser were measured as was also the dependence of the rate on laser power,more » gas pressure and reaction cell temperature. Specificity of vibrational excitation was demonstrated in several ways, most directly by the observed isotope fractionation of H/D and /sup 10/B//sup 11/B ratios. The mechanism of the photoactivation process developed is in quantitative agreement with the observed conversion. A dynamic model (based on a normal mode analysis) was proposed for the selective activation. In a parallel study of borane adducts, we evaluated the thermodynamic and kinetic rate parameters for six exchange and abstraction reactions. Rational structures were proposed for the corresponding transition states. (Author)« less

  14. Surface plasmon resonance-induced photoactivation of gold nanoparticles as bactericidal agents against methicillin-resistant Staphylococcus aureus

    PubMed Central

    Mocan, Lucian; Ilie, Ioana; Matea, Cristian; Tabaran, Flaviu; Kalman, Ersjebet; Iancu, Cornel; Mocan, Teodora

    2014-01-01

    Systemic infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and other bacteria are responsible for millions of deaths worldwide, and much of this mortality is due to the rise of antibiotic-resistant organisms as a result of natural selection. Gold nanoparticles synthesized using the standard wet chemical procedure were photoexcited using an 808 nm 2 W laser diode and further administered to MRSA bacteria. Flow cytometry, transmission electron microscopy, contrast phase microscopy, and fluorescence microscopy combined with immunochemical staining were used to examine the interaction of the photoexcited gold nano-particles with MRSA bacteria. We show here that phonon–phonon interactions following laser photoexcitation of gold nanoparticles exhibit increased MRSA necrotic rates at low concentrations and short incubation times compared with MRSA treated with gold nanoparticles alone. These unique data may represent a step forward in the study of bactericidal effects of various nanomaterials, with applications in biology and medicine. PMID:24711697

  15. Construction of a Near-Infrared-Activatable Enzyme Platform To Remotely Trigger Intracellular Signal Transduction Using an Upconversion Nanoparticle.

    PubMed

    Gao, Hua-De; Thanasekaran, Pounraj; Chiang, Chao-Wei; Hong, Jia-Lin; Liu, Yen-Chun; Chang, Yu-Hsu; Lee, Hsien-Ming

    2015-07-28

    Photoactivatable (caged) bioeffectors provide a way to remotely trigger or disable biochemical pathways in living organisms at a desired time and location with a pulse of light (uncaging), but the phototoxicity of ultraviolet (UV) often limits its application. In this study, we have demonstrated the near-infrared (NIR) photoactivatable enzyme platform using protein kinase A (PKA), an important enzyme in cell biology. We successfully photoactivated PKA using NIR to phosphorylate its substrate, and this induced a downstream cellular response in living cells with high spatiotemporal resolution. In addition, this system allows NIR to selectively activate the caged enzyme immobilized on the nanoparticle surface without activating other caged proteins in the cytosol. This NIR-responsive enzyme-nanoparticle system provides an innovative approach to remote-control proteins and enzymes, which can be used by researchers who need to avoid direct UV irradiation or use UV as a secondary channel to turn on a bioeffector.

  16. A novel management of streptococcal pharyngotonsillar infections by laser-activated silver nanoparticles and methylene blue conjugate, in vitro study.

    PubMed

    Kassab, Ahmed; Dabous, Ola; Morsy, Mona

    2017-09-01

    Species of Streptococcus are classified based on their hemolytic properties into alpha and beta types. And, since antimicrobial drug resistance is an increasingly problematic issue, the efforts to develop modalities that would overcome this obstacle and avoid antibiotic side effects is an ongoing challenge. 20 patients from both sexes were selected. The isolated organisms were identified according to standard laboratory methods. Bacterial Cultures were subjected to the low-level diode laser (660 nm), methylene blue (MB) as a photosensitizing agent and for silver nanoparticles. All the experimental groups showed statistically lower values of CFU/ml than the positive control group. The photoactivated MB, silver nanoparticles conjugate showed the maximum inhibitory effect on Streptococci, which opens a gate to further investigation of such a promising protocol to establish a safe and efficient method of management for resistant cases of streptococcal tonsillar infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Optodynamic simulation of β-adrenergic receptor signalling

    PubMed Central

    Siuda, Edward R.; McCall, Jordan G.; Al-Hasani, Ream; Shin, Gunchul; Il Park, Sung; Schmidt, Martin J.; Anderson, Sonya L.; Planer, William J.; Rogers, John A.; Bruchas, Michael R.

    2015-01-01

    Optogenetics has provided a revolutionary approach to dissecting biological phenomena. However, the generation and use of optically active GPCRs in these contexts is limited and it is unclear how well an opsin-chimera GPCR might mimic endogenous receptor activity. Here we show that a chimeric rhodopsin/β2 adrenergic receptor (opto-β2AR) is similar in dynamics to endogenous β2AR in terms of: cAMP generation, MAP kinase activation and receptor internalization. In addition, we develop and characterize a novel toolset of optically active, functionally selective GPCRs that can bias intracellular signalling cascades towards either G-protein or arrestin-mediated cAMP and MAP kinase pathways. Finally, we show how photoactivation of opto-β2AR in vivo modulates neuronal activity and induces anxiety-like behavioural states in both fiber-tethered and wireless, freely moving animals when expressed in brain regions known to contain β2ARs. These new GPCR approaches enhance the utility of optogenetics and allow for discrete spatiotemporal control of GPCR signalling in vitro and in vivo. PMID:26412387

  18. Optodynamic simulation of β-adrenergic receptor signalling.

    PubMed

    Siuda, Edward R; McCall, Jordan G; Al-Hasani, Ream; Shin, Gunchul; Il Park, Sung; Schmidt, Martin J; Anderson, Sonya L; Planer, William J; Rogers, John A; Bruchas, Michael R

    2015-09-28

    Optogenetics has provided a revolutionary approach to dissecting biological phenomena. However, the generation and use of optically active GPCRs in these contexts is limited and it is unclear how well an opsin-chimera GPCR might mimic endogenous receptor activity. Here we show that a chimeric rhodopsin/β2 adrenergic receptor (opto-β2AR) is similar in dynamics to endogenous β2AR in terms of: cAMP generation, MAP kinase activation and receptor internalization. In addition, we develop and characterize a novel toolset of optically active, functionally selective GPCRs that can bias intracellular signalling cascades towards either G-protein or arrestin-mediated cAMP and MAP kinase pathways. Finally, we show how photoactivation of opto-β2AR in vivo modulates neuronal activity and induces anxiety-like behavioural states in both fiber-tethered and wireless, freely moving animals when expressed in brain regions known to contain β2ARs. These new GPCR approaches enhance the utility of optogenetics and allow for discrete spatiotemporal control of GPCR signalling in vitro and in vivo.

  19. Caging and Photoactivation in Single-Molecule Förster Resonance Energy Transfer Experiments

    PubMed Central

    2017-01-01

    Caged organic fluorophores are established tools for localization-based super-resolution imaging. Their use relies on reversible deactivation of standard organic fluorophores by chemical reduction or commercially available caged dyes with ON switching of the fluorescent signal by ultraviolet (UV) light. Here, we establish caging of cyanine fluorophores and caged rhodamine dyes, i.e., chemical deactivation of fluorescence, for single-molecule Förster resonance energy transfer (smFRET) experiments with freely diffusing molecules. They allow temporal separation and sorting of multiple intramolecular donor–acceptor pairs during solution-based smFRET. We use this “caged FRET” methodology for the study of complex biochemical species such as multisubunit proteins or nucleic acids containing more than two fluorescent labels. Proof-of-principle experiments and a characterization of the uncaging process in the confocal volume are presented. These reveal that chemical caging and UV reactivation allow temporal uncoupling of convoluted fluorescence signals from, e.g., multiple spectrally similar donor or acceptor molecules on nucleic acids. We also use caging without UV reactivation to remove unwanted overlabeled species in experiments with the homotrimeric membrane transporter BetP. We finally outline further possible applications of the caged FRET methodology, such as the study of weak biochemical interactions, which are otherwise impossible with diffusion-based smFRET techniques because of the required low concentrations of fluorescently labeled biomolecules. PMID:28362086

  20. Nobel Prize Recipient Eric Betzig Presents Lecture on Efforts to Improve High-Resolution Microscopy | Poster

    Cancer.gov

    Eric Betzig, Ph.D., a 2014 recipient of the Nobel Prize in Chemistry and a scientist at Janelia Research Campus (JRC), Howard Hughes Medical Institute, in Ashburn, Va., visited NCI at Frederick on Sept. 10 to present a Distinguished Scientist lecture and discuss the latest high-resolution microscopy techniques. Betzig co-invented photoactivation localization microscopy (PALM)

  1. Multisite light-induced phosphorylation of the transcription factor PIF3 is necessary for both its rapid degradation and concomitant negative feedback modulation of photoreceptor phyB levels in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Plants constantly monitor informational light signals using sensory photoreceptors, which include the phytochrome (phy) family (phyA to phyE), and adjust their growth and development accordingly. Following light-induced nuclear translocation, photoactivated phy molecules bind to and induce rapid pho...

  2. Photobiomodulation of mesenchymal stem cells encapsulated in an injectable rhBMP4-loaded hydrogel directs hard tissue bioengineering.

    PubMed

    Diniz, Ivana M A; Carreira, Ana C O; Sipert, Carla R; Uehara, Cindi M; Moreira, Maria S N; Freire, Laila; Pelissari, Cibele; Kossugue, Patrícia M; de Araújo, Daniele R; Sogayar, Mari C; Marques, Márcia M

    2018-06-01

    Photobiomodulation (PBM) therapy displays relevant properties for tissue healing and regeneration, which may be of interest for the tissue engineering field. Here, we show that PBM is able to improve cell survival and to interact with recombinant human Bone Morphogenetic Protein 4 (rhBMP4) to direct and accelerate odonto/osteogenic differentiation of dental derived mesenchymal stem cells (MSCs). MSCs were encapsulated in an injectable and thermo-responsive cell carrier (Pluronic ® F-127) loaded with rhBMP4 and then photoactivated. PBM improved MSCs self-renewal and survival upon encapsulation in the Pluronic ® F-127. In the presence of rhBMP4, cell odonto/osteogenic differentiation was premature and markedly improved in the photoactivated MSCs. An in vivo calvarial critical sized defect model demonstrated significant increase in bone formation after PBM treatment. Finally, a balance in the reactive oxygen species levels may be related to the favorable results of PBM and rhBMP4 association. PBM may act in synergism with rhBMP4 and is a promise candidate to direct and accelerate hard tissue bioengineering. © 2017 Wiley Periodicals, Inc.

  3. The Use of the Ex Vivo Chandler Loop Apparatus to Assess the Biocompatibility of Modified Polymeric Blood Conduits

    PubMed Central

    Slee, Joshua B.; Alferiev, Ivan S.; Levy, Robert J.; Stachelek, Stanley J.

    2014-01-01

    The foreign body reaction occurs when a synthetic surface is introduced to the body. It is characterized by adsorption of blood proteins and the subsequent attachment and activation of platelets, monocyte/macrophage adhesion, and inflammatory cell signaling events, leading to post-procedural complications. The Chandler Loop Apparatus is an experimental system that allows researchers to study the molecular and cellular interactions that occur when large volumes of blood are perfused over polymeric conduits. To that end, this apparatus has been used as an ex vivo model allowing the assessment of the anti-inflammatory properties of various polymer surface modifications. Our laboratory has shown that blood conduits, covalently modified via photoactivation chemistry with recombinant CD47, can confer biocompatibility to polymeric surfaces. Appending CD47 to polymeric surfaces could be an effective means to promote the efficacy of polymeric blood conduits. Herein is the methodology detailing the photoactivation chemistry used to append recombinant CD47 to clinically relevant polymeric blood conduits and the use of the Chandler Loop as an ex vivo experimental model to examine blood interactions with the CD47 modified and control conduits. PMID:25178087

  4. Human Blue Cone Opsin Regeneration Involves Secondary Retinal Binding with Analog Specificity.

    PubMed

    Srinivasan, Sundaramoorthy; Fernández-Sampedro, Miguel A; Morillo, Margarita; Ramon, Eva; Jiménez-Rosés, Mireia; Cordomí, Arnau; Garriga, Pere

    2018-03-27

    Human color vision is mediated by the red, green, and blue cone visual pigments. Cone opsins are G-protein-coupled receptors consisting of an opsin apoprotein covalently linked to the 11-cis-retinal chromophore. All visual pigments share a common evolutionary origin, and red and green cone opsins exhibit a higher homology, whereas blue cone opsin shows more resemblance to the dim light receptor rhodopsin. Here we show that chromophore regeneration in photoactivated blue cone opsin exhibits intermediate transient conformations and a secondary retinoid binding event with slower binding kinetics. We also detected a fine-tuning of the conformational change in the photoactivated blue cone opsin binding site that alters the retinal isomer binding specificity. Furthermore, the molecular models of active and inactive blue cone opsins show specific molecular interactions in the retinal binding site that are not present in other opsins. These findings highlight the differential conformational versatility of human cone opsin pigments in the chromophore regeneration process, particularly compared to rhodopsin, and point to relevant functional, unexpected roles other than spectral tuning for the cone visual pigments. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. DNA repair inhibition by UVA photoactivated fluoroquinolones and vemurafenib

    PubMed Central

    Peacock, Matthew; Brem, Reto; Macpherson, Peter; Karran, Peter

    2014-01-01

    Cutaneous photosensitization is a common side effect of drug treatment and can be associated with an increased skin cancer risk. The immunosuppressant azathioprine, the fluoroquinolone antibiotics and vemurafenib—a BRAF inhibitor used to treat metastatic melanoma—are all recognized clinical photosensitizers. We have compared the effects of UVA radiation on cultured human cells treated with 6-thioguanine (6-TG, a DNA-embedded azathioprine surrogate), the fluoroquinolones ciprofloxacin and ofloxacin and vemurafenib. Despite widely different structures and modes of action, each of these drugs potentiated UVA cytotoxicity. UVA photoactivation of 6-TG, ciprofloxacin and ofloxacin was associated with the generation of singlet oxygen that caused extensive protein oxidation. In particular, these treatments were associated with damage to DNA repair proteins that reduced the efficiency of nucleotide excision repair. Although vemurafenib was also highly phototoxic to cultured cells, its effects were less dependent on singlet oxygen. Highly toxic combinations of vemurafenib and UVA caused little protein carbonylation but were nevertheless inhibitory to nucleotide excision repair. Thus, for three different classes of drugs, photosensitization by at least two distinct mechanisms is associated with reduced protection against potentially mutagenic and carcinogenic DNA damage. PMID:25414333

  6. Quantification of plant cell coupling with live-cell microscopy.

    PubMed

    Liesche, Johannes; Schulz, Alexander

    2015-01-01

    Movement of nutrients and signaling compounds from cell to cell is an essential process for plant growth and development. To understand processes such as carbon allocation, cell communication, and reaction to pathogen attack it is important to know a specific molecule's capacity to pass a specific cell wall interface. Transport through plasmodesmata, the cell wall channels that directly connect plant cells, is regulated not only by a fixed size exclusion limit, but also by physiological and pathological adaptation. The noninvasive approach described here offers the possibility of precisely determining the plasmodesmata-mediated cell wall permeability for small molecules in living cells.The method is based on photoactivation of the fluorescent tracer caged fluorescein. Non-fluorescent caged fluorescein is applied to a target tissue, where it is taken up passively into all cells. Imaged by confocal microscopy, loaded tracer is activated by UV illumination in a target cell and its spread to neighboring cells monitored. When combined with high-speed acquisition by resonant scanning or spinning disc confocal microscopy, the high signal-to-noise ratio of photoactivation allows collection of three-dimensional (3D) time series. These contain all necessary functional and anatomical data to measure cell coupling in complex tissues noninvasively.

  7. Photoactivation of Diiodido-Pt(IV) Complexes Coupled to Upconverting Nanoparticles.

    PubMed

    Perfahl, Stefanie; Natile, Marta M; Mohamad, Heba S; Helm, Christiane A; Schulzke, Carola; Natile, Giovanni; Bednarski, Patrick J

    2016-07-05

    The preparation, characterization, and surface modification of upconverting lanthanide-doped hexagonal NaGdF4 nanocrystals attached to light sensitive diiodido-Pt(IV) complexes is presented. The evaluation for photoactivation and cytotoxicity of the novel carboxylated diiodido-Pt(IV) cytotoxic prodrugs by near-infrared (NIR) light (λ = 980 nm) is also reported. We attempted two different strategies for attachment of light-sensitive diiodido-Pt(IV) complexes to Yb,Er- and Yb,Tm-doped β-NaGdF4 upconverting nanoparticles (UCNPs) in order to provide nanohybrids, which offer unique opportunities for selective drug activation within the tumor cells and subsequent spatiotemporal controlled drug release by NIR-to-visible light-upconversion: (A) covalent attachment of the Pt(IV) complex via amide bond formation and (B) carboxylate exchange of oleate on the surface of the UCNPs with diiodido-Pt(IV) carboxylato complexes. Initial feasibility studies showed that NIR applied by a 980 nm laser had only a slight effect on the stability of the various diiodido-Pt(IV) complexes, but when UCNPs were present more rapid loss of the ligand-metal-charge transfer (LMCT) bands of the diiodido-Pt(IV) complexes was observed. Furthermore, Pt released from the Pt(IV) complexes platinated calf-thymus DNA (ct-DNA) more rapidly when NIR was applied compared to dark controls. Of the two attachment strategies, method A with the covalently attached diiodido-Pt(IV) carboxylates via amide bond formation proved to be the most effective method for generating UCNPs that release Pt when irradiated with NIR; the released Pt was also able to bind irreversibly to calf thymus DNA. Nonetheless, only ca. 20% of the Pt on the surface of the UCNPs was in the Pt(IV) oxidation state, the rest was Pt(II), indicating chemical reduction of the diiodido-Pt(IV) prodrug by the UCNPs. Cytotoxicity studies with the various UCNP-Pt conjugates and constructs, tested on human leukemia HL60 cells in culture, indicated a substantial increase in cytotoxicity when modified UCNPs were combined with five rounds of 30 min irradiation with NIR compared to dark controls, but NIR alone also had a significant cytotoxic effect at this duration.

  8. Sealing Penetrating Eye Injuries Using Photo-Activated Bonding

    DTIC Science & Technology

    2011-09-01

    called PTB ) with the potential to decrease vision loss and ocular complications in warfighters sustaining penetrating eye injuries. Scope: In year 2...not competitive with PTB for sealing is amnion over penetrating cornea injuries, determined that two potential adverse effects (inhibition of...epithelial cell migration and keratocyte phototoxicity) are not significant problems, demonstrated that PTB can be used to seal lacerations in thin (e.g

  9. Sealing Penetrating Eye Injuries Using Photoactivated Bonding

    DTIC Science & Technology

    2014-10-01

    treatment parameters that produce strong, immediate water- tight sealing of penetrating cornea and scleral wounds using rabbit eye models. The seal...conventional, bare fiber system using ex vivo rabbit eyes and the standard treatment protocol (Appendix 1). The bonding strength produced by two...wounds in rabbit eyes . Initial studies demonstrated that thermal damage to the iris are not a concern during the 7 treatment . A prototype light delivery

  10. The liquid crystal light valve, an optical-to-optical interface device

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.; Beard, T. D.; Bleha, W. P.; Margerum, J. D.; Wong, S. Y.

    1972-01-01

    A photoactivated liquid crystal light valve is described as an optical-to-optical interface device (OTTO) which is designed to transfer an optical image from a noncoherent light beam to a spatially coherent beam of light, in real time. Schematics of OTTO in use, the liquid cyrstal cell, and the liquid crystal structure are presented. Sensitivity characteristics and the principles of operation are discussed.

  11. Exclusive photorelease of signalling lipids at the plasma membrane.

    PubMed

    Nadler, André; Yushchenko, Dmytro A; Müller, Rainer; Stein, Frank; Feng, Suihan; Mulle, Christophe; Carta, Mario; Schultz, Carsten

    2015-12-21

    Photoactivation of caged biomolecules has become a powerful approach to study cellular signalling events. Here we report a method for anchoring and uncaging biomolecules exclusively at the outer leaflet of the plasma membrane by employing a photocleavable, sulfonated coumarin derivative. The novel caging group allows quantifying the reaction progress and efficiency of uncaging reactions in a live-cell microscopy setup, thereby greatly improving the control of uncaging experiments. We synthesized arachidonic acid derivatives bearing the new negatively charged or a neutral, membrane-permeant coumarin caging group to locally induce signalling either at the plasma membrane or on internal membranes in β-cells and brain slices derived from C57B1/6 mice. Uncaging at the plasma membrane triggers a strong enhancement of calcium oscillations in β-cells and a pronounced potentiation of synaptic transmission while uncaging inside cells blocks calcium oscillations in β-cells and causes a more transient effect on neuronal transmission, respectively. The precise subcellular site of arachidonic acid release is therefore crucial for signalling outcome in two independent systems.

  12. Superresolution microscopy for microbiology

    PubMed Central

    Coltharp, Carla; Xiao, Jie

    2014-01-01

    Summary This review provides a practical introduction to superresolution microscopy from the perspective of microbiological research. Because of the small sizes of bacterial cells, superresolution methods are particularly powerful and suitable for revealing details of cellular structures that are not resolvable under conventional fluorescence light microscopy. Here we describe the methodological concepts behind three major categories of super-resolution light microscopy: photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) and stimulated emission-depletion (STED) microscopy. We then present recent applications of each of these techniques to microbial systems, which have revealed novel conformations of cellular structures and described new properties of in vivo protein function and interactions. Finally, we discuss the unique issues related to implementing each of these superresolution techniques with bacterial specimens and suggest avenues for future development. The goal of this review is to provide the necessary technical background for interested microbiologists to choose the appropriate super-resolution method for their biological systems, and to introduce the practical considerations required for designing and analysing superresolution imaging experiments. PMID:22947061

  13. Robust model-based analysis of single-particle tracking experiments with Spot-On

    PubMed Central

    Grimm, Jonathan B; Lavis, Luke D

    2018-01-01

    Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce ‘Spot-On’, an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. PMID:29300163

  14. Robust model-based analysis of single-particle tracking experiments with Spot-On.

    PubMed

    Hansen, Anders S; Woringer, Maxime; Grimm, Jonathan B; Lavis, Luke D; Tjian, Robert; Darzacq, Xavier

    2018-01-04

    Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce 'Spot-On', an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. © 2018, Hansen et al.

  15. Photoenhanced toxicity of a carbamate insecticide to early life stage anuran amphibians

    USGS Publications Warehouse

    Zaga, A.; Little, E.E.; Rabeni, C.F.; Ellersieck, Mark R.

    1998-01-01

    Aican clawed frog (Xenopus laevis) and gray tree frog (Hyla versicolor) embryos and tadpoles were exposed to sublethal levels of carbaryl, a broad-spectrum insecticide, and ultraviolet radiation to determine interactive and sublethal effects. Ultraviolet intensity (UV-B [285–320 nm] plus UV-A [321–400 nm]) was controlled with various types of plastic filters and quantified with a scanning spectroradiometer. Significant differences in swimming activity and mortality of both species were evident during the 96-h experiments. Ultraviolet-B radiation alone and carbaryl in the presence of UV-B significantly decreased swimming activity of both species. As little as 1.5% intensity of ambient solar UV-B radiation photoactivated carbaryl. Toxicity of 7.5 mg/L carbaryl increased by 10-fold in the presence of UV-B in all species and life stages tested. Our results indicate that photoenhancement by solar UV-B radiation should be considered when evaluating the toxicity of contaminants to amphibians and other organisms.

  16. Sealing Penetrating Eye Injuries Using Photoactivated Bonding

    DTIC Science & Technology

    2012-09-01

    membrane over a penetrating corneal injury with photochemical tissue bonding ( PTB )(Task 1), we had proposed to directly bond, with PTB , the edges of...wounds with irregular shapes which mimic traumatic wounds. We had previously demonstrated that PTB effectively sealed linear incisional wounds in...developed for sealing eyelid lacerations with PTB was submitted in Year 2 and was published in Year 3 in Lasers in Surgery and Medicine. It is listed in

  17. Photo-Activated Synthesis of Functional Oxide Thin Films

    DTIC Science & Technology

    2010-03-01

    Sponsored Research 1350 Massachusetts Ave. Holyoke 727 Cambridge, MA 02138 - REPORT DOCUMENTATION PAGE b . ABSTRACT UU c. THIS PAGE UU 2. REPORT TYPE...including journal references, in the following categories: ( b ) Papers published in non-peer-reviewed journals or in conference proceedings (N/A for...minimize the roughness. Figure 1 ( b ) shows the XRR spectra of ~ 100 Å YDZ film grown on Ge. Interestingly, the effect of UV irradiation was more

  18. Sealing Penetrating Eye Injuries With Photoactivated Bonding

    DTIC Science & Technology

    2013-09-01

    penetrating eye injuries. Scope: To establish, in ex vitro and in vivo animal models, the treatment parameters for sealing corneal and scleral...cornea surface was compared to that produced by our conventional, bare fiber system using ex vivo rabbit eyes and the standard treatment protocol...Identified the PTB treatment parameters that produce strong bonding of an amnion patch over corneal wounds in ex vivo rabbit eyes . • Determined that a

  19. Sealing Penetrating Eye Injuries Using Photo-activated Bonding

    DTIC Science & Technology

    2013-09-01

    block this light from reaching the iris. The human iris contains melanin in the stromal layer and in a pigmented epithelial layer on the...posterior surface. When the melanin absorbs green light, the light (electromagnetic) energy is converted into thermal energy. If the rate of light energy...varies the standard is not clear. The distribution and amount of melanin and vasculature in the iris differs from that of the retina; consequently

  20. Elicitation of spreading depression by rose bengal photodynamic action.

    PubMed

    Netto, M; Martins-Ferreira, H

    1989-08-01

    Spreading depression refers to a slowly propagating depression of the ordinary electrical activity of the nervous tissue. It can be elicited by different types of physical or chemical non-specific stimuli. Various evidences suggest that transient alterations of cell membranes are involved. For this reason, and considering the action of free radicals on cell membranes, the elicitation of the reaction by dye photoactivation has been investigated. Isolated chick retina superfused in the dark with Ringer solution was able to regularly exhibit spreading depression when submitted to 1 microM rose bengal pulse of 5 min in duration, followed by 2.1 x 10(4) to 4.2 x 10(4) Jm-2 light pulse. The phenomenon was monitored either by visual inspection of the light-scattering milky wave that accompanies the reaction or by recording its characteristic slow voltage variation. The reaction was not triggered if the retina, superfused with the dye, was (a) maintained in the dark; (b) illuminated with red light (3.75 x 10(2) to 2.25 x 10(4) Jm-2), or (c) stimulated by white light but superfused with nitrogen-saturated solutions. It is concluded that, under the present conditions, the elicitation of spreading depression is contingent on the photoactivation of rose bengal in the presence of oxygen.

  1. Phototriggerable Liposomes: Current Research and Future Perspectives

    PubMed Central

    Puri, Anu

    2013-01-01

    The field of cancer nanomedicine is considered a promising area for improved delivery of bioactive molecules including drugs, pharmaceutical agents and nucleic acids. Among these, drug delivery technology has made discernible progress in recent years and the areas that warrant further focus and consideration towards technological developments have also been recognized. Development of viable methods for on-demand spatial and temporal release of entrapped drugs from the nanocarriers is an arena that is likely to enhance the clinical suitability of drug-loaded nanocarriers. One such approach, which utilizes light as the external stimulus to disrupt and/or destabilize drug-loaded nanoparticles, will be the discussion platform of this article. Although several phototriggerable nanocarriers are currently under development, I will limit this review to the phototriggerable liposomes that have demonstrated promise in the cell culture systems at least (but not the last). The topics covered in this review include (i) a brief summary of various phototriggerable nanocarriers; (ii) an overview of the application of liposomes to deliver payload of photosensitizers and associated technologies; (iii) the design considerations of photoactivable lipid molecules and the chemical considerations and mechanisms of phototriggering of liposomal lipids; (iv) limitations and future directions for in vivo, clinically viable triggered drug delivery approaches and potential novel photoactivation strategies will be discussed. PMID:24662363

  2. High-Resolution Whole-Genome Sequencing Reveals That Specific Chromatin Domains from Most Human Chromosomes Associate with Nucleoli

    PubMed Central

    van Koningsbruggen, Silvana; Gierliński, Marek; Schofield, Pietá; Martin, David; Barton, Geoffey J.; Ariyurek, Yavuz; den Dunnen, Johan T.

    2010-01-01

    The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope. PMID:20826608

  3. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli.

    PubMed

    van Koningsbruggen, Silvana; Gierlinski, Marek; Schofield, Pietá; Martin, David; Barton, Geoffey J; Ariyurek, Yavuz; den Dunnen, Johan T; Lamond, Angus I

    2010-11-01

    The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope.

  4. "Competitive quenching": a mechanism by which perihydroxylated perylenequinone photosensitizers can prevent adverse phototoxic damage caused by verteporfin during photodynamic therapy.

    PubMed

    Lavie, Gad; Barliya, Tilda; Mandel, Mathilda; Blank, Michael; Ron, Yonina; Orenstein, Arie; Livnat, Tami; Friedman, Noga; Weiner, Lev; Sheves, Mordechai; Weinberger, Dov

    2007-01-01

    Incorporation of photodynamic therapy into clinical practice for induction of vascular photo-occlusion highlights the need to prevent adverse phototoxicity to sensitive juxtaposed tissues, particularly in the retina. We developed a system termed "competitive quenching" to prevent adverse phototoxic damage. It involves differential compartmentalization of a photoactivator to the intravascular compartment for photoexcitation and delivery of phototoxicity to targeted vessels. A different photodynamic agent is partitioned to the extravascular retinal space to quench reactive oxygen species generated by photosensitization, thereby protecting the adjacent retinal tissues from adverse phototoxicity. The absorption spectra of quenchers must span wavelengths that are shorter and excluded from the spectral range of photoexcitation light to prevent photoactivation of the quencher. Perihydroxylated perylenequinones were found to be suitable to function as "competitive quenchers" with the prototype hypericin identified as a potent quencher. Here we examined the mechanisms operative in competitive quenching and suggest that hypericin forms a complex with verteporfin, thereby quenching singlet oxygen formation. Furthermore, we show that hypericin, with six phenolic hydroxyls, protects retinal and endothelial hybridoma cells from phototoxicity more effectively than the dimethyl tetrahydroxy helianthrone structural analog with only four such phenolic hydroxyls. The findings suggest that hydroxyl numbers contribute to the efficacy of competitive quenching.

  5. Absorption and emission spectroscopic characterization of photo-dynamics of photoactivated adenylyl cyclase mutant bPAC-Y7F of Beggiatoa sp.

    PubMed

    Penzkofer, Alfons; Stierl, Manuela; Mathes, Tilo; Hegemann, Peter

    2014-11-01

    The photoactivated cyclase bPAC of the microbial mats bacterium Beggiatoa sp. consists of a BLUF domain and an adenylyl cyclase domain. It has strong activity of photo-induced cyclic adenylyl monophosphate (cAMP) formation and is therefore an important optogenetic tool in neuroscience applications. The SUMO-bPAC-Y7F mutant where Tyr-7 is replaced by Phe-7 in the BLUF domain has lost the typical BLUF domain photo-cycle dynamics. Instead, the investigated SUMO-bPAC-Y7F mutant consisted of three protein conformations with different triplet based photo-dynamics: (i) reversible flavin quinone (Fl) cofactor reduction to flavin semiquinone (FlH), (ii) reversible violet/near ultraviolet absorbing flavin photoproduct (FlA) formation, and (iii) irreversible red absorbing flavin photoproduct (FlC) formation. Absorption and emission spectroscopic measurements on SUMO-bPAC-Y7F were carried out before, during and after light exposure. Flavin photo-dynamics schemes are developed for the SUMO-bPAC-Y7F fractions performing photo-induced FlH, FlA, and FlC formation. Quantitative parameters of the flavin cofactor excitation, relaxation and recovery dynamics in SUMO-bPAC-Y7F are determined. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. In silico identification of a therapeutic target for photo-activated disinfection with indocyanine green: Modeling and virtual screening analysis of Arg-gingipain from Porphyromonas gingivalis.

    PubMed

    Pourhajibagher, Maryam; Bahador, Abbas

    2017-06-01

    Porphyromonas gingivalis is a momentous bacterial etiological agent associated with periodontitis, peri-implantitis as well as endodontic infections. The potential advantage of Photo-activated disinfection (PAD) as a promising novel approach is the choice of a suitable target site, specific photosensitizer, and wavelength of light for delivery of the light from source to target. Since Arg-gingipain is a cysteine proteinase that is involved in the virulence of P. gingivalis, it was evaluated as a target site for PAD with indocyanine green (ICG) as a photosensitizer. In this study, we used a range of in silico strategies, bioinformatics tools, biological databases, and computer simulation molecular modeling to evaluate the capacity of Arg-gingipain. The predicted structure of Arg-gingipain indicated that it is located outside the cell and has nine domains and 17 ligands, including two calcium ions and three sodium ions with positive charges which can be a site of interaction for anionic ICG. Based on the results of this study, anionic ICG desires to bind and interact with residues of Arg-gingipain during PAD as a main site to enhance the yield of treatment of endo-periodontal lesions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Light-Induced Fluorescence Modulation of Quantum Dot-Crystal Violet Conjugates: Stochastic Off-On-Off Cycles for Multicolor Patterning and Super-Resolution.

    PubMed

    Jung, Sungwook; Park, Joonhyuck; Bang, Jiwon; Kim, Jae-Yeol; Kim, Cheolhee; Jeon, Yongmoon; Lee, Seung Hwan; Jin, Ho; Choi, Sukyung; Kim, Bomi; Lee, Woo Jin; Pack, Chan-Gi; Lee, Jong-Bong; Lee, Nam Ki; Kim, Sungjee

    2017-06-07

    Photoswitching or modulation of quantum dots (QDs) can be promising for many fields that include display, memory, and super-resolution imaging. However, such modulations have mostly relied on photomodulations of conjugated molecules in QD vicinity, which typically require high power of high energy photons at UV. We report a visible light-induced facile modulation route for QD-dye conjugates. QD crystal violets conjugates (QD-CVs) were prepared and the crystal violet (CV) molecules on QD quenched the fluorescence efficiently. The fluorescence of QD-CVs showed a single cycle of emission burst as they go through three stages of (i) initially quenched "off" to (ii) photoactivated "on" as the result of chemical change of CVs induced by photoelectrons from QD and (iii) back to photodarkened "off" by radical-associated reactions. Multicolor on-demand photopatterning was demonstrated using QD-CV solid films. QD-CVs were introduced into cells, and excitation with visible light yielded photomodulation from "off" to "on" and "off" by nearly ten fold. Individual photoluminescence dynamics of QD-CVs was investigated using fluorescence correlation spectroscopy and single QD emission analysis, which revealed temporally stochastic photoactivations and photodarkenings. Exploiting the stochastic fluorescence burst of QD-CVs, simultaneous multicolor super-resolution localizations were demonstrated.

  8. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules.

    PubMed

    Burnette, Dylan T; Sengupta, Prabuddha; Dai, Yuhai; Lippincott-Schwartz, Jennifer; Kachar, Bechara

    2011-12-27

    Superresolution imaging techniques based on the precise localization of single molecules, such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), achieve high resolution by fitting images of single fluorescent molecules with a theoretical Gaussian to localize them with a precision on the order of tens of nanometers. PALM/STORM rely on photoactivated proteins or photoswitching dyes, respectively, which makes them technically challenging. We present a simple and practical way of producing point localization-based superresolution images that does not require photoactivatable or photoswitching probes. Called bleaching/blinking assisted localization microscopy (BaLM), the technique relies on the intrinsic bleaching and blinking behaviors characteristic of all commonly used fluorescent probes. To detect single fluorophores, we simply acquire a stream of fluorescence images. Fluorophore bleach or blink-off events are detected by subtracting from each image of the series the subsequent image. Similarly, blink-on events are detected by subtracting from each frame the previous one. After image subtractions, fluorescence emission signals from single fluorophores are identified and the localizations are determined by fitting the fluorescence intensity distribution with a theoretical Gaussian. We also show that BaLM works with a spectrum of fluorescent molecules in the same sample. Thus, BaLM extends single molecule-based superresolution localization to samples labeled with multiple conventional fluorescent probes.

  9. WE-FG-BRA-01: Cancer Treatment Utilizing Photo-Activation of Psoralen with KV X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, M; Yoon, S; Meng, B

    Purpose: This work investigates X-PACT (X-ray Psoralen Activated Cancer Therapy): a new approach for the treatment of cancer. X-PACT utilizes psoralen, a potent anti-cancer therapeutic with immunogenic anti-cancer potential. Psoralen therapies have been limited due to the requirement for psoralen activation by UVA light. X-PACT solves this challenge by activating psoralen with UV light emitted from novel non-tethered phosphors (co-incubated with psoralen) that absorb x-rays and reradiate (phosphoresce) at UV wavelengths. Methods: The efficacy of X-PACT was evaluated in both in-vitro and in-vivo settings. In-vitro studies utilized breast (4T1), glioma (CT2A) and sarcoma (KP-B) cell lines. Cells were exposed tomore » X-PACT treatments where the concentrations of drug (psoralen and phosphor) and radiation parameters (energy, dose, and dose rate) were varied. Efficacy was evaluated primarily using flow cell cytometry to investigate treatment induced apoptosis. Methylene blue staining, and WST assays were also used. X-PACT was then evaluated in an in-vivo pilot study on BALBc mice with syngeneic 4T1 tumors, including control arms for X-PACT components. Analysis focused on tumor growth delay. Results: A multivariable regression analysis of 36 independent in-vitro irradiation experiments demonstrated that X-PACT induces significant tumor cell apoptosis and cytotoxicity on all three tumor cell lines in-vitro (p<0.0001). Neither psoralen nor phosphor alone had a strongly significant effect. The in-vivo studies show a pronounced tumor growth delay when compared to controls (42% reduction at 25 days, p=0.0002). Conclusions: These studies demonstrate for the first time a therapeutic effect for X-PACT, and provide a foundation and rationale for future studies. X-PACT represents a novel treatment approach in which well-tolerated low doses of x-ray radiation generate UVA light in-situ (including deep seated lesions) which in-turn photo-activates powerful anticancer therapeutics which may lead to short and long term therapeutic effect. This work was supported by Immunolight Llc.« less

  10. Synthesis and room temperature photo-induced electron transfer in biologically active bis(terpyridine)ruthenium(II)-cytochrome c bioconjugates and the effect of solvents on the bioconjugation of cytochrome c.

    PubMed

    Peterson, Joshua R; Smith, Trevor A; Thordarson, Pall

    2010-01-07

    Photo-active bis(terpyridine)ruthenium(ii) chromophores were synthesised and attached to the redox enzyme iso-1 cytochrome c in a mixed solvent system to form photo-induced bioconjugates in greater than 40% yield after purification. The effects of up to 20% (v/v) of acetonitrile, tetrahydrofuran, dimethylformamide, or dimethyl sulfoxide at 4, 25 and 35 degrees C on the stability and biological activity of cytochrome c and its reactivity towards the model compound 4,4'-dithiodipyridine (DTDP) was measured. The second-order rate constant for the DTDP reaction was found to range between k = 2.5-4.3 M(-1) s(-1) for reactions with 5% organic solvent added compared to k = 5.6 M(-1) s(-1) in pure water at 25 degrees C. Use of 20% solvent generally results in significant protein oxidation, and 20% acetonitrile and tetrahydrofuran in particular result in significant protein dimerization, which competes with the bioconjugation reaction. Cyclic voltammetry studies indicated that the rate of electron transfer to the heme in solution was reduced in the bis(terpyridine)ruthenium(ii) cytochrome c bioconjugates compared to unmodified cytochrome c. Steady-state fluorescence studies on these bioconjugates showed that energy or electron transfer is taking place between the bis(terpyridine)ruthenium(ii) chromophores and cytochrome c. The bis(terpyridine)ruthenium(ii) cytochrome c bioconjugates demonstrate room temperature photo-activated electron transfer from the bis(terpyridine)ruthenium(ii) donor to the protein acceptor. Two sacrificial donors were used; in 50% glycerol, the bioconjugates were reduced in about 15 min while in 20 mM EDTA the bioconjugates were fully reduced in less than 5 min upon irradiation with a xenon lamp source. Under these conditions, the reduction of the non-covalent mixture of cytochrome c and bis(terpyridine)ruthenium(ii) mixtures took over 30 min. Control experiments showed that the photo-induced reduction of cytochrome c only occurs in the absence of oxygen and presence of a sacrificial donor. These results are encouraging for future incorporation of these bioconjugates in light-responsive bioelectronic circuits, including photo-activated biosensors and biofuel cells.

  11. Analysis of Hypericin-Mediated Effects and Implications for Targeted Photodynamic Therapy

    PubMed Central

    Mühleisen, Laura; Alev, Magdalena; Unterweger, Harald; Subatzus, Daniel; Pöttler, Marina; Friedrich, Ralf P.; Alexiou, Christoph; Janko, Christina

    2017-01-01

    The phototoxic effect of hypericin can be utilized for Photodynamic Therapy (PDT) of cancer. After intravenous application and systemic distribution of the drug in the patient’s body, the tumor site is exposed to light. Subsequently, toxic reactive oxygen species (ROS) are generated, inducing tumor cell death. To prevent unwanted activation of the drug in other regions of the body, patients have to avoid light during and after the treatment cycles, consequently impairing quality of life. Here, we characterize toxicity and hypericin-mediated effects on cancer cells in vitro and confirm that its effect clearly depends on concentration and illumination time. To reduce side effects and to increase therapy success, selective accumulation of hypericin in the tumor region is a promising solution. Loading hypericin on superparamagnetic iron oxide nanoparticles (SPIONs) and guiding them to the desired place using an external magnetic field might accomplish this task (referred to as Magnetic Drug Targeting (MDT)). Thus, using a double targeting strategy, namely magnetic accumulation and laser induced photoactivation, might improve treatment effectivity as well as specificity and reduce toxic side effects in future clinical applications. PMID:28661430

  12. Analysis of Hypericin-Mediated Effects and Implications for Targeted Photodynamic Therapy.

    PubMed

    Mühleisen, Laura; Alev, Magdalena; Unterweger, Harald; Subatzus, Daniel; Pöttler, Marina; Friedrich, Ralf P; Alexiou, Christoph; Janko, Christina

    2017-06-29

    The phototoxic effect of hypericin can be utilized for Photodynamic Therapy (PDT) of cancer. After intravenous application and systemic distribution of the drug in the patient's body, the tumor site is exposed to light. Subsequently, toxic reactive oxygen species (ROS) are generated, inducing tumor cell death. To prevent unwanted activation of the drug in other regions of the body, patients have to avoid light during and after the treatment cycles, consequently impairing quality of life. Here, we characterize toxicity and hypericin-mediated effects on cancer cells in vitro and confirm that its effect clearly depends on concentration and illumination time. To reduce side effects and to increase therapy success, selective accumulation of hypericin in the tumor region is a promising solution. Loading hypericin on superparamagnetic iron oxide nanoparticles (SPIONs) and guiding them to the desired place using an external magnetic field might accomplish this task (referred to as Magnetic Drug Targeting (MDT)). Thus, using a double targeting strategy, namely magnetic accumulation and laser induced photoactivation, might improve treatment effectivity as well as specificity and reduce toxic side effects in future clinical applications.

  13. Chiral Templating of Self-Assembling Nanostructures by Circularly Polarized Light

    PubMed Central

    Yeom, Jihyeon; Yeom, Bongjun; Chan, Henry; Smith, Kyle W.; Dominguez-Medina, Sergio; Bahng, Joong Hwan; Zhao, Gongpu; Chang, Wei-Shun; Chang, Sung Jin; Chuvilin, Andrey; Melnikau, Dzmitry; Rogach, Andrey L.; Zhang, Peijun; Link, Stephan; Král, Petr; Kotov, Nicholas A.

    2015-01-01

    Chemical reactions affected by spin angular momenta of circularly polarized photons are rare and display low enantiomeric excess. High optical and chemical activity of nanoparticles (NPs) should facilitate the transfer of spin angular momenta of photons to nanoscale materials but such processes are unknown. Here we demonstrate that circularly polarized light (CPL) strongly affects self-assembly of racemic CdTe NPs. Illumination of NP dispersions with right- and left-handed CPL induces the formation of right- and left-handed twisted nanoribbons, respectively. Enantiomeric excess of such reactions exceeds 30% which is ~10 times higher than other CPL-induced reactions. Illumination with linearly polarized light and assembly in the dark led to straight nanoribbons. The mechanism of “templation” of NP assemblies by CPL is associated with selective photoactivation of chiral NPs and clusters followed by their photooxidation. Chiral anisotropy of interactions translates into chirality of the assembled ribbons. The ability of NPs to retain polarization information, or the “imprint” of incident photons opens new pathways for the synthesis of chiral photonic materials and allows for better understanding of the origins of biomolecular homochirality. PMID:25401922

  14. Reversible oxygen addition on a triplet sensitizer molecule: protection from excited state depopulation.

    PubMed

    Filatov, Mikhail A; Heinrich, Ernesta; Busko, Dmitry; Ilieva, Iliyana Z; Landfester, Katharina; Baluschev, Stanislav

    2015-03-07

    We demonstrate that photoactivated oxygen addition to diphenylanthracene moities can be used as a tool for protection of porphyrin's phosphorescence against oxygen quenching. Phosphorescent palladium(II) tetrabenzoporphyrin, covalently linked to four diphenylanthracene moieties, was synthesized and studied. Upon irradiation with ambient light or red laser in solution in air, addition of oxygen and formation of the corresponding endoperoxides were observed. Heating of the irradiated samples afforded the parent porphyrin material.

  15. Photo-Definable Self Assembled Maerials

    DOEpatents

    DOSHI, DHAVAL; [et al

    2004-10-26

    The present invention provides a mesoporous material comprising at least one region of mesoporous material patterned at a lithographic scale. The present invention also provides a a method for forming a patterned mesoporous material comprising: coating a sol on a substrate to form a film, the sol comprising: a templating molecule, a photoactivator generator, a material capable of being sol-gel processed, water, and a solvent; and exposing the film to light to form a patterned mesoporous material.

  16. Molecular evolutionary analysis of vertebrate transducins: a role for amino acid variation in photoreceptor deactivation.

    PubMed

    Lin, Yi G; Weadick, Cameron J; Santini, Francesco; Chang, Belinda S W

    2013-12-01

    Transducin is a heterotrimeric G protein that plays a critical role in phototransduction in the rod and cone photoreceptor cells of the vertebrate retina. Rods, highly sensitive cells that recover from photoactivation slowly, underlie dim-light vision, whereas cones are less sensitive, recover more quickly, and underlie bright-light vision. Transducin deactivation is a critical step in photoreceptor recovery and may underlie the functional distinction between rods and cones. Rods and cones possess distinct transducin α subunits, yet they share a common deactivation mechanism, the GTPase activating protein (GAP) complex. Here, we used codon models to examine patterns of sequence evolution in rod (GNAT1) and cone (GNAT2) α subunits. Our results indicate that purifying selection is the dominant force shaping GNAT1 and GNAT2 evolution, but that GNAT2 has additionally been subject to positive selection operating at multiple phylogenetic scales; phylogeny-wide analysis identified several sites in the GNAT2 helical domain as having substantially elevated dN/dS estimates, and branch-site analysis identified several nearby sites as targets of strong positive selection during early vertebrate history. Examination of aligned GNAT and GAP complex crystal structures revealed steric clashes between several positively selected sites and the deactivating GAP complex. This suggests that GNAT2 sequence variation could play an important role in adaptive evolution of the vertebrate visual system via effects on photoreceptor deactivation kinetics and provides an alternative perspective to previous work that focused instead on the effect of GAP complex concentration. Our findings thus further the understanding of the molecular biology, physiology, and evolution of vertebrate visual systems.

  17. Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments.

    PubMed

    Landry, Markita P; McCall, Patrick M; Qi, Zhi; Chemla, Yann R

    2009-10-21

    Optical traps or "tweezers" use high-power, near-infrared laser beams to manipulate and apply forces to biological systems, ranging from individual molecules to cells. Although previous studies have established that optical tweezers induce photodamage in live cells, the effects of trap irradiation have yet to be examined in vitro, at the single-molecule level. In this study, we investigate trap-induced damage in a simple system consisting of DNA molecules tethered between optically trapped polystyrene microspheres. We show that exposure to the trapping light affects the lifetime of the tethers, the efficiency with which they can be formed, and their structure. Moreover, we establish that these irreversible effects are caused by oxidative damage from singlet oxygen. This reactive state of molecular oxygen is generated locally by the optical traps in the presence of a sensitizer, which we identify as the trapped polystyrene microspheres. Trap-induced oxidative damage can be reduced greatly by working under anaerobic conditions, using additives that quench singlet oxygen, or trapping microspheres lacking the sensitizers necessary for singlet state photoexcitation. Our findings are relevant to a broad range of trap-based single-molecule experiments-the most common biological application of optical tweezers-and may guide the development of more robust experimental protocols.

  18. Masked rhodamine dyes of five principal colors revealed by photolysis of a 2-diazo-1-indanone caging group: synthesis, photophysics, and light microscopy applications.

    PubMed

    Belov, Vladimir N; Mitronova, Gyuzel Yu; Bossi, Mariano L; Boyarskiy, Vadim P; Hebisch, Elke; Geisler, Claudia; Kolmakov, Kirill; Wurm, Christian A; Willig, Katrin I; Hell, Stefan W

    2014-10-06

    Caged rhodamine dyes (Rhodamines NN) of five basic colors were synthesized and used as "hidden" markers in subdiffractional and conventional light microscopy. These masked fluorophores with a 2-diazo-1-indanone group can be irreversibly photoactivated, either by irradiation with UV- or violet light (one-photon process), or by exposure to intense red light (λ∼750 nm; two-photon mode). All dyes possess a very small 2-diazoketone caging group incorporated into the 2-diazo-1-indanone residue with a quaternary carbon atom (C-3) and a spiro-9H-xanthene fragment. Initially they are non-colored (pale yellow), non-fluorescent, and absorb at λ=330-350 nm (molar extinction coefficient (ε)≈10(4)  M(-1)  cm(-1)) with a band edge that extends to about λ=440 nm. The absorption and emission bands of the uncaged derivatives are tunable over a wide range (λ=511-633 and 525-653 nm, respectively). The unmasked dyes are highly colored and fluorescent (ε=3-8×10(4)  M(-1)  cm(-1) and fluorescence quantum yields (ϕ)=40-85% in the unbound state and in methanol). By stepwise and orthogonal protection of carboxylic and sulfonic acid groups a highly water-soluble caged red-emitting dye with two sulfonic acid residues was prepared. Rhodamines NN were decorated with amino-reactive N-hydroxysuccinimidyl ester groups, applied in aqueous buffers, easily conjugated with proteins, and readily photoactivated (uncaged) with λ=375-420 nm light or intense red light (λ=775 nm). Protein conjugates with optimal degrees of labeling (3-6) were prepared and uncaged with λ=405 nm light in aqueous buffer solutions (ϕ=20-38%). The photochemical cleavage of the masking group generates only molecular nitrogen. Some 10-40% of the non-fluorescent (dark) byproducts are also formed. However, they have low absorbance and do not quench the fluorescence of the uncaged dyes. Photoactivation of the individual molecules of Rhodamines NN (e.g., due to reversible or irreversible transition to a "dark" non-emitting state or photobleaching) provides multicolor images with subdiffractional optical resolution. The applicability of these novel caged fluorophores in super-resolution optical microscopy is exemplified. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structured illumination to spatially map chromatin motions.

    PubMed

    Bonin, Keith; Smelser, Amanda; Moreno, Naike Salvador; Holzwarth, George; Wang, Kevin; Levy, Preston; Vidi, Pierre-Alexandre

    2018-05-01

    We describe a simple optical method that creates structured illumination of a photoactivatable probe and apply this method to characterize chromatin motions in nuclei of live cells. A laser beam coupled to a diffractive optical element at the back focal plane of an excitation objective generates an array of near diffraction-limited beamlets with FWHM of 340  ±  30  nm, which simultaneously photoactivate a 7  ×  7 matrix pattern of GFP-labeled histones, with spots 1.70  μm apart. From the movements of the photoactivated spots, we map chromatin diffusion coefficients at multiple microdomains of the cell nucleus. The results show correlated motions of nearest chromatin microdomain neighbors, whereas chromatin movements are uncorrelated at the global scale of the nucleus. The method also reveals a DNA damage-dependent decrease in chromatin diffusion. The diffractive optical element instrumentation can be easily and cheaply implemented on commercial inverted fluorescence microscopes to analyze adherent cell culture models. A protocol to measure chromatin motions in nonadherent human hematopoietic stem and progenitor cells is also described. We anticipate that the method will contribute to the identification of the mechanisms regulating chromatin mobility, which influences most genomic processes and may underlie the biogenesis of genomic translocations associated with hematologic malignancies. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. Elucidating the role of methyl viologen as a scavenger of photoactivated electrons from photosystem I under aerobic and anaerobic conditions.

    PubMed

    Bennett, Tyler; Niroomand, Hanieh; Pamu, Ravi; Ivanov, Ilia; Mukherjee, Dibyendu; Khomami, Bamin

    2016-03-28

    We present detailed electrochemical investigations into the role of dissolved O2 in electrolyte solutions in scavenging photoactivated electrons from a uniform photosystem I (PS I) monolayer assembled on alkanethiolate SAM (self-assembled monolayer)/Au surfaces while using methyl viologen (MV(2+)) as the redox mediator. To this end, we report results for direct measurements of light induced photocurrent from uniform monolayer assemblies of PS I on C9 alkanethiolate SAM/Au surfaces. These measurements, apart from demonstrating the ability of dissolved O2 in the electrolyte medium to act as an electron scavenger, also reveal its essential role in driving the solution-phase methyl viologen to initiate light-induced directional electron transfer from an electron donor surface (Au) via surface assembled PS I trimers. Specifically, our systematic electrochemical measurements have revealed that the dissolved O2 in aqueous electrolyte solutions form a complex intermediate species with MV that plays the essential role in mediating redox pathways for unidirectional electron transfer processes. This critical insight into the redox-mediated electron transfer pathways allows for rational design of electron scavengers through systematic tuning of mediator combinations that promote such intermediate formation. Our current findings facilitate the incorporation of PS I-based bio-hybrid constructs as photo-anodes in future photoelectrochemical cells and bio-electronic devices.

  1. Cryptochrome 1 in Retinal Cone Photoreceptors Suggests a Novel Functional Role in Mammals

    PubMed Central

    Nießner, Christine; Denzau, Susanne; Malkemper, Erich Pascal; Gross, Julia Christina; Burda, Hynek; Winklhofer, Michael; Peichl, Leo

    2016-01-01

    Cryptochromes are a ubiquitous group of blue-light absorbing flavoproteins that in the mammalian retina have an important role in the circadian clock. In birds, cryptochrome 1a (Cry1a), localized in the UV/violet-sensitive S1 cone photoreceptors, is proposed to be the retinal receptor molecule of the light-dependent magnetic compass. The retinal localization of mammalian Cry1, homologue to avian Cry1a, is unknown, and it is open whether mammalian Cry1 is also involved in magnetic field sensing. To constrain the possible role of retinal Cry1, we immunohistochemically analysed 90 mammalian species across 48 families in 16 orders, using an antiserum against the Cry1 C-terminus that in birds labels only the photo-activated conformation. In the Carnivora families Canidae, Mustelidae and Ursidae, and in some Primates, Cry1 was consistently labeled in the outer segment of the shortwave-sensitive S1 cones. This finding would be compatible with a magnetoreceptive function of Cry1 in these taxa. In all other taxa, Cry1 was not detected by the antiserum that likely also in mammals labels the photo-activated conformation, although Western blots showed Cry1 in mouse retinal cell nuclei. We speculate that in the mouse and the other negative-tested mammals Cry1 is involved in circadian functions as a non-light-responsive protein. PMID:26898837

  2. Use of photoactivated disinfection and platelet-rich fibrin in regenerative Endodontics

    PubMed Central

    Johns, Dexton Antony; Shivashankar, Vasundara Yayathi; Krishnamma, Shoba; Johns, Manu

    2014-01-01

    Aim: Photoactivated disinfection has been used as an adjunct to conventional endodontic treatment. Its use in regenerative endodontics is not reported in literature. The aim of this case report was to describe a new proposal for pulp revascularization with disinfection of pulp canal space using a unique combination of a photosensitizer solution and low-power laser light. Materials and Methods: A 9-year-old boy came with the chief complaint of discolored upper central incisors (#8, #9). A diagnosis of pulp necrosis was made on the basis of clinical and radiographic findings. The canal was irrigated with 5.25% sodium hypochlorite solution and dried with paper points. Photodynamic therapy was used to disinfect the root canal and platelet-rich fibrin was used to revitalize the pulp. Three millimeters of gray mineral trioxide aggregate was placed directly over the platelet-rich plasma clot. Three days later, the tooth was double-sealed with permanent filling materials. Results: Clinical examination revealed no sensitivity to percussion or palpation tests. Radiograph revealed continued thickening of the dentinal walls, root lengthening, regression of the peri-apical lesion and apical closure. Both the roots showed complete apical closure at the 10-month follow-up. However, the teeth were not responsive to electric pulp test. Conclusion: This report of pulp revascularization shows that disinfection with photodynamic therapy combined with platelet-rich fibrin leads to satisfactory root development in necrotic immature teeth. PMID:25298655

  3. Reduction in hypericin-induced phototoxicity by Hypericum perforatum extracts and pure compounds

    PubMed Central

    Schmitt, Laura A.; Liu, Yi; Murphy, Patricia A.; Petrich, Jacob W.; Dixon, Philip M.; Birt, Diane F.

    2006-01-01

    Clinical evidence suggests that administration of Hypericum perforatum (Hp) extracts containing the photo-activated hypericin compounds may cause fewer skin photosensitization reactions than administration of pure hypericin. This study was conducted to determine whether the phototoxicity of hypericin in HaCaT keratinocytes could be attenuated by H. perforatum extracts and constituents. Two extracts, when supplemented with 20 μM hypericin: (1) an ethanol re-extraction of residue following a chloroform extraction (denoted ethanol(-chloroform)) (3.35 μM hypericin and 124.0 μM total flavonoids); and (2) a chloroform extract (hypericin and flavonoids not detected), showed 25% and 50% (p < 0.0001) less phototoxicity than 20 μM hypericin alone. Two H. perforatum constituents, when supplemented with 20 μM hypericin: (1) 10 μM chlorogenic acid; and (2) 0.25 μM pyropheophorbide, exhibited 24% (p < 0.05) and 40% (p < 0.05) less phototoxicity than 20 μM hypericin alone. The peroxidation of arachidonic acid was assessed as a measure of oxidative damage by photo-activated hypericin, but this parameter of lipid peroxidation was not influenced by the extracts or constituents. However α-tocopherol, a known antioxidant also did not influence the amount of lipid peroxidation induced in this system. These observations indicate that hypericin combined with H. perforatum extracts or constituents may exert less phototoxicity than pure hypericin, but possibly not through a reduction in arachidonic acid peroxidation. PMID:16859921

  4. Effect of photoactivated riboflavin on the biodegradation-resistance of root-dentin collagen.

    PubMed

    Priyadarshini, Balasankar Meera; Lu, Thong Beng; Fawzy, Amr S

    2017-12-01

    This study was conducted to evaluate the effect of UVA-activated 1% riboflavin solution on structural integrity; mechanical properties and stability; and collagenase-mediated collagen solubilisation resistance of demineralized root dentin collagen matrix. Root dentin specimens demineralized with 17% EDTA for 7days were treated with 1% RF for 1min followed by UVA photo-activation at intensity 7mW/cm 2 for 1min. Control specimens were completely devoid of riboflavin and/or UVA treatments. Specimens were challenged with bacterial collagenase type-I solution for different time-periods at 37°C. Collagen solubilisation resistance was evaluated in terms of hydroxyproline (HYP) liberation. Mechanical characterization of dentin specimens before and after 24h of exposure to collagenase solution was done in terms of apparent-elastic modulus (E appr ) and ultimate tensile strength (UTS). Variations in dentin collagen-network structure with exposure time in collagenase were visualized by TEM. Crosslinking dentin with UVA-activated riboflavin significantly decreased HYP release and increased E appr and UTS compared to control specimens with storage time in collagenase. Moreover, crosslinked specimens showed higher structural resistance to collagenase effect reflected from dense, well-formed collagen fibrils-network with characteristic collagen cross-banding. UVA-activated riboflavin treatment increased collagenase-mediated collagen degradation resistance and enhanced mechanical stability against collagenase challenges of root dentin after EDTA demineralization. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Evaluation of phenyl-propanedione on yellowing and chemical-mechanical properties of experimental dental resin-based materials.

    PubMed

    Oliveira, Dayane Carvalho Ramos Salles de; Souza-Junior, Eduardo José; Dobson, Adam; Correr, Ana Rosa Costa; Brandt, William Cunha; Sinhoreti, Mário Alexandre Coelho

    2016-01-01

    To evaluate the influence of phenyl-propanedione on yellowing and chemical-mechanical properties of experimental resin-based materials photoactivated using different light curing units (LCUs). Experimental resin-based materials with the same organic matrix (60:40 wt% BisGMA:TEGDMA) were mechanically blended using a centrifugal mixing device. To this blend, different photoinitiator systems were added in equimolar concentrations with aliphatic amine doubled by wt%: 0.4 wt% CQ; 0.38 wt% PPD; or 0.2 wt% CQ and 0.19 wt% PPD. The degree of conversion (DC), flexural strength (FS), Young's modulus (YM), Knoop hardness (KNH), crosslinking density (CLD), and yellowing (Y) were evaluated (n=10). All samples were light cured with the following LCUs: a halogen lamp (XL 2500), a monowave LED (Radii), or a polywave LED (Valo) with 16 J/cm2. The results were analysed by two-way ANOVA and Tukey's test (α=0.05). No statistical differences were found between the different photoinitiator systems to KNH, CLS, FS, and YM properties (p≥0.05). PPD/CQ association showed the higher DC values compared with CQ and PPD isolated systems when photoactivated by a polywave LED (p≤0.05). Y values were highest for the CQ compared with the PPD systems (p≤0.05). PPD isolated system promoted similar chemical and mechanical properties and less yellowing compared with the CQ isolated system, regardless of the LCU used.

  6. Super-resolution atomic force photoactivated microscopy of biological samples (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Kim, Hyemin; Shin, Seungjun; Doh, Junsang; Kim, Chulhong

    2017-03-01

    Optical microscopy (OM) and photoacoustic microscopy (PAM) have previously been used to image the optical absorption of intercellular features of biological cells. However, the optical diffraction limit ( 200 nm) makes it difficult for these modalities to image nanoscale inner cell structures and the distribution of internal cell components. Although super-resolution fluorescence microscopy, such as stimulated emission depletion microscopy (STED) and stochastic optical reconstruction microscopy (STORM), has successfully performed nanoscale biological imaging, these modalities require the use of exogenous fluorescence agents, which are unfavorable for biological samples. Our newly developed atomic force photoactivated microscopy (AFPM) can provide optical absorption images with nanoscale lateral resolution without any exogenous contrast agents. AFPM combines conventional atomic force microscopy (AFM) and an optical excitation system, and simultaneously provides multiple contrasts, such as the topography and magnitude of optical absorption. AFPM can detect the intrinsic optical absorption of samples with 8 nm lateral resolution, easily overcoming the diffraction limit. Using the label-free AFPM system, we have successfully imaged the optical absorption properties of a single melanoma cell (B16F10) and a rosette leaf epidermal cell of Arabidopsis (ecotype Columbia (Col-0)) with nanoscale lateral resolution. The remarkable images show the melanosome distribution of a melanoma cell and the biological structures of a plant cell. AFPM provides superior imaging of optical absorption with a nanoscale lateral resolution, and it promises to become widely used in biological and chemical research.

  7. Photo-oxidation of cork manufacturing wastewater.

    PubMed

    Silva, Carla A; Madeira, Luis M; Boaventura, Rui A; Costa, Carlos A

    2004-04-01

    Several photo-activated processes have been investigated for oxidation of a cork manufacturing wastewater. A comparative activity study is made between different homogeneous (H2O2/UV-Vis and H2O2/Fe2+/UV-Vis) and heterogeneous (TiO2/UV-Vis and TiO2/H2O2/UV-Vis) systems, with degradation performances being evaluated in terms of total organic carbon (TOC) removal. Results obtained in a batch photo-reactor show that photo-catalysis with TiO2 is not suitable for this kind of wastewater while the H2O2/UV-Vis oxidation process, for which the effect of some operating conditions was investigated, allows to remove 39% of TOC after 4 h of operation (for C(H2O2)=0.59 M, pH=10 and T=35 degrees C). The combined photo-activated process, i.e., using both TiO2 and H2O2, yields an overall TOC decrease of 46% (for C(TiO2)=1.0 gl(-1)). The photo-Fenton process proved to be the most efficient, proceeds at a much higher oxidation rate and allows to achieve 66% mineralization in just 10 min of reaction time (for C(H2O2)=0.31 M, T=30 degrees C, Fe2+:H2O2=0.12 (mol) and pH=3.2).

  8. Cryptochrome 1 in Retinal Cone Photoreceptors Suggests a Novel Functional Role in Mammals.

    PubMed

    Nießner, Christine; Denzau, Susanne; Malkemper, Erich Pascal; Gross, Julia Christina; Burda, Hynek; Winklhofer, Michael; Peichl, Leo

    2016-02-22

    Cryptochromes are a ubiquitous group of blue-light absorbing flavoproteins that in the mammalian retina have an important role in the circadian clock. In birds, cryptochrome 1a (Cry1a), localized in the UV/violet-sensitive S1 cone photoreceptors, is proposed to be the retinal receptor molecule of the light-dependent magnetic compass. The retinal localization of mammalian Cry1, homologue to avian Cry1a, is unknown, and it is open whether mammalian Cry1 is also involved in magnetic field sensing. To constrain the possible role of retinal Cry1, we immunohistochemically analysed 90 mammalian species across 48 families in 16 orders, using an antiserum against the Cry1 C-terminus that in birds labels only the photo-activated conformation. In the Carnivora families Canidae, Mustelidae and Ursidae, and in some Primates, Cry1 was consistently labeled in the outer segment of the shortwave-sensitive S1 cones. This finding would be compatible with a magnetoreceptive function of Cry1 in these taxa. In all other taxa, Cry1 was not detected by the antiserum that likely also in mammals labels the photo-activated conformation, although Western blots showed Cry1 in mouse retinal cell nuclei. We speculate that in the mouse and the other negative-tested mammals Cry1 is involved in circadian functions as a non-light-responsive protein.

  9. The Amyloid Precursor Protein is rapidly transported from the Golgi apparatus to the lysosome and where it is processed into beta-amyloid

    PubMed Central

    2014-01-01

    Background Alzheimer’s disease (AD) is characterized by cerebral deposition of β-amyloid peptide (Aβ). Aβ is produced by sequential cleavage of the Amyloid Precursor Protein (APP) by β- and γ-secretases. Many studies have demonstrated that the internalization of APP from the cell surface can regulate Aβ production, although the exact organelle in which Aβ is produced remains contentious. A number of recent studies suggest that intracellular trafficking also plays a role in regulating Aβ production, but these pathways are relatively under-studied. The goal of this study was to elucidate the intracellular trafficking of APP, and to examine the site of intracellular APP processing. Results We have tagged APP on its C-terminal cytoplasmic tail with photoactivatable Green Fluorescent Protein (paGFP). By photoactivating APP-paGFP in the Golgi, using the Golgi marker Galactosyltranferase fused to Cyan Fluorescent Protein (GalT-CFP) as a target, we are able to follow a population of nascent APP molecules from the Golgi to downstream compartments identified with compartment markers tagged with red fluorescent protein (mRFP or mCherry); including rab5 (early endosomes) rab9 (late endosomes) and LAMP1 (lysosomes). Because γ-cleavage of APP releases the cytoplasmic tail of APP including the photoactivated GFP, resulting in loss of fluorescence, we are able to visualize the cleavage of APP in these compartments. Using APP-paGFP, we show that APP is rapidly trafficked from the Golgi apparatus to the lysosome; where it is rapidly cleared. Chloroquine and the highly selective γ-secretase inhibitor, L685, 458, cause the accumulation of APP in lysosomes implying that APP is being cleaved by secretases in the lysosome. The Swedish mutation dramatically increases the rate of lysosomal APP processing, which is also inhibited by chloroquine and L685, 458. By knocking down adaptor protein 3 (AP-3; a heterotetrameric protein complex required for trafficking many proteins to the lysosome) using siRNA, we are able to reduce this lysosomal transport. Blocking lysosomal transport of APP reduces Aβ production by more than a third. Conclusion These data suggests that AP-3 mediates rapid delivery of APP to lysosomes, and that the lysosome is a likely site of Aβ production. PMID:25085554

  10. A caged Ab reveals an immediate/instructive effect of BDNF during hippocampal synaptic potentiation

    PubMed Central

    Kossel, Albrecht H.; Cambridge, Sidney B.; Wagner, Uta; Bonhoeffer, Tobias

    2001-01-01

    Neurotrophins have been shown to be involved in functional strengthening of central nervous system synapses. Although their general importance in this process is undisputed, it remains unresolved whether neurotrophins are truly mediators of synaptic strengthening or merely important cofactors. To address this question, we have devised a method to inactivate endogenous brain-derived neurotrophic factor (BDNF) with high time resolution by “caging” a function-blocking mAb against BDNF with a photosensitive protecting compound. Different assays were used to show that this inactivation of the Ab is reversible by UV light. Synaptic potentiation after τ-burst stimulation in the CA1 region of acute hippocampal slices was significantly less when applying the unmodified Ab compared with the caged Ab. Importantly, photoactivation of the caged Ab during the time of induction of synaptic enhancement led to a marked decrease in potentiation. Our experiments therefore strengthen the view that endogenous BDNF has fast effects during induction of synaptic plasticity. The results additionally show that caged Abs can provide a tool for precise spatiotemporal control over endogenous protein levels. PMID:11724927

  11. Microencapsulation of Drugs: New Cancer Therapies and Improved Drug Delivery Derived from Micro Gravity Research

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Haddad, Ruwaida S.

    2003-01-01

    Experiments on the ISS include encapsulation of several different anti-cancer drugs, magnetic triggering particles, and encapsulation of genetically engineered DNA. Eight experiments, using the MEPS-II apparatus, were conducted to study the limitations of the fluid shear and g-dependent forces. These studies included: 1) formation of anti-tumor microcapsules containing drugs for "Chemoembolization" of vascularized tumors, 2) formation of microcapsules containing a photo-activated drug which can be used for Photo Dynamic Therapy of solid tumors by activation with near infrared light (630 nm), 3) coencapsulation of magnetic trigger particles and anti-tumor drugs, and 4) encapsulation of plasmid DNA. The Microencapsulation Electrostatic Processing System (MEPS-II) is an automated apparatus modified for use in the ISS Express Rack. The process brings together two immiscible liquids, restricting fluid shear to permitting surface tension forces to predominate at the interface of the fluids. Microcapsules were recovered from all 8 experiments and are currently being analyzed for size distribution and drug content. Six NASA Patents have issued from the space research and several more are pending. The preliminary results from the Increment 5 - UF-2 experiments have provided new insight into the best formulations and conditions required to produce microcapsules of different drugs, esp. special capsules containing diagnostic imaging materials and triggered release particles. Co-encapsulation of multiple drugs and Photodynamic Therapy (PDT) drugs has enabled new engineering strategies for production of microcapsules on Earth designed for direct delivery into cancer tissues. Other microcapsules have now been made for treatment of deep tissue infections, clotting disorders, and to provide delivery of genetic engineered materials for potential gene therapy approaches. The MEPS-II apparatus remains in the ISS awaiting microencapsulation experiments to be conducted in micro-g, and returned to Earth for analysis.

  12. Sealing of Corneal Lacerations Using Photo-Activated Rose Bengal Dye and Amniotic Membrane

    DTIC Science & Technology

    2017-01-10

    each retina. ONL thickness data 196 were tested by a two-tailed unpaired Student t test . 197 Each histologic evaluation was carried out in a masked... Research Division may pay for your basic journal publishing charges (to include costs for tables and black and white photos). We cannot pay for...reprints. If you are 59 MDW staff member, we can forward your request for funds to the designated wing POC. 4. Congratulations, and thank you for your

  13. Sealing of Corneal Lacerations Using Photo-Activated Rose Bengal Dye and Amniotic Membrane

    DTIC Science & Technology

    2017-05-05

    MDW/SGVU) (Contact 292-7141 for email instructions) Mar 10, 201 7 17150 3. DATE REVIEWED 4. DATE FORWARDED TO PA Mar 15, 2017 5. AUTHOR CONTACTED...REVIEWER DATE SIGNATURE OF REVIEWER Linda D Harris, GS-14, Chief, Ops Branch Mar 15, 2017 HARRIS.LINDA.OAWN.113189058 =._"::’ .. ~~;::;,..-;:_ 0...PA) Mar 21, 2017 Mar21,2017 6. COMMENTS ~ APPROVED (In compliance with security and policy review directives.) 0 DISAPPROVED PRINTED NAME, RANK

  14. Sealing Penetrating Eye Injuries Using Photoactivated Bonding

    DTIC Science & Technology

    2010-09-30

    on  corneal tissue. To evaluate inflammation all 15 rabbits will be euthanized with  phenobarbital . The  10 corneoscleral button of tissue will be...will be euthanized with  phenobarbital . The  corneoscleral button of tissue will be removed and divided into portions for paraffin and frozen sections

  15. Evaluation of Vickers hardness and depth of cure of six composite resins photo-activated with different polymerization modes.

    PubMed

    Poggio, C; Lombardini, M; Gaviati, S; Chiesa, M

    2012-07-01

    The current in vitro study evaluated Vickers hardness (VK) and depth of cure (hardness ratio) of six resin composites, polymerized with a light-emitting diode (LED) curing unit by different polymerization modes: Standard 20 s, Standard 40 s, Soft-start 40 s. SIX RESIN COMPOSITES WERE SELECTED FOR THE PRESENT STUDY: three microhybrid (Esthet.X HD, Amaris, Filtek Silorane), two nanohybrid (Grandio, Ceram.X mono) and one nanofilled (Filtek Supreme XT). The VK of the surface was determined with a microhardness tester using a Vickers diamond indenter and a 200 g load applied for 15 seconds. The mean VK and hardness ratio of the specimens were calculated using the formula: hardness ratio = VK of bottom surface / VK of top surface. For all the materials tested and with all the polymerization modes, hardness ratio was higher than the minimum value indicated in literature in order to consider the bottom surface as adequately cured (0.80). Curing time did not affect hardness ratio values for Filtek Silorane, Grandio and Filtek Supreme XT. The effectiveness of cure at the top and bottom surface was not affected by Soft-start polymerization mode.

  16. Metal Sulfides as Sensing Materials for Chemoresistive Gas Sensors

    PubMed Central

    Gaiardo, Andrea; Fabbri, Barbara; Guidi, Vincenzo; Bellutti, Pierluigi; Giberti, Alessio; Gherardi, Sandro; Vanzetti, Lia; Malagù, Cesare; Zonta, Giulia

    2016-01-01

    This work aims at a broad overview of the results obtained with metal-sulfide materials in the field of chemoresistive gas sensing. Indeed, despite the well-known electrical, optical, structural and morphological features previously described in the literature, metal sulfides present lack of investigation for gas sensing applications, a field in which the metal oxides still maintain a leading role owing to their high sensitivity, low cost, small dimensions and simple integration, in spite of the wide assortment of sensing materials. However, despite their great advantages, metal oxides have shown significant drawbacks, which have led to the search for new materials for gas sensing devices. In this work, Cadmium Sulfide and Tin (IV) Sulfide were investigated as functional materials for thick-film chemoresistive gas-sensors fabrication and they were tested both in thermo- and in photo-activation modes. Furthermore, electrical characterization was carried out in order to verify their gas sensing properties and material stability, by comparing the results obtained with metal sulfides to those obtained by using their metal-oxides counterparts. The results highlighted the possibility to use metal sulfides as a novel class of sensing materials, owing to their selectivity to specific compounds, stability, and the possibility to operate at room temperature. PMID:26927120

  17. Magnetomotive laser speckle imaging

    PubMed Central

    Kim, Jeehyun; Oh, Junghwan; Choi, Bernard

    2010-01-01

    Laser speckle imaging (LSI) involves analysis of reflectance images collected during coherent optical excitation of an object to compute wide-field maps of tissue blood flow. An intrinsic limitation of LSI for resolving microvascular architecture is that its signal depends on relative motion of interrogated red blood cells. Hence, with LSI, small-diameter arterioles, venules, and capillaries are difficult to resolve due to the slow flow speeds associated with such vasculature. Furthermore, LSI characterization of subsurface blood flow is subject to blurring due to scattering, further limiting the ability of LSI to resolve or quantify blood flow in small vessels. Here, we show that magnetic activation of superparamagnetic iron oxide (SPIO) nanoparticles modulate the speckle flow index (SFI) values estimated from speckle contrast analysis of collected images. With application of an ac magnetic field to a solution of stagnant SPIO particles, an apparent increase in SFI is induced. Furthermore, with application of a focused dc magnetic field, a focal decrease in SFI values is induced. Magnetomotive LSI may enable wide-field mapping of suspicious tissue regions, enabling subsequent high-resolution optical interrogation of these regions. Similarly, subsequent photoactivation of intravascular SPIO nanoparticles could then be performed to induce selective photothermal destruction of unwanted vasculature. PMID:20210436

  18. Photo-pharmaceutical therapy: features and prospects

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Potapenko, Alexander Y.; Minenkov, Alexander A.

    2001-07-01

    This article is an attempt to analyze the concept, distinguishing features and possible application of photo- pharmaceutical therapy (PPT). Besides photopheresis, PUVA, and photodynamic therapy, PPT also embraces a broad spectrum of various combinations of light and drugs. PPT techniques can be classified according to the role of light in drug therapy into several groups: 1) Light activation of drugs before, during or after their administration, 2) light activation of cells of biotissue to potentiate the pharmaceutical effect of drugs, 3) light assisted drug delivery, 4) optical sensing of drug action at cellular and subcellular levels, and 5) selective photochemistry of drugs during their manufacturing. PPT seeks to describe the mechanisms of light-drug interaction, to time and sequence light-drug action, and to verify their synergetic effect. This article yields the results of developing new PPT modifications created in collaboration with some Russian scientific institutes and medical centers. The developed modifications are as follows: 1) drug pre-administration photoactivation, 2) antibody-photoconformation photoimmunotherapy, 3) photophonophoresis with a blend of photosensitizers and antibiotics, 4) photoelectrophoresis, 5) drug effect enhancement due to laser-induced blood circulation activation, 6) photoimmunization with alpha- fetoprotein, 7) photo-pharmaceutical dosimetry, and 8) a rapid drug toxicity photoassay.

  19. Chiral templating of self-assembling nanostructures by circularly polarized light

    DOE PAGES

    Yeom, Jihyeon; Yeom, Bongjun; Chan, Henry; ...

    2014-11-17

    Chemical reactions affected by spin angular momenta of circularly polarized photons are rare and display low enantiomeric excess. High optical and chemical activity of nanoparticles (NPs) should facilitate the transfer of spin angular momenta of photons to nanoscale materials but such processes are unknown. Here we demonstrate that circularly polarized light (CPL) strongly affects self-assembly of racemic CdTe NPs. Illumination of NP dispersions with right- and left-handed CPL induces the formation of right- and left-handed twisted nanoribbons, respectively. Enantiomeric excess of such reactions exceeds 30% which is ~10 times higher than other CPL-induced reactions. Illumination with linearly polarized light andmore » assembly in the dark led to straight nanoribbons. The mechanism of “templation” of NP assemblies by CPL is associated with selective photoactivation of chiral NPs and clusters followed by their photooxidation. Chiral anisotropy of interactions translates into chirality of the assembled ribbons. Lastly, the ability of NPs to retain polarization information, or the “imprint” of incident photons opens new pathways for the synthesis of chiral photonic materials and allows for better understanding of the origins of biomolecular homochirality.« less

  20. PMA-Linked Fluorescence for Rapid Detection of Viable Bacterial Endospores

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Venkateswaran, Kasthuri; Mohapatra, Bidyut

    2012-01-01

    The most common approach for assessing the abundance of viable bacterial endospores is the culture-based plating method. However, culture-based approaches are heavily biased and oftentimes incompatible with upstream sample processing strategies, which make viable cells/spores uncultivable. This shortcoming highlights the need for rapid molecular diagnostic tools to assess more accurately the abundance of viable spacecraft-associated microbiota, perhaps most importantly bacterial endospores. Propidium monoazide (PMA) has received a great deal of attention due to its ability to differentiate live, viable bacterial cells from dead ones. PMA gains access to the DNA of dead cells through compromised membranes. Once inside the cell, it intercalates and eventually covalently bonds with the double-helix structures upon photoactivation with visible light. The covalently bound DNA is significantly altered, and unavailable to downstream molecular-based manipulations and analyses. Microbiological samples can be treated with appropriate concentrations of PMA and exposed to visible light prior to undergoing total genomic DNA extraction, resulting in an extract comprised solely of DNA arising from viable cells. This ability to extract DNA selectively from living cells is extremely powerful, and bears great relevance to many microbiological arenas.

  1. Optogenetic approaches to characterize the long-range synaptic pathways from the hypothalamus to brain stem autonomic nuclei

    PubMed Central

    Piñol, Ramón A.; Bateman, Ryan; Mendelowitz, David

    2012-01-01

    Recent advances in optogenetic methods demonstrate the feasibility of selective photoactivation at the soma of neurons that express channelrhodopsin-2 (ChR2), but a comprehensive evaluation of different methods to selectively evoke transmitter release from distant synapses using optogenetic approaches is needed. Here we compared different lentiviral vectors, with sub-population-specific and strong promoters, and transgenic methods to express and photostimulate ChR2 in the long-range projections of paraventricular nucleus of the hypothalamus (PVN) neurons to brain stem cardiac vagal neurons (CVNs). Using PVN subpopulation-specific promoters for vasopressin and oxytocin, we were able to depolarize the soma of these neurons upon photostimulation, but these promoters were not strong enough to drive sufficient expression for optogenetic stimulation and synaptic release from the distal axons. However, utilizing the synapsin promoter photostimulation of distal PVN axons successfully evoked glutamatergic excitatory post-synaptic currents in CVNs. Employing the Cre/loxP system, using the Sim-1 Cre-driver mouse line, we found that the Rosa-CAG-LSL-ChR2-EYFP Cre-responder mice expressed higher levels of ChR2 than the Rosa-CAG-LSL-ChR2-tdTomato line in the PVN, judged by photo-evoked currents at the soma. However, neither was able to drive sufficient expression to observe and photostimulate the long-range projections to brainstem autonomic regions. We conclude that a viral vector approach with a strong promoter is required for successful optogenetic stimulation of distal axons to evoke transmitter release in pre-autonomic PVN neurons. This approach can be very useful to study important hypothalamus-brainstem connections, and can be easily modified to selectively activate other long-range projections within the brain. PMID:22890236

  2. Mechanism of UVA-dependent DNA damage induced by an antitumor drug dacarbazine in relation to its photogenotoxicity.

    PubMed

    Iwamoto, Takuya; Hiraku, Yusuke; Okuda, Masahiro; Kawanishi, Shosuke

    2008-03-01

    It has been reported that dacarbazine (DTIC) is photogenotoxic. The purpose of this study is to clarify the mechanism of photogenotoxicity induced by DTIC. We examined DNA damage induced by UVA-irradiated DTIC using 32P-5'-end-labeled DNA fragments obtained from human genes. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in calf thymus DNA was measured by high performance liquid chromatograph with an electrochemical detector. Electron spin resonance (ESR) spin-trapping experiments were performed to detect radical species generated from UVA-irradiated DTIC. UVA-irradiated DTIC caused DNA damage at guanine residues, especially at the 5'-GGT-3' sequence in the presence of Cu(II) and also induced 8-oxodG generation in calf thymus DNA. DTIC-induced photodamage to DNA fragments was partially inhibited by catalase, whereas 8-oxodG formation was significantly increased by catalase. NaN3, a carbene scavenger, inhibited DNA damage and 8-oxodG formation in a dose-dependent manner, suggesting that carbene intermediates are involved. The ESR spin-trapping experiments demonstrated the generation of aryl radicals in the process of photodegradation of DTIC. Photoactivated DTIC generates the carbene and aryl radicals, which may induce both DNA adduct and 8-oxodG formation, resulting in photogenotoxicity. This study could provide an insight into the safe usage of DTIC.

  3. The Magnitude of the Light-induced Conformational Change in Different Rhodopsins Correlates with Their Ability to Activate G Proteins*

    PubMed Central

    Tsukamoto, Hisao; Farrens, David L.; Koyanagi, Mitsumasa; Terakita, Akihisa

    2009-01-01

    Light converts rhodopsin, the prototypical G protein-coupled receptor, into a form capable of activating G proteins. Recent work has shown that the light-activated state of different rhodopsins can possess different molecular properties, especially different abilities to activate G protein. For example, bovine rhodopsin is ∼20-fold more effective at activating G protein than parapinopsin, a non-visual rhodopsin, although these rhodopsins share relatively high sequence similarity. Here we have investigated possible structural aspects that might underlie this difference. Using a site-directed fluorescence labeling approach, we attached the fluorescent probe bimane to cysteine residues introduced in the cytoplasmic ends of transmembrane helices V and VI in both rhodopsins. The fluorescence spectra of these probes as well as their accessibility to aqueous quenching agents changed dramatically upon photoactivation in bovine rhodopsin but only moderately so in parapinopsin. We also compared the relative movement of helices V and VI upon photoactivation of both rhodopsins by introducing a bimane label and the bimane-quenching residue tryptophan into helices VI and V, respectively. Both receptors showed movement in this region upon activation, although the movement appears much greater in bovine rhodopsin than in parapinopsin. Together, these data suggest that a larger conformational change in helices V and VI of bovine rhodopsin explains why it has greater G protein activation ability than other rhodopsins. The different amplitude of the helix movement may also be responsible for functional diversity of G protein-coupled receptors. PMID:19497849

  4. Reactive oxygen species in plant pathogenesis: the role of perylenequinone photosensitizers.

    PubMed

    Daub, Margaret E; Herrero, Sonia; Chung, Kuang-Ren

    2013-09-20

    Reactive oxygen species (ROS) play multiple roles in interactions between plants and microbes, both as host defense mechanisms and as mediators of pathogenic and symbiotic associations. One source of ROS in these interactions are photoactivated, ROS-generating perylenequinone pigments produced via polyketide metabolic pathways in plant-associated fungi. These natural products, including cercosporin, elsinochromes, hypocrellins, and calphostin C, are being utilized as medicinal agents, enzyme inhibitors, and in tumor therapy, but in nature, they play a role in the establishment of pathogenic associations between fungi and their plant hosts. Photoactivated perylenequinones are photosensitizers that use light energy to form singlet oxygen (¹O₂) and free radical oxygen species which damage cellular components based on localization of the perylenequinone molecule. Production of perylenequinones during infection commonly results in lipid peroxidation and membrane damage, leading to leakage of nutrients from cells into the intercellular spaces colonized by the pathogen. Perylenequinones show almost universal toxicity against organisms, including plants, mice, bacteria, and most fungi. The producing fungi are resistant, however, and serve as models for understanding resistance mechanisms. Studies of resistance mechanisms by perylenequinone-producing fungi such as Cercospora species are leading to an understanding of cellular resistance to ¹O₂ and oxidative stress. Recent studies show commonalities between resistance mechanisms in these fungi with extensive studies of ¹O₂ and oxidative stress responses in photosynthetic organisms. Such studies hold promise both for improved medical use and for engineering crop plants for disease resistance.

  5. Susceptibility of In Vitro Melanoma Skin Cancer to Photoactivated Hypericin versus Aluminium(III) Phthalocyanine Chloride Tetrasulphonate

    PubMed Central

    Ndhundhuma, I. M.

    2017-01-01

    The sensitivity of human melanoma cells to photoactivated Hypericin (Hyp) compared to aluminium(III) phthalocyanine chloride tetrasulphonate (AlPcS4Cl) is reported in this study. Melanoma cells (A375 cell line) were treated with various concentrations of Hyp or AlPcS4Cl alone, for 1, 4, and 24 hrs; varying doses of laser irradiation alone (594 or 682 nm); or optimal concentrations of PSs combined with laser irradiation. Changes in cell morphology, viability, membrane integrity, and proliferation after treatment of cells were determined using inverted microscopy, Trypan blue cell exclusion, Lactate Dehydrogenase (LDH) membrane integrity, and adenosine triphosphate (ATP) cell proliferation assay, respectively. More than 60% of cell survival was observed when cells were treated with 2.5 μM of Hyp or AlPcS4Cl alone at all incubation times or with 5 J/cm2 of 594 or 682 nm laser alone. Combination of PSs and respective lasers leads to a statistically significant incubation time-dependent decrease in survival of cells. Flow cytometry using the FITC Annexin V/PI apoptosis kit demonstrated that cell death induced after Hyp-PDT is via early and late apoptosis whereas early apoptosis was the main mechanism observed with AlPcS4Cl-PDT. Hyp-PDT compared to AlPcS4Cl-PDT is indicated to be a more effective cancer cell death inducer in melanoma cells. PMID:29147654

  6. Photochemically Activated Motors: From Electrokinetic to Diffusion Motion Control.

    PubMed

    Zhang, Kuan; Fraxedas, Jordi; Sepulveda, Borja; Esplandiu, Maria J

    2017-12-27

    Self-propelled micro/nanomotors that can transform chemical energy from the surrounding environment into mechanical motion are cutting edge nanotechnologies with potential applications in biomedicine and environmental remediation. These applications require full understanding of the propulsion mechanisms to improve the performance and controllability of the motors. In this work, we demonstrate that there are two competing chemomechanical mechanisms at semiconductor/metal (Si/Pt) micromotors in a pump configuration under visible light exposure. The first propulsion mechanism is driven by an electro-osmotic process stemmed from a photoactivation reaction mediated by H 2 O 2 , which takes place in two separated redox reactions at the Si and Pt interfaces. One reaction involves the oxidation of H 2 O 2 at the silicon side, and the other the H 2 O 2 reduction at the metal side. The second mechanism is not light responsive and is triggered by the redox decomposition of H 2 O 2 exclusively at the Pt surface. We show that it is possible to enhance/suppress one mechanism over the other by tuning the surface roughness of the micromotor metal. More specifically, the actuation mechanism can be switched from light-controlled electrokinetics to light-insensitive diffusio-osmosis by only increasing the metal surface roughness. The different actuation mechanisms yield strikingly different fluid flow velocities, electric fields, and light sensitivities. Consequently, these findings are very relevant and can have a remarkable impact on the design and optimization of photoactivated catalytic devices and, in general, on bimetallic or insulating-metallic motors.

  7. Identification of photoactivated adenylyl cyclases in Naegleria australiensis and BLUF-containing protein in Naegleria fowleri.

    PubMed

    Yasukawa, Hiro; Sato, Aya; Kita, Ayaka; Kodaira, Ken-Ichi; Iseki, Mineo; Takahashi, Tetsuo; Shibusawa, Mami; Watanabe, Masakatsu; Yagita, Kenji

    2013-01-01

    Complete genome sequencing of Naegleria gruberi has revealed that the organism encodes polypeptides similar to photoactivated adenylyl cyclases (PACs). Screening in the N. australiensis genome showed that the organism also encodes polypeptides similar to PACs. Each of the Naegleria proteins consists of a "sensors of blue-light using FAD" domain (BLUF domain) and an adenylyl cyclase domain (AC domain). PAC activity of the Naegleria proteins was assayed by comparing sensitivities of Escherichia coli cells heterologously expressing the proteins to antibiotics in a dark condition and a blue light-irradiated condition. Antibiotics used in the assays were fosfomycin and fosmidomycin. E. coli cells expressing the Naegleria proteins showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light, indicating that the proteins functioned as PACs in the bacterial cells. Analysis of the N. fowleri genome revealed that the organism encodes a protein bearing an amino acid sequence similar to that of BLUF. A plasmid expressing a chimeric protein consisting of the BLUF-like sequence found in N. fowleri and the adenylyl cyclase domain of N. gruberi PAC was constructed to determine whether the BLUF-like sequence functioned as a sensor of blue light. E. coli cells expressing a chimeric protein showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light. These experimental results indicated that the sequence similar to the BLUF domain found in N. fowleri functioned as a sensor of blue light.

  8. MS2 bacteriophage as a delivery vessel of porphyrins for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Cohen, Brian A.; Kaloyeros, Alain E.; Bergkvist, Magnus

    2011-02-01

    Challenges associated with photodynamic therapy (PDT) include the packaging and site-specific delivery of therapeutic agents to the tissue of interest. Nanoscale encapsulation of PDT agents inside targeted virus capsids is a novel concept for packaging and site-specific targeting. The icosahedral MS2 bacteriophage is one potential candidate for such a packaging-system. MS2 has a porous capsid with an exterior diameter of ~28 nm where the pores allow small molecules access to the capsid interior. Furthermore, MS2 presents suitable residues on the exterior capsid for conjugation of targeting ligands. Initial work by the present investigators has successfully demonstrated RNA-based self-packaging of a heterocyclic PDT agent (meso-tetrakis(para-N-trimethylanilinium)porphine, TMAP) into the MS2 capsid. Packaging photoactive compounds in confined spaces could result in energy transfer between the molecules upon photoactivation, which could in turn reduce the production of radical oxygen species (ROS). ROS are key components in photodynamic therapy, and a reduced production could negatively impact the efficacy of PDT treatment. Here, findings are presented from an investigation of ROS generation of TMAP encapsulated within the MS2 capsid compared to free TMAP in solution. Monitoring of ROS production upon photoactivation via a specific singlet oxygen assay revealed the impact on ROS generation between packaged porphyrins as compared to free porphyrin in an aqueous solution. Follow on work will study the ability of MS2-packaged porphyrins to generate ROS in vitro and subsequent cytotoxic effects on cells in culture.

  9. Primary structure of the light-dependent regulatory site of corn NADP-malate dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decottignies, P.; Schmitter, J.M.; Miginiac-Maslow, M.

    1988-08-25

    The light-activated NADP-malate dehydrogenase (NADP-MDH) catalyzes the reduction of oxaloacetate to malate in higher plant chloroplasts. This enzyme is regulated in vivo by the ferredoxin-thioredoxin system through redox reactions. NADP-MDH has been photoactivated in vitro in a chloroplast system reconstituted from the pure protein components and thylakoid membranes. Photoactivation was accompanied by the appearance of new thiol groups (followed by (14C)iodoacetate incorporation). 14C-Carboxymethylated NADP-MDH has been purified from the incubation mixture and its amino-terminal sequence analyzed. Two (14C)carboxymethylcysteines were identified at positions 10 and 15 after light activation, while they were not detected in the dark-treated protein. In addition, themore » analysis of the tryptic digest of light-activated (14C)carboxymethylated NADP-MDH revealed that the radioactive label was mostly incorporated in Cys10 and Cys15, indicating that these 2 residues play a major role in the light activation mechanism. Moreover, an activation model, in which photoreduced thio-redoxin was replaced by the dithiol reductant dithio-threitol, has been developed. When NADP-MDH was activated in this way, the same sulfhydryls were found to be labeled, and alternatively, they did not incorporate any radioactivity when dithiothreitol reduction was performed after carboxymethylation in denaturating conditions. These results indicate that activation (by light or by dithiothreitol) proceeds on each subunit by reduction of a disulfide bridge located at the amino terminus of the enzyme between Cys10 and Cys15.« less

  10. Light-activated regulation of cofilin dynamics using a photocaged hydrogen peroxide generator.

    PubMed

    Miller, Evan W; Taulet, Nicolas; Onak, Carl S; New, Elizabeth J; Lanselle, Julie K; Smelick, Gillian S; Chang, Christopher J

    2010-12-08

    Hydrogen peroxide (H2O2) can exert diverse signaling and stress responses within living systems depending on its spatial and temporal dynamics. Here we report a new small-molecule probe for producing H2O2 on demand upon photoactivation and its application for optical regulation of cofilin-actin rod formation in living cells. This chemical method offers many potential opportunities for dissecting biological roles for H2O2 as well as remote control of cell behavior via H2O2-mediated pathways.

  11. Psoralen photobiology and photochemotherapy: perspectives and prospects

    NASA Astrophysics Data System (ADS)

    Gasparro, Francis P.

    1990-01-01

    For nearly 40 years the field of psoralen photobiology has been focused on the effects of photoactivated 8-MOP on nuclear DNA. The results of these extensive studies are reviewed. In addition, new targets for modification are described. 8-MOP and UVA was first used to treat skin afflicted with two common dermatological disorders, vitiligo and psoriasis. More recently, several other disease have been treated using an extracorporeal form of this photochemotherapy in which the patient's blood is irradiated with UVA. Clinical results and possible modes of action are described.

  12. Structural and functional bases of laser-microvessels interaction

    NASA Astrophysics Data System (ADS)

    Kozlov, Valentine I.; Terman, Oleg A.; Builin, Vitalij; Lebedeva, Natalia A.; Samoilov, Nickolai

    1993-07-01

    Structural and functional microcirculatory changes in tissues and organs (muscles, liver, derma, epinephros, brain cortex) under various dosages and powers of laser irradiation in the red (633 nm) and near infrared (890 nm) spectrum regions have been studied in experiments and clinic. In case of nonsensitized tissues the `photoactivation' range of power densities and doses of laser irradiation has been established. We have identified a short-term reaction of microvessels and a long-term reaction (adaptation). The former consists of intensification of microcirculation and metabolism rise in parenchymatous cells; the latter is connected with neoangiogenesis acceleration. The intensification of the blood microcirculation includes a dilation of microvessels of all orders, an amplification of arteriolar vasomotions and an opening of `reserved' capillaries. Data on the structural reconstruction of myocytes and endotheliocytes have shown that the high differential parenchymatous cells and its membrane structures are sensitive to low energy laser irradiation and, on the other hand, under low energy laser irradiation there is an activation of synthetic processes in the cells. Thus, during the laser-tissue interaction in such complex system as human organism the microcirculation plays the key role among the other systems.

  13. Pulp temperature increase during photo-activated disinfection (PAD) of periodontal pockets: an in vitro study.

    PubMed

    El Yazami, H; Zeinoun, Toni; Bou Saba, S; Lamard, L; Peremans, A; Limme, M; Geerts, S; Lamy, M; Nammour, S

    2010-09-01

    The capacity of photo-sensitizers, used in combination with laser light to kill micro-organisms has been demonstrated in different studies. Photo-activated disinfection (PAD) has been introduced in periodontology as an aid for disinfection of periodontal pockets. The aim of this study is to verify the harm for dental vitality of the use of PAD in periodontal pockets. Root canals of 24 freshly extracted human teeth where prepared using profiles up to a size of ISO #50 and filled with thermo-conductor paste. A silicon-based false gum was made in which a periodontal pocket was created and filled with photo-sensitizer phenothiazine chloride (phenothiazine-5-ium, 3.7-bis (dimethylamino)-, chloride). The external root surface was irradiated during 60 s with a 660-nm diode laser (output power: 20 mW; power density: 0.090 W/cm(2); Energy density: 5.46 J/cm(2)) using a periodontal tip with a diameter of 1 mm and a length of 7 mm. Temperatures were recorded inside the root canal using a thermocouple. Measurements were recorded every second, starting at 10 s before lasering, during the irradiation and were continued for 150 s after the end of irradiation, and six measurements were done per tooth. An average temperature increase of 0.48 +/- 0.11 degrees C was recorded. Our results demonstrated that pulp temperature increase was lower than 3 degrees C, which is considered to be harmless for pulp injury. Regarding pulp temperature increase, the use of PAD for disinfection of periodontal pockets can be considered as a safe procedure for dental vitality.

  14. Dynamic mechanical thermal analysis of composite resins with CQ and PPD as photo-initiators photoactivated by QTH and LED units.

    PubMed

    Brandt, William Cunha; Silva, Cristina Gomes; Frollini, Elisabete; Souza-Junior, Eduardo Jose Carvalho; Sinhoreti, Mário Alexandre Coelho

    2013-08-01

    The aim of this study was to evaluate the thermal and mechanical properties of the composite resins containing the photo-initiators camphorquinone (CQ) and/or phenyl-propanodione (PPD) when photoactivated with halogen lamp (XL2500/3M-ESPE), monowave (UltraBlueIS/DMC) and polywave (UltraLume5/Ultradent) LED units. A blend of BisGMA, UDMA, BisEMA and TEGDMA was prepared with the same wt% of photo-initiators CQ and/or PPD and 65wt% of silaneted filler particles. Compression strength (CS), diametral tensile strength (DTS) and diametral modulus (DM) were tested. Thermogravimetric analysis (TGA) was made and the lost residual monomer were verified. Dynamic mechanical thermal analysis (DMTA) was used for to analyze the glass transition temperature (Tg) and the storage modulus in 37°C. Degree of conversion (DC) was accomplished in the same samples of DMA using middle-infrared spectroscopy (mid-IR). CQ, CQ/PPD and PPD obtained the same results for all mechanical properties (CS, DTS and DM), lost residual monomer and storage modulus in 37°C, regardless LCU used. The results of Tg showed that the combination PPD-UltraLume5 produced the highest values. DC showed that the combination CQ-UltraLume5 resulted in the highest values and PPD-XL2500 in the lowest DC values. The study shows that PPD is not only effective photosensitizers, but also photocrosslinking agents for dental composite resins with a similar efficiency to CQ. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Comparative efficacy of photo-activated disinfection and calcium hydroxide for disinfection of remaining carious dentin in deep cavities: a clinical study

    PubMed Central

    Sharma, Sidhartha; Shah, Naseem

    2014-01-01

    Objectives To comparatively evaluate the efficacy of photo-activated disinfection (PAD), calcium hydroxide (CH) and their combination on the treatment outcome of indirect pulp treatment (IPT). Materials and Methods Institutional ethical clearance and informed consent of the patients were taken. The study was also registered with clinical registry of India. Sixty permanent molars exhibiting deep occlusal carious lesion in patients with the age range of 18 - 22 yr were included. Clinical and radiographic evaluation and set inclusion and exclusion criteria's were followed. Gross caries excavation was accomplished. In group I (n = 20) PAD was applied for sixty seconds. In group II (n = 20), CH was applied to the remaining carious dentin, while in group III (n = 20), PAD application was followed by CH placement. The teeth were permanently restored. They were clinically and radiographically followed-up at 45 day, 6 mon and 12 mon. Relative density of the remaining affected dentin was measured by 'Radiovisiography (RVG) densitometric' analysis. Results Successful outcome with an increase in radiographic grey values were observed in all three groups. However, on inter-group comparison, this change was not significant (p > 0.05). Conclusions PAD and CH both have equal disinfection efficacy in the treatment of deep carious dentin. PAD alone is as effective for treatment of deep carious lesion as calcium hydroxide and hence can be used as an alternative to CH. They can be used independently in IPT, since combining both does not offer any additional therapeutic benefits. PMID:25110643

  16. Human transport protein carrier for controlled photoactivation of antitumor prodrug and real-time intracellular tumor imaging.

    PubMed

    Li, Xi; Mu, Jing; Liu, Fang; Tan, Eddy Wei Ping; Khezri, Bahareh; Webster, Richard D; Yeow, Edwin Kok Lee; Xing, Bengang

    2015-05-20

    Current anticancer chemotherapy often suffers from poor tumor selectivity and serious drug resistance. Proper vectors for targeted delivery and controlled drug release play crucial roles in improving the therapeutic selectivity to tumor areas and also overcoming the resistance of cancer cells. In this work, we developed a novel human serum albumin (HSA) protein-based nanocarrier system, which combines the photoactivatable Pt(IV) antitumor prodrug for realizing the controlled release and fluorescent light-up probe for evaluations of drug action and efficacy. The constructed Pt(IV)-probe@HSA platform can be locally activated by light irradiation to release the active Pt species, which results in enhanced cell death at both drug-sensitive A2780 and cisplatin-resistant A2780cis cell lines when compared to the free prodrug molecules. Simultaneously, the cytotoxicity caused by light controlled drug release would further lead to the cellular apoptosis and trigger the activation of caspases 3, one crucial protease enzyme in apoptotic process, which could cleave the recognition peptide moiety (DEVD) with a flanking fluorescent resonance energy transfer (FRET) pair containing near-infrared (NIR) fluorophore Cy5 and quencher Qsy21 on the HSA nanocarrier surface. The turn-on fluorescence in response to caspase-3 could be assessed by fluorescence microscopy and flow cytometry analysis. Our results supported the hypothesis that such a unique design may present a successful platform for multiple roles: (i) a biocompatible protein-based nanocarrier for drug delivery, (ii) the controlled drug release with strengthened therapeutic effects, (iii) real-time monitoring of antitumor drug efficacy at the earlier stage.

  17. Current Concepts in Gastrointestinal Photodynamic Therapy

    PubMed Central

    Webber, John; Herman, Mark; Kessel, David; Fromm, David

    1999-01-01

    Objective To review current concepts of photodynamic therapy (PDT) applied to the treatment of tumors of the gastrointestinal tract. Summary Background Data PDT initially involves the uptake or production of a photosensitive compound by tumor cells. Subsequent activation of the photoreactive compound by a specific wavelength of light results in cell death, either directly or as a result of vascular compromise and/or apoptosis. Methods The authors selectively review current concepts relating to photosensitization, photoactivation, time of PDT application, tissue selectivity, sites of photodynamic action, PDT effects on normal tissue, limitations of PDT, toxicity of photosensitizers, application of principles of PDT to tumor detection, and current applications of PDT to tumors of the gastrointestinal tract. Results PDT is clearly effective for small cancers, but it is not yet clear in which cases such treatment is more effective than other currently acceptable approaches. The major side effect of PDT is cutaneous photosensitization. The major limitation of PDT is depth of tumor kill. As data from current and future clinical trials become available, a clearer perspective of where PDT fits in the treatment of cancers will be gained. Many issues regarding pharmacokinetic data of photosensitizers, newer technology involved in light sources, optimal treatment regimens that take advantage of the pharmacophysiology of photoablation, and light dosimetry still require solution. One can foresee application of differing sensitizers and light sources depending on the specific clinical situation. As technologic advances occur, interstitial PDT may have significant application. Conclusions PDT has a potentially important role either as a primary or adjuvant mode of treatment of tumors of the gastrointestinal tract. PMID:10400031

  18. Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors

    PubMed Central

    Woods, Kristina N.; Pfeffer, Jürgen; Dutta, Arpana; Klein-Seetharaman, Judith

    2016-01-01

    G protein-coupled receptors are a large family of membrane proteins activated by a variety of structurally diverse ligands making them highly adaptable signaling molecules. Despite recent advances in the structural biology of this protein family, the mechanism by which ligands induce allosteric changes in protein structure and dynamics for its signaling function remains a mystery. Here, we propose the use of terahertz spectroscopy combined with molecular dynamics simulation and protein evolutionary network modeling to address the mechanism of activation by directly probing the concerted fluctuations of retinal ligand and transmembrane helices in rhodopsin. This approach allows us to examine the role of conformational heterogeneity in the selection and stabilization of specific signaling pathways in the photo-activation of the receptor. We demonstrate that ligand-induced shifts in the conformational equilibrium prompt vibrational resonances in the protein structure that link the dynamics of conserved interactions with fluctuations of the active-state ligand. The connection of vibrational modes creates an allosteric association of coupled fluctuations that forms a coherent signaling pathway from the receptor ligand-binding pocket to the G-protein activation region. Our evolutionary analysis of rhodopsin-like GPCRs suggest that specific allosteric sites play a pivotal role in activating structural fluctuations that allosterically modulate functional signals. PMID:27849063

  19. Super-Resolution Imaging of Molecular Emission Spectra and Single Molecule Spectral Fluctuations

    PubMed Central

    Mlodzianoski, Michael J.; Curthoys, Nikki M.; Gunewardene, Mudalige S.; Carter, Sean; Hess, Samuel T.

    2016-01-01

    Localization microscopy can image nanoscale cellular details. To address biological questions, the ability to distinguish multiple molecular species simultaneously is invaluable. Here, we present a new version of fluorescence photoactivation localization microscopy (FPALM) which detects the emission spectrum of each localized molecule, and can quantify changes in emission spectrum of individual molecules over time. This information can allow for a dramatic increase in the number of different species simultaneously imaged in a sample, and can create super-resolution maps showing how single molecule emission spectra vary with position and time in a sample. PMID:27002724

  20. Development of Light-Activated CRISPR Using Guide RNAs with Photocleavable Protectors.

    PubMed

    Jain, Piyush K; Ramanan, Vyas; Schepers, Arnout G; Dalvie, Nisha S; Panda, Apekshya; Fleming, Heather E; Bhatia, Sangeeta N

    2016-09-26

    The ability to remotely trigger CRISPR/Cas9 activity would enable new strategies to study cellular events with greater precision and complexity. In this work, we have developed a method to photocage the activity of the guide RNA called "CRISPR-plus" (CRISPR-precise light-mediated unveiling of sgRNAs). The photoactivation capability of our CRISPR-plus method is compatible with the simultaneous targeting of multiple DNA sequences and supports numerous modifications that can enable guide RNA labeling for use in imaging and mechanistic investigations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Light-induced import of the chromoprotein, phytochrome, into mitochondria

    NASA Technical Reports Server (NTRS)

    Serlin, B. S.; Roux, S. J.

    1986-01-01

    Mitochondria extracted from plants that were irradiated with actinic light in vivo have associated with them the chromoprotein, phytochrome. This phytochrome retains its native subunit size of 124 kDa after proteolytic treatment of the mitochondria with trypsin and chymotrypsin. This result suggests that phytochrome is not exposed on the outer surface of the outer mitochondrial membrane. Phytochrome, so protected, is not found to be associated with mitochondria derived from unirradiated plants. The possibility that the photoactivation of phytochrome induces a conformational change in its structure which facilitates its transport into the mitochondrion is discussed.

  2. Low-visibility light-intensity laser-triggered release of entrapped calcein from 1,2-bis (tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine liposomes is mediated through a type I photoactivation pathway

    PubMed Central

    Yavlovich, Amichai; Viard, Mathias; Gupta, Kshitij; Sine, Jessica; Vu, Mylinh; Blumenthal, Robert; Tata, Darrell B; Puri, Anu

    2013-01-01

    We recently reported on the physical characteristics of photo-triggerable liposomes containing dipalmitoylphosphatidylcholine (DPPC), and 1,2-bis (tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) carrying a photo agent as their payload. When exposed to a low-intensity 514 nm wavelength (continuous-wave) laser light, these liposomes were observed to release entrapped calcein green (Cal-G; Ex/Em 490/517 nm) but not calcein blue (Cal-B; Ex/Em 360/460 nm). In this study, we have investigated the mechanism for the 514 nm laser-triggered release of the Cal-G payload using several scavengers that are known specifically to inhibit either type I or type II photoreaction pathways. Liposomes containing DPPC:DC8,9PC: distearoylphosphatidylethanolamine (DSPE)-polyethylene glycol (PEG)-2000 (86:10:04 mole ratio) were loaded either with fluorescent (calcein) or nonfluorescent (3H-inulin) aqueous markers. In addition, a non-photo-triggerable formulation (1-palmitoyl-2-oleoyl phosphatidylcholine [POPC]:DC8,9PC:DSPE-PEG2000) was also studied with the same payloads. The 514 nm wavelength laser exposure on photo-triggerable liposomes resulted in the release of Cal-G but not that of Cal-B or 3H-inulin, suggesting an involvement of a photoactivated state of Cal-G due to the 514 nm laser exposure. Upon 514 nm laser exposures, substantial hydrogen peroxide (H2O2, ≈100 μM) levels were detected from only the Cal-G loaded photo-triggerable liposomes but not from Cal-B-loaded liposomes (≤10 μM H2O2). The Cal-G release from photo-triggerable liposomes was found to be significantly inhibited by ascorbic acid (AA), resulting in a 70%–80% reduction in Cal-G release. The extent of AA-mediated inhibition of Cal-G release from the liposomes also correlated with the consumption of AA. No AA consumption was detected in the 514 nm laserexposed Cal B-loaded liposomes, thus confirming a role of photoactivation of Cal-G in liposome destabilization. Inclusion of 100 mM K3Fe(CN)6 (a blocker of electron transfer) in the liposomes substantially inhibited Cal-G release, whereas inclusion of 10 mM sodium azide (a blocker of singlet oxygen of type II photoreaction) in the liposomes failed to block 514 nm laser-triggered Cal-G release. Taken together, we conclude that low-intensity 514 nm laser-triggered release of Cal-G from photo-triggerable liposomes involves the type I photoreaction pathway. PMID:23901274

  3. Ultrafast electron microscopy in materials science, biology, and chemistry

    NASA Astrophysics Data System (ADS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-06-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental knowledge for discovery-class science.

  4. Competitive quenching: a possible novel approach in protecting RPE cells from damage during PDT.

    PubMed

    Weinberger, Dov; Ron, Yonina; Lusky, Moshe; Gaaton, Dan; Orenstein, Arie; Blank, Michael; Mandel, Mathilda; Livnat, Tamar; Barliya, Tilda; Lavie, Gad

    2005-04-01

    The purpose of this study is to demonstrate feasibility of using our novel concept, termed competitive quenching, for protecting the choroidal extravascular compartment and retinal pigment epithelium (RPE) from verteporfin (VP)-induced phototoxicity using hypericin. Furthermore, we aim to achieve partitioning of the quencher, hypericin, in the extravascular space and VP within the microvascular compartment of the chorio-retinal complex in vivo. We protect RPE cells from damage inflicted by photoactivated VP by introducing hypericin into these cells prior to photosensitization to quench the photosensitizing activity of VP. Cell protection levels were measured by MTT and Hemacolor viability assays. Wavelength range used for VP photoexcitation (700 +/- 40 nm) excludes the absorption range of hypericin, preventing the latter from photoactivation. Pharmacokinetic conditions, in which hypericin spreads throughout the choroidal and retinal extravascular space while VP is confined to the vasculature, are delineated using double-fluorescence imaging. Cell viability increased 3- to 5-fold when 10-20 microM hypericin were present in RPE cells during photosensitization with 0.1-0.5 microM VP. VP fluorescence intensity was unchanged by the presence of hypericin in the cells. Hypericin administered intravenously to rats was confined to the choroidal vasculature after 15 min to 2 hr. Subsequently, hypericin partitioned to the choroidal and retinal extravascular space. VP administered at this time was confined to the microvasculature. RPE and choroid may potentially be protected by compartmentalizing hypericin to the extravascular compartment while VP administered shortly before photosensitization is confined to the microvasculature. Adverse photodynamic therapy (PDT) damage to choroidal tissues adjacent to neovasculature targeted for photoablation have the potential of being prevented by competitive quenching with hypericin.

  5. Effect of surface modification and UVA photoactivation on antibacterial bioactivity of zinc oxide powder

    NASA Astrophysics Data System (ADS)

    Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd; Sirelkhatim, Amna; Mohamad, Dasmawati; Hasan, Habsah; Seeni, Azman; Rahman, Rosliza Abdul

    2014-02-01

    The effects of surface modification of zinc oxide (ZnO) powder and UVA illumination on the powder towards Escherichia coli and Staphylococcus aureus were investigated. FESEM-EDS results showed that oxygen annealing increased the O:Zn ratio on the surface of ZnO-rod and ZnO-plate samples. Surface conductances of ZnO-rod and ZnO-plate pellets were reduced from 1.05 nS to 0.15 nS and 1.34 nS to 0.23 nS, respectively. Meanwhile, UVA illumination on the surface of the ZnO-rod and ZnO-plate samples was found to improve surface conductance to 7.08 nS and 6.51 nS, respectively, due to the release of charge carrier. Photoluminescence results revealed that oxygen annealing halved the UV emission intensity and green emission intensity, presumably caused by oxygen absorption in the ZnO lattice. The antibacterial results showed that oxygen-treated ZnO exhibited slightly higher growth inhibition on E. coli and S. aureus compared with unannealed ZnO. UVA illumination on ZnO causes the greatest inhibition toward E. coli and S. aureus. Under the UVA excitation, the inhibition of E. coli increased by 18% (ZnO-rod) and 13% (ZnO-plate) while the inhibition of S. aureus increased by 22% (ZnO-rod) and 21% (ZnO-plate). Release of reactive oxygen species were proposed in antibacterial mechanisms, which were aided by surface modification and UVA photoactivation. The reactive oxygen species disrupted the DNA and protein synthesis of the bacterial cell, causing bacteriostatic effects toward E. coli and S. aureus.

  6. Photo-induced morphological winding and unwinding motion of nanoscrolls composed of niobate nanosheets with a polyfluoroalkyl azobenzene derivative

    NASA Astrophysics Data System (ADS)

    Nabetani, Yu; Takamura, Hazuki; Uchikoshi, Akino; Hassan, Syed Zahid; Shimada, Tetsuya; Takagi, Shinsuke; Tachibana, Hiroshi; Masui, Dai; Tong, Zhiwei; Inoue, Haruo

    2016-06-01

    Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials.Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials. Electronic supplementary information (ESI) available: Fig. S1. Photo-isomerization reaction of nanoscrolls. See DOI: 10.1039/c6nr02177h

  7. An experimental study for rapid detection and quantification of endodontic microbiota following photo-activated disinfection via new multiplex real-time PCR assay.

    PubMed

    Pourhajibagher, Maryam; Raoofian, Reza; Ghorbanzadeh, Roghayeh; Bahador, Abbas

    2018-03-01

    The infected root canal system harbors one of the highest accumulations of polymicrobial infections. Since the eradication of endopathogenic microbiota is a major goal in endodontic infection therapy, photo-activated disinfection (PAD) can be used as an alternative therapeutic method in endodontic treatment. Compared to cultivation-based approaches, molecular techniques are more reliable for identifying microbial agents associated with endodontic infections. The purpose of this study was to evaluate the ability of designed multiplex real-time PCR protocol for the rapid detection and quantification of six common microorganisms involved in endodontic infection before and after the PAD. Samples were taken from the root canals of 50 patients with primary and secondary/persistent endodontic infections using sterile paper points. PAD with toluidine blue O (TBO) plus diode laser was performed on root canals. Resampling was then performed, and the samples were transferred to transport medium. Then, six target microorganisms were detected using multiplex real-time PCR before and after the PAD. Veillonella parvula was found using multiplex real-time PCR to have the highest frequency among samples collected before the PAD (29.4%), followed by Porphyromonas gingivalis (23.1%), Aggregatibacter actinomycetemcomitans (13.6%), Actinomyces naeslundii (13.0%), Enterococcus faecalis (11.5%), and Lactobacillus rhamnosus (9.4%). After TBO-mediated PAD, P. gingivalis strains, the most resistance microorganisms, were recovered in 41.7% of the samples using molecular approach (P > 0.05). As the results shown, multiplex real-time PCR as an accurate detection approach with high-throughput and TBO-mediated PAD as an efficient antimicrobial strategy due to the significant reduction of the endopathogenic count can be used for detection and treatment of microbiota involved in infected root canals, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll-protein complexes in pea and tomato: plants with a different susceptibility to non-freezing temperature.

    PubMed

    Garstka, Maciej; Venema, Jan Henk; Rumak, Izabela; Gieczewska, Katarzyna; Rosiak, Malgorzata; Koziol-Lipinska, Joanna; Kierdaszuk, Borys; Vredenberg, Wim J; Mostowska, Agnieszka

    2007-10-01

    The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll-protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements.

  9. Superresolution imaging in live Caulobacter crescentus cells using photoswitchable enhanced yellow fluorescent protein

    NASA Astrophysics Data System (ADS)

    Biteen, Julie S.; Thompson, Michael A.; Tselentis, Nicole K.; Shapiro, Lucy; Moerner, W. E.

    2009-02-01

    Recently, photoactivation and photoswitching were used to control single-molecule fluorescent labels and produce images of cellular structures beyond the optical diffraction limit (e.g., PALM, FPALM, and STORM). While previous live-cell studies relied on sophisticated photoactivatable fluorescent proteins, we show in the present work that superresolution imaging can be performed with fusions to the commonly used fluorescent protein EYFP. Rather than being photoactivated, however, EYFP can be reactivated with violet light after apparent photobleaching. In each cycle after initial imaging, only a sparse subset fluorophores is reactivated and localized, and the final image is then generated from the measured single-molecule positions. Because these methods are based on the imaging nanometer-sized single-molecule emitters and on the use of an active control mechanism to produce sparse sub-ensembles, we suggest the phrase "Single-Molecule Active-Control Microscopy" (SMACM) as an inclusive term for this general imaging strategy. In this paper, we address limitations arising from physiologically imposed upper boundaries on the fluorophore concentration by employing dark time-lapse periods to allow single-molecule motions to fill in filamentous structures, increasing the effective labeling concentration while localizing each emitter at most once per resolution-limited spot. We image cell-cycle-dependent superstructures of the bacterial actin protein MreB in live Caulobacter crescentus cells with sub-40-nm resolution for the first time. Furthermore, we quantify the reactivation quantum yield of EYFP, and find this to be 1.6 x 10-6, on par with conventional photoswitchable fluorescent proteins like Dronpa. These studies show that EYFP is a useful emitter for in vivo superresolution imaging of intracellular structures in bacterial cells.

  10. Outer Membrane Targeting, Ultrastructure, and Single Molecule Localization of the Enteropathogenic Escherichia coli Type IV Pilus Secretin BfpB

    PubMed Central

    Lieberman, Joshua A.; Frost, Nicholas A.; Hoppert, Michael; Fernandes, Paula J.; Vogt, Stefanie L.; Raivio, Tracy L.; Blanpied, Thomas A.

    2012-01-01

    Type IV pili (T4P) are filamentous surface appendages required for tissue adherence, motility, aggregation, and transformation in a wide array of bacteria and archaea. The bundle-forming pilus (BFP) of enteropathogenic Escherichia coli (EPEC) is a prototypical T4P and confirmed virulence factor. T4P fibers are assembled by a complex biogenesis machine that extrudes pili through an outer membrane (OM) pore formed by the secretin protein. Secretins constitute a superfamily of proteins that assemble into multimers and support the transport of macromolecules by four evolutionarily ancient secretion systems: T4P, type II secretion, type III secretion, and phage assembly. Here, we determine that the lipoprotein transport pathway is not required for targeting the BfpB secretin protein of the EPEC T4P to the OM and describe the ultrastructure of the single particle averaged structures of the assembled complex by transmission electron microscopy. Furthermore, we use photoactivated localization microscopy to determine the distribution of single BfpB molecules fused to photoactivated mCherry. In contrast to findings in other T4P systems, we found that BFP components predominantly have an uneven distribution through the cell envelope and are only found at one or both poles in a minority of cells. In addition, we report that concurrent mutation of both the T4bP secretin and the retraction ATPase can result in viable cells and found that these cells display paradoxically low levels of cell envelope stress response activity. These results imply that secretins can direct their own targeting, have complex distributions and provide feedback information on the state of pilus biogenesis. PMID:22247509

  11. Photoactivation and toxicity of mixtures of polycyclic aromatic hydrocarbon compounds in marine sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, R.C.; Ferraro, S.P.; Lamberson, J.O.

    1997-10-01

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration series of either single compounds or as approximately equitoxic mixtures of all four compounds. Standard 10-d sediment toxicity tests were conducted under fluorescent lighting. After 10 d, survivors were exposed for 1 h to ultraviolet (UV) radiation in the absence of sediment and then tested for their ability to bury in uncontaminated sediment. The 10-d median lethal concentrations (LC50s) were 2.31 mg acenaphthene/g organic carbon (OC),more » 2.22 mg phenanthrene/g OC, 3.31 mg fluoranthene/g OC, and 2.81 mg pyrene/g OC. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the approximately equitoxic mixtures. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicologic interaction of a mixture of contaminants is additive, {Sigma}TU LC50 = 1.0. The observed LC50 (1.55 {Sigma}TU) was slightly, but significantly, greater than unity, indicating that the interaction of PAHs in the mixture was less than additive. Exposure to UV radiation enhanced the toxic effects of fluoranthene and pyrene, but did not affect the toxicity of acenaphthene and phenanthrene. Effects of UV radiation on the toxicity of the mixture of four PAHs could be explained by the photoactivation of fluoranthene and pyrene alone. These results are consistent with predictions based on photophysical properties of PAH compounds.« less

  12. Stereo-, Temporal and Chemical Control through Photoactivation of Living Radical Polymerization: Synthesis of Block and Gradient Copolymers.

    PubMed

    Shanmugam, Sivaprakash; Boyer, Cyrille

    2015-08-12

    Nature has developed efficient polymerization processes, which allow the synthesis of complex macromolecules with a perfect control of tacticity as well as molecular weight, in response to a specific stimulus. In this contribution, we report the synthesis of various stereopolymers by combining a photoactivated living polymerization, named photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) with Lewis acid mediators. We initially investigated the tolerance of two different photoredox catalysts, i.e., Ir(ppy)3 and Ru(bpy)3, in the presence of a Lewis acid, i.e., Y(OTf)3 and Yb(OTf)3, to mediate the polymerization of N,N-dimethyl acrylamide (DMAA). An excellent control of tacticity as well as molecular weight and dispersity was observed when Ir(ppy)3 and Y(OTf)3 were employed in a methanol/toluene mixture, while no polymerization or poor control was observed with Ru(bpy)3. In comparison to a thermal system, a lower amount of Y(OTf)3 was required to achieve good control over the tacticity. Taking advantage of the temporal control inherent in our system, we were able to design complex macromolecular architectures, such as atactic block-isotactic and isotactic-block-atactic polymers in a one-pot polymerization approach. Furthermore, we discovered that we could modulate the degree of tacticity through a chemical stimulus, by varying [DMSO]0/[Y(OTf)3]0 ratio from 0 to 30 during the polymerization. The stereochemical control afforded by the addition of a low amount of DMSO in conjunction with the inherent temporal control enabled the synthesis of stereogradient polymer consisting of five different stereoblocks in one-pot polymerization.

  13. Antioxidative cellular response of lepidopteran ovarian cells to photoactivated alpha-terthienyl.

    PubMed

    Huang, Qingchun; Yun, Xinming; Rao, Wenbing; Xiao, Ciying

    2017-04-01

    Photodynamic sensitizers as useful alternative agents have been used for population control against insect pests, and the response of insect ovarian cells towards the photosensitizers is gaining attention because of the next reproduction. In this paper, antioxidative responses of lepidopteran ovarian Tn5B1-4 and Sf-21 cells to photoactivated alpha-terthienyl (PAT) are investigated. PAT shows positive inhibitory cytotoxicity on the two ovarian cells, and its inhibition on cell viability is enhanced as the concentrations are increased and the irradiation time is extended. Median inhibitory concentrations (IC 50 ) are 3.36μg/ml to Tn5B1-4 cells, and 3.15μg/ml to Sf-21 cells at 15min-UV-A irradiation 2h-dark incubation. Under 10.0μg/ml PAT exposure, 15min-UV-A irradiation excites higher ROS production than 5min-UV-A irradiation does in the ovarian cells, the maximum ROS content is about 7.1 times in Tn5B1-4 cells and 4.3 times in Sf-21 cells, and the maximum malondialdehyde levels in Tn5B1-4 and Sf-21 cells are about 1.47- and 1.36-fold higher than the control groups, respectively. Oxidative stress generated by PAT strongly decreases the activities of POD, SOD and CAT, and induces an accumulation of Tn5B1-4 cells in S phase and Sf-21 cells in G2/M phase in a concentration-dependent fashion. Apoptosis accumulation of Tn5B1-4 cells and the persistent post-irradiation cytotoxicity are further observed, indicating different antioxidative tolerance and arrest pattern of the two ovarian cells towards the cytotoxicity of PAT. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM).

    PubMed

    Fu, Guo; Huang, Tao; Buss, Jackson; Coltharp, Carla; Hensel, Zach; Xiao, Jie

    2010-09-13

    The FtsZ protein, a tubulin-like GTPase, plays a pivotal role in prokaryotic cell division. In vivo it localizes to the midcell and assembles into a ring-like structure-the Z-ring. The Z-ring serves as an essential scaffold to recruit all other division proteins and generates contractile force for cytokinesis, but its supramolecular structure remains unknown. Electron microscopy (EM) has been unsuccessful in detecting the Z-ring due to the dense cytoplasm of bacterial cells, and conventional fluorescence light microscopy (FLM) has only provided images with limited spatial resolution (200-300 nm) due to the diffraction of light. Hence, given the small sizes of bacteria cells, identifying the in vivo structure of the Z-ring presents a substantial challenge. Here, we used photoactivated localization microscopy (PALM), a single molecule-based super-resolution imaging technique, to characterize the in vivo structure of the Z-ring in E. coli. We achieved a spatial resolution of ∼35 nm and discovered that in addition to the expected ring-like conformation, the Z-ring of E. coli adopts a novel compressed helical conformation with variable helical length and pitch. We measured the thickness of the Z-ring to be ∼110 nm and the packing density of FtsZ molecules inside the Z-ring to be greater than what is expected for a single-layered flat ribbon configuration. Our results strongly suggest that the Z-ring is composed of a loose bundle of FtsZ protofilaments that randomly overlap with each other in both longitudinal and radial directions of the cell. Our results provide significant insight into the spatial organization of the Z-ring and open the door for further investigations of structure-function relationships and cell cycle-dependent regulation of the Z-ring.

  15. In vitro genotoxicity of neutral red after photo-activation and metabolic activation in the Ames test, the micronucleus test and the comet assay.

    PubMed

    Guérard, Melanie; Zeller, Andreas; Singer, Thomas; Gocke, Elmar

    2012-07-04

    Neutral red (Nr) is relatively non-toxic and is widely used as indicator dye in many biological test systems. It absorbs visible light and is known to act as a photosensitizer, involving the generation of reactive oxygen species (type-I reaction) and singlet oxygen (type-II reaction). The mutagenicity of Nr was determined in the Ames test (with Salmonella typhimurium strains TA1535, TA97, TA98, TA98NR, TA100, and TA102) with and without metabolic activation, and with and without photo-activation on agar plates. Similarly to the situation following metabolic activation, photo-mutagenicity of Nr was seen with all Salmonella strains tested, albeit with different effects between these strains. To our knowledge, Nr is the only photo-mutagen showing such a broad action. Since the effects are also observed in strains not known to be responsive to ROS, this indicates that ROS production is not the sole mode of action that leads to photo-genotoxicity. The reactive species produced by irradiation are short-lived as pre-irradiation of an Nr solution did not produce mutagenic effects when added to the bacteria. In addition, mutagenicity in TA98 following irradiation was stronger than in the nitroreductase-deficient strain TA98NR, indicating that nitro derivatives that are transformed by bacterial nitroreductase to hydroxylamines appear to play a role in the photo-mutagenicity of Nr. Photo-genotoxicity of Nr was further investigated in the comet assay and micronucleus test in L5178Y cells. Concentration-dependent increases in primary DNA damage and in the frequency of micronuclei were observed after irradiation. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Photoactivated in Vitro Anticancer Activity of Rhenium(I) Tricarbonyl Complexes Bearing Water-Soluble Phosphines.

    PubMed

    Marker, Sierra C; MacMillan, Samantha N; Zipfel, Warren R; Li, Zhi; Ford, Peter C; Wilson, Justin J

    2018-02-05

    Fifteen water-soluble rhenium compounds of the general formula [Re(CO) 3 (NN)(PR 3 )] + , where NN is a diimine ligand and PR 3 is 1,3,5-triaza-7-phosphaadamantane (PTA), tris(hydroxymethyl)phosphine (THP), or 1,4-diacetyl-1,3,7-triaza-5-phosphabicylco[3.3.1]nonane (DAPTA), were synthesized and characterized by multinuclear NMR spectroscopy, IR spectroscopy, and X-ray crystallography. The complexes bearing the THP and DAPTA ligands exhibit triplet-based luminescence in air-equilibrated aqueous solutions with quantum yields ranging from 3.4 to 11.5%. Furthermore, the THP and DAPTA complexes undergo photosubstitution of a CO ligand upon irradiation with 365 nm light with quantum yields ranging from 1.1 to 5.5% and sensitize the formation of 1 O 2 with quantum yields as high as 70%. In contrast, all of the complexes bearing the PTA ligand are nonemissive and do not undergo photosubstitution upon irradiation with 365 nm light. These compounds were evaluated as photoactivated anticancer agents in human cervical (HeLa), ovarian (A2780), and cisplatin-resistant ovarian (A2780CP70) cancer cell lines. All of the complexes bearing THP and DAPTA exhibited a cytotoxic response upon irradiation with minimal toxicity in the absence of light. Notably, the complex with DAPTA and 1,10-phenanthroline gave rise to an IC 50 value of 6 μM in HeLa cells upon irradiation, rendering it the most phototoxic compound in this library. The nature of the photoinduced cytotoxicity of this compound was explored in further detail. These data indicate that the phototoxic response may result from the release of both CO and the rhenium-containing photoproduct, as well as the production of 1 O 2 .

  17. Characterization of Photoactivated Singlet Oxygen Damage in Single-Molecule Optical Trap Experiments

    PubMed Central

    Landry, Markita P.; McCall, Patrick M.; Qi, Zhi; Chemla, Yann R.

    2009-01-01

    Abstract Optical traps or “tweezers” use high-power, near-infrared laser beams to manipulate and apply forces to biological systems, ranging from individual molecules to cells. Although previous studies have established that optical tweezers induce photodamage in live cells, the effects of trap irradiation have yet to be examined in vitro, at the single-molecule level. In this study, we investigate trap-induced damage in a simple system consisting of DNA molecules tethered between optically trapped polystyrene microspheres. We show that exposure to the trapping light affects the lifetime of the tethers, the efficiency with which they can be formed, and their structure. Moreover, we establish that these irreversible effects are caused by oxidative damage from singlet oxygen. This reactive state of molecular oxygen is generated locally by the optical traps in the presence of a sensitizer, which we identify as the trapped polystyrene microspheres. Trap-induced oxidative damage can be reduced greatly by working under anaerobic conditions, using additives that quench singlet oxygen, or trapping microspheres lacking the sensitizers necessary for singlet state photoexcitation. Our findings are relevant to a broad range of trap-based single-molecule experiments—the most common biological application of optical tweezers—and may guide the development of more robust experimental protocols. PMID:19843445

  18. Light Activated Escape Circuits: A Behavior and Neurophysiology Lab Module using Drosophila Optogenetics

    PubMed Central

    Titlow, Josh S.; Johnson, Bruce R.; Pulver, Stefan R.

    2015-01-01

    The neural networks that control escape from predators often show very clear relationships between defined sensory inputs and stereotyped motor outputs. This feature provides unique opportunities for researchers, but it also provides novel opportunities for neuroscience educators. Here we introduce new teaching modules using adult Drosophila that have been engineered to express csChrimson, a red-light sensitive channelrhodopsin, in specific sets of neurons and muscles mediating visually guided escape behaviors. This lab module consists of both behavior and electrophysiology experiments that explore the neural basis of flight escape. Three preparations are described that demonstrate photo-activation of the giant fiber circuit and how to quantify these behaviors. One of the preparations is then used to acquire intracellular electrophysiology recordings from different flight muscles. The diversity of action potential waveforms and firing frequencies observed in the flight muscles make this a rich preparation to study the ionic basic of cellular excitability. By activating different cells within the giant fiber pathway we also demonstrate principles of synaptic transmission and neural circuits. Beyond conveying core neurobiological concepts it is also expected that using these cutting edge techniques will enhance student motivation and attitudes towards biological research. Data collected from students and educators who have been involved in development of the module are presented to support this notion. PMID:26240526

  19. Quantitative evaluation of malignant gliomas damage induced by photoactivation of IR700 dye

    NASA Astrophysics Data System (ADS)

    Sakuma, Morito; Kita, Sayaka; Higuchi, Hideo

    2016-01-01

    The processes involved in malignant gliomas damage were quantitatively evaluated by microscopy. The near-infrared fluorescent dye IR700 that is conjugated to an anti-CD133 antibody (IR700-CD133) specifically targets malignant gliomas (U87MG) and stem cells (BT142) and is endocytosed into the cells. The gliomas are then photodamaged by the release of reactive oxygen species (ROS) and the heat induced by illumination of IR700 by a red laser, and the motility of the vesicles within these cells is altered as a result of cellular damage. To investigate these changes in motility, we developed a new method that measures fluctuations in the intensity of phase-contrast images obtained from small areas within cells. The intensity fluctuation in U87MG cells gradually decreased as cell damage progressed, whereas the fluctuation in BT142 cells increased. The endocytosed IR700 dye was co-localized in acidic organelles such as endosomes and lysosomes. The pH in U87MG cells, as monitored by a pH indicator, was decreased and then gradually increased by the illumination of IR700, while the pH in BT142 cells increased monotonically. In these experiments, the processes of cell damage were quantitatively evaluated according to the motility of vesicles and changes in pH.

  20. Multiscale approach to the determination of the photoactive yellow protein signaling state ensemble.

    PubMed

    A Rohrdanz, Mary; Zheng, Wenwei; Lambeth, Bradley; Vreede, Jocelyne; Clementi, Cecilia

    2014-10-01

    The nature of the optical cycle of photoactive yellow protein (PYP) makes its elucidation challenging for both experiment and theory. The long transition times render conventional simulation methods ineffective, and yet the short signaling-state lifetime makes experimental data difficult to obtain and interpret. Here, through an innovative combination of computational methods, a prediction and analysis of the biological signaling state of PYP is presented. Coarse-grained modeling and locally scaled diffusion map are first used to obtain a rough bird's-eye view of the free energy landscape of photo-activated PYP. Then all-atom reconstruction, followed by an enhanced sampling scheme; diffusion map-directed-molecular dynamics are used to focus in on the signaling-state region of configuration space and obtain an ensemble of signaling state structures. To the best of our knowledge, this is the first time an all-atom reconstruction from a coarse grained model has been performed in a relatively unexplored region of molecular configuration space. We compare our signaling state prediction with previous computational and more recent experimental results, and the comparison is favorable, which validates the method presented. This approach provides additional insight to understand the PYP photo cycle, and can be applied to other systems for which more direct methods are impractical.

  1. Arrays of MicroLEDs and Astrocytes: Biological Amplifiers to Optogenetically Modulate Neuronal Networks Reducing Light Requirement

    PubMed Central

    Berlinguer-Palmini, Rolando; Narducci, Roberto; Merhan, Kamyar; Dilaghi, Arianna; Moroni, Flavio; Masi, Alessio; Scartabelli, Tania; Landucci, Elisa; Sili, Maria; Schettini, Antonio; McGovern, Brian; Maskaant, Pleun; Degenaar, Patrick; Mannaioni, Guido

    2014-01-01

    In the modern view of synaptic transmission, astrocytes are no longer confined to the role of merely supportive cells. Although they do not generate action potentials, they nonetheless exhibit electrical activity and can influence surrounding neurons through gliotransmitter release. In this work, we explored whether optogenetic activation of glial cells could act as an amplification mechanism to optical neural stimulation via gliotransmission to the neural network. We studied the modulation of gliotransmission by selective photo-activation of channelrhodopsin-2 (ChR2) and by means of a matrix of individually addressable super-bright microLEDs (μLEDs) with an excitation peak at 470 nm. We combined Ca2+ imaging techniques and concurrent patch-clamp electrophysiology to obtain subsequent glia/neural activity. First, we tested the μLEDs efficacy in stimulating ChR2-transfected astrocyte. ChR2-induced astrocytic current did not desensitize overtime, and was linearly increased and prolonged by increasing μLED irradiance in terms of intensity and surface illumination. Subsequently, ChR2 astrocytic stimulation by broad-field LED illumination with the same spectral profile, increased both glial cells and neuronal calcium transient frequency and sEPSCs suggesting that few ChR2-transfected astrocytes were able to excite surrounding not-ChR2-transfected astrocytes and neurons. Finally, by using the μLEDs array to selectively light stimulate ChR2 positive astrocytes we were able to increase the synaptic activity of single neurons surrounding it. In conclusion, ChR2-transfected astrocytes and μLEDs system were shown to be an amplifier of synaptic activity in mixed corticalneuronal and glial cells culture. PMID:25265500

  2. A second visual rhodopsin gene, rh1-2, is expressed in zebrafish photoreceptors and found in other ray-finned fishes.

    PubMed

    Morrow, James M; Lazic, Savo; Dixon Fox, Monica; Kuo, Claire; Schott, Ryan K; de A Gutierrez, Eduardo; Santini, Francesco; Tropepe, Vincent; Chang, Belinda S W

    2017-01-15

    Rhodopsin (rh1) is the visual pigment expressed in rod photoreceptors of vertebrates that is responsible for initiating the critical first step of dim-light vision. Rhodopsin is usually a single copy gene; however, we previously discovered a novel rhodopsin-like gene expressed in the zebrafish retina, rh1-2, which we identified as a functional photosensitive pigment that binds 11-cis retinal and activates in response to light. Here, we localized expression of rh1-2 in the zebrafish retina to a subset of peripheral photoreceptor cells, which indicates a partially overlapping expression pattern with rh1 We also expressed, purified and characterized Rh1-2, including investigation of the stability of the biologically active intermediate. Using fluorescence spectroscopy, we found the half-life of the rate of retinal release of Rh1-2 following photoactivation to be more similar to that of the visual pigment rhodopsin than to the non-visual pigment exo-rhodopsin (exorh), which releases retinal around 5 times faster. Phylogenetic and molecular evolutionary analyses show that rh1-2 has ancient origins within teleost fishes, is under similar selective pressure to rh1, and likely experienced a burst of positive selection following its duplication and divergence from rh1 These findings indicate that rh1-2 is another functional visual rhodopsin gene, which contradicts the prevailing notion that visual rhodopsin is primarily found as a single copy gene within ray-finned fishes. The reasons for retention of this duplicate gene, as well as possible functional consequences for the visual system, are discussed. © 2017. Published by The Company of Biologists Ltd.

  3. A three-dimensional movie of structural changes in bacteriorhodopsin.

    PubMed

    Nango, Eriko; Royant, Antoine; Kubo, Minoru; Nakane, Takanori; Wickstrand, Cecilia; Kimura, Tetsunari; Tanaka, Tomoyuki; Tono, Kensuke; Song, Changyong; Tanaka, Rie; Arima, Toshi; Yamashita, Ayumi; Kobayashi, Jun; Hosaka, Toshiaki; Mizohata, Eiichi; Nogly, Przemyslaw; Sugahara, Michihiro; Nam, Daewoong; Nomura, Takashi; Shimamura, Tatsuro; Im, Dohyun; Fujiwara, Takaaki; Yamanaka, Yasuaki; Jeon, Byeonghyun; Nishizawa, Tomohiro; Oda, Kazumasa; Fukuda, Masahiro; Andersson, Rebecka; Båth, Petra; Dods, Robert; Davidsson, Jan; Matsuoka, Shigeru; Kawatake, Satoshi; Murata, Michio; Nureki, Osamu; Owada, Shigeki; Kameshima, Takashi; Hatsui, Takaki; Joti, Yasumasa; Schertler, Gebhard; Yabashi, Makina; Bondar, Ana-Nicoleta; Standfuss, Jörg; Neutze, Richard; Iwata, So

    2016-12-23

    Bacteriorhodopsin (bR) is a light-driven proton pump and a model membrane transport protein. We used time-resolved serial femtosecond crystallography at an x-ray free electron laser to visualize conformational changes in bR from nanoseconds to milliseconds following photoactivation. An initially twisted retinal chromophore displaces a conserved tryptophan residue of transmembrane helix F on the cytoplasmic side of the protein while dislodging a key water molecule on the extracellular side. The resulting cascade of structural changes throughout the protein shows how motions are choreographed as bR transports protons uphill against a transmembrane concentration gradient. Copyright © 2016, American Association for the Advancement of Science.

  4. Method and apparatus for bistable optical information storage for erasable optical disks

    DOEpatents

    Land, Cecil E.; McKinney, Ira D.

    1990-01-01

    A method and an optical device for bistable storage of optical information, together with reading and erasure of the optical information, using a photoactivated shift in a field dependent phase transition between a metastable or a bias-stabilized ferroelectric (FE) phase and a stable antiferroelectric (AFE) phase in an lead lanthanum zirconate titanate (PLZT). An optical disk contains the PLZT. Writing and erasing of optical information can be accomplished by a light beam normal to the disk. Reading of optical information can be accomplished by a light beam at an incidence angle of 15 to 60 degrees to the normal of the disk.

  5. Method and apparatus for bistable optical information storage for erasable optical disks

    DOEpatents

    Land, C.E.; McKinney, I.D.

    1988-05-31

    A method and an optical device for bistable storage of optical information, together with reading and erasure of the optical information, using a photoactivated shift in a field dependent phase transition between a metastable or a bias-stabilized ferroelectric (FE) phase and a stable antiferroelectric (AFE) phase in a lead lanthanum zirconate titanate (PLZT). An optical disk contains the PLZT. Writing and erasing of optical information can be accomplished by a light beam normal to the disk. Reading of optical information can be accomplished by a light beam at an incidence angle of 15 to 60 degrees to the normal of the disk. 10 figs.

  6. Method and apparatus for combinatorial chemistry

    DOEpatents

    Foote, Robert S.

    2007-02-20

    A method and apparatus are provided for performing light-directed reactions in spatially addressable channels within a plurality of channels. One aspect of the invention employs photoactivatable reagents in solutions disposed into spatially addressable flow streams to control the parallel synthesis of molecules immobilized within the channels. The reagents may be photoactivated within a subset of channels at the site of immobilized substrate molecules or at a light-addressable site upstream from the substrate molecules. The method and apparatus of the invention find particularly utility in the synthesis of biopolymer arrays, e.g., oligonucleotides, peptides and carbohydrates, and in the combinatorial synthesis of small molecule arrays for drug discovery.

  7. Method and apparatus for combinatorial chemistry

    DOEpatents

    Foote, Robert S [Oak Ridge, TN

    2012-06-05

    A method and apparatus are provided for performing light-directed reactions in spatially addressable channels within a plurality of channels. One aspect of the invention employs photoactivatable reagents in solutions disposed into spatially addressable flow streams to control the parallel synthesis of molecules immobilized within the channels. The reagents may be photoactivated within a subset of channels at the site of immobilized substrate molecules or at a light-addressable site upstream from the substrate molecules. The method and apparatus of the invention find particularly utility in the synthesis of biopolymer arrays, e.g., oligonucleotides, peptides and carbohydrates, and in the combinatorial synthesis of small molecule arrays for drug discovery.

  8. Single molecule tracking fluorescence microscopy in mitochondria reveals highly dynamic but confined movement of Tom40

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Anton; Tankov, Stoyan; English, Brian P.; Tarassov, Ivan; Tenson, Tanel; Kamenski, Piotr; Elf, Johan; Hauryliuk, Vasili

    2011-12-01

    Tom40 is an integral protein of the mitochondrial outer membrane, which as the central component of the Translocase of the Outer Membrane (TOM) complex forms a channel for protein import. We characterize the diffusion properties of individual Tom40 molecules fused to the photoconvertable fluorescent protein Dendra2 with millisecond temporal resolution. By imaging individual Tom40 molecules in intact isolated yeast mitochondria using photoactivated localization microscopy with sub-diffraction limited spatial precision, we demonstrate that Tom40 movement in the outer mitochondrial membrane is highly dynamic but confined in nature, suggesting anchoring of the TOM complex as a whole.

  9. Biofunctionalized silicon nitride platform for sensing applications.

    PubMed

    Hoi, Hiofan; Rezaie, Salva S; Gong, Lu; Sen, Payel; Zeng, Hongbo; Montemagno, Carlo; Gupta, Manisha

    2018-04-15

    Silicon nitride (SiN x ) based biosensors have the potential to converge on the technological achievements of semiconductor microfabrication and biotechnology. Development of biofunctionalized SiN x surface and its integration with other devices will allow us to integrate the biosensing capability with probe control, data acquisition and data processing. Here we use the hydrogen plasma generated by inductively coupled plasma-reactive ion etching (ICP-RIE) technique to produce amino-functionality on the surface of SiN x which can then be readily used for biomolecule immobilization. ICP-RIE produces high-density hydrogen ions/radicals at low energy, which produces high-density amino group on the SiN x surface within a short duration of time and with minimal surface damage. In this work, we have demonstrated selective amination of SiN x surface as compared to Si surface. The as-activated SiN x surface can be readily biofunctionalized with both protein and oligonucleotide through covalent immobilization. N-5-azido-2-nitrobenzoyloxysuccinimide, a photoactivable amino reactive bifunctional crosslinker, was used and greater than 90% surface coverage was achieved for protein immobilization. In addition, ssDNA immobilization and hybridization with its complemented strand was shown. Thus, we demonstrate a uniform, reliable, fast and economical technique for creating biofunctionalized SiN x surface that can be used for developing compact high-sensitivity biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially Controlled Release of Diethyl Phosphate and ATP.

    PubMed

    Houk, Amanda L; Givens, Richard S; Elles, Christopher G

    2016-03-31

    Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser.

  11. DOPI and PALM imaging of single carbohydrate binding modules bound to cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Dagel, D. J.; Liu, Y.-S.; Zhong, L.; Luo, Y.; Zeng, Y.; Himmel, M.; Ding, S.-Y.; Smith, S.

    2011-03-01

    We use single molecule imaging methods to study the binding characteristics of carbohydrate-binding modules (CBMs) to cellulose crystals. The CBMs are carbohydrate specific binding proteins, and a functional component of most cellulase enzymes, which in turn hydrolyze cellulose, releasing simple sugars suitable for fermentation to biofuels. The CBM plays the important role of locating the crystalline face of cellulose, a critical step in cellulase action. A biophysical understanding of the CBM action aids in developing a mechanistic picture of the cellulase enzyme, important for selection and potential modification. Towards this end, we have genetically modified cellulose-binding CBM derived from bacterial source with green fluorescent protein (GFP), and photo-activated fluorescence protein PAmCherry tags, respectively. Using the single molecule method known as Defocused Orientation and Position Imaging (DOPI), we observe a preferred orientation of the CBM-GFP complex relative to the Valonia cellulose nanocrystals. Subsequent analysis showed the CBMs bind to the opposite hydrophobic <110> faces of the cellulose nanocrystals with a welldefined cross-orientation of about { 70°. Photo Activated Localization Microscopy (PALM) is used to localize CBMPAmCherry with a localization accuracy of { 10nm. Analysis of the nearest neighbor distributions along and perpendicular to the cellulose nanocrystal axes are consistent with single-file CBM binding along the fiber axis, and microfibril bundles consisting of close packed { 20nm or smaller cellulose microfibrils.

  12. Phytochrome from Green Plants: Properties and biological Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quail, Peter H.

    2014-07-25

    Plants constantly monitor the light environment for informational light signals used to direct adaptational responses to the prevailing conditions. One major such response, the Shade-Avaoidance Response (SAR), triggered when plants sense the presence of competing neighbors, results in enhanced channeling of photosynthetically-fixed carbon into stem elongation at the expense of deposition in reproductive tissues. This response has been selected against in many modern food crops to ensure maximum edible yield (e.g. seeds). Converse enhancement of the SAR, with consequent increased carbon channeling into vegetative cellulose, could contribute to the generation of crops with improved yield of tissues suitable for cellulosicmore » biofuel production. The signal for this response is light enriched in far-red wavelengths. This signal is produced by sunlight filtered through, or reflected from, neighboring vegetation, as a result of preferential depletion of red photons through chlorophyll absorption. The plant phytochrome (phy) photoreceptor system (predominantly phyB) senses this signal through its capacity to switch reversibly, in milliseconds, between two molecular states: the biologically inactive Pr (red-light-absorbing) and biologically active Pfr (far-red-light-absorbing) conformers. The photoequilibrium established between these two conformers in light-grown plants is determined by the ratio of red-to-far-red wavelengths in the incoming signal. The levels of Pfr then dictate the recipient plant’s growth response: high levels suppress elongation growth; low levels promote elongation growth. Studies on seedling deetiolation have advanced our understanding considerably in recent years, of the mechanism by which the photoactivated phy molecule transduces its signal into cellular growth responses. The data show that a subfamily of phy-interacting bHLH transcription factors (PIFs) promote skotomorphogenic seedling development in post-germinative darkness, but that the phy Pfr conformer reverses this activity upon initial light exposure, inducing the switch to photomorphogenic development. This reversal involves light-triggered translocation of the photoactivated phy molecule into the nucleus where it interacts with PIF-family members, inducing rapid phosphorylation and degradation of the PIFs via the ubiquitin-proteasome system. This degradation in turn elicits rapid alterations in gene expression that drive the deetiolation transition. This project has made considerable progress in defining phy-PIF signaling activity in controlling the SAR. The biological functions of the multiple PIF-family members in controlling the SAR, including dissection of the relative contributions of the individual PIFs to this process, as well as to diurnal growth-control oscillations, have been investigated using higher-order pif-mutant combinations. Using microarray analysis of a quadruple pif mutant we have defined the shade-induced, PIF-regulated transcriptional network genome-wide. This has revealed that a dynamic antagonism between the phys and PIFs generates selective reciprocal responses during deetiolation and the SAR in a rapidly light-responsive transcriptional network. Using integrated RNA-seq and ChIP-seq analysis of higher order pif-mutant combinations, we have defined the direct gene-targets of PIF transcriptional regulation, and have obtained evidence that this regulation involves differential direct targeting of rapidly light-responsive genes by the individual PIF-family members. This project has provided significant advances in our understanding of the molecular mechanisms by which the phy-PIF photosensory signaling pathway regulates an important bioenergy-related plant response to the light environment. The identification of molecular targets in the primary transcriptional-regulatory circuitry of this pathway has the potential to enable genetic or reverse-genetic manipulation of the partitioning of carbon between reproductive and vegetative (cellulose-accumulating) tissue, toward enhanced bioenergy yield.« less

  13. Fast and efficient molecule detection in localization-based super-resolution microscopy by parallel adaptive histogram equalization.

    PubMed

    Li, Yiming; Ishitsuka, Yuji; Hedde, Per Niklas; Nienhaus, G Ulrich

    2013-06-25

    In localization-based super-resolution microscopy, individual fluorescent markers are stochastically photoactivated and subsequently localized within a series of camera frames, yielding a final image with a resolution far beyond the diffraction limit. Yet, before localization can be performed, the subregions within the frames where the individual molecules are present have to be identified-oftentimes in the presence of high background. In this work, we address the importance of reliable molecule identification for the quality of the final reconstructed super-resolution image. We present a fast and robust algorithm (a-livePALM) that vastly improves the molecule detection efficiency while minimizing false assignments that can lead to image artifacts.

  14. Photosensitive dissolution inhibitors and resists based on onium salt carboxylates

    DOEpatents

    Dentinger, Paul M.; Simison, Kelby L.

    2005-11-29

    A photoresist composition that employs onium salt carboxylates as thermally stable dissolution inhibitors. The photoresist composition can be either an onium carboxylate salt with a phenolic photoresist, such as novolac, or an onium cation protected carboxylate-containing resin such as an acrylic/acrylic acid copolymer. The onium carboxylate can be an onium cholate, wherein the onium cholate is an iodonium cholate. Particularly preferred iodonium cholates are alkyloxyphenylphenyl iodonium cholates and most particularly preferred is octyloxyphenyphenyl iodonium cholate. The photoresist composition will not create nitrogen or other gaseous byproducts upon exposure to radiation, does not require water for photoactivation, has acceptable UV radiation transmission characteristics, and is thermally stable at temperatures required for solvent removal.

  15. Two-Photon Scanning Photochemical Microscopy: Mapping Ligand-Gated Ion Channel Distributions

    NASA Astrophysics Data System (ADS)

    Denk, Winfried

    1994-07-01

    The locations and densities of ionotropic membrane receptors, which are responsible for receiving synaptic transmission throughout the nervous system, are of prime importance in understanding the function of neural circuits. It is shown that the highly localized liberation of "caged" neurotransmitters by two-photon absorption-mediated photoactivation can be used in conjunction with recording the induced whole-cell current to determine the distribution of ligand-gated ion channels. The technique is potentially sensitive enough to detect individual channels with diffraction-limited spatial resolution. Images of the distribution of nicotinic acetylcholine receptors on cultured BC3H1 cells were obtained using a photoactivatable precursor of the nicotinic agonist carbamoylcholine.

  16. Differential equation methods for simulation of GFP kinetics in non-steady state experiments.

    PubMed

    Phair, Robert D

    2018-03-15

    Genetically encoded fluorescent proteins, combined with fluorescence microscopy, are widely used in cell biology to collect kinetic data on intracellular trafficking. Methods for extraction of quantitative information from these data are based on the mathematics of diffusion and tracer kinetics. Current methods, although useful and powerful, depend on the assumption that the cellular system being studied is in a steady state, that is, the assumption that all the molecular concentrations and fluxes are constant for the duration of the experiment. Here, we derive new tracer kinetic analytical methods for non-steady state biological systems by constructing mechanistic nonlinear differential equation models of the underlying cell biological processes and linking them to a separate set of differential equations governing the kinetics of the fluorescent tracer. Linking the two sets of equations is based on a new application of the fundamental tracer principle of indistinguishability and, unlike current methods, supports correct dependence of tracer kinetics on cellular dynamics. This approach thus provides a general mathematical framework for applications of GFP fluorescence microscopy (including photobleaching [FRAP, FLIP] and photoactivation to frequently encountered experimental protocols involving physiological or pharmacological perturbations (e.g., growth factors, neurotransmitters, acute knockouts, inhibitors, hormones, cytokines, and metabolites) that initiate mechanistically informative intracellular transients. When a new steady state is achieved, these methods automatically reduce to classical steady state tracer kinetic analysis. © 2018 Phair. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Sequencing Larger Intact Proteins (30-70 kDa) with Activated Ion Electron Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Riley, Nicholas M.; Westphall, Michael S.; Coon, Joshua J.

    2018-01-01

    The analysis of intact proteins via mass spectrometry can offer several benefits to proteome characterization, although the majority of top-down experiments focus on proteoforms in a relatively low mass range (<30 kDa). Recent studies have focused on improving the analysis of larger intact proteins (up to 75 kDa), but they have also highlighted several challenges to be addressed. One major hurdle is the efficient dissociation of larger protein ions, which often to do not yield extensive fragmentation via conventional tandem MS methods. Here we describe the first application of activated ion electron transfer dissociation (AI-ETD) to proteins in the 30-70 kDa range. AI-ETD leverages infrared photo-activation concurrent to ETD reactions to improve sequence-informative product ion generation. This method generates more product ions and greater sequence coverage than conventional ETD, higher-energy collisional dissociation (HCD), and ETD combined with supplemental HCD activation (EThcD). Importantly, AI-ETD provides the most thorough protein characterization for every precursor ion charge state investigated in this study, making it suitable as a universal fragmentation method in top-down experiments. Additionally, we highlight several acquisition strategies that can benefit characterization of larger proteins with AI-ETD, including combination of spectra from multiple ETD reaction times for a given precursor ion, multiple spectral acquisitions of the same precursor ion, and combination of spectra from two different dissociation methods (e.g., AI-ETD and HCD). In all, AI-ETD shows great promise as a method for dissociating larger intact protein ions as top-down proteomics continues to advance into larger mass ranges. [Figure not available: see fulltext.

  18. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics

    PubMed Central

    Akerboom, Jasper; Carreras Calderón, Nicole; Tian, Lin; Wabnig, Sebastian; Prigge, Matthias; Tolö, Johan; Gordus, Andrew; Orger, Michael B.; Severi, Kristen E.; Macklin, John J.; Patel, Ronak; Pulver, Stefan R.; Wardill, Trevor J.; Fischer, Elisabeth; Schüler, Christina; Chen, Tsai-Wen; Sarkisyan, Karen S.; Marvin, Jonathan S.; Bargmann, Cornelia I.; Kim, Douglas S.; Kügler, Sebastian; Lagnado, Leon; Hegemann, Peter; Gottschalk, Alexander; Schreiter, Eric R.; Looger, Loren L.

    2013-01-01

    Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Here we describe red, single-wavelength GECIs, “RCaMPs,” engineered from circular permutation of the thermostable red fluorescent protein mRuby. High-resolution crystal structures of mRuby, the red sensor RCaMP, and the recently published red GECI R-GECO1 give insight into the chromophore environments of the Ca2+-bound state of the sensors and the engineered protein domain interfaces of the different indicators. We characterized the biophysical properties and performance of RCaMP sensors in vitro and in vivo in Caenorhabditis elegans, Drosophila larvae, and larval zebrafish. Further, we demonstrate 2-color calcium imaging both within the same cell (registering mitochondrial and somatic [Ca2+]) and between two populations of cells: neurons and astrocytes. Finally, we perform integrated optogenetics experiments, wherein neural activation via channelrhodopsin-2 (ChR2) or a red-shifted variant, and activity imaging via RCaMP or GCaMP, are conducted simultaneously, with the ChR2/RCaMP pair providing independently addressable spectral channels. Using this paradigm, we measure calcium responses of naturalistic and ChR2-evoked muscle contractions in vivo in crawling C. elegans. We systematically compare the RCaMP sensors to R-GECO1, in terms of action potential-evoked fluorescence increases in neurons, photobleaching, and photoswitching. R-GECO1 displays higher Ca2+ affinity and larger dynamic range than RCaMP, but exhibits significant photoactivation with blue and green light, suggesting that integrated channelrhodopsin-based optogenetics using R-GECO1 may be subject to artifact. Finally, we create and test blue, cyan, and yellow variants engineered from GCaMP by rational design. This engineered set of chromatic variants facilitates new experiments in functional imaging and optogenetics. PMID:23459413

  19. Interpreting the Effects of Pulse Remagnetization on Animal Behavior

    NASA Astrophysics Data System (ADS)

    Kirschvink, J. L.; Wang, C. X.; Golash, H. N.; Hilburn, I. A.; Wu, D. A.; Crucilla, S. J.; Badal, Y. D.; Shimojo, S.

    2017-12-01

    Observations of geomagnetic sensitivity by migratory and homing animals have puzzled biophysicists for over 70 years. Widely dismissed as biophysically implausible due to the lack of physiological ferromagnetic materials [e.g., D.R. Griffin, 1944, 1952], clear and reproducible responses to earth-strength magnetic fields is now firmly established in organisms ranging from Bacteria, Protists, and Animals from numerous phyla, including mollusks, arthropods, and the chordates. Behavior demands sensory transduction, as external stimuli only `get into the nervous system' through sensory cells specialized to transduce the physical stimulus into a modulated stream of action potentials in neurons. Three basic biophysical mechanisms could plausibly explain the biophysical transduction of geomagnetic cues, including electrical induction, hyperfine magnetic field effects on photo-activated free radicals (the `Quantum Compass'), or receptor cells containing biologically-precipitated crystals of a ferromagnetic mineral like magnetite (Fe3O4). The definitive test of a ferromagnetic receptor is the pulse-remagnetization experiment, in which you apply a brief, unidirectional magnetic pulse of about 1 mS in duration, configured to exceed the coercive force of the SD particles and reverse the orientation of the magnetic moment wrt to the crystal axis (typically, a pulse few tens of mT is adequate). A pulse configured in this fashion can be well below the dB/dt level needed to fire a sensory nerve through the induced electric fields. The pulse produces a permanent flip in magnetization direction, the same way information is coded on magnetic tape. Magnetotactic bacteria, exposed to such a pulse, reverse their magnetic swimming directions passively. There are now over 16 peer-reviewed papers in which this experiment has been applied to animals, including birds, all of which show clear and long-lasting effects of the pulse. Such a pulse would have no lasting effect on a quantum compass. Initial experiments with a magnetic pulse of 70 mT on a large primate show a clear effect, although the results are … complex!

  20. Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells.

    PubMed

    Blain-Hartung, Matthew; Rockwell, Nathan C; Moreno, Marcus V; Martin, Shelley S; Gan, Fei; Bryant, Donald A; Lagarias, J Clark

    2018-06-01

    Class III adenylyl cyclases generate the ubiquitous second messenger cAMP from ATP often in response to environmental or cellular cues. During evolution, soluble adenylyl cyclase catalytic domains have been repeatedly juxtaposed with signal-input domains to place cAMP synthesis under the control of a wide variety of these environmental and endogenous signals. Adenylyl cyclases with light-sensing domains have proliferated in photosynthetic species depending on light as an energy source, yet are also widespread in nonphotosynthetic species. Among such naturally occurring light sensors, several flavin-based photoactivated adenylyl cyclases (PACs) have been adopted as optogenetic tools to manipulate cellular processes with blue light. In this report, we report the discovery of a cyanobacteriochrome-based photoswitchable adenylyl cyclase (cPAC) from the cyanobacterium Microcoleus sp. PCC 7113. Unlike flavin-dependent PACs, which must thermally decay to be deactivated, cPAC exhibits a bistable photocycle whose adenylyl cyclase could be reversibly activated and inactivated by blue and green light, respectively. Through domain exchange experiments, we also document the ability to extend the wavelength-sensing specificity of cPAC into the near IR. In summary, our work has uncovered a cyanobacteriochrome-based adenylyl cyclase that holds great potential for the design of bistable photoswitchable adenylyl cyclases to fine-tune cAMP-regulated processes in cells, tissues, and whole organisms with light across the visible spectrum and into the near IR.

  1. Room temperature spectrally resolved single-molecule spectroscopy reveals new spectral forms and photophysical versatility of aequorea green fluorescent protein variants.

    PubMed

    Blum, Christian; Meixner, Alfred J; Subramaniam, Vinod

    2004-12-01

    It is known from ensemble spectroscopy at cryogenic temperatures that variants of the Aequorea green fluorescent protein (GFP) occur in interconvertible spectroscopically distinct forms which are obscured in ensemble room temperature spectroscopy. By analyzing the fluorescence of the GFP variants EYFP and EGFP by spectrally resolved single-molecule spectroscopy we were able to observe spectroscopically different forms of the proteins and to dynamically monitor transitions between these forms at room temperature. In addition to the predominant EYFP B-form we have observed the blue-shifted I-form thus far only seen at cryogenic temperatures and have followed transitions between these forms. Further we have identified for EYFP and for EGFP three more, so far unknown, forms with red-shifted fluorescence. Transitions between the predominant forms and the red-shifted forms show a dark time which indicates the existence of a nonfluorescent intermediate. The spectral position of the newly-identified red-shifted forms and their formation via a nonfluorescent intermediate hint that these states may account for the possible photoactivation observed in bulk experiments. The comparison of the single-protein spectra of the red-shifted EYFP and EGFP forms with single-molecule fluorescence spectra of DsRed suggest that these new forms possibly originate from an extended chromophoric pi-system analogous to the DsRed chromophore.

  2. The Myosin IXb Motor Activity Targets the Myosin IXb RhoGAP Domain as Cargo to Sites of Actin Polymerization

    PubMed Central

    van den Boom, Frank; Düssmann, Heiko; Uhlenbrock, Katharina; Abouhamed, Marouan

    2007-01-01

    Myosin IXb (Myo9b) is a single-headed processive myosin that exhibits Rho GTPase-activating protein (RhoGAP) activity in its tail region. Using live cell imaging, we determined that Myo9b is recruited to extending lamellipodia, ruffles, and filopodia, the regions of active actin polymerization. A functional motor domain was both necessary and sufficient for targeting Myo9b to these regions. The head domains of class IX myosins comprise a large insertion in loop2. Deletion of the large Myo9b head loop 2 insertion abrogated the enrichment in extending lamellipodia and ruffles, but enhanced significantly the enrichment at the tips of filopodia and retraction fibers. The enrichment in the tips of filopodia and retraction fibers depended on four lysine residues C-terminal to the loop 2 insertion and the tail region. Fluorescence recovery after photobleaching and photoactivation experiments in lamellipodia revealed that the dynamics of Myo9b was comparable to that of actin. The exchange rates depended on the Myo9b motor region and motor activity, and they were also dependent on the turnover of F-actin. These results demonstrate that Myo9b functions as a motorized RhoGAP molecule in regions of actin polymerization and identify Myo9b head sequences important for in vivo motor properties. PMID:17314409

  3. Reconstructing the Origin of Oxygenic Photosynthesis: Do Assembly and Photoactivation Recapitulate Evolution?

    PubMed Central

    Cardona, Tanai

    2016-01-01

    Due to the great abundance of genomes and protein structures that today span a broad diversity of organisms, now more than ever before, it is possible to reconstruct the molecular evolution of protein complexes at an incredible level of detail. Here, I recount the story of oxygenic photosynthesis or how an ancestral reaction center was transformed into a sophisticated photochemical machine capable of water oxidation. First, I review the evolution of all reaction center proteins in order to highlight that Photosystem II and Photosystem I, today only found in the phylum Cyanobacteria, branched out very early in the history of photosynthesis. Therefore, it is very unlikely that they were acquired via horizontal gene transfer from any of the described phyla of anoxygenic phototrophic bacteria. Second, I present a new evolutionary scenario for the origin of the CP43 and CP47 antenna of Photosystem II. I suggest that the antenna proteins originated from the remodeling of an entire Type I reaction center protein and not from the partial gene duplication of a Type I reaction center gene. Third, I highlight how Photosystem II and Photosystem I reaction center proteins interact with small peripheral subunits in remarkably similar patterns and hypothesize that some of this complexity may be traced back to the most ancestral reaction center. Fourth, I outline the sequence of events that led to the origin of the Mn4CaO5 cluster and show that the most ancestral Type II reaction center had some of the basic structural components that would become essential in the coordination of the water-oxidizing complex. Finally, I collect all these ideas, starting at the origin of the first reaction center proteins and ending with the emergence of the water-oxidizing cluster, to hypothesize that the complex and well-organized process of assembly and photoactivation of Photosystem II recapitulate evolutionary transitions in the path to oxygenic photosynthesis. PMID:26973693

  4. Photodynamic topical antimicrobial therapy for infected foot ulcers in patients with diabetes: a randomized, double-blind, placebo-controlled study--the D.A.N.T.E (Diabetic ulcer Antimicrobial New Topical treatment Evaluation) study.

    PubMed

    Mannucci, Edoardo; Genovese, Stefano; Monami, Matteo; Navalesi, Giovanni; Dotta, Francesco; Anichini, Roberto; Romagnoli, Fabio; Gensini, Gianfranco

    2014-01-01

    This study was designed to assess the antimicrobial effect and tolerability of a single dose of a photo-activated gel containing RLP068 in the treatment for infected foot ulcers in subjects with diabetes. A randomized, double-blind, parallel series, placebo-controlled phase IIa trial was performed with three concentrations of RLP068 (0.10, 0.30, and 0.50 %), measuring total and pathogen microbial load on Day 1 (before and 1 h after topical gel application and photoactivation with 689 nm red light), on Days 3, 8, and 15, as add-on to systemic treatment with amoxicillin and clavulanic acid. Blood samples were also drawn 1, 2, and 48 h after administration for the assessment of systemic drug absorption. The trial was performed on 62 patients aged ≥18 years, with type 1 or type 2 diabetes and infected foot ulcer, with an area of 2-15 cm(2) and a maximum diameter ≤4.6 cm. A dose-dependent reduction in total microbial load was observed (-1.92 ± 1.21, -2.94 ± 1.60, and -3.00 ± 1.82 LogCFU/ml for 0.10, 0.30, and 0.50 % RPL068 vs. -1.00 ± 1.02 LogCFU/ml with placebo) immediately after illumination, with a progressive fading of the effect during follow-up. No safety issues emerged from the analysis of adverse events. Systemic absorption of RLP068 was negligible. Photodynamic antimicrobial treatment with RLP068 of infected diabetic foot ulcers is well tolerated and produces a significant reduction in germ load. Further clinical trials are needed to verify the efficacy of this approach as add-on to systemic antibiotic treatment.

  5. Bond strength of dental adhesive systems irradiated with ionizing radiation.

    PubMed

    Dibo da Cruz, Adriana; Goncalves, Luciano de Souza; Rastelli, Alessandra Nara de Souza; Correr-Sobrinho, Lorenco; Bagnato, Vanderlei Salvador; Boscolo, Frab Norberto

    2010-04-01

    The aim of the present paper was to determine the effect of different types of ionizing radiation on the bond strength of three different dentin adhesive systems. One hundred twenty specimens of 60 human teeth (protocol number: 032/2007) sectioned mesiodistally were divided into 3 groups according to the adhesives systems used: SB (Adper Single Bond Plus), CB (Clearfil SE Bond) and AP (Adper Prompt Self-Etch). The adhesives were applied on dentin and photo-activated using LED (Lec 1000, MMoptics, 1000 mW/cm2). Customized elastomer molds (0.5 mm thickness) with three orifices of 1.2 mm diameter were placed onto the bonding areas and filled with composite resin (Filtek Z-250), which was photo-activated for 20 s. Each group was subdivided into 4 subgroups for application of the different types of ionizing radiation: ultraviolet radiation (UV), diagnostic x-ray radiation (DX), therapeutic x-ray radiation (TX) and without irradiation (control group, CG). Microshear tests were carried out (Instron, model 4411), and afterwards the modes of failure were evaluated by optical and scanning electron microscope and classified using 5 scores: adhesive failure, mixed failures with 3 significance levels, and cohesive failure. The results of the shear bond strength test were submitted to ANOVA with Tukey's test and Dunnett's test, and the data from the failure pattern evaluation were analyzed with the Mann Whitney test (p = 0.05). No change in bond strength of CB and AP was observed after application of the different radiation types, only SB showed increase in bond strength after UV (p = 0.0267) irradiation. The UV also changed the failure patterns of SB (p = 0.0001). The radio-induced changes did not cause degradation of the restorations, which means that they can be exposed to these types of ionizing radiation without weakening the bond strength.

  6. Macrophage-mediated delivery of light activated nitric oxide prodrugs with spatial, temporal and concentration control† †Electronic supplementary information (ESI) available: Includes detailed experimental details plus 10 additional figures. See DOI: 10.1039/c8sc00015h

    PubMed Central

    Evans, Michael A.; Huang, Po-Ju; Iwamoto, Yuji; Ibsen, Kelly N.; Chan, Emory M.; Hitomi, Yutaka

    2018-01-01

    Nitric oxide (NO) holds great promise as a treatment for cancer hypoxia, if its concentration and localization can be precisely controlled. Here, we report a “Trojan Horse” strategy to provide the necessary spatial, temporal, and dosage control of such drug-delivery therapies at targeted tissues. Described is a unique package consisting of (1) a manganese–nitrosyl complex, which is a photoactivated NO-releasing moiety (photoNORM), plus Nd3+-doped upconverting nanoparticles (Nd-UCNPs) incorporated into (2) biodegradable polymer microparticles that are taken up by (3) bone-marrow derived murine macrophages. Both the photoNORM [Mn(NO)dpaqNO2]BPh4(dpaqNO2 = 2-[N,N-bis(pyridin-2-yl-methyl)]-amino-N′-5-nitro-quinolin-8-yl-acetamido) and the Nd-UCNPs are activated by tissue-penetrating near-infrared (NIR) light at ∼800 nm. Thus, simultaneous therapeutic NO delivery and photoluminescence (PL) imaging can be achieved with a NIR diode laser source. The loaded microparticles are non-toxic to their macrophage hosts in the absence of light. The microparticle-carrying macrophages deeply penetrate into NIH-3T3/4T1 tumor spheroid models, and when the infiltrated spheroids are irradiated with NIR light, NO is released in quantifiable amounts while emission from the Nd-UCNPs provides images of microparticle location. Furthermore, varying the intensity of the NIR excitation allows photochemical control over NO release. Low doses reduce levels of hypoxia inducible factor 1 alpha (HIF-1α) in the tumor cells, while high doses are cytotoxic. The use of macrophages to carry microparticles with a NIR photo-activated theranostic payload into a tumor overcomes challenges often faced with therapeutic administration of NO and offers the potential of multiple treatment strategies with a single system. PMID:29780505

  7. Effect of photoactivated disinfection with a light-emitting diode on bacterial species and biofilms associated with periodontitis and peri-implantitis.

    PubMed

    Eick, Sigrun; Markauskaite, Giedre; Nietzsche, Sandor; Laugisch, Oliver; Salvi, Giovanni E; Sculean, Anton

    2013-05-01

    To determine the effect of photoactivated disinfection (PAD) using toluidine blue and a light-emitting diode (LED) in the red spectrum (wave length at 625-635 nm) on species associated with periodontitis and peri-implantitis and bacteria within a periodontopathic biofilm. Sixteen single microbial species including 2 Porphyromonas gingivalis and 2 Aggregatibacter actinomycetemcomitans and a multispecies mixture consisting of 12 species suspended in saline without and with 25% human serum were exposed to PAD. Moreover, single-species biofilms consisting of 2 P. gingivalis and 2 A. actinomycetemcomitans strains and a multi-species biofilm on 24-well-plates, grown on titanium discs and in artificial periodontal pockets were exposed to PAD with and without pretreatment with 0.25% hydrogen peroxide. Changes in the viability were determined by counting the colony forming units (cfu). PAD reduced the cfu counts in saline by 1.42 log₁₀ after LED application for 30s and by 1.99 log₁₀ after LED application for 60s compared with negative controls (each p<0.001). Serum did not inhibit the efficacy of PAD. PAD reduced statistically significantly (p<0.05) the cfu counts of the P. gingivalis biofilms. The viability of the A. actinomycetemcomitans biofilms and the multi-species biofilms was statistically significantly decreased when PAD was applied after a pretreatment with 0.25% hydrogen peroxide. The biofilm formed in artificial pockets was more sensitive to PAD with and without pretreatment with hydrogen peroxide compared with those formed on titanium discs. PAD using a LED was effective against periodontopathic bacterial species and reduced viability in biofilms but was not able to completely destroy complex biofilms. The use of PAD following pretreatment with hydrogen peroxide resulted in an additional increase in the antimicrobial activity which may represent a new alternative to treat periodontal and peri-implant infections thus warranting further testing in clinical studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Spatiotemporally synchronized cancer combination therapy using photo-activated nanoparticle drug delivery systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hasan, Tayyaba

    2016-03-01

    This talk will introduce a new nanotechnology platform for cancer combination therapy that utilizes near infrared light activation not only for photodynamic damage but also as an extrinsic mechanism to initiate release of complimentary drugs to suppress dynamic bursts in molecular signaling networks that promote tumor cell survival and treatment escape. The goal is to achieve co-delivery with concomitant activity of photodynamic, molecular inhibitor and chemotherapeutic agents, selectively within the tumor. This approach overcomes challenges in achieving synergistic interactions using sequential drug delivery. Conventional drug delivery is compromised by the differential pharmacokinetics of individual agents and potentially antagonistic effects—such as vascular shutdown by one agent that limits delivery of the second. Here, photodynamic damage—which efficiently kills drug-resistant cells via damage of common proteins involved in drug-resistance (such as anti-apoptosis factors and drug-efflux transporters)—is synchronized spatially and temporally with the photo-initiated release of complimentary agents—to enable full interaction amongst the individual therapies. This spatiotemporal synchronization offers new prospects for exploiting time-sensitive synergistic interactions. Specific implementations of these concepts will be presented in preclinical models of cancer. Strategies to enable molecular-targeting of cancer cells via site-specific attachment of targeting moieties to the outer lipid shell of these nanovehicles will also be discussed. If successful in humans, this new paradigm for synchronized, tumor-focused combination therapy will ultimately supersede the present use of chronic drug injection by increasing efficacy per cycle whilst reducing systemic exposure to toxic drugs.

  9. Molybdenum cluster loaded PLGA nanoparticles: An innovative theranostic approach for the treatment of ovarian cancer.

    PubMed

    Brandhonneur, N; Hatahet, T; Amela-Cortes, M; Molard, Y; Cordier, S; Dollo, G

    2018-04-01

    We evaluate poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles embedding inorganic molybdenum octahedral cluster for photodynamic therapy of cancer (PDT). Tetrabutyl ammonium salt of Mo 6 Br 14 cluster unit, (TBA) 2 Mo 6 Br 14 , presents promising photosensitization activity in the destruction of targeted cancer cells. Stable cluster loaded nanoparticles (CNPs) were prepared by solvent displacement method showing spherical shapes, zeta potential values around -30 mV, polydispersity index lower than 0.2 and sizes around 100 nm. FT-IR and DSC analysis revealed the lack of strong chemical interaction between the cluster and the polymer within the nanoparticles. In vitro release study showed that (TBA) 2 Mo 6 Br 14 was totally dissolved in 20 min, while CNPs were able to control the release of encapsulated cluster. In vitro cellular viability studies conducted on A2780 ovarian cancer cell line treated up to 72 h with cluster or CNPs did not show any sign of toxicity in concentrations up to 20 µg/ml. This concentration was selected for photo-activation test on A2780 cells and CNPs were able to generate oxygen singlet resulting in a decrease of the cellular viability up to 50%, respectively compared to non-activated conditions. This work presents (TBA) 2 Mo 6 Br 14 as a novel photosensitizer for PDT and suggests PLGA nanoparticles as an efficient delivery system intended for tumor targeting. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition

    PubMed Central

    Junicke, Henrik; Hart, Jonathan R.; Kisko, Jennifer; Glebov, Oleg; Kirsch, Ilan R.; Barton, Jacqueline K.

    2003-01-01

    A rhodium(III) complex, rac-[Rh(bpy)2phzi]3+ (bpy, 2,2′-bipyridine; phzi, benzo[a]phenazine-5,6-quinone diimine) has been designed as a sterically demanding intercalator targeted to destabilized mismatched sites in double-helical DNA. The complex is readily synthesized by condensation of the phenazine quinone with the corresponding diammine complex. Upon photoactivation, the complex promotes direct strand scission at single-base mismatch sites within the DNA duplex. As with the parent mismatch-specific reagent, [Rh(bpy)2(chrysi)]3+ [chrysene-5,6-quinone diimine (chrysi)], mismatch selectivity depends on the helix destabilization associated with mispairing. Unlike the parent chrysi complex, the phzi analogue binds and cleaves with high affinity and efficiency. The specific binding constants for CA, CC, and CT mismatches within a 31-mer oligonucleotide duplex are 0.3, 1, and 6 × 107 M−1, respectively; site-specific photocleavage is evident at nanomolar concentrations. Moreover, the specificity, defined as the ratio in binding affinities for mispaired vs. well paired sites, is maintained. The increase in affinity is attributed to greater stability in the mismatched site associated with stacking by the heterocyclic aromatic ligand. The high-affinity complex is also applied in the differential cleavage of DNA obtained from cell lines deficient in mismatch repair vs. those proficient in mismatch repair. Agreement is found between photocleavage by the mismatch-specific probes and deficiency in mismatch repair. This mismatch-specific targeting, therefore, offers a potential strategy for new chemotherapeutic design. PMID:12610209

  11. Modulation of chloroplast movement in the green alga Mougeotia by the Ca2+ ionophore A23187 and by calmodulin antagonists.

    PubMed Central

    Serlin, B S; Roux, S J

    1984-01-01

    The Ca2+ ionophore A23187 can induce chloroplast rotation within a single nonirradiated Mougeotia cell. The induced turning was dependent on the position of ionophore application and Ca2+ in the external medium. The role of calmodulin in mediating light-induced chloroplast rotation in the alga Mougeotia was investigated by using the paired calmodulin-antagonist drugs W5-W7 and W12-W13. In each pair, the antagonist with the greater affinity for calmodulin had the greater inhibitor effect on the phytochrome-controlled light response. These results support the hypothesis that calcium functions as a chemical messenger to couple the stimulus of phytochrome photoactivation with physiological responses in plants. Images PMID:11536594

  12. Supramolecular delivery of photoactivatable fluorophores in developing embryos

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Tang, Sicheng; Sansalone, Lorenzo; Thapaliya, Ek Raj; Baker, James D.; Raymo, Françisco M.

    2017-02-01

    The identification of noninvasive strategies to monitor dynamics within living organisms in real time is essential to elucidate the fundamental factors governing a diversity of biological processes. This study demonstrates that the supramolecular delivery of photoactivatable fluorophores in Drosophila melanogaster embryos allows the real-time tracking of translocating molecules. The designed photoactivatable fluorophores switch from an emissive reactant to an emissive product with spectrally-resolved fluorescence, under moderate blue-light irradiation conditions. These hydrophobic fluorescent probes can be encapsulated within supramolecular hosts and delivered to the cellular blastoderm of the embryos. Thus, the combination of supramolecular delivery and fluorescence photoactivation translates into a noninvasive method to monitor dynamics in vivo and can evolve into a general chemical tool to track motion in biological specimens.

  13. DNA binding of supramolecular mixed-metal complexes

    NASA Astrophysics Data System (ADS)

    Swavey, Shawn; Williams, Rodd L.; Fang, Zhenglai; Milkevitch, Matthew; Brewer, Karen J.

    2001-10-01

    The high binding affinity of cisplatin toward DNA has led to its popularity as an anticancer agent. Due to cumulative drug resistance and toxic side effects, researchers are exploring related metallodrugs. Our approach involves the use of supramolecular complexes. These mixed-metal complexes incorporate a reactive platinum moiety bridged by a polyazine ligand to a light absorbing metal-based chromophore. The presence of the light absorber allows excitation of these systems, opening up the possibility of photoactivation. The use of a supramolecular design allows components of the assembly to be varied to enhance device function and light absorbing properties. Aspects of our molecular design process and results on the DNA binding properties for a number of these mixed-metal complexes will be discussed.

  14. Laser photoactivation gibberellin molecules in the surface tissues of plants

    NASA Astrophysics Data System (ADS)

    Grishkanich, Alexander; Zhevlakov, Alexander; Kascheev, Sergey; Sidorov, Igor; Ruzankina, Julia; Yakovlev, Alexey; Mak, Andrey

    2016-03-01

    The experimental results presented in this study are the early studies of germination on the example of Picea abies and were aimed at testing the germination of seeds and the development of morphology, caused a therapeutic effect on the laser radiation field in the early stages of development under the action of ultraviolet and red light in the spectral range of 405 nm and 640 nm. A set of seeds irradiated at various energy doses within the same time. The experimental results analyzed in parallel with control group. In all analyzed seeds were studied the germination and growth of seedlings. The results showed that the percentage of germination higher than control group Samanids all of the recurrence options.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betisheva, N.K.; Samoilova, K.A.

    This paper studies the DNA-synthetic activity of hyman embryonic cells (EC) cultured in the presence of supernatants from intact and irradiated cell fractions of blood or plasma. Human EC obtained from abortion material were incubated; after incubation, tritium-thymidine was added to the growth medium for 30 min. It is shown that stimulation of DNA synthesis in EC growing in the presence of supernatants from irradiated whole blood is not connected with photoactivation of growth factors in the blood plasma, but takes place as a result of their release from the cells. Donated blood, irradiated with UV light of the samemore » wavelength and within the same dose range as are used under clinical conditions (up to 1200 J/m/sup 2/), possesses growth-stimulating properties.« less

  16. Photoproduction of Hydrogen by Decamethylruthenocene Combined with Electrochemical Recycling.

    PubMed

    Rivier, Lucie; Peljo, Pekka; Vannay, Laurent A C; Gschwend, Grégoire C; Méndez, Manuel A; Corminboeuf, Clémence; Scanlon, Micheál D; Girault, Hubert H

    2017-02-20

    The photoinduced hydrogen evolution reaction (HER) by decamethylruthenocene, Cp 2 *Ru II (Cp*=C 5 Me 5 ), is reported. The use of a metallocene to photoproduce hydrogen is presented as an alternative strategy to reduce protons without involving an additional photosensitizer. The mechanism was investigated by (spectro)electrochemical and spectroscopic (UV/Vis and 1 H NMR) measurements. The photoactivated hydride involved was characterized spectroscopically and the resulting [Cp 2 *Ru III ] + species was electrochemically regenerated in situ on a fluorinated tin oxide electrode surface. A promising internal quantum yield of 25 % was obtained. Optimal experimental conditions- especially the use of weakly coordinating solvent and counterions-are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Phytoalexin Phenalenone Derivatives Inactivate Mosquito Larvae and Root-knot Nematode as Type-II Photosensitizer

    NASA Astrophysics Data System (ADS)

    Song, Runjiang; Feng, Yian; Wang, Donghui; Xu, Zhiping; Li, Zhong; Shao, Xusheng

    2017-02-01

    Phytoalexins phenalenones (PNs) are phytochemicals biosynthesized inside the plant in responsive to exterior threat. PNs are excellent type-II photosensitizers, which efficiently produce singlet oxygen upon light irradiation. Based on the core functional structure of PNs, novel PN derivatives were synthesized here and their singlet oxygen generating abilities and their phototoxicity were evaluated. At the presence of light, these PNs have photoinduced toxicity towards Aedes albopictus larvae and nematode Meloidogyne incognita, while the activity lost in the dark. The obvious tissue damage was observed on the treated mosquito larvae and nematode due to the generation of singlet oxygen. Our results revealed the potential of phenalenones as photoactivated agents for mosquito and root-knot nematode management together with light.

  18. The role of lasers in dentistry: present and future.

    PubMed

    Pearson, G J; Schuckert, K H

    2003-03-01

    Lasers have been used for hard tissue cutting in dentistry for a number of years. The quality of the cavity preparation and the surface finish achievable is variable and is dependent on operating wavelength. The collateral damage, which may be produced at differing wavelengths, is quite marked. Lasers in current form are now able to remove tissue in bulk at a similar rate to conventional methods such as bur and turbine handpiece. Some lasers may, however, provide precision cutting, which may be developed further in the future. Alternative uses of laser light are potentially more beneficial in the shorter term. The use of diode lasers as a means of activating a photosensitizer to carry out photo-activated disinfection appears to be beneficial.

  19. Crystal structure of p44, a constitutively active splice variant of visual arrestin.

    PubMed

    Granzin, Joachim; Cousin, Anneliese; Weirauch, Moritz; Schlesinger, Ramona; Büldt, Georg; Batra-Safferling, Renu

    2012-03-09

    Visual arrestin specifically binds to photoactivated and phosphorylated rhodopsin and inactivates phototransduction. In contrast, the p44 splice variant can terminate phototransduction by binding to nonphosphorylated light-activated rhodopsin. Here we report the crystal structure of bovine p44 at a resolution of 1.85 Å. Compared to native arrestin, the p44 structure reveals significant differences in regions crucial for receptor binding, namely flexible loop V-VI and polar core regions. Additionally, electrostatic potential is remarkably positive on the N-domain and the C-domain. The p44 structure represents an active conformation that serves as a model to explain the 'constitutive activity' found in arrestin variants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Unravelling Site-Specific Photo-Reactions of Ethanol on Rutile TiO2(110)

    PubMed Central

    Hansen, Jonas Ø.; Bebensee, Regine; Martinez, Umberto; Porsgaard, Soeren; Lira, Estephania; Wei, Yinying; Lammich, Lutz; Li, Zheshen; Idriss, Hicham; Besenbacher, Flemming; Hammer, Bjørk; Wendt, Stefan

    2016-01-01

    Finding the active sites of catalysts and photo-catalysts is crucial for an improved fundamental understanding and the development of efficient catalytic systems. Here we have studied the photo-activated dehydrogenation of ethanol on reduced and oxidized rutile TiO2(110) in ultrahigh vacuum conditions. Utilizing scanning tunnelling microscopy, various spectroscopic techniques and theoretical calculations we found that the photo-reaction proceeds most efficiently when the reactants are adsorbed on regular Ti surface sites, whereas species that are strongly adsorbed at surface defects such as O vacancies and step edges show little reaction under reducing conditions. We propose that regular Ti surface sites are the most active sites in photo-reactions on TiO2. PMID:26915303

  1. Super-resolution Microscopy in Plant Cell Imaging.

    PubMed

    Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef

    2015-12-01

    Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Low-energy modification of the γ strength function of the odd-even nucleus 115In

    NASA Astrophysics Data System (ADS)

    Versteegen, Maud; Denis-Petit, David; Méot, Vincent; Bonnet, Thomas; Comet, Maxime; Gobet, Franck; Hannachi, Fazia; Tarisien, Medhi; Morel, Pascal; Martini, Marco; Péru, Sophie

    2016-10-01

    Photoactivation yield measurements on 115In have been performed at the ELSA facility with Bremsstrahlung photon beams over a range of endpoint energies between 4.5 and 18 MeV. The measured photoexcitation yields of the Inm115 metastable state are compared with calculated yields using cross sections obtained with different models of the photon strength function. It is shown that additional photon strength with respect to the general Lorentzian model is needed at 8.1 MeV for the calculated yields to reproduce the data. The origin of this extra strength is unclear, because it is compatible with additional strength predicted in both E 1 and M 1 photon strength distributions by quasiparticle random-phase approximation calculations using the Gogny D1S force.

  3. Sub-micron lines patterning into silica using water developable chitosan bioresist films for eco-friendly positive tone e-beam and UV lithography

    NASA Astrophysics Data System (ADS)

    Caillau, Mathieu; Chevalier, Céline; Crémillieu, Pierre; Delair, Thierry; Soppera, Olivier; Leuschel, Benjamin; Ray, Cédric; Moulin, Christophe; Jonin, Christian; Benichou, Emmanuel; Brevet, Pierre-François; Yeromonahos, Christelle; Laurenceau, Emmanuelle; Chevolot, Yann; Leclercq, Jean-Louis

    2018-03-01

    Biopolymers represent natural, renewable and abundant materials. Their use is steadily growing in various areas (food, health, building …) but, in lithography, despite some works, resists, solvents and developers are still oil-based and hazardous chemicals. In this work, we replaced synthetic resist by chitosan, a natural, abundant and hydrophilic polysaccharide. High resolution sub-micron patterns were obtained through chitosan films as water developable, chemically unmodified, positive tone mask resist for an eco-friendly electron beam and deep-UV (193 nm) lithography process. Sub-micron patterns were also successfully obtained using a 248 nm photomasker thanks to the addition of biosourced photoactivator, riboflavin. Patterns were then transferred by plasma etching into silica even for high resolution patterns.

  4. Bacteriorhodopsin–ZnO hybrid as a potential sensing element for low-temperature detection of ethanol vapour

    PubMed Central

    Kumar, Saurav; Bagchi, Sudeshna; Prasad, Senthil; Sharma, Anupma; Kumar, Ritesh; Kaur, Rishemjit; Singh, Jagvir

    2016-01-01

    Summary Zinc oxide (ZnO) and bacteriorhodopsin (bR) hybrid nanostructures were fabricated by immobilizing bR on ZnO thin films and ZnO nanorods. The morphological and spectroscopic analysis of the hybrid structures confirmed the ZnO thin film/nanorod growth and functional properties of bR. The photoactivity results of the bR protein further corroborated the sustainability of its charge transport property and biological activity. When exposed to ethanol vapour (reducing gas) at low temperature (70 °C), the fabricated sensing elements showed a significant increase in resistivity, as opposed to the conventional n-type behaviour of bare ZnO nanostructures. This work opens up avenues towards the fabrication of low temperature, photoactivated, nanomaterial–biomolecule hybrid gas sensors. PMID:27335741

  5. Impact of Photosensitizers Activation on Intracellular Trafficking and Viscosity

    PubMed Central

    Aubertin, Kelly; Bonneau, Stéphanie; Silva, Amanda K. A.; Bacri, Jean-Claude; Gallet, François; Wilhelm, Claire

    2013-01-01

    The intracellular microenvironment is essential for the efficiency of photo-induced therapies, as short-lived reactive oxygen species generated must diffuse through their intracellular surrounding medium to reach their cellular target. Here, by combining measurements of local cytoplasmic dissipation and active trafficking, we found that photosensitizers activation induced small changes in surrounding viscosity but a massive decrease in diffusion. These effects are the signature of a return to thermodynamic equilibrium of the system after photo-activation and correlated with depolymerization of the microtubule network, as shown in a reconstituted system. These mechanical measurements were performed with two intracellular photosensitizing chlorins having similar quantum yield of singlet oxygen production but different intracellular localizations (cytoplasmic for mTHPC, endosomal for TPCS2a). These two agents demonstrated different intracellular impact. PMID:24386423

  6. Conductive Photo-Activated Porphyrin-ZnO Nanostructured Gas Sensor Array.

    PubMed

    Magna, Gabriele; Catini, Alexandro; Kumar, Raj; Palmacci, Massimo; Martinelli, Eugenio; Paolesse, Roberto; di Natale, Corrado

    2017-04-01

    Chemoresistors working at room temperature are attractive for low-consumption integrated sensors. Previous studies show that this feature can be obtained with photoconductive porphyrins-coated ZnO nanostructures. Furthermore, variations of the porphyrin molecular structure alter both the chemical sensitivity and the photoconductivity, and can be used to define the sensor characteristics. Based on these assumptions, we investigated the properties of an array of four sensors made of a layer of ZnO nanoparticles coated with porphyrins with the same molecular framework but different metal atoms. The array was tested with five volatile organic compounds (VOCs), each measured at different concentrations. Results confirm that the features of individual porphyrins influence the sensor behavior, and the differences among sensors are enough to enable the discrimination of volatile compounds disregarding their concentration.

  7. Nobel Prize Recipient Eric Betzig Presents Lecture on Efforts to Improve High-Resolution Microscopy | Poster

    Cancer.gov

    Eric Betzig, Ph.D., a 2014 recipient of the Nobel Prize in Chemistry and a scientist at Janelia Research Campus (JRC), Howard Hughes Medical Institute, in Ashburn, Va., visited NCI at Frederick on Sept. 10 to present a Distinguished Scientist lecture and discuss the latest high-resolution microscopy techniques. Betzig co-invented photoactivation localization microscopy (PALM) in collaboration with scientists at NIH. PALM achieves 10-fold improvement in spatial resolution of cells, going from the resolution limit of approximately 250 nm in standard optical microscopy down to approximately 20 nm, thus producing a so-called “super-resolution” image. Spatial resolution refers to the clarity of an image or, in other words, the smallest details that can be observed from an image.

  8. Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling

    PubMed Central

    Ferrando-May, Elisa; Tomas, Martin; Blumhardt, Philipp; Stöckl, Martin; Fuchs, Matthias; Leitenstorfer, Alfred

    2013-01-01

    Our understanding of the mechanisms governing the response to DNA damage in higher eucaryotes crucially depends on our ability to dissect the temporal and spatial organization of the cellular machinery responsible for maintaining genomic integrity. To achieve this goal, we need experimental tools to inflict DNA lesions with high spatial precision at pre-defined locations, and to visualize the ensuing reactions with adequate temporal resolution. Near-infrared femtosecond laser pulses focused through high-aperture objective lenses of advanced scanning microscopes offer the advantage of inducing DNA damage in a 3D-confined volume of subnuclear dimensions. This high spatial resolution results from the highly non-linear nature of the excitation process. Here we review recent progress based on the increasing availability of widely tunable and user-friendly technology of ultrafast lasers in the near infrared. We present a critical evaluation of this approach for DNA microdamage as compared to the currently prevalent use of UV or VIS laser irradiation, the latter in combination with photosensitizers. Current and future applications in the field of DNA repair and DNA-damage dependent chromatin dynamics are outlined. Finally, we discuss the requirement for proper simulation and quantitative modeling. We focus in particular on approaches to measure the effect of DNA damage on the mobility of nuclear proteins and consider the pros and cons of frequently used analysis models for FRAP and photoactivation and their applicability to non-linear photoperturbation experiments. PMID:23882280

  9. Activation of Pedunculopontine Glutamate Neurons Is Reinforcing

    PubMed Central

    Yoo, Ji Hoon; Zell, Vivien; Wu, Johnathan; Punta, Cindy; Ramajayam, Nivedita; Shen, Xinyi; Faget, Lauren; Lilascharoen, Varoth; Lim, Byung Kook

    2017-01-01

    Dopamine transmission from midbrain ventral tegmental area (VTA) neurons underlies behavioral processes related to motivation and drug addiction. The pedunculopontine tegmental nucleus (PPTg) is a brainstem nucleus containing glutamate-, acetylcholine-, and GABA-releasing neurons with connections to basal ganglia and limbic brain regions. Here we investigated the role of PPTg glutamate neurons in reinforcement, with an emphasis on their projections to VTA dopamine neurons. We used cell-type-specific anterograde tracing and optogenetic methods to selectively label and manipulate glutamate projections from PPTg neurons in mice. We used anatomical, electrophysiological, and behavioral assays to determine their patterns of connectivity and ascribe functional roles in reinforcement. We found that photoactivation of PPTg glutamate cell bodies could serve as a direct positive reinforcer on intracranial self-photostimulation assays. Further, PPTg glutamate neurons directly innervate VTA; photostimulation of this pathway preferentially excites VTA dopamine neurons and is sufficient to induce behavioral reinforcement. These results demonstrate that ascending PPTg glutamate projections can drive motivated behavior, and PPTg to VTA synapses may represent an important target relevant to drug addiction and other mental health disorders. SIGNIFICANCE STATEMENT Uncovering brain circuits underlying reward-seeking is an important step toward understanding the circuit bases of drug addiction and other psychiatric disorders. The dopaminergic system emanating from the ventral tegmental area (VTA) plays a key role in regulating reward-seeking behaviors. We used optogenetics to demonstrate that the pedunculopontine tegmental nucleus sends glutamatergic projections to VTA dopamine neurons, and that stimulation of this circuit promotes behavioral reinforcement. The findings support a critical role for pedunculopontine tegmental nucleus glutamate neurotransmission in modulating VTA dopamine neuron activity and behavioral reinforcement. PMID:28053028

  10. NIR-induced spatiotemporally controlled gene silencing by upconversion nanoparticle-based siRNA nanocarrier.

    PubMed

    Chen, Guojun; Ma, Ben; Xie, Ruosen; Wang, Yuyuan; Dou, Kefeng; Gong, Shaoqin

    2017-12-27

    Spatiotemporal control over the release or activation of biomacromolecules such as siRNA remains a significant challenge. Light-controlled release has gained popularity in recent years; however, a major limitation is that most photoactivable compounds/systems respond only to UV irradiation, but not near-infrared (NIR) light that offers a deeper tissue penetration depth and better biocompatibility. This paper reports a simple NIR-to-UV upconversion nanoparticle (UCNP)-based siRNA nanocarrier for NIR-controlled gene silencing. siRNA is complexed onto a NaYF 4 :Yb/Tm/Er UCNP through an azobenzene (Azo)-cyclodextrin (CD) host-guest interaction. The UV emission generated by the NIR-activated UCNP effectively triggers the trans-to-cis photoisomerization of azobenzene, thus leading to the release of siRNA due to unmatched host-guest pairs. The UCNP-siRNA complexes are also functionalized with PEG (i.e., UCNP-(CD/Azo)-siRNA/PEG NPs), targeting ligands (i.e., EGFR-specific GE11 peptide), acid-activatable cell-penetrating peptides (i.e., TH peptide), and imaging probes (i.e., Cy5 fluorophore). The UCNP-(CD/Azo)-siRNA/PEG NPs with both GE11 and TH peptides display a high level of cellular uptake and an excellent endosomal/lysosomal escape capability. More importantly, NIR-controlled spatiotemporal knockdown of GFP expression is successfully achieved in both a 2D monolayer cell model and a 3D multicellular tumor spheroid model. Thus, this simple and versatile nanoplatform has great potential for the selective activation or release of various biomacromolecules. Copyright © 2017. Published by Elsevier B.V.

  11. Biofunctionalization on alkylated silicon substrate surfaces via "click" chemistry.

    PubMed

    Qin, Guoting; Santos, Catherine; Zhang, Wen; Li, Yan; Kumar, Amit; Erasquin, Uriel J; Liu, Kai; Muradov, Pavel; Trautner, Barbara Wells; Cai, Chengzhi

    2010-11-24

    Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.

  12. Dual and self-curing potential of self-adhesive resin cements as thin films.

    PubMed

    Moraes, R R; Boscato, N; Jardim, P S; Schneider, L F J

    2011-01-01

    In this study, the dual- and self-curing potential of self-adhesive resin cements (SARCs) as thin, clinically-relevant cement films was investigated. The SARCs tested were: BisCem (BSC; Bisco), Maxcem Elite (MXE; Kerr), RelyX Unicem clicker (UNI; 3M ESPE), seT capsule (SET; SDI), and SmartCem 2 (SC2; Dentsply Caulk). The conventional cement RelyX ARC (3M ESPE) was tested as a reference. The degree of conversion (DC) as a function of time was evaluated by real-time Fourier transform infrared spectroscopy with an attenuated total reflectance (ATR) device. The cements were either photoactivated for 40 seconds (dual-cure mode) or not photoactivated (self-cure mode). The cement film thickness was 50 ± 10 μm. The DC (%) was evaluated 1, 5, 10, 15, 20, 25, and 30 minutes after placing the cement on the ATR cell. Data for DC as a function of time were analyzed by two-way repeated measures analysis of variance (ANOVA). DC values at 30 minutes for the self- and dual-cure modes were submitted to one-way ANOVA. Post hoc comparisons were performed using the Student-Newman-Keuls test (p<0.05). The rate and the extent of conversion were lower for the SARCs compared with the conventional cement. Means ± standard deviations (SD) for the dual-cure mode at 30 minutes were: 75 ± 5 (ARC)a, 73 ± 8 (SET)a, 61 ± 4 (MXE)b, 51 ± 9 (BSC)c, 51 ± 4 (UNI)c, and 48 ± 3 (SC2)c, while in the self-cure mode means and SD were 62 ± 6 (ARC)a, 54 ± 3 (MXE)b, 40 ± 6 (SC2)c, 35 ± 2 (UNI)c, 35 ± 3 (SET)c, and 11 ± 3 (BSC)d. The DC for the dual-cure mode was generally higher than the self-cure, irrespective of the time. Discrepancies in DC between the dual- and self-cure modes from 11% to 79% were observed. In conclusion, SARCs may present slower rate of polymerization and lower final DC than conventional resin cements, in either the dual- or self-cure mode.

  13. Hypericin in the Light and in the Dark: Two Sides of the Same Coin

    PubMed Central

    Jendželovská, Zuzana; Jendželovský, Rastislav; Kuchárová, Barbora; Fedoročko, Peter

    2016-01-01

    Hypericin (4,5,7,4′,5′,7′-hexahydroxy-2,2′-dimethylnaphtodianthrone) is a naturally occurring chromophore found in some species of the genus Hypericum, especially Hypericum perforatum L. (St. John's wort), and in some basidiomycetes (Dermocybe spp.) or endophytic fungi (Thielavia subthermophila). In recent decades, hypericin has been intensively studied for its broad pharmacological spectrum. Among its antidepressant and light-dependent antiviral actions, hypericin is a powerful natural photosensitizer that is applicable in the photodynamic therapy (PDT) of various oncological diseases. As the accumulation of hypericin is significantly higher in neoplastic tissue than in normal tissue, it can be used in photodynamic diagnosis (PDD) as an effective fluorescence marker for tumor detection and visualization. In addition, light-activated hypericin acts as a strong pro-oxidant agent with antineoplastic and antiangiogenic properties, since it effectively induces the apoptosis, necrosis or autophagy of cancer cells. Moreover, a strong affinity of hypericin for necrotic tissue was discovered. Thus, hypericin and its radiolabeled derivatives have been recently investigated as potential biomarkers for the non-invasive targeting of tissue necrosis in numerous disorders, including solid tumors. On the other hand, several light-independent actions of hypericin have also been described, even though its effects in the dark have not been studied as intensively as those of photoactivated hypericin. Various experimental studies have revealed no cytotoxicity of hypericin in the dark; however, it can serve as a potential antimetastatic and antiangiogenic agent. On the contrary, hypericin can induce the expression of some ABC transporters, which are often associated with the multidrug resistance (MDR) of cancer cells. Moreover, the hypericin-mediated attenuation of the cytotoxicity of some chemotherapeutics was revealed. Therefore, hypericin might represent another St. John's wort metabolite that is potentially responsible for negative herb–drug interactions. The main aim of this review is to summarize the benefits of photoactivated and non-activated hypericin, mainly in preclinical and clinical applications, and to uncover the “dark side” of this secondary metabolite, focusing on MDR mechanisms. PMID:27200034

  14. A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices

    PubMed Central

    Abdelfattah, Ahmed S.; Farhi, Samouil L.; Zhao, Yongxin; Brinks, Daan; Zou, Peng; Ruangkittisakul, Araya; Platisa, Jelena; Pieribone, Vincent A.; Ballanyi, Klaus; Cohen, Adam E.

    2016-01-01

    Optical imaging of voltage indicators based on green fluorescent proteins (FPs) or archaerhodopsin has emerged as a powerful approach for detecting the activity of many individual neurons with high spatial and temporal resolution. Relative to green FP-based voltage indicators, a bright red-shifted FP-based voltage indicator has the intrinsic advantages of lower phototoxicity, lower autofluorescent background, and compatibility with blue-light-excitable channelrhodopsins. Here, we report a bright red fluorescent voltage indicator (fluorescent indicator for voltage imaging red; FlicR1) with properties that are comparable to the best available green indicators. To develop FlicR1, we used directed protein evolution and rational engineering to screen libraries of thousands of variants. FlicR1 faithfully reports single action potentials (∼3% ΔF/F) and tracks electrically driven voltage oscillations at 100 Hz in dissociated Sprague Dawley rat hippocampal neurons in single trial recordings. Furthermore, FlicR1 can be easily imaged with wide-field fluorescence microscopy. We demonstrate that FlicR1 can be used in conjunction with a blue-shifted channelrhodopsin for all-optical electrophysiology, although blue light photoactivation of the FlicR1 chromophore presents a challenge for applications that require spatially overlapping yellow and blue excitation. SIGNIFICANCE STATEMENT Fluorescent-protein-based voltage indicators enable imaging of the electrical activity of many genetically targeted neurons with high spatial and temporal resolution. Here, we describe the engineering of a bright red fluorescent protein-based voltage indicator designated as FlicR1 (fluorescent indicator for voltage imaging red). FlicR1 has sufficient speed and sensitivity to report single action potentials and voltage fluctuations at frequencies up to 100 Hz in single-trial recordings with wide-field microscopy. Because it is excitable with yellow light, FlicR1 can be used in conjunction with blue-light-activated optogenetic actuators. However, spatially distinct patterns of optogenetic activation and voltage imaging are required to avoid fluorescence artifacts due to photoactivation of the FlicR1 chromophore. PMID:26911693

  15. Spectro-temporal characterization of the photoactivation mechanism of two new oxidized cryptochrome/photolyase photoreceptors.

    PubMed

    Brazard, Johanna; Usman, Anwar; Lacombat, Fabien; Ley, Christian; Martin, Monique M; Plaza, Pascal; Mony, Laetitia; Heijde, Marc; Zabulon, Gérald; Bowler, Chris

    2010-04-07

    The photoactivation dynamics of two new flavoproteins (OtCPF1 and OtCPF2) of the cryptochrome photolyase family (CPF), belonging to the green alga Ostreococcus tauri , was studied by broadband UV-vis femtosecond absorption spectroscopy. Upon excitation of the protein chromophoric cofactor, flavin adenine dinucleotide in its oxidized form (FAD(ox)), we observed in both cases the ultrafast photoreduction of FAD(ox): in 390 fs for OtCPF1 and 590 fs for OtCPF2. Although such ultrafast electron transfer has already been reported for other flavoproteins and CPF members, the present result is the first demonstration with full spectral characterization of the mechanism. Analysis of the photoproduct spectra allowed identifying tryptophan as the primary electron donor. This residue is found to be oxidized to its protonated radical cation form (WH(*+)), while FAD(ox) is reduced to FAD(*-). Subsequent kinetics were observed in the picosecond and subnanosecond regime, mostly described by a biexponential partial decay of the photoproduct transient signal (9 and 81 ps for OtCPF1, and 13 and 340 ps for OtCPF2), with reduced spectral changes, while a long-lived photoproduct remains in the nanosecond time scale. We interpret these observations within the model proposed by the groups of Brettel and Vos, which describes the photoreduction of FADH(*) within E. coli CPD photolyase (EcCPD) as a sequential electron transfer along a chain of three tryptophan residues, although in that case the rate limiting step was the primary photoreduction in 30 ps. In the present study, excitation of FAD(ox) permitted to reveal the following steps and spectroscopically assign them to the hole-hopping process along the tryptophan chain, accompanied by partial charge recombination at each step. In addition, structural analysis performed by homology modeling allowed us to propose a tentative structure of the relative orientations of FAD and the conserved tryptophan triad. The results of preliminary transient anisotropy measurements performed on OtCPF2 finally showed good compatibility with the oxidation of the distal tryptophan residue (WH(351)) in 340 ps, hence, with the overall Brettel-Vos mechanism.

  16. Nano-fEM: protein localization using photo-activated localization microscopy and electron microscopy.

    PubMed

    Watanabe, Shigeki; Richards, Jackson; Hollopeter, Gunther; Hobson, Robert J; Davis, Wayne M; Jorgensen, Erik M

    2012-12-03

    Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated (1-3). However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated (4-7). However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot (8-10). We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are imaged in these same sections using a scanning electron microscope. Fifth, the fluorescence and electron micrographs are aligned using gold particles as fiducial markers. In summary, the subcellular localization of fluorescently tagged proteins can be determined at nanometer resolution in approximately one week.

  17. How vertebrate and invertebrate visual pigments differ in their mechanism of photoactivation

    PubMed Central

    Nakagawa, Masashi; Iwasa, Tatsuo; Kikkawa, Satoshi; Tsuda, Motoyuki; Ebrey, Thomas G.

    1999-01-01

    In vertebrate visual pigments, a glutamic acid serves as a negative counterion to the positively charged chromophore, a protonated Schiff base of retinal. When photoisomerization leads to the Schiff base deprotonating, the anionic glutamic acid becomes protonated, forming a neutral species that activates the visual cascade. We show that in octopus rhodopsin, the glutamic acid has no anionic counterpart. Thus, the “counterion” is already neutral, so no protonated form of an initially anionic group needs to be created to activate. This helps to explain another observation—that the active photoproduct of octopus rhodopsin can be formed without its Schiff base deprotonating. In this sense, the mechanism of light activation of octopus rhodopsin is simpler than for vertebrates, because it eliminates one of the steps required for vertebrate rhodopsins to achieve their activating state. PMID:10339563

  18. Sensors for spacecraft cabin environment monitoring

    NASA Astrophysics Data System (ADS)

    Ramsden, J. J.; Sharkan, Y. P.; Zhitov, N. B.; Korposh, S. O.

    2007-10-01

    It is very necessary, in manned spaceflight, to ensure that essential variables, including concentrations of oxygen, carbon dioxide, water vapour and volatile organic contaminants, are maintained within acceptable limits. Furthermore, the purity of drinking water, etc. must at all times be assured. Moreover, for lengthy voyages, the proliferation of bacteria and other microorganisms may need to be monitored. Here we present a platform approach to these problems based on multiplexed optical fibres sensitized to the different analytes by coating them with thin-film capture layers of bionanomaterial composites. Both amplitude and interference measurement modes are described, as well as a photoactivated amplitude measurement mode offering further sensitivity enhancement. It is a great and novel advantage that the same technology, and hence the same data processing and diagnostics procedures, can be used over a vast range of analytes in both gaseous and liquid media.

  19. Calcium-regulated nuclear enzymes: potential mediators of phytochrome-induced changes in nuclear metabolism?

    NASA Technical Reports Server (NTRS)

    Roux, S. J.

    1992-01-01

    Calcium ions have been proposed to serve as important regulatory elements in stimulus-response coupling for phytochrome responses. An important test of this hypothesis will be to identify specific targets of calcium action that are required for some growth or development process induced by the photoactivated form of phytochrome (Pfr). Initial studies have revealed that there are at least two enzymes in pea nuclei that are stimulated by Pfr in a Ca(2+)-dependent fashion, a calmodulin-regulated nucleoside triphosphatase and a calmodulin-independent but Ca(2+)-dependent protein kinase. The nucleoside triphosphatase appears to be associated with the nuclear envelope, while the protein kinase co-purifies with a nuclear fraction highly enriched for chromatin. This short review summarizes the latest findings on these enzymes and relates them to what is known about Pfr-regulated nuclear metabolism.

  20. Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules

    NASA Astrophysics Data System (ADS)

    Veetil, Aneesh T.; Chakraborty, Kasturi; Xiao, Kangni; Minter, Myles R.; Sisodia, Sangram S.; Krishnan, Yamuna

    2017-12-01

    Achieving triggered release of small molecules with spatial and temporal precision at designated cells within an organism remains a challenge. By combining a cell-targetable, icosahedral DNA-nanocapsule loaded with photoresponsive polymers, we show cytosolic delivery of small molecules with the spatial resolution of single endosomes in specific cells in Caenorhabditis elegans. Our technology can report on the extent of small molecules released after photoactivation as well as pinpoint the location at which uncaging of the molecules occurred. We apply this technology to release dehydroepiandrosterone (DHEA), a neurosteroid that promotes neurogenesis and neuron survival, and determined the timescale of neuronal activation by DHEA, using light-induced release of DHEA from targeted DNA nanocapsules. Importantly, sequestration inside the DNA capsule prevents photocaged DHEA from activating neurons prematurely. Our methodology can in principle be generalized to diverse neurostimulatory molecules.

  1. Three-dimensional gold nanorods-doped multicolor microstructures

    NASA Astrophysics Data System (ADS)

    Lien, C.-H.; Cho, K.-C.; Kuo, W.-S.; Lin, C.-Y.; Chui, C.-L.; Chen, S.-J.

    2012-03-01

    In this study, three-dimensional (3D) crosslinked bovine serum albumin (BSA) microstructures containing gold nanorods (AuNRs) at different absorption wavelengths were fabricated via multiphoton excited photochemistry using rose Bengal (RB) as the photoactivator. After the processing, a higher laser power, greater than the threshold of the AuNR photothermal damage at the matched wavelength for the longitudinal plasmon resonance of AuNR, is adopted to reshape the AuNRs into gold nanospheres at the designed positions of the 3D structure. As a result, 3D BSA microstructures containing different color AuNRs at the designed positions can be successfully fabricated. The AuNRs-doped BSA multicolor microstructures not only can be applied in biomedical scaffolds with plasmonic properties such as two-photon luminescence imaging and photothermal therapy but also can be a specific 3D biomaterial microdevice for plasmonic field.

  2. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging

    PubMed Central

    Ovesný, Martin; Křížek, Pavel; Borkovec, Josef; Švindrych, Zdeněk; Hagen, Guy M.

    2014-01-01

    Summary: ThunderSTORM is an open-source, interactive and modular plug-in for ImageJ designed for automated processing, analysis and visualization of data acquired by single-molecule localization microscopy methods such as photo-activated localization microscopy and stochastic optical reconstruction microscopy. ThunderSTORM offers an extensive collection of processing and post-processing methods so that users can easily adapt the process of analysis to their data. ThunderSTORM also offers a set of tools for creation of simulated data and quantitative performance evaluation of localization algorithms using Monte Carlo simulations. Availability and implementation: ThunderSTORM and the online documentation are both freely accessible at https://code.google.com/p/thunder-storm/ Contact: guy.hagen@lf1.cuni.cz Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24771516

  3. Photo-activation of Single Molecule Magnet Behavior in a Manganese-based Complex

    NASA Astrophysics Data System (ADS)

    Fetoh, Ahmed; Cosquer, Goulven; Morimoto, Masakazu; Irie, Masahiro; El-Gammal, Ola; El-Reash, Gaber Abu; Breedlove, Brian K.; Yamashita, Masahiro

    2016-03-01

    A major roadblock to fully realizing molecular electronic devices is the ability to control the properties of each molecule in the device. Herein we report the control of the magnetic properties of single-molecule magnets (SMMs), which can be used in memory devices, by using a photo-isomerizable diarthylenthene ligand. Photo-isomerization of the diarylethene ligand bridging two manganese salen complexes with visible light caused a significant change in the SMM behavior due to opening of the six-membered ring of diarylethene ligand, accompanied by reorganization of the entire molecule. The ring-opening activated the frequency-dependent magnetization of the complex. Our results are a major step towards the realization of molecular memory devices composed of SMMs because the SMM behaviour can be turned on and off simply by irradiating the molecule.

  4. Optimization of cell morphology measurement via single-molecule tracking PALM.

    PubMed

    Frost, Nicholas A; Lu, Hsiangmin E; Blanpied, Thomas A

    2012-01-01

    In neurons, the shape of dendritic spines relates to synapse function, which is rapidly altered during experience-dependent neural plasticity. The small size of spines makes detailed measurement of their morphology in living cells best suited to super-resolution imaging techniques. The distribution of molecular positions mapped via live-cell Photoactivated Localization Microscopy (PALM) is a powerful approach, but molecular motion complicates this analysis and can degrade overall resolution of the morphological reconstruction. Nevertheless, the motion is of additional interest because tracking single molecules provides diffusion coefficients, bound fraction, and other key functional parameters. We used Monte Carlo simulations to examine features of single-molecule tracking of practical utility for the simultaneous determination of cell morphology. We find that the accuracy of determining both distance and angle of motion depend heavily on the precision with which molecules are localized. Strikingly, diffusion within a bounded region resulted in an inward bias of localizations away from the edges, inaccurately reflecting the region structure. This inward bias additionally resulted in a counterintuitive reduction of measured diffusion coefficient for fast-moving molecules; this effect was accentuated by the long camera exposures typically used in single-molecule tracking. Thus, accurate determination of cell morphology from rapidly moving molecules requires the use of short integration times within each image to minimize artifacts caused by motion during image acquisition. Sequential imaging of neuronal processes using excitation pulses of either 2 ms or 10 ms within imaging frames confirmed this: processes appeared erroneously thinner when imaged using the longer excitation pulse. Using this pulsed excitation approach, we show that PALM can be used to image spine and spine neck morphology in living neurons. These results clarify a number of issues involved in interpretation of single-molecule data in living cells and provide a method to minimize artifacts in single-molecule experiments.

  5. Selection as a learning experience: an exploratory study.

    PubMed

    de Visser, Marieke; Laan, Roland F; Engbers, Rik; Cohen-Schotanus, Janke; Fluit, Cornelia

    2018-01-01

    Research on selection for medical school does not explore selection as a learning experience, despite growing attention for the learning effects of assessment in general. Insight in the learning effects allows us to take advantage of selection as an inclusive part of medical students' learning process to become competent professionals. The aims of this study at Radboud University Medical Center, the Netherlands, were 1) to determine whether students have learning experiences in the selection process, and, if so, what experiences; and 2) to understand what students need in order to utilize the learning effects of the selection process at the start of the formal curriculum. We used focus groups to interview 30 students admitted in 2016 about their learning experiences in the selection process. Thematic analysis was used to explore the outcomes of the interviews and to define relevant themes. In the selection process, students learned about the curriculum, themselves, their relation to others, and the profession they had been selected to enter, although this was not explicitly perceived as learning. Students needed a connection between selection and the curriculum as well as feedback to be able to really use their learning experiences for their further development. Medical school selection qualifies as a learning experience, and students as well as medical schools can take advantage of this. We recommend a careful design of the selection procedure, integrating relevant selection learning experiences into the formal curriculum, providing feedback and explicitly approaching the selection and the formal curriculum as interconnected contributors to students' development.

  6. Tetracyclines function as dual-action light-activated antibiotics.

    PubMed

    He, Ya; Huang, Ying-Ying; Xi, Liyan; Gelfand, Jeffrey A; Hamblin, Michael R

    2018-01-01

    Antimicrobial photodynamic inactivation (aPDI) employs photosensitizing dyes activated by visible light to produce reactive oxygen species. aPDI is independent of the antibiotic resistance status of the target cells, and is thought unlikely to produce resistance itself. Among many PS that have been investigated, tetracyclines occupy a unique niche. They are potentially dual-action compounds that can both kill bacteria under illumination, and prevent bacterial regrowth by inhibiting ribosomes. Tetracycline antibiotics are regarded as bacteriostatic rather than bactericidal. Doxycycline (DOTC) is excited best by UVA light (365 nm) while demeclocycline (DMCT) can be efficiently activated by blue light (415 nm) as well as UVA. Both compounds were able to eradicate Gram-positive (methicillin-resistant Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria (>6 log(10) steps of killing) at concentrations (10-50μM) and fluences (10-20J/cm2). In contrast to methylene blue, MB plus red light, tetracyclines photoinactivated bacteria in rich growth medium. When ~3 logs of bacteria were killed with DMCT/DOTC+light and the surviving cells were added to growth medium, further bacterial killing was observed, while the same experiment with MB allowed complete regrowth. MIC studies were carried out either in the dark or exposed to 0.5mW/cm2 blue light. Up to three extra steps (8-fold) increased antibiotic activity was found with light compared to dark, with MRSA and tetracycline-resistant strains of E. coli. Tetracyclines can accumulate in bacterial ribosomes, where they could be photoactivated with blue/UVA light producing microbial killing via ROS generation.

  7. Ruthenium porphyrin-induced photodamage in bladder cancer cells.

    PubMed

    Bogoeva, Vanya; Siksjø, Monica; Sæterbø, Kristin G; Melø, Thor Bernt; Bjørkøy, Astrid; Lindgren, Mikael; Gederaas, Odrun A

    2016-06-01

    Photodynamic therapy (PDT) is a noninvasive treatment for solid malignant and flat tumors. Light activated sensitizers catalyze photochemical reactions that produce reactive oxygen species which can cause cancer cell death. In this work we investigated the photophysical properties of the photosensitizer ruthenium(II) porphyrin (RuP), along with its PDT efficiency onto rat bladder cancer cells (AY27). Optical spectroscopy verified that RuP is capable to activate singlet oxygen via blue and red absorption bands and inter system crossing (ISC) to the triplet state. In vitro experiments on AY27 indicated increased photo-toxicity of RuP (20μM, 18h incubation) after cell illumination (at 435nm), as a function of blue light exposure. Cell survival fraction was significantly reduced to 14% after illumination of 20μM RuP with 15.6J/cm(2), whereas the "dark toxicity" of 20μM RuP was 17%. Structural and morphological changes of cells were observed, due to RuP accumulation, as well as light-dependent cell death was recorded by confocal microscopy. Flow cytometry verified that PDT-RuP (50μM) triggered significant photo-induced cellular destruction with a photoxicity of (93%±0.9%). Interestingly, the present investigation of RuP-PDT showed that the dominating mode of cell death is necrosis. RuP "dark toxicity" compared to the conventional chemotherapeutic drug cisplatin was higher, both evaluated by the MTT assay (24h). In conclusion, the present investigation shows that RuP with or without photoactivation induces cell death of bladder cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Explicit spatiotemporal simulation of receptor-G protein coupling in rod cell disk membranes.

    PubMed

    Schöneberg, Johannes; Heck, Martin; Hofmann, Klaus Peter; Noé, Frank

    2014-09-02

    Dim-light vision is mediated by retinal rod cells. Rhodopsin (R), a G-protein-coupled receptor, switches to its active form (R(∗)) in response to absorbing a single photon and activates multiple copies of the G-protein transducin (G) that trigger further downstream reactions of the phototransduction cascade. The classical assumption is that R and G are uniformly distributed and freely diffusing on disk membranes. Recent experimental findings have challenged this view by showing specific R architectures, including RG precomplexes, nonuniform R density, specific R arrangements, and immobile fractions of R. Here, we derive a physical model that describes the first steps of the photoactivation cascade in spatiotemporal detail and single-molecule resolution. The model was implemented in the ReaDDy software for particle-based reaction-diffusion simulations. Detailed kinetic in vitro experiments are used to parametrize the reaction rates and diffusion constants of R and G. Particle diffusion and G activation are then studied under different conditions of R-R interaction. It is found that the classical free-diffusion model is consistent with the available kinetic data. The existence of precomplexes between inactive R and G is only consistent with the data if these precomplexes are weak, with much larger dissociation rates than suggested elsewhere. Microarchitectures of R, such as dimer racks, would effectively immobilize R but have little impact on the diffusivity of G and on the overall amplification of the cascade at the level of the G protein. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Environmental labeling of car tires--toxicity to Daphnia magna can be used as a screening method.

    PubMed

    Wik, Anna; Dave, Göran

    2005-02-01

    Car tires contain several water-soluble compounds that can leach into water and have toxic effects on aquatic organisms. Due to tire wear, 10,000 tonnes of rubber particles end up along the Swedish roads every year. This leads to a diffuse input of emissions of several compounds. Emissions of polyaromatic hydrocarbons (PAHs) are of particular concern. PAHs are ingredients of the high aromatic oil (HA oil) that is used in the rubber as a softener and as a filler. The exclusion of HA oils from car tires has started, and an environmental labeling of tires could make HA oils obsolete. The toxicity to Daphnia magna from 12 randomly selected car tires was tested in this study. Rubber from the tread of the tires was grated into small pieces, to simulate material from tire wear, and the rubber was equilibrated with dilution water for 72 h before addition of test organisms. The 24-h EC50s of the rubber pieces ranged from 0.29 to 32 gl-1, and the 48-h EC50s ranged from 0.0625 to 2.41 gl-1. Summer tires were more toxic than winter tires. After the 48-h exposure, the daphnids were exposed to UV-light for 2 h, to determine if the tires contained compounds that were phototoxic. After UV-activation the EC50s ranged from 0.0625 to 0.38 gl-1. Four of the 12 tires had a very distinct photoactivation, with a toxicity increase of >10 times. This study has shown that the used method for toxicity testing with Daphnia magna according to ISO 6341 could be used as a basis for environmental labeling of car tires.

  10. Pertussis toxin modifies the characteristics of both the inhibitory GTP binding proteins and the somatostatin receptor in anterior pituitary tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahy, N.; Woolkalis, M.; Thermos, K.

    1988-08-01

    The effects of pertussis toxin treatment on the characteristics of somatostatin receptors in the anterior pituitary tumor cell line AtT-20 were examined. Pertussis toxin selectively catalyzed the ADP ribosylation of the alpha subunits of the inhibitory GTP binding proteins in AtT-20 cells. Toxin treatment abolished somatostatin inhibition of forskolin-stimulated adenylyl cyclase activity and somatostatin stimulation of GTPase activity. To examine the effects of pertussis toxin treatment on the characteristics of the somatostatin receptor, the receptor was labeled by the somatostatin analog (125I)CGP 23996. (125I)CGP 23996 binding to AtT-20 cell membranes was saturable and within a limited concentration range was tomore » a single high affinity site. Pertussis toxin treatment reduced the apparent density of the high affinity (125I)CGP 23996 binding sites in AtT-20 cell membranes. Inhibition of (125I)CGP 23996 binding by a wide concentration range of CGP 23996 revealed the presence of two binding sites. GTP predominantly reduced the level of high affinity sites in control membranes. Pertussis toxin treatment also diminished the amount of high affinity sites. GTP did not affect (125I)CGP 23996 binding in the pertussis toxin-treated membranes. The high affinity somatostatin receptors were covalently labeled with (125I) CGP 23996 and the photoactivated crosslinking agent n-hydroxysuccinimidyl-4-azidobenzoate. No high affinity somatostatin receptors, covalently bound to (125I)CGP 23996, were detected in the pertussis toxin-treated membranes. These results are most consistent with pertussis toxin uncoupling the inhibitory G proteins from the somatostatin receptor thereby converting the receptor from a mixed population of high and low affinity sites to only low affinity receptors.« less

  11. Noninvasive extramammary Paget's disease treated with photodynamic therapy: case series from the Roswell Park Cancer Institute.

    PubMed

    Housel, Joseph P; Izikson, Leonid; Zeitouni, Nathalie C

    2010-11-01

    Extramammary Paget's disease (EMPD) is a rare low-grade cutaneous malignancy that affects apocrine gland-bearing areas and most commonly occurs on the perineal skin. Photodynamic therapy (PDT) may represent a useful treatment option for extensive, noninvasive EMPD, alone or as part of multimodal therapy. To analyze the clinical outcomes of PDT for noninvasive EMPD with topical aminolevulinic acid (ALA) or intravenous porfimer sodium as photosensitizing agents and argon laser as the photoactivator. Retrospective case series of patients with noninvasive EMPD treated at Roswell Park Cancer Institute with PDT from April 20, 1995, to December 4, 2008. Identified patients included five men and three women aged 50 to 80 (mean age 67) with a total of 24 distinct lesions of noninvasive EMPD without distant metastases. Four patients received topical ALA only as a photosensitizer, three received intravenous porfimer sodium only, and one received both. All patients were treated using a 632.8-nm argon-pumped dye laser, and some were also treated using a red lamp (590-729 nm). Seven of nine lesions (78%) treated with PDT using intravenous porfimer sodium showed a complete response (CR) and were disease free at 12 to 96 months. Eight of 16 lesions (50%) treated with PDT using topical ALA showed a CR, and 38% were disease free at 9 to 88 months. None of the treated patients developed any serious cosmetic or functional impairments, such as loss of sphincter control or dysesthesias. PDT with intravenous porfimer sodium or topical ALA and argon laser may represent a useful, surgery-sparing therapeutic option for management of noninvasive EMPD in selected patients. Prospective, randomized clinical trials are necessary to compare the effectiveness of PDT with that of surgery for noninvasive EMPD. © 2010 by the American Society for Dermatologic Surgery, Inc.

  12. Psoralen interstrand cross-link repair is specifically altered by an adjacent triple-stranded structure

    PubMed Central

    Guillonneau, F.; Guieysse, A. L.; Nocentini, S.; Giovannangeli, C.; Praseuth, D.

    2004-01-01

    Targeting DNA-damaging agents to specific DNA sites by using sequence-specific DNA ligands has been successful in directing genomic modifications. The understanding of repair processing of such targeted damage and the influence of the adjacent complex is largely unknown. In this way, directed interstrand cross-links (ICLs) have already been generated by psoralen targeting. The mechanisms responsible for ICL removal are far from being understood in mammalian cells, with the proposed involvement of both mutagenic and recombinogenic pathways. Here, a unique ICL was introduced at a selected site by photoactivation of a psoralen moiety with the use of psoralen conjugates of triplex-forming oligonucleotides. The processing of psoralen ICL was evaluated in vitro and in cells for two types of cross-linked substrates, either containing a psoralen ICL alone or with an adjacent triple-stranded structure. We show that the presence of a neighbouring triplex structure interferes with different stages of psoralen ICL processing: (i) the ICL-induced DNA repair synthesis in HeLa cell extracts is inhibited by the triplex structure, as measured by the efficiency of ‘true’ and futile repair synthesis, stopping at the ICL site; (ii) in HeLa cells, the ICL removal via a nucleotide excision repair (NER) pathway is delayed in the presence of a neighbouring triplex; and (iii) the binding to ICL of recombinant xeroderma pigmentosum A protein, which is involved in pre-incision recruitment of NER factors is impaired by the presence of the third DNA strand. These data characterize triplex-induced modulation of ICL repair pathways at specific steps, which might have implications for the controlled induction of targeted genomic modifications and for the associated cellular responses. PMID:14966263

  13. Conformational Fluctuations in G-Protein-Coupled Receptors

    NASA Astrophysics Data System (ADS)

    Brown, Michael F.

    2014-03-01

    G-protein-coupled receptors (GPCRs) comprise almost 50% of pharmaceutical drug targets, where rhodopsin is an important prototype and occurs naturally in a lipid membrane. Rhodopsin photoactivation entails 11-cis to all-trans isomerization of the retinal cofactor, yielding an equilibrium between inactive Meta-I and active Meta-II states. Two important questions are: (1) Is rhodopsin is a simple two-state switch? Or (2) does isomerization of retinal unlock an activated conformational ensemble? For an ensemble-based activation mechanism (EAM) a role for conformational fluctuations is clearly indicated. Solid-state NMR data together with theoretical molecular dynamics (MD) simulations detect increased local mobility of retinal after light activation. Resultant changes in local dynamics of the cofactor initiate large-scale fluctuations of transmembrane helices that expose recognition sites for the signal-transducing G-protein. Time-resolved FTIR studies and electronic spectroscopy further show the conformational ensemble is strongly biased by the membrane lipid composition, as well as pH and osmotic pressure. A new flexible surface model (FSM) describes how the curvature stress field of the membrane governs the energetics of active rhodopsin, due to the spontaneous monolayer curvature of the lipids. Furthermore, influences of osmotic pressure dictate that a large number of bulk water molecules are implicated in rhodopsin activation. Around 60 bulk water molecules activate rhodopsin, which is much larger than the number of structural waters seen in X-ray crystallography, or inferred from studies of bulk hydrostatic pressure. Conformational selection and promoting vibrational motions of rhodopsin lead to activation of the G-protein (transducin). Our biophysical data give a paradigm shift in understanding GPCR activation. The new view is: dynamics and conformational fluctuations involve an ensemble of substates that activate the cognate G-protein in the amplified visual response.

  14. Experimental photodynamic laser therapy for rheumatoid arthritis with a second generation photosensitizer.

    PubMed

    Hendrich, C; Hüttmann, G; Vispo-Seara, J L; Houserek, S; Siebert, W E

    2000-01-01

    Photodynamic laser therapy has been shown to be a new method for the treatment of synovitis in various animal models. Its principle is the accumulation of a photosensitizing drug in the inflamed synovium which is destroyed by photoactivation of the drug. In the present animal study we demonstrate the effect of a second-generation photosensitizer and suggest a concept for light dosimetry within the joint. We used 38 inbred rabbits for the IgG-induced arthritis model; 2 mg/kg of the benzoporphyrin derivative monoacid ring-A (BPD-MA) Verteporfin were administered 3 h before irradiation, which was performed using a 690-nm diode laser coupled to quartz glass fiber with a cylinder diffusor tip at a total light energy of either 180 or 470 J. During irradiation specific fluorescence of BPD-MA was monitored using a spectroscopy unit. The effect of the photodynamic laser therapy was documented grossly and histologically after 1 week. Within the 470 J-group a complete necrosis of the inflamed synovium was observed. The bradytrophic structures of the joint, however, remained unchanged. Throughout the 180 J-group the extent of necrosis was minor. During irradiation the tissue fluorescence of BPD-MA showed a dose-dependent decrease. Using BPD-MA as a photosensitizer a highly selective and minimal invasive synoviorthesis can be performed. At a dose of 2 mg/kg the histological effect depends on the light dose. For optimum efficacy a total energy of 470 J seems favorable. Online fluorescence detection can be used to monitor the effect of light administration. For dosimetry therefore an online tissue fluorescence detection may represent a technical solution.

  15. Optogenetic analysis of a nociceptor neuron and network reveals ion channels acting downstream of primary sensors.

    PubMed

    Husson, Steven J; Costa, Wagner Steuer; Wabnig, Sebastian; Stirman, Jeffrey N; Watson, Joseph D; Spencer, W Clay; Akerboom, Jasper; Looger, Loren L; Treinin, Millet; Miller, David M; Lu, Hang; Gottschalk, Alexander

    2012-05-08

    Nociception generally evokes rapid withdrawal behavior in order to protect the tissue from harmful insults. Most nociceptive neurons responding to mechanical insults display highly branched dendrites, an anatomy shared by Caenorhabditis elegans FLP and PVD neurons, which mediate harsh touch responses. Although several primary molecular nociceptive sensors have been characterized, less is known about modulation and amplification of noxious signals within nociceptor neurons. First, we analyzed the FLP/PVD network by optogenetics and studied integration of signals from these cells in downstream interneurons. Second, we investigated which genes modulate PVD function, based on prior single-neuron mRNA profiling of PVD. Selectively photoactivating PVD, FLP, and downstream interneurons via Channelrhodopsin-2 (ChR2) enabled the functional dissection of this nociceptive network, without interfering signals by other mechanoreceptors. Forward or reverse escape behaviors were determined by PVD and FLP, via integration by command interneurons. To identify mediators of PVD function, acting downstream of primary nocisensor molecules, we knocked down PVD-specific transcripts by RNAi and quantified light-evoked PVD-dependent behavior. Cell-specific disruption of synaptobrevin or voltage-gated Ca(2+) channels (VGCCs) showed that PVD signals chemically to command interneurons. Knocking down the DEG/ENaC channel ASIC-1 and the TRPM channel GTL-1 indicated that ASIC-1 may extend PVD's dynamic range and that GTL-1 may amplify its signals. These channels act cell autonomously in PVD, downstream of primary mechanosensory molecules. Our work implicates TRPM channels in modifying excitability of and DEG/ENaCs in potentiating signal output from a mechano-nociceptor neuron. ASIC-1 and GTL-1 homologs, if functionally conserved, may denote valid targets for novel analgesics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Nano-cone optical fiber array sensors for MiRNA profiling

    NASA Astrophysics Data System (ADS)

    Wang, Yunshan; Senapati, Satyajyoti; Stoddart, Paul; Howard, Scott; Chang, Hsueh-Chia

    2013-09-01

    Up/down regulation of microRNA panels has been correlated to cardiovascular diseases and cancer. Frequent miRNA profiling at home can hence allow early cancer diagnosis and home-use chronic disease monitoring, thus reducing both mortality rate and healthcare cost. However, lifetime of miRNAs is less than 1 hour without preservation and their concentrations range from pM to mM. Despite rapid progress in the last decade, modern nucleic acid analysis methods still do not allow personalized miRNA profiling---Real-time PCR and DNA micro-array both require elaborate miRNA preservation steps and expensive equipment and nano pore sensors cannot selectively quantify a large panel with a large dynamic range. We report a novel and low-cost optical fiber sensing platform, which has the potential to profile a panel of miRNA with simple LED light sources and detectors. The individual tips of an optical imaging fiber bundle (mm in diameter with 7000 fiber cores) were etched into cones with 10 nm radius of curvature and coated with Au. FRET (Forster Resonant Energy Transfer) hairpin oligo probes, with the loop complementary to a specific miRNA that can release the hairpin, were functionalized onto the conic tips. Exciting light in the optical fiber waveguide is optimally coupled to surface plasmonics on the gold surface, which then converges to the conic tips with two orders of magnitude enhancement in intensity. Unlike nanoparticle plasmonics, tip plasmonics can be excited over a large band width and hence the plasmonic enhanced fluorescence signal of the FRET reporter is also focused towards the tip--- and is further enhanced with the periodic resonant grid of the fiber array which gives rise to pronounced standing wave interference patterns. Multiplexing is realized by functionalizing different probes onto one fiber bundle using a photoactivation process.

  17. Optogenetic stimulation of adrenergic C1 neurons causes sleep state-dependent cardiorespiratory stimulation and arousal with sighs in rats.

    PubMed

    Burke, Peter G R; Abbott, Stephen B G; Coates, Melissa B; Viar, Kenneth E; Stornetta, Ruth L; Guyenet, Patrice G

    2014-12-01

    The rostral ventrolateral medulla (RVLM) contains central respiratory chemoreceptors (retrotrapezoid nucleus, RTN) and the sympathoexcitatory, hypoxia-responsive C1 neurons. Simultaneous optogenetic stimulation of these neurons produces vigorous cardiorespiratory stimulation, sighing, and arousal from non-REM sleep. To identify the effects that result from selectively stimulating C1 cells. A Cre-dependent vector expressing channelrhodopsin 2 (ChR2) fused with enhanced yellow fluorescent protein or mCherry was injected into the RVLM of tyrosine hydroxylase (TH)-Cre rats. The response of ChR2-transduced neurons to light was examined in anesthetized rats. ChR2-transduced C1 neurons were photoactivated in conscious rats while EEG, neck muscle EMG, blood pressure (BP), and breathing were recorded. Most ChR2-expressing neurons (95%) contained C1 neuron markers and innervated the spinal cord. RTN neurons were not transduced. While the rats were under anesthesia, the C1 cells were faithfully activated by each light pulse up to 40 Hz. During quiet resting and non-REM sleep, C1 cell stimulation (20 s, 2-20 Hz) increased BP and respiratory frequency and produced sighs and arousal from non-REM sleep. Arousal was frequency-dependent (85% probability at 20 Hz). Stimulation during REM sleep increased BP, but had no effect on EEG or breathing. C1 cell-mediated breathing stimulation was occluded by hypoxia (12% FIO2), but was unchanged by 6% FiCO2. C1 cell stimulation reproduces most effects of acute hypoxia, specifically cardiorespiratory stimulation, sighs, and arousal. C1 cell activation likely contributes to the sleep disruption and adverse autonomic consequences of sleep apnea. During hypoxia (awake) or REM sleep, C1 cell stimulation increases BP but no longer stimulates breathing.

  18. Magnetic Bead Based Immunoassay for Autonomous Detection of Toxins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Y; Hara, C A; Knize, M G

    2008-05-01

    As a step towards toward the development of a rapid, reliable analyzer for bioagents in the environment, we are developing an automated system for the simultaneous detection of a group of select agents and toxins. To detect toxins, we modified and automated an antibody-based approach previously developed for manual medical diagnostics that uses fluorescent eTag{trademark} reporter molecules and is suitable for highly multiplexed assays. Detection is based on two antibodies binding simultaneously to a single antigen, one of which is labeled with biotin while the other is conjugated to a fluorescent eTag{trademark} through a cleavable linkage. Aqueous samples are incubatedmore » with the mixture of antibodies along with streptavidin-coated magnetic beads coupled to a photo-activatable porphyrin complex. In the presence of antigen, a molecular complex is formed where the cleavable linkage is held in proximity to the photoactivable group. Upon excitation at 680 nm, free radicals are generated, which diffuse and cleave the linkage, releasing the eTags{trademark}. Released eTags{trademark} are analyzed using capillary gel electrophoresis with laser-induced fluorescence detection. Limits of detection for ovalbumin and botulinum toxoid individually were 4 ng/mL (or 80 pg) and 16 ng/mL (or 320 pg), respectively, using the manual assay. In addition, we demonstrated the use of pairs of antibodies from different sources in a single assay to decrease the rate of false positives. Automation of the assay was demonstrated on a flow-through format with higher LODs of 125 ng/mL (or 2.5 ng) each of a mixture of ovalbumin and botulinum toxoid. This versatile assay can be easily modified with the appropriate antibodies to detect a wide range of toxins and other proteins.« less

  19. Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos

    PubMed Central

    Ronzitti, Emiliano; Conti, Rossella; Zampini, Valeria; Tanese, Dimitrii; Klapoetke, Nathan; Boyden, Edward S.; Papagiakoumou, Eirini

    2017-01-01

    Optogenetic neuronal network manipulation promises to unravel a long-standing mystery in neuroscience: how does microcircuit activity relate causally to behavioral and pathological states? The challenge to evoke spikes with high spatial and temporal complexity necessitates further joint development of light-delivery approaches and custom opsins. Two-photon (2P) light-targeting strategies demonstrated in-depth generation of action potentials in photosensitive neurons both in vitro and in vivo, but thus far lack the temporal precision necessary to induce precisely timed spiking events. Here, we show that efficient current integration enabled by 2P holographic amplified laser illumination of Chronos, a highly light-sensitive and fast opsin, can evoke spikes with submillisecond precision and repeated firing up to 100 Hz in brain slices from Swiss male mice. These results pave the way for optogenetic manipulation with the spatial and temporal sophistication necessary to mimic natural microcircuit activity. SIGNIFICANCE STATEMENT To reveal causal links between neuronal activity and behavior, it is necessary to develop experimental strategies to induce spatially and temporally sophisticated perturbation of network microcircuits. Two-photon computer generated holography (2P-CGH) recently demonstrated 3D optogenetic control of selected pools of neurons with single-cell accuracy in depth in the brain. Here, we show that exciting the fast opsin Chronos with amplified laser 2P-CGH enables cellular-resolution targeting with unprecedented temporal control, driving spiking up to 100 Hz with submillisecond onset precision using low laser power densities. This system achieves a unique combination of spatial flexibility and temporal precision needed to pattern optogenetically inputs that mimic natural neuronal network activity patterns. PMID:28972125

  20. Selection as a learning experience: an exploratory study

    PubMed Central

    de Visser, Marieke; Laan, Roland F; Engbers, Rik; Cohen-Schotanus, Janke; Fluit, Cornelia

    2018-01-01

    Introduction Research on selection for medical school does not explore selection as a learning experience, despite growing attention for the learning effects of assessment in general. Insight in the learning effects allows us to take advantage of selection as an inclusive part of medical students’ learning process to become competent professionals. The aims of this study at Radboud University Medical Center, the Netherlands, were 1) to determine whether students have learning experiences in the selection process, and, if so, what experiences; and 2) to understand what students need in order to utilize the learning effects of the selection process at the start of the formal curriculum. Materials and methods We used focus groups to interview 30 students admitted in 2016 about their learning experiences in the selection process. Thematic analysis was used to explore the outcomes of the interviews and to define relevant themes. Results In the selection process, students learned about the curriculum, themselves, their relation to others, and the profession they had been selected to enter, although this was not explicitly perceived as learning. Students needed a connection between selection and the curriculum as well as feedback to be able to really use their learning experiences for their further development. Discussion Medical school selection qualifies as a learning experience, and students as well as medical schools can take advantage of this. We recommend a careful design of the selection procedure, integrating relevant selection learning experiences into the formal curriculum, providing feedback and explicitly approaching the selection and the formal curriculum as interconnected contributors to students’ development. PMID:29785147

  1. Quantitative measurement of intracellular protein dynamics using photobleaching or photoactivation of fluorescent proteins.

    PubMed

    Matsuda, Tomoki; Nagai, Takeharu

    2014-12-01

    Unlike in vitro protein dynamics, intracellular protein dynamics are intricately regulated by protein-protein interactions or interactions between proteins and other cellular components, including nucleic acids, the plasma membrane and the cytoskeleton. Alteration of these dynamics plays a crucial role in physiological phenomena such as gene expression and cell division. Live-cell imaging via microscopy with the inherent properties of fluorescent proteins, i.e. photobleaching and photoconversion, or fluorescence correlation spectroscopy, provides insight into the movement of proteins and their interactions with cellular components. This article reviews techniques based on photo-induced changes in the physicochemical properties of fluorescent proteins to measure protein dynamics inside living cells, and it also discusses the strengths and weaknesses of these techniques. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Postsynaptic elevation of calcium induces persistent depression of developing neuromuscular synapses.

    PubMed

    Cash, S; Dan, Y; Poo, M M; Zucker, R

    1996-04-01

    Synaptic activity is known to modulate neuronal connectivity in the nervous system. At developing Xenopus neuromuscular synapses in culture, repetitive postsynaptic application of ACh near the synapse leads to immediate and persistent synaptic depression, which was shown to be caused by reduction of presynaptic evoked transmitter release. However, little depression was found when ACh was applied to the muscle 20 microns or further from the synapse. Fluorescence imaging of cytosolic Ca2+ ([Ca2+]i) showed that each ACh pulse induced a transient elevation of myocyte [Ca2+]i that spread approximately 20 microns. Local photoactivated release of Ca2+ from the caged Ca2+ chelators nitr-5 or nitrophen in the postsynaptic cell was sufficient to induce persistent synaptic depression. These results support a model in which localized Ca2+ influx into the postsynaptic myocyte initiates transsynaptic retrograde modulation of presynaptic secretion mechanisms.

  3. Thalamic regulation of sucrose-seeking during unexpected reward omission

    PubMed Central

    Do-Monte, Fabricio H.; Minier-Toribio, Angélica; Quiñones-Laracuente, Kelvin; Medina-Colón, Estefanía M.; Quirk, Gregory J.

    2017-01-01

    SUMMARY The paraventricular nucleus of the thalamus (PVT) is thought to regulate behavioral responses under emotionally arousing conditions. Reward-associated cues activate PVT neurons, however, the specific PVT efferents regulating reward-seeking remain elusive. Using a cued sucrose-seeking task, we manipulated PVT activity under two emotionally distinct conditions: 1) when reward was available during the cue as expected, or 2) when reward was unexpectedly omitted during the cue. Pharmacological inactivation of the anterior PVT (aPVT), but not the posterior PVT, increased sucrose-seeking only when reward was omitted. Consistent with this, photoactivation of aPVT neurons abolished sucrose-seeking, and the firing of aPVT neurons differentiated reward availability. Photoinhibition of aPVT projections to the nucleus accumbens or to the amygdala increased or decreased, respectively, sucrose-seeking only when reward was omitted. Our findings suggest that PVT bidirectionally modulates sucrose-seeking under the negative (frustrative) conditions of reward omission. PMID:28426970

  4. Sites of intermolecular crosslinking of fatty acyl chains in phospholipids carrying a photoactivable carbene precursor

    PubMed Central

    Gupta, Chhitar M.; Costello, Catherine E.; Khorana, H. Gobind

    1979-01-01

    Sonicated vesicles of 1-fatty acyl-2-ω-(2-diazo-3,3,3-trifluoropropionoxy) fatty acyl sn-glycero-3-phosphoryl-cholines were shown recently to form intermolecular crosslinks by insertion of the photogenerated carbene into a C—H bond of a neighboring hydrocarbon chain. We now report that photolysis of multilamellar dispersions gives a second series of products in which carbene insertion is accompanied by elimination of a molecule of hydrogen fluoride. The sites of crosslinking in the latter compounds have been studied by mass spectrometry using phospholipids with varying chain lengths of the fatty acyl groups carrying the carbene precursor. The patterns observed show that the point of maximum crosslinking is consistent with the recent conclusion that in phospholipids the sn-2 fatty acyl chain trails the sn-1 chain by 2-4 atoms. Images PMID:16592675

  5. Photodynamic detection and treatment of squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Pergadia, Vani R.; Papaioannou, Thanassis; Snyder, Wendy J.; Marcus, J.; Glassberg, Edward; Dimino-Emme, L.; Fishbein, Michael C.; Thomas, Reem; Dhondt, M. D.; Lask, Gary P.; Grundfest, Warren S.

    1994-02-01

    In this study the fluorescence intensity of photosensitizer in squamous cell tumors were quantified in terms of the tumor resolution rate. A He-Cd laser (442 nm - 17 mW) with a 600 micrometers core silica fiber was used for excitation. The same fiber was used for fluorescence acquisition and an optical multichannel analyzer (EG&G, OMA III) was used to analyze the fluorescence. Twelve days after carcinoma inoculation fluorescence signal from the tumor and skin (1 cm radius from the tumor) at the 12, 3, 6, and 9 o'clock positions were recorded. Benzoporphyrin Derivative (QLT, Canada -- 2 mg/kg of body weight) was then injected into the tail vein. The drug was photoactivated with a 690 nm modified argon pump cw-dye laser (Medtech) operating at 140 mW/cm2 for 15 mins. LIFS is capable of localizing in situ malignancy and evaluating photosensitizers for photodynamic fluorescence detection and therapy of tumors.

  6. A circuit-based mechanism underlying familiarity signaling and the preference for novelty

    PubMed Central

    Molas, Susanna; Zhao-Shea, Rubing; Liu, Liwang; DeGroot, Steven R.; Gardner, Paul D.; Tapper, Andrew R.

    2017-01-01

    Novelty preference (NP) is an evolutionarily conserved, essential survival mechanism often dysregulated in neuropsychiatric disorders. NP is mediated by a motivational dopamine signal that increases in response to novel stimuli thereby driving exploration. However, the mechanism by which once novel stimuli transitions to familiar stimuli is unknown. Here we describe a neuroanatomical substrate for familiarity signaling, the interpeduncular nucleus (IPN) of the midbrain, which is activated as novel stimuli become familiar with multiple exposures. Optogenetic silencing of IPN neurons increases salience of and interaction with familiar stimuli without affecting novelty responses; whereas, photo-activation of the same neurons reduces exploration of novel stimuli mimicking familiarity. Bi-directional control of NP by the IPN depends on familiarity- and novelty-signals arising from excitatory habenula and dopaminergic ventral tegmental area inputs, which activate and reduce IPN activity, respectively. These results demonstrate that familiarity signals through unique IPN circuitry that opposes novelty seeking to control NP. PMID:28714952

  7. A circuit-based mechanism underlying familiarity signaling and the preference for novelty.

    PubMed

    Molas, Susanna; Zhao-Shea, Rubing; Liu, Liwang; DeGroot, Steven R; Gardner, Paul D; Tapper, Andrew R

    2017-09-01

    Novelty preference (NP) is an evolutionarily conserved, essential survival mechanism often dysregulated in neuropsychiatric disorders. NP is mediated by a motivational dopamine signal that increases in response to novel stimuli, thereby driving exploration. However, the mechanism by which once-novel stimuli transition to familiar stimuli is unknown. Here we describe a neuroanatomical substrate for familiarity signaling, the interpeduncular nucleus (IPN) of the midbrain, which is activated as novel stimuli become familiar with multiple exposures. In mice, optogenetic silencing of IPN neurons increases salience of and interaction with familiar stimuli without affecting novelty responses, whereas photoactivation of the same neurons reduces exploration of novel stimuli mimicking familiarity. Bidirectional control of NP by the IPN depends on familiarity signals and novelty signals arising from excitatory habenula and dopaminergic ventral tegmentum inputs, which activate and reduce IPN activity, respectively. These results demonstrate that familiarity signals through unique IPN circuitry that opposes novelty seeking to control NP.

  8. Bundle-sheath thylakoids from NADP-malic enzyme-type C4 plants require an exogenous electron donor for enzyme light activation.

    PubMed

    Lavergne, D; Droux, M; Jacquot, J P; Miginiac-Maslow, M; Champigny, M L; Gadal, P

    1985-10-01

    Light activation of either NADP-malate dehydrogenase (EC 1.1.1.82) or fructose-1,6-bisphosphate phosphatase (EC 3.1.3.11) was assayed in a reconstituted chloroplastic, system comprising the isolated proteins of the ferredoxin-thioredoxin light-activation system and thylakoids from either mesophyll or bundle-sheath tissues of different C4 plants. While C4-plant thylakoids functionned almost equally well with C3-or C4-plant proteins, the photosyntem-II-deficient bundle-sheath thylakoids from the NADP-malic enzyme type, were unable to perform enzyme photoactivation unless supplemented with an electron donor to photosystem I. Bundle-sheath thylakoids isolated from plants showing no photosystem-II deficiency did not require such an addition. The results are discussed with respect to a possible requirement for a physiological reductant of ferredoxin for enzyme light activation in bundle-sheath, tissues.

  9. Review of the photo-induced toxicity of environmental contaminants.

    PubMed

    Roberts, Aaron P; Alloy, Matthew M; Oris, James T

    2017-01-01

    Solar radiation is a vital component of ecosystem function. However, sunlight can also interact with certain xenobiotic compounds in a phenomenon known as photo-induced, photo-enhanced, photo-activated, or photo-toxicity. This phenomenon broadly refers to an interaction between a chemical and sunlight resulting in increased toxicity. Because most aquatic ecosystems receive some amount of sunlight, co-exposure to xenobiotic chemicals and solar radiation is likely to occur in the environment, and photo-induced toxicity may be an important factor impacting aquatic ecosystems. However, photo-induced toxicity is not likely to be relevant in all aquatic systems or exposure scenarios due to variation in important ecological factors as well as physiological adaptations of the species that reside there. Here, we provide an updated review of the state of the science of photo-induced toxicity in aquatic ecosystems. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Activation of the complement system in patients with porphyrias after irradiation in vivo.

    PubMed Central

    Lim, H W; Poh-Fitzpatrick, M B; Gigli, I

    1984-01-01

    Irradiation of the forearms of two patients with erythropoietic protoporphyria and one patient with porphyria cutanea tarda resulted in an in vivo activation of the complement system, as assessed by diminution of the hemolytic titers of the third component of complement by 23-57%, and of the fifth component of complement (C5) by 19-47%. Such treatment also generated chemotactic activity for human polymorphonuclear cells; the chemotactic activity was stable at 56 degrees C and antigenically related to human C5. On Sephadex G-75 chromatography the chemotactic activity eluted with an apparent molecular weight of 15,000. These in vivo results extend our previous in vitro observation of photoactivation of complement in sera from patients with erythropoietic protoporphyria and porphyria cutanea tarda, and suggest that the complement system may participate in the pathogenesis of cutaneous phototoxicity in these patients. PMID:6392339

  11. Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie

    2014-07-01

    Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein-protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB-EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB-EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB-EF-Tu interactions.

  12. Super-resolution imaging and tracking of protein–protein interactions in sub-diffraction cellular space

    PubMed Central

    Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie

    2014-01-01

    Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein–protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB–EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB–EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB–EF-Tu interactions. PMID:25030837

  13. Plasmon-Enhanced Photocleaving Dynamics in Colloidal MicroRNA-Functionalized Silver Nanoparticles Monitored with Second Harmonic Generation.

    PubMed

    Kumal, Raju R; Abu-Laban, Mohammad; Landry, Corey R; Kruger, Blake; Zhang, Zhenyu; Hayes, Daniel J; Haber, Louis H

    2016-10-11

    The photocleaving dynamics of colloidal microRNA-functionalized nanoparticles are studied using time-dependent second harmonic generation (SHG) measurements. Model drug-delivery systems composed of oligonucleotides attached to either silver nanoparticles or polystyrene nanoparticles using a nitrobenzyl photocleavable linker are prepared and characterized. The photoactivated controlled release is observed to be most efficient on resonance at 365 nm irradiation, with pseudo-first-order rate constants that are linearly proportional to irradiation powers. Additionally, silver nanoparticles show a 6-fold plasmon enhancement in photocleaving efficiency over corresponding polystyrene nanoparticle rates, while our previous measurements on gold nanoparticles show a 2-fold plasmon enhancement compared to polystyrene nanoparticles. Characterizations including extinction spectroscopy, electrophoretic mobility, and fluorimetry measurements confirm the analysis from the SHG results. The real-time SHG measurements are shown to be a highly sensitive method for investigating plasmon-enhanced photocleaving dynamics in model drug delivery systems.

  14. High resolution fate map of the zebrafish diencephalon.

    PubMed

    Russek-Blum, Niva; Nabel-Rosen, Helit; Levkowitz, Gil

    2009-07-01

    The diencephalon acts as an interactive site between the sensory, central, and endocrine systems and is one of the most elaborate structures in the vertebrate brain. To better understand the embryonic development and morphogenesis of the diencephalon, we developed an improved photoactivation (uncaging)-based lineage tracing strategy. To determine the exact position of a given diencephalic progenitor domain, we used a transgenic line driving green fluorescent protein (GFP) in cells expressing the proneural protein, Neurogenin1 (Neurog1), which was used as a visible neural plate landmark. This approach facilitated precise labeling of defined groups of cells in the prospective diencephalon of the zebrafish neural plate. In this manner, we labeled multiple overlapping areas of the diencephalon, thereby ensuring both accuracy and reproducibility of our lineage tracing regardless of the dynamic changes of the developing neural plate. We present a fate map of the zebrafish diencephalon at a higher spatial resolution than previously described. (c) 2009 Wiley-Liss, Inc.

  15. Photoinduced DNA Interstrand Cross-Link Formation by Naphthalene Boronates via a Carbocation.

    PubMed

    Wang, Yibin; Lin, Zechao; Fan, Heli; Peng, Xiaohua

    2016-07-18

    Most photoinduced DNA cross-link formation by a bifunctional aryl derivative is through a bisquinone methide. DNA cross-linking via a bisarylcarbocation remains a less explored area. We designed and synthesized a series of naphthalene boronates that produce DNA interstrand cross-links via a carbocation upon UV irradiation. A free radical was generated from the naphthalene boronates with 350 nm irradiation and further converted to a carbocation by electron transfer. The activation mechanism was determined using the orthogonal traps, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and methoxyamine that react with either the free radical or the carbocation but not both. This represents a novel example of photoinduced DNA cross-link formation via carbocations generated from a bisaryl derivative. This work provides information useful for the design of novel photoactivated DNA cross-linking agents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Active avoidance requires inhibitory signaling in the rodent prelimbic prefrontal cortex

    PubMed Central

    Bravo-Rivera, Christian; Rodriguez-Romaguera, Jose; Pagan-Rivera, Pablo A; Burgos-Robles, Anthony; Roman-Ortiz, Ciorana; Quirk, Gregory J

    2018-01-01

    Much is known about the neural circuits of conditioned fear and its relevance to understanding anxiety disorders, but less is known about other anxiety-related behaviors such as active avoidance. Using a tone-signaled, platform-mediated avoidance task, we observed that pharmacological inactivation of the prelimbic prefrontal cortex (PL) delayed avoidance. Surprisingly, optogenetic silencing of PL glutamatergic neurons did not delay avoidance. Consistent with this, inhibitory but not excitatory responses of rostral PL neurons were associated with avoidance training. To test the importance of these inhibitory responses, we optogenetically stimulated PL neurons to counteract the tone-elicited reduction in firing rate. Photoactivation of rostral (but not caudal) PL neurons at 4 Hz impaired avoidance. These findings suggest that inhibitory responses of rostral PL neurons signal the avoidability of a potential threat and underscore the importance of designing behavioral optogenetic studies based on neuronal firing responses. PMID:29851381

  17. Designing photoswitchable peptides using the AsLOV2 domain.

    PubMed

    Lungu, Oana I; Hallett, Ryan A; Choi, Eun Jung; Aiken, Mary J; Hahn, Klaus M; Kuhlman, Brian

    2012-04-20

    Photocontrol of functional peptides is a powerful tool for spatial and temporal control of cell signaling events. We show that the genetically encoded light-sensitive LOV2 domain of Avena Sativa phototropin 1 (AsLOV2) can be used to reversibly photomodulate the affinity of peptides for their binding partners. Sequence analysis and molecular modeling were used to embed two peptides into the Jα helix of the AsLOV2 domain while maintaining AsLOV2 structure in the dark but allowing for binding to effector proteins when the Jα helix unfolds in the light. Caged versions of the ipaA and SsrA peptides, LOV-ipaA and LOV-SsrA, bind their targets with 49- and 8-fold enhanced affinity in the light, respectively. These switches can be used as general tools for light-dependent colocalization, which we demonstrate with photo-activable gene transcription in yeast. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning

    PubMed Central

    Anselmi, Francesca; Ventalon, Cathie; Bègue, Aurélien; Ogden, David; Emiliani, Valentina

    2011-01-01

    Access to three-dimensional structures in the brain is fundamental to probe signal processing at multiple levels, from integration of synaptic inputs to network activity mapping. Here, we present an optical method for independent three-dimensional photoactivation and imaging by combination of digital holography with remote-focusing. We experimentally demonstrate compensation of spherical aberration for out-of-focus imaging in a range of at least 300 μm, as well as scanless imaging along oblique planes. We apply this method to perform functional imaging along tilted dendrites of hippocampal pyramidal neurons in brain slices, after photostimulation by multiple spots glutamate uncaging. By bringing extended portions of tilted dendrites simultaneously in-focus, we monitor the spatial extent of dendritic calcium signals, showing a shift from a widespread to a spatially confined response upon blockage of voltage-gated Na+ channels. PMID:22074779

  19. Effect of photodynamic therapy on mouse platelets

    NASA Astrophysics Data System (ADS)

    Zhou, Chuannong; Chi, Shunji; Deng, Jinsheng; Zhang, Hua; Liang, Junlin; Ha, Xian-wen

    1993-06-01

    Normal mice received hematoporphyrin derivative (HpD) i.v. prior to red light irradiation and the platelet-rich plasma was prepared and irradiated by red light. The platelets were processed for EM examination and stereological analysis. It was shown the 16 hrs after irradiation almost all platelets were necrotized; 8 hours after irradiation about one fourth of the platelets were necrotized and the remaining were considerably damaged. Immediately after irradiation a small number of platelets became necrotic and most other platelets were swollen and deformated, showing significantly increased mean area, perimeter and short axis, and mean cell volume and cell surface area. The findings indicate that platelets are highly sensitive to PDT action and can be directly and rapidly damaged by PDT even in the absence of vascular endothelial cells. The early platelet photoactivation may play an important role in the initiation of early vascular damage and microcirculatory alterations induced by PDT in vivo.

  20. Ytterbium trifluoride as a radiopaque agent for dental cements.

    PubMed

    Collares, F M; Ogliari, F A; Lima, G S; Fontanella, V R C; Piva, E; Samuel, S M W

    2010-09-01

    To evaluate the radiopacity, degree of conversion (DC) and flexural strength of an experimental dental cement, with several added radiopaque substances. Titanium dioxide, quartz, zirconia, bismuth oxide, barium sulphate and ytterbium trifluoride were added to the experimental cement in five different concentrations. Radiopacity was evaluated with a phosphor plate system, and the radiodensity of specimens was compared with an aluminium step-wedge. DC was evaluated with FT-infrared spectroscopy following 20 s of photo-activation. Specimens with dimensions of 12 x 2 x 2 mm were used for the flexural strength test. Data were analysed with two-way anova and Tukey's post hoc test. Radiopacity of the experimental dental cements with barium sulphate and bismuth oxide at 40% and ytterbium fluoride at 30% and 40% showed no significant differences in comparison with 3 mm of Al (181, 96). The experimental dental cements with at least 30% added ytterbium trifluoride had satisfactory radiopacity without influencing other properties.

  1. Photoactivation of PBFA-2

    NASA Astrophysics Data System (ADS)

    Simmons, T. N.; Mashburn, J. B.

    A 30 MV peak output voltage will be produced. A substantial portion of the output energy will be lost as free electrons which produce hard X-rays. Many X-rays will have energies within the photoneutron giant resonance. A PBFA-2 shot will produce about 5 x 10 E14 photoneutrons. These photoneutron reactions will induce radioactivity in and about PBFA-2. Activation structural components in the center section will be limited by substituting aluminum for stainless steel in regions of high X-ray intensity. Air will be activated above and below the center section after shots; however, X-ray shielding will limit initial concentrations to five times health guidelines. The short half-lives of air radioactivity will permit reentry following simple decay without ventilation. Some radioactive material will be eroded by arcing, but the resulting contamination whould be small. Miniscule concentrations of radioactivity will be produced in the water surrounding the center section.

  2. A ‘tool box’ for deciphering neuronal circuits in the developing chick spinal cord

    PubMed Central

    Hadas, Yoav; Etlin, Alex; Falk, Haya; Avraham, Oshri; Kobiler, Oren; Panet, Amos; Lev-Tov, Aharon; Klar, Avihu

    2014-01-01

    The genetic dissection of spinal circuits is an essential new means for understanding the neural basis of mammalian behavior. Molecular targeting of specific neuronal populations, a key instrument in the genetic dissection of neuronal circuits in the mouse model, is a complex and time-demanding process. Here we present a circuit-deciphering ‘tool box’ for fast, reliable and cheap genetic targeting of neuronal circuits in the developing spinal cord of the chick. We demonstrate targeting of motoneurons and spinal interneurons, mapping of axonal trajectories and synaptic targeting in both single and populations of spinal interneurons, and viral vector-mediated labeling of pre-motoneurons. We also demonstrate fluorescent imaging of the activity pattern of defined spinal neurons during rhythmic motor behavior, and assess the role of channel rhodopsin-targeted population of interneurons in rhythmic behavior using specific photoactivation. PMID:25147209

  3. NEUROSCIENCE. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics.

    PubMed

    Govorunova, Elena G; Sineshchekov, Oleg A; Janz, Roger; Liu, Xiaoqin; Spudich, John L

    2015-08-07

    Light-gated rhodopsin cation channels from chlorophyte algae have transformed neuroscience research through their use as membrane-depolarizing optogenetic tools for targeted photoactivation of neuron firing. Photosuppression of neuronal action potentials has been limited by the lack of equally efficient tools for membrane hyperpolarization. We describe anion channel rhodopsins (ACRs), a family of light-gated anion channels from cryptophyte algae that provide highly sensitive and efficient membrane hyperpolarization and neuronal silencing through light-gated chloride conduction. ACRs strictly conducted anions, completely excluding protons and larger cations, and hyperpolarized the membrane of cultured animal cells with much faster kinetics at less than one-thousandth of the light intensity required by the most efficient currently available optogenetic proteins. Natural ACRs provide optogenetic inhibition tools with unprecedented light sensitivity and temporal precision. Copyright © 2015, American Association for the Advancement of Science.

  4. Photoactivated and patternable charge transport materials and their use in organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Lewis, Larry N.; Duggal, Anil R.

    2007-06-01

    Organic light-emitting devices (OLEDs) usually employ at least one organic semiconductor layer that acts as a hole-injection material. The prototypical example is a conjugated polymer such as poly(3,4-ethylenedioxythiophene) heavily p doped with polystyrene sulfonic acid. Here, the authors describe a chemical doping strategy for hole injection material formulation that enables spatial patterning of the material conductivity through optical activation. The strategy utilizes an organic photoacid generator (PAG) dispersed in a polymeric organic semiconductor host. Upon UV irradiation, the PAG decomposes and generates a strong protonic acid that subsequently p dopes the host. The authors demonstrate an OLED made with such a light-activated hole-injection material and show that arbitrary emission patterning can be accomplished. This approach may provide a simple, low cost path toward specialty lighting and signage applications for OLED technology.

  5. Development and Applications of Photo-triggered Theranostic Agents

    PubMed Central

    Rai, Prakash; Mallidi, Srivallesha; Zheng, Xiang; Rahmanzadeh, Ramtin; Mir, Youssef; Elrington, Stefan; Khurshid, Ahmat; Hasan, Tayyaba

    2010-01-01

    Theranostics, the fusion of therapy and diagnostics for optimizing efficacy and safety of therapeutic regimes, is a growing field that is paving the way towards the goal of personalized medicine for the benefit of patients. The use of light as a remote-activation mechanism for drug delivery has received increased attention due to its advantages in highly specific spatial and temporal control of compound release. Photo-triggered theranostic constructs could facilitate an entirely new category of clinical solutions which permit early recognition of the disease by enhancing contrast in various imaging modalities followed by the tailored guidance of therapy. Finally, such theranostic agents could aid imaging modalities in monitoring response to therapy. This article reviews recent developments in the use of light-triggered theranostic agents for simultaneous imaging and photoactivation of therapeutic agents. Specifically, we discuss recent developments in the use of theranostic agents for photodynamic-, photothermal- or photo-triggered chemo-therapy for several diseases. PMID:20858520

  6. PHOTOSYNTHESIS. A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection.

    PubMed

    Leverenz, Ryan L; Sutter, Markus; Wilson, Adjélé; Gupta, Sayan; Thurotte, Adrien; Bourcier de Carbon, Céline; Petzold, Christopher J; Ralston, Corie; Perreau, François; Kirilovsky, Diana; Kerfeld, Cheryl A

    2015-06-26

    Pigment-protein and pigment-pigment interactions are of fundamental importance to the light-harvesting and photoprotective functions essential to oxygenic photosynthesis. The orange carotenoid protein (OCP) functions as both a sensor of light and effector of photoprotective energy dissipation in cyanobacteria. We report the atomic-resolution structure of an active form of the OCP consisting of the N-terminal domain and a single noncovalently bound carotenoid pigment. The crystal structure, combined with additional solution-state structural data, reveals that OCP photoactivation is accompanied by a 12 angstrom translocation of the pigment within the protein and a reconfiguration of carotenoid-protein interactions. Our results identify the origin of the photochromic changes in the OCP triggered by light and reveal the structural determinants required for interaction with the light-harvesting antenna during photoprotection. Copyright © 2015, American Association for the Advancement of Science.

  7. Effect of ferrocene-substituted porphyrin RL-91 on Candida albicans biofilm formation.

    PubMed

    Lippert, Rainer; Vojnovic, Sandra; Mitrovic, Aleksandra; Jux, Norbert; Ivanović-Burmazović, Ivana; Vasiljevic, Branka; Stankovic, Nada

    2014-08-01

    Ferrocene-substituted porphyrin RL-91 exhibits antifungal activity against opportune human pathogen Candida albicans. RL-91 efficiently inhibits growth of both planktonic C. albicans cells and cells within biofilms without photoactivation. The minimal inhibitory concentration for plankton form (PMIC) was established to be 100 μg/mL and the same concentration killed 80% of sessile cells in the mature biofilm (SMIC80). Furthermore PMIC of RL-91 efficiently prevents C. albicans biofilm formation. RL-91 is cytotoxic for human fibroblasts in vitro in concentration of 10 μg/mL, however it does not cause hemolysis in concentrations of up to 50 μg/mL. These findings open possibility for application of RL-91 as an antifungal agent for external antibiofilm treatment of medical devices as well as a scaffold for further development of porphyrin based systemic antifungals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Improved Orange and Red Ca2+ Indicators and Photophysical Considerations for Optogenetic Applications

    PubMed Central

    2013-01-01

    We have used protein engineering to expand the palette of genetically encoded calcium ion (Ca2+) indicators to include orange and improved red fluorescent variants, and validated the latter for combined use with optogenetic activation by channelrhodopsin-2 (ChR2). These indicators feature intensiometric signal changes that are 1.7- to 9.7-fold improved relatively to the progenitor Ca2+ indicator, R-GECO1. In the course of this work, we discovered a photoactivation phenomenon in red fluorescent Ca2+ indicators that, if not appreciated and accounted for, can cause false-positive artifacts in Ca2+ imaging traces during optogenetic activation with ChR2. We demonstrate, in both a beta cell line and slice culture of developing mouse neocortex, that these artifacts can be avoided by using an appropriately low intensity of blue light for ChR2 activation. PMID:23452507

  9. Review of Restricted Experiment Requests, Division of Select Agents and Toxins, Centers for Disease Control and Prevention, 2006-2013.

    PubMed

    Smith, Jacinta; Gangadharan, Denise; Weyant, Robbin

    2015-01-01

    The Centers for Disease Control and Prevention (CDC) Division of Select Agents and Toxins (DSAT) regulates laboratories that possess, use, or transfer select agents and toxins in the United States. DSAT also mitigates biosafety risks through the review of "restricted experiments," which under the select agent regulations are experiments that pose heightened biosafety risks. From January 2006 through December 2013, DSAT received 618 requests from 109 entities to perform potentially restricted experiments. Of these requests, 85% were determined not to meet the regulatory definition of a restricted experiment, while 15% of the requests met the definition of a restricted experiment. Of the 91 restricted experiments proposed, DSAT approved 31 (34%) requests because the biosafety conditions proposed were commensurate with the experiments' biosafety risk. All 31 approved restricted experiments were for work with select toxins. DSAT did not approve 60 restricted experiment requests due to potentially serious biosafety risks to public health and safety. All 60 denied restricted experiments proposed inserting drug resistance traits into select agents that could compromise the control of disease. The select agents and toxins associated most frequently with requests that met the regulatory definition of a restricted experiment are Shiga toxin (n = 16), Burkholderia mallei (n = 15), Botulinum neurotoxin (n = 14), and Brucella abortus (n = 14). In general, all restricted experiment decisions are determined on a case-by-case basis. This article describes the trends and characteristics of the data associated with restricted experiment requests among select agents that have an impact on public health and safety (HHS only agents) or both public health and safety and animal health or products (overlap agents). The information presented here, coupled with the information published in the restricted experiment guidance document ( www.selectagents.gov ), is intended to promote awareness among the research community of the type of experiments that meet the regulatory definition of a restricted experiment as well as to provide a greater understanding of the restricted experiment review process.

  10. Rapid Retinal Release from a Cone Visual Pigment Following Photoactivation*

    PubMed Central

    Chen, Min-Hsuan; Kuemmel, Colleen; Birge, Robert R.; Knox, Barry E.

    2012-01-01

    As part of the visual cycle, the retinal chromophore in both rod and cone visual pigments undergoes reversible Schiff base hydrolysis and dissociation following photobleaching. We characterized light-activated retinal release from a short-wavelength sensitive cone pigment (VCOP) in 0.1% dodecyl maltoside using fluorescence spectroscopy. The half-time (t1/2) of retinal release from VCOP was 7.1 s, 250-fold faster than rhodopsin. VCOP exhibited pH-dependent release kinetics, with the t1/2 decreasing from 23 s to 4 s with pH 4.1 to 8, respectively. However, the Arrhenius activation energy (Ea) for VCOP derived from kinetic measurements between 4° and 20°C was 17.4 kcal/mol, similar to 18.5 kcal/mol for rhodopsin. There was a small kinetic isotope (D2O) effect in VCOP, but less than that observed in rhodopsin. Mutation of the primary Schiff base counterion (VCOPD108A) produced a pigment with an unprotonated chromophore (⌊max = 360 nm) and dramatically slowed (t1/2 ~ 6.8 min) light-dependent retinal release. Using homology modeling, a VCOP mutant with two substitutions (S85D/ D108A) was designed to move the counterion one alpha helical turn into the transmembrane region from the native position. This double mutant had a UV-visible absorption spectrum consistent with a protonated Schiff base (⌊max = 420 nm). Moreover, VCOPS85D/D108A mutant had retinal release kinetics (t1/2 = 7 s) and Ea (18 kcal/mol) similar to the native pigment exhibiting no pH-dependence. By contrast, the single mutant VCOPS85D had a ~3-fold decrease in retinal release rate compared to the native pigment. Photoactivated VCOPD108A had kinetics comparable to a rhodopsin counterion mutant, RhoE113Q, both requiring hydroxylamine to fully release retinal. These results demonstrate that the primary counterion of cone visual pigments is necessary for efficient Schiff base hydrolysis. We discuss how the large differences in retinal release rates between rod and cone visual pigments arise, not from inherent differences in the rate of Schiff base hydrolysis, but rather from differences in the non-covalent binding properties of the retinal chromophore to the protein. PMID:22217337

  11. Triggered release of model drug from AuNP-doped BSA nanocarriers in hair follicles using IRA radiation.

    PubMed

    Lademann, J; Richter, H; Knorr, F; Patzelt, A; Darvin, M E; Rühl, E; Cheung, K Y; Lai, K K; Renneberg, R; Mak, W C

    2016-01-01

    Recent advances in the field of dermatotherapy have resulted in research efforts focusing on the use of particle-based drug delivery systems for the stimuli-responsive release of drugs in the skin and skin appendages, i.e. hair follicles and sebaceous glands. However, effective and innocuous trigger mechanisms which result in the release of the drugs from the nanocarriers upon reaching the target structures are still lacking. For the first time, the present study demonstrated the photo-activated release of the model drug fluorescein isothiocyanate (FITC) from topically applied gold nanoparticle-doped bovine serum albumin (AuNPs-doped BSA) particles (approx. 545nm) using water-filtered infrared A (IRA) radiation in the hair follicles of an ex vivo porcine skin model. The IRA radiation-induced plasmonic heating of the AuNPs results in the partial decomposition or opening of the albumin particles and release the model drug, while control particles without AuNPs show insignificant release. The results demonstrate the feasibility of using IRA radiation to induce release of encapsulated drugs from plasmonic nanocarriers for the targeting of follicular structures. However, the risk of radiation-induced skin damage subsequent to repeated applications of high infrared dosages may be significant. Future studies should aim at determining the suitability of lower infrared A dosages, such as for medical treatment regimens which may necessitate repeated exposure to therapeutics. Follicular targeting using nanocarriers is of increasing importance in the prophylaxis and treatment of dermatological or other diseases. For the first time, the present study demonstrated the photo-activated release of the model drug fluorescein isothiocyanate (FITC) from topically applied gold nanoparticle-doped bovine serum albumin (AuNPs-doped BSA) particles using water-filtered infrared A (IRA) radiation in the hair follicles of an ex vivo porcine skin model. The results demonstrate the feasibility of using wIRA radiation to induce release of encapsulated drugs for the targeting of follicular structures, and provide a new vision on the development of optically addressable delivery systems for controlled release of drugs in the skin and skin appendages, i.e. hair follicles and sebaceous glands. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Tumor acidity-activatable manganese phosphate nanoplatform for amplification of photodynamic cancer therapy and magnetic resonance imaging.

    PubMed

    Hao, Yongwei; Zheng, Cuixia; Wang, Lei; Zhang, Jinjie; Niu, Xiuxiu; Song, Qingling; Feng, Qianhua; Zhao, Hongjuan; Li, Li; Zhang, Hongling; Zhang, Zhenzhong; Zhang, Yun

    2017-10-15

    Amorphous biodegradable metal phosphate nanomaterials are considered to possess great potential in cancer theranostic application due to their promise in providing ultra-sensitive pH-responsive therapeutic benefits and diagnostic functions simultaneously. Here we report the synthesis of photosensitising and acriflavine-carrying amorphous porous manganese phosphate (PMP) nanoparticles with ultra-sensitive pH-responsive degradability and their application for a photoactivable synergistic nanosystem that imparts reactive oxygen species (ROS) induced cytotoxicity in synchrony with hypoxia-inducible factor 1α/vascular endothelial growth factor (HIF1α/VEGF) inhibitor that suppresses tumor growth and treatment escape signalling pathway. Carboxymethyl dextran (CMD) is chemically anchored on the surface of porous manganese phosphate theranostic system through the pH-responsive boronate esters. Upon the stimulus of the tumor acid microenvironment, manganese phosphate disintegrates and releases Mn 2+ ions rapidly, which are responsible for the magnetic resonance imaging (MRI) effect. Meanwhile, the released photosensitizer chlorin e6 (Ce6) produces ROS under irradiation while acriflavine (ACF) inhibits the HIF-1α/VEGF pathway during the burst release of VEGF in tumour induced by photodynamic therapy (PDT), resulting in increased therapeutic efficacy. Considering the strong pH responsivity, MRI signal amplification and drug release profile, the PMP nanoparticles offer new prospects for tumor acidity-activatable theranostic application by amplifying the PDT through inhibiting the HIF-1α /VEGF pathway timely while enhancing the MRI effect. In this study, we report the synthesis of the tumor acidity-activatable amorphous porous manganese phosphate nanoparticles and their application for a photoactivable synergistic nanosystem that imparts reactive oxygen species (ROS) induced cytotoxicity in synchrony with hypoxia-inducible factor 1α/vascular endothelial growth factor (HIF-1α/VEGF) inhibitor that suppresses tumor growth and treatment escape signalling pathway. Besides, upon the stimulus of the tumor acid microenvironment, the manganese phosphate nanoparticles finally disintegrate and release Mn 2+ ions rapidly, which are responsible for the magnetic resonance imaging (MRI) effect. This nanoplatform is featured with distinctive advantages such as ultra pH-responsive drug release, MRI function and rational drug combination exploiting the blockage of the treatment escape signalling pathway. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Review of Restricted Experiment Requests, Division of Select Agents and Toxins, Centers for Disease Control and Prevention, 2006-2013

    PubMed Central

    Smith, Jacinta; Weyant, Robbin

    2015-01-01

    The Centers for Disease Control and Prevention (CDC) Division of Select Agents and Toxins (DSAT) regulates laboratories that possess, use, or transfer select agents and toxins in the United States. DSAT also mitigates biosafety risks through the review of “restricted experiments,” which under the select agent regulations are experiments that pose heightened biosafety risks. From January 2006 through December 2013, DSAT received 618 requests from 109 entities to perform potentially restricted experiments. Of these requests, 85% were determined not to meet the regulatory definition of a restricted experiment, while 15% of the requests met the definition of a restricted experiment. Of the 91 restricted experiments proposed, DSAT approved 31 (34%) requests because the biosafety conditions proposed were commensurate with the experiments' biosafety risk. All 31 approved restricted experiments were for work with select toxins. DSAT did not approve 60 restricted experiment requests due to potentially serious biosafety risks to public health and safety. All 60 denied restricted experiments proposed inserting drug resistance traits into select agents that could compromise the control of disease. The select agents and toxins associated most frequently with requests that met the regulatory definition of a restricted experiment are Shiga toxin (n = 16), Burkholderia mallei (n = 15), Botulinum neurotoxin (n = 14), and Brucella abortus (n = 14). In general, all restricted experiment decisions are determined on a case-by-case basis. This article describes the trends and characteristics of the data associated with restricted experiment requests among select agents that have an impact on public health and safety (HHS only agents) or both public health and safety and animal health or products (overlap agents). The information presented here, coupled with the information published in the restricted experiment guidance document (www.selectagents.gov), is intended to promote awareness among the research community of the type of experiments that meet the regulatory definition of a restricted experiment as well as to provide a greater understanding of the restricted experiment review process. PMID:26347984

  14. Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes. Support for a multistep process.

    PubMed

    Falomir-Lockhart, Lisandro J; Laborde, Lisandro; Kahn, Peter C; Storch, Judith; Córsico, Betina

    2006-05-19

    Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the alpha-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the alpha-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the alpha-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the alpha2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the alpha2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the alpha2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.

  15. Evidence for function of the ferredoxin/thioredoxin system in the reductive activation of target enzymes of isolated intact chloroplasts.

    PubMed

    Crawford, N A; Droux, M; Kosower, N S; Buchanan, B B

    1989-05-15

    Results obtained with isolated intact chloroplasts maintained aerobically under light and dark conditions confirm earlier findings with reconstituted enzyme assays and indicate that the ferredoxin/thioredoxin system functions as a light-mediated regulatory thiol chain. The results were obtained by application of a newly devised procedure in which a membrane-permeable thiol labeling reagent, monobromobimane (mBBr), reacts with sulfhydryl groups and renders the derivatized protein fluorescent. The mBBr-labeled protein in question is isolated individually from chloroplasts by immunoprecipitation and its thiol redox status is determined quantitatively by combining sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorescence measurements. The findings indicate that each member of the ferredoxin/thioredoxin system containing a catalytically active thiol group is reduced in isolated intact chloroplasts after a 2-min illumination. The extents of reduction were FTR, 38%; thioredoxin m, 75% (11-kDa form) and 87% (13-kDa form); thioredoxin f, 95%. Reduction of each of these components was negligible both in the dark and when chloroplasts were transferred from light to dark conditions. The target enzyme, NADP-malate dehydrogenase, also underwent net reduction in illuminated intact chloroplasts. Fructose-1,6-bisphosphatase showed increased mBBr labeling under these conditions, but due to interfering gamma globulin proteins it was not possible to determine whether this was a result of net reduction as is known to take place in reconstituted assays. Related experiments demonstrated that mBBr, as well as N-ethylmaleimide, stabilized photoactivated NADP-malate dehydrogenase and fructose-1,6-bisphosphatase so that they remained active in the dark. By contrast, phosphoribulokinase, another thioredoxin-linked enzyme, was immediately deactivated following mBBr addition. These latter results provide new information on the relation between the regulatory and active sites of these enzymes.

  16. Roles of Gag-RNA interactions in HIV-1 virus assembly deciphered by single-molecule localization microscopy.

    PubMed

    Yang, Yantao; Qu, Na; Tan, Jie; Rushdi, Muaz N; Krueger, Christopher J; Chen, Antony K

    2018-06-11

    During HIV-1 assembly, the retroviral structural protein Gag forms an immature capsid, containing thousands of Gag molecules, at the plasma membrane (PM). Interactions between Gag nucleocapsid (NC) and viral RNA (vRNA) are thought to drive assembly, but the exact roles of these interactions have remained poorly understood. Since previous studies have shown that Gag dimer- or trimer-forming mutants (Gag ZiL ) lacking an NC domain can form immature capsids independent of RNA binding, it is often hypothesized that vRNA drives Gag assembly by inducing Gag to form low-ordered multimers, but is dispensable for subsequent assembly. In this study, we examined the role of vRNA in HIV-1 assembly by characterizing the distribution and mobility of Gag and Gag NC mutants at the PM using photoactivated localization microscopy (PALM) and single-particle tracking PALM (spt-PALM). We showed that both Gag and Gag ZiL assembly involve a similar basic assembly unit, as expected. Unexpectedly, the two proteins underwent different subsequent assembly pathways, with Gag cluster density increasing asymptotically, while Gag ZiL cluster density increased linearly. Additionally, the directed movement of Gag, but not Gag ZiL , was maintained at a constant speed, suggesting that the two proteins experience different external driving forces. Assembly was abolished when Gag was rendered monomeric by NC deletion. Collectively, these results suggest that, beyond inducing Gag to form low-ordered multimer basic assembly units, vRNA is essential in scaffolding and maintaining the stability of the subsequent assembly process. This finding should advance the current understanding of HIV-1 and, potentially, other retroviruses. Copyright © 2018 the Author(s). Published by PNAS.

  17. A feasibility study of orbiter flight control experiments

    NASA Technical Reports Server (NTRS)

    Geissler, W. H.

    1978-01-01

    The results of a feasibility study of orbiter flight control experiments performed are summarized. Feasibility studies were performed on a group of 14 experiments selected from a candidate list of 35 submitted to the study contractor by the flight control community. Concepts and requirements were developed for the 14 selected experiments and they were ranked on a basis of technical value, feasibility, and cost. It was concluded that all the selected experiments can be considered as potential candidates for the Orbiter Experiment program, which is being formulated for the Orbiter Flight Tests and subsequent operational flights, regardless of the relative ranking established during the study. None of the selected experiments has significant safety implications and the cost of most was estimated to be less than $200K.

  18. Computational Selection of Transcriptomics Experiments Improves Guilt-by-Association Analyses

    PubMed Central

    Bhat, Prajwal; Yang, Haixuan; Bögre, László; Devoto, Alessandra; Paccanaro, Alberto

    2012-01-01

    The Guilt-by-Association (GBA) principle, according to which genes with similar expression profiles are functionally associated, is widely applied for functional analyses using large heterogeneous collections of transcriptomics data. However, the use of such large collections could hamper GBA functional analysis for genes whose expression is condition specific. In these cases a smaller set of condition related experiments should instead be used, but identifying such functionally relevant experiments from large collections based on literature knowledge alone is an impractical task. We begin this paper by analyzing, both from a mathematical and a biological point of view, why only condition specific experiments should be used in GBA functional analysis. We are able to show that this phenomenon is independent of the functional categorization scheme and of the organisms being analyzed. We then present a semi-supervised algorithm that can select functionally relevant experiments from large collections of transcriptomics experiments. Our algorithm is able to select experiments relevant to a given GO term, MIPS FunCat term or even KEGG pathways. We extensively test our algorithm on large dataset collections for yeast and Arabidopsis. We demonstrate that: using the selected experiments there is a statistically significant improvement in correlation between genes in the functional category of interest; the selected experiments improve GBA-based gene function prediction; the effectiveness of the selected experiments increases with annotation specificity; our algorithm can be successfully applied to GBA-based pathway reconstruction. Importantly, the set of experiments selected by the algorithm reflects the existing literature knowledge about the experiments. [A MATLAB implementation of the algorithm and all the data used in this paper can be downloaded from the paper website: http://www.paccanarolab.org/papers/CorrGene/]. PMID:22879875

  19. [Professor WANG Fuchun's experience in the acupoint selection of clinical treatment with acupuncture and moxibustion].

    PubMed

    Jiang, Hailin; Liu, Chengyu; Ha, Lijuan; Li, Tie

    2017-11-12

    Professor WANG Fuchun 's experience in the acupoint selection of clinical treatment with acupuncture and moxibustion was summarized. The main acupoints are selected by focusing on the chief symptoms of disease, the supplementary points are selected by differentiating the disorders. The acupoints are modified in terms of the changes of sickness. The effective acupoints are selected flexibly in accordance with the specific effects of points. The summary on the acupoint selection reflects professor WANG Fuchun 's academic thoughts and clinical experience and effectively instructs the clinical practice of acupuncture and moxibustion.

  20. Photoactivated Composite Biomaterial for Soft Tissue Restoration in Rodents and in Humans

    PubMed Central

    Nahas, Zayna; Reid, Branden; Coburn, Jeannine M.; Axelman, Joyce; Chae, Jemin J.; Guo, Qiongyu; Trow, Robert; Thomas, Andrew; Hou, Zhipeng; Lichtsteiner, Serge; Sutton, Damon; Matheson, Christine; Walker, Patricia; David, Nathaniel; Mori, Susumu; Taube, Janis M.; Elisseeff, Jennifer H.

    2015-01-01

    Soft tissue reconstruction often requires multiple surgical procedures that can result in scars and disfiguration. Facial soft tissue reconstruction represents a clinical challenge because even subtle deformities can severely affect an individual’s social and psychological function. We therefore developed a biosynthetic soft tissue replacement composed of poly(ethylene glycol) (PEG) and hyaluronic acid (HA) that can be injected and photocrosslinked in situ with transdermal light exposure. Modulating the ratio of synthetic to biological polymer allowed us to tune implant elasticity and volume persistence. In a small-animal model, implanted photocrosslinked PEG-HA showed a dose-dependent relationship between increasing PEG concentration and enhanced implant volume persistence. In direct comparison with commercial HA injections, the PEG-HA implants maintained significantly greater average volumes and heights. Reversibility of the implant volume was achieved with hyaluronidase injection. Pilot clinical testing in human patients confirmed the feasibility of the transdermal photocrosslinking approach for implantation in abdomen soft tissue, although an inflammatory response was observed surrounding some of the materials. PMID:21795587

  1. Locus coeruleus and dopaminergic consolidation of everyday memory

    PubMed Central

    Takeuchi, Tomonori; Duszkiewicz, Adrian J.; Sonneborn, Alex; Spooner, Patrick A.; Yamasaki, Miwako; Watanabe, Masahiko; Smith, Caroline C.; Fernández, Guillén; Deisseroth, Karl; Greene, Robert W.; Morris, Richard G. M.

    2016-01-01

    Summary The retention of episodic-like memory is enhanced, in humans and animals, when something novel happens shortly before or after encoding. Using an everyday memory task in mice, we sought the neurons mediating this dopamine-dependent novelty effect, previously thought to originate exclusively from the tyrosine hydroxylase-expressing (TH+) neurons in the ventral tegmental area (VTA). We report that neuronal firing in the locus coeruleus (LC) is especially sensitive to environmental novelty, LC-TH+ neurons project more profusely than VTA-TH+ neurons to the hippocampus, optogenetic activation of LC-TH+ neurons mimics the novelty effect, and this novelty-associated memory enhancement is unaffected by VTA inactivation. Surprisingly, two effects of LC-TH+ photoactivation are sensitive to hippocampal D1/D5 receptor blockade and resistant to adrenoceptors blockade – memory enhancement and long lasting potentiation of synaptic transmission in CA1 ex vivo. Thus, LC-TH+ neurons can mediate post-encoding memory enhancement in a manner consistent with possible co-release of dopamine in hippocampus. PMID:27602521

  2. Neuroscience imaging enabled by new highly tunable and high peak power femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Hakulinen, T.; Klein, J.

    2017-02-01

    Neuroscience applications benefit from recent developments in industrial femtosecond laser technology. New laser sources provide several megawatts of peak power at wavelength of 1040 nm, which enables simultaneous optogenetics photoactivation of tens or even hundreds of neurons using red shifted opsins. Another recent imaging trend is to move towards longer wavelengths, which would enable access to deeper layers of tissue due to lower scattering and lower absorption in the tissue. Femtosecond lasers pumping a non-collinear optical parametric amplifier (NOPA) enable the access to longer wavelengths with high peak powers. High peak powers of >10 MW at 1300 nm and 1700 nm allow effective 3-photon excitation of green and red shifted calcium indicators respectively and access to deeper, sub-cortex layers of the brain. Early results include in vivo detection of spontaneous activity in hippocampus within an intact mouse brain, where neurons express GCaMP6 activated in a 3-photon process at 1320 nm.

  3. Photocatalytic activity of low temperature oxidized Ti-6Al-4V.

    PubMed

    Unosson, Erik; Persson, Cecilia; Welch, Ken; Engqvist, Håkan

    2012-05-01

    Numerous advanced surface modification techniques exist to improve bone integration and antibacterial properties of titanium based implants and prostheses. A simple and straightforward method of obtaining uniform and controlled TiO(2) coatings of devices with complex shapes is H(2)O(2)-oxidation and hot water aging. Based on the photoactivated bactericidal properties of TiO(2), this study was aimed at optimizing the treatment to achieve high photocatalytic activity. Ti-6Al-4V samples were H(2)O(2)-oxidized and hot water aged for up to 24 and 72 h, respectively. Degradation measurements of rhodamine B during UV-A illumination of samples showed a near linear relationship between photocatalytic activity and total treatment time, and a nanoporous coating was observed by scanning electron microscopy. Grazing incidence X-ray diffraction showed a gradual decrease in crystallinity of the surface layer, suggesting that the increase in surface area rather than anatase formation was responsible for the increase in photocatalytic activity.

  4. Semitransparent bandages based on chitosan and extracellular matrix for photochemical tissue bonding.

    PubMed

    Frost, Samuel J; Mawad, Damia; Wuhrer, Richard; Myers, Simon; Lauto, Antonio

    2018-01-22

    Extracellular matrices (ECMs) are often used in reconstructive surgery to enhance tissue regeneration and remodeling. Sutures and staples are currently used to fix ECMs to tissue although they can be invasive devices. Other sutureless and less invasive techniques, such as photochemical tissue bonding, cannot be coupled to ECMs because of their intrinsic opacity to light. We succeeded in fabricating a biocompatible and adhesive device that is based on ovine forestomach matrix (OFM) and a chitosan adhesive. The natural opacity of the OFM has been overcome by adding the adhesive into the matrix that allows for the light to effectively penetrate through it. The OFM-chitosan device is semitransparent (attenuation length ~ 106 µm) and can be photoactivated by green light to bond to tissue. This device does not require sutures or staples and guarantees a bonding strength of ~ 23 kPa. A new semitransparent and biocompatible bandage has been successfully fabricated and characterized for sutureless tissue bonding.

  5. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    PubMed Central

    Snijders, Paul C.; Şen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, T. Zac

    2016-01-01

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides. PMID:27443503

  6. High-numerical-aperture cryogenic light microscopy for increased precision of superresolution reconstructions

    PubMed Central

    Nahmani, Marc; Lanahan, Conor; DeRosier, David; Turrigiano, Gina G.

    2017-01-01

    Superresolution microscopy has fundamentally altered our ability to resolve subcellular proteins, but improving on these techniques to study dense structures composed of single-molecule-sized elements has been a challenge. One possible approach to enhance superresolution precision is to use cryogenic fluorescent imaging, reported to reduce fluorescent protein bleaching rates, thereby increasing the precision of superresolution imaging. Here, we describe an approach to cryogenic photoactivated localization microscopy (cPALM) that permits the use of a room-temperature high-numerical-aperture objective lens to image frozen samples in their native state. We find that cPALM increases photon yields and show that this approach can be used to enhance the effective resolution of two photoactivatable/switchable fluorophore-labeled structures in the same frozen sample. This higher resolution, two-color extension of the cPALM technique will expand the accessibility of this approach to a range of laboratories interested in more precise reconstructions of complex subcellular targets. PMID:28348224

  7. Deconvoluting heme biosynthesis to target blood-stage malaria parasites

    PubMed Central

    Sigala, Paul A; Crowley, Jan R; Henderson, Jeffrey P; Goldberg, Daniel E

    2015-01-01

    Heme metabolism is central to blood-stage infection by the malaria parasite Plasmodium falciparum. Parasites retain a heme biosynthesis pathway but do not require its activity during infection of heme-rich erythrocytes, where they can scavenge host heme to meet metabolic needs. Nevertheless, heme biosynthesis in parasite-infected erythrocytes can be potently stimulated by exogenous 5-aminolevulinic acid (ALA), resulting in accumulation of the phototoxic intermediate protoporphyrin IX (PPIX). Here we use photodynamic imaging, mass spectrometry, parasite gene disruption, and chemical probes to reveal that vestigial host enzymes in the cytoplasm of Plasmodium-infected erythrocytes contribute to ALA-stimulated heme biosynthesis and that ALA uptake depends on parasite-established permeability pathways. We show that PPIX accumulation in infected erythrocytes can be harnessed for antimalarial chemotherapy using luminol-based chemiluminescence and combinatorial stimulation by low-dose artemisinin to photoactivate PPIX to produce cytotoxic reactive oxygen. This photodynamic strategy has the advantage of exploiting host enzymes refractory to resistance-conferring mutations. DOI: http://dx.doi.org/10.7554/eLife.09143.001 PMID:26173178

  8. Mouse Cone Photoreceptors Co-express Two Functional Visual Arrestins

    PubMed Central

    Nikonov, Sergei S.; Brown, Bruce M.; Davis, Jason A.; Zuniga, Freddi I.; Bragin, Alvina; Pugh, Edward N.; Craft, Cheryl M.

    2008-01-01

    Arrestins are members of a superfamily of proteins that arrest the activity of G-protein coupled receptors. Mouse cone photoreceptors express two visual arrestins, Arr1 and Arr4 (Carr). We quantified their expression levels and subcellular distributions in mouse cones: total Arr1 was estimated to be in an ~ 6:1 ratio to cone opsin, about 50-fold higher than Arr4. Recordings from single cones of Arr1−/− and Arr4−/− mice establish that both proteins are competent to arrest the activity of photoactivated S- and M- cone opsins. Recordings from Arr1−/− , Arr4−/− double-knockout mice establish a requirement for at least one of the two visual arrestins for normal cone opsin inactivation at all flash intensities. These recordings also reveal low activity photoproducts of S- and M-opsins that are absent when Grk1 and an arrestin are co-expressed, but which decay 70-fold more rapidly than the comparable photoproducts of rhodopsin in rods. PMID:18701071

  9. Review of advanced imaging techniques

    PubMed Central

    Chen, Yu; Liang, Chia-Pin; Liu, Yang; Fischer, Andrew H.; Parwani, Anil V.; Pantanowitz, Liron

    2012-01-01

    Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images (“optical biopsies”) at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy) and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy). This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques. PMID:22754737

  10. Resolving mixed mechanisms of protein subdiffusion at the T cell plasma membrane

    NASA Astrophysics Data System (ADS)

    Golan, Yonatan; Sherman, Eilon

    2017-06-01

    The plasma membrane is a complex medium where transmembrane proteins diffuse and interact to facilitate cell function. Membrane protein mobility is affected by multiple mechanisms, including crowding, trapping, medium elasticity and structure, thus limiting our ability to distinguish them in intact cells. Here we characterize the mobility and organization of a short transmembrane protein at the plasma membrane of live T cells, using single particle tracking and photoactivated-localization microscopy. Protein mobility is highly heterogeneous, subdiffusive and ergodic-like. Using mobility characteristics, we segment individual trajectories into subpopulations with distinct Gaussian step-size distributions. Particles of low-to-medium mobility consist of clusters, diffusing in a viscoelastic and fractal-like medium and are enriched at the centre of the cell footprint. Particles of high mobility undergo weak confinement and are more evenly distributed. This study presents a methodological approach to resolve simultaneous mixed subdiffusion mechanisms acting on polydispersed samples and complex media such as cell membranes.

  11. Locus coeruleus and dopaminergic consolidation of everyday memory.

    PubMed

    Takeuchi, Tomonori; Duszkiewicz, Adrian J; Sonneborn, Alex; Spooner, Patrick A; Yamasaki, Miwako; Watanabe, Masahiko; Smith, Caroline C; Fernández, Guillén; Deisseroth, Karl; Greene, Robert W; Morris, Richard G M

    2016-09-15

    The retention of episodic-like memory is enhanced, in humans and animals, when something novel happens shortly before or after encoding. Using an everyday memory task in mice, we sought the neurons mediating this dopamine-dependent novelty effect, previously thought to originate exclusively from the tyrosine-hydroxylase-expressing (TH + ) neurons in the ventral tegmental area. Here we report that neuronal firing in the locus coeruleus is especially sensitive to environmental novelty, locus coeruleus TH + neurons project more profusely than ventral tegmental area TH + neurons to the hippocampus, optogenetic activation of locus coeruleus TH + neurons mimics the novelty effect, and this novelty-associated memory enhancement is unaffected by ventral tegmental area inactivation. Surprisingly, two effects of locus coeruleus TH + photoactivation are sensitive to hippocampal D 1 /D 5 receptor blockade and resistant to adrenoceptor blockade: memory enhancement and long-lasting potentiation of synaptic transmission in CA1 ex vivo. Thus, locus coeruleus TH + neurons can mediate post-encoding memory enhancement in a manner consistent with possible co-release of dopamine in the hippocampus.

  12. Fourier-interpolation superresolution optical fluctuation imaging (fSOFi) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Enderlein, Joerg; Stein, Simon C.; Huss, Anja; Hähnel, Dirk; Gregor, Ingo

    2016-02-01

    Stochastic Optical Fluctuation Imaging (SOFI) is a superresolution fluorescence microscopy technique which allows to enhance the spatial resolution of an image by evaluating the temporal fluctuations of blinking fluorescent emitters. SOFI is not based on the identification and localization of single molecules such as in the widely used Photoactivation Localization Microsopy (PALM) or Stochastic Optical Reconstruction Microscopy (STORM), but computes a superresolved image via temporal cumulants from a recorded movie. A technical challenge hereby is that, when directly applying the SOFI algorithm to a movie of raw images, the pixel size of the final SOFI image is the same as that of the original images, which becomes problematic when the final SOFI resolution is much smaller than this value. In the past, sophisticated cross-correlation schemes have been used for tackling this problem. Here, we present an alternative, exact, straightforward, and simple solution using an interpolation scheme based on Fourier transforms. We exemplify the method on simulated and experimental data.

  13. Visualization and functional dissection of coaxial paired SpoIIIE channels across the sporulation septum

    DOE PAGES

    Shin, Jae Yen; Lopez-Garrido, Javier; Lee, Sang-Hyuk; ...

    2015-05-07

    SpoIIIE is a membrane-anchored DNA translocase that localizes to the septal midpoint to mediate chromosome translocation and membrane fission during Bacillus subtilis sporulation. Here we use cell-specific protein degradation and quantitative photoactivated localization microscopy in strains with a thick sporulation septum to investigate the architecture and function of the SpoIIIE DNA translocation complex in vivo. We were able to visualize SpoIIIE complexes with approximately equal numbers of molecules in the mother cell and the forespore. Cell-specific protein degradation showed that only the mother cell complex is required to translocate DNA into the forespore, whereas degradation in either cell reverses membranemore » fission. Our data suggest that SpoIIIE assembles a coaxially paired channel for each chromosome arm comprised of one hexamer in each cell to maintain membrane fission during DNA translocation. We show that SpoIIIE can operate, in principle, as a bi-directional motor that exports DNA.« less

  14. Controlling fertilization and cAMP signaling in sperm by optogenetics.

    PubMed

    Jansen, Vera; Alvarez, Luis; Balbach, Melanie; Strünker, Timo; Hegemann, Peter; Kaupp, U Benjamin; Wachten, Dagmar

    2015-01-20

    Optogenetics is a powerful technique to control cellular activity by light. The light-gated Channelrhodopsin has been widely used to study and manipulate neuronal activity in vivo, whereas optogenetic control of second messengers in vivo has not been examined in depth. In this study, we present a transgenic mouse model expressing a photoactivated adenylyl cyclase (bPAC) in sperm. In transgenic sperm, bPAC mimics the action of the endogenous soluble adenylyl cyclase (SACY) that is required for motility and fertilization: light-stimulation rapidly elevates cAMP, accelerates the flagellar beat, and, thereby, changes swimming behavior of sperm. Furthermore, bPAC replaces endogenous adenylyl cyclase activity. In mutant sperm lacking the bicarbonate-stimulated SACY activity, bPAC restored motility after light-stimulation and, thereby, enabled sperm to fertilize oocytes in vitro. We show that optogenetic control of cAMP in vivo allows to non-invasively study cAMP signaling, to control behaviors of single cells, and to restore a fundamental biological process such as fertilization.

  15. Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors.

    PubMed

    Luo, Yan-Jia; Li, Ya-Dong; Wang, Lu; Yang, Su-Rong; Yuan, Xiang-Shan; Wang, Juan; Cherasse, Yoan; Lazarus, Michael; Chen, Jiang-Fan; Qu, Wei-Min; Huang, Zhi-Li

    2018-04-20

    Nucleus accumbens (NAc) is involved in behaviors that depend on heightened wakefulness, but its impact on arousal remains unclear. Here, we demonstrate that NAc dopamine D 1 receptor (D 1 R)-expressing neurons are essential for behavioral arousal. Using in vivo fiber photometry in mice, we find arousal-dependent increases in population activity of NAc D 1 R neurons. Optogenetic activation of NAc D 1 R neurons induces immediate transitions from non-rapid eye movement sleep to wakefulness, and chemogenetic stimulation prolongs arousal, with decreased food intake. Patch-clamp, tracing, immunohistochemistry, and electron microscopy reveal that NAc D 1 R neurons project to the midbrain and lateral hypothalamus, and might disinhibit midbrain dopamine neurons and lateral hypothalamus orexin neurons. Photoactivation of terminals in the midbrain and lateral hypothalamus is sufficient to induce wakefulness. Silencing of NAc D 1 R neurons suppresses arousal, with increased nest-building behaviors. Collectively, our data indicate that NAc D 1 R neuron circuits are essential for the induction and maintenance of wakefulness.

  16. Visualization and functional dissection of coaxial paired SpoIIIE channels across the sporulation septum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jae Yen; Lopez-Garrido, Javier; Lee, Sang-Hyuk

    SpoIIIE is a membrane-anchored DNA translocase that localizes to the septal midpoint to mediate chromosome translocation and membrane fission during Bacillus subtilis sporulation. Here we use cell-specific protein degradation and quantitative photoactivated localization microscopy in strains with a thick sporulation septum to investigate the architecture and function of the SpoIIIE DNA translocation complex in vivo. We were able to visualize SpoIIIE complexes with approximately equal numbers of molecules in the mother cell and the forespore. Cell-specific protein degradation showed that only the mother cell complex is required to translocate DNA into the forespore, whereas degradation in either cell reverses membranemore » fission. Our data suggest that SpoIIIE assembles a coaxially paired channel for each chromosome arm comprised of one hexamer in each cell to maintain membrane fission during DNA translocation. We show that SpoIIIE can operate, in principle, as a bi-directional motor that exports DNA.« less

  17. Photoswitchable red fluorescent protein with a large Stokes shift.

    PubMed

    Piatkevich, Kiryl D; English, Brian P; Malashkevich, Vladimir N; Xiao, Hui; Almo, Steven C; Singer, Robert H; Verkhusha, Vladislav V

    2014-10-23

    A subclass of fluorescent proteins (FPs), large Stokes shift (LSS) FP, are characterized by increased spread between excitation and emission maxima. We report a photoswitchable variant of a red FP with an LSS, PSLSSmKate, which initially exhibits excitation and emission at 445 and 622 nm, but violet irradiation photoswitches PSLSSmKate into a common red form with excitation and emission at 573 and 621 nm. We characterize spectral, photophysical, and biochemical properties of PSLSSmKate in vitro and in mammalian cells and determine its crystal structure in the LSS form. Mass spectrometry, mutagenesis, and spectroscopy of PSLSSmKate allow us to propose molecular mechanisms for the LSS, pH dependence, and light-induced chromophore transformation. We demonstrate the applicability of PSLSSmKate to superresolution photoactivated localization microscopy and protein dynamics in live cells. Given its promising properties, we expect that PSLSSmKate-like phenotype will be further used for photoactivatable imaging and tracking multiple populations of intracellular objects.

  18. Nanometric depth resolution from multi-focal images in microscopy.

    PubMed

    Dalgarno, Heather I C; Dalgarno, Paul A; Dada, Adetunmise C; Towers, Catherine E; Gibson, Gavin J; Parton, Richard M; Davis, Ilan; Warburton, Richard J; Greenaway, Alan H

    2011-07-06

    We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels.

  19. Nanometric depth resolution from multi-focal images in microscopy

    PubMed Central

    Dalgarno, Heather I. C.; Dalgarno, Paul A.; Dada, Adetunmise C.; Towers, Catherine E.; Gibson, Gavin J.; Parton, Richard M.; Davis, Ilan; Warburton, Richard J.; Greenaway, Alan H.

    2011-01-01

    We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels. PMID:21247948

  20. Mass spectrometry footprinting reveals the structural rearrangements of cyanobacterial orange carotenoid protein upon light activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Haijun; Zhang, Hao; King, Jeremy D.

    The orange carotenoid protein (OCP), a member of the family of blue light photoactive proteins, is required for efficient photoprotection in many cyanobacteria. Photoexcitation of the carotenoid in the OCP results in structural changes within the chromophore and the protein to give an active red form of OCP that is required for phycobilisome binding and consequent fluorescence quenching. We characterized the light-dependent structural changes by mass spectrometry-based carboxyl footprinting and found that an α helix in the N-terminal extension of OCP plays a key role in this photoactivation process. Although this helix is located on and associates with the outsidemore » of the β-sheet core in the C-terminal domain of OCP in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent carotenoid conformational changes to global protein conformational dynamics in favor of functional phycobilisome binding, and is an essential part of the OCP photocycle.« less

  1. Reward-timing-dependent bidirectional modulation of cortical microcircuits during optical single-neuron operant conditioning.

    PubMed

    Hira, Riichiro; Ohkubo, Fuki; Masamizu, Yoshito; Ohkura, Masamichi; Nakai, Junichi; Okada, Takashi; Matsuzaki, Masanori

    2014-11-24

    Animals rapidly adapt to environmental change. To reveal how cortical microcircuits are rapidly reorganized when an animal recognizes novel reward contingency, we conduct two-photon calcium imaging of layer 2/3 motor cortex neurons in mice and simultaneously reinforce the activity of a single cortical neuron with water delivery. Here we show that when the target neuron is not relevant to a pre-trained forelimb movement, the mouse increases the target neuron activity and the number of rewards delivered during 15-min operant conditioning without changing forelimb movement behaviour. The reinforcement bidirectionally modulates the activity of subsets of non-target neurons, independent of distance from the target neuron. The bidirectional modulation depends on the relative timing between the reward delivery and the neuronal activity, and is recreated by pairing reward delivery and photoactivation of a subset of neurons. Reward-timing-dependent bidirectional modulation may be one of the fundamental processes in microcircuit reorganization for rapid adaptation.

  2. Transmembrane Helices Tilt, Bend, Slide, Torque, and Unwind between Functional States of Rhodopsin

    PubMed Central

    Ren, Zhong; Ren, Peter X.; Balusu, Rohith; Yang, Xiaojing

    2016-01-01

    The seven-helical bundle of rhodopsin and other G-protein coupled receptors undergoes structural rearrangements as the transmembrane receptor protein is activated. These structural changes are known to involve tilting and bending of various transmembrane helices. However, the cause and effect relationship among structural events leading to a cytoplasmic crevasse for G-protein binding is less well defined. Here we present a mathematical model of the protein helix and a simple procedure to determine multiple parameters that offer precise depiction of a helical conformation. A comprehensive survey of bovine rhodopsin structures shows that the helical rearrangements during the activation of rhodopsin involve a variety of angular and linear motions such as torsion, unwinding, and sliding in addition to the previously reported tilting and bending. These hitherto undefined motion components unify the results obtained from different experimental approaches, and demonstrate conformational similarity between the active opsin structure and the photoactivated structures in crystallo near the retinal anchor despite their marked differences. PMID:27658480

  3. PCNA appears in two populations of slow and fast diffusion with a constant ratio throughout S-phase in replicating mammalian cells.

    PubMed

    Zessin, Patrick J M; Sporbert, Anje; Heilemann, Mike

    2016-01-13

    DNA replication is a fundamental cellular process that precedes cell division. Proliferating cell nuclear antigen (PCNA) is a central scaffold protein that orchestrates DNA replication by recruiting many factors essential for the replication machinery. We studied the mobility of PCNA in live mammalian cells using single-particle tracking in combination with photoactivated-localization microscopy (sptPALM) and found two populations. The first population which is only present in cells with active DNA replication, showed slow diffusion and was found to be located in replication foci. The second population showed fast diffusion, and represents the nucleoplasmic pool of unbound PCNA not involved in DNA replication. The ratio of these two populations remained constant throughout different stages of S-phase. A fraction of molecules in both populations showed spatially constrained mobility. We determined an exploration radius of ~100 nm for 13% of the slow-diffusing PCNA molecules, and of ~600 nm for 46% of the fast-diffusing PCNA molecules.

  4. Two-photon holographic optogenetics of neural circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Carrillo-Reid, Luis; Peterka, Darcy S.; Yuste, Rafael

    2016-03-01

    Optical manipulation of in vivo neural circuits with cellular resolution could be important for understanding cortical function. Despite recent progress, simultaneous optogenetic activation with cellular precision has either been limited to 2D planes, or a very small numbers of neurons over a limited volume. Here we demonstrate a novel paradigm for simultaneous 3D activation using a low repetition rate pulse-amplified fiber laser system and a spatial light modulator (SLM) to project 3D holographic excitation patterns on the cortex of mice in vivo for targeted volumetric 3D photoactivation. This method is compatible with two-photon imaging, and enables the simultaneous activation of multiple cells in 3D, using red-shifted opsins, such as C1V1 or ReaChR, while simultaneously imaging GFP-based sensors such as GCaMP6. This all-optical imaging and 3D manipulation approach achieves simultaneous reading and writing of cortical activity, and should be a powerful tool for the study of neuronal circuits.

  5. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway

    NASA Astrophysics Data System (ADS)

    Fedele, Giorgio; Green, Edward W.; Rosato, Ezio; Kyriacou, Charalambos P.

    2014-07-01

    Many higher animals have evolved the ability to use the Earth’s magnetic field, particularly for orientation. Drosophila melanogaster also respond to electromagnetic fields (EMFs), although the reported effects are quite modest. Here we report that negative geotaxis in flies, scored as climbing, is disrupted by a static EMF, and this is mediated by cryptochrome (CRY), the blue-light circadian photoreceptor. CRYs may sense EMFs via formation of radical pairs of electrons requiring photoactivation of flavin adenine dinucleotide (FAD) bound near a triad of Trp residues, but mutation of the terminal Trp in the triad maintains EMF responsiveness in climbing. In contrast, deletion of the CRY C terminus disrupts EMF responses, indicating that it plays an important signalling role. CRY expression in a subset of clock neurons, or the photoreceptors, or the antennae, is sufficient to mediate negative geotaxis and EMF sensitivity. Climbing therefore provides a robust and reliable phenotype for studying EMF responses in Drosophila.

  6. In Situ Generated Ruthenium-Arene Catalyst for Photoactivated Ring-Opening Metathesis Polymerization through Photolatent N-Heterocyclic Carbene Ligand.

    PubMed

    Pinaud, Julien; Trinh, Thi Kim Hoang; Sauvanier, David; Placet, Emeline; Songsee, Sriprapai; Lacroix-Desmazes, Patrick; Becht, Jean-Michel; Tarablsi, Bassam; Lalevée, Jacques; Pichavant, Loïc; Héroguez, Valérie; Chemtob, Abraham

    2018-01-09

    1,3-Bis(mesityl)imidazolium tetraphenylborate (IMesH + BPh 4 - ) can be synthesized in one step by anion metathesis between the corresponding imidazolium chloride and sodium tetraphenylborate. In the presence of 2-isopropylthioxanthone (sensitizer), an IMes N-heterocyclic carbene (NHC) ligand can be photogenerated under irradiation at 365 nm through coupled electron/proton transfer reactions. By combining this tandem NHC photogenerator system with metathesis inactive [RuCl 2 (p-cymene)] 2 precatalyst, the highly active RuCl 2 (p-cymene)(IMes) complex can be formed in situ, enabling a complete ring-opening metathesis polymerization (ROMP) of norbornene in the matter of minutes at room temperature. To the best of our knowledge, this is the first example of a photogenerated NHC. Its exploitation in photoROMP has resulted in a simplified process compared to current photocatalysts, because only stable commercial or easily synthesized reagents are required. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dynamic defect correlations dominate activated electronic transport in SrTiO 3

    DOE PAGES

    Snijders, Paul C.; Sen, Cengiz; McConnell, Michael P.; ...

    2016-07-22

    Strontium titanate (SrTiO 3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. In this paper, we present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. Themore » results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. In conclusion, these results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.« less

  8. Light-Sensitive Ruthenium Complex-Loaded Cross-linked Polymeric Nanoassemblies for the Treatment of Cancer

    PubMed Central

    Dickerson, M; Howerton, B.; Bae, Y.; Glazer, E.

    2016-01-01

    This work focuses on improving the efficacy of photoactivatable Ru complexes for photodynamic therapy by employing cross-linked nanoassemblies (CNAs) as a delivery approach. The effects of complex photoactivation, hydrophobicity, and solution ionic strength and pH on complex loading and release from CNAs were analyzed. The cell cytotoxicity of CNA formulations was similar to free Ru complexes despite reduced or eliminated DNA interactions. The release rate and the amount of each Ru complex released (%) varied inversely with complex hydrophobicity, while the effect of solution ionic strength was dependent on complex hydrophobicity. Premature release of two photoactivatable prodrugs prior to irradiation was believed to account for higher activity in cells studies compared to DNA interaction studies; however, for photostable 1O2 generator-loaded CNAs this cannot explain the high cytotoxicity and lack of DNA interactions because release was incomplete after 48 hrs. The cause remains unclear, but among other possibilities, accelerated release in a cell culture environment may be responsible. PMID:26855780

  9. Mechanistic logic underlying the axonal transport of cytosolic proteins

    PubMed Central

    Scott, David A.; Das, Utpal; Tang, Yong; Roy, Subhojit

    2011-01-01

    Proteins vital to presynaptic function are synthesized in the neuronal perikarya and delivered into synapses via two modes of axonal transport. While membrane-anchoring proteins are conveyed in fast axonal transport via motor-driven vesicles, cytosolic proteins travel in slow axonal transport; via mechanisms that are poorly understood. We found that in cultured axons, populations of cytosolic proteins tagged to photoactivable-GFP (PA-GFP) move with a slow motor-dependent anterograde bias; distinct from vesicular-trafficking or diffusion of untagged PA-GFP. The overall bias is likely generated by an intricate particle-kinetics involving transient assembly and short-range vectorial spurts. In-vivo biochemical studies reveal that cytosolic proteins are organized into higher-order structures within axon-enriched fractions that are largely segregated from vesicles. Data-driven biophysical modeling best predicts a scenario where soluble molecules dynamically assemble into mobile supra-molecular structures. We propose a model where cytosolic proteins are transported by dynamically assembling into multi-protein complexes that are directly/indirectly conveyed by motors. PMID:21555071

  10. Single-Molecule Tracking Photoactivated Localization Microscopy to Map Nano-Scale Structure and Dynamics in Living Spines

    PubMed Central

    MacGillavry, Harold D.; Blanpied, Thomas A.

    2013-01-01

    Super-resolution microscopy has rapidly become an indispensable tool in cell biology and neuroscience by enabling measurement in live cells of structures smaller than the classical limit imposed by diffraction. The most widely applied super-resolution method currently is localization microscopy, which takes advantage of the ability to determine the position of individual fluorescent molecules with nanometer accuracy even in cells. By iteratively measuring sparse subsets of photoactivatable fluorescent proteins, protein distribution in macromolecular structures can be accurately reconstructed. Moreover, the motion trajectories of individual molecules within cells can be measured, providing unique ability to measure transport kinetics, exchange rates, and binding affinities of even small subsets of molecules with high temporal resolution and great spatial specificity. This unit describes protocols to measure and quantify the distribution of scaffold proteins within single synapses of cultured hippocampal neurons, and to track and measure the diffusion of intracellular constituents of the neuronal plasma membrane. PMID:25429311

  11. Transcriptome In Vivo Analysis (TIVA) of spatially defined single cells in intact live mouse and human brain tissue

    PubMed Central

    Lovatt, Ditte; Ruble, Brittani K.; Lee, Jaehee; Dueck, Hannah; Kim, Tae Kyung; Fisher, Stephen; Francis, Chantal; Spaethling, Jennifer M.; Wolf, John A.; Grady, M. Sean; Ulyanova, Alexandra V.; Yeldell, Sean B.; Griepenburg, Julianne C.; Buckley, Peter T.; Kim, Junhyong; Sul, Jai-Yoon; Dmochowski, Ivan J.; Eberwine, James

    2014-01-01

    Transcriptome profiling is an indispensable tool in advancing the understanding of single cell biology, but depends upon methods capable of isolating mRNA at the spatial resolution of a single cell. Current capture methods lack sufficient spatial resolution to isolate mRNA from individual in vivo resident cells without damaging adjacent tissue. Because of this limitation, it has been difficult to assess the influence of the microenvironment on the transcriptome of individual neurons. Here, we engineered a Transcriptome In Vivo Analysis (TIVA)-tag, which upon photoactivation enables mRNA capture from single cells in live tissue. Using the TIVA-tag in combination with RNA-seq to analyze transcriptome variance among single dispersed cells and in vivo resident mouse and human neurons, we show that the tissue microenvironment shapes the transcriptomic landscape of individual cells. The TIVA methodology provides the first noninvasive approach for capturing mRNA from single cells in their natural microenvironment. PMID:24412976

  12. Accounting for Limited Detection Efficiency and Localization Precision in Cluster Analysis in Single Molecule Localization Microscopy

    PubMed Central

    Shivanandan, Arun; Unnikrishnan, Jayakrishnan; Radenovic, Aleksandra

    2015-01-01

    Single Molecule Localization Microscopy techniques like PhotoActivated Localization Microscopy, with their sub-diffraction limit spatial resolution, have been popularly used to characterize the spatial organization of membrane proteins, by means of quantitative cluster analysis. However, such quantitative studies remain challenged by the techniques’ inherent sources of errors such as a limited detection efficiency of less than 60%, due to incomplete photo-conversion, and a limited localization precision in the range of 10 – 30nm, varying across the detected molecules, mainly depending on the number of photons collected from each. We provide analytical methods to estimate the effect of these errors in cluster analysis and to correct for them. These methods, based on the Ripley’s L(r) – r or Pair Correlation Function popularly used by the community, can facilitate potentially breakthrough results in quantitative biology by providing a more accurate and precise quantification of protein spatial organization. PMID:25794150

  13. Development of cortical orientation selectivity in the absence of visual experience with contour

    PubMed Central

    Hussain, Shaista; Weliky, Michael

    2011-01-01

    Visual cortical neurons are selective for the orientation of lines, and the full development of this selectivity requires natural visual experience after eye opening. Here we examined whether this selectivity develops without seeing lines and contours. Juvenile ferrets were reared in a dark room and visually trained by being shown a movie of flickering, sparse spots. We found that despite the lack of contour visual experience, the cortical neurons of these ferrets developed strong orientation selectivity and exhibited simple-cell receptive fields. This finding suggests that overt contour visual experience is unnecessary for the maturation of orientation selectivity and is inconsistent with the computational models that crucially require the visual inputs of lines and contours for the development of orientation selectivity. We propose that a correlation-based model supplemented with a constraint on synaptic strength dynamics is able to account for our experimental result. PMID:21753023

  14. More insight into the interplay of response selection and visual attention in dual-tasks: masked visual search and response selection are performed in parallel.

    PubMed

    Reimer, Christina B; Schubert, Torsten

    2017-09-15

    Both response selection and visual attention are limited in capacity. According to the central bottleneck model, the response selection processes of two tasks in a dual-task situation are performed sequentially. In conjunction search, visual attention is required to select the items and to bind their features (e.g., color and form), which results in a serial search process. Search time increases as items are added to the search display (i.e., set size effect). When the search display is masked, visual attention deployment is restricted to a brief period of time and target detection decreases as a function of set size. Here, we investigated whether response selection and visual attention (i.e., feature binding) rely on a common or on distinct capacity limitations. In four dual-task experiments, participants completed an auditory Task 1 and a conjunction search Task 2 that were presented with an experimentally modulated temporal interval between them (Stimulus Onset Asynchrony, SOA). In Experiment 1, Task 1 was a two-choice discrimination task and the conjunction search display was not masked. In Experiment 2, the response selection difficulty in Task 1 was increased to a four-choice discrimination and the search task was the same as in Experiment 1. We applied the locus-of-slack method in both experiments to analyze conjunction search time, that is, we compared the set size effects across SOAs. Similar set size effects across SOAs (i.e., additive effects of SOA and set size) would indicate sequential processing of response selection and visual attention. However, a significantly smaller set size effect at short SOA compared to long SOA (i.e., underadditive interaction of SOA and set size) would indicate parallel processing of response selection and visual attention. In both experiments, we found underadditive interactions of SOA and set size. In Experiments 3 and 4, the conjunction search display in Task 2 was masked. Task 1 was the same as in Experiments 1 and 2, respectively. In both experiments, the d' analysis revealed that response selection did not affect target detection. Overall, Experiments 1-4 indicated that neither the response selection difficulty in the auditory Task 1 (i.e., two-choice vs. four-choice) nor the type of presentation of the search display in Task 2 (i.e., not masked vs. masked) impaired parallel processing of response selection and conjunction search. We concluded that in general, response selection and visual attention (i.e., feature binding) rely on distinct capacity limitations.

  15. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 2: Experiment selection

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The selection and definition of candidate experiments and the associated experiment instrumentation requirements are described. Information is presented that addresses the following study objectives: (1) determine specific research and technology needs in the comm/nav field through a survey of the scientific/technical community; (2) develop manned low earth orbit space screening criteria and compile lists of potential candidate experiments; (3) in Blue Book format, define and describe selected candidate experiments in sufficient detail to develop laboratory configuration designs and layouts; and (4) develop experiment time phasing criteria and recommend a payload for sortie can/early laboratory missions.

  16. Group selection on population size affects life-history patterns in the entomopathogenic nematode Steinernema carpocapsae.

    PubMed

    Bashey, Farrah; Lively, Curtis M

    2009-05-01

    Selection is recognized to operate on multiple levels. In disease organisms, selection among hosts is thought to provide an important counterbalance to selection for faster growth within hosts. We performed three experiments, each selecting for a divergence in group size in the entomopathogenic nematode, Steinernema carpocapsae. These nematodes infect and kill insect larvae, reproduce inside the host carcass, and emerge as infective juveniles. We imposed selection on group size by selecting among hosts for either high or low numbers of emerging nematodes. Our goal was to determine whether this trait could respond to selection at the group level, and if so, to examine what other traits would evolve as correlated responses. One of the three experiments showed a significant response to group selection. In that experiment, the high-selected treatment consistently produced more emerging nematodes per host than the low-selected treatment. In addition, nematodes were larger and they emerged later from hosts in the low-selected lines. Despite small effective population sizes, the effects of inbreeding were small in this experiment. Thus, selection among hosts can be effective, leading to both a direct evolutionary response at the population level, as well as to correlated responses in populational and individual traits.

  17. Power Analysis of Artificial Selection Experiments Using Efficient Whole Genome Simulation of Quantitative Traits

    PubMed Central

    Kessner, Darren; Novembre, John

    2015-01-01

    Evolve and resequence studies combine artificial selection experiments with massively parallel sequencing technology to study the genetic basis for complex traits. In these experiments, individuals are selected for extreme values of a trait, causing alleles at quantitative trait loci (QTL) to increase or decrease in frequency in the experimental population. We present a new analysis of the power of artificial selection experiments to detect and localize quantitative trait loci. This analysis uses a simulation framework that explicitly models whole genomes of individuals, quantitative traits, and selection based on individual trait values. We find that explicitly modeling QTL provides qualitatively different insights than considering independent loci with constant selection coefficients. Specifically, we observe how interference between QTL under selection affects the trajectories and lengthens the fixation times of selected alleles. We also show that a substantial portion of the genetic variance of the trait (50–100%) can be explained by detected QTL in as little as 20 generations of selection, depending on the trait architecture and experimental design. Furthermore, we show that power depends crucially on the opportunity for recombination during the experiment. Finally, we show that an increase in power is obtained by leveraging founder haplotype information to obtain allele frequency estimates. PMID:25672748

  18. Adverse Selection in Health Insurance Markets: A Classroom Experiment

    ERIC Educational Resources Information Center

    Hodgson, Ashley

    2014-01-01

    Adverse selection as it relates to health care policy will be a key economic issue in many upcoming elections. In this article, the author lays out a 30-minute classroom experiment designed for students to experience the kind of elevated prices and market collapse that can result from adverse selection in health insurance markets. The students…

  19. New experiments selected for 1980 operational shuttle flight

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Experiments selected for NASA's Long Duration Exposure Facility mission are described. Technical areas represented by the experiments include materials, thermal control coatings, detectors, power, micrometeoroids, electronics, lubrication, optics, and space debris detection.

  20. On selecting evidence to test hypotheses: A theory of selection tasks.

    PubMed

    Ragni, Marco; Kola, Ilir; Johnson-Laird, Philip N

    2018-05-21

    How individuals choose evidence to test hypotheses is a long-standing puzzle. According to an algorithmic theory that we present, it is based on dual processes: individuals' intuitions depending on mental models of the hypothesis yield selections of evidence matching instances of the hypothesis, but their deliberations yield selections of potential counterexamples to the hypothesis. The results of 228 experiments using Wason's selection task corroborated the theory's predictions. Participants made dependent choices of items of evidence: the selections in 99 experiments were significantly more redundant (using Shannon's measure) than those of 10,000 simulations of each experiment based on independent selections. Participants tended to select evidence corresponding to instances of hypotheses, or to its counterexamples, or to both. Given certain contents, instructions, or framings of the task, they were more likely to select potential counterexamples to the hypothesis. When participants received feedback about their selections in the "repeated" selection task, they switched from selections of instances of the hypothesis to selection of potential counterexamples. These results eliminated most of the 15 alternative theories of selecting evidence. In a meta-analysis, the model theory yielded a better fit of the results of 228 experiments than the one remaining theory based on reasoning rather than meaning. We discuss the implications of the model theory for hypothesis testing and for a well-known paradox of confirmation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Feeding selectivity of Calanus finmarchicus in the Trondheimsfjord

    NASA Astrophysics Data System (ADS)

    Leiknes, Øystein; Striberny, Anja; Tokle, Nils Egil; Olsen, Yngvar; Vadstein, Olav; Sommer, Ulrich

    2014-01-01

    The feeding selectivity of Calanus finmarchicus was studied by carrying out three incubation experiments; two experiments with natural seawater sampled during spring bloom (Exp. 1) and post-bloom conditions (Exp. 2) and a third experiment with cultured dinoflagellates and ciliates (Exp. 3). In the first two experiments a gradient in ciliate concentration was created to investigate the potential for prey density dependent selective feeding of C. finmarchicus. Results of microplankton counts indicated C. finmarchicus to be omnivorous. Diatoms contributed chiefly to the diet during spring bloom conditions. Despite the high microphytoplankton biomass during the spring bloom (Exp. 1), ciliates were selected positively by C. finmarchicus when the ciliate biomass exceeded 6.5 μg C L- 1. A selection in favor of large conic ciliates such as Laboea sp. and Strombidium conicum was indicated by positive selectivity indices. Ciliates were throughout positively selected by C. finmarchicus during Exp. 2, and selectivity indices indicated a negative selection of diatoms. The results from Exp. 3 showed that C. finmarchicus has the ability to switch from dinoflagellates to ciliates as sole food source, even if the dinoflagellate was offered in surplus. This suggests that other factors, such as nutrition may be of significance for the feeding selectivity of C. finmarchicus.

  2. Mesencephalic representations of recent experience influence decision making.

    PubMed

    Thompson, John A; Costabile, Jamie D; Felsen, Gidon

    2016-07-25

    Decisions are influenced by recent experience, but the neural basis for this phenomenon is not well understood. Here, we address this question in the context of action selection. We focused on activity in the pedunculopontine tegmental nucleus (PPTg), a mesencephalic region that provides input to several nuclei in the action selection network, in well-trained mice selecting actions based on sensory cues and recent trial history. We found that, at the time of action selection, the activity of many PPTg neurons reflected the action on the previous trial and its outcome, and the strength of this activity predicted the upcoming choice. Further, inactivating the PPTg predictably decreased the influence of recent experience on action selection. These findings suggest that PPTg input to downstream motor regions, where it can be integrated with other relevant information, provides a simple mechanism for incorporating recent experience into the computations underlying action selection.

  3. Mission requirements for a manned earth observatory. Volume 1, task 1: Experiment selection, definition, and documentation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Information related to proposed earth observation experiments for shuttle sortie missions (SSM) in the 1980's is presented. The step-wise progression of study activities and the development of the rationale that led to the identification, selection, and description of earth observation experiments for SSM are listed. The selected experiments are described, defined, and documented by individual disciplines. These disciplines include: oceanography; meteorology; agriculture, forestry, and rangeland; geology; hydrology; and environmental impact.

  4. Selection in spatial working memory is independent of perceptual selective attention, but they interact in a shared spatial priority map.

    PubMed

    Hedge, Craig; Oberauer, Klaus; Leonards, Ute

    2015-11-01

    We examined the relationship between the attentional selection of perceptual information and of information in working memory (WM) through four experiments, using a spatial WM-updating task. Participants remembered the locations of two objects in a matrix and worked through a sequence of updating operations, each mentally shifting one dot to a new location according to an arrow cue. Repeatedly updating the same object in two successive steps is typically faster than switching to the other object; this object switch cost reflects the shifting of attention in WM. In Experiment 1, the arrows were presented in random peripheral locations, drawing perceptual attention away from the selected object in WM. This manipulation did not eliminate the object switch cost, indicating that the mechanisms of perceptual selection do not underlie selection in WM. Experiments 2a and 2b corroborated the independence of selection observed in Experiment 1, but showed a benefit to reaction times when the placement of the arrow cue was aligned with the locations of relevant objects in WM. Experiment 2c showed that the same benefit also occurs when participants are not able to mark an updating location through eye fixations. Together, these data can be accounted for by a framework in which perceptual selection and selection in WM are separate mechanisms that interact through a shared spatial priority map.

  5. Initial retrieval shields against retrieval-induced forgetting.

    PubMed

    Racsmány, Mihály; Keresztes, Attila

    2015-01-01

    Testing, as a form of retrieval, can enhance learning but it can also induce forgetting of related memories, a phenomenon known as retrieval-induced forgetting (RIF). In four experiments we explored whether selective retrieval and selective restudy of target memories induce forgetting of related memories with or without initial retrieval of the entire learning set. In Experiment 1, subjects studied category-exemplar associations, some of which were then either restudied or retrieved. RIF occurred on a delayed final test only when memories were retrieved and not when they were restudied. In Experiment 2, following the study phase of category-exemplar associations, subjects attempted to recall all category-exemplar associations, then they selectively retrieved or restudied some of the exemplars. We found that, despite the huge impact on practiced items, selective retrieval/restudy caused no decrease in final recall of related items. In Experiment 3, we replicated the main result of Experiment 2 by manipulating initial retrieval as a within-subject variable. In Experiment 4 we replicated the main results of the previous experiments with non-practiced (Nrp) baseline items. These findings suggest that initial retrieval of the learning set shields against the forgetting effect of later selective retrieval. Together, our results support the context shift theory of RIF.

  6. Selecting foils for identification lineups: matching suspects or descriptions?

    PubMed

    Tunnicliff, J L; Clark, S E

    2000-04-01

    Two experiments directly compare two methods of selecting foils for identification lineups. The suspect-matched method selects foils based on their match to the suspect, whereas the description-matched method selects foils based on their match to the witness's description of the perpetrator. Theoretical analyses and previous results predict an advantage for description-matched lineups both in terms of correctly identifying the perpetrator and minimizing false identification of innocent suspects. The advantage for description-matched lineups should be particularly pronounced if the foils selected in suspect-matched lineups are too similar to the suspect. In Experiment 1, the lineups were created by trained police officers, and in Experiment 2, the lineups were constructed by undergraduate college students. The results of both experiments showed higher suspect-to-foil similarity for suspect-matched lineups than for description-matched lineups. However, neither experiment showed a difference in correct or false identification rates. Both experiments did, however, show that there may be an advantage for suspect-matched lineups in terms of no-pick and rejection responses. From these results, the endorsement of one method over the other seems premature.

  7. Entropy-Based Search Algorithm for Experimental Design

    NASA Astrophysics Data System (ADS)

    Malakar, N. K.; Knuth, K. H.

    2011-03-01

    The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. This algorithm is inspired by Skilling's nested sampling algorithm used in inference and borrows the concept of a rising threshold while a set of experiment samples are maintained. We demonstrate that this algorithm not only selects highly relevant experiments, but also is more efficient than brute force search. Such entropic search techniques promise to greatly benefit autonomous experimental design.

  8. Children's attention to task-relevant information accounts for relations between language and spatial cognition.

    PubMed

    Miller, Hilary E; Simmering, Vanessa R

    2018-08-01

    Children's spatial language reliably predicts their spatial skills, but the nature of this relation is a source of debate. This investigation examined whether the mechanisms accounting for such relations are specific to language use or reflect a domain-general mechanism of selective attention. Experiment 1 examined whether 4-year-olds' spatial skills were predicted by their selective attention or their adaptive language use. Children completed (a) an attention task assessing attention to task-relevant color, size, and location cues; (b) a description task assessing adaptive language use to describe scenes varying in color, size, and location; and (c) three spatial tasks. There was correspondence between the cue types that children attended to and produced across description and attention tasks. Adaptive language use was predicted by both children's attention and task-related language production, suggesting that selective attention underlies skills in using language adaptively. After controlling for age, gender, receptive vocabulary, and adaptive language use, spatial skills were predicted by children's selective attention. The attention score predicted variance in spatial performance previously accounted for by adaptive language use. Experiment 2 followed up on the attention task (Experiment 2a) and description task (Experiment 2b) from Experiment 1 to assess whether performance in the tasks related to selective attention or task-specific demands. Performance in Experiments 2a and 2b paralleled that in Experiment 1, suggesting that the effects in Experiment 1 reflected children's selective attention skills. These findings show that selective attention is a central factor supporting spatial skill development that could account for many effects previously attributed to children's language use. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Sample Selection in Randomized Experiments: A New Method Using Propensity Score Stratified Sampling

    ERIC Educational Resources Information Center

    Tipton, Elizabeth; Hedges, Larry; Vaden-Kiernan, Michael; Borman, Geoffrey; Sullivan, Kate; Caverly, Sarah

    2014-01-01

    Randomized experiments are often seen as the "gold standard" for causal research. Despite the fact that experiments use random assignment to treatment conditions, units are seldom selected into the experiment using probability sampling. Very little research on experimental design has focused on how to make generalizations to well-defined…

  10. Stress improves selective attention towards emotionally neutral left ear stimuli.

    PubMed

    Hoskin, Robert; Hunter, M D; Woodruff, P W R

    2014-09-01

    Research concerning the impact of psychological stress on visual selective attention has produced mixed results. The current paper describes two experiments which utilise a novel auditory oddball paradigm to test the impact of psychological stress on auditory selective attention. Participants had to report the location of emotionally-neutral auditory stimuli, while ignoring task-irrelevant changes in their content. The results of the first experiment, in which speech stimuli were presented, suggested that stress improves the ability to selectively attend to left, but not right ear stimuli. When this experiment was repeated using tonal stimuli the same result was evident, but only for female participants. Females were also found to experience greater levels of distraction in general across the two experiments. These findings support the goal-shielding theory which suggests that stress improves selective attention by reducing the attentional resources available to process task-irrelevant information. The study also demonstrates, for the first time, that this goal-shielding effect extends to auditory perception. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Contribution of Innate Cortical Mechanisms to the Maturation of Orientation Selectivity in Parvalbumin Interneurons

    PubMed Central

    Figueroa Velez, Dario X.; Ellefsen, Kyle L.; Hathaway, Ethan R.; Carathedathu, Mathew C.

    2017-01-01

    The maturation of cortical parvalbumin-positive (PV) interneurons depends on the interaction of innate and experience-dependent factors. Dark-rearing experiments suggest that visual experience determines when broad orientation selectivity emerges in visual cortical PV interneurons. Here, using neural transplantation and in vivo calcium imaging of mouse visual cortex, we investigated whether innate mechanisms contribute to the maturation of orientation selectivity in PV interneurons. First, we confirmed earlier findings showing that broad orientation selectivity emerges in PV interneurons by 2 weeks after vision onset, ∼35 d after these cells are born. Next, we assessed the functional development of transplanted PV (tPV) interneurons. Surprisingly, 25 d after transplantation (DAT) and >2 weeks after vision onset, we found that tPV interneurons have not developed broad orientation selectivity. By 35 DAT, however, broad orientation selectivity emerges in tPV interneurons. Transplantation does not alter orientation selectivity in host interneurons, suggesting that the maturation of tPV interneurons occurs independently from their endogenous counterparts. Together, these results challenge the notion that the onset of vision solely determines when PV interneurons become broadly tuned. Our results reveal that an innate cortical mechanism contributes to the emergence of broad orientation selectivity in PV interneurons. SIGNIFICANCE STATEMENT Early visual experience and innate developmental programs interact to shape cortical circuits. Visual-deprivation experiments have suggested that the onset of visual experience determines when interneurons mature in the visual cortex. Here we used neuronal transplantation and cellular imaging of visual responses to investigate the maturation of parvalbumin-positive (PV) interneurons. Our results suggest that the emergence of broad orientation selectivity in PV interneurons is innately timed. PMID:28123018

  12. Context-specific control and the Stroop negative priming effect.

    PubMed

    Milliken, Bruce; Thomson, David R; Bleile, Karmen; MacLellan, Ellen; Giammarco, Maria

    2012-01-01

    The present study highlights the utility of context-specific learning for different probe types in accounting for the commonly observed dependence of negative priming on probe selection. Using a Stroop priming procedure, Experiments 1a and 1b offered a demonstration that Stroop priming effects can differ qualitatively for selection and no-selection probes when probe selection is manipulated between subjects, but not when it is manipulated randomly from trial to trial within subject (see also Moore, 1994). In Experiments 2 and 3, selection and no-selection probes served as two contexts that varied randomly from trial to trial, but for which proportion repeated was manipulated separately. A context-specific proportion repeated effect was observed in Experiment 2, characterized by modest quantitative shifts in the repetition effects as a function of the context-specific proportion repeated manipulation. However, with a longer intertrial interval in Experiment 3, a context-specific proportion repeated manipulation that focused on the no-selection probes changed the repetition effect qualitatively, from negative priming when the proportion repeated was .25 to positive priming when the proportion repeated was .75. The results are discussed with reference to the role of rapid, context-specific learning processes in the integration of prior experiences with current perception and action.

  13. Mesencephalic representations of recent experience influence decision making

    PubMed Central

    Thompson, John A; Costabile, Jamie D; Felsen, Gidon

    2016-01-01

    Decisions are influenced by recent experience, but the neural basis for this phenomenon is not well understood. Here, we address this question in the context of action selection. We focused on activity in the pedunculopontine tegmental nucleus (PPTg), a mesencephalic region that provides input to several nuclei in the action selection network, in well-trained mice selecting actions based on sensory cues and recent trial history. We found that, at the time of action selection, the activity of many PPTg neurons reflected the action on the previous trial and its outcome, and the strength of this activity predicted the upcoming choice. Further, inactivating the PPTg predictably decreased the influence of recent experience on action selection. These findings suggest that PPTg input to downstream motor regions, where it can be integrated with other relevant information, provides a simple mechanism for incorporating recent experience into the computations underlying action selection. DOI: http://dx.doi.org/10.7554/eLife.16572.001 PMID:27454033

  14. Extinction of Over-Selected Stimuli Causes Emergence of Under-Selected Cues in Higher-Functioning Children with Autistic Spectrum Disorders

    ERIC Educational Resources Information Center

    Reed, Phil; Broomfield, Laura; McHugh, Louise; McCausland, Aisling; Leader, Geraldine

    2009-01-01

    Two experiments examined whether over-selectivity is the product of a post-acquisition performance deficit, rather than an attention problem. In both experiments, children with Autistic Spectrum Disorder were presented with a trial-and-error discrimination task using two, two-element stimuli and over-selected in both studies. After behavioral…

  15. Simultaneous attentional guidance by working-memory and selection history reveals two distinct sources of attention.

    PubMed

    Schwark, Jeremy D; Dolgov, Igor; Sandry, Joshua; Volkman, C Brooks

    2013-10-01

    Recent theories of attention have proposed that selection history is a separate, dissociable source of information that influences attention. The current study sought to investigate the simultaneous involvement of selection history and working-memory on attention during visual search. Experiments 1 and 2 used target feature probability to manipulate selection history and found significant effects of both working-memory and selection history, although working-memory dominated selection history when they cued different locations. Experiment 3 eliminated the contribution of voluntary refreshing of working-memory and replicated the main effects, although selection history became dominant. Using the same methodology, but with reduced probability cue validity, both effects were present in Experiment 4 and did not significantly differ in their contribution to attention. Effects of selection history and working-memory never interacted. These results suggest that selection history and working-memory are separate influences on attention and have little impact on each other. Theoretical implications for models of attention are discussed. © 2013.

  16. Initial retrieval shields against retrieval-induced forgetting

    PubMed Central

    Racsmány, Mihály; Keresztes, Attila

    2015-01-01

    Testing, as a form of retrieval, can enhance learning but it can also induce forgetting of related memories, a phenomenon known as retrieval-induced forgetting (RIF). In four experiments we explored whether selective retrieval and selective restudy of target memories induce forgetting of related memories with or without initial retrieval of the entire learning set. In Experiment 1, subjects studied category-exemplar associations, some of which were then either restudied or retrieved. RIF occurred on a delayed final test only when memories were retrieved and not when they were restudied. In Experiment 2, following the study phase of category-exemplar associations, subjects attempted to recall all category-exemplar associations, then they selectively retrieved or restudied some of the exemplars. We found that, despite the huge impact on practiced items, selective retrieval/restudy caused no decrease in final recall of related items. In Experiment 3, we replicated the main result of Experiment 2 by manipulating initial retrieval as a within-subject variable. In Experiment 4 we replicated the main results of the previous experiments with non-practiced (Nrp) baseline items. These findings suggest that initial retrieval of the learning set shields against the forgetting effect of later selective retrieval. Together, our results support the context shift theory of RIF. PMID:26052293

  17. Towards successful user interaction with systems: focusing on user-derived gestures for smart home systems.

    PubMed

    Choi, Eunjung; Kwon, Sunghyuk; Lee, Donghun; Lee, Hogin; Chung, Min K

    2014-07-01

    Various studies that derived gesture commands from users have used the frequency ratio to select popular gestures among the users. However, the users select only one gesture from a limited number of gestures that they could imagine during an experiment, and thus, the selected gesture may not always be the best gesture. Therefore, two experiments including the same participants were conducted to identify whether the participants maintain their own gestures after observing other gestures. As a result, 66% of the top gestures were different between the two experiments. Thus, to verify the changed gestures between the two experiments, a third experiment including another set of participants was conducted, which showed that the selected gestures were similar to those from the second experiment. This finding implies that the method of using the frequency in the first step does not necessarily guarantee the popularity of the gestures. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Selective attention modulates visual and haptic repetition priming: effects in aging and Alzheimer's disease.

    PubMed

    Ballesteros, Soledad; Reales, José M; Mayas, Julia; Heller, Morton A

    2008-08-01

    In two experiments, we examined the effect of selective attention at encoding on repetition priming in normal aging and Alzheimer's disease (AD) patients for objects presented visually (experiment 1) or haptically (experiment 2). We used a repetition priming paradigm combined with a selective attention procedure at encoding. Reliable priming was found for both young adults and healthy older participants for visually presented pictures (experiment 1) as well as for haptically presented objects (experiment 2). However, this was only found for attended and not for unattended stimuli. The results suggest that independently of the perceptual modality, repetition priming requires attention at encoding and that perceptual facilitation is maintained in normal aging. However, AD patients did not show priming for attended stimuli, or for unattended visual or haptic objects. These findings suggest an early deficit of selective attention in AD. Results are discussed from a cognitive neuroscience approach.

  19. Selective Postevent Review and Children's Memory for Nonreviewed Materials

    ERIC Educational Resources Information Center

    Conroy, R.; Salmon, K.

    2005-01-01

    Two experiments investigated the impact of selective postevent questioning on children's memory for nonreviewed materials. In both experiments, children participated in a series of novel activities. Children in the selective-review condition were subsequently questioned about half of these and comparisons were made to memory in a no-review…

  20. The Effects of Age, Years of Experience, and Type of Experience in the Teacher Selection Process

    ERIC Educational Resources Information Center

    Vail, David Scott

    2010-01-01

    Paper screening in the pre-selection process of hiring teachers has been the focus in an ongoing series of similar studies starting with Allison in 1981. There have been many independent variables, including, but not limited to, age, gender, ethnic background, years of experience, type of experience, and grade point average, introduced into the…

  1. The many lives of experiments: Wilhelm Johannsen, selection, hybridization, and the complex relations of genes and characters.

    PubMed

    Meunier, Robert

    2016-04-01

    In addition to his experiments on selection in pure lines, Wilhelm Johannsen (1857-1927) performed less well-known hybridisation experiments with beans. This article describes these experiments and discusses Johannsen's motivations and interpretations, in the context of developments in early genetics. I will show that Johannsen first presented the hybridisation experiments as an additional control for his selection experiments. The latter were dedicated to investigating heredity with respect to debates concerning the significance of natural selection of continuous variation for evolution. In the course of the establishment of a Mendelian research program after 1900, the study of heredity gained increasing independence from questions of evolution, and focused more on the modes and mechanisms of heredity. Further to their role as control experiments, Johannsen also saw his hybridisation experiments as contributing to the Mendelian program, by extending the scope of the principles of Mendelian inheritance to quantitative characters. Towards the end of the first decade of genetics, Johannsen revisited his experiments to illustrate the many-many relationship between genes and characters, at a time when that relationship appeared increasingly complex, and the unit-character concept, accordingly, became inadequate. For the philosophy of science, the example shows that experiments can have multiple roles in a research programme, and can be interpreted in the light of questions other than those that motivated the experiments in the first place.

  2. Motor Decisions Are Not Black and White: Selecting Actions in the “Gray Zone”

    PubMed Central

    Comalli, D. M.; Persand, D.; Adolph, K. E.

    2017-01-01

    In many situations, multiple actions are possible to achieve a goal. How do people select a particular action among equally possible alternatives? In six experiments, we determined whether action selection is consistent and biased toward one decision by observing participants’ decisions to go over or under a horizontal bar set at varying heights. We assessed the height at which participants transitioned from going over to under the bar within a “gray zone”—the range of bar heights at which going over and under were both possible. In Experiment 1, participants’ transition points were consistently located near the upper boundary of the gray zone, indicating a bias to go over rather than under the bar. Moreover, transitional behaviors were clustered tightly into a small region, indicating that decisions were highly consistent. Subsequent experiments examined potential influences on action selection. In Experiment 2, participants wore ankle weights to increase the cost of going over the bar. In Experiment 3, they were tested on a padded surface that made crawling under the bar more comfortable. In Experiment 4, we introduced a secondary task that required participants to crawl immediately after navigating the bar. None of these manipulations altered participants’ decisions relative to Experiment 1. In Experiment 5, participants started in a crawling position, which led to significantly lower transition points. In Experiment 6, we tested 5- to 6-year-old children as in Experiment 1 to determine the effects of social pressure on action selection. Children displayed lower transition points, larger transition regions, and reduced ability to go over the bar compared to adults. Across experiments, results indicate that adults have a strong and robust bias for upright locomotion. PMID:28293691

  3. Photoactivated bioconjugation between ortho-azidophenols and anilines: a facile approach to biomolecular photopatterning.

    PubMed

    El Muslemany, Kareem M; Twite, Amy A; ElSohly, Adel M; Obermeyer, Allie C; Mathies, Richard A; Francis, Matthew B

    2014-09-10

    Methods for the surface patterning of small molecules and biomolecules can yield useful platforms for drug screening, synthetic biology applications, diagnostics, and the immobilization of live cells. However, new techniques are needed to achieve the ease, feature sizes, reliability, and patterning speed necessary for widespread adoption. Herein, we report an easily accessible and operationally simple photoinitiated reaction that can achieve patterned bioconjugation in a highly chemoselective manner. The reaction involves the photolysis of 2-azidophenols to generate iminoquinone intermediates that couple rapidly to aniline groups. We demonstrate the broad functional group compatibility of this reaction for the modification of proteins, polymers, oligonucleotides, peptides, and small molecules. As a specific application, the reaction was adapted for the photolithographic patterning of azidophenol DNA on aniline glass substrates. The presence of the DNA was confirmed by the ability of the surface to capture living cells bearing the sequence complement on their cell walls or cytoplasmic membranes. Compared to other light-based DNA patterning methods, this reaction offers higher speed and does not require the use of a photoresist or other blocking material.

  4. A new face of phenalenyl-based radicals in the transition metal-free C-H arylation of heteroarenes at room temperature: trapping the radical initiator via C-C σ-bond formation.

    PubMed

    Ahmed, Jasimuddin; P, Sreejyothi; Vijaykumar, Gonela; Jose, Anex; Raj, Manthan; Mandal, Swadhin K

    2017-11-01

    The radical-mediated transition metal-free approach for the direct C-H bond functionalization of arenes is considered as a cost effective alternative to transition metal-based catalysis. An organic ligand-based radical plays a key role by generating an aryl radical which undergoes a subsequent functionalization process. The design principle of the present study takes advantage of a relatively stable odd alternant hydrocarbon-based phenalenyl (PLY) radical. In this study, the first transition metal-free catalyzed direct C-H arylation of a variety of heteroarenes such as azoles, furan, thiophene and pyridine at room temperature has been reported using a phenalenyl-based radical without employing any photoactivation step. This protocol has been successfully applied to the gram scale synthesis of core moieties of bioactive molecules. The phenalenyl-based radical initiator has been characterized crystallographically by trapping it via the formation of a C-C σ-bond between the phenalenyl radical and solvent-based radical species.

  5. Current and Future Applications of Photoactivated Chromophore for Keratitis-Corneal Collagen Cross-Linking (PACK-CXL): An Overview of the Different Treatments Proposed.

    PubMed

    Abbouda, A; Abicca, I; Alió, J L

    2018-01-01

    To review the application of the PACK-CXL and to identify different treatment protocols according to the pathogens associated with keratitis. A systematic review of 21 articles. The primary outcome was the healing of a corneal ulcer, defined as epithelization, blocking corneal melting. The secondary end-point was the recovery of visual acuity. We studied a total of 145 eyes. Infectious keratitis was associated with bacteria in 80 eyes (55.55%), fungus in 24 eyes (16.67%), and protozoa in 13 (8.97%). In 26 (18%), the microbiological culture was negative or not performed. The mean time of re-epithelization was 25.70±29.83days (1-180). A total of 27 patients needed corneal transplantation. The overall probability of blocking corneal melting was 84.13%. Three different protocols for each group of pathogens have been proposed. PACK-CXL still has a limit in its spread. In the future, we hope that each pathogen will be treated with the most efficient and least invasive protocols available.

  6. Construction, alignment, and implementation of an acousto-optical deflector-based system for patterned uncaging with ultraviolet light.

    PubMed

    Civillico, Eugene F; Shoham, Shy; O'Connor, Daniel H; Sarkisov, Dmitry V; Wang, Samuel S-H

    2012-08-01

    The method of patterned photoactivation is a natural fit for the study of neuronal dendritic integration. Photoactivatable molecules that influence a wide range of extracellular and intracellular neurophysiological functions are available. The choice of photosensitive molecules depends on the research question and will influence the design of the experimental apparatus. An acousto-optical deflector (AOD)-based system can be used for rapid ultraviolet (UV) photolysis in arbitrary spatial and temporal patterns. Photolysis-activated "caged" diffusible molecules or newer light-sensitive membrane proteins can be used in this system. This protocol describes the addition of a UV beam for uncaging to a homebuilt two-photon microscope. The goal is to get UV light from the light source (laser) to the approximate center of the objective's back aperture, passing through a pair of perpendicularly oriented AODs along the way. The protocol also describes the fine alignment of the UV beam and the implementation of AOD-based beam steering. Performing the final alignment with the beam passing through the AODs will ensure that the system is optimized for the idiosyncrasies of the crystals.

  7. Light Control of Insulin Release and Blood Glucose Using an Injectable Photoactivated Depot.

    PubMed

    Sarode, Bhagyesh R; Kover, Karen; Tong, Pei Y; Zhang, Chaoying; Friedman, Simon H

    2016-11-07

    In this work we demonstrate that blood glucose can be controlled remotely through light stimulated release of insulin from an injected cutaneous depot. Human insulin was tethered to an insoluble but injectable polymer via a linker, which was based on the light cleavable di-methoxy nitrophenyl ethyl (DMNPE) group. This material was injected into the skin of streptozotocin-treated diabetic rats. We observed insulin being released into the bloodstream after a 2 min trans-cutaneous irradiation of this site by a compact LED light source. Control animals treated with the same material, but in which light was blocked from the site, showed no release of insulin into the bloodstream. We also demonstrate that additional pulses of light from the light source result in additional pulses of insulin being absorbed into circulation. A significant reduction in blood glucose was then observed. Together, these results demonstrate the feasibility of using light to allow for the continuously variable control of insulin release. This in turn has the potential to allow for the tight control of blood glucose without the invasiveness of insulin pumps and cannulas.

  8. A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 2: Integrated application to a shallow estuary.

    PubMed

    Rosen, Gunther; Chadwick, D Bart; Burton, G Allen; Taulbee, W Keith; Greenberg, Marc S; Lotufo, Guilherme R; Reible, Danny D

    2012-03-01

    A comprehensive, weight-of-evidence based ecological risk assessment approach integrating laboratory and in situ bioaccumulation and toxicity testing, passive sampler devices, hydrological characterization tools, continuous water quality sensing, and multi-phase chemical analyses was evaluated. The test site used to demonstrate the approach was a shallow estuarine wetland where groundwater seepage and elevated organic and inorganic contaminants were of potential concern. Although groundwater was discharging into the surficial sediments, little to no chemical contamination was associated with the infiltrating groundwater. Results from bulk chemistry analysis, toxicity testing, and bioaccumulation, however, suggested possible PAH toxicity at one station, which might have been enhanced by UV photoactivation, explaining the differences between in situ and laboratory amphipod survival. Concurrently deployed PAH bioaccumulation on solid-phase micro-extraction fibers positively correlated (r(2) ≥ 0.977) with in situ PAH bioaccumulation in amphipods, attesting to their utility as biomimetics, and contributing to the overall improved linkage between exposure and effects demonstrated by this approach. Published by Elsevier Ltd.

  9. Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection

    PubMed Central

    Zhi, Yanan; Wang, Benquan; Yao, Xincheng

    2016-01-01

    Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches—including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy—have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact–free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina. PMID:27480461

  10. Photosystem I assembly on chemically tailored SAM/ Au substrates for bio-hybrid device fabrication

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dibyendu; Khomami, Bamin

    2011-03-01

    Photosystem I (PS I), a supra-molecular protein complex and a biological photodiode responsible for driving natural photosynthesis mechanism, charge separates upon exposure to light. Effective use of the photo-electrochemical activities of PS I for future bio-hybrid electronic devices requires controlled attachment of these proteins onto organic/ inorganic substrates. Our results indicate that various experimental parameters alter the surface topography of PS I deposited from colloidal aqueous buffer suspensions onto OH-terminated alkanethiolate SAM /Au substrates, thereby resulting in complex columnar structures that affect the electron capture pathway of PS I. Specifically, solution phase characterizations indicate that specific detergents used for PS I stabilization in buffer solutions drive the unique colloidal chemistry to tune protein-protein interactions and prevent aggregation, thereby allowing us to tailor the morphology of surface immobilized PS I. We present surface topographical, adsorption, and electrochemical characterizations of PSI /SAM/Au substrates to elucidate protein-surface attachment dynamics and its effect on the photo-activated electronic activities of surface immobilized PS I. Sustainable Energy Education and Research Center (SEERC).

  11. Photo-inducible cytotoxic and clastogenic activities of 3,6-di-substituted acridines obtained by acylation of proflavine.

    PubMed

    Benchabane, Yohann; Di Giorgio, Carole; Boyer, Gérard; Sabatier, Anne-Sophie; Allegro, Diane; Peyrot, Vincent; De Méo, Michel

    2009-06-01

    The cytotoxicity and photo-enhanced cytotoxicity of a series of 18 3,6-di-substituted acridines were evaluated on both tumour CHO cells and human normal keratinocytes, and compared to their corresponding clastogenicity as assessed by the micronucleus assay. Compounds 2f tert-butyl N-[(6-tert-butoxycarbonylamino)acridin-3-yl]carbamate and 2d N-[6-(pivalamino)acridin-3-yl]pivalamide displayed a specific cytotoxicity on CHO cells. These results suggested that the two derivatives could be considered as interesting candidates for anticancer chemotherapy and hypothesized that the presence of 1,1-dimethylethyl substituents was responsible for a strong nonclastogenic cytotoxicity. Compounds 2b and 2c, on the contrary, displayed a strong clastogenicity. They indicated that the presence of nonbranched aliphatic chains on positions 3 and 6 of the acridine rings tended to induce a significant clastogenic effect. Finally, they established that most of the acridine compounds could be photo-activated by UVA-visible rays and focussed on the significant role of light irradiation on their biological properties.

  12. Dinuclear PhotoCORMs: Dioxygen-Assisted Carbon Monoxide Uncaging from Long-Wavelength-Absorbing Metal-Metal-Bonded Carbonyl Complexes.

    PubMed

    Li, Zhi; Pierri, Agustin E; Huang, Po-Ju; Wu, Guang; Iretskii, Alexei V; Ford, Peter C

    2017-06-05

    We describe a new strategy for triggering the photochemical release of caged carbon monoxide (CO) in aerobic media using long-wavelength visible and near-infrared (NIR) light. The dinuclear rhenium-manganese carbonyl complexes (CO) 5 ReMn(CO) 3 (L), where L = phenanthroline (1), bipyridine (2), biquinoline (3), or phenanthrolinecarboxaldehyde (4), each show a strong metal-metal-bond-to-ligand (σ MM → π L *) charge-transfer absorption band at longer wavelengths. Photolysis with deep-red (1 and 2) or NIR (3 and 4) light leads to homolytic cleavage of the Re-Mn bonds to give mononuclear metal radicals. In the absence of trapping agents, these radicals primarily recombine to reform dinuclear complexes. In oxygenated media, however, the radicals react with dioxygen to form species much more labile toward CO release via secondary thermal and/or photochemical reactions. Conjugation of 4, with an amine-terminated poly(ethylene glycol) oligomer, gives a water-soluble derivative with similar photochemistry. In this context, we discuss the potential applications of these dinuclear complexes as visible/NIR-light-photoactivated CO-releasing moieties (photoCORMs).

  13. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    DOE PAGES

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; ...

    2015-06-27

    Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here in this study, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallizationmore » conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.« less

  14. Sequence context and crosslinking mechanism affect the efficiency of in vivo capture of a protein-protein interaction

    PubMed Central

    Lancia, Jody K.; Nwokoye, Adaora; Dugan, Amanda; Joiner, Cassandra; Pricer, Rachel; Mapp, Anna K.

    2014-01-01

    Protein-protein interactions (PPIs) are essential for implementing cellular processes and thus methods for the discovery and study of PPIs are highly desirable. An emerging method for capturing PPIs in their native cellular environment is in vivo covalent chemical capture, a method that uses nonsense suppression to site specifically incorporate photoactivable unnatural amino acids in living cells. However, in one study we found that this method did not capture a PPI for which there was abundant functional evidence, a complex formed between the transcriptional activator Gal4 and its repressor protein Gal80. Here we describe the factors that influence the success of covalent chemical capture and show that the innate reactivity of the two unnatural amino acids utilized, (p-benzoylphenylalanine (pBpa) and p-azidophenylalanine (pAzpa)), plays a profound role in the capture of Gal80 by Gal4. Based upon these data, guidelines are outlined for the successful use of in vivo photo-crosslinking to capture novel PPIs and to characterize the interfaces. PMID:24037947

  15. PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3

    DOE PAGES

    Ni, Weimin; Xu, Shou-Ling; González-Grandío, Eduardo; ...

    2017-05-11

    Upon light-induced nuclear translocation, phytochrome (phy) sensory photoreceptors interact with, and induce rapid phosphorylation and consequent ubiquitin-mediated degradation of, transcription factors, called PIFs, thereby regulating target gene expression and plant development. Nevertheless, the biochemical mechanism of phy-induced PIF phosphorylation has remained ill-defined. Here in this paper we identify a family of nuclear protein kinases, designated Photoregulatory Protein Kinases (PPK1–4; formerly called MUT9-Like Kinases (MLKs)), that interact with PIF3 and phyB in a light-induced manner in vivo. Genetic analyses demonstrate that the PPKs are collectively necessary for the normal light-induced phosphorylation and degradation of PIF3. PPK1 directly phosphorylates PIF3 in vitro,more » with a phosphosite pattern that strongly mimics the light-induced pattern in vivo. These data establish that the PPKs are directly involved in catalysing the photoactivated-phy-induced phosphorylation of PIF3 in vivo, and thereby are critical components of a transcriptionally centred signalling hub that pleiotropically regulates plant growth and development in response to multiple signalling pathways.« less

  16. C-H Activation of Benzene by a Photoactivated Ni(II)(azide): Formation of a Transient Nickel Nitrido Complex.

    PubMed

    Vreeken, Vincent; Siegler, Maxime A; de Bruin, Bas; Reek, Joost N H; Lutz, Martin; van der Vlugt, Jarl Ivar

    2015-06-08

    Photochemical activation of nickel-azido complex 2 [Ni(N3)(PNP)] (PN(H)P=2,2'-di(isopropylphosphino)-4,4'-ditolylamine) in neat benzene produces diamagnetic complex 3 [Ni(Ph)(PN(P)N(H))], which is crystallographically characterized. DFT calculations support photoinitiated N2-loss of the azido complex to generate a rare, transient Ni(IV) nitrido species, which bears significant nitridyl radical character. Subsequent trapping of this nitrido through insertion into the Ni-P bond generates a coordinatively unsaturated Ni(II) imidophosphorane P=N donor. This species shows unprecedented reactivity toward 1,2-addition of a C-H bond of benzene to form 3. The structurally characterized chlorido complex 4 [Ni(Cl)(PN(P)N(H))] is generated by reaction of 3 with HCl or by direct photolysis of 2 in chlorobenzene. This is the first report of aromatic C-H bond activation by a trapped transient nitrido species of a late transition metal. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Crystal Structure of Green Fluorescent Protein Clover and Design of Clover-Based Redox Sensors.

    PubMed

    Campbell, Benjamin C; Petsko, Gregory A; Liu, Ce Feng

    2018-02-06

    We have determined the crystal structure of Clover, one of the brightest fluorescent proteins, and found that its T203H/S65G mutations relative to wild-type GFP lock the critical E222 side chain in a fixed configuration that mimics the major conformer of that in EGFP. The resulting equilibrium shift to the predominantly deprotonated chromophore increases the extinction coefficient (EC), opposes photoactivation, and is responsible for the bathochromic shift. Clover's brightness can further be attributed to a π-π stacking interaction between H203 and the chromophore. Consistent with these observations, the Clover G65S mutant reversed the equilibrium shift, dramatically decreased the EC, and made Clover photoactivatable under conditions that activated photoactivatable GFP. Using the Clover structure, we rationally engineered a non-photoactivatable redox sensor, roClover1, and determined its structure as well as that of its parental template, roClover0.1. These high-resolution structures provide deeper insights into structure-function relationships in GFPs and may aid the development of excitation-improved ratiometric biosensors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Pharmacological induction of skin pigmentation unveils the neuroendocrine circuit regulated by light.

    PubMed

    Bertolesi, Gabriel E; Vazhappilly, Sherene T; Hehr, Carrie L; McFarlane, Sarah

    2016-03-01

    Light-regulated skin colour change is an important physiological process in invertebrates and lower vertebrates, and includes daily circadian variation and camouflage (i.e. background adaptation). The photoactivation of melanopsin-expressing retinal ganglion cells (mRGCs) in the eye initiates an uncharacterized neuroendocrine circuit that regulates melanin dispersion/aggregation through the secretion of alpha-melanocyte-stimulating hormone (α-MSH). We developed experimental models of normal or enucleated Xenopus embryos, as well as in situ cultures of skin of isolated dorsal head and tails, to analyse pharmacological induction of skin pigmentation and α-MSH synthesis. Both processes are triggered by a melanopsin inhibitor, AA92593, as well as chloride channel modulators. The AA9253 effect is eye-dependent, while functional data in vivo point to GABAA receptors expressed on pituitary melanotrope cells as the chloride channel blocker target. Based on the pharmacological data, we suggest a neuroendocrine circuit linking mRGCs with α-MSH secretion, which is used normally during background adaptation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Safety and efficacy of collagen crosslinking for the treatment of keratoconus.

    PubMed

    Kolli, Sai; Aslanides, Ioannis M

    2010-11-01

    Keratoconus is a condition that causes corneal ectasia and reduced vision in young adults. A proportion of these patients have progressive disease requiring corneal transplantation. A revolutionary new treatment that is purported to halt progression of keratoconus, known as collagen crosslinking (CXL), has recently been introduced into clinical practice. CXL involves the treatment of the cornea with riboflavin followed by photoactivation with UVA light leading to corneal strengthening. This article reviews the basic science, clinical protocols, safety aspects and clinical results of CXL. The reader will gain a comprehensive understanding of: i) the basic science of CXL; ii) the optimised protocols for clinical use of CXL; iii) the results of all the main clinical trials in the literature; iv) contraindications to treatment and v) full clinical safety profile of CXL. CXL represents a new treatment that uniquely allows the halt of progression of keratoconus, thus preventing visual loss and the need for surgical intervention. Available data suggest that this treatment has high efficacy and is very safe and may represent the future standard treatment for progressive keratoconus.

  20. Imaging intracellular protein dynamics by spinning disk confocal microscopy

    PubMed Central

    Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten

    2012-01-01

    The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541

  1. A Chimera Na+-Pump Rhodopsin as an Effective Optogenetic Silencer

    PubMed Central

    Hoque, Mohammad Razuanul; Ishizuka, Toru; Inoue, Keiichi; Abe-Yoshizumi, Rei; Igarashi, Hiroyuki; Mishima, Takaaki; Kandori, Hideki

    2016-01-01

    With the progress of optogenetics, the activities of genetically identified neurons can be optically silenced to determine whether the neurons in question are necessary for the network performance of the behavioral expression. This logical induction is expected to be improved by the application of the Na+ pump rhodopsins (NaRs), which hyperpolarize the membrane potential with negligible influence on the ionic/pH balance. Here, we made several chimeric NaRs between two NaRs, KR2 and IaNaR from Krokinobacter eikastus and Indibacter alkaliphilus, respectively. We found that one of these chimeras, named I1K6NaR, exhibited some improvements in the membrane targeting and photocurrent properties over native NaRs. The I1K6NaR-expressing cortical neurons were stably silenced by green light irradiation for a certain long duration. With its rapid kinetics and voltage dependency, the photoactivation of I1K6NaR would specifically counteract the generation of action potentials with less hyperpolarization of the neuronal membrane potential than KR2. PMID:27861619

  2. Enhanced eumelanin emission by stepwise three-photon excitation

    NASA Astrophysics Data System (ADS)

    Kerimo, Josef; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2011-03-01

    Eumelanin fluorescence from Sepia officinalis and black human hair was activated with near-infrared radiation and multiphoton excitation. A third order multiphoton absorption by a step-wise process appears to be the underlying mechanism. The activation was caused by a photochemical process since it could not be reproduced by simple heating. Both fluorescence and brightfield imaging indicate the near-infrared irradiation caused photodamage to the eumelanin and the activated emission originated from the photodamaged region. At least two different components with about thousand-fold enhanced fluorescence were activated and could be distinguished by their excitation properties. One component was excited with wavelengths in the visible region and exhibited linear absorption dependence. The second component could be excited with near-infrared wavelengths and had a third order dependence on the laser power. The third order dependence is explained by a step-wise excited state absorption (ESA) process since it could be observed equally with the CW and femtosecond lasers. The new method for photoactivating the eumelanin fluorescence was used to map the melanin content in human hair.

  3. Photodynamic therapy for early malignancies in the lower female genital tract

    NASA Astrophysics Data System (ADS)

    Lobraico, Rocco V.

    1990-09-01

    A total of 14 patients who had failed all conventional modalities for cancer of the vulva vagina and perianal area were treated with photodynamic therapy PDT. The affinity of porphyrins to neopJ. astic tissue enables treatment to be concentrated at the tumor site. An Aurora FL Argon pumped dye laser (Cooper LaserSonics Inc. USA) was used to pump dicyanomethylene dye as an activating source for a red light at a wavelength of 630 nm. The combination of a tumor localizing photosensitizer and photoactivating red light produces a photo chemical reaction that is destructive to the cancerous lesion. The treatment time varied between 10-30 minutes. Vulvar sites ranged from 9-38 cm2. Delivered light doses were from 50-125 J/cm2 and power density from 50 to 75 mW/cm2. A complete response was obtained in 80 of the sites treated as evidenced by negative biopsies taken at 3 months post treatment. Adverse reactions to PDT included a transient cutaneous photosensitivity due to retention of the photosensitizers in the skin. This reaction usually persisted from 45-60 days. 1.

  4. Correlated Fluorescence-Atomic Force Microscopy Studies of the Clathrin Mediated Endocytosis in SKMEL Cells

    NASA Astrophysics Data System (ADS)

    Smith, Steve; Hor, Amy; Luu, Anh; Kang, Lin; Scott, Brandon; Bailey, Elizabeth; Hoppe, Adam

    Clathrin-mediated endocytosis is one of the central pathways for cargo transport into cells, and plays a major role in the maintenance of cellular functions, such as intercellular signaling, nutrient intake, and turnover of plasma membrane in cells. The clathrin-mediated endocytosis process involves invagination and formation of clathrin-coated vesicles. However, the biophysical mechanisms of vesicle formation are still debated. We investigate clathrin vesicle formation mechanisms through the utilization of tapping-mode atomic force microscopy for high resolution topographical imaging in neutral buffer solution of unroofed cells exposing the inner membrane, combined with fluorescence imaging to definitively label intracellular constituents with specific fluorescent fusion proteins (actin filaments labeled with green phalloidin-antibody and clathrin coated vesicles with the fusion protein Tq2) in SKMEL (Human Melanoma) cells. Results from our work are compared against dynamical polarized total internal fluorescence (TIRF), super-resolution photo-activated localization microscopy (PALM) and transmission electron microscopy (TEM) to draw conclusions regarding the prominent model of vesicle formation in clathrin-mediated endocytosis. Funding provided by NSF MPS/DMR/BMAT award # 1206908.

  5. Combining PALM and SOFI for quantitative imaging of focal adhesions in living cells

    NASA Astrophysics Data System (ADS)

    Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Feletti, Lely; Lasser, Theo; Radenovic, Aleksandra

    2017-02-01

    Focal adhesions are complicated assemblies of hundreds of proteins that allow cells to sense their extracellular matrix and adhere to it. Although most focal adhesion proteins have been identified, their spatial organization in living cells remains challenging to observe. Photo-activated localization microscopy (PALM) is an interesting technique for this purpose, especially since it allows estimation of molecular parameters such as the number of fluorophores. However, focal adhesions are dynamic entities, requiring a temporal resolution below one minute, which is difficult to achieve with PALM. In order to address this problem, we merged PALM with super-resolution optical fluctuation imaging (SOFI) by applying both techniques to the same data. Since SOFI tolerates an overlap of single molecule images, it can improve the temporal resolution compared to PALM. Moreover, an adaptation called balanced SOFI (bSOFI) allows estimation of molecular parameters, such as the fluorophore density. We therefore performed simulations in order to assess PALM and SOFI for quantitative imaging of dynamic structures. We demonstrated the potential of our PALM-SOFI concept as a quantitative imaging framework by investigating moving focal adhesions in living cells.

  6. A Faster, High Resolution, mtPA-GFP-based Mitochondrial Fusion Assay Acquiring Kinetic Data of Multiple Cells in Parallel Using Confocal Microscopy

    PubMed Central

    Lovy, Alenka; Molina, Anthony J.A.; Cerqueira, Fernanda M.; Trudeau, Kyle; Shirihai, Orian S.

    2012-01-01

    Mitochondrial fusion plays an essential role in mitochondrial calcium homeostasis, bioenergetics, autophagy and quality control. Fusion is quantified in living cells by photo-conversion of matrix targeted photoactivatable GFP (mtPAGFP) in a subset of mitochondria. The rate at which the photoconverted molecules equilibrate across the entire mitochondrial population is used as a measure of fusion activity. Thus far measurements were performed using a single cell time lapse approach, quantifying the equilibration in one cell over an hour. Here, we scale up and automate a previously published live cell method based on using mtPAGFP and a low concentration of TMRE (15 nm). This method involves photoactivating a small portion of the mitochondrial network, collecting highly resolved stacks of confocal sections every 15 min for 1 hour, and quantifying the change in signal intensity. Depending on several factors such as ease of finding PAGFP expressing cells, and the signal of the photoactivated regions, it is possible to collect around 10 cells within the 15 min intervals. This provides a significant improvement in the time efficiency of this assay while maintaining the highly resolved subcellular quantification as well as the kinetic parameters necessary to capture the detail of mitochondrial behavior in its native cytoarchitectural environment. Mitochondrial dynamics play a role in many cellular processes including respiration, calcium regulation, and apoptosis1,2,3,13. The structure of the mitochondrial network affects the function of mitochondria, and the way they interact with the rest of the cell. Undergoing constant division and fusion, mitochondrial networks attain various shapes ranging from highly fused networks, to being more fragmented. Interestingly, Alzheimer's disease, Parkinson's disease, Charcot Marie Tooth 2A, and dominant optic atrophy have been correlated with altered mitochondrial morphology, namely fragmented networks4,10,13. Often times, upon fragmentation, mitochondria become depolarized, and upon accumulation this leads to impaired cell function18. Mitochondrial fission has been shown to signal a cell to progress toward apoptosis. It can also provide a mechanism by which to separate depolarized and inactive mitochondria to keep the bulk of the network robust14. Fusion of mitochondria, on the other hand, leads to sharing of matrix proteins, solutes, mtDNA and the electrochemical gradient, and also seems to prevent progression to apoptosis9. How fission and fusion of mitochondria affects cell homeostasis and ultimately the functioning of the organism needs further understanding, and therefore the continuous development and optimization of how to gather information on these phenomena is necessary. Existing mitochondrial fusion assays have revealed various insights into mitochondrial physiology, each having its own advantages. The hybrid PEG fusion assay7, mixes two populations of differently labeled cells (mtRFP and mtYFP), and analyzes the amount of mixing and colocalization of fluorophores in fused, multinucleated, cells. Although this method has yielded valuable information, not all cell types can fuse, and the conditions under which fusion is stimulated involves the use of toxic drugs that likely affect the normal fusion process. More recently, a cell free technique has been devised, using isolated mitochondria to observe fusion events based on a luciferase assay1,5. Two human cell lines are targeted with either the amino or a carboxy terminal part of Renilla luciferase along with a leucine zipper to ensure dimerization upon mixing. Mitochondria are isolated from each cell line, and fused. The fusion reaction can occur without the cytosol under physiological conditions in the presence of energy, appropriate temperature and inner mitochondrial membrane potential. Interestingly, the cytosol was found to modulate the extent of fusion, demonstrating that cell signaling regulates the fusion process 4,5. This assay will be very useful for high throughput screening to identify components of the fusion machinery and also pharmacological compounds that may affect mitochondrial dynamics. However, more detailed whole cell mitochondrial assays will be needed to complement this in vitro assay to observe these events within a cellular environment. A technique for monitoring whole-cell mitochondrial dynamics has been in use for some time and is based on a mitochondrially-targeted photoactivatable GFP (mtPAGFP)6,11. Upon expression of the mtPAGFP, a small portion of the mitochondrial network is photoactivated (10-20%), and the spread of the signal to the rest of the mitochondrial network is recorded every 15 minutes for 1 hour using time lapse confocal imaging. Each fusion event leads to a dilution of signal intensity, enabling quantification of the fusion rate. Although fusion and fission are continuously occurring in cells, this technique only monitors fusion as fission does not lead to a dilution of the PAGFP signal6. Co-labeling with low levels of TMRE (7-15 nM in INS1 cells) allows quantification of the membrane potential of mitochondria. When mitochondria are hyperpolarized they uptake more TMRE, and when they depolarize they lose the TMRE dye. Mitochondria that depolarize no longer have a sufficient membrane potential and tend not to fuse as efficiently if at all. Therefore, active fusing mitochondria can be tracked with these low levels of TMRE9,15. Accumulation of depolarized mitochondria that lack a TMRE signal may be a sign of phototoxicity or cell death. Higher concentrations of TMRE render mitochondria very sensitive to laser light, and therefore great care must be taken to avoid overlabeling with TMRE. If the effect of depolarization of mitochondria is the topic of interest, a technique using slightly higher levels of TMRE and more intense laser light can be used to depolarize mitochondria in a controlled fashion (Mitra and Lippincott-Schwartz, 2010). To ensure that toxicity due to TMRE is not an issue, we suggest exposing loaded cells (3-15 nM TMRE) to the imaging parameters that will be used in the assay (perhaps 7 stacks of 6 optical sections in a row), and assessing cell health after 2 hours. If the mitochondria appear too fragmented and cells are dying, other mitochondrial markers, such as dsRED or Mitotracker red could be used instead of TMRE. The mtPAGFP method has revealed details about mitochondrial network behavior that could not be visualized using other methods. For example, we now know that mitochondrial fusion can be full or transient, where matrix content can mix without changing the overall network morphology. Additionally, we know that the probability of fusion is independent of contact duration and organelle dimension, is influenced by organelle motility, membrane potential and history of previous fusion activity8,15,16,17. In this manuscript, we describe a methodology for scaling up the previously published protocol using mtPAGFP and 15nM TMRE8 in order to examine multiple cells at a time and improve the time efficiency of data collection without sacrificing the subcellular resolution. This has been made possible by the use of an automated microscope stage, and programmable image acquisition software. Zen software from Zeiss allows the user to mark and track several designated cells expressing mtPAGFP. Each of these cells can be photoactivated in a particular region of interest, and stacks of confocal slices can be monitored for mtPAGFP signal as well as TMRE at specified intervals. Other confocal systems could be used to perform this protocol provided there is an automated stage that is programmable, an incubator with CO2, and a means by which to photoactivate the PAGFP; either a multiphoton laser, or a 405 nm diode laser. PMID:22847388

  7. A faster, high resolution, mtPA-GFP-based mitochondrial fusion assay acquiring kinetic data of multiple cells in parallel using confocal microscopy.

    PubMed

    Lovy, Alenka; Molina, Anthony J A; Cerqueira, Fernanda M; Trudeau, Kyle; Shirihai, Orian S

    2012-07-20

    Mitochondrial fusion plays an essential role in mitochondrial calcium homeostasis, bioenergetics, autophagy and quality control. Fusion is quantified in living cells by photo-conversion of matrix targeted photoactivatable GFP (mtPAGFP) in a subset of mitochondria. The rate at which the photoconverted molecules equilibrate across the entire mitochondrial population is used as a measure of fusion activity. Thus far measurements were performed using a single cell time lapse approach, quantifying the equilibration in one cell over an hour. Here, we scale up and automate a previously published live cell method based on using mtPAGFP and a low concentration of TMRE (15 nm). This method involves photoactivating a small portion of the mitochondrial network, collecting highly resolved stacks of confocal sections every 15 min for 1 hour, and quantifying the change in signal intensity. Depending on several factors such as ease of finding PAGFP expressing cells, and the signal of the photoactivated regions, it is possible to collect around 10 cells within the 15 min intervals. This provides a significant improvement in the time efficiency of this assay while maintaining the highly resolved subcellular quantification as well as the kinetic parameters necessary to capture the detail of mitochondrial behavior in its native cytoarchitectural environment. Mitochondrial dynamics play a role in many cellular processes including respiration, calcium regulation, and apoptosis. The structure of the mitochondrial network affects the function of mitochondria, and the way they interact with the rest of the cell. Undergoing constant division and fusion, mitochondrial networks attain various shapes ranging from highly fused networks, to being more fragmented. Interestingly, Alzheimer's disease, Parkinson's disease, Charcot Marie Tooth 2A, and dominant optic atrophy have been correlated with altered mitochondrial morphology, namely fragmented networks. Often times, upon fragmentation, mitochondria become depolarized, and upon accumulation this leads to impaired cell function. Mitochondrial fission has been shown to signal a cell to progress toward apoptosis. It can also provide a mechanism by which to separate depolarized and inactive mitochondria to keep the bulk of the network robust. Fusion of mitochondria, on the other hand, leads to sharing of matrix proteins, solutes, mtDNA and the electrochemical gradient, and also seems to prevent progression to apoptosis. How fission and fusion of mitochondria affects cell homeostasis and ultimately the functioning of the organism needs further understanding, and therefore the continuous development and optimization of how to gather information on these phenomena is necessary. Existing mitochondrial fusion assays have revealed various insights into mitochondrial physiology, each having its own advantages. The hybrid PEG fusion assay, mixes two populations of differently labeled cells (mtRFP and mtYFP), and analyzes the amount of mixing and colocalization of fluorophores in fused, multinucleated, cells. Although this method has yielded valuable information, not all cell types can fuse, and the conditions under which fusion is stimulated involves the use of toxic drugs that likely affect the normal fusion process. More recently, a cell free technique has been devised, using isolated mitochondria to observe fusion events based on a luciferase assay. Two human cell lines are targeted with either the amino or a carboxy terminal part of Renilla luciferase along with a leucine zipper to ensure dimerization upon mixing. Mitochondria are isolated from each cell line, and fused. The fusion reaction can occur without the cytosol under physiological conditions in the presence of energy, appropriate temperature and inner mitochondrial membrane potential. Interestingly, the cytosol was found to modulate the extent of fusion, demonstrating that cell signaling regulates the fusion process. This assay will be very useful for high throughput screening to identify components of the fusion machinery and also pharmacological compounds that may affect mitochondrial dynamics. However, more detailed whole cell mitochondrial assays will be needed to complement this in vitro assay to observe these events within a cellular environment. A technique for monitoring whole-cell mitochondrial dynamics has been in use for some time and is based on a mitochondrially-targeted photoactivatable GFP (mtPAGFP). Upon expression of the mtPAGFP, a small portion of the mitochondrial network is photoactivated (10-20%), and the spread of the signal to the rest of the mitochondrial network is recorded every 15 minutes for 1 hour using time lapse confocal imaging. Each fusion event leads to a dilution of signal intensity, enabling quantification of the fusion rate. Although fusion and fission are continuously occurring in cells, this technique only monitors fusion as fission does not lead to a dilution of the PAGFP signal. Co-labeling with low levels of TMRE (7-15 nM in INS1 cells) allows quantification of the membrane potential of mitochondria. When mitochondria are hyperpolarized they uptake more TMRE, and when they depolarize they lose the TMRE dye. Mitochondria that depolarize no longer have a sufficient membrane potential and tend not to fuse as efficiently if at all. Therefore, active fusing mitochondria can be tracked with these low levels of TMRE. Accumulation of depolarized mitochondria that lack a TMRE signal may be a sign of phototoxicity or cell death. Higher concentrations of TMRE render mitochondria very sensitive to laser light, and therefore great care must be taken to avoid overlabeling with TMRE. If the effect of depolarization of mitochondria is the topic of interest, a technique using slightly higher levels of TMRE and more intense laser light can be used to depolarize mitochondria in a controlled fashion (Mitra and Lippincott-Schwartz, 2010). To ensure that toxicity due to TMRE is not an issue, we suggest exposing loaded cells (3-15 nM TMRE) to the imaging parameters that will be used in the assay (perhaps 7 stacks of 6 optical sections in a row), and assessing cell health after 2 hours. If the mitochondria appear too fragmented and cells are dying, other mitochondrial markers, such as dsRED or Mitotracker red could be used instead of TMRE. The mtPAGFP method has revealed details about mitochondrial network behavior that could not be visualized using other methods. For example, we now know that mitochondrial fusion can be full or transient, where matrix content can mix without changing the overall network morphology. Additionally, we know that the probability of fusion is independent of contact duration and organelle dimension, is influenced by organelle motility, membrane potential and history of previous fusion activity. In this manuscript, we describe a methodology for scaling up the previously published protocol using mtPAGFP and 15 nM TMRE in order to examine multiple cells at a time and improve the time efficiency of data collection without sacrificing the subcellular resolution. This has been made possible by the use of an automated microscope stage, and programmable image acquisition software. Zen software from Zeiss allows the user to mark and track several designated cells expressing mtPAGFP. Each of these cells can be photoactivated in a particular region of interest, and stacks of confocal slices can be monitored for mtPAGFP signal as well as TMRE at specified intervals. Other confocal systems could be used to perform this protocol provided there is an automated stage that is programmable, an incubator with CO2, and a means by which to photoactivate the PAGFP; either a multiphoton laser, or a 405 nm diode laser.

  8. Male Mating Success: Preference or Prowess? Investigating Sexual Selection in the Laboratory Using "Drosophila melanogaster"

    ERIC Educational Resources Information Center

    Coleman, Seth; Jensen, Jeffrey

    2007-01-01

    Sexual selection is the primary force affecting the evolution of the elaborate sexual displays common in animals, yet sexual selection experiments are largely absent from introductory biology laboratories. Here we describe the rationale, methodology, and results of several experiments using "Drosophila melanogaster" to demonstrate sexual selection…

  9. First among equals: The selection of NASA space science experiments

    NASA Technical Reports Server (NTRS)

    Naugle, John E.

    1990-01-01

    The process is recounted by which NASA and the scientific community have, since 1958, selected individual experiments for NASA space missions. It explores the scientific and organizational issues involved in the selection process and discusses the significance of the process in the character and accomplishments of U.S. space activities.

  10. Operational plans for life science payloads - From experiment selection through postflight reporting

    NASA Technical Reports Server (NTRS)

    Mccollum, G. W.; Nelson, W. G.; Wells, G. W.

    1976-01-01

    Key features of operational plans developed in a study of the Space Shuttle era life science payloads program are presented. The data describes the overall acquisition, staging, and integration of payload elements, as well as program implementation methods and mission support requirements. Five configurations were selected as representative payloads: (a) carry-on laboratories - medical emphasis experiments, (b) mini-laboratories - medical/biology experiments, (c) seven-day dedicated laboratories - medical/biology experiments, (d) 30-day dedicated laboratories - Regenerative Life Support Evaluation (RLSE) with selected life science experiments, and (e) Biomedical Experiments Scientific Satellite (BESS) - extended duration primate (Type I) and small vertebrate (Type II) missions. The recommended operational methods described in the paper are compared to the fundamental data which has been developed in the life science Spacelab Mission Simulation (SMS) test series. Areas assessed include crew training, experiment development and integration, testing, data-dissemination, organization interfaces, and principal investigator working relationships.

  11. A Synaptic Basis for Memory Storage in the Cerebral Cortex

    NASA Astrophysics Data System (ADS)

    Bear, Mark F.

    1996-11-01

    A cardinal feature of neurons in the cerebral cortex is stimulus selectivity, and experience-dependent shifts in selectivity are a common correlate of memory formation. We have used a theoretical ``learning rule,'' devised to account for experience-dependent shifts in neuronal selectivity, to guide experiments on the elementary mechanisms of synaptic plasticity in hippocampus and neocortex. These experiments reveal that many synapses in hippocampus and neocortex are bidirectionally modifiable, that the modifications persist long enough to contribute to long-term memory storage, and that key variables governing the sign of synaptic plasticity are the amount of NMDA receptor activation and the recent history of cortical activity.

  12. Site Selection in Experiments: A Follow-Up Evaluation of Site Recruitment in Two Scale-Up Studies

    ERIC Educational Resources Information Center

    Tipton, Elizabeth; Fellers, Lauren; Caverly, Sarah; Vaden-Kiernan, Michael; Borman, Geoffrey; Sullivan, Kate; Ruiz de Castillo, Veronica

    2015-01-01

    Randomized experiments are commonly used to evaluate if particular interventions improve student achievement. While these experiments can establish that a treatment actually "causes" changes, typically the participants are not randomly selected from a well-defined population and therefore the results do not readily generalize. Three…

  13. Solvent Selection for Recrystallization: An Undergraduate Organic Experiment.

    ERIC Educational Resources Information Center

    Baumann, Jacob B.

    1979-01-01

    This experiment develops the students' ability to carry out a simple recrystallization effectively, and demonstrates how a solvent may be selected or rejected for the recrystallization of a specific organic compound. (Author/BB)

  14. Modulation of 3H-noradrenaline release by presynaptic opioid, cannabinoid and bradykinin receptors and β-adrenoceptors in mouse tissues

    PubMed Central

    Trendelenburg, A U; Cox, S L; Schelb, V; Klebroff, W; Khairallah, L; Starke, K

    2000-01-01

    Release-modulating opioid and cannabinoid (CB) receptors, β-adrenoceptors and bradykinin receptors at noradrenergic axons were studied in mouse tissues (occipito-parietal cortex, heart atria, vas deferens and spleen) preincubated with 3H-noradrenaline. Experiments using the OP1 receptor-selective agonists DPDPE and DSLET, the OP2-selective agonists U50488H and U69593, the OP3-selective agonist DAMGO, the ORL1 receptor-selective agonist nociceptin, and a number of selective antagonists showed that the noradrenergic axons innervating the occipito-parietal cortex possess release-inhibiting OP3 and ORL1 receptors, those innervating atria OP1, ORL1 and possibly OP3 receptors, and those innervating the vas deferens all four opioid receptor types. Experiments using the non-selective CB agonists WIN 55,212-2 and CP 55,940 and the CB1-selective antagonist SR 141716A indicated that the noradrenergic axons of the vas deferens possess release-inhibiting CB1 receptors. Presynaptic CB receptors were not found in the occipito-parietal cortex, in atria or in the spleen. Experiments using the non-selective β-adrenoceptor agonist isoprenaline and the β2-selective agonist salbutamol, as well as subtype-selective antagonists, demonstrated the occurrence of release-enhancing β2-adrenoceptors at the sympathetic axons of atria and the spleen, but demonstrated their absence in the occipito-parietal cortex and the vas deferens. Experiments with bradykinin and the B2-selective antagonist Hoe 140 showed the operation of release-enhancing B2 receptors at the sympathetic axons of atria, the vas deferens and the spleen, but showed their absence in the occipito-parietal cortex. The experiments document a number of new presynaptic receptor locations. They confirm and extend the existence of marked tissue and species differences in presynaptic receptors at noradrenergic neurons. PMID:10807669

  15. Selection history alters attentional filter settings persistently and beyond top-down control.

    PubMed

    Kadel, Hanna; Feldmann-Wüstefeld, Tobias; Schubö, Anna

    2017-05-01

    Visual selective attention is known to be guided by stimulus-based (bottom-up) and goal-oriented (top-down) control mechanisms. Recent work has pointed out that selection history (i.e., the bias to prioritize items that have been previously attended) can result in a learning experience that also has a substantial impact on subsequent attention guidance. The present study examined to what extent goal-oriented top-down control mechanisms interact with an observer's individual selection history in guiding attention. Selection history was manipulated in a categorization task in a between-subjects design, where participants learned that either color or shape was the response-relevant dimension. The impact of this experience was assessed in a compound visual search task with an additional color distractor. Top-down preparation for each search trial was enabled by a pretrial task cue (Experiment 1) or a fixed, predictable trial sequence (Experiment 2). Reaction times and ERPs served as indicators of attention deployment. Results showed that attention was captured by the color distractor when participants had learned that color predicted the correct response in the categorization learning task, suggesting that a bias for predictive stimulus features had developed. The possibility to prepare for the search task reduced the bias, but could not entirely overrule this selection history effect. In Experiment 3, both tasks were performed in separate sessions, and the bias still persisted. These results indicate that selection history considerably shapes selective attention and continues to do so persistently even when the task allowed for high top-down control. © 2017 Society for Psychophysiological Research.

  16. Kinetic Studies with Ion Selective Electrodes: Determination of Creatinine in Urine with a Picrate Ion Selective Electrode: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Diamandis, E. P.; And Others

    1983-01-01

    The kinetic of the Jaffe reaction with picrate ion selective electrode (ISE) and a kinetic method for determining creatinine in urine is presented. The experiment could be used to familarize students with the application of ISE in kinetic studies and chemical analysis. (Author/JN)

  17. SEDS experiment design definition

    NASA Technical Reports Server (NTRS)

    Carroll, Joseph A.; Alexander, Charles M.; Oldson, John C.

    1990-01-01

    The Small Expendable-tether Deployment System (SEDS) was developed to design, build, integrate, fly, and safely deploy and release an expendable tether. A suitable concept for an on-orbit test of SEDS was developed. The following tasks were performed: (1) Define experiment objectives and requirements; (2) Define experiment concepts to reach those objectives; (3) Support NASA in experiment concept selection and definition; (4) Perform analyses and tests of SEDS hardware; (5) Refine the selected SEDS experiment concept; and (6) Support interactive SEDS system definition process. Results and conclusions are given.

  18. Metallic and Ceramic Material Development Research

    DTIC Science & Technology

    2010-05-01

    Woodward and T.A. Parthasarathy, “Experiments and Three-Dimensional Dislocation Simulations of Microplasticity in Selected Materials,” IUTAM...Parthasarathy, “Experiments and Three-Dimensional Dislocation Simulations of Microplasticity in Selected Materials,” IUTAM Conference Proceedings

  19. Experience-Dependent Regulation of Presynaptic NMDARs Enhances Neurotransmitter Release at Neocortical Synapses

    ERIC Educational Resources Information Center

    Urban-Ciecko, Joanna; Wen, Jing A.; Parekh, Puja K.; Barth, Alison L.

    2015-01-01

    Sensory experience can selectively alter excitatory synaptic strength at neocortical synapses. The rapid increase in synaptic strength induced by selective whisker stimulation (single-row experience/SRE, where all but one row of whiskers has been removed from the mouse face) is due, at least in part, to the trafficking of AMPA receptors (AMPARs)…

  20. The Experiences and Perceptions of Selected Mentors: The Dyadic Relationship in School-Based Mentoring

    ERIC Educational Resources Information Center

    Frels, Rebecca Karen

    2010-01-01

    The purpose of this qualitative, collective case study was to explore selected mentors' perceptions and experiences of the dyadic mentoring relationship in SBM. A second purpose was to build on the qualitative body of research (Spencer, 2004, 2007) for understanding roles, purposes, approaches, and experiences of the relationship process with…

Top