Science.gov

Sample records for photoactive tungsten disulfide

  1. Ferromagnetism in exfoliated tungsten disulfide nanosheets

    PubMed Central

    2013-01-01

    Two-dimensional-layered transition metal dichalcogenides nanosheets have attracted tremendous attention for their promising applications in spintronics because the atomic-thick nanosheets can not only enhance the intrinsic properties of their bulk counterparts, but also give birth to new promising properties. In this paper, ultrathin tungsten disulfide (WS2) nanosheets were gotten by liquid exfoliation route from its bulk form using dimethylformamide (DMF). Compared to the antiferromagnetism bulk WS2, ultrathin WS2 nanosheets show intrinsic room-temperature ferromagnetism (FM) with the maximized saturation magnetization of 0.004 emu/g at 10 K, where the appearance of FM in the nanosheets is partly due to the presence of zigzag edges in the magnetic ground state at the grain boundaries. PMID:24134699

  2. Diameter-dependent wetting of tungsten disulfide nanotubes.

    PubMed

    Goldbart, Ohad; Cohen, Sidney R; Kaplan-Ashiri, Ifat; Glazyrina, Polina; Wagner, H Daniel; Enyashin, Andrey; Tenne, Reshef

    2016-11-29

    The simple process of a liquid wetting a solid surface is controlled by a plethora of factors-surface texture, liquid droplet size and shape, energetics of both liquid and solid surfaces, as well as their interface. Studying these events at the nanoscale provides insights into the molecular basis of wetting. Nanotube wetting studies are particularly challenging due to their unique shape and small size. Nonetheless, the success of nanotubes, particularly inorganic ones, as fillers in composite materials makes it essential to understand how common liquids wet them. Here, we present a comprehensive wetting study of individual tungsten disulfide nanotubes by water. We reveal the nature of interaction at the inert outer wall and show that remarkably high wetting forces are attained on small, open-ended nanotubes due to capillary aspiration into the hollow core. This study provides a theoretical and experimental paradigm for this intricate problem.

  3. Diameter-dependent wetting of tungsten disulfide nanotubes

    PubMed Central

    Goldbart, Ohad; Cohen, Sidney R.; Kaplan-Ashiri, Ifat; Glazyrina, Polina; Wagner, H. Daniel; Enyashin, Andrey; Tenne, Reshef

    2016-01-01

    The simple process of a liquid wetting a solid surface is controlled by a plethora of factors—surface texture, liquid droplet size and shape, energetics of both liquid and solid surfaces, as well as their interface. Studying these events at the nanoscale provides insights into the molecular basis of wetting. Nanotube wetting studies are particularly challenging due to their unique shape and small size. Nonetheless, the success of nanotubes, particularly inorganic ones, as fillers in composite materials makes it essential to understand how common liquids wet them. Here, we present a comprehensive wetting study of individual tungsten disulfide nanotubes by water. We reveal the nature of interaction at the inert outer wall and show that remarkably high wetting forces are attained on small, open-ended nanotubes due to capillary aspiration into the hollow core. This study provides a theoretical and experimental paradigm for this intricate problem. PMID:27856759

  4. Charge carrier transfer in tungsten disulfide - black phosphorus heterostructures.

    PubMed

    Zhao, Siqi; He, Dawei; Wang, Yongsheng; Zhang, Xinwu; He, Jiaqi

    2017-09-27

    Photocarrier dynamics in tungsten disulfide - black phosphorus heterostructures were studied by time-resolved differential reflection measurements. The heterostructures were fabricated by stacking together monolayer WS2 and black phosphorus flakes that are both fabricated by mechanical exfoliation. Efficient and ultrafast transfer of photocarriers from WS2 to BP flakes was observed. This confirms the type-I band alignment of WS2/BP heterostructures that was predicted by theory. Accompanied with the photocarrier interlayer transfer process from WS2 to BP flakes, the change of the absorption of WS2 persists for several nanoseconds. These results promote the consciousness about the carrier dynamics of interlayer transfer process in van der Waals heterostructures and its application in optoelectronic devices. © 2017 IOP Publishing Ltd.

  5. Friction behavior of pulsed laser deposited tungsten disulfide films

    NASA Astrophysics Data System (ADS)

    Prasad, S. V.; Zabinski, J. S.; McDevitt, N. T.

    1995-01-01

    This reseach describes the friction behavior of pulsed laser-deposited tungsten disulfide films. A ball-on-flat apparatus, in which a 440C stainless steel ball was held on rotating disk coated with a WS2 film, was used as the test configuration. Friction measurements were made in dry nitrogen and in laboratory air. Wear surfaces were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. The friction coefficient of the film in dry nitrogen was 0.04, and in laboratory air it rose to between 0.10 and 0.15. In the dry nitrogen case, friction induced some degree of crystallinity into the otherwise amorphous film, while rubbing in air mostly resulted in oxidation of the film. Transfer films formed in a dry environment were smooth, tenacious and formed in air were patchy and powdery in nature.

  6. Observation of two distinct negative trions in tungsten disulfide monolayers

    DOE PAGES

    Boulesbaa, Abdelaziz; Huang, Bing; Wang, Kai; ...

    2015-09-25

    We report on the observation of two distinct photogenerated negative trion states TA and TB in two-dimensional tungsten disulfide (2D-WS2) monolayers. These trions are postulated to emerge from their parent excitons XA and XB, which originate from spin-orbit-split (SOS) levels in the conduction band (CB) and valence band (VB). Time-resolved spectroscopy measurements suggests that Pauli blocking controls a competition process between TA and TB photoformation, following dissociation of XA and XB through hole trapping at internal or substrate defect sites. While TA arises directly from its parent XA, TB emerges through a different transition accessible only after XB dissociates throughmore » a hole trapping channel. This discovery of additional optically-active band-edge transitions in atomically-thin metal dichalcogenides may revolutionize optoelectronic applications and fundamental research opportunities for many-body interaction physics. Ultrafast pump-probe spectroscopy of two-dimensional tungsten disulfide monolayers (2D-WS2) grown on sapphire substrates revealed two transient absorption spectral peaks that are attributed to distinct negative trions at ~2.02 eV (T1) and ~1.98 eV (T2). The dynamics measurements indicate that trion formation by the probe is enabled by photodoped electrons that remain after trapping of holes from excitons or free electron-hole pairs at defect sites in the crystal or on the substrate. Dynamics of the excitons XA and XB’s characteristic absorption bands, at ~2.03 and ~2.40 eV, respectively, were separately monitored and compared with the photoinduced absorption features. Selective excitation of the lowest exciton level XA using λpump < 2.4 eV forms only trion T1, which implies that the electron that remains from the dissociation of exciton XA is involved in the creation of this trion with a binding energy ~ 10 meV with respect to XA. The absorption peak that corresponds to trion T2 appears when λpump > 2.4 eV, which is just

  7. Observation of two distinct negative trions in tungsten disulfide monolayers

    SciTech Connect

    Boulesbaa, Abdelaziz; Huang, Bing; Wang, Kai; Lin, Ming-Wei; Mahjouri-Samani, Masoud; Rouleau, Christopher M.; Xiao, Kai; Yoon, Mina; Sumpter, Bobby G.; Puretzky, Alexander A.; Geohegan, David B.

    2015-09-25

    We report on the observation of two distinct photogenerated negative trion states TA and TB in two-dimensional tungsten disulfide (2D-WS2) monolayers. These trions are postulated to emerge from their parent excitons XA and XB, which originate from spin-orbit-split (SOS) levels in the conduction band (CB) and valence band (VB). Time-resolved spectroscopy measurements suggests that Pauli blocking controls a competition process between TA and TB photoformation, following dissociation of XA and XB through hole trapping at internal or substrate defect sites. While TA arises directly from its parent XA, TB emerges through a different transition accessible only after XB dissociates through a hole trapping channel. This discovery of additional optically-active band-edge transitions in atomically-thin metal dichalcogenides may revolutionize optoelectronic applications and fundamental research opportunities for many-body interaction physics. Ultrafast pump-probe spectroscopy of two-dimensional tungsten disulfide monolayers (2D-WS2) grown on sapphire substrates revealed two transient absorption spectral peaks that are attributed to distinct negative trions at ~2.02 eV (T1) and ~1.98 eV (T2). The dynamics measurements indicate that trion formation by the probe is enabled by photodoped electrons that remain after trapping of holes from excitons or free electron-hole pairs at defect sites in the crystal or on the substrate. Dynamics of the excitons XA and XB’s characteristic absorption bands, at ~2.03 and ~2.40 eV, respectively, were separately monitored and compared with the photoinduced absorption features. Selective excitation of the lowest exciton level XA using λpump < 2.4 eV forms only trion T1, which implies that the electron that remains

  8. Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering.

    PubMed

    Lalwani, Gaurav; Henslee, Allan M; Farshid, Behzad; Parmar, Priyanka; Lin, Liangjun; Qin, Yi-Xian; Kasper, F Kurtis; Mikos, Antonios G; Sitharaman, Balaji

    2013-09-01

    In this study, we have investigated the efficacy of inorganic nanotubes as reinforcing agents to improve the mechanical properties of poly(propylene fumarate) (PPF) composites as a function of nanomaterial loading concentration (0.01-0.2 wt.%). Tungsten disulfide nanotubes (WSNTs) were used as reinforcing agents in the experimental group. Single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) were used as positive controls, and crosslinked PPF composites were used as the baseline control. Mechanical testing (compression and three-point bending) shows a significant enhancement (up to 28-190%) in the mechanical properties (compressive modulus, compressive yield strength, flexural modulus and flexural yield strength) of WSNT-reinforced PPF nanocomposites compared to the baseline control. In comparison to the positive controls, significant improvements in the mechanical properties of WSNT nanocomposites were also observed at various concentrations. In general, the inorganic nanotubes (WSNTs) showed mechanical reinforcement better than (up to 127%) or equivalent to that of carbon nanotubes (SWCNTs and MWCNTs). Sol fraction analysis showed significant increases in the crosslinking density of PPF in the presence of WSNTs (0.01-0.2 wt.%). Transmission electron microscopy (TEM) analysis on thin sections of crosslinked nanocomposites showed the presence of WSNTs as individual nanotubes in the PPF matrix, whereas SWCNTs and MWCNTs existed as micron-sized aggregates. The trend in the surface area of nanostructures obtained by Brunauer-Emmett-Teller (BET) surface area analysis was SWCNTs>MWCNTs>WSNTs. The BET surface area analysis, TEM analysis and sol fraction analysis results taken together suggest that chemical composition (inorganic vs. carbon nanomaterials), the presence of functional groups (such as sulfide and oxysulfide) and individual dispersion of the nanomaterials in the polymer matrix (absence of aggregation of the reinforcing agent) are the key parameters

  9. Nanoparticles synthesis of tungsten disulfide via AOT-based microemulsions

    SciTech Connect

    Ghoreishi, S.M.; Meshkat, S.S.; Ghiaci, M.; Dadkhah, A.A.

    2012-06-15

    Graphical abstract: A controlled synthesis of WS2 nanoparticles (most probably inorganic fullerene (IF)) via microemulsion was applied for the first time to prepare WS2 (7–12 nm) by acidification of the water cores of the AOT reverse microemulsion. Highlights: ► An innovative reverse microemulsion technique was developed for WS{sub 2} synthesis. ► WS{sub 2} nanoparticles were obtained with narrow size distribution in range of 7–12 nm. ► Operating cost of microemulsion was lower in contrast to quartz reactor method. ► WS{sub 2} morphology could be controlled to obtain highly active and selective catalysts. ► Lower size of WS{sub 2} in this study overcomes the shortcoming of quartz reactor method. -- Abstract: The tungsten disulfide (WS{sub 2}) nanoparticles (most probably inorganic fullerene (IF)) with a narrow size distribution were synthesized by a reverse micelle technique for the first time. The particle size was controlled by varying water-to-surfactant molar ratio (W{sub 0}), aging time and reagent concentration. The synthesized WS{sub 2} nanoparticles were characterized by zetasizer, UV–visible spectrophotometers and transmission electron microscopy (TEM). The WS{sub 2} nanoparticles with particle diameter size of 7–12 nm were obtained via 24 h aging time. The particle size was controlled by changing the aging time and molar ratio of water/surfactant. Doubling W{sub 0} increased the amount and particle size of WS{sub 2} by 22 and 26%, respectively. The effect of aging time in the range of 6–24 h was investigated and the complete disappearance of yellowish color at 24 h resulted in an optically clear solution, which was the indication of WS{sub 2} formation with 100% conversion of reactant ((NH{sub 4}){sub 2}WS{sub 4}) in the batch reactor.

  10. Electron transfer and coupling in graphene-tungsten disulfide van der Waals heterostructures.

    PubMed

    He, Jiaqi; Kumar, Nardeep; Bellus, Matthew Z; Chiu, Hsin-Ying; He, Dawei; Wang, Yongsheng; Zhao, Hui

    2014-11-25

    The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface qualities, which can transform the science and technology of semiconductor heterostructures. Owing to the weak van der Waals interlayer coupling, the electronic states of participating materials remain largely unchanged. Hence, emergent properties of these structures rely on two key elements: electron transfer across the interface and interlayer coupling. Here we show, using graphene-tungsten disulfide heterostructures as an example, evidence of ultrafast and highly efficient interlayer electron transfer and strong interlayer coupling and control. We find that photocarriers injected in tungsten disulfide transfer to graphene in 1 ps and with near-unity efficiency. We also demonstrate that optical properties of tungsten disulfide can be effectively tuned by carriers in graphene. These findings illustrate basic processes required for using van der Waals heterostructures in electronics and photonics.

  11. Electronic properties of rhenium and niobium doped tungsten disulfide monolayers

    NASA Astrophysics Data System (ADS)

    Cruz-Silva, Eduardo; McCreary, Amber; Lin, Zhong; Perea-Lopez, Nestor; Elias, Ana; Terrones, Humberto; Terrones, Mauricio

    2014-03-01

    Layered transition metal dichalcogenides (TMDs), have attracted great attention due to their electronic and optical properties. In particular, MoSand WSshow an indirect to direct electronic band gap transition when reduced to a monolayer, and display photoluminescence as a consequence. While there are proposed applications for MoSand WSas electronic and optoelectronic devices, control of their electronic properties needs to be reached before these applications can be scaled. In this sense, chemical doping has been recently shown to allow the modification of the electronic properties of MoSmonolayers by substitution of either transition metals or the chalcogen. Here we present a study of the electronic, magnetic, and chemical properties of doped WSmonolayers by performing ab initiocalculations. Substitution of tungsten atoms with either niobium or rhenium results in the formation of new states in the vicinity of the Fermi energy that allow to tailor the electronic band gaps, which results in different electronic and optical properties.

  12. The electronic and optical properties of Tungsten Disulfide under high pressure

    NASA Astrophysics Data System (ADS)

    Shang, Jimin; Chen, Peng; Zhang, Lamei; Zhai, Fengxiao; Cheng, Xuerui

    2016-05-01

    Using first principles calculations, we have investigated the pressure effects on the electronic and optical properties of Tungsten Disulfide. The results show that the lattice out plane is more sensitive to the pressure than that in plane. In addition, the conduction band maximum drops down and the valence band minimum shifts up with respect to the Fermi level, respectively. Semiconductor to metal transition occurs at a critical pressure (∼36 GPa). Moreover, the dielectric function also has an obviously red shift, and the optical absorption can be improved accordingly. Our study supplies a route to optimize the performance of WS2 devices.

  13. High performance field-effect transistor based on multilayer tungsten disulfide.

    PubMed

    Liu, Xue; Hu, Jin; Yue, Chunlei; Della Fera, Nicholas; Ling, Yun; Mao, Zhiqiang; Wei, Jiang

    2014-10-28

    Semiconducting two-dimensional transition metal chalcogenide crystals have been regarded as the promising candidate for the future generation of transistor in modern electronics. However, how to fabricate those crystals into practical devices with acceptable performance still remains as a challenge. Employing tungsten disulfide multilayer thin crystals, we demonstrate that using gold as the only contact metal and choosing appropriate thickness of the crystal, high performance transistor with on/off ratio of 10(8) and mobility up to 234 cm(2) V(-1) s(-1) at room temperature can be realized in a simple device structure. Furthermore, low temperature study revealed that the high performance of our device is caused by the minimized Schottky barrier at the contact and the existence of a shallow impurity level around 80 meV right below the conduction band edge. From the analysis on temperature dependence of field-effect mobility, we conclude that strongly suppressed phonon scattering and relatively low charge impurity density are the key factors leading to the high mobility of our tungsten disulfide devices.

  14. Dual-wavelength passively Q-switched Nd:GYSGG laser by tungsten disulfide saturable absorber.

    PubMed

    Gao, Y J; Zhang, B Y; Song, Q; Wang, G J; Wang, W J; Hong, M H; Dou, R Q; Sun, D L; Zhang, Q L

    2016-06-20

    A dual-wavelength passively Q-switched Nd:GYSGG laser using vacuum evaporating tungsten disulfide (WS2) as a saturable absorber was demonstrated for the first time to the best of our knowledge. The WS2 saturable absorber was prepared simply by evaporating nanometer WS2 powders onto a quartz substrate in a vacuum. By inserting the WS2 saturable absorber into the laser cavity, stable Q-switched laser operation was achieved with a maximum average output power of 367 mW, a pulse repetition rate of 70.7 kHz, the shortest pulse width of 591 ns, and pulse energy of about 1.05 μJ. By vacuum evaporation method, a high-quality WS2 saturable absorber can be produced, and it seems to be a suitable method for fabrication of 2D transition metal dichalcogenides.

  15. Electronic properties of monolayer tungsten disulfide grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Alharbi, Abdullah; Shahrjerdi, Davood

    2016-11-01

    We demonstrate chemical vapor deposition of large monolayer tungsten disulfide (WS2) (>200 μm). Photoluminescence and Raman spectroscopy provide insight into the structural and strain heterogeneity of the flakes. We observe exciton quenching at grain boundaries that originate from the nucleation site at the center of the WS2 flakes. Temperature variable transport measurements of top-gated WS2 transistors show an apparent metal-to-insulator transition. Variable range and thermally activated hopping mechanisms can explain the carrier transport in the insulating phase at low and intermediate temperatures. The devices exhibit room-temperature field-effect electron mobility as high as 48 cm2/V.s. The mobility increases with decreasing temperature and begins to saturate at below 100 °K, possibly due to Coulomb scattering or defects.

  16. Improvement of Gas-Sensing Performance of Large-Area Tungsten Disulfide Nanosheets by Surface Functionalization.

    PubMed

    Ko, Kyung Yong; Song, Jeong-Gyu; Kim, Youngjun; Choi, Taejin; Shin, Sera; Lee, Chang Wan; Lee, Kyounghoon; Koo, Jahyun; Lee, Hoonkyung; Kim, Jongbaeg; Lee, Taeyoon; Park, Jusang; Kim, Hyungjun

    2016-10-05

    Semiconducting two-dimensional (2D) transition metal dichalcogenides (TMDCs) are promising gas-sensing materials due to their large surface-to-volume ratio. However, their poor gas-sensing performance resulting from the low response, incomplete recovery, and insufficient selectivity hinders the realization of high-performance 2D TMDC gas sensors. Here, we demonstrate the improvement of gas-sensing performance of large-area tungsten disulfide (WS2) nanosheets through surface functionalization using Ag nanowires (NWs). Large-area WS2 nanosheets were synthesized through atomic layer deposition of WO3 followed by sulfurization. The pristine WS2 gas sensors exhibited a significant response to acetone and NO2 but an incomplete recovery in the case of NO2 sensing. After AgNW functionalization, the WS2 gas sensor showed dramatically improved response (667%) and recovery upon NO2 exposure. Our results establish that the proposed method is a promising strategy to improve 2D TMDC gas sensors.

  17. Inorganic fullerene-like tungsten disulfide nanocoating for friction reduction of nickel-titanium alloys.

    PubMed

    Samorodnitzky-Naveh, Gili R; Redlich, Meir; Rapoport, Lev; Feldman, Yishay; Tenne, Reshef

    2009-12-01

    To fabricate a friction-reducing coating onto different nickel-titanium (NiTi) substrates using inorganic fullerene-like tungsten disulfide (IF-WS(2)) nanoparticles and to estimate in vitro friction reducing extent of the coating. Different NiTi substrates were coated with cobalt and IF-WS(2) nanoparticles film by the electrodeposition procedure. Coating composition analyses was made by scanning-electron microscopy, energy dispersive x-ray spectroscopy, x-ray powder diffractometry and x-ray photoelectron spectroscopy. Friction evaluation was carried out using standard tribological tests and an Instron system. Stable and well-adhered cobalt + IF-WS(2) coating of the NiTi substrates was obtained. Friction tests presented up to 66% reduction of the friction coefficient. NiTi alloy is widely used for many medical appliances; hence, this unique friction-reducing coating could be implemented to provide better manipulation and lower piercing rates.

  18. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide

    PubMed Central

    Carozo, Victor; Wang, Yuanxi; Fujisawa, Kazunori; Carvalho, Bruno R.; McCreary, Amber; Feng, Simin; Lin, Zhong; Zhou, Chanjing; Perea-López, Néstor; Elías, Ana Laura; Kabius, Bernd; Crespi, Vincent H.; Terrones, Mauricio

    2017-01-01

    Defects play a significant role in tailoring the optical properties of two-dimensional materials. Optical signatures of defect-bound excitons are important tools to probe defective regions and thus interrogate the optical quality of as-grown semiconducting monolayer materials. We have performed a systematic study of defect-bound excitons using photoluminescence (PL) spectroscopy combined with atomically resolved scanning electron microscopy and first-principles calculations. Spatially resolved PL spectroscopy at low temperatures revealed bound excitons that were present only on the edges of monolayer tungsten disulfide and not in the interior. Optical pumping of the bound excitons was sublinear, confirming their bound nature. Atomic-resolution images reveal that the areal density of monosulfur vacancies is much larger near the edges (0.92 ± 0.45 nm−2) than in the interior (0.33 ± 0.11 nm−2). Temperature-dependent PL measurements found a thermal activation energy of ~36 meV; surprisingly, this is much smaller than the bound-exciton binding energy of ~300 meV. We show that this apparent inconsistency is related to a thermal dissociation of the bound exciton that liberates the neutral excitons from negatively charged point defects. First-principles calculations confirm that sulfur monovacancies introduce midgap states that host optical transitions with finite matrix elements, with emission energies ranging from 200 to 400 meV below the neutral-exciton emission line. These results demonstrate that bound-exciton emission induced by monosulfur vacancies is concentrated near the edges of as-grown monolayer tungsten disulfide. PMID:28508048

  19. Strain-induced phonon shifts in tungsten disulfide nanoplatelets and nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Kinloch, Ian A.; Wolverson, Daniel; Tenne, Reshef; Zak, Alla; O'Connell, Eoghan; Bangert, Ursel; Young, Robert J.

    2017-03-01

    The relationship between structure and properties has been followed for different nanoscale forms of tungsten disulfide (2H-WS2) namely exfoliated monolayer and few-layer nanoplatelets, and nanotubes. The similarities and differences between these nanostructured materials have been examined using a combination of optical microscopy, scanning and high-resolution transmission electron microscopy and atomic force microscopy. Photoluminescence and Raman spectroscopy have also been used to distinguish between monolayer and few-layer material. Strain induced phonon shifts have been followed from the changes in the positions of the A1g and {{{{E}}}2{{g}}}1 Raman bands during uniaxial deformation. This has been modelled for monolayer using density functional theory with excellent agreement between the measured and predicted behaviour. It has been found that as the number of WS2 layers increases for few-layer crystals or nanotubes, the A1g mode hardens whereas the {{{{E}}}2{{g}}}1 mode softens. This is believed to be due to the A1g mode, which involves out of plane atomic movements, being constrained by the increasing number of WS2 layers whereas easy sliding reduces stress transfer to the individual layers for the {{{{E}}}2{{g}}}1 mode, involving only in-plane vibrations. This finding has enabled the anomalous phonon shift behaviour in earlier pressure measurements on WS2 to be resolved, as well as similar effects in other transition metal dichalcogenides, such as molybdenum disulfide, to be explained.

  20. Highly efficient supercapacitor electrode with two-dimensional tungsten disulfide and reduced graphene oxide hybrid nanosheets

    NASA Astrophysics Data System (ADS)

    Tu, Chao-Chi; Lin, Lu-Yin; Xiao, Bing-Chang; Chen, Yu-Shiang

    2016-07-01

    Two-dimensional (2D) nanostructures with their high surface area and large in-plane conductivity have been regarded as promising materials for supercapacitors (SCs). Tungsten disulfide (WS2) is highly suitable for charge accumulation with its abundant active sites in the interspacing between the 2D structures and the intraspacing of each atomic layer, as well as on the tungsten centers with the charges generated by the Faradaic reactions. This study proposes the preparation of well-constructed WS2/reduced graphene oxide (RGO) nanosheets using a simple molten salt process as the electroactive material for SCs, which presents a high specific capacitance (CF) of 2508.07 F g-1 at the scan rate of 1 mV s-1, because of the synergic effect of WS2 with its large charge-accumulating sites on the 2D planes and RGO with its highly enhanced conductivity and improved connections in the WS2 networks. The excellent cycling stability of 98.6% retention after 5000 cycles charge/discharge process and the Coulombic efficiency close to 100% for the entire measurement are also achieved for the WS2/RGO-based SC electrode. The results suggest the potential for the combination of the 2D metal sulfide and carbon materials as the charge storage material to solve the energy problems and attain a sustainable society.

  1. Rhenium-188 Labeled Tungsten Disulfide Nanoflakes for Self-Sensitized, Near-Infrared Enhanced Radioisotope Therapy.

    PubMed

    Chao, Yu; Wang, Guanglin; Liang, Chao; Yi, Xuan; Zhong, Xiaoyan; Liu, Jingjing; Gao, Min; Yang, Kai; Cheng, Liang; Liu, Zhuang

    2016-08-01

    Radioisotope therapy (RIT), in which radioactive agents are administered or implanted into the body to irradiate tumors from the inside, is a clinically adopted cancer treatment method but still needs improvement to enhance its performances. Herein, it is found that polyethylene glycol (PEG) modified tungsten disulfide (WS2 ) nanoflakes can be easily labeled by (188) Re, a widely used radioisotope for RIT, upon simple mixing. Like other high-Z elements acting as radiosensitizers, tungsten in the obtained (188) Re-WS2 -PEG would be able to absorb ionization radiation generated from (188) Re, enabling ''self-sensitization'' to enhance the efficacy of RIT as demonstrated in carefully designed in vitro experiments of this study. In the meanwhile, the strong NIR absorbance of WS2 -PEG could be utilized for NIR light-induced photothermal therapy (PTT), which if applied on tumors would be able to greatly relieve their hypoxia state and help to overcome hypoxia-associated radioresistance of tumors. Therefore, with (188) Re-WS2 -PEG as a multifunctional agent, which shows efficient passive tumor homing after intravenous injection, in vivo self-sensitized, NIR-enhanced RIT cancer treatment is realized, achieving excellent tumor killing efficacy in a mouse tumor model. This work presents a new concept of applying nanotechnology in RIT, by delivering radioisotopes into tumors, self-sensitizing the irradiation-induced cell damage, and modulating the tumor hypoxia state to further enhance the therapeutic outcomes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing

    NASA Astrophysics Data System (ADS)

    Li, Hong; Ahn, Sung Hoon; Park, Sangwook; Cai, Lili; Zhao, Jiheng; He, Jiajun; Zhou, Minjie; Park, Joonsuk; Zheng, Xiaolin

    2016-09-01

    Acetone sensing is critical for acetone leak detection and holds a great promise for the noninvasive diagnosis of diabetes. It is thus highly desirable to develop a wearable acetone sensor that has low cost, miniature size, sub-ppm detection limit, great selectivity, as well as low operating temperature. In this work, we demonstrate a cost-effective on-chip acetone sensor with excellent sensing performances at 200 °C using molybdenum disulfide (MoS2) catalyzed tungsten oxide (WO3). The WO3 based acetone sensors are first optimized via combined mesoscopic nanostructuring and silicon doping. Under the same testing conditions, our optimized mesoporous silicon doped WO3 [Si:WO3(meso)] sensor shows 2.5 times better sensitivity with ˜1000 times smaller active device area than the state-of-art WO3 based acetone sensor. Next, MoS2 is introduced to catalyze the acetone sensing reactions for Si:WO3(meso), which reduces the operating temperature by 100 °C while retaining its high sensing performances. Our miniaturized acetone sensor may serve as a wearable acetone detector for noninvasive diabetes monitoring or acetone leakage detection. Moreover, our work demonstrates that MoS2 can be a promising nonprecious catalyst for catalytic sensing applications.

  3. All-fiber thulium/holmium-doped mode-locked laser by tungsten disulfide saturable absorber

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Zheng, Xin; Yin, Ke; Cheng, Xiang'ai; Jiang, Tian

    2017-01-01

    A passively mode-locked thulium/holmium-doped fiber laser (THDFL) based on tungsten disulfide (WS2) saturable absorber (SA) was demonstrated. The WS2 nanosheets were prepared by liquid phase exfoliation method and the SA was fabricated by depositing the few-layer WS2 nanosheets on the surface of a fiber taper. The modulation depth, saturable intensity, and non-saturable loss of this SA were measured to be 8.2%, 0.82 GW cm-2, and 29.4%, respectively. Based on this SA, a stable mode-locked laser operated at 1.91 µm was achieved with pulse duration of 825 fs and repetition rate of 15.49 MHz, and signal-to-noise ratio (SNR) of 67 dB. Meanwhile, by increasing the pump power and adjusting the position of polarization controller, harmonic mode-locking operations were obtained. These results showed that the WS2 nanosheet-based SA could be served as a desirable candidate for a short-pulse mode locker at 2 µm wavelength.

  4. High-damage-resistant tungsten disulfide saturable absorber mirror for passively Q-switched fiber laser.

    PubMed

    Chen, Hao; Chen, YuShan; Yin, Jinde; Zhang, Xuejun; Guo, Tuan; Yan, Peiguang

    2016-07-25

    In this paper, we demonstrate a high-damage-resistant tungsten disulfide saturable absorber mirror (WS2-SAM) fabricated by magnetron sputtering technique. The WS2-SAM has an all-fiber-integrated configuration and high-damage-resistant merit because the WS2 layer is protected by gold film so as to avoid being oxidized and destroyed at high pump power. Employing the WS2-SAM in an Erbium-doped fiber laser (EDFL) with linear cavity, the stable Q-switching operation is achieved at central wavelength of 1560 nm, with the repetition rates ranging from 29.5 kHz to 367.8 kHz and the pulse duration ranging from 1.269 μs to 154.9 ns. For the condition of the maximum pump power of 600 mW, the WS2-SAM still works stably with an output power of 25.2 mW, pulse energy of 68.5 nJ, and signal-noise-ratio of 42 dB. The proposed WS2-SAM configuration provides a promising solution for advanced pulsed fiber lasers with the characteristics of high damage resistance, high output energy, and wide tunable frequency.

  5. Gold nanoparticles physicochemically bonded onto tungsten disulfide nanosheet edges exhibit augmented plasmon damping

    NASA Astrophysics Data System (ADS)

    Forcherio, Gregory T.; Dunklin, Jeremy R.; Backes, Claudia; Vaynzof, Yana; Benamara, Mourad; Roper, D. Keith

    2017-07-01

    Augmented plasmonic damping of dipole-resonant gold (Au) nanoparticles (NP) physicochemically bonded onto edges of tungsten disulfide (WS2) nanosheets, ostensibly due to hot electron injection, is quantified using electron energy loss spectroscopy (EELS). EELS allows single-particle spatial resolution. A measured 0.23 eV bandwidth expansion of the localized surface plasmon resonance upon covalent bonding of 20 nm AuNP to WS2 edges was deemed significant by Welch's t-test. Approximately 0.19 eV of the measured 0.23 eV expansion went beyond conventional radiative and nonradiative damping mechanisms according to discrete dipole models, ostensibly indicating emergence of hot electron transport from AuNP into the WS2. A quantum efficiency of up to 11±5% spanning a 7 fs transfer process across the optimized AuNP-TMD ohmic junction is conservatively calculated. Putative hot electron transport for AuNP physicochemically bonded to TMD edges exceeded that for AuNP physically deposited onto the TMD basal plane. This arose from contributions due to (i) direct physicochemical bond between AuNP and WS2; (ii) AuNP deposition at TMD edge sites; and (iii) lower intrinsic Schottky barrier. This improves understanding of photo-induced doping of TMD by metal NP which could benefit emerging catalytic and optoelectronic applications.

  6. Suppression of exciton-exciton annihilation in tungsten disulfide monolayers encapsulated by hexagonal boron nitrides

    NASA Astrophysics Data System (ADS)

    Hoshi, Yusuke; Kuroda, Takashi; Okada, Mitsuhiro; Moriya, Rai; Masubuchi, Satoru; Watanabe, Kenji; Taniguchi, Takashi; Kitaura, Ryo; Machida, Tomoki

    2017-06-01

    We investigates exciton-exciton annihilation (EEA) in tungsten disulfide (W S2) monolayers encapsulated by hexagonal boron nitride (hBN). It is revealed that decay signals observed by time-resolved photoluminescence (PL) are not strongly dependent on the exciton densities of hBN-encapsulated W S2 monolayers (W S2/hBN ) . In contrast, the sample without the bottom hBN layer (W S2/Si O2) exhibits a drastic decrease of decay time with increasing exciton density due to the appearance of a rapid PL decay component, signifying nonradiative EEA-mediated recombination. Furthermore, the EEA rate constant of W S2/hBN was determined as (6.3 ±1.7 ) ×10-3c m2s-1 , being about 2 orders of magnitude smaller than that of W S2/Si O2 . Thus, the observed EEA rate reduction played a key role in enhancing luminescence intensity at high exciton densities in the W S2 monolayer.

  7. Shear-Induced Isostructural Phase Transition and Metallization of Layered Tungsten Disulfide under Nonhydrostatic Compression

    SciTech Connect

    Duwal, Sakun; Yoo, Choong-Shik

    2016-02-16

    Pressure-induced structural and electronic transformations of tungsten disulfide (WS2) have been studied to 60 GPa, in both hydrostatic and non-hydrostatic conditions, using four-probe electrical resistance measurements, micro-Raman spectroscopy and synchrotron x-ray diffraction. Our results show the evidence for an isostructural phase transition from hexagonal 2Hc phase to hexagonal 2Ha phase, which accompanies the metallization at ~37 GPa. This isostructural transition occurs displacively over a large pressure range between 15 and 45 GPa and is driven by the presence of strong shear stress developed in the layer structure of WS2 under non-hydrostatic compression. Interestingly, this transition is absent in hydrostatic conditions using He pressure medium, underscoring its strong dependence on the state of stress. We also attribute the absence to the incorporation of He atoms between the layers, mitigating the development of shear stress. We also conjecture a possibility of magnetic ordering in WS2 that may occur at low temperature near the metallization.

  8. Fiber-integrated tungsten disulfide saturable absorber (mirror) for pulsed fiber lasers

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Li, Irene Ling; Ruan, Shuangchen; Guo, Tuan; Yan, Peiguang

    2016-08-01

    We propose two schemes for achieving tungsten disulfide (WS2)-based saturable absorber (SA) and saturable absorber mirror (SAM). By utilizing the pulsed laser deposition method, we grow the WS2 film on microfiber to form an evanescent field interaction SA device. Incorporating this SA device into a common ring-cavity erbium-doped fiber (EDF) laser, stably passive mode-locking can be achieved with pulse duration of 395 fs and signal-to-noise ratio of 64 dB. We also produce a fiber tip integrated WS2-SAM by utilizing the magnetron sputtering technique (MST). This new type of SAM combines the WS2 layer as SA and gold mirror as high reflective mirror. By employing the WS2-SAM, we construct the linear-cavity EDF lasers, and achieve passive mode-locking operation with pulse duration of ˜1 ns and SNR of ˜61 dB. We further achieve stably passive Q-switching operation with pulse duration of ˜160 ns and pulse energy of 54.4 nJ. These fiber-integrated SAs and SAMs have merits of compactness and reliability, paving the way for the development of new photonic devices such as SAs for pulsed laser technology.

  9. Shear-Induced Isostructural Phase Transition and Metallization of Layered Tungsten Disulfide under Nonhydrostatic Compression

    DOE PAGES

    Duwal, Sakun; Yoo, Choong-Shik

    2016-02-16

    Pressure-induced structural and electronic transformations of tungsten disulfide (WS2) have been studied to 60 GPa, in both hydrostatic and non-hydrostatic conditions, using four-probe electrical resistance measurements, micro-Raman spectroscopy and synchrotron x-ray diffraction. Our results show the evidence for an isostructural phase transition from hexagonal 2Hc phase to hexagonal 2Ha phase, which accompanies the metallization at ~37 GPa. This isostructural transition occurs displacively over a large pressure range between 15 and 45 GPa and is driven by the presence of strong shear stress developed in the layer structure of WS2 under non-hydrostatic compression. Interestingly, this transition is absent in hydrostatic conditionsmore » using He pressure medium, underscoring its strong dependence on the state of stress. We also attribute the absence to the incorporation of He atoms between the layers, mitigating the development of shear stress. We also conjecture a possibility of magnetic ordering in WS2 that may occur at low temperature near the metallization.« less

  10. Tungsten disulfide-multiwalled carbon nanotube hybrid anode for lithium-ion battery.

    PubMed

    Kartick, B; Srivastava, Suneel Kumar; Mahanty, Sourindra

    2014-05-01

    The present work is focused on the preparation of tungsten disulfide-multiwalled carbon nanotube (WS2-MWCNT) hybrids by simple dry grinding of WS2 and MWCNT in different proportion by weight (1:3, 1:1, 3:1). The as prepared hybrids have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and Raman analyses. XRD results indicated complete exfoliation of MWCNT among WS2 particles in WS2-MWCNT (3:1) and (1:1) hybrids. FESEM images showed the formation of a 3-D network in WS2-MWCNT (1:1) hybrid with uniform dispersion of MWCNT being evident from HRTEM images. Raman analysis also suggested significant interaction between WS2 and MWCNT. WS2-MWCNT (1:1) hybrid, when used as anode material in lithium ion battery, exhibited a high initial charge capacity (483 mA h g(-1)) and an improved cycling stability with over 80% retention of the first cycle capacity after 20 cycles compared to only 40% capacity retention in pristine WS2. Such enhanced electrochemical performance of WS2-MWCNT (1:1) hybrid has been attributed to synergistic effect of WS2 and MWCNT.

  11. The optical response of monolayer, few-layer and bulk tungsten disulfide.

    PubMed

    Molas, Maciej R; Nogajewski, Karol; Slobodeniuk, Artur O; Binder, Johannes; Bartos, Miroslav; Potemski, Marek

    2017-09-14

    We present a comprehensive optical study of thin flakes of tungsten disulfide (WS2) with thickness ranging from mono- to octalayer and in the bulk limit. It is shown that the optical band-gap absorption of monolayer WS2 is governed by competing resonances arising from one neutral and two distinct negatively charged excitons whose contributions to the overall absorption of light vary as a function of temperature and carrier concentration. The photoluminescence response of monolayer WS2 is found to be largely dominated by disorder/impurity- and/or phonon-assisted recombination processes. The indirect band-gap luminescence in multilayer WS2 turns out to be a phonon-mediated process whose energy evolution with the number of layers surprisingly follows a simple model of a two-dimensional confinement. The energy position of the direct band-gap response (A and B resonances) is only weakly dependent on the layer thickness, which underlines an approximate compensation of the effect of the reduction of the exciton binding energy by the shrinkage of the apparent band gap. The A-exciton absorption-type spectra in multilayer WS2 display a non-trivial fine structure which results from the specific hybridization of the electronic states in the vicinity of the K-point of the Brillouin zone. The effects of temperature on the absorption-like and photoluminescence spectra of various WS2 layers are also quantified.

  12. Biocompatibility of Tungsten Disulfide Inorganic Nanotubes and Fullerene-Like Nanoparticles with Salivary Gland Cells

    PubMed Central

    Goldman, Elisheva B.; Zak, Alla; Tenne, Reshef; Kartvelishvily, Elena; Levin-Zaidman, Smadar; Neumann, Yoav; Stiubea-Cohen, Raluca; Palmon, Aaron; Hovav, Avi-Hai

    2015-01-01

    Impaired salivary gland (SG) function leading to oral diseases is relatively common with no adequate solution. Previously, tissue engineering of SG had been proposed to overcome this morbidity, however, not yet clinically available. Multiwall inorganic (tungsten disulfide [WS2]) nanotubes (INT-WS2) and fullerene-like nanoparticles (IF-WS2) have many potential medical applications. A yet unexplored venue application is their interaction with SG, and therefore, our aim was to test the biocompatibility of INT/IF-WS2 with the A5 and rat submandibular cells (RSC) SG cells. The cells were cultured and subjected after 1 day to different concentrations of INT-WS2 and were compared to control groups. Growth curves, trypan blue viability test, and carboxyfluorescein succinimidyl ester (CFSE) proliferation assay were obtained. Furthermore, cells morphology and interaction with the nanoparticles were observed by light microscopy, scanning electron microscopy and transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy. The results showed no significant differences in growth curves, proliferation kinetics, and viability between the groups compared. Moreover, no alterations were observed in the cell morphology. Interestingly, TEM images indicated that the nanoparticles are uptaken by the cells and accumulate in cytoplasmic vesicles. These results suggest promising future medical applications for these nanoparticles. PMID:25366879

  13. Mechanistic study of the hydrodesulfurization of methanethiol over tungsten disulfide; a survey of rare earth sulfides for hydrodesulfurization activity

    SciTech Connect

    Dowd, D.Q.

    1985-06-01

    Hydrodesulfurization is a process whereby sulfur bound in organic compounds is removed as hydrogen sulfide, and is important to the control of sulfur dioxide emissions in the combustion of petroleum and coal fuels. It involves the cleavage of carbon sulfur bonds, and is catalyzed by layered disulfides such as molybdenum and tungsten disulfide. The simplest example is the reaction CH/sub 3/SH + H/sub 2/ ..-->.. CH/sub 4/ + H/sub 2/S. The mechanism of even this protypical reaction is unclear. In an effort to clarify it, the kinetics of methanethiol hydrodesulfurization over tungsten disulfide at low pressures was established, with partial pressures of methanethiol and hydrogen varied over a hundred fold. The kinetic order in each reactant was positive when its partial pressure was low negative when its partial pressure was high. The negative order in hydrogen had not been previously seen. The product gases, methane and hydrogen sulfide, each exhibited negative kinetic orders at high partial pressures, zero kinetic orders at low partial pressures. A dual site Langmuir-Hinshelwood type mechanism, which defines one active site as two adjacent edge sulfur vacancies and the second as a neighboring sulfur atom, describes these results quite well. Seventeen rare earth sulfides were surveyed for catalytic activity toward methanethiol hydrodesulfurization. These sulfides included both stoichiometric and nonstoichiometric compositions and four different morphologies. In general, nonconductors were inactive and conductors were active. This correlation extended to the nonstoichiometric ..gamma..-phase sesquisulfides which exhibit both insulating and conducting properties. 96 refs.

  14. Mechanistic study of the hydrodesulfurization of methanethiol over tungsten disulfide. II. A survey of rare earth sulfides for hydrodesulfurization activity

    SciTech Connect

    Dowd, D.Q.

    1985-01-01

    I. Hydrodesulfurization is a process whereby sulfur bound in organic compounds is removed as hydrogen sulfide, and is important to the control of sulfur dioxide emissions in the combustion of petroleum and coal fuels. It involves the cleavage of carbon sulfur bonds, and is catalyzed by layered disulfides such as molybdenum and tungsten disulfide. The simplest example is the reaction CH/sub 3/SH + H/sub 2/ ..-->.. CH/sub 4/ + H/sub 2/S. The mechanism of even this prototypical reaction is unclear. In an effort to clarify it, the kinetics of methanethiol hydro desulfurization over tungsten disulfide at low pressures was established, with partial pressures of methanethiol and hydrogen varied over a hundred fold. The kinetic order in each reactant was positive when its partial pressure was low, negative when its partial pressure was high. The negative order in hydrogen had not been previously seen. The product gases, methane and hydrogen sulfide, each exhibited negative kinetic orders at high partial pressures, zero kinetic orders at low partial pressures. A dual site Langmuir-Hinshelwood type mechanism, which defines one active site as two adjacent edge sulfur vacancies and the second as a neighboring sulfur atom, describes these results quite well. II. Seventeen rare earth sulfides were surveyed for catalytic activity toward methanethiol hydrodesulfurization. These sulfides included both stoichiometric and nonstoichiometric compositions and four different morphologies. In general, nonconductors were inactive and conductors were active. This correlation extended to the nonstoichiometric ..gamma..-phase sesquisulfides which exhibit both insulating and conducting properties.

  15. Tip-Enhanced Raman Scattering Imaging of Two-Dimensional Tungsten Disulfide with Optimized Tip Fabrication Process

    NASA Astrophysics Data System (ADS)

    Lee, Chanwoo; Kim, Sung Tae; Jeong, Byeong Geun; Yun, Seok Joon; Song, Young Jae; Lee, Young Hee; Park, Doo Jae; Jeong, Mun Seok

    2017-01-01

    We successfully achieve the tip-enhanced nano Raman scattering images of a tungsten disulfide monolayer with optimizing a fabrication method of gold nanotip by controlling the concentration of etchant in an electrochemical etching process. By applying a square-wave voltage supplied from an arbitrary waveform generator to a gold wire, which is immersed in a hydrochloric acid solution diluted with ethanol at various ratios, we find that both the conical angle and radius of curvature of the tip apex can be varied by changing the ratio of hydrochloric acid and ethanol. We also suggest a model to explain the origin of these variations in the tip shape. From the systematic study, we find an optimal condition for achieving the yield of ~60% with the radius of ~34 nm and the cone angle of ~35°. Using representative tips fabricated under the optimal etching condition, we demonstrate the tip-enhanced Raman scattering experiment of tungsten disulfide monolayer grown by a chemical vapor deposition method with a spatial resolution of ~40 nm and a Raman enhancement factor of ~4,760.

  16. Tip-Enhanced Raman Scattering Imaging of Two-Dimensional Tungsten Disulfide with Optimized Tip Fabrication Process

    PubMed Central

    Lee, Chanwoo; Kim, Sung Tae; Jeong, Byeong Geun; Yun, Seok Joon; Song, Young Jae; Lee, Young Hee; Park, Doo Jae; Jeong, Mun Seok

    2017-01-01

    We successfully achieve the tip-enhanced nano Raman scattering images of a tungsten disulfide monolayer with optimizing a fabrication method of gold nanotip by controlling the concentration of etchant in an electrochemical etching process. By applying a square-wave voltage supplied from an arbitrary waveform generator to a gold wire, which is immersed in a hydrochloric acid solution diluted with ethanol at various ratios, we find that both the conical angle and radius of curvature of the tip apex can be varied by changing the ratio of hydrochloric acid and ethanol. We also suggest a model to explain the origin of these variations in the tip shape. From the systematic study, we find an optimal condition for achieving the yield of ~60% with the radius of ~34 nm and the cone angle of ~35°. Using representative tips fabricated under the optimal etching condition, we demonstrate the tip-enhanced Raman scattering experiment of tungsten disulfide monolayer grown by a chemical vapor deposition method with a spatial resolution of ~40 nm and a Raman enhancement factor of ~4,760. PMID:28084466

  17. Tungsten

    SciTech Connect

    1996-08-01

    The name tungsten, derived from the Swedish words {open_quotes}tung{close_quotes} and {open_quotes}sten{close_quotes}, meaning heavy stone, was first applied to a tungsten-containing mineral in 1755. The mineral, itself, was subsequently identified by C.W. Scheele in 1781, and named scheelite. Metallic tungsten was first isolated from the mineral wolframite in 1783, and given the German name {open_quotes}wolfram,{close_quotes} which remains an alternative name for the element. Ultimately, the English word, tungsten, became the official name, while W remains the element`s chemical symbol. This article discusses the geology, exploitation, applications, and market overview of tungsten.

  18. Highly flexible and electroforming free resistive switching behavior of tungsten disulfide flakes fabricated through advanced printing technology

    NASA Astrophysics Data System (ADS)

    Muqeet Rehman, Muhammad; Uddin Siddiqui, Ghayas; Doh, Yang Hoi; Choi, Kyung Hyun

    2017-09-01

    Tungsten disulfide (WS2) is a transition metal dichalcogenide that differs from other 2D materials such as graphene owing to its distinctive semiconducting nature and tunable band gap. In this study, we have reported the structural, electrical, physical, and mechanical properties of exfoliated WS2 flakes and used them as the functional layer of a rewritable bipolar memory device. We demonstrate this concept by sandwiching few-layered WS2 flakes between two silver (Ag) electrodes on a flexible and transparent PET substrate. The entire device fabrication was carried out through all-printing technology such as reverse offset printing for patterning bottom electrodes, electrohydrodynamic (EHD) atomization for depositing functional thin film and EHD patterning for depositing the top electrode respectively. The memory device was further encapsulated with an atomically thin layer of aluminum oxide (Al2O3), deposited through a spatial atmospheric atomic layer deposition system to protect it against a humid environment. Remarkable resistive switching results were obtained, such as nonvolatile bipolar behavior, a high switching ratio (∼103), a long retention time (∼105 s), high endurance (1500 voltage sweeps), a low operating voltage (∼2 V), low current compliance (50 μA), mechanical robustness (1500 cycles) and unique repeatability at ambient conditions. Ag/WS2/Ag-based memory devices offer a new possibility for integration in flexible electronic devices.

  19. All-optical phase shifter and switch near 1550nm using tungsten disulfide (WS_2) deposited tapered fiber

    NASA Astrophysics Data System (ADS)

    Wu, Kan; Guo, Chaoshi; Wang, Hao; Zhang, Xiaoyan; Wang, Jun; Chen, Jianping

    2017-07-01

    Optical phase shifters and switches play an important role for various optical applications including optical signal processing, sensing and communication. In this paper, we demonstrate a fiber all optical phase shifter using few-layer 2D material tungsten disulfide (WS2) deposited on a tapered fiber. WS2 absorbs injected 980 nm pump (control light) and generates heat which changes the refractive index of the tapered fiber due to thermo-optic effect and achieves a maximum phase shift of 6.1{\\pi} near 1550 nm. The device has a loss of 3.7 dB. By constructing a Mach-Zehnder interferometer with WS2 based phase shifter in one arm, an all optical switch is also obtained with an extinction ratio of 15 dB and a rise time of 7.3 ms. This all fiber low-cost and compact optical phase shifter and switch demonstrates the potential of 2D transition metal dichalcogenides for all optical signal processing devices.

  20. Mechanically deposited tungsten disulfide saturable absorber for low-threshold Q-switched erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Lau, K. Y.; Latif, A. A.; Abu Bakar, M. H.; Muhammad, F. D.; Omar, M. F.; Mahdi, M. A.

    2017-08-01

    In this paper, we report a Q-switched erbium-doped fiber laser incorporating tungsten disulfide (WS2) as the saturable absorber. A direct mechanical deposition technique using a scotch tape is employed to place the WS2 powder onto the tip of a fiber ferrule. Several runs of mechanical extraction are performed to reduce the thickness of WS2 powder on the fiber tip. The fabricated WS2 saturable absorber exhibits a saturation intensity of 548.6 MW/cm2, modulation depth of 4.1% and non-saturable loss of 67.8%. A ring cavity erbium-doped fiber laser integrating the WS2 saturable absorber yields continuous wave lasing and Q-switching threshold at pump power of 10 and 12.7 mW, respectively. This Q-switching pump power threshold is the lowest to the best of the authors' knowledge. The proposed technique of direct mechanical deposition is inexpensive, significantly faster and simpler compared to previously reported methods.

  1. A straight forward approach to electrodeposit tungsten disulfide/poly(3,4-ethylenedioxythiophene) composites onto nanoporous gold for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Xiao, Xinxin; Engelbrekt, Christian; Zhang, Minwei; Li, Zheshen; Ulstrup, Jens; Zhang, Jingdong; Si, Pengchao

    2017-07-01

    1.1 nm tungsten disulfide/poly(3,4-ethylenedioxythiophene) (PEDOT) was successfully electrodeposited on the surface of dealloyed nanoporous gold (NPG) surface to form uniform nanocomposites and offers an excellent electrocatalysis for the electrochemical dihydrogen evolution reaction (HER) in acidic media. The approach is straight forward and does not require any expensive equipment or intensive energy. The morphology and composition of the nanocomposites were structurally mapped by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectrometry (FTIR). The roles of both the NPG substrate and PEDOT in the observed enhanced HER activity compared to planar Au-electrode surfaces and pure single-component WS2 have been deconvoluted experimentally. PEDOT itself is inert for the HER, but was found to improve significantly the conductivity and operating stability of the WS2 catalyst. The prepared nanocomposites reach the best in 2D WS2 catalyst family, exhibiting excellent electrochemical catalytic activity for the HER. The optimal electrode showed an onset potential of -164 mV vs. reversible hydrogen electrode (RHE), an apparent exchange current density as high as 0.04 mA cm-2, and a very low Tafel slope of 53 mV dec-1. These catalysts are promising electrocatalysts for generation a large amount of H2 from water.

  2. The effects of exfoliation, organic solvents and anodic activation on the catalytic hydrogen evolution reaction of tungsten disulfide.

    PubMed

    Liu, Wanglian; Benson, John; Dawson, Craig; Strudwick, Andrew; Raju, Arun Prakash Aranga; Han, Yisong; Li, Meixian; Papakonstantinou, Pagona

    2017-09-21

    The rational design of transition metal dichalcogenide electrocatalysts for efficiently catalyzing the hydrogen evolution reaction (HER) is believed to lead to the generation of a renewable energy carrier. To this end, our work has made three main contributions. At first, we have demonstrated that exfoliation via ionic liquid assisted grinding combined with gradient centrifugation is an efficient method to exfoliate bulk WS2 to nanosheets with a thickness of a few atomic layers and lateral size dimensions in the range of 100 nm to 2 nm. These WS2 nanosheets decorated with scattered nanodots exhibited highly enhanced catalytic performance for HER with an onset potential of -130 mV vs. RHE, an overpotential of 337 mV at 10 mA cm(-2) and a Tafel slope of 80 mV dec(-1) in 0.5 M H2SO4. Secondly, we found a strong aging effect on the electrocatalytic performance of WS2 stored in high boiling point organic solvents such as dimethylformamide (DMF). Importantly, the HER ability could be recovered by removing the organic (DMF) residues, which obstructed the electron transport, with acetone. Thirdly, we established that the HER performance of WS2 nanosheets/nanodots could be significantly enhanced by activating the electrode surface at a positive voltage for a very short time (60 s), decreasing the kinetic overpotential by more than 80 mV at 10 mA cm(-2). The performance enhancement was found to arise primarily from the ability of a formed proton-intercalated amorphous tungsten trioxide (a-WO3) to provide additional active sites and favourably modify the immediate chemical environment of the WS2 catalyst, rendering it more favorable for local proton delivery and/or transport to the active edge site of WS2. Our results provide new insights into the effects of organic solvents and electrochemical activation on the catalytic performance of two-dimensional WS2 for HER.

  3. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity.

    PubMed

    Zhao, Jingjin; Ma, Yefei; Kong, Rongmei; Zhang, Liangliang; Yang, Wen; Zhao, Shulin

    2015-08-05

    Herein, we introduced a tungsten disulfide (WS2) nanosheet and exonuclease III (Exo III) co-assisted signal amplification strategy for highly sensitive fluorescent polarization (FP) assay of DNA glycosylase activity. Two DNA glycosylases, uracil-DNA glycosylase (UDG) and human 8-oxoG DNA glycosylase 1 (hOGG1), were tested. A hairpin-structured probe (HP) which contained damaged bases in the stem was used as the substrate. The removal of damaged bases from substrate by DNA glycosylase would lower the melting temperature of HP. The HP was then opened and hybridized with a FAM dye-labeled single strand DNA (DP), generating a duplex with a recessed 3'-terminal of DP. This design facilitated the Exo III-assisted amplification by repeating the hybridization and digestion of DP, liberating numerous FAM fluorophores which could not be adsorbed on WS2 nanosheet. Thus, the final system exhibited a small FP signal. However, in the absence of DNA glycosylases, no hybridization between DP and HP was occurred, hampering the hydrolysis of DP by Exo III. The intact DP was then adsorbed on the surface of WS2 nanosheet that greatly amplified the mass of the labeled-FAM fluorophore, resulting in a large FP value. With the co-assisted amplification strategy, the sensitivity was substantially improved. In addition, this method was applied to detect UDG activity in cell extracts. The study of the inhibition of UDG was also performed. Furthermore, this method is simple in design, easy in implementation, and selective, which holds potential applications in the DNA glycosylase related mechanism research and molecular diagnostics.

  4. Photoactive periodic media

    NASA Astrophysics Data System (ADS)

    Ben-Messaoud, Tahar; Riordon, Jason; Melanson, Alexandre; Ashrit, P. V.; Haché, Alain

    2009-03-01

    Photoactive (photochromic) multilayers of MoO3/SiO2 are studied optically before and after UV excitation. Enhancement in photochromic activity is observed over a wide spectrum and in particular near the photonic band edges where optical changes are up to 25 times greater than in similarly prepared bulk, nonperiodic samples. Applications to light-sensitive devices are discussed.

  5. Photoactive porous silicon nanopowder.

    PubMed

    Meekins, Benjamin H; Lin, Ya-Cheng; Manser, Joseph S; Manukyan, Khachatur; Mukasyan, Alexander S; Kamat, Prashant V; McGinn, Paul J

    2013-04-24

    Bulk processing of porous silicon nanoparticles (nSi) of 50-300 nm size and surface area of 25-230 m(2)/g has been developed using a combustion synthesis method. nSi exhibits consistent photoresponse to AM 1.5 simulated solar excitation. In confirmation of photoactivity, the films of nSi exhibit prompt bleaching following femtosecond laser pulse excitation resulting from the photoinduced charge separation. Photocurrent generation observed upon AM 1.5 excitation of these films in a photoelectrochemical cell shows strong dependence on the thickness of the intrinsic silica shell that encompasses the nanoparticles and hinders interparticle electron transfer.

  6. Desulfurization chemistry on tungsten surfaces

    SciTech Connect

    Benziger, J.B.; Preston, R.E.

    1985-01-01

    Desulfurization on tungsten surfaces was studied by Auger spectroscopy, temperature programmed desorption, and infrared spectroscopy. Aliphatic compounds reacted by electrophilic interaction of sulfur with the surface. On sulfided surfaces adsorption occurred by disulfide linkages, but C-S bond scission required vacant metal sites. Thiophene underwent electrophilic attack on the ring at the ..cap alpha..-carbon by metal sites.

  7. Carbon disulfide

    Integrated Risk Information System (IRIS)

    Carbon disulfide ; CASRN 75 - 15 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  8. Tungsten toxicity.

    PubMed

    Witten, Mark L; Sheppard, Paul R; Witten, Brandon L

    2012-04-05

    There is emerging evidence that tungsten has toxic health effects. We summarize the recent tungsten toxicity research in this short review. Tungsten is widely used in many commercial and military applications because it has the second highest melting temperature of any element. Consequently, it is important to elucidate the potential health effects of tungsten.

  9. Protein disulfide engineering.

    PubMed

    Dombkowski, Alan A; Sultana, Kazi Zakia; Craig, Douglas B

    2014-01-21

    Improving the stability of proteins is an important goal in many biomedical and industrial applications. A logical approach is to emulate stabilizing molecular interactions found in nature. Disulfide bonds are covalent interactions that provide substantial stability to many proteins and conform to well-defined geometric conformations, thus making them appealing candidates in protein engineering efforts. Disulfide engineering is the directed design of novel disulfide bonds into target proteins. This important biotechnological tool has achieved considerable success in a wide range of applications, yet the rules that govern the stabilizing effects of disulfide bonds are not fully characterized. Contrary to expectations, many designed disulfide bonds have resulted in decreased stability of the modified protein. We review progress in disulfide engineering, with an emphasis on the issue of stability and computational methods that facilitate engineering efforts. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. TiO2/WO3 photoactive bilayers in the UV-Vis light region

    NASA Astrophysics Data System (ADS)

    Vasilaki, E.; Vernardou, D.; Kenanakis, G.; Vamvakaki, M.; Katsarakis, N.

    2017-04-01

    In this work, photoactive bilayered films consisting of anatase TiO2 and monoclinic WO3 were synthesized by a sol-gel route. Titanium isopropoxide and tungsten hexachloride were used as metal precursors and deposition was achieved by spin-coating on Corning glass substrates. The samples were characterized by X-ray diffraction, photoluminescence, UV-Vis, and Raman spectroscopy, as well as field emission scanning electron microscopy. The prepared immobilized catalysts were tested for their photocatalytic performance by the decolorization of methylene blue in aqueous matrices, under UV-Vis light irradiation. The annealing process influenced the crystallinity of the bilayered films, while the concentration of the tungsten precursor solution and the position of the tungsten trioxide layer further affected their photocatalytic performance. In particular, the photocatalytic performance of the bilayered films was optimized at a concentration of 0.1 M of the WO3 precursor solution, when deposited as an overlying layer on TiO2 by two annealing steps ( 76% methylene blue decolorization in 300 min of irradiation versus 59% in the case of a bare TiO2 film). In general, the coupled layer catalysts exhibited superior photoactivity compared to that of bare TiO2 films with WO3 acting as an electron trap, resulting, therefore, in a more efficient electron-hole separation and inhibiting their recombination.

  11. Quantum entanglement in photoactive prebiotic systems.

    PubMed

    Tamulis, Arvydas; Grigalavicius, Mantas

    2014-06-01

    This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones.

  12. Carbon Fiber and Tungsten Disulfide Nanoscale Architectures for Armor Applications

    DTIC Science & Technology

    2012-06-01

    like structure. From [13]. One of the most common uses for inorganic fullerenes is as a solid lubricant . Each of the layers forming the fullerene is...being coated with a layer of carbon arresting further sintering. However, the carbon appears to have larger deposits in certain regions instead of even...as the layers that comprise the onion like structure. From [13]. ............................6 Figure 5. Transmission electron microscopy image of

  13. Optical control of charged exciton states in tungsten disulfide

    SciTech Connect

    Currie, M.; Hanbicki, A. T.; Jonker, B. T.; Kioseoglou, G.

    2015-05-18

    A method is presented for optically preparing WS{sub 2} monolayers to luminescence from only the charged exciton (trion) state–completely suppressing the neutral exciton. When isolating the trion state, we observed changes in the Raman A{sub 1g} intensity and an enhanced feature on the low energy side of the E{sup 1}{sub 2g} peak. Photoluminescence and optical reflectivity measurements confirm the existence of the prepared trion state. This technique also prepares intermediate regimes with controlled luminescence amplitudes of the neutral and charged exciton. This effect is reversible by exposing the sample to air, indicating the change is mitigated by surface interactions with the ambient environment. This method provides a tool to modify optical emission energy and to isolate physical processes in this and other two-dimensional materials.

  14. Extraordinary Second Harmonic Generation in tungsten disulfide monolayers.

    PubMed

    Janisch, Corey; Wang, Yuanxi; Ma, Ding; Mehta, Nikhil; Elías, Ana Laura; Perea-López, Néstor; Terrones, Mauricio; Crespi, Vincent; Liu, Zhiwen

    2014-07-02

    We investigate Second Harmonic Generation (SHG) in monolayer WS₂ both deposited on a SiO₂/Si substrate or suspended using transmission electron microscopy grids. We find unusually large second order nonlinear susceptibility, with an estimated value of d(eff) ~ 4.5 nm/V nearly three orders of magnitude larger than other common nonlinear crystals. In order to quantitatively characterize the nonlinear susceptibility of two-dimensional (2D) materials, we have developed a formalism to model SHG based on the Green's function with a 2D nonlinear sheet source. In addition, polarized SHG is demonstrated as a useful method to probe the structural symmetry and crystal orientation of 2D materials. To understand the large second order nonlinear susceptibility of monolayer WS₂, density functional theory based calculation is performed. Our analysis suggests the origin of the large nonlinear susceptibility in resonance enhancement and a large joint density of states, and yields an estimate of the nonlinear susceptibility value d(eff) = 0.77 nm/V for monolayer WS₂, which shows good order-of-magnitude agreement with the experimental result.

  15. Single-material multilayer with enhanced photoactivity

    SciTech Connect

    Beydaghyan, Gisia; Boudreau, Mathieu; Riordon, Jason; Hache, Alain; Ashrit, P. V.

    2010-10-18

    Molybdenum trioxide (MoO{sub 3}) patterned at the nanometer scale is combined with the same material in its bulk form to produce Bragg mirrors with enhanced photoactive properties. MoO{sub 3} undergoes coloration with exposure to UV light but a multilayer structure which alternates between nanostructured and bulk MoO{sub 3} is 2.5 times more effective. Measurements with various multilayer arrangements suggest the proximity of bulk and nanostructured MoO{sub 3} favors the photoreaction with structural water. A possible minor contribution from electronic band shifting is also discussed.

  16. Quantifying Friction Effects of Molybdenum Disulfide, Tungsten Disulfide, Hexagonal Boron Nitride, and Lubalox as Bullet Coating

    DTIC Science & Technology

    2012-07-30

    also claims that these coatings eliminate copper fouling of the barrel. The Swedish ammunition company Norma Precision advertises friction reduction...Lubricant,” US Patent 6036996. [7] Norma , 2011. “ Norma Diamond Line.” http://www.norma.cc/en/Products/Our-Brands/ Norma - Diamond-Line/ Accessed

  17. Quantification of Thiols and Disulfides

    PubMed Central

    Winther, Jakob R.; Thorpe, Colin

    2013-01-01

    Background Disulfide bond formation is a key posttranslational modification, with implications for structure, function and stability of numerous proteins. While disulfide bond formation is a necessary and essential process for many proteins, it is deleterious and disruptive for others. Cells go to great lengths to regulate thiol-disulfide bond homeostasis, typically with several, apparently redundant, systems working in parallel. Dissecting the extent of oxidation and reduction of disulfides is an ongoing challenge due, in part, to the facility of thiol/disulfide exchange reactions. Scope of the review In the present account, we briefly survey the toolbox available to the experimentalist for the chemical determination of thiols and disulfides. We have chosen to focus on the key chemical aspects of current methodology, together with identifying potential difficulties inherent in their experimental implementation. Major conclusions While many reagents have been described for the measurement and manipulation of the redox status of thiols and disulfides, a number of these methods remain underutilized. The ability to effectively quantify changes in redox conditions in living cells presents a continuing challenge. General Significance Many unresolved questions in the metabolic interconversion of thiols and disulfides remain. For example, while pool sizes of redox pairs and their intracellular distribution are being uncovered, very little is known about the flux in thiol-disulfide exchange pathways. New tools are needed to address this important aspect of cellular metabolism. PMID:23567800

  18. Making waves in a photoactive polymer film

    NASA Astrophysics Data System (ADS)

    Gelebart, Anne Helene; Jan Mulder, Dirk; Varga, Michael; Konya, Andrew; Vantomme, Ghislaine; Meijer, E. W.; Selinger, Robin L. B.; Broer, Dirk J.

    2017-06-01

    Oscillating materials that adapt their shapes in response to external stimuli are of interest for emerging applications in medicine and robotics. For example, liquid-crystal networks can be programmed to undergo stimulus-induced deformations in various geometries, including in response to light. Azobenzene molecules are often incorporated into liquid-crystal polymer films to make them photoresponsive; however, in most cases only the bending responses of these films have been studied, and relaxation after photo-isomerization is rather slow. Modifying the core or adding substituents to the azobenzene moiety can lead to marked changes in photophysical and photochemical properties, providing an opportunity to circumvent the use of a complex set-up that involves multiple light sources, lenses or mirrors. Here, by incorporating azobenzene derivatives with fast cis-to-trans thermal relaxation into liquid-crystal networks, we generate photoactive polymer films that exhibit continuous, directional, macroscopic mechanical waves under constant light illumination, with a feedback loop that is driven by self-shadowing. We explain the mechanism of wave generation using a theoretical model and numerical simulations, which show good qualitative agreement with our experiments. We also demonstrate the potential application of our photoactive films in light-driven locomotion and self-cleaning surfaces, and anticipate further applications in fields such as photomechanical energy harvesting and miniaturized transport.

  19. Thin films of photoactive polymer blends.

    PubMed

    Ruderer, Matthias A; Metwalli, Ezzeldin; Wang, Weinan; Kaune, Gunar; Roth, Stephan V; Müller-Buschbaum, Peter

    2009-03-09

    The morphology inside photoactive blended films of two conjugated homopolymers poly [(1-methoxy)-4-(2-ethylhexyloxy)-p-phenylene-vinylene] (MEH-PPV) and poly(3-hexylthiophene-2,5-diyl) (P3HT) is investigated. For both homopolymers a linear dependence of the installed film thickness from the concentration of the polymer solution used in spin coating is probed. This dependence allows preparation of an efficient series of blended films with constant thickness and different blending ratios. Information about the lateral structure inside the films is gained from grazing incidence small angle X-ray scattering. At the calculated critical blending ratio the smallest lateral separation between adjacent domains is found representing the highest surface contact between both homopolymers in the films. The presence of wetting layers at both interfaces as detected with X-ray reflectivity and atomic force microscopy is promising for photovoltaic applications. UV/Vis spectroscopy complements the structural investigation.

  20. Photoactive devices including porphyrinoids with coordinating additives

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav

    2015-05-12

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  1. Method of monitoring photoactive organic molecules in-situ during gas-phase deposition of the photoactive organic molecules

    DOEpatents

    Forrest, Stephen R.; Vartanian, Garen; Rolin, Cedric

    2015-06-23

    A method for in-situ monitoring of gas-phase photoactive organic molecules in real time while depositing a film of the photoactive organic molecules on a substrate in a processing chamber for depositing the film includes irradiating the gas-phase photoactive organic molecules in the processing chamber with a radiation from a radiation source in-situ while depositing the film of the one or more organic materials and measuring the intensity of the resulting photoluminescence emission from the organic material. One or more processing parameters associated with the deposition process can be determined from the photoluminescence intensity data in real time providing useful feedback on the deposition process.

  2. Reactive superhydrophobic surface and its photoinduced disulfide-ene and thiol-ene (bio)functionalization.

    PubMed

    Li, Junsheng; Li, Linxian; Du, Xin; Feng, Wenqian; Welle, Alexander; Trapp, Oliver; Grunze, Michael; Hirtz, Michael; Levkin, Pavel A

    2015-01-14

    Reactive superhydrophobic surfaces are highly promising for biotechnological, analytical, sensor, or diagnostic applications but are difficult to realize due to their chemical inertness. In this communication, we report on a photoactive, inscribable, nonwettable, and transparent surface (PAINTS), prepared by polycondensation of trichlorovinylsilane to form thin transparent reactive porous nanofilament on a solid substrate. The PAINTS shows superhydrophobicity and can be conveniently functionalized with the photoclick thiol-ene reaction. In addition, we show for the first time that the PAINTS bearing vinyl groups can be easily modified with disulfides under UV irradiation. The effect of superhydrophobicity of PAINTS on the formation of high-resolution surface patterns has been investigated. The developed reactive superhydrophobic coating can find applications for surface biofunctionalization using abundant thiol or disulfide bearing biomolecules, such as peptides, proteins, or antibodies.

  3. Photoactive molecules for applications in molecular imaging and cell biology.

    PubMed

    Shao, Qing; Xing, Bengang

    2010-08-01

    Photoactive technology has proven successful for non-invasive regulation of biological activities and processes in living cells. With the light-directed generation of biomaterials or signals, mechanisms in cell biology can be investigated at the molecular level with spatial and temporal resolution. In this tutorial review, we aim to introduce the important applications of photoactive molecules for elucidating cell biology on aspects of protein engineering, fluorescence labelling, gene regulation and cell physiological functions.

  4. Tungsten Filament Fire

    ERIC Educational Resources Information Center

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  5. Materials Survey: Tungsten

    DTIC Science & Technology

    1956-12-01

    arsenopyrite, in places with muscovite, tourmaline , and France fluorite, are associated with the wolfram- ite. A small amount of tungsten has been The...scheelite, tourmaline , muscovite, arseno- wolframite to scheelite is 3:2. pyrite, and pyrrhotite. The veins are in A total of 53 productive tungsten mines

  6. Tungsten filament fire

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.; Perkins, James

    2016-05-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent light bulb is being replaced by compact fluorescent and LED lamps.

  7. Stoichiometric tungsten carbide coatings

    NASA Astrophysics Data System (ADS)

    Hirata, G. A.; Contreras, O.; Farías, M. H.; Cota-Araiza, L.

    1996-07-01

    Filament Assisted Chemical Vapor Deposition (FA-CVD) technique has been used to prepare tungsten carbide (WC) thin films. With this simple technique we obtained polycrystalline and stoichiometric WC coatings deposited on crystalline silicon and on stainless steel substrates. Tungsten carbide coatings were studied with Auger Electron Spectroscopy and Scanning Electron Microscopy.

  8. Tungsten Filament Fire

    ERIC Educational Resources Information Center

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  9. Photovoltaic device comprising compositionally graded intrinsic photoactive layer

    DOEpatents

    Hoffbauer, Mark A; Williamson, Todd L

    2013-04-30

    Photovoltaic devices and methods of making photovoltaic devices comprising at least one compositionally graded photoactive layer, said method comprising providing a substrate; growing onto the substrate a uniform intrinsic photoactive layer having one surface disposed upon the substrate and an opposing second surface, said intrinsic photoactive layer consisting essentially of In.sub.1-xA.sub.xN,; wherein: i. 0.ltoreq.x.ltoreq.1; ii. A is gallium, aluminum, or combinations thereof; and iii. x is at least 0 on one surface of the intrinsic photoactive layer and is compositionally graded throughout the layer to reach a value of 1 or less on the opposing second surface of the layer; wherein said intrinsic photoactive layer is isothermally grown by means of energetic neutral atom beam lithography and epitaxy at a temperature of 600.degree. C. or less using neutral nitrogen atoms having a kinetic energy of from about 1.0 eV to about 5.0 eV, and wherein the intrinsic photoactive layer is grown at a rate of from about 5 nm/min to about 100 nm/min.

  10. KISMET tungsten dispersal experiment

    SciTech Connect

    Wohletz, K.; Kunkle, T.; Hawkins, W.

    1996-12-01

    Results of the KISMET tungsten dispersal experiment indicate a relatively small degree of wall-rock contamination caused by this underground explosive experiment. Designed as an add-on to the KISMET test, which was performed in the U-1a.02 drift of the LYNER facility at Nevada Test Site on 1 March 1995, this experiment involved recovery and analysis of wall-rock samples affected by the high- explosive test. The chemical, high-explosive blast drove tungsten powder, placed around the test package as a plutonium analog, into the surrounding wall- rock alluvium. Sample analyses by an analytical digital electron microscope (ADEM) show tungsten dispersed in the rock as tiny (<10 {mu}m) particles, agglomerates, and coatings on alluvial clasts. Tungsten concentrations, measured by energy dispersive spectral analysis on the ADEM, indicate penetration depths less than 0.1 m and maximum concentrations of 1.5 wt % in the alluvium.

  11. Nanoengineering Applied to Tungsten

    DTIC Science & Technology

    2006-05-01

    and R. Z. Valiev ARL-RP- 123 May 2006 A reprint from the Proceedings of the Sixth International Conference on Tungsten, Refractory...Ground, MD 21005-5066 ARL-RP- 123 May 2006 Nanoengineering Applied to Tungsten Q. Wei University of North Carolina-Charlotte B. E...ORGANIZATION REPORT NUMBER ARL-RP- 123 10. SPONSOR/MONITOR’S ACRONYM(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SPONSOR

  12. Photodynamic Graphene Quantum Dot: Reduction Condition Regulated Photoactivity and Size Dependent Efficacy.

    PubMed

    Du, Dou; Wang, Kun; Wen, Ya; Li, Yan; Li, Yong Y

    2016-02-10

    Prequenching and selective activation of photosensitizer (PS) are highly desired in photodynamic therapy (PDT) to avoid off-target effect due to nonspecific activation and poor targeting selectivity of PS. In this study, nanographene materials as a unique π-conjugated planar system for electronic transfer were employed as the robust platform for temporarily quenching of PS. Photosensitizer chlorin e6 (Ce6) was integrated onto planar structure of graphene quantum dot (GQD) or graphene oxide (GO) via a reduction cleavable disulfide linker. The formed hybrid nanosystem displayed considerable fluorescence quenching and slight phototoxicity, even under the condition of light irradiation, while the photoactivity of PS could be selectively recovered in the presence of the reducing agent. Compared with graphene oxide system with larger size (around 200 nm), GQD nanosystem exhibited significantly improved tumor accumulation via enhanced permeation and retention effect (EPR effect). The in vivo study demonstrated extremely effective suppression of tumor growth for the group treated with the GQD nanosystem with cleavable linker, revealing the promising application of the presented novel strategy.

  13. MECHANICAL PROPERTIES OF WROUGHT TUNGSTEN

    DTIC Science & Technology

    Mechanical properties of wrought tungsten vol. II. Creep rupture test data from 1500 to 5000 F, and tensile test data from room temperature to 5000 F at various strain rates for tungsten sheet material.

  14. Development of Tungsten Based Composites

    DTIC Science & Technology

    1992-02-01

    Watertown, MA, July 1991. - 59 - 9. Williams , B.E. et al, "CVD Coated Tungsten Powder Composites, Part I: Powder Processing and Characterization...34, Tungsten and Tungsten Alloys - Recent Advances, TMS, Warrendale, PA c1991. 10. Williams , B.E. et al, "CVD Coated Tungsten Powder Composites, Part II: Powder...MIAC/ CINDAS , Purdue University, 2595 Yeager Road, West Lafayette, IN 47905 Commander, Army Research Office, P.O. Box 12211, Research Triangle Park, NC

  15. Plasma deposition of tungsten

    SciTech Connect

    Greenberg, K.E.

    1986-12-01

    Tungsten films were plasma-deposited using an abnormal glow discharge through a mixture of tungsten hexafluoride, hydrogen, and argon. The films adhered well to silicon, silicon dioxide, gallium arsenide, and aluminum substrates placed directly on the discharge cathode. Typical deposition rates were on the order of 160 Angstroms/minute with as-deposited film resistivities of 40 to 70 microohm-cm. The tungsten was analyzed using a number of techniques including x-ray diffraction, scanning electron microscopy, and Auger spectroscopy. Low-resistivity (<10 microohm-cm) films that adhered well to silicon dioxide were obtained with a two-step process utilizing plasma deposition and conventional chemical vapor deposition.

  16. DIsulfide Mapping PLanner Software Tool.

    PubMed

    Kist, Andreas M; Lampert, Angelika; O'Reilly, Andrias O

    2017-08-17

    Disulfide bridges are side-chain-mediated covalent bonds between cysteines that stabilize many protein structures. Disulfide mapping experiments to resolve these linkages typically involve proteolytic cleavage of the protein of interest followed by mass spectroscopy to identify fragments corresponding to linked peptides. Here we report the sequence-based "DIMPL" web tool to facilitate the planning and analysis steps of experimental mapping studies. The software tests permutations of user-selected proteases to determine an optimal peptic digest that produces cleavage between cysteine residues, thus separating each to an individual peptide fragment. The webserver returns fragment sequence and mass data that can be dynamically ordered to enable straightforward comparative analysis with mass spectroscopy results, facilitating dipeptide identification.

  17. Chemical downstream etching of tungsten

    SciTech Connect

    Blain, M.G.; Jarecki, R.L.; Simonson, R.J.

    1998-07-01

    The downstream etching of tungsten and tungsten oxide has been investigated. Etching of chemical vapor deposited tungsten and e-beam deposited tungsten oxide samples was performed using atomic fluorine generated by a microwave discharge of argon and NF{sub 3}. Etching was found to be highly activated with activation energies approximated to be 6.0{plus_minus}0.5thinspkcal/mol and 5.4{plus_minus}0.4thinspkcal/mol for W and WO{sub 3}, respectively. In the case of F etching of tungsten, the addition of undischarged nitric oxide (NO) directly into the reaction chamber results in the competing effects of catalytic etch rate enhancement and the formation of a nearly stoichiometric WO{sub 3} passivating tungsten oxide film, which ultimately stops the etching process. For F etching of tungsten oxide, the introduction of downstream NO reduces the etch rate. {copyright} {ital 1998 American Vacuum Society.}

  18. Gas tungsten arc welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  19. Diffusion of tungsten hexafluoride

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of tungsten hexafluoride

  20. High purity tungsten targets

    NASA Technical Reports Server (NTRS)

    1975-01-01

    High purity tungsten, which is used for targets in X-ray tubes was considered for space processing. The demand for X-ray tubes was calculated using the growth rates for dental and medical X-ray machines. It is concluded that the cost benefits are uncertain.

  1. High purity tungsten targets

    NASA Technical Reports Server (NTRS)

    1975-01-01

    High purity tungsten, which is used for targets in X-ray tubes was considered for space processing. The demand for X-ray tubes was calculated using the growth rates for dental and medical X-ray machines. It is concluded that the cost benefits are uncertain.

  2. Recent progress in photoactive organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Wakayama, Yutaka; Hayakawa, Ryoma; Seo, Hoon-Seok

    2014-04-01

    Recent progress in photoactive organic field-effect transistors (OFETs) is reviewed. Photoactive OFETs are divided into light-emitting (LE) and light-receiving (LR) OFETs. In the first part, LE-OFETs are reviewed from the viewpoint of the evolution of device structures. Device performances have improved in the last decade with the evolution of device structures from single-layer unipolar to multi-layer ambipolar transistors. In the second part, various kinds of LR-OFETs are featured. These are categorized according to their functionalities: phototransistors, non-volatile optical memories, and photochromism-based transistors. For both, various device configurations are introduced: thin-film based transistors for practical applications, single-crystalline transistors to investigate fundamental physics, nanowires, multi-layers, and vertical transistors based on new concepts.

  3. Recent progress in photoactive organic field-effect transistors.

    PubMed

    Wakayama, Yutaka; Hayakawa, Ryoma; Seo, Hoon-Seok

    2014-04-01

    Recent progress in photoactive organic field-effect transistors (OFETs) is reviewed. Photoactive OFETs are divided into light-emitting (LE) and light-receiving (LR) OFETs. In the first part, LE-OFETs are reviewed from the viewpoint of the evolution of device structures. Device performances have improved in the last decade with the evolution of device structures from single-layer unipolar to multi-layer ambipolar transistors. In the second part, various kinds of LR-OFETs are featured. These are categorized according to their functionalities: phototransistors, non-volatile optical memories, and photochromism-based transistors. For both, various device configurations are introduced: thin-film based transistors for practical applications, single-crystalline transistors to investigate fundamental physics, nanowires, multi-layers, and vertical transistors based on new concepts.

  4. Non-selective tungsten CVD using tungsten hexacarbonyl

    SciTech Connect

    Creighton, J.R.

    1987-01-01

    We have used tungsten hexacarbonyl to deposit thin (<1000 A) non-selective tungsten films on silicon and silicon dioxide at 550/sup 0/C. Thicker (approx. =1 micron) tungsten films were then deposited using conventional H/sub 2/ reduction of WF/sub 6/ at 470/sup 0/C using the non-selective film as an adhesion layer. Films grown in this manner have excellent adhesion to SiO/sub 2/, essentially 100% step coverage, and good resistivity. Samples could be transferred under vacuum from the deposition chamber to a uhv chamber equipped with Aguer spectroscopy, thus allowing surface and interface properties of the tungsten films to be studied at the initial stages of growth. No evidence was found for a stoichiometric tungsten oxide or tungsten silicide at the W/SiO/sub 2/ interface. 13 refs., 4 figs.

  5. Detection of photoactive siderophore biosynthetic genes in the marine environment.

    PubMed

    Gärdes, Astrid; Triana, Christopher; Amin, Shady A; Green, David H; Romano, Ariel; Trimble, Lyndsay; Carrano, Carl J

    2013-06-01

    Iron is an essential element for oceanic microbial life but its low bioavailability limits microorganisms in large areas of the oceans. To acquire this metal many marine bacteria produce organic chelates that bind and transport iron (siderophores). While it has been hypothesized that the global production of siderophores by heterotrophic bacteria and some cyanobacteria constitutes the bulk of organic ligands binding iron in the ocean because stability constants of siderophores and these organic ligands are similar, and because ligand concentrations rise sharply in response to iron fertilization events, direct evidence for this proposal is lacking. This lack is due to the difficulty in characterizing these ligands due both to their extremely low concentrations and their highly heterogeneous nature. The situation for characterizing photoactive siderophores in situ is more problematic because of their expected short lifetimes in the photic zone. An alternative approach is to make use of high sensitivity molecular technology (qPCR) to search for siderophore biosynthesis genes related to the production of photoactive siderophores. In this way one can access their "biochemical potential" and utilize this information as a proxy for the presence of these siderophores in the marine environment. Here we show, using qPCR primers designed to detect biosynthetic genes for the siderophores vibrioferrin, petrobactin and aerobactin that such genes are widespread and based on their abundance, the "biochemical potential" for photoactive siderophore production is significant. Concurrently we also briefly examine the microbial biodiversity responsible for such production as a function of depth and location across a North Atlantic transect.

  6. Synthesis of Tungsten Nitrene Complexes as Precursors for Tungsten Nitride

    DTIC Science & Technology

    1994-06-16

    AND DATES COVERED 6/16/94 IFinal Report 5/1/91 - 4/30/94 - ... 5. FUNDING NUMBERS Synthesis of Tungsten Nitrene Complexes as Precursors for Tungsten...deposition using organometallic precursors (MOCVD) provides a method for the preparation of thin films. Low valent tungsten nitrene complexes were...involved the tungsten(IV) imido (or nitrene ) complexes (CO)2I2LWwNPh, which were prepared by oxidation of the zwitterionic species (CO)5WNPhNPhC(OMe)Ph with

  7. Selective formation of tungsten nanowires

    PubMed Central

    2011-01-01

    We report on a process for fabricating self-aligned tungsten (W) nanowires with polycrystalline silicon core. Tungsten nanowires as thin as 10 nm were formed by utilizing polysilicon sidewall transfer technology followed by selective deposition of tungsten by chemical vapor deposition (CVD) using WF6 as the precursor. With selective CVD, the process is self-limiting whereby the tungsten formation is confined to the polysilicon regions; hence, the nanowires are formed without the need for lithography or for additional processing. The fabricated tungsten nanowires were observed to be perfectly aligned, showing 100% selectivity to polysilicon and can be made to be electrically isolated from one another. The electrical conductivity of the nanowires was characterized to determine the effect of its physical dimensions. The conductivity for the tungsten nanowires were found to be 40% higher when compared to doped polysilicon nanowires of similar dimensions. PMID:21970543

  8. Selective formation of tungsten nanowires.

    PubMed

    Bien, Daniel Cs; Saman, Rahimah Mohd; Badaruddin, Siti Aishah Mohamad; Lee, Hing Wah

    2011-10-04

    We report on a process for fabricating self-aligned tungsten (W) nanowires with polycrystalline silicon core. Tungsten nanowires as thin as 10 nm were formed by utilizing polysilicon sidewall transfer technology followed by selective deposition of tungsten by chemical vapor deposition (CVD) using WF6 as the precursor. With selective CVD, the process is self-limiting whereby the tungsten formation is confined to the polysilicon regions; hence, the nanowires are formed without the need for lithography or for additional processing. The fabricated tungsten nanowires were observed to be perfectly aligned, showing 100% selectivity to polysilicon and can be made to be electrically isolated from one another. The electrical conductivity of the nanowires was characterized to determine the effect of its physical dimensions. The conductivity for the tungsten nanowires were found to be 40% higher when compared to doped polysilicon nanowires of similar dimensions.

  9. Optical anisotropy of tungsten-doped ReS2 layered crystals

    NASA Astrophysics Data System (ADS)

    Hsu, H. P.; Lin, K. H.; Huang, Y. S.

    2016-12-01

    The optical anisotropy of tungsten-doped rhenium disulfide (ReS2:W) layered crystals have been studied by polarization and temperature dependent piezoreflectance (PzR) spectroscopy from 25 to 300 K. The direct band edge excitonic transitions E1ex feature at E∥b polarization and E2ex feature at E⊥b polarization of tungsten-doped ReS2 layered crystals were determined from a detailed line-shape fit of the PzR spectra. The PzR spectra reveal a slightly blue shifted of excitonic transition with the tungsten incorporation. The angular dependence of the excitonic feature amplitudes agrees with Malus' rule. The parameters that describe the temperature variation of the energies and broadening function of the excitonic transitions are determined and discussed.

  10. Titania-lanthanum phosphate photoactive and hydrophobic new generation catalyst

    SciTech Connect

    Jyothi, Chembolli K.; Jaimy, Kanakkanmavudi B.; Ghosh, Swapankumar; Sankar, Sasidharan; Smitha, V.S.; Warrier, K.G.K.

    2011-07-15

    Titania-lanthanum phosphate nanocomposites with multifunctional properties have been synthesized by aqueous sol-gel method. The precursor sols with varying TiO{sub 2}:LaPO{sub 4} ratios were applied as thin coating on glass substrates in order to be transparent, hydrophobic, photocatalytically active coatings. The phase compositions of the composite powders were identified by powder X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). The anatase phase of TiO{sub 2} in TiO{sub 2}-LaPO{sub 4} composite precursors was found to be stable even on annealing at 800 deg. C. The glass substrates, coated with TL1 (TiO{sub 2}-LaPO{sub 4} composition with 1 mol% LaPO{sub 4}) and TL50 (composite precursor containing TiO{sub 2} and LaPO{sub 4} with molar ratio 1:1) sols and annealed at 400 deg. C, produced contact angles of 74 deg. and 92 deg., respectively, though it is only 62 deg. for pure TiO{sub 2} coating. The glass substrates, coated with TL50 sol, produced surfaces with relatively high roughness and uneven morphology. The TL1 material, annealed at 800 deg. C, has shown the highest UV photoactivity with an apparent rate constant, k{sub app}=24x10{sup -3} min{sup -1}, which is over five times higher than that observed with standard Hombikat UV 100 (k{sub app}=4x10{sup -3} min{sup -1}). The photoactivity combined with a moderate contact angle (85.3 deg.) shows that this material has a promise as an efficient self-cleaning precursor. - Graphical abstract: Multifunctional TiO{sub 2}-LaPO{sub 4} composite stabilizes anatase phase with enhanced photocatalytic activity, and moderately higher hydrophobicity is a promising material for self-cleaning application. Highlights: > Titania-lanthanum phosphate nanocomposites were synthesized by aqueous sol-gel method. > Transparent, hydrophobic, photoactive coatings were developed on glass substrates. > The glass substrates, coated with TL1 annealed at 400 deg. C, produced a contact angle of 74 deg

  11. Helium bubble bursting in tungsten

    SciTech Connect

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-12-28

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  12. Tungsten trioxide as a visible light photocatalyst for volatile organic carbon removal.

    PubMed

    Wicaksana, Yossy; Liu, Sanly; Scott, Jason; Amal, Rose

    2014-10-31

    Tungsten trioxide (WO3) has been demonstrated to possess visible light photoactivity and presents a means of overcoming the UV-light dependence of photocatalysts, such as titanium dioxide. In this study, WO3 nanostructures have been synthesised by a hydrothermal method using sodium tungstate (Na2WO4·2H2O), sulphate precursors and pH as structure-directing agents and parameters, respectively. By altering the concentration of the sulphate precursors and pH, it was shown that different morphologies and phases of WO3 can be achieved. The effect of the morphology of the final WO3 product on the visible light photoactivity of ethylene degradation in the gas phase was investigated. In addition, platinum (Pt) was photodeposited on the WO3 structures with various morphologies to enhance the photocatalytic properties. It was found that the photocatalytic properties of the WO3 samples greatly depend on their morphology, chemical composition and surface modification. WO3 with a cuboid morphology exhibited the highest visible light photoactivity compared to other morphologies, while adding Pt to the surface improved the performance of certain WO3 structures.

  13. Mineral resource of the month: tungsten

    USGS Publications Warehouse

    Shedd, Kim B.

    2012-01-01

    The article offers information on tungsten. It says that tungsten is a metal found in chemical compounds such as in the scheelite and ore minerals wolframite. It states that tungsten has the highest melting point and it forms a compound as hard as diamond when combined with carbon. It states that tungsten can be used as a substitute for lead in fishing weights, ammunition, and hunting shot. Moreover, China started to export tungsten materials and products instead of tungsten raw materials.

  14. Photocatalytic activity of tungsten-doped TiO2 with hydrothermal treatment under blue light irradiation.

    PubMed

    Putta, Thapanan; Lu, Ming-Chun; Anotai, Jin

    2011-09-01

    Tungsten doping and hydrothermal treatment were found to significantly improve the visible-light photoactivity of TiO(2) synthesized by the sol-gel method. It was observed that TiO(2) doped with a 0.5% W:Ti mole ratio and treated with 4 h of hydrothermal curing showed photoactivity under blue light irradiation equal to 74% of the commercial Degussa P-25 under UV irradiation, i.e., 0.01 mM 2-chlorophenol was completely removed in 120 and 90 min, respectively. Light absorptivity and photocatalytic activity under blue light irradiation were not dependent on the crystallite structure of the TiO(2). The oxidation kinetics under blue light irradiation can be effectively explained by the Langmuir-Hinshelwood model with an apparent reaction rate constant and a Langmuir constant of 3.60 × 10(-4) mM min(-1) and 206.53 mM(-1), respectively.

  15. Thiol/disulfide homeostasis in asphalt workers.

    PubMed

    Yilmaz, Ömer Hınç; Bal, Ceylan; Neşelioglu, Salim; Büyükşekerci, Murat; Gündüzöz, Meşide; Eren, Funda; Tutkun, Lutfiye; Yilmaz, Fatma Meric

    2016-09-02

    The aim of this study was to investigate thiol/disulfide homeostasis in asphalt workers who are exposed to polycyclic aromatic hydrocarbons occupationally. The study was carried out in 34 nonsmoker asphalt workers. Additionally, 35 healthy nonsmoker volunteers were recruited as control group. Thiol and disulfide concentrations were determined using the novel automated measurement method. Levels of urinary 1-OH-pyrene were analyzed by liquid chromatography. Disulfide/thiol ratio was significantly higher in exposed group (p = .034). Also, a positive correlation was detected between disulfide/thiol ratio and 1-OH-pyrene values (r = .249, p = .036). Thiol/disulfide homeostasis was found to be disturbed in asphalt workers. The novel test used in this study may be useful for evaluating the oxidative status in polycyclic aromatic hydrocarbon (PAH) exposure.

  16. Synthesis of Tungsten Nitrene Complexes as Precursors to Tungsten Nitride.

    DTIC Science & Technology

    1995-01-17

    Chemical vapor deposition using organometallic precursors (MOCVD) provides a method for the preparation of thin films. Low valent tungsten nitrene ...Later synthetic work involved the tungsten(IV) imido (or nitrene ) complexes (CO) 2I2LW equivalent NPh, which were prepared by oxidation of the

  17. Preparation of tungsten oxide

    DOEpatents

    Bulian, Christopher J.; Dye, Robert C.; Son, Steven F.; Jorgensen, Betty S.; Perry, W. Lee

    2009-09-22

    Tungsten trioxide hydrate (WO.sub.3.H.sub.2O) was prepared from a precursor solution of ammonium paratungstate in concentrated aqueous hydrochloric acid. The precursor solution was rapidly added to water, resulting in the crash precipitation of a yellow white powder identified as WO.sub.3.H.sub.2O nanosized platelets by x-ray diffraction and scanning electron microscopy. Annealing of the powder at 200.degree. C. provided cubic phase WO.sub.3 nanopowder, and at 400.degree. C. provided WO.sub.3 nanopowder as a mixture of monoclinic and orthorhombic phases.

  18. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  19. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    PubMed

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia (BPH) over 20 years. Recently, application of high laser power up to 200 W was often reported to swiftly remove a large amount of prostatic tissue. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue vaporization with low laser power. Chicken breast tissue was selected as a target tissue due to minimal optical absorption at the visible wavelength. Four biocompatible photoactive dyes, including amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532 nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm(2) . Light absorbance and ablation threshold were measured with UV-Vis spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with radiant exposure, dye concentration, and number of injection. Among the dyes, AR created the highest ablation rate of 44.2 ± 0.2 µm/pulse due to higher absorbance and lower ablation threshold. High aspect ratios up to 7.1 ± 0.4 entailed saturation behavior in the tissue ablation injected with AR and BD, possibly resulting from plume shielding and increased scattering due to coagulation. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33% reduced laser power with almost equivalent performance. Due to

  20. A photoactive bimetallic framework for direct aminoformylation of nitroarenes

    EPA Pesticide Factsheets

    A bimetallic catalyst, AgPd@g-C3N4, synthesized by reducing silver and palladium salts over graphitic carbon nitride (g-C3N4), enables the concerted reductive formylation of aromatic nitro compounds under photo-chemical conditions using formic acid, which serves the dual role of a hydrogen source and a formylating agent.This dataset is associated with the following publication:Baig, R.B.N., S. Verma, M. Nadagouda , and R. Varma. A photoactive bimetallic framework for direct aminoformylation of nitroarenes. GREEN CHEMISTRY. Royal Society of Chemistry, Cambridge, UK, 18(4): 1019-1022, (2016).

  1. Photo Control of Protein Function Using Photoactive Yellow Protein.

    PubMed

    Reis, Jakeb M; Woolley, G Andrew

    2016-01-01

    Photoswitchable proteins are becoming increasingly common tools for manipulating cellular processes with high spatial and temporal precision. Photoactive yellow protein (PYP) is a small, water-soluble protein that undergoes a blue light induced change in conformation. It can serve as a scaffold for designing new tools to manipulate biological processes, but with respect to other protein scaffolds it presents some technical challenges. Here, we present practical information on how to overcome these, including how to synthesize the PYP chromophore, how to express and purify PYP, and how to screen for desired activity.

  2. Disulfide bonding patterns and protein topologies.

    PubMed Central

    Benham, C. J.; Jafri, M. S.

    1993-01-01

    This paper examines the topological properties of protein disulfide bonding patterns. First, a description of these patterns in terms of partially directed graphs is developed. The topologically distinct disulfide bonding patterns available to a polypeptide chain containing n disulfide bonds are enumerated, and their symmetry and reducibility properties are examined. The theoretical probabilities are calculated that a randomly chosen pattern of n bonds will have any combination of symmetry and reducibility properties, given that all patterns have equal probability of being chosen. Next, the National Biomedical Research Foundation protein sequence and Brookhaven National Laboratories protein structure (PDB) databases are examined, and the occurrences of disulfide bonding patterns in them are determined. The frequencies of symmetric and/or reducible patterns are found to exceed theoretical predictions based on equiprobable pattern selection. Kauzmann's model, in which disulfide bonds form during random encounters as the chain assumes random coil conformations, finds that bonds are more likely to form with near neighbor cysteines than with remote cysteines. The observed frequencies of occurrence of disulfide patterns are found here to be virtually uncorrelated with the predictions of this alternative random bonding model. These results strongly suggest that disulfide bond pattern formation is not the result of random factors, but instead is a directed process. Finally, the PDB structure database is examined to determine the extrinsic topologies of polypeptides containing disulfide bonds. A complete survey of all structures in the database found no instances in which two loops formed by disulfide bonds within the same polypeptide chain are topologically linked. Similarly, no instances are found in which two loops present on different polypeptide chains in a structure are catenated. Further, no examples of topologically knotted loops occur. In contrast, pseudolinking

  3. Selective oxidation of alcohols using photoactive VO@g-C3N4.

    EPA Science Inventory

    A photoactive VO@g-C3N4 catalyst has been developed for the selective oxidation of alcohols to the corresponding aldehydes and ketones. The visible light mediated activity of the catalyst could be attributed to photoactive graphitic carbon nitrides surface.

  4. Selective oxidation of alcohols using photoactive VO@g-C3N4.

    EPA Science Inventory

    A photoactive VO@g-C3N4 catalyst has been developed for the selective oxidation of alcohols to the corresponding aldehydes and ketones. The visible light mediated activity of the catalyst could be attributed to photoactive graphitic carbon nitrides surface.

  5. 49 CFR 173.338 - Tungsten hexafluoride.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tungsten hexafluoride. 173.338 Section 173.338... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.338 Tungsten hexafluoride. (a) Tungsten... expansion test, must be condemned if removed from tungsten hexafluoride service....

  6. 49 CFR 173.338 - Tungsten hexafluoride.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Tungsten hexafluoride. 173.338 Section 173.338... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.338 Tungsten hexafluoride. (a) Tungsten... expansion test, must be condemned if removed from tungsten hexafluoride service....

  7. 49 CFR 173.338 - Tungsten hexafluoride.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tungsten hexafluoride. 173.338 Section 173.338... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.338 Tungsten hexafluoride. (a) Tungsten... expansion test, must be condemned if removed from tungsten hexafluoride service. [ 74 FR 16143, Apr. 9,...

  8. 49 CFR 173.338 - Tungsten hexafluoride.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Tungsten hexafluoride. 173.338 Section 173.338... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.338 Tungsten hexafluoride. (a) Tungsten... expansion test, must be condemned if removed from tungsten hexafluoride service....

  9. High strength uranium-tungsten alloy process

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  10. 49 CFR 173.338 - Tungsten hexafluoride.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Tungsten hexafluoride. 173.338 Section 173.338... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.338 Tungsten hexafluoride. (a) Tungsten... expansion test, must be condemned if removed from tungsten hexafluoride service....

  11. High strength uranium-tungsten alloys

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  12. Synthesis of Nanostructured Tungsten and Tungsten - Phases

    NASA Astrophysics Data System (ADS)

    Angastiniotis, Nicos Costa

    Reductive decomposition of spray dried ammonium metatungstate gives rise to nanocrystalline alpha -W (bcc structure) or nanocrystalline beta -W (A15 structure), depending on the specifics of the processing conditions. By controlling the reaction rate of the high surface area alpha-W and beta -W phases with oxygen at low temperatures ( <=300^circC) it is possible to transform both phases to an amorphous tungsten oxide. Furthermore, reduction of the amorphous oxide in hydrogen at <=400 ^circC yields gamma -W (amorphous structure), in which all or nearly all of the oxygen atoms are removed. The high surface area alpha -W and beta-W phases show striking differences in susceptibility to gas-solid reactions. Reaction of beta-W with ammonia at low temperatures (100^circ-300^ circC) results in the formation of an intermediate amorphous delta-WN_ {rm x} phase, which decomposes at higher temperatures (>=650 ^circC) into nanocrystalline rm W_2N_{x} phase. On the other hand, if nitridation is initiated at room temperature and continues as the temperature gradually increases to 300^circC, another amorphous phase (gamma-WN_{ rm x}) is formed. A similar behavior occurs when beta -W is reacted with carbon monoxide at low temperatures, starting at room temperature and continuing as the temperature gradually increases to 300^circC. The resulting amorphous phase delta- rm WC_{x}O_{y } is exceptionally stable. Only upon heating to 800^circC in carbon monoxide does it decompose to rm WC_{x }.. The unusual chemical activity of high surface area beta-W led to speculation concerning its susceptibility to solid-solid reactions, in addition to the gas-solid reactions noted above. Tests on the W -Cu system, in which both elements are mutually insoluble in the solid state, clearly showed that Cu can be diffused into beta-W to form a metastable solid solution. Some diffusional disordering evidently occurs because of the disappearance of the high order peaks of beta-W. However, the disordering

  13. Photoactive High Explosives: Substituents Effects on Tetrazine Photochemistry and Photophysics

    SciTech Connect

    McGrane, Shawn David; Bolme, Cynthia Anne; Greenfield, Margo Torello; Chavez, David E.; Hanson, Susan Kloek; Scharff, Robert Jason

    2016-01-21

    High explosives that are photoactive, i.e., can be initiated with light, offer significant advantages in reduced potential for accidental electrical initiation. In this study, we examined a series of structurally related tetrazine based photoactive high explosive materials to detail their photochemical and photophysical properties. Using photobleaching infrared absorption, we determined quantum yields of photochemistry for nanosecond pulsed excitation at 355 and 532 nm. Changes in mass spectrometry during laser irradiation in vacuum measured the evolution of gaseous products. Fluorescence spectra, quantum yields, and lifetimes were measured to observe radiative channels of energy decay that compete with photochemistry. For the 6 materials studied, quantum yields of photochemistry ranged from <10–5 to 0.03 and quantum yield of fluorescence ranged from <10–3 to 0.33. In all cases, the photoexcitation nonradiatively relaxed primarily to heat, appropriate for supporting photothermal initiation processes. Lastly, the photochemistry observed was dominated by ring scission of the tetrazine, but there was evidence of more extensive multistep reactions as well.

  14. Photoactive High Explosives: Substituents Effects on Tetrazine Photochemistry and Photophysics

    DOE PAGES

    McGrane, Shawn David; Bolme, Cynthia Anne; Greenfield, Margo Torello; ...

    2016-01-21

    High explosives that are photoactive, i.e., can be initiated with light, offer significant advantages in reduced potential for accidental electrical initiation. In this study, we examined a series of structurally related tetrazine based photoactive high explosive materials to detail their photochemical and photophysical properties. Using photobleaching infrared absorption, we determined quantum yields of photochemistry for nanosecond pulsed excitation at 355 and 532 nm. Changes in mass spectrometry during laser irradiation in vacuum measured the evolution of gaseous products. Fluorescence spectra, quantum yields, and lifetimes were measured to observe radiative channels of energy decay that compete with photochemistry. For the 6more » materials studied, quantum yields of photochemistry ranged from <10–5 to 0.03 and quantum yield of fluorescence ranged from <10–3 to 0.33. In all cases, the photoexcitation nonradiatively relaxed primarily to heat, appropriate for supporting photothermal initiation processes. Lastly, the photochemistry observed was dominated by ring scission of the tetrazine, but there was evidence of more extensive multistep reactions as well.« less

  15. Infection Mitigation Efficacy of Photoactive Titania on Orthopedic Implant Materials

    PubMed Central

    Azad, Abdul-Majeed; Hershey, Ryan; Aboelzahab, Asem; Goel, Vijay

    2011-01-01

    In order to impede infection and achieve accelerated wound healing in the postorthopaedic surgery patients, a simple and benign procedure for creating nanotubular or nanofibrillar structure of photoactive TiO2 on the surface of Ti plates and wires is described. The nanoscale TiO2 films on titanium were grown by hydrothermal processing in one case and by anodization in the presence of dilute mineral acids under mild and benign conditions in the other. Confocal microscopy results demonstrated at least 50% reduction in the population of E. coli colonies (concentration 2.15 × 107 cells/mL) on TiO2-coated implants upon an IR exposure of up to 30 s; it required ∼20 min of exposure to UV beam for the same effect. These findings suggest the probability of eliminating wound infection during and after orthopedic surgical procedures by brief illumination of photoactive titania films on the implants with an IR beam. PMID:21994891

  16. Structure and photoactivity of titania derived from nanotubes and nanofibers.

    PubMed

    Inagaki, Michio; Kondo, Naho; Nonaka, Rie; Ito, Eiki; Toyoda, Masahiro; Sogabe, Kazuo; Tsumura, Tomoki

    2009-01-30

    Photoactivity under UV irradiation for the decomposition of methylene blue in water and for the oxidation of NO gas was studied on titania powders derived from titanate nanotube (TNT) and nanofiber (TNF) by annealing at high temperatures, comparing with granular titania (ST-01). Rate constant for methylene blue decomposition k(MB) increased with increasing annealing temperature above 300 degrees C after the conversion from titanate to tinania. It tended to decrease above 700 degrees C, mainly due to the phase transformation from anatase to rutile. The dependences of k(MB) on full width at half maximum intensity (FWHM) were common for three samples, a sharp maximum at around 0.4 degrees in FWHM, but TNF-derived sample gave much higher maximum than ST-01. Change in fraction of oxidized NO with annealing temperature showed a plateau at around 50% and then decreased abruptly by high temperature annealing. Starting from TNT and TNF has an advantage to form fine particles by annealing above 300 degrees C, giving high photoactivity due to high crystallinity and high adsorptivity particularly for methylene blue.

  17. High-Throughput Preparation of New Photoactive Nanocomposites.

    PubMed

    Conterosito, Eleonora; Benesperi, Iacopo; Toson, Valentina; Saccone, Davide; Barbero, Nadia; Palin, Luca; Barolo, Claudia; Gianotti, Valentina; Milanesio, Marco

    2016-06-08

    New low-cost photoactive hybrid materials based on organic luminescent molecules inserted into hydrotalcite (layered double hydroxides; LDH) were produced, which exploit the high-throughput liquid-assisted grinding (LAG) method. These materials are conceived for applications in dye-sensitized solar cells (DSSCs) as a co-absorbers and in silicon photovoltaic (PV) panels to improve their efficiency as they are able to emit where PV modules show the maximum efficiency. A molecule that shows a large Stokes' shift was designed, synthesized, and intercalated into LDH. Two dyes already used in DSSCs were also intercalated to produce two new nanocomposites. LDH intercalation allows the stability of organic dyes to be improved and their direct use in polymer melt blending. The prepared nanocomposites absorb sunlight from UV to visible and emit from blue to near-IR and thus can be exploited for light-energy management. Finally one nanocomposite was dispersed by melt blending into a poly(methyl methacrylate)-block-poly(n-butyl acrylate) copolymer to obtain a photoactive film. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. METHOD OF MAKING TUNGSTEN FILAMENTS

    DOEpatents

    Frazer, J.W.

    1962-12-18

    A method of making tungsten filaments is described in which the tungsten is completely free of isotope impurities in the range of masses 234 to 245 for use in mass spectrometers. The filament comprises a tantalum core generally less than 1 mil in diameter having a coating of potassium-free tantalum-diffused tungsten molecularly bonded thereto. In the preferred process of manufacture a short, thin tantalum filament is first mounted between terminal posts mounted in insulated relation through a backing plate. The tungsten is most conveniently vapor plated onto the tantalum by a tungsten carbonyl vapor decomposition method having a critical step because of the tendency of the tantalum to volatilize at the temperature of operntion of the filament. The preferred recipe comprises volatilizing tantalum by resistance henting until the current drops by about 40%, cutting the voltage back to build up the tungsten, and then gradually building the temperature back up to balance the rate of tungsten deposition with the rate of tantalum volatilization. (AEC)

  19. Transfer of molybdenum disulfide to various metals

    NASA Technical Reports Server (NTRS)

    Barton, G. C.; Pepper, S. V.

    1977-01-01

    Sliding friction experiments were conducted with molybdenum disulfide single crystals in contact with sputter cleaned surfaces of copper, nickel, gold, and 304 stainless steel. Transfer of the molybdenum disulfide to the metals was monitored with Auger electron spectroscopy. Results of the investigation indicate molybdenum disulfide transfers to all clean metal surfaces after a single pass over the metal surface with film thickness observed to increase with repeated passes over the same surfaces. Large particle transfer occurs when the orientation of the crystallites is other than basal. This is frequently accompanied by abrasion of the metal. Adhesion of molybdenum disulfide films occurred readily to copper and nickel, less readily to 304 stainless steel, and even less effectively to the gold, which indicates a chemical effect.

  20. Soft Computing Methods for Disulfide Connectivity Prediction

    PubMed Central

    Márquez-Chamorro, Alfonso E.; Aguilar-Ruiz, Jesús S.

    2015-01-01

    The problem of protein structure prediction (PSP) is one of the main challenges in structural bioinformatics. To tackle this problem, PSP can be divided into several subproblems. One of these subproblems is the prediction of disulfide bonds. The disulfide connectivity prediction problem consists in identifying which nonadjacent cysteines would be cross-linked from all possible candidates. Determining the disulfide bond connectivity between the cysteines of a protein is desirable as a previous step of the 3D PSP, as the protein conformational search space is highly reduced. The most representative soft computing approaches for the disulfide bonds connectivity prediction problem of the last decade are summarized in this paper. Certain aspects, such as the different methodologies based on soft computing approaches (artificial neural network or support vector machine) or features of the algorithms, are used for the classification of these methods. PMID:26523116

  1. Atomically Thin-Layered Molybdenum Disulfide (MoS2) for Bulk-Heterojunction Solar Cells.

    PubMed

    Singh, Eric; Kim, Ki Seok; Yeom, Geun Young; Nalwa, Hari Singh

    2017-02-01

    Transition metal dichalcogenides (TMDs) are becoming significant because of their interesting semiconducting and photonic properties. In particular, TMDs such as molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2), tungsten disulfide (WS2), tungsten diselenide (WSe2), titanium disulfide (TiS2), tantalum sulfide (TaS2), and niobium selenide (NbSe2) are increasingly attracting attention for their applications in solar cell devices. In this review, we give a brief introduction to TMDs with a focus on MoS2; and thereafter, emphasize the role of atomically thin MoS2 layers in fabricating solar cell devices, including bulk-heterojunction, organic, and perovskites-based solar cells. Layered MoS2 has been used as the hole-transport layer (HTL), electron-transport layer (ETL), interfacial layer, and protective layer in fabricating heterojunction solar cells. The trilayer graphene/MoS2/n-Si solar cell devices exhibit a power-conversion efficiency of 11.1%. The effects of plasma and chemical doping on the photovoltaic performance of MoS2 solar cells have been analyzed. After doping and electrical gating, a power-conversion efficiency (PCE) of 9.03% has been observed for the MoS2/h-BN/GaAs heterostructure solar cells. The MoS2-containing perovskites-based solar cells show a PCE as high as 13.3%. The PCE of MoS2-based organic solar cells exceeds 8.40%. The stability of MoS2 solar cells measured under ambient conditions and light illumination has been discussed. The MoS2-based materials show a great potential for solar cell devices along with high PCE; however, in this connection, their long-term environmental stability is also of equal importance for commercial applications.

  2. RECOVERY OF URANIUM FROM TUNGSTEN

    DOEpatents

    Newnam, K.

    1959-02-01

    A method is presented for the rccovery of uranium which has adhered to tungsten parts in electromagnetic isotope separation apparatus. Such a tungsten article is dissolved electrolytically in 20% NaOH by using the tungsten article as the anode. The resulting solution, containing soluble sodium lungstate and an insoluble slime, is then filtered. The slime residue is ignited successively with sodium nitrate and sodium pyrosulfate and leashed, and the resulting filtrates are combined with the original filtrate. Uranium is then recovered from the combined flltrates by diuranate precipitation.

  3. Identification of Allosteric Disulfides from Prestress Analysis

    PubMed Central

    Zhou, Beifei; Baldus, Ilona B.; Li, Wenjin; Edwards, Scott A.; Gräter, Frauke

    2014-01-01

    Disulfide bonds serve to form physical cross-links between residues in protein structures, thereby stabilizing the protein fold. Apart from this purely structural role, they can also be chemically active, participating in redox reactions, and they may even potentially act as allosteric switches controlling protein functions. Specific types of disulfide bonds have been identified in static protein structures from their distinctive pattern of dihedral bond angles, and the allosteric function of such bonds is purported to be related to the torsional strain they store. Using all-atom molecular-dynamics simulations for ∼700 disulfide bonded proteins, we analyzed the intramolecular mechanical forces in 20 classes of disulfide bonds. We found that two particular classes, the −RHStaple and the −/+RHHook disulfides, are indeed more stressed than other disulfide bonds, but the stress is carried primarily by stretching of the S-S bond and bending of the neighboring bond angles, rather than by dihedral torsion. This stress corresponds to a tension force of magnitude ∼200 pN, which is balanced by repulsive van der Waals interactions between the cysteine Cα atoms. We confirm stretching of the S-S bond to be a general feature of the −RHStaples and the −/+RHHooks by analyzing ∼20,000 static protein structures. Given that forced stretching of S-S bonds is known to accelerate their cleavage, we propose that prestress of allosteric disulfide bonds has the potential to alter the reactivity of a disulfide, thereby allowing us to readily switch between functional states. PMID:25099806

  4. Viscoelastic Properties of Some Alkyl Disulfide Copolymers

    DTIC Science & Technology

    1963-12-01

    disulfide polymer in this paper. Polymer sheets were prepared by molding the rubber crumb in a hydraulic press. Ten second torsion modulus...DISULFIDE COPOLYMERS by ¥. J. MacKnight, M. Takahashi and A. V. Tobolsky Introduction Polysulfide polymers were the first synthetic rubbers produced in...Gaylord, ed., Interscience, New York, 1962, Chap. XIII, contains many references to the original literature. 2. Gee, G., Trans. Inst. Rubber Ind

  5. Automatic determination of disulfide bridges in proteins.

    PubMed

    Sokolowska, Izabela; Ngounou Wetie, Armand G; Woods, Alisa G; Darie, Costel C

    2012-12-01

    Precise determination of disulfide linkages between cysteine (Cys) residues in proteins is essential in the determination of protein structure. Therefore, a reliable automated method for the identification of disulfide bridges can serve as an important tool in the analysis of the tertiary structure of proteins of interest. Here, we describe the current and past methods used to identify disulfide bridges in proteins, with a focus on mass spectrometry (MS)-based methods and a particular emphasis on nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS)-based methods. We also show the development of an easy method based on the separation of disulfide-linked proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under denaturing and nonreducing conditions and selective in-gel digestion of proteins using reducing and nonreducing conditions, followed by analysis of the resulting peptide mixture by nanoACQUITY UPLC coupled to a quadrupole time-of-flight (QTOF) Micro mass spectrometer (nanoLC-MS/MS). Data-dependent analysis (DDA) nanoLC-MS/MS and information-dependent analysis (IDA) nanoLC-MS/MS were used for random and targeted identification of disulfide-linked peptides. Finally, an example of electrospray-MS (ESI-MS) and ESI-MS/MS-based determination of disulfide-linked peptides is shown.

  6. Thiol/disulfide homeostasis in postmenopausal osteoporosis.

    PubMed

    Korkmaz, V; Kurdoglu, Z; Alisik, M; Turgut, E; Sezgın, O O; Korkmaz, H; Ergun, Y; Erel, O

    2017-04-01

    To evaluate the impact of postmenopausal osteoporosis on thiol/disulfide homeostasis. A total of 75 participants were divided into two groups: Group 1 (n = 40) was composed of healthy postmenopausal women, and group 2 (n = 35) was composed of women with postmenopausal osteoporosis. Clinical findings and thiol/disulfide homeostasis were compared between the two groups. The disulfide/native thiol ratio was 8.6% ± 3.6 in group 1 and 12.7% ± 8.4 in group 2 (p = 0.04). The disulfide/native thiol percent ratio was significantly higher in group 2 after adjustment for the years since menopause and age (p < 0.05). The native thiol/total thiol percent ratio was 85.6% ± 4.8 in group 1 and 73.8% ± 24.9 in group 2 (p = 0.01). The native thiol/total thiol percent ratio was significantly lower in group 2 after adjustment for the years since menopause and age (p < 0.05). Thiol/disulfide homeostasis shifted to the disulfide side independent of age and years since menopause in postmenopausal osteoporosis.

  7. Tungsten resources of Brazil

    USGS Publications Warehouse

    White, Max Gregg

    1974-01-01

    Brazilian tungsten production, 85 percent of which is exported, comes almost entirely from scheelite-bearing tactites in northeast Brazil, and has reached an annual rate of about 2,000 metric tons (2,200 short tons) of scheelite concentrate with 70 percent WO3. Scheelite ore reserves, located principally in the State of Rio Grande do Norte, are estimated to be as high as 8,300,000 tons (9,100,000 short tons) containing 0.7 percent WO3. Minor deposits (or those about which only minimal information is available) of wolframite, with which some cassiterite is associated, are located in Sao Paulo, Santa Catarina, and Rio Grande do Sul. Both the scheelite and the wolframite deposits are considered . to be late Precambrian A (620 to 900 m.y.) or early Cambrian in age.

  8. Tungsten Toxicity in Plants

    PubMed Central

    Adamakis, Ioannis-Dimosthenis S.; Panteris, Emmanuel; Eleftheriou, Eleftherios P.

    2012-01-01

    Tungsten (W) is a rare heavy metal, widely used in a range of industrial, military and household applications due to its unique physical properties. These activities inevitably have accounted for local W accumulation at high concentrations, raising concerns about its effects for living organisms. In plants, W has primarily been used as an inhibitor of the molybdoenzymes, since it antagonizes molybdenum (Mo) for the Mo-cofactor (MoCo) of these enzymes. However, recent advances indicate that, beyond Mo-enzyme inhibition, W has toxic attributes similar with those of other heavy metals. These include hindering of seedling growth, reduction of root and shoot biomass, ultrastructural malformations of cell components, aberration of cell cycle, disruption of the cytoskeleton and deregulation of gene expression related with programmed cell death (PCD). In this article, the recent available information on W toxicity in plants and plant cells is reviewed, and the knowledge gaps and the most pertinent research directions are outlined. PMID:27137642

  9. Heated die facilitates tungsten forming

    NASA Technical Reports Server (NTRS)

    Chattin, J. H.; Haystrick, J. E.; Laughlin, J. C.; Leidy, R. A.

    1966-01-01

    Tungsten forming in a press brake employs a bottom die assembly with a heating manifold between two water-cooled die sections. The manifold has hydrogen-oxygen burners spaced along its length for even heat during forming.

  10. Effects of tungsten on environmental systems.

    PubMed

    Strigul, Nikolay; Koutsospyros, Agamemnon; Arienti, Per; Christodoulatos, Christos; Dermatas, Dimitris; Braida, Washington

    2005-10-01

    Tungsten is a metal with many industrial and military applications, including manufacturing of commercial and military ammunition. Despite its widespread use, the potential environmental effects of tungsten are essentially unknown. This study addresses environmental effects of particulate and soluble forms of tungsten, and to a minor extent certain tungsten alloy components, present in some munitions formulations. Dissolution of tungsten powder significantly acidifies soils. Tungsten powder mixed with soils at rates higher than 1% on a mass basis, trigger changes in soil microbial communities resulting in the death of a substantial portion of the bacterial component and an increase of the fungal biomass. It also induces the death of red worms and plants. These effects appear to be related with the soil acidification occurring during tungsten dissolution. Dissolved tungsten species significantly decrease microbial yields by as much as 38% for a tungsten media concentration of 89 mg l(-1). Soluble tungsten concentrations as low as 10(-5) mg l(-1), cause a decrease in biomass production by 8% which is possibly related to production of stress proteins. Plants and worms take up tungsten ions from soil in significant amounts while an enrichment of tungsten in the plant rhizosphere is observed. These results provide an indication that tungsten compounds may be introduced into the food chain and suggest the possibility of development of phytoremediation-based technologies for the cleanup of tungsten contaminated sites.

  11. Photo-active float for field water disinfection.

    PubMed

    Shwetharani, R; Balakrishna, R Geetha

    2016-03-01

    The present study investigates the antibacterial activity of a photoactive float fabricated with visible light active N-F-TiO2 for the disinfection of field water widely contaminated with Gram positive and Gram negative bacteria like, Salmonella typhimurium (Gram negative), Escherichia coli (Gram negative), Staphylococcus aureus (Gram positive), Bacillus species (Gram positive), and Pseudomonas species (Gram negative). The antibacterial activity can be attributed to the unique properties of the photocatalyst, which releases reactive oxygen species in aqueous solution, under the illumination of sunlight. N-F-TiO2 nanoparticles efficiently photocatalyse the destruction of all the bacteria present in the contaminated water, giving clean water. The inactivation of bacteria is confirmed by a standard plate count method, MDA, RNA and DNA analysis. The purity of water was further validated by SPC indicating nil counts of bacteria after two days of storing and testing. The photocatalysts were characterized by XRD, BET measurement, SEM, EDX, UV-Vis and PL analysis.

  12. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  13. The two photocycles of photoactive yellow protein from Rhodobacter sphaeroides.

    PubMed

    Haker, Andrea; Hendriks, Johnny; van Stokkum, Ivo H M; Heberle, Joachim; Hellingwerf, Klaas J; Crielaard, Wim; Gensch, Thomas

    2003-03-07

    The absorption spectrum of the photoactive yellow protein from Rhodobacter sphaeroides (R-PYP) shows two maxima, absorbing at 360 nm (R-PYP(360)) and 446 nm (R-PYP(446)), respectively. Both forms are photoactive and part of a temperature- and pH-dependent equilibrium (Haker, A., Hendriks, J., Gensch, T., Hellingwerf, K. J., and Crielaard, W. (2000) FEBS Lett. 486, 52-56). At 20 degrees C, for PYP characteristic, the 446-nm absorbance band displays a photocycle, in which the depletion of the 446-nm ground state absorption occurs in at least three phases, with time constants of <30 ns, 0.5 micros, and 17 micros. Intermediates with both blue- and red-shifted absorption maxima are transiently formed, before a blue-shifted intermediate (pB(360), lambda(max) = 360 nm) is established. The photocycle is completed with a monophasic recovery of the ground state with a time constant of 2.5 ms. At 7 degrees C these photocycle transitions are slowed down 2- to 3-fold. Upon excitation of R-PYP(360) with a UV-flash (330 +/- 50 nm) a species with a difference absorption maximum at approximately 435 nm is observed that returns to R-PYP(360) on a minute time scale. Recovery can be accelerated by a blue light flash (450 nm). R-PYP(360) and R-PYP(446) differ in their overall protein conformation, as well as in the isomerization and protonation state of the chromophore, as determined with the fluorescent polarity probe Nile Red and Fourier Transform Infrared spectroscopy, respectively.

  14. Titania-lanthanum phosphate photoactive and hydrophobic new generation catalyst

    NASA Astrophysics Data System (ADS)

    Jyothi, Chembolli K.; Jaimy, Kanakkanmavudi B.; Ghosh, Swapankumar; Sankar, Sasidharan; Smitha, V. S.; Warrier, K. G. K.

    2011-07-01

    Titania-lanthanum phosphate nanocomposites with multifunctional properties have been synthesized by aqueous sol-gel method. The precursor sols with varying TiO 2:LaPO 4 ratios were applied as thin coating on glass substrates in order to be transparent, hydrophobic, photocatalytically active coatings. The phase compositions of the composite powders were identified by powder X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). The anatase phase of TiO 2 in TiO 2-LaPO 4 composite precursors was found to be stable even on annealing at 800 °C. The glass substrates, coated with TL1 (TiO 2-LaPO 4 composition with 1 mol% LaPO 4) and TL50 (composite precursor containing TiO 2 and LaPO 4 with molar ratio 1:1) sols and annealed at 400 °C, produced contact angles of 74° and 92°, respectively, though it is only 62° for pure TiO 2 coating. The glass substrates, coated with TL50 sol, produced surfaces with relatively high roughness and uneven morphology. The TL1 material, annealed at 800 °C, has shown the highest UV photoactivity with an apparent rate constant, kapp=24×10 -3 min -1, which is over five times higher than that observed with standard Hombikat UV 100 ( kapp=4×10 -3 min -1). The photoactivity combined with a moderate contact angle (85.3°) shows that this material has a promise as an efficient self-cleaning precursor.

  15. Selective Oxidation of Alcohols Using Photoactive VO@g??C3N4

    EPA Pesticide Factsheets

    A photoactive VO@g-C3N4 catalyst has been developed for the selective oxidation of alcohols to the corresponding aldehydes and ketones. The visible light mediated activity of the catalyst could be attributed to photoactive graphitic carbon nitrides surface.This dataset is associated with the following publication:Verma, S., R.B. Nasir Baig, M. Nadagouda , and R. Varma. Selective oxidation of alcohols using photoactive VO@g-C3N4.. ACS Sustainable Chemistry & Engineering. American Chemical Society, Washington, DC, USA, 4(3): 1094-1098, (2015).

  16. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.; Davis, John W.

    2000-07-18

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  17. Polarographic determination of tungsten in rocks

    USGS Publications Warehouse

    Reichen, L.E.

    1954-01-01

    This work was undertaken to develop a simpler and faster method than the classical gravimetric procedure for the determination of tungsten in rocks and ores. A new polarographic wave of tungsten is obtained in a supporting electrolyte of dilute hydrochloric acid containing tartrate ion. This permits the determination of tungsten both rapidly and accurately. No precipitation of the tungsten is necessary, and only the iron need be separated from the tungsten. The accuracy is within the limits of a polarographic procedure; comparison of polarographic and gravimetric results is given. The method reduces appreciably the amount of time ordinarily consumed in determination of tungsten.

  18. Global Tungsten Demand and Supply Forecast

    NASA Astrophysics Data System (ADS)

    Dvořáček, Jaroslav; Sousedíková, Radmila; Vrátný, Tomáš; Jureková, Zdenka

    2017-03-01

    An estimate of the world tungsten demand and supply until 2018 has been made. The figures were obtained by extrapolating from past trends of tungsten production from1905, and its demand from 1964. In addition, estimate suggestions of major production and investment companies were taken into account with regard to implementations of new projects for mining of tungsten or possible termination of its standing extraction. It can be assumed that tungsten supply will match demand by 2018. This suggestion is conditioned by successful implementation of new tungsten extraction projects, and full application of tungsten recycling methods.

  19. Cellular disulfide bond formation in bioactive peptides and proteins.

    PubMed

    Patil, Nitin A; Tailhades, Julien; Hughes, Richard Anthony; Separovic, Frances; Wade, John D; Hossain, Mohammed Akhter

    2015-01-14

    Bioactive peptides play important roles in metabolic regulation and modulation and many are used as therapeutics. These peptides often possess disulfide bonds, which are important for their structure, function and stability. A systematic network of enzymes--a disulfide bond generating enzyme, a disulfide bond donor enzyme and a redox cofactor--that function inside the cell dictates the formation and maintenance of disulfide bonds. The main pathways that catalyze disulfide bond formation in peptides and proteins in prokaryotes and eukaryotes are remarkably similar and share several mechanistic features. This review summarizes the formation of disulfide bonds in peptides and proteins by cellular and recombinant machinery.

  20. Cellular Disulfide Bond Formation in Bioactive Peptides and Proteins

    PubMed Central

    Patil, Nitin A.; Tailhades, Julien; Hughes, Richard Anthony; Separovic, Frances; Wade, John D.; Hossain, Mohammed Akhter

    2015-01-01

    Bioactive peptides play important roles in metabolic regulation and modulation and many are used as therapeutics. These peptides often possess disulfide bonds, which are important for their structure, function and stability. A systematic network of enzymes—a disulfide bond generating enzyme, a disulfide bond donor enzyme and a redox cofactor—that function inside the cell dictates the formation and maintenance of disulfide bonds. The main pathways that catalyze disulfide bond formation in peptides and proteins in prokaryotes and eukaryotes are remarkably similar and share several mechanistic features. This review summarizes the formation of disulfide bonds in peptides and proteins by cellular and recombinant machinery. PMID:25594871

  1. Tungsten diffusion in silicon

    SciTech Connect

    De Luca, A.; Texier, M.; Burle, N.; Oison, V.; Pichaud, B.; Portavoce, A.; Grosjean, C.

    2014-01-07

    Two doses (10{sup 13} and 10{sup 15} cm{sup −2}) of tungsten (W) atoms were implanted in different Si(001) wafers in order to study W diffusion in Si. The samples were annealed or oxidized at temperatures between 776 and 960 °C. The diffusion profiles were measured by secondary ion mass spectrometry, and defect formation was studied by transmission electron microscopy and atom probe tomography. W is shown to reduce Si recrystallization after implantation and to exhibit, in the temperature range investigated, a solubility limit close to 0.15%–0.2%, which is higher than the solubility limit of usual metallic impurities in Si. W diffusion exhibits unusual linear diffusion profiles with a maximum concentration always located at the Si surface, slower kinetics than other metals in Si, and promotes vacancy accumulation close to the Si surface, with the formation of hollow cavities in the case of the higher W dose. In addition, Si self-interstitial injection during oxidation is shown to promote W-Si clustering. Taking into account these observations, a diffusion model based on the simultaneous diffusion of interstitial W atoms and W-Si atomic pairs is proposed since usual models used to model diffusion of metallic impurities and dopants in Si cannot reproduce experimental observations.

  2. Solvothermal synthesis of nickel-tungsten sulfides for 2-propanol dehydration.

    PubMed

    Gómez-Gutiérrez, Claudia M; Luque, P A; Guerra-Rivas, G; López-Sánchez, J A; Armenta, M A; Quintana, J M; Olivas, A

    2015-01-01

    The bimetallic nickel-tungsten catalysts were prepared via solvothermal method. The X-ray Diffractometer (XRD) analysis revealed that the corresponding peaks at 14°, 34°, and 58° were for tungsten disulfide (WS2 ) hexagonal phase. The catalysts displayed different crystalline phase with nickel addition, and as an effect the WS2 surface area decreased from 74.7 to 2.0 m(2) g(--1) . In this sense, high-resolution transmission electron microscopy (HRTEM) showed the layers set in direction (002) with an onion-like morphology, and in the center of the particles there is a large amount of nickel contained with 6-8 layers covering it. The catalytic dehydration of 2-propanol was selective to propene in 100% at 250 °C for the sample with 0.7 of atomic ratio of Ni/Ni + W. © Wiley Periodicals, Inc.

  3. Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins.

    PubMed

    Craig, Douglas B; Dombkowski, Alan A

    2013-12-01

    Disulfide engineering is an important biotechnological tool that has advanced a wide range of research. The introduction of novel disulfide bonds into proteins has been used extensively to improve protein stability, modify functional characteristics, and to assist in the study of protein dynamics. Successful use of this technology is greatly enhanced by software that can predict pairs of residues that will likely form a disulfide bond if mutated to cysteines. We had previously developed and distributed software for this purpose: Disulfide by Design (DbD). The original DbD program has been widely used; however, it has a number of limitations including a Windows platform dependency. Here, we introduce Disulfide by Design 2.0 (DbD2), a web-based, platform-independent application that significantly extends functionality, visualization, and analysis capabilities beyond the original program. Among the enhancements to the software is the ability to analyze the B-factor of protein regions involved in predicted disulfide bonds. Importantly, this feature facilitates the identification of potential disulfides that are not only likely to form but are also expected to provide improved thermal stability to the protein. DbD2 provides platform-independent access and significantly extends the original functionality of DbD. A web server hosting DbD2 is provided at http://cptweb.cpt.wayne.edu/DbD2/.

  4. Fabrication techniques developed for small- diameter, thin-wall tungsten and tungsten alloy tubing

    NASA Technical Reports Server (NTRS)

    Brillhart, D. C.; Burt, W. R.; Karasek, F. J.; Mayfield, R. M.

    1968-01-01

    Report describes methods for the fabrication of tungsten and tungsten alloys into small-diameter, thin-wall tubing of nuclear quality. The tungsten, or tungsten alloy tube blanks are produced by double extrusion. Plug-drawing has emerged as an excellent secondary fabrication technique for the reduction of the overall tube dimensions.

  5. Preparation and photoactivity of nanostructured anatase, rutile and brookite TiO2 thin films.

    PubMed

    Addamo, Maurizio; Bellardita, Marianna; Di Paola, Agatino; Palmisano, Leonardo

    2006-12-21

    Photoactive films consisting of pure anatase, brookite or rutile TiO2 were prepared by dip coating from water dispersions obtained by using TiCl4 as the precursor under similar mild experimental conditions.

  6. Disulfide-Functionalized Diblock Copolymer Worm Gels.

    PubMed

    Warren, Nicholas J; Rosselgong, Julien; Madsen, Jeppe; Armes, Steven P

    2015-08-10

    Two strategies for introducing disulfide groups at the outer surface of RAFT-synthesized poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA, or Gx-Hy for brevity) diblock copolymer worms are investigated. The first approach involved statistical copolymerization of GMA with a small amount of disulfide dimethacrylate (DSDMA, or D) comonomer to afford a G54-D0.50 macromolecular chain transfer agent (macro-CTA); this synthesis was conducted in relatively dilute solution in order to ensure mainly intramolecular cyclization and hence the formation of linear chains. Alternatively, a new disulfide-based bifunctional RAFT agent (DSDB) was used to prepare a G45-S-S-G45 (or (G45-S)2) macro-CTA. A binary mixture of a non-functionalized G55 macro-CTA was utilized with each of these two disulfide-based macro-CTAs in turn for the RAFT aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). By targeting a PHPMA DP of 130 and systematically varying the molar ratio of the two macro-CTAs, a series of disulfide-functionalized diblock copolymer worm gels were obtained. For both formulations, oscillatory rheology studies confirmed that higher disulfide contents led to stronger gels, presumably as a result of inter-worm covalent bond formation via disulfide/thiol exchange. Using the DSDB-based macro-CTA led to the strongest worm gels, and this formulation also proved to be more effective in suppressing the thermosensitive behavior that is observed for the nondisulfide-functionalized control worm gel. However, macroscopic precipitation occurred when the proportion of DSDB-based macro-CTA was increased to 50 mol %, whereas the DSDMA-based macro-CTA could be utilized at up to 80 mol %. Finally, the worm gel modulus could be reduced to that of a nondisulfide-containing worm gel by reductive cleavage of the inter-worm disulfide bonds using excess tris(2-carboxyethyl)phosphine (TCEP) to yield thiol groups. These new biomimetic worm gels are

  7. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer

    PubMed Central

    Song, Jeong-Gyu; Ryu, Gyeong Hee; Lee, Su Jeong; Sim, Sangwan; Lee, Chang Wan; Choi, Taejin; Jung, Hanearl; Kim, Youngjun; Lee, Zonghoon; Myoung, Jae-Min; Dussarrat, Christian; Lansalot-Matras, Clement; Park, Jusang; Choi, Hyunyong; Kim, Hyungjun

    2015-01-01

    The effective synthesis of two-dimensional transition metal dichalcogenides alloy is essential for successful application in electronic and optical devices based on a tunable band gap. Here we show a synthesis process for Mo1−xWxS2 alloy using sulfurization of super-cycle atomic layer deposition Mo1−xWxOy. Various spectroscopic and microscopic results indicate that the synthesized Mo1−xWxS2 alloys have complete mixing of Mo and W atoms and tunable band gap by systematically controlled composition and layer number. Based on this, we synthesize a vertically composition-controlled (VCC) Mo1−xWxS2 multilayer using five continuous super-cycles with different cycle ratios for each super-cycle. Angle-resolved X-ray photoemission spectroscopy, Raman and ultraviolet–visible spectrophotometer results reveal that a VCC Mo1−xWxS2 multilayer has different vertical composition and broadband light absorption with strong interlayer coupling within a VCC Mo1−xWxS2 multilayer. Further, we demonstrate that a VCC Mo1−xWxS2 multilayer photodetector generates three to four times greater photocurrent than MoS2- and WS2-based devices, owing to the broadband light absorption. PMID:26204328

  8. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer

    NASA Astrophysics Data System (ADS)

    Song, Jeong-Gyu; Ryu, Gyeong Hee; Lee, Su Jeong; Sim, Sangwan; Lee, Chang Wan; Choi, Taejin; Jung, Hanearl; Kim, Youngjun; Lee, Zonghoon; Myoung, Jae-Min; Dussarrat, Christian; Lansalot-Matras, Clement; Park, Jusang; Choi, Hyunyong; Kim, Hyungjun

    2015-07-01

    The effective synthesis of two-dimensional transition metal dichalcogenides alloy is essential for successful application in electronic and optical devices based on a tunable band gap. Here we show a synthesis process for Mo1-xWxS2 alloy using sulfurization of super-cycle atomic layer deposition Mo1-xWxOy. Various spectroscopic and microscopic results indicate that the synthesized Mo1-xWxS2 alloys have complete mixing of Mo and W atoms and tunable band gap by systematically controlled composition and layer number. Based on this, we synthesize a vertically composition-controlled (VCC) Mo1-xWxS2 multilayer using five continuous super-cycles with different cycle ratios for each super-cycle. Angle-resolved X-ray photoemission spectroscopy, Raman and ultraviolet-visible spectrophotometer results reveal that a VCC Mo1-xWxS2 multilayer has different vertical composition and broadband light absorption with strong interlayer coupling within a VCC Mo1-xWxS2 multilayer. Further, we demonstrate that a VCC Mo1-xWxS2 multilayer photodetector generates three to four times greater photocurrent than MoS2- and WS2-based devices, owing to the broadband light absorption.

  9. Increased monolayer domain size and patterned growth of tungsten disulfide through controlling surface energy of substrates

    NASA Astrophysics Data System (ADS)

    Godin, Kyle; Kang, Kyungnam; Fu, Shichen; Yang, Eui-Hyeok

    2016-08-01

    We report a surface energy-controlled low-pressure chemical vapor deposition growth of WS2 monolayers on SiO2 using pre-growth oxygen plasma treatment of substrates, facilitating increased monolayer surface coverage and patterned growth without lithography. Oxygen plasma treatment of the substrate caused an increase in the average domain size of WS2 monolayers by 78%  ±  2% while having a slight reduction in nucleation density, which translates to increased monolayer surface coverage. This substrate effect on growth was exploited to grow patterned WS2 monolayers by patterned plasma treatment on patterned substrates and by patterned source material with resolutions less than 10 µm. Contact angle-based surface energy measurements revealed a dramatic increase in polar surface energy. A growth model was proposed with lowered activation energies for growth and increased surface diffusion length consistent with the range of results observed. WS2 samples grown with and without oxygen plasma were similar high quality monolayers verified through transmission electron microscopy, selected area electron diffraction, atomic force microscopy, Raman, and photoluminescence measurements. This technique enables the production of large-grain size, patterned WS2 without a post-growth lithography process, thereby providing clean surfaces for device applications.

  10. Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide

    PubMed Central

    Plechinger, Gerd; Nagler, Philipp; Arora, Ashish; Schmidt, Robert; Chernikov, Alexey; del Águila, Andrés Granados; Christianen, Peter C.M.; Bratschitsch, Rudolf; Schüller, Christian; Korn, Tobias

    2016-01-01

    Monolayer transition-metal dichalcogenides have recently emerged as possible candidates for valleytronic applications, as the spin and valley pseudospin are directly coupled and stabilized by a large spin splitting. The optical properties of these two-dimensional crystals are dominated by tightly bound electron–hole pairs (excitons) and more complex quasiparticles such as charged excitons (trions). Here we investigate monolayer WS2 samples via photoluminescence and time-resolved Kerr rotation. In photoluminescence and in energy-dependent Kerr rotation measurements, we are able to resolve two different trion states, which we interpret as intravalley and intervalley trions. Using time-resolved Kerr rotation, we observe a rapid initial valley polarization decay for the A exciton and the trion states. Subsequently, we observe a crossover towards exciton–exciton interaction-related dynamics, consistent with the formation and decay of optically dark A excitons. By contrast, resonant excitation of the B exciton transition leads to a very slow decay of the Kerr signal. PMID:27586517

  11. Correlatively Dependent Lattice and Electronic Structural Evolutions in Compressed Monolayer Tungsten Disulfide.

    PubMed

    Han, Bo; Li, Fangfei; Li, Liang; Huang, Xiaoli; Gong, Yuanbo; Fu, Xinpeng; Gao, Hanxue; Zhou, Qiang; Cui, Tian

    2017-03-02

    Transition-metal dichalcogenides (TMDs) are promising materials for optoelectronic devices. Their lattice and electronic structural evolutions under high strain conditions and their relations remain open questions. We exert pressure on WS2 monolayers on different substrates, namely, Si/SiO2 substrate and diamond anvil surface up to ∼25 GPa. Structural distortions in various degree are disclosed based on the emergence of Raman-inactive B mode. Splits of out-of-plane B and A1' modes are only observed on Si/SiO2 substrate due to extra strain imported from volume decrease in Si and corrugation of SiO2 surface, and its photoluminescence (PL) quenches quickly because of decreased K-K transition by conspicuous distortion of Brillouin zone. While diamond anvil surface provides better hydrostatic environment, combined analysis of PL and absorption proves that pressure effectively tunes PL emission energy and enhances Coulomb interactions. Knowledge of these distinct pressure tunable characteristics of monolayer WS2 improves further understanding of structural and optical properties of TMDs.

  12. Hydrogen Chemical Configuration and Thermal Stability in Tungsten Disulfide Nanoparticles Exposed to Hydrogen Plasma.

    PubMed

    Laikhtman, Alex; Makrinich, Gennady; Sezen, Meltem; Yildizhan, Melike Mercan; Martinez, Jose I; Dinescu, Doru; Prodana, Mariana; Enachescu, Marius; Alonso, Julio A; Zak, Alla

    2017-06-01

    The chemical configuration and interaction mechanism of hydrogen adsorbed in inorganic nanoparticles of WS2 are investigated. Our recent approaches of using hydrogen activated by either microwave or radiofrequency plasma dramatically increased the efficiency of its adsorption on the nanoparticles surface. In the current work we make an emphasis on elucidation of the chemical configuration of the adsorbed hydrogen. This configuration is of primary importance as it affects its adsorption stability and possibility of release. To get insight on the chemical configuration, we combined the experimental analysis methods with theoretical modeling based on the density functional theory (DFT). Micro-Raman spectroscopy was used as a primary tool to elucidate chemical bonding of hydrogen and to distinguish between chemi- and physisorption. Hydrogen adsorbed in molecular form (H2) was clearly identified in all the plasma-hydrogenated WS2 nanoparticles samples. It was shown that the adsorbed hydrogen is generally stable under high vacuum conditions at room temperature, which implies its stability at the ambient atmosphere. A DFT model was developed to simulate the adsorption of hydrogen in the WS2 nanoparticles. This model considers various adsorption sites and identifies the preferential locations of the adsorbed hydrogen in several WS2 structures, demonstrating good concordance between theory and experiment and providing tools for optimizing of hydrogen exposure conditions and the type of substrate materials.

  13. Synthesis and Optical Control of Circular Polarization in monolayer Tungsten Disulfide

    NASA Astrophysics Data System (ADS)

    McCreary, Kathleen; Hanbicki, Aubrey; Jonker, Berend; Currie, Marc; Kioseoglou, George

    The unique electronic band structure in single layer WS2 provides the ability to selectively populate a desired valley by exciting with circularly polarized light. The valley population is reflected through the circular polarization of photoluminescence (PL). We investigate the circularly polarized PL in WS2 monolayers synthesized using chemical vapor deposition (CVD). The resulting polarization is strongly dependent on the sample preparation. As-grown CVD WS2 (still on the growth substrate) exhibits low polarized emission, regardless of laser excitation or laser power. Removing WS2 from the growth substrate and repositioning on the same substrate significantly impacts the optical properties. In transferred films, the excitonic state is optically controlled via high-powered laser exposure such that subsequent PL is solely from either the charged exciton state or the neutral exciton state. Neutral excitonic emission exhibits zero polarization whereas the trion polarization can exceed 25% at room temperature. The removal process may modify the strain, sample-to-substrate distance, and chemical doping in the WS2 monolayer, and work is underway to determine how these factors influence the valley populations. These results demonstrate a new method to control the excitonic state and PL polarization in monolayer WS2. . Supported by core programs at NRL and the NRL Nanoscience Institute, and by the Air Force Office of Scientific Research #AOARD 14IOA018-134141.

  14. Synthesis and Performance of Tungsten Disulfide/Carbon (WS2/C) Composite as Anode Material

    NASA Astrophysics Data System (ADS)

    Yuan, Zhengyong; Jiang, Qiang; Feng, Chuanqi; Chen, Xiao; Guo, Zaiping

    2017-09-01

    The precursors of an amorphous WS2/C composite were synthesized by a simple hydrothermal method using Na2WO4·2H2O and CH3CSNH2 as raw materials, polyethylene glycol as dispersant, and glucose as the carbon source. The as-synthesized precursors were further annealed at a low temperature in flowing argon to obtain the final materials (WS2/C composite). The structure and morphology of the WS2/C composite were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy. The electrochemical properties were tested by galvanostatic charge/discharge testing and alternating current (AC) impedance measurements. The results show that the as-prepared amorphous WS2/C composite features both high specific capacity and good cycling performance at room temperature within the potential window from 3.0 V to 0.01 V (versus Li+/Li) at current density of 100 mAg-1. The achieved initial discharge capacity was 1080 mAhg-1, and 786 mAhg-1 was retained after 170 cycles. Furthermore, the amorphous WS2/C composite exhibited a lower charge/discharge plateau than bare WS2, which is more beneficial for use as an anode. The cyclic voltammetry and AC impedance testing further confirmed the change in the plateau and the decrease in the charge transfer resistance in the WS2/C composite. The chemical formation process and the electrochemical mechanism of the WS2/C composite are also presented. The amorphous WS2/C composite can be used as a new anode material for future applications.

  15. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  16. Method of synthesizing tungsten nanoparticles

    SciTech Connect

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  17. 46 CFR 153.520 - Special requirements for carbon disulfide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Special requirements for carbon disulfide. 153.520... Equipment Special Requirements § 153.520 Special requirements for carbon disulfide. A containment system carrying carbon disulfide must meet the following: (a) Each cargo pump must be of the intank type...

  18. 40 CFR 180.467 - Carbon disulfide; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Carbon disulfide; tolerances for... § 180.467 Carbon disulfide; tolerances for residues. Tolerances are established for the nematicide, insecticide, and fungicide carbon disulfide, from the application of sodium tetrathiocarbonate, in or on...

  19. 40 CFR 180.467 - Carbon disulfide; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Carbon disulfide; tolerances for... § 180.467 Carbon disulfide; tolerances for residues. Tolerances are established for the nematicide, insecticide, and fungicide carbon disulfide, from the application of sodium tetrathiocarbonate, in or on...

  20. 46 CFR 153.520 - Special requirements for carbon disulfide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Special requirements for carbon disulfide. 153.520... Equipment Special Requirements § 153.520 Special requirements for carbon disulfide. A containment system carrying carbon disulfide must meet the following: (a) Each cargo pump must be of the intank type...

  1. 40 CFR 180.467 - Carbon disulfide; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Carbon disulfide; tolerances for... § 180.467 Carbon disulfide; tolerances for residues. Tolerances are established for the nematicide, insecticide, and fungicide carbon disulfide, from the application of sodium tetrathiocarbonate, in or on...

  2. 40 CFR 180.467 - Carbon disulfide; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Carbon disulfide; tolerances for... § 180.467 Carbon disulfide; tolerances for residues. Tolerances are established for the nematicide, insecticide, and fungicide carbon disulfide, from the application of sodium tetrathiocarbonate, in or on...

  3. 40 CFR 180.467 - Carbon disulfide; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Carbon disulfide; tolerances for... § 180.467 Carbon disulfide; tolerances for residues. Tolerances are established for the nematicide, insecticide, and fungicide carbon disulfide, from the application of sodium tetrathiocarbonate, in or on...

  4. 46 CFR 153.520 - Special requirements for carbon disulfide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Special requirements for carbon disulfide. 153.520... Equipment Special Requirements § 153.520 Special requirements for carbon disulfide. A containment system carrying carbon disulfide must meet the following: (a) Each cargo pump must be of the intank type...

  5. 46 CFR 153.520 - Special requirements for carbon disulfide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Special requirements for carbon disulfide. 153.520... Equipment Special Requirements § 153.520 Special requirements for carbon disulfide. A containment system carrying carbon disulfide must meet the following: (a) Each cargo pump must be of the intank type...

  6. 21 CFR 524.2101 - Selenium disulfide suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Selenium disulfide suspension. 524.2101 Section... § 524.2101 Selenium disulfide suspension. (a) Specifications. The product contains 0.9-percent weight in weight (w/w) selenium disulfide (1-percent weight in volume (w/v)). (b) Sponsors. See Nos. 000061,...

  7. 21 CFR 524.2101 - Selenium disulfide suspension.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Selenium disulfide suspension. 524.2101 Section... § 524.2101 Selenium disulfide suspension. (a) Specifications. The product contains 0.9-percent weight in weight (w/w) selenium disulfide (1-percent weight in volume (w/v)). (b) Sponsors. See Nos. 000061,...

  8. 21 CFR 524.2101 - Selenium disulfide suspension.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Selenium disulfide suspension. 524.2101 Section... § 524.2101 Selenium disulfide suspension. (a) Specifications. The product contains 0.9-percent weight in weight (w/w) selenium disulfide (1-percent weight in volume (w/v)). (b) Sponsors. See Nos. 000061,...

  9. 21 CFR 524.2101 - Selenium disulfide suspension.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Selenium disulfide suspension. 524.2101 Section... § 524.2101 Selenium disulfide suspension. (a) Specifications. The product contains 0.9-percent weight in weight (w/w) selenium disulfide (1-percent weight in volume (w/v)). (b) Sponsors. See Nos. 000061,...

  10. 21 CFR 524.2101 - Selenium disulfide suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Selenium disulfide suspension. 524.2101 Section... § 524.2101 Selenium disulfide suspension. (a) Specifications. The product contains 0.9-percent weight in weight (w/w) selenium disulfide (1-percent weight in volume (w/v)). (b) Sponsors. See Nos. 000061,...

  11. Enhancing protein stability with extended disulfide bonds

    DOE PAGES

    Liu, Tao; Wang, Yan; Luo, Xiaozhou; ...

    2016-05-09

    Disulfide bonds play an important role in protein folding and stability. However, the cross-linking of sites within proteins by cysteine disulfides has significant distance and dihedral angle constraints. In this paper, we report the genetic encoding of noncanonical amino acids containing long side-chain thiols that are readily incorporated into both bacterial and mammalian proteins in good yields and with excellent fidelity. These amino acids can pair with cysteines to afford extended disulfide bonds and allow cross-linking of more distant sites and distinct domains of proteins. To demonstrate this notion, we preformed growth-based selection experiments at nonpermissive temperatures using a librarymore » of random β-lactamase mutants containing these noncanonical amino acids. A mutant enzyme that is cross-linked by one such extended disulfide bond and is stabilized by ~9 °C was identified. Finally, this result indicates that an expanded set of building blocks beyond the canonical 20 amino acids can lead to proteins with improved properties by unique mechanisms, distinct from those possible through conventional mutagenesis schemes.« less

  12. Preliminary Hazards Assessment: Iron disulfide purification system

    SciTech Connect

    1991-07-30

    A process for the purification (washing) of iron disulfide (FeS{sub 2}) powder is conducted in the Northeast corner (Area 353) of the main plant building (Building 100). This location is about 130 feet from the fenced boundary of the Partnership School/Child Development Center. In the first steps of the process, raw iron disulfide powder is ground and separated by particle size. The ground and sized powder is then purified in a three-step acid washing process using both hydrochloric acid (HCI) and hydrofluoric (HF) acid. The iron disulfide process is an intermittent batch process conducted four to eight times a year. This study is a Preliminary Hazards Assessment (PHA) to assess the hazards associated with the iron disulfide process. This is a preliminary study and will be used to determine if additional safety analysis is necessary. The scope of the PHA includes assessment of the process steps of grinding, size classification, and purification. The purpose is to identify major hazards and determine if the current and newly added safeguards are adequate for operation. The PHA also lists recommendations for additional safety features that should be added to reduce the risks of operation.

  13. The Diatom Staurosirella pinnata for Photoactive Material Production.

    PubMed

    De Angelis, Roberta; Melino, Sonia; Prosposito, Paolo; Casalboni, Mauro; Lamastra, Francesca Romana; Nanni, Francesca; Bruno, Laura; Congestri, Roberta

    2016-01-01

    A native isolate of the colonial benthic diatom Staurosirella pinnata was cultivated for biosilica production. The silicified cell walls (frustules) were used as a source of homogeneous and structurally predictable porous biosilica for dye trapping and random laser applications. This was coupled with the extraction of lipids from biomass showing potential to fabricate photoactive composite materials sustainably. The strain was selected for its ease of growth in culture and harvesting. Biosilica and lipids were obtained at the end of growth in indoor photobioreactors. Frustules were structurally characterized microscopically and their chemistry analyzed with Fourier Transform Infrared Spectroscopy. Frustule capacity of binding laser dyes was evaluated on a set of frustules/Rhodamine B (Rho B) solutions and with respect to silicon dioxide and diatomite by Fluorescence Spectroscopy demonstrating a high affinity for the organic dye. The effect of dye trapping property in conveying Rho B emission to frustules, with enhancement of scattering events, was analyzed on Rho B doped polyacrylamide gels filled or not with frustules. Amplified spontaneous emission was recorded at increasing pump power indicating the onset of a random laser effect in frustule filled gels at lower power threshold compared to unfilled matrices.

  14. Photoactive chitosan switching on bone-like apatite deposition.

    PubMed

    Chiono, Valeria; Gentile, Piergiorgio; Boccafoschi, Francesca; Carmagnola, Irene; Ninov, Momchil; Georgieva, Ventsislava; Georgiev, George; Ciardelli, Gianluca

    2010-02-08

    The work was focused on the synthesis and characterization of the chitosan-g-fluorescein (CHFL) conjugate polymer as a biocompatible amphiphilic water-soluble photosensitizer, able to stimulate hydroxyapatite deposition upon visible light irradiation. Fluorescein (FL) grafting to chitosan (CH) chains was confirmed by UV-vis analysis of water solutions of FL and CHFL and by Fourier transform infrared spectroscopy (FTIR-ATR) analysis of CHFL and CH. Smooth CHFL cast films with 4 microm thickness were obtained by solvent casting. Continuous exposure to visible light for 7 days was found to activate the deposition of calcium phosphate crystals from a conventional simulated body fluid (SBF 1.0x) on the surface of CHFL cast films. EDX and FTIR-ATR analyses confirmed the apatite nature of the deposited calcium phosphate crystals. CHFL films preincubated in SBF (1.0x) solution under visible light irradiation and in the dark for 7 days were found to support the in vitro adhesion and proliferation of MG63 osteoblast-like cells (MTT viability test; 1-3 days culture time). On the other hand, the mineralization ability of MG63 osteoblast-like cells was significantly improved on CHFL films preincubated under visible light exposure (alkaline phosphatase activity (ALP) test for 1, 3, 7, and 14 days). The use of photoactive biocompatible conjugate polymer, such as CHFL, may lead to new therapeutic options in the field of bone/dental repair, exploiting the photoexcitation mechanism as a tool for biomineralization.

  15. Photo-active collagen systems with controlled triple helix architecture.

    PubMed

    Tronci, Giuseppe; Russell, Stephen J; Wood, David J

    2013-08-14

    The design of photo-active collagen systems is presented as a basis for establishing biomimetic materials with varied network architecture and programmable macroscopic properties. Following in-house isolation of type I collagen, reaction with vinyl-bearing compounds of varied backbone rigidity, i.e. 4-vinylbenzyl chloride (4VBC) and glycidyl methacrylate (GMA), was carried out. TNBS colorimetric assay, (1)H-NMR and ATR-FTIR confirmed covalent and tunable functionalization of collagen lysines. Depending on the type and extent of functionalization, controlled stability and thermal denaturation of triple helices were observed via circular dichroism (CD), whereby the hydrogen-bonding capability of introduced moieties was shown to play a major role. Full gel formation was observed following photo-activation of functionalized collagen solutions. The presence of a covalent network only slightly affected collagen triple helix conformation (as observed by WAXS and ATR-FTIR), confirming the structural organization of functionalized collagen precursors. Photo-activated hydrogels demonstrated an increased denaturation temperature (DSC) with respect to native collagen, suggesting that the formation of the covalent network successfully stabilized collagen triple helices. Moreover, biocompatibility and mechanical competence of obtained hydrogels were successfully demonstrated under physiologically-relevant conditions. These results demonstrate that this novel synthetic approach enabled the formation of biocompatible collagen systems with defined network architecture and programmable macroscopic properties, which can only partially be obtained with current synthetic methods.

  16. The Diatom Staurosirella pinnata for Photoactive Material Production

    PubMed Central

    Prosposito, Paolo; Casalboni, Mauro; Lamastra, Francesca Romana; Nanni, Francesca; Congestri, Roberta

    2016-01-01

    A native isolate of the colonial benthic diatom Staurosirella pinnata was cultivated for biosilica production. The silicified cell walls (frustules) were used as a source of homogeneous and structurally predictable porous biosilica for dye trapping and random laser applications. This was coupled with the extraction of lipids from biomass showing potential to fabricate photoactive composite materials sustainably. The strain was selected for its ease of growth in culture and harvesting. Biosilica and lipids were obtained at the end of growth in indoor photobioreactors. Frustules were structurally characterized microscopically and their chemistry analyzed with Fourier Transform Infrared Spectroscopy. Frustule capacity of binding laser dyes was evaluated on a set of frustules/Rhodamine B (Rho B) solutions and with respect to silicon dioxide and diatomite by Fluorescence Spectroscopy demonstrating a high affinity for the organic dye. The effect of dye trapping property in conveying Rho B emission to frustules, with enhancement of scattering events, was analyzed on Rho B doped polyacrylamide gels filled or not with frustules. Amplified spontaneous emission was recorded at increasing pump power indicating the onset of a random laser effect in frustule filled gels at lower power threshold compared to unfilled matrices. PMID:27828985

  17. Disulfide Bond Requirements for Active Wnt Ligands*

    PubMed Central

    MacDonald, Bryan T.; Hien, Annie; Zhang, Xinjun; Iranloye, Oladoyin; Virshup, David M.; Waterman, Marian L.; He, Xi

    2014-01-01

    Secreted Wnt lipoproteins are cysteine-rich and lipid-modified morphogens that bind to the Frizzled (FZD) receptor and LDL receptor-related protein 6 (LRP6). Wnt engages FZD through protruding thumb and index finger domains, which are each assembled from paired β strands secured by disulfide bonds and grasp two sides of the FZD ectodomain. The importance of Wnt disulfide bonds has been assumed but uncharacterized. We systematically analyzed cysteines and associated disulfide bonds in the prototypic Wnt3a. Our data show that mutation of any individual cysteine of Wnt3a results in covalent Wnt oligomers through ectopic intermolecular disulfide bond formation and diminishes/abolishes Wnt signaling. Although individual cysteine mutations in the amino part of the saposin-like domain and in the base of the index finger are better tolerated and permit residual Wnt3a secretion/activity, those in the amino terminus, the thumb, and at the tip of the index finger are incompatible with secretion and/or activity. A few select double cysteine mutants based on the disulfide bond pattern restore Wnt secretion/activity. Further, a double cysteine mutation at the index finger tip results in a Wnt3a with normal secretion but minimal FZD binding and dominant negative properties. Our results experimentally validate predictions from the Wnt crystal structure and highlight critical but different roles of the saposin-like and cytokine-like domains, including the thumb and the index finger in Wnt folding/secretion and FZD binding. Finally, we modified existing expression vectors for 19 epitope-tagged human WNT proteins by removal of a tag-supplied ectopic cysteine, thereby generating tagged WNT ligands active in canonical and non-canonical signaling. PMID:24841207

  18. Assigning Peptide Disulfide Linkage Pattern Among Regio-Isomers via Methoxy Addition to Disulfide and Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Durand, Kirt L.; Tan, Lei; Stinson, Craig A.; Love-Nkansah, Chasity B.; Ma, Xiaoxiao; Xia, Yu

    2017-02-01

    Pinpointing disulfide linkage pattern is critical in the characterization of proteins and peptides consisting of multiple disulfide bonds. Herein, we report a method based on coupling online disulfide modification and tandem mass spectrometry (MS/MS) to distinguish peptide disulfide regio-isomers. Such a method relies on a new disulfide bond cleavage reaction in solution, involving methanol as a reactant and 254 nm ultraviolet (UV) irradiation. This reaction leads to selective cleavage of a disulfide bond and formation of sulfenic methyl ester (-SOCH3) at one cysteine residue and a thiol (-SH) at the other. Under low energy collision-induced dissociation (CID), cysteine sulfenic methyl ester motif produces a signature methanol loss (-32 Da), allowing its identification from other possible isomeric structures such as S-hydroxylmethyl (-SCH2OH) and methyl sulfoxide (-S(O)-CH3). Since disulfide bond can be selectively cleaved and modified upon methoxy addition, subsequent MS2 CID of the methoxy addition product provides enhanced sequence coverage as demonstrated by the analysis of bovine insulin. More importantly, this reaction does not induce disulfide scrambling, likely due to the fact that radical intermediates are not involved in the process. An approach based on methoxy addition followed by MS3 CID has been developed for assigning disulfide linkage patterns in peptide disulfide regio-isomers. This methodology was successfully applied to characterizing peptide systems having two disulfide bonds and three disulfide linkage isomers: side-by-side, overlapped, and looped-within-a-loop configurations.

  19. Assigning Peptide Disulfide Linkage Pattern Among Regio-Isomers via Methoxy Addition to Disulfide and Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Durand, Kirt L.; Tan, Lei; Stinson, Craig A.; Love-Nkansah, Chasity B.; Ma, Xiaoxiao; Xia, Yu

    2017-06-01

    Pinpointing disulfide linkage pattern is critical in the characterization of proteins and peptides consisting of multiple disulfide bonds. Herein, we report a method based on coupling online disulfide modification and tandem mass spectrometry (MS/MS) to distinguish peptide disulfide regio-isomers. Such a method relies on a new disulfide bond cleavage reaction in solution, involving methanol as a reactant and 254 nm ultraviolet (UV) irradiation. This reaction leads to selective cleavage of a disulfide bond and formation of sulfenic methyl ester (-SOCH3) at one cysteine residue and a thiol (-SH) at the other. Under low energy collision-induced dissociation (CID), cysteine sulfenic methyl ester motif produces a signature methanol loss (-32 Da), allowing its identification from other possible isomeric structures such as S-hydroxylmethyl (-SCH2OH) and methyl sulfoxide (-S(O)-CH3). Since disulfide bond can be selectively cleaved and modified upon methoxy addition, subsequent MS2 CID of the methoxy addition product provides enhanced sequence coverage as demonstrated by the analysis of bovine insulin. More importantly, this reaction does not induce disulfide scrambling, likely due to the fact that radical intermediates are not involved in the process. An approach based on methoxy addition followed by MS3 CID has been developed for assigning disulfide linkage patterns in peptide disulfide regio-isomers. This methodology was successfully applied to characterizing peptide systems having two disulfide bonds and three disulfide linkage isomers: side-by-side, overlapped, and looped-within-a-loop configurations. [Figure not available: see fulltext.

  20. Protein stabilization by introduction of cross-strand disulfides.

    PubMed

    Chakraborty, Kausik; Thakurela, Sudhir; Prajapati, Ravindra Singh; Indu, S; Ali, P Shaik Syed; Ramakrishnan, C; Varadarajan, Raghavan

    2005-11-08

    Disulfides cross-link residues in a protein that are separated in primary sequence and stabilize the protein through entropic destabilization of the unfolded state. While the removal of naturally occurring disulfides leads to protein destabilization, introduction of engineered disulfides does not always lead to significant stabilization of a protein. We have analyzed naturally occurring disulfides that span adjacent antiparallel strands of beta sheets (cross-strand disulfides). Cross-strand disulfides have recently been implicated as redox-based conformational switches in proteins such as gp120 and CD4. The propensity of these disulfides to act as conformational switches was postulated on the basis of the hypothesis that this class of disulfide is conformationally strained. In the present analysis, there was no evidence to suggest that cross-strand disulfides are more strained compared to other disulfides as assessed by their torsional energy. It was also observed that these disulfides occur solely at non-hydrogen-bonded (NHB) registered pairs of adjacent antiparallel strands and not at hydrogen-bonded (HB) positions as suggested previously. One of the half-cystines involved in cross-strand disulfide formation often occurs at an edge strand. Experimental confirmation of the stabilizing effects of such disulfides was carried out in Escherichia coli thioredoxin. Four pairs of cross-strand cysteines were introduced, two at HB and two at NHB pairs. Disulfides were formed in all four cases. However, as predicted from our analysis, disulfides at NHB positions resulted in an increase in melting temperature of 7-10 degrees C, while at HB positions there was a corresponding decrease of -7 degrees C. The reduced state of all proteins had similar stability.

  1. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.

    1999-11-23

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  2. Process development for cladding APT tungsten targets

    SciTech Connect

    Horner, M H; Barber, R; Dalder, E

    2000-11-27

    This report describes development of processes for cladding APT Target tungsten components with a thin layer (0.127-mm) of Alloy 718, Alloy 600 or 316L stainless steel alloy. The application requires that the cladding be thermally bonded to the tungsten in order to transfer heat generated in the tungsten volume to a surrounding coolant. High temperature diffusion bonding using the hot isostatic processing (HIP) technique was selected as the method for creating a metallurgical bond between pure tungsten tubes and rods and the cladding materials. Bonding studies using a uniaxially loaded vacuum hot press were conducted in preliminary experiments to determine acceptable time-temperature conditions for diffusion bonding. The results were successfully applied in cladding tungsten rods and tubes with these alloys. Temperatures 800-810 C were suitable for cladding tungsten with Alloy 600 and 316L stainless steel alloy, whereas tungsten was clad with Alloy 718 at 1020 C.

  3. Fabrication of tungsten wire needles

    SciTech Connect

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading.

  4. Mineral of the month: tungsten

    USGS Publications Warehouse

    Shedd, Kim B.

    2006-01-01

    Tungsten has the highest melting point of all metals, one of the highest densities and, when combined with carbon, is almost as hard as diamond. These and other properties make it useful in a wide variety of important commercial, industrial and military applications.

  5. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  6. Tungsten coil atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Rust, Jennifer A.; Nóbrega, Joaquim A.; Calloway, Clifton P.; Jones, Bradley T.

    2006-02-01

    A tungsten coil atomic emission spectrometer is described and evaluated. The system employs a single tungsten coil as a combined atomizer and excitation source for the determination of metals by atomic emission spectrometry. The tungsten coil is extracted from a 150 W, 15 V commercial slide projector light bulb. A simple, laboratory constructed, computer-controlled power supply provides a constant current to the coil. A high-resolution Czerny-Turner monochromator with a charge coupled device detector completes the system. Simultaneous, multi-element analyses are possible within a 4 nm spectral window. Eleven test elements are used to characterize the system: Al (396.1 nm), Co (353.0 nm), Cr (427.1 nm), Dy (404.6 nm), Ga (403.3 nm), K (404.4 nm), Mn (403.1 nm), Pb (405.8 nm), Rb (420.2 nm), Sc (404.8 nm), and Yb (398.7 nm). Tungsten coil atomic emission detection limits are reported for these elements for the first time: 0.02 ng Al, 0.7 ng Co, 0.003 ng Cr, 0.01 ng Dy, 0.7 ng Ga, 0.3 ng K, 0.04 ng Mn, 10 ng Pb, 0.07 ng Rb, 1 ng Sc, and 0.003 ng Yb. The precision for the new technique is better than 13% relative standard deviation for all metals at concentrations two orders of magnitude above the detection limit. Aluminum, Cr, Mn, and K are determined in a standard reference material (trace elements in water) after simple dilution with water, and found values varied from certified values by up to 26%. The average tungsten coil lifetime was found to be 265 heating cycles. The elimination of the external radiation source needed for atomic absorption measurements results in an emission system that could be quite portable.

  7. Display of disulfide-rich proteins by complementary DNA display and disulfide shuffling assisted by protein disulfide isomerase.

    PubMed

    Naimuddin, Mohammed; Kubo, Tai

    2011-12-01

    We report an efficient system to produce and display properly folded disulfide-rich proteins facilitated by coupled complementary DNA (cDNA) display and protein disulfide isomerase-assisted folding. The results show that a neurotoxin protein containing four disulfide linkages can be displayed in the folded state. Furthermore, it can be refolded on a solid support that binds efficiently to its natural acetylcholine receptor. Probing the efficiency of the display proteins prepared by these methods provided up to 8-fold higher enrichment by the selective enrichment method compared with cDNA display alone, more than 10-fold higher binding to its receptor by the binding assays, and more than 10-fold higher affinities by affinity measurements. Cotranslational folding was found to have better efficiency than posttranslational refolding between the two investigated methods. We discuss the utilities of efficient display of such proteins in the preparation of superior quality proteins and protein libraries for directed evolution leading to ligand discovery. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Layered semiconductor molybdenum disulfide nanomembrane based Schottky-barrier solar cells

    NASA Astrophysics Data System (ADS)

    Shanmugam, Mariyappan; Durcan, Chris A.; Yu, Bin

    2012-11-01

    We demonstrate Schottky-barrier solar cells employing a stack of layer-structured semiconductor molybdenum disulfide (MoS2) nanomembranes, synthesized by the chemical-vapor-deposition method, as the critical photoactive layer. An MoS2 nanomembrane forms a Schottky-barrier with a metal contact by the layer-transfer process onto an indium tin oxide (ITO) coated glass substrate. Two vibrational modes in MoS2 nanomembranes, E12g (in-plane) and A1g (perpendicular-to-plane), were verified by Raman spectroscopy. With a simple stacked structure of ITO-MoS2-Au, the fabricated solar cell demonstrates a photo-conversion efficiency of 0.7% for ~110 nm MoS2 and 1.8% for ~220 nm MoS2. The improvement is attributed to a substantial increase in photonic absorption. The MoS2 nanomembrane exhibits efficient photo-absorption in the spectral region of 350-950 nm, as confirmed by the external quantum efficiency. A sizable increase in MoS2 thickness results in only minor change in Mott-Schottky behavior, indicating that defect density is insensitive to nanomembrane thickness attributed to the dangling-bond-free layered structure.

  9. Characterization and modeling of tungsten source during DIII-D tungsten ring experiments

    NASA Astrophysics Data System (ADS)

    Guterl, J.; Abrams, T.; Elder, D.; Guo, H. Y.

    2016-10-01

    Two tungsten toroidal rings in the DIII-D divertor region were recently exposed to H-mode plasmas. During these experiments, the gross erosion rate of tungsten was spectroscopically monitored for various ELMy H-mode conditions to characterize the tungsten source in the divertor region (see e.g.). However, only a small fraction of tungsten eroded particles eventually exits the divertor region because of the large tungsten local redeposition. Tungsten local redeposition and migration in the vicinity of the tungsten tiles are simulated using the ERO-OEDGE code package to link the effective tungsten source to the measured gross erosion rates between and during ELMs. It is shown that the energy and angular distributions of sputtered tungsten particles strongly affect the ratio of locally redeposited particles and thus the effective tungsten source. Effects of carbon deposition on tungsten tiles between ELMs on the tungsten erosion rate are also discussed. Preliminary studies of divertor screening on long-range tungsten transport in the SOL between ELMs are also presented. Work supported in part by the US Department of Energy under DE-AC05-06OR23100 and DE-FC02-04ER54698.

  10. Alkali metal intercalates of molybdenum disulfide.

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.

    1973-01-01

    Study of some of the physicochemical properties of compounds obtained by subjecting natural molybdenite and single crystals of molybdenum disulfide grown by chemical vapor transport to intercalation with the alkali group of metals (Li, Na, K, Rb, and Cs) by means of the liquid ammonia technique. Reported data and results include: (1) the intercalation of the entire alkali metal group, (2) stoichiometries and X-ray data on all of the compounds, and (3) superconductivity data for all the intercalation compounds.

  11. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  12. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  13. Disulfide Bonding in Neurodegenerative Misfolding Diseases

    PubMed Central

    2013-01-01

    In recent years an increasing number of neurodegenerative diseases has been linked to the misfolding of a specific protein and its subsequent accumulation into aggregated species, often toxic to the cell. Of all the factors that affect the behavior of these proteins, disulfide bonds are likely to be important, being very conserved in protein sequences and being the enzymes devoted to their formation among the most conserved machineries in mammals. Their crucial role in the folding and in the function of a big fraction of the human proteome is well established. The role of disulfide bonding in preventing and managing protein misfolding and aggregation is currently under investigation. New insights into their involvement in neurodegenerative diseases, their effect on the process of protein misfolding and aggregation, and into the role of the cellular machineries devoted to disulfide bond formation in neurodegenerative diseases are emerging. These studies mark a step forward in the comprehension of the biological base of neurodegenerative disorders and highlight the numerous questions that still remain open. PMID:23983694

  14. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    NASA Astrophysics Data System (ADS)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  15. Origin of photoactivity of oxygen-deficient TiO{sub 2} under visible light

    SciTech Connect

    Lo, H.-H.; Gopal, Neeruganti O.; Ke, S.-C.

    2009-08-24

    As it is now well established that oxygen vacancies are spontaneously introduced during nitrogen doping of anatase TiO{sub 2}, there is a lively debate on whether nitrogen dopant or oxygen vacancy contributes to the visible light photoactivity of the doped catalyst. We showed that the coordinately unsaturated Ti site is integral to the visible light photoactivity in anatase oxygen-deficient TiO{sub 2} catalyst. Accordingly, oxygen vacancies may contribute to the visible light photoactivities in N-doped TiO{sub 2} and other nonmetallic ion-doped TiO{sub 2} as well. A redox active visible light photocatalyst has been developed based on oxygen-deficient structure in anatase TiO{sub 2}.

  16. Origin of photoactivity of oxygen-deficient TiO2 under visible light

    NASA Astrophysics Data System (ADS)

    Lo, Hsin-Hsi; Gopal, Neeruganti O.; Ke, Shyue-Chu

    2009-08-01

    As it is now well established that oxygen vacancies are spontaneously introduced during nitrogen doping of anatase TiO2, there is a lively debate on whether nitrogen dopant or oxygen vacancy contributes to the visible light photoactivity of the doped catalyst. We showed that the coordinately unsaturated Ti site is integral to the visible light photoactivity in anatase oxygen-deficient TiO2 catalyst. Accordingly, oxygen vacancies may contribute to the visible light photoactivities in N-doped TiO2 and other nonmetallic ion-doped TiO2 as well. A redox active visible light photocatalyst has been developed based on oxygen-deficient structure in anatase TiO2.

  17. All-optical microfluidic circuit for biochemical and cellular analysis powered by photoactive nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Gang L.; Kim, Jaeyoun; Lee, Luke P.

    2006-08-01

    We have invented a novel all-optical-logic microfluidic system which is automatically controlled only by visible or near infrared light with down to submilliwatt power. No electric power supply, no external or MEMS pump, no tubings or connectors, no microfluidic valves, nor surface patterning are required in our system. Our device only consists of a single-layer PDMS microfluidic chip and newly invented photoactive nanoparticles. Our photoactive nanoparticles are capable of converting optical energy to hydrodynamic energy in fluids. The nanoparticle themselves are biocompatible and can be biofunctionalized. Via these photoactive nanoparticles, we used only light to drive, guide, switch and mix liquid in optofluidic logic circuits with desired speeds and directions. We demonstrated the optofluidic controls in transportation of biomolecules and cells.

  18. Laser cleaning of tungsten ribbon

    NASA Astrophysics Data System (ADS)

    Kumar, Aniruddha; Sonar, V. R.; Das, D. K.; Bhatt, R. B.; Behere, P. G.; Afzal, Mohd.; Kumar, Arun; Nilaya, J. P.; Biswas, D. J.

    2014-07-01

    Removal of a thin oxide layer from a tungsten ribbon was achieved using the fundamental, second and third harmonic radiation from a Q- switched Nd-YAG laser. It was found that beyond the threshold, oxide removal was achieved at all wavelengths for a wide range of fluence values. The removal mechanism of the oxide layer was found to be critically dependent on both wavelength and fluence of the incident radiation and has been identified as ejection or sublimation. The un-cleaned and cleaned surfaces were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS) and atomic force microscopy (AFM). Laser cleaned tungsten ribbons were used in a thermal ionization mass spectrometer (TIMS) to determine isotopic composition of Neodymium atoms.

  19. Does speciation matter for tungsten ecotoxicology?

    PubMed

    Strigul, Nikolay

    2010-09-01

    Tungsten is a widely used transition metal that has not been thoroughly investigated with regards to its ecotoxicological effects. Tungsten anions polymerize in environmental systems as well as under physiological conditions in living organisms. These polymerization/condensation reactions result in the development of several types of stable polyoxoanions. Certain chemical properties (in particular redox and acidic properties) differentiate these polyanions from monotungstates. However, our current state of knowledge on tungsten toxicology, biological and environmental effects is based entirely on experiments where monotungstates were used and assumed by the authors to be the form of tungsten that was present and that produced the observed effect. Recent discoveries indicate that tungsten speciation may be important to ecotoxicology. New results obtained by different research groups demonstrate that polytungstates develop and persist in environmental systems, and that polyoxotungstates are much more toxic than monotungstates. This paper reviews the available toxicological information from the standpoint of tungsten speciation and identifies knowledge gaps and pertinent future research directions.

  20. Tin-tungsten mineralizing processes in tungsten vein deposits: Panasqueira, Portugal

    NASA Astrophysics Data System (ADS)

    Lecumberri-Sanchez, P.; Pinto, F.; Vieira, R.; Wälle, M.; Heinrich, C. A.

    2015-12-01

    Tungsten has a high heat resistance, density and hardness, which makes it widely applied in industry (e.g. steel, tungsten carbides). Tungsten deposits are typically magmatic-hydrothermal systems. Despite the economic significance of tungsten, there are no modern quantitative analytical studies of the fluids responsible for the formation of its highest-grade deposit type (tungsten vein deposits). Panasqueira (Portugal) is a tungsten vein deposit, one of the leading tungsten producers in Europe and one of the best geologically characterized tungsten vein deposits. In this study, compositions of the mineralizing fluids at Panasqueira have been determined through combination of detailed petrography, microthermometric measurements and LA-ICPMS analyses, and geochemical modeling has been used to determine the processes that lead to tungsten mineralization. We characterized the fluids related to the various mineralizing stages in the system: the oxide stage (tin and tungsten mineralization), the sulfide stage (chalcopyrite and sphalerite mineralization) and the carbonate stage. Thus, our results provide information on the properties of fluids related with specific paragenetic stages. Furthermore we used those fluid compositions in combination with host rock mineralogy and chemistry to evaluate which are the controlling factors in the mineralizing process. This study provides the first quantitative analytical data on fluid composition for tungsten vein deposits and evaluates the controlling mineralization processes helping to determine the mechanisms of formation of the Panasqueira tin-tungsten deposit and providing additional geochemical constraints on the local distribution of mineralization.

  1. Temperature-controlled neutron reflectometry sample cell suitable for study of photoactive thin films

    SciTech Connect

    Yager, Kevin G.; Tanchak, Oleh M.; Barrett, Christopher J.; Watson, Mike J.; Fritzsche, Helmut

    2006-04-15

    We describe a novel cell design intended for the study of photoactive materials using neutron reflectometry. The cell can maintain sample temperature and control of ambient atmospheric environment. Critically, the cell is built with an optical port, enabling light irradiation or light probing of the sample, simultaneous with neutron reflectivity measurements. The ability to measure neutron reflectivity with simultaneous temperature ramping and/or light illumination presents unique opportunities for measuring photoactive materials. To validate the cell design, we present preliminary results measuring the photoexpansion of thin films of azobenzene polymer.

  2. GAMMA-RADIOLYSIS OF DISULFIDES IN AQUEOUS SOLUTION. II. D-PENICILLAMINE DISULFIDE,

    DTIC Science & Technology

    The gamma-radiolysis of D- penicillamine disulfide (PenSSPen) in an aqueous solution has been studied under aerated and deaerated conditions. G...values were determined for the following products: penicillamine sulfinic acid (PenSO2H), penicillaminic acid (PenSO3H), beta-hydroxyvaline (PenOH), 2...amino-3-methylbut-3-enoic acid (HOOC.CH(NH2).C(CH3)=CH2), penicillamine (PenSH), penicillamine disulfide-S-monoxide (PenS(O)SPen), valine (PenH

  3. A composite light-harvesting layer from photoactive polymer and halide perovskite for planar heterojunction solar cells

    PubMed Central

    Wang, Heming; Rahaq, Yaqub; Kumar, Vikas

    2016-01-01

    A new route for fabrication of photoactive materials in organic-inorganic hybrid solar cells is presented in this report. Photoactive materials by blending a semiconductive conjugated polymer with an organolead halide perovskite were fabricated for the first time. The composite active layer was then used to make planar heterojunction solar cells with the PCBM film as the electron-acceptor. Photovoltaic performance of solar cells was investigated by J-V curves and external quantum efficiency spectra. We demonstrated that the incorporation of the conjugated photoactive polymer into organolead halide perovskites did not only contribute to the generation of charges, but also enhance stability of solar cells by providing a barrier protection to halide perovskites. It is expected that versatile of conjugated semi-conductive polymers and halide perovskites in photoactive properties enables to create various combinations, forming composites with advantages offered by both types of photoactive materials. PMID:27411487

  4. A composite light-harvesting layer from photoactive polymer and halide perovskite for planar heterojunction solar cells.

    PubMed

    Wang, Heming; Rahaq, Yaqub; Kumar, Vikas

    2016-07-14

    A new route for fabrication of photoactive materials in organic-inorganic hybrid solar cells is presented in this report. Photoactive materials by blending a semiconductive conjugated polymer with an organolead halide perovskite were fabricated for the first time. The composite active layer was then used to make planar heterojunction solar cells with the PCBM film as the electron-acceptor. Photovoltaic performance of solar cells was investigated by J-V curves and external quantum efficiency spectra. We demonstrated that the incorporation of the conjugated photoactive polymer into organolead halide perovskites did not only contribute to the generation of charges, but also enhance stability of solar cells by providing a barrier protection to halide perovskites. It is expected that versatile of conjugated semi-conductive polymers and halide perovskites in photoactive properties enables to create various combinations, forming composites with advantages offered by both types of photoactive materials.

  5. A composite light-harvesting layer from photoactive polymer and halide perovskite for planar heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Heming; Rahaq, Yaqub; Kumar, Vikas

    2016-07-01

    A new route for fabrication of photoactive materials in organic-inorganic hybrid solar cells is presented in this report. Photoactive materials by blending a semiconductive conjugated polymer with an organolead halide perovskite were fabricated for the first time. The composite active layer was then used to make planar heterojunction solar cells with the PCBM film as the electron-acceptor. Photovoltaic performance of solar cells was investigated by J-V curves and external quantum efficiency spectra. We demonstrated that the incorporation of the conjugated photoactive polymer into organolead halide perovskites did not only contribute to the generation of charges, but also enhance stability of solar cells by providing a barrier protection to halide perovskites. It is expected that versatile of conjugated semi-conductive polymers and halide perovskites in photoactive properties enables to create various combinations, forming composites with advantages offered by both types of photoactive materials.

  6. 40 CFR 421.100 - Applicability: Description of the primary tungsten subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary tungsten subcategory. 421.100 Section 421.100 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Tungsten Subcategory § 421.100 Applicability: Description of the primary tungsten... tungsten at primary tungsten facilities....

  7. 40 CFR 421.100 - Applicability: Description of the primary tungsten subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary tungsten subcategory. 421.100 Section 421.100 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Tungsten Subcategory § 421.100 Applicability: Description of the primary tungsten... tungsten at primary tungsten facilities....

  8. 40 CFR 421.100 - Applicability: Description of the primary tungsten subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary tungsten subcategory. 421.100 Section 421.100 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Tungsten Subcategory § 421.100 Applicability: Description of the primary tungsten... tungsten at primary tungsten facilities....

  9. 40 CFR 421.100 - Applicability: Description of the primary tungsten subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary tungsten subcategory. 421.100 Section 421.100 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Tungsten Subcategory § 421.100 Applicability: Description of the primary tungsten... tungsten at primary tungsten facilities....

  10. 40 CFR 421.100 - Applicability: Description of the primary tungsten subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary tungsten subcategory. 421.100 Section 421.100 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Tungsten Subcategory § 421.100 Applicability: Description of the primary tungsten... tungsten at primary tungsten facilities....

  11. The Dynamic Disulfide Relay of Quiescin Sulfhydryl Oxidase

    PubMed Central

    Alon, Assaf; Grossman, Iris; Gat, Yair; Kodali, Vamsi K.; DiMaio, Frank; Mehlman, Tevie; Haran, Gilad; Baker, David; Thorpe, Colin; Fass, Deborah

    2012-01-01

    Protein stability, assembly, localization, and regulation often depend on formation of disulfide cross-links between cysteine side chains. Enzymes known as sulfhydryl oxidases catalyze de novo disulfide formation and initiate intra- and intermolecular dithiol/disulfide relays to deliver the disulfides to substrate proteins1,2. Quiescin sulfhydryl oxidase (QSOX) is a unique, multi-domain disulfide catalyst that is localized primarily to the Golgi apparatus and secreted fluids3 and has attracted attention due to its over-production in tumors4,5. In addition to its physiological importance, QSOX is a mechanistically intriguing enzyme, encompassing functions typically carried out by a series of proteins in other disulfide formation pathways. How disulfides are relayed through the multiple redox-active sites of QSOX and whether there is a functional benefit to concatenating these sites on a single polypeptide are open questions. We determined the first crystal structure of an intact QSOX enzyme, derived from a trypanosome parasite. Notably, sequential sites in the disulfide relay were found more than 40 Å apart in this structure, too far for direct disulfide transfer. To resolve this puzzle, we trapped and crystallized an intermediate in the disulfide hand-off, which showed a 165° domain rotation relative to the original structure, bringing the two active sites within disulfide bonding distance. The comparable structure of a mammalian QSOX enzyme, also presented herein, reveals additional biochemical features that facilitate disulfide transfer in metazoan orthologs. Finally, we quantified the contribution of concatenation to QSOX activity, providing general lessons for the understanding of multi-domain enzymes and the design of novel catalytic relays. PMID:22801504

  12. Assigning Peptide Disulfide Linkage Pattern Among Regio-Isomers via Methoxy Addition to Disulfide and Tandem Mass Spectrometry.

    PubMed

    Durand, Kirt L; Tan, Lei; Stinson, Craig A; Love-Nkansah, Chasity B; Ma, Xiaoxiao; Xia, Yu

    2017-02-13

    Pinpointing disulfide linkage pattern is critical in the characterization of proteins and peptides consisting of multiple disulfide bonds. Herein, we report a method based on coupling online disulfide modification and tandem mass spectrometry (MS/MS) to distinguish peptide disulfide regio-isomers. Such a method relies on a new disulfide bond cleavage reaction in solution, involving methanol as a reactant and 254 nm ultraviolet (UV) irradiation. This reaction leads to selective cleavage of a disulfide bond and formation of sulfenic methyl ester (-SOCH3) at one cysteine residue and a thiol (-SH) at the other. Under low energy collision-induced dissociation (CID), cysteine sulfenic methyl ester motif produces a signature methanol loss (-32 Da), allowing its identification from other possible isomeric structures such as S-hydroxylmethyl (-SCH2OH) and methyl sulfoxide (-S(O)-CH3). Since disulfide bond can be selectively cleaved and modified upon methoxy addition, subsequent MS(2) CID of the methoxy addition product provides enhanced sequence coverage as demonstrated by the analysis of bovine insulin. More importantly, this reaction does not induce disulfide scrambling, likely due to the fact that radical intermediates are not involved in the process. An approach based on methoxy addition followed by MS(3) CID has been developed for assigning disulfide linkage patterns in peptide disulfide regio-isomers. This methodology was successfully applied to characterizing peptide systems having two disulfide bonds and three disulfide linkage isomers: side-by-side, overlapped, and looped-within-a-loop configurations. Graphical Abstract ᅟ.

  13. Carbon disulfide assisted polymerization of benzene.

    PubMed

    Zhou, Mi; Li, Zhanlong; Men, Zhiwei; Gao, Shuqin; Li, Zuowei; Lu, Guohui; Sun, Chenglin

    2012-03-01

    The chemical transformation of benzene (C(6)H(6)) and carbon disulfide (CS(2)) binary solution under high pressure condition is investigated by means of Raman spectroscopy up to 6.8 GPa. On increasing the pressure, all the Raman bands of benzene decrease in intensity, whereas new broad bands start to be observed at 1520 and 1450 cm(-1), indicating that a highly cross-linked polymer is formed. The recovered sample is analyzed through Raman and FT-IR spectroscopy and is identified as a saturated hydrocarbon and element sulfur.

  14. A short history of structure based research on the photocycle of photoactive yellow protein

    PubMed Central

    Schmidt, Marius

    2017-01-01

    The goals of time-resolved macromolecular crystallography are to extract the molecular structures of the reaction intermediates and the reaction dynamics from time-resolved X-ray data alone. To develop the techniques of time-resolved crystallography, biomolecules with special properties are required. The Photoactive Yellow Protein is the most sparkling of these. PMID:28191482

  15. Photoactive terthiophenes: the influence of serum on anti-HIV (human immunodeficiency virus) activities.

    PubMed

    Hudson, J B; Marles, R J; Soucy-Breau, C; Harris, L; Arnason, J T

    1994-12-01

    A number of carboxylic acid derivatives of the photoactive terthiophene, alpha-terthienyl, were found to possess impressive UVA-dependent activity against the human immunodeficiency virus, HIV-1; but only when assayed in the absence of serum, indicating that the latter contained interfering components. Good antiviral activity required a high rate of singlet oxygen production, in accordance with previous observations on thiophenes.

  16. Semiconductor liquid junction photocell having a p-type photoactive electrode

    SciTech Connect

    Heller, A.; Lewerenz, H.J.; Miller, B.

    1982-08-10

    A semiconductor liquid junction photocell has a photovoltaic junction between a p-type photoactive electrode comprising InP or Si and an electrolyte comprising a redox couple selected from the group consisting of V2+/V3+, Nb4+/Nb5+, and Ti3+/Ti4+ produces a stable photocurrent output.

  17. Tungsten deposition by hydrogen-atom reaction with tungsten hexafluoride

    SciTech Connect

    Lee, W.W.

    1991-01-01

    Using gaseous hydrogen atoms with WF[sub 6], tungsten atoms can be produced in a gas-phase reaction. The atoms then deposit in a near-room temperature process, which results in the formation of tungsten films. The W atoms (10[sup 10]-10[sup 11]/cm[sup 3]) were measured in situ by atomic absorption spectroscopy during the CVD process. Deposited W films were characterized by Auger electron spectroscopy, Rutherford backscattering, and X-ray diffraction. The surface morphology of the deposited films and filled holes was studied using scanning electron microscopy. The deposited films were highly adherent to different substrates, such as Si, SiO[sub 2], Ti/Si, TiN/Si and Teflon. The reaction mechanism and kinetics were studied. The experimental results indicated that this method has three advantages compared to conventional CVD or PECVD: (1) film growth occurs at low temperatures; (2) deposition takes place in a plasma-free environment; and (3) a low level of impurities results in high-quality adherent films.

  18. Novel properties of Tungsten ditelluride

    NASA Astrophysics Data System (ADS)

    Liu, Huimei; National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Cent Collaboration

    Tungsten ditelluride has attracted intense research interest due to the recent discovery of its large unsaturated magnetoresistance up to 60 Tesla. By using density functional theory calculations, we qualitatively reproduced the observed spin texture. Since the spin texture would forbid back scatterings that are directly involved in the resistivity, we suggest that the SOC and the related spin and orbital angular momentum textures may play an important role in the anomalously large magnetoresistance of WTe2. Motivated by the presence of a small, sensitive Fermi surface of 5d electronic orbitals, we also boost the electronic properties by applying a high pressure, and introduce superconductivity successfully.

  19. The electron affinity of tungsten

    NASA Astrophysics Data System (ADS)

    Lindahl, A. O.; Andersson, P.; Diehl, C.; Forstner, O.; Klason, P.; Hanstorp, D.

    2010-11-01

    The electron affinity of tungsten has been measured using laser photodetachment threshold spectroscopy in a collinear geometry. The electron affinity was determined to 6583.6(6) cm-1 by observing the onset of the process when W- ions in the 5d^56s^2 6S5/2 ground state are photodetached producing neutral W atoms in the 5d^46s^2 5D0 ground state. The measured value is in agreement with previous measurements and improves the accuracy by almost two orders of magnitude. Further, a photodetachment signal below the ground state photodetachment threshold was found, which indicates the existence of a bound excited state in W-.

  20. Strengthening mechanisms of tungsten powder reinforced uranium

    SciTech Connect

    Lewis, M.A.K.; Hill, M.A.; Rollett, A.D.; Dunn, P.S.; Mortensen, A.; Massachusetts Inst. of Tech., Cambridge, MA )

    1989-01-01

    Tungsten powder reinforced uranium exhibits a three-fold increase in yield strength due to precipitation hardening. The tungsten-rich interphase precipitates form at moving phase boundaries during slow cooling. Further increases in yield strength, attained with increasing tungsten content, are due to composite strengthening; this is verified by increasing elastic modulus with increasing tungsten content. Age hardening behavior is observed, with strengthening occurring at aging temperatures low in the alpha phase. Aging higher in alpha gives initial strengthening followed by rapid overaging. Beta phase aging results in a very soft structure with precipitates visible optically. Wrought material exhibits significant strain hardening as well as composite strengthening due to elongation of the tungsten particles. 7 refs., 15 figs., 4 tabs.

  1. Converting a Sulfenic Acid Reductase into a Disulfide Bond Isomerase

    PubMed Central

    Chatelle, Claire; Kraemer, Stéphanie; Ren, Guoping; Chmura, Hannah; Marechal, Nils; Boyd, Dana; Roggemans, Caroline; Ke, Na; Riggs, Paul; Bardwell, James

    2015-01-01

    Abstract Aims: Posttranslational formation of disulfide bonds is essential for the folding of many secreted proteins. Formation of disulfide bonds in a protein with more than two cysteines is inherently fraught with error and can result in incorrect disulfide bond pairing and, consequently, misfolded protein. Protein disulfide bond isomerases, such as DsbC of Escherichia coli, can recognize mis-oxidized proteins and shuffle the disulfide bonds of the substrate protein into their native folded state. Results: We have developed a simple blue/white screen that can detect disulfide bond isomerization in vivo, using a mutant alkaline phosphatase (PhoA*) in E. coli. We utilized this screen to isolate mutants of the sulfenic acid reductase (DsbG) that allowed this protein to act as a disulfide bond isomerase. Characterization of the isolated mutants in vivo and in vitro allowed us to identify key amino acid residues responsible for oxidoreductase properties of thioredoxin-like proteins such as DsbC or DsbG. Innovation and Conclusions: Using these key residues, we also identified and characterized interesting environmental homologs of DsbG with novel properties, thus demonstrating the capacity of this screen to discover and elucidate mechanistic details of in vivo disulfide bond isomerization. Antioxid. Redox Signal. 23, 945–957. PMID:26191605

  2. Synthesis, structure and stability of novel dimeric peptide-disulfides.

    PubMed

    Leban, J J; Spaltenstein, A; Landavazo, A; Chestnut, W; Aulabaugh, A; Taylor, L C; Daniels, A J

    1996-03-01

    Oxidation of nonapeptide dithiol (2) with K3Fe(CN)6 leads to either monomeric disulfide (4) or antiparallel and parallel dimeric disulfides (3a and 3b) depending upon reaction conditions. When exposed to small amounts of thiols or cyanide in aqueous solution, these three species interconvert to an equilibrium mixture of 2:1:8 (3a:3b:4).

  3. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    NASA Astrophysics Data System (ADS)

    Riesch, J.; Han, Y.; Almanstötter, J.; Coenen, J. W.; Höschen, T.; Jasper, B.; Zhao, P.; Linsmeier, Ch; Neu, R.

    2016-02-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself.

  4. Photodecolorization of Rhodamine B on tungsten-doped TiO2/activated carbon under visible-light irradiation.

    PubMed

    Li, Youji; Zhou, Xiaoming; Chen, Wei; Li, Leiyong; Zen, Mengxiong; Qin, Shidong; Sun, Shuguo

    2012-08-15

    Tungsten-doped TiO(2)/activated carbon catalysts have been prepared by a supercritical-pretreatment-assisted sol-gel process. The structural features of the photocatalysts have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV/Vis diffuse-reflectance spectroscopy (DRS), electron dispersive X-ray (EDX), photoluminescence spectroscopy, and Brunauer-Emmett-Teller (BET) analysis. The results revealed that a W-TiO(2) layer was coated on the AC surface, and had higher surface area and smaller crystallite size than TiO(2)/AC obtained by a similar route. The W dopant was responsible for narrowing the band gap of TiO(2) and shifting its optical response from the ultraviolet (UV) to the visible-light region. The photocatalytic performances of the supported catalysts have been evaluated for the degradation of Rhodamine B (RhB) solution under visible-light irradiation. Compared with bulk W-TiO(2), the photoactivity was obviously enhanced when it was coated onto AC. In addition, it was found that the reactivity showed a significant relationship with the amount of W dopant, and the photoactivity order of the catalysts from weak to strong showed good agreement with their PL intensities. The effects of TiO(2) content, tungsten ion content, catalyst amount, pH, and initial RhB concentration have been examined as operational parameters. The photocatalytic reactions followed pseudo-first-order kinetics and are discussed in terms of the Langmuir-Hinshelwood model.

  5. Polycrystalline silicon on tungsten substrates

    NASA Technical Reports Server (NTRS)

    Bevolo, A. J.; Schmidt, F. A.; Shanks, H. R.; Campisi, G. J.

    1979-01-01

    Thin films of electron-beam-vaporized silicon were deposited on fine-grained tungsten substrates under a pressure of about 1 x 10 to the -10th torr. Mass spectra from a quadrupole residual-gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. During separate silicon depositions, the atomically clean substrates were maintained at various temperatures between 400 and 780 C, and deposition rates were between 20 and 630 A min. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry before and after cleaning, deposition, and annealing. Auger depth profiling, X-ray analysis, and SEM in the topographic and channeling modes were utilized to characterize the samples with respect to silicon-metal interface, interdiffusion, silicide formation, and grain size of silicon. The onset of silicide formation was found to occur at approximately 625 C. Above this temperature tungsten silicides were formed at a rate faster than the silicon deposition. Fine-grain silicon films were obtained at lower temperatures.

  6. Polycrystalline silicon on tungsten substrates

    NASA Technical Reports Server (NTRS)

    Bevolo, A. J.; Schmidt, F. A.; Shanks, H. R.; Campisi, G. J.

    1979-01-01

    Thin films of electron-beam-vaporized silicon were deposited on fine-grained tungsten substrates under a pressure of about 1 x 10 to the -10th torr. Mass spectra from a quadrupole residual-gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. During separate silicon depositions, the atomically clean substrates were maintained at various temperatures between 400 and 780 C, and deposition rates were between 20 and 630 A min. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry before and after cleaning, deposition, and annealing. Auger depth profiling, X-ray analysis, and SEM in the topographic and channeling modes were utilized to characterize the samples with respect to silicon-metal interface, interdiffusion, silicide formation, and grain size of silicon. The onset of silicide formation was found to occur at approximately 625 C. Above this temperature tungsten silicides were formed at a rate faster than the silicon deposition. Fine-grain silicon films were obtained at lower temperatures.

  7. Fracture behaviour of polycrystalline tungsten

    NASA Astrophysics Data System (ADS)

    Gaganidze, Ermile; Rupp, Daniel; Aktaa, Jarir

    2014-03-01

    Fracture behaviour of round blank polycrystalline tungsten was studied by means of three point bending Fracture-Mechanical (FM) tests at temperatures between RT and 1000 °C and under high vacuum. To study the influence of the anisotropic microstructure on the fracture toughness (FT) and ductile-to-brittle transition (DBT) the specimens were extracted in three different, i.e. longitudinal, radial and circumferential orientations. The FM tests yielded distinctive fracture behaviour for each specimen orientation. The crack propagation was predominantly intergranular for longitudinal orientation up to 600 °C, whereas transgranular cleavage was observed at low test temperatures for radial and circumferentially oriented specimens. At intermediate test temperatures the change of the fracture mode took place for radial and circumferential orientations. Above 800 °C all three specimen types showed large ductile deformation without noticeable crack advancement. For longitudinal specimens the influence of the loading rate on the FT and DBT was studied in the loading rate range between 0.06 and 18 MPa m1/2/s. Though an increase of the FT was observed for the lowest loading rate, no resolvable dependence of the DBT on the loading rate was found partly due to loss of FT validity. A Master Curve approach is proposed to describe FT vs. test temperature data on polycrystalline tungsten. Fracture safe design space was identified by analysis compiled FT data.

  8. Direct observation of disulfide isomerization in a single protein

    NASA Astrophysics Data System (ADS)

    Alegre-Cebollada, Jorge; Kosuri, Pallav; Rivas-Pardo, Jaime Andrés; Fernández, Julio M.

    2011-11-01

    Photochemical uncaging techniques use light to release active molecules from otherwise inert compounds. Here we expand this class of techniques by demonstrating the mechanical uncaging of a reactive species within a single protein. We proved this novel technique by capturing the regiospecific reaction between a thiol and a vicinal disulfide bond. We designed a protein that includes a caged cysteine and a buried disulfide. The mechanical unfolding of this protein in the presence of an external nucleophile frees the single reactive cysteine residue, which now can cleave the target disulfide via a nucleophilic attack on either one of its two sulfur atoms. This produces two different and competing reaction pathways. We used single-molecule force spectroscopy to monitor the cleavage of the disulfides, which extends the polypeptide by a magnitude unambiguously associated with each reaction pathway. This allowed us to measure, for the first time, the kinetics of disulfide-bond isomerization in a protein.

  9. Early events in the disulfide-coupled folding of BPTI.

    PubMed Central

    Bulaj, G.; Goldenberg, D. P.

    1999-01-01

    Recent studies of the refolding of reduced bovine pancreatic trypsin inhibitor (BPTI) have shown that a previously unidentified intermediate with a single disulfide is formed much more rapidly than any other one-disulfide species. This intermediate contains a disulfide that is present in the native protein (between Cys14 and 38), but it is thermodynamically less stable than the other two intermediates with single native disulfides. To characterize the role of the [14-38] intermediate and the factors that favor its formation, detailed kinetic and mutational analyses of the early disulfide-formation steps were carried out. The results of these studies indicate that the formation of [14-38] from the fully reduced protein is favored by both local electrostatic effects, which enhance the reactivities of the Cys14 and 38 thiols, and conformational tendencies that are diminished by the addition of urea and are enhanced at lower temperatures. At 25 degrees C and pH 7.3, approximately 35% of the reduced molecules were found to initially form the 14-38 disulfide, but the majority of these molecules then undergo intramolecular rearrangements to generate non-native disulfides, and subsequently the more stable intermediates with native disulfides. Amino acid replacements, other than those involving Cys residues, were generally found to have only small effects on either the rate of forming [14-38] or its thermodynamic stability, even though many of the same substitutions greatly destabilized the native protein and other disulfide-bonded intermediates. In addition, those replacements that did decrease the steady-state concentration of [14-38] did not adversely affect further folding and disulfide formation. These results suggest that the weak and transient interactions that are often detected in unfolded proteins and early folding intermediates may, in some cases, not persist or promote subsequent folding steps. PMID:10493584

  10. Environmental fate of tungsten from military use.

    PubMed

    Clausen, Jay L; Korte, Nic

    2009-04-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth--at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (<1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use.

  11. Chemical methods for producing disulfide bonds in peptides and proteins to study folding regulation.

    PubMed

    Okumura, Masaki; Shimamoto, Shigeru; Hidaka, Yuji

    2014-04-01

    Disulfide bonds play a critical role in the folding of secretory and membrane proteins. Oxidative folding reactions of disulfide bond-containing proteins typically require several hours or days, and numerous misbridged disulfide isomers are often observed as intermediates. The rate-determining step in refolding is thought to be the disulfide-exchange reaction from nonnative to native disulfide bonds in folding intermediates, which often precipitate during the refolding process because of their hydrophobic properties. To overcome this, chemical additives or a disulfide catalyst, protein disulfide isomerase (PDI), are generally used in refolding experiments to regulate disulfide-coupled peptide and protein folding. This unit describes such methods in the context of the thermodynamic and kinetic control of peptide and protein folding, including (1) regulation of disulfide-coupled peptides and protein folding assisted by chemical additives, (2) reductive unfolding of disulfide-containing peptides and proteins, and (3) regulation of disulfide-coupled peptide and protein folding using PDI.

  12. Fabrication and properties of tungsten heavy metal alloys containing 30% to 90% tungsten

    SciTech Connect

    Gurwell, W.E.; Nelson, R.G.; Dudder, G.B.; Davis, N.C.

    1984-09-01

    In 1983, Pacific Northwest Laboratory conducted a survey of tungsten heavy metal alloys having lower-than-normal (<90%) tungsten content. The purpose of the work was to develop tougher, more impact-resistant high-density alloys for applications benefitting from improved mechanical properties. Tungsten heavy metal alloys of 30 to 90% tungsten content were fabricated and their mechanical properties measured. Although ultimate strength was essentially independent of tungsten content, lower tungsten-content alloys had lower yield stress, hardness, and density, and decidedly higher elongations and impact energies. Cold work was effective in raising strength and hardness but detrimental to elongation and impact energies. Precipitation hardening and strain aging raised hardness effectively but had less influence on other mechanical properties. 34 figures, 7 tables.

  13. Non-selective tungsten chemical-vapor deposition using Tungsten hexacarbonyl

    SciTech Connect

    Creighton, J.R.

    1988-09-15

    We have used tungsten hexacarbonyl to deposit thin (<1000 A) non-selective tungsten films on silicon and silicon dioxide at 550/sup 0/C. Thicker (greater than or equal to1 micron) tungsten films were then deposited using film as an adhesion layer. Films grown in this manner have excellent adhesion to SiO/sub 2/, essentially 100% step coverage, and good resistivity (7.5--14 ..mu cap omega..-cm). Samples could be transferred under vacuum from the deposition chamber to a UHV chamber equipped with Auger spectroscopy, thus allowing surface and interface properties of the tungsten films to be studied at the initial stages of growth. No evidence was found for a stoichiometric tungsten oxide or tungsten silicide at the W/SiO/sub 2/ interface.

  14. Properties of tungsten-rhenium and tungsten-rhenium with hafnium carbide

    NASA Astrophysics Data System (ADS)

    Leonhardt, Todd

    2009-07-01

    Historically, tungsten-25wt.% rhenium alloy has been manufactured into wire for the thermocouple market, but recent demands for high-temperature structural components have forced the development of novel processing techniques for tungsten-rhenium and tungsten-rhenium with hafnium carbide. With a melting temperature of 3,050°C, and a recrystallization temperature near 1,900°C, tungsten-rhenium alloys are being used in aerospace, temperature measuring, and friction stir welding applications. The mechanical properties and microstructures of tungsten-25wt.% rhenium and tungsten-25wt.% rhenium with hafnium carbide are reported at ambient temperature, 1,371°C, and 1,926°C, after processing by three methods: hot isostatic pressing, swaging, and extrusion.

  15. Disulfide Linkage Characterization of Disulfide Bond-Containing Proteins and Peptides by Reducing Electrochemistry and Mass Spectrometry.

    PubMed

    Cramer, Christian N; Haselmann, Kim F; Olsen, Jesper V; Nielsen, Peter Kresten

    2016-02-02

    Unravelling of disulfide linkage patterns is a crucial part of protein characterization, whether it is for a previously uncharacterized protein in basic research or a recombinant pharmaceutical protein. In the biopharmaceutical industry, elucidation of the cysteine connectivities is a necessity to avoid disulfide scrambled and incorrectly folded forms in the final product. Mass spectrometry (MS) is a highly utilized analytical tool for this due to fast and accurate characterization. However, disulfide bonds being an additional covalent bond in the protein structure represent a challenge in protein sequencing by tandem MS (MS/MS). Electrochemical (EC) reduction of disulfide bonds has recently been demonstrated to provide efficient reduction efficiencies, significantly enhancing sequence coverages in online coupling with MS characterization. In this study, the potential use of EC disulfide reduction in combination with MS characterization for disulfide mapping was assessed. We employed two approaches based on (1) the high flexibility and instant information about the degree of reduction in infusion EC-MS to generate partially reduced species on the intact protein level and (2) the preserved link between parent disulfide-linked fragments and free reduced peptides in an LC-EC-MS platform of nonreduced proteolytic protein digestions. Here we report the successful use of EC as a partial reduction approach in mapping of disulfide bonds of intact human insulin (HI) and lysozyme. In addition, we established a LC-EC-MS platform advantageous in disulfide characterization of complex and highly disulfide-bonded proteins such as human serum albumin (HSA) by online EC reduction of nonreduced proteolytic digestions.

  16. High strength and density tungsten-uranium alloys

    DOEpatents

    Sheinberg, Haskell

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  17. Advances in rechargeable lithium molybdenum disulfide batteries

    NASA Technical Reports Server (NTRS)

    Brandt, K.; Stiles, J. A. R.

    1985-01-01

    The lithium molybdenum disulfide system as demonstrated in a C size cell, offers performance characteristics for applications where light weight and low volume are important. A gravimetric energy density of 90 watt hours per kilogram can be achieved in a C size cell package. The combination of charge retention capabilities, high energy density and a state of charge indicator in a rechargeable cell provides power package for a wide range of devices. The system overcomes the memory effect in Nicads where the full capacity of the battery cannot be utilized unless it was utilized on previous cycles. The development of cells with an advanced electrolyte formulation led to an improved rate capability especially at low temperatures and to a significantly improved life cycle.

  18. Molybdenum disulfide and water interaction parameters.

    PubMed

    Heiranian, Mohammad; Wu, Yanbin; Aluru, Narayana R

    2017-09-14

    Understanding the interaction between water and molybdenum disulfide (MoS2) is of crucial importance to investigate the physics of various applications involving MoS2 and water interfaces. An accurate force field is required to describe water and MoS2 interactions. In this work, water-MoS2 force field parameters are derived using the high-accuracy random phase approximation (RPA) method and validated by comparing to experiments. The parameters obtained from the RPA method result in water-MoS2 interface properties (solid-liquid work of adhesion) in good comparison to the experimental measurements. An accurate description of MoS2-water interaction will facilitate the study of MoS2 in applications such as DNA sequencing, sea water desalination, and power generation.

  19. Molybdenum disulfide and water interaction parameters

    NASA Astrophysics Data System (ADS)

    Heiranian, Mohammad; Wu, Yanbin; Aluru, Narayana R.

    2017-09-01

    Understanding the interaction between water and molybdenum disulfide (MoS2) is of crucial importance to investigate the physics of various applications involving MoS2 and water interfaces. An accurate force field is required to describe water and MoS2 interactions. In this work, water-MoS2 force field parameters are derived using the high-accuracy random phase approximation (RPA) method and validated by comparing to experiments. The parameters obtained from the RPA method result in water-MoS2 interface properties (solid-liquid work of adhesion) in good comparison to the experimental measurements. An accurate description of MoS2-water interaction will facilitate the study of MoS2 in applications such as DNA sequencing, sea water desalination, and power generation.

  20. Superconductivity in highly disordered dense carbon disulfide.

    PubMed

    Dias, Ranga P; Yoo, Choong-Shik; Struzhkin, Viktor V; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-07-16

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.

  1. Ultrafast response of monolayer molybdenum disulfide photodetectors

    PubMed Central

    Wang, Haining; Zhang, Changjian; Chan, Weimin; Tiwari, Sandip; Rana, Farhan

    2015-01-01

    The strong light emission and absorption exhibited by single atomic layer transitional metal dichalcogenides in the visible to near-infrared wavelength range make them attractive for optoelectronic applications. In this work, using two-pulse photovoltage correlation technique, we show that monolayer molybdenum disulfide photodetector can have intrinsic response times as short as 3 ps implying photodetection bandwidths as wide as 300 GHz. The fast photodetector response is a result of the short electron–hole and exciton lifetimes in this material. Recombination of photoexcited carriers in most two-dimensional metal dichalcogenides is dominated by nonradiative processes, most notable among which is Auger scattering. The fast response time, and the ease of fabrication of these devices, make them interesting for low-cost ultrafast optical communication links. PMID:26572726

  2. Mechanism of SN2 disulfide bond cleavage by phosphorus nucleophiles. Implications for biochemical disulfide reducing agents.

    PubMed

    Dmitrenko, Olga; Thorpe, Colin; Bach, Robert D

    2007-10-26

    The B3LYP variant of DFT has been used to study the mechanism of S-S bond scission in dimethyl disulfide by a phosphorus nucleophile, trimethylphospine (TMP). The reaction is highly endothermic in the gas phase and requires significant external stabilization of the charged products. DFT calculations (B3LYP) were performed with explicit (water molecules added) and implicit solvent corrections (COSMO model). The transition structures for this SN2 displacement reaction in a number of model systems have been located and fully characterized. The reaction barriers calculated with different approaches for different systems are quite close (around 11 kcal/mol). Remarkably, the calculations suggest that the reaction is almost barrierless with respect to the preorganized reaction complex and that most of the activation energy is required to rearrange the disulfide and TMP to its most effective orientation for the SMe group transfer way. Different reactivities of different phosphorus nucleophiles were suggested to be the result of steric effects, as manifested largely by varying amounts of hindrance to solvation of the initial product phosphonium ion. These data indicate that the gas-phase addition of a phosphine to the disulfide moiety will most likely form a phosphonium cation-thiolate anion salt, in the presence of four or more water molecules, that provide sufficient H-bonding stabilization to allow displacement of the thiolate anion, a normal uncomplicated SN2 transition state is to be expected.

  3. Excited States and Photochemistry of Chromophores in the Photoactive Proteins Explored by the Combined Quantum Mechanical and Molecular Mechanical Calculations.

    PubMed

    Liu, Lihong; Cui, Ganglong; Fang, Wei-Hai

    2015-01-01

    A photoactive protein usually contains a unique chromophore that is responsible for the initial photoresponse and functions of the photoactive protein are determined by the interaction between the chromophore and its protein surroundings. The combined quantum mechanical and molecular mechanical (QM/MM) approach is demonstrated to be a very useful tool for exploring structures and functions of a photoactive protein with the chromophore and its protein surroundings treated by the QM and MM methods, respectively. In this review, we summarize the basic formulas of the QM/MM approach and emphasize its applications to excited states and photoreactions of chromophores in rhodopsin protein, photoactive yellow protein, and green fluorescent protein. © 2015 Elsevier Inc. All rights reserved.

  4. Enzyme structure captures four cysteines aligned for disulfide relay

    PubMed Central

    Gat, Yair; Vardi-Kilshtain, Alexandra; Grossman, Iris; Major, Dan Thomas; Fass, Deborah

    2014-01-01

    Thioredoxin superfamily proteins introduce disulfide bonds into substrates, catalyze the removal of disulfides, and operate in electron relays. These functions rely on one or more dithiol/disulfide exchange reactions. The flavoenzyme quiescin sulfhydryl oxidase (QSOX), a catalyst of disulfide bond formation with an interdomain electron transfer step in its catalytic cycle, provides a unique opportunity for exploring the structural environment of enzymatic dithiol/disulfide exchange. Wild-type Rattus norvegicus QSOX1 (RnQSOX1) was crystallized in a conformation that juxtaposes the two redox-active di-cysteine motifs in the enzyme, presenting the entire electron-transfer pathway and proton-transfer participants in their native configurations. As such a state cannot generally be enriched and stabilized for analysis, RnQSOX1 gives unprecedented insight into the functional group environments of the four cysteines involved in dithiol/disulfide exchange and provides the framework for analysis of the energetics of electron transfer in the presence of the bound flavin adenine dinucleotide cofactor. Hybrid quantum mechanics/molecular mechanics (QM/MM) free energy simulations based on the X-ray crystal structure suggest that formation of the interdomain disulfide intermediate is highly favorable and secures the flexible enzyme in a state from which further electron transfer via the flavin can occur. PMID:24888638

  5. Composition of CVD tungsten silicides

    SciTech Connect

    Hara, T.; Takahashi, H.; Ishizawa, Y.

    1987-05-01

    The composition of tungsten silicide (WSi/sub x/) deposited by chemical vapor deposition on silicon and silicon dioxide substrates was studied. The composition x changed from 2.7 to 2.2 with varying WF/sub 6/ flow rate from 6 to 20 cm/sup 3//min in the deposition on silicon. When annealing was performed at 1000C, the dissociation of excess silicon occurred from the nonstoichiometric silicide in the layer on the silicon. As a result, the composition of each layer, which was different when deposited, tended toward the same composition of around 2.1. This result indicated the formation of near-stoichiometric silicide as a result of annealing.

  6. Tungsten wire for incandescent lamps

    SciTech Connect

    Walter, J.L.; Briant, C.L. )

    1990-09-01

    Tungsten wire for incandescent lamp filaments must operate at high temperatures and for long times. To meet these requirements, the grain morphology of the wire must be controlled to reduce the propensity for grain boundary sliding. The morphology is a function of the distribution of very small pockets of potassium in the wire and the mechanical processing from ingot to wire. The behavior of the filament is directly related to the grain morphology. This paper describes the mechanism by which the potassium is incorporated into and distributed in the ingot. The elongation and spheroidization of the bubbles during hot rolling and swaging is also examined and related to the grain morphology of wire. Some indications of the relationship between grain morphology and filament behavior are also given.

  7. Viscosity of liquid undercooled tungsten

    NASA Astrophysics Data System (ADS)

    Paradis, Paul-François; Ishikawa, Takehiko; Yoda, Shinichi

    2005-05-01

    Knowledge of the viscosity and its temperature dependence is essential to improve metallurgical processes as well as to validate theoretical and empirical models of liquid metals. However, data for metals with melting points above 2504K could not be determined yet due to contamination and containment problems. Here we report the viscosity of tungsten, the highest melting point metal (3695K), measured by a levitation technique. Over the 3350-3700-K temperature range, which includes the undercooled region by 345K, the viscosity data could be fitted as η(T )=0.108exp[1.28×105/(RT)](mPas). At the melting point, the datum agrees with the proposed theoretical and empirical models of liquid metals but presents atypical temperature dependence, suggesting a basic change in the mechanism of momentum transfer.

  8. Properties of tungsten and tungsten disilicide layers on Si(100) substrates

    NASA Astrophysics Data System (ADS)

    Cros, A.; Pierrisnard, R.; Pierre, F.; Layet, J. M.; Meyer, F.

    1989-09-01

    Tungsten layers have been evaporated on Si(100) surfaces under ultra high vacuum conditions. The tungsten is in the α phase. Before the disilicide formation (at ˜ 700°C), a low temperature (400°C) reaction has been observed. Si atoms segregate at the surface and do not form crystalline WSI 2 while the tungsten layer stays in the α phase. It is suggested that this low temperature reaction plays an important role in the roughness and the adhesion properties of the tungsten disilicide subsequently grown.

  9. Direct Electrochemical Preparation of Cobalt, Tungsten, and Tungsten Carbide from Cemented Carbide Scrap

    NASA Astrophysics Data System (ADS)

    Xiao, Xiangjun; Xi, Xiaoli; Nie, Zuoren; Zhang, Liwen; Ma, Liwen

    2017-02-01

    A novel process of preparing cobalt, tungsten, and tungsten carbide powders from cemented carbide scrap by molten salt electrolysis has been investigated in this paper. In this experiment, WC-6Co and NaCl-KCl salt were used as sacrificial anode and electrolyte, respectively. The dissolution potential of cobalt and WC was determined by linear sweep voltammetry to be 0 and 0.6 V ( vs Ag/AgCl), respectively. Furthermore, the electrochemical behavior of cobalt and tungsten ions was investigated by a variety of electrochemical techniques. Results of cyclic voltammetry (CV) and square-wave voltammetry show that the cobalt and tungsten ions existed as Co2+ and W2+ on melts, respectively. The effect of applied voltage, electrolysis current, and electrolysis times on the composition of the product was studied. Results showed that pure cobalt powder can be obtained when the electrolysis potential is lower than 0.6 V or during low current and short times. Double-cathode and two-stage electrolysis was utilized for the preparation of cobalt, tungsten carbide, and tungsten powders. Additionally, X-ray diffraction results confirm that the product collected at cathodes 1 and 2 is pure Co and WC, respectively. Pure tungsten powder was obtained after electrolysis of the second part. Scanning electron microscope results show that the diameters of tungsten, tungsten carbide, and cobalt powder are smaller than 100, 200, and 200 nm, respectively.

  10. Steric effects in peptide and protein exchange with activated disulfides.

    PubMed

    Kerr, Jason; Schlosser, Jessica L; Griffin, Donald R; Wong, Darice Y; Kasko, Andrea M

    2013-08-12

    Disulfide exchange is an important bioconjugation tool, enabling chemical modification of peptides and proteins containing free cysteines. We previously reported the synthesis of a macromer bearing an activated disulfide and its incorporation into hydrogels. Despite their ability to diffuse freely into hydrogels, larger proteins were unable to undergo in-gel disulfide exchange. In order to understand this phenomenon, we synthesized four different activated disulfide-bearing model compounds (Mn = 300 Da to 10 kDa) and quantified their rate of disulfide exchange with a small peptide (glutathione), a moderate-sized protein (β-lactoglobulin), and a large protein (bovine serum albumin) in four different pH solutions (6.0, 7.0, 7.4, and 8.0) to mimic biological systems. Rate constants of exchange depend significantly on the size and accessibility of the thiolate. pH also significantly affects the rate of reaction, with the faster reactions occurring at higher pH. Surprisingly, little difference in exchange rates is seen between macromolecular disulfides of varying size (Mn = 2 kDa - 10 kDa), although all undergo exchange more slowly than their small molecule analogue (MW = 300 g/mol). The maximum exchange efficiencies (% disulfides exchanged after 24 h) are not siginificantly affected by thiol size or pH, but somewhat affected by disulfide size. Therefore, while all three factors investigated (pH, disulfide size, and thiolate size) can influence the exchange kinetics and extent of reaction, the size of the thiolate and its accessibility plays the most significant role.

  11. Steric Effects in Peptide and Protein Exchange with Activated Disulfides

    PubMed Central

    Kerr, Jason; Schlosser, Jessica L.; Griffin, Donald R.; Wong, Darice Y.; Kasko, Andrea M.

    2014-01-01

    Disulfide exchange is an important bioconjugation tool, enabling chemical modification of peptides and proteins containing free cysteines. We previously reported the synthesis of a macromer bearing an activated disulfide and its incorporation into hydrogels. Despite their ability to diffuse freely into hydrogels, larger proteins were unable to undergo in-gel disulfide exchange. In order to understand this phenomenon, we synthesized four different activated disulfide-bearing model compounds (Mn = 300 Da-10 kDa) and quantified their rate of disulfide exchange with a small peptide (glutathione), a moderate-sized protein (β-lactoglobulin), and a large protein (bovine serum albumin) in four different pH solutions (6.0, 7.0, 7.4, and 8.0) to mimic biological systems. Rate constants of exchange depend significantly on the size and accessibility of the thiolate. pH also significantly affects the rate of reaction, with the faster reactions occurring at higher pH. Surprisingly, little difference in exchange rates is seen between macromolecular disulfides of varying size (Mn = 2 kDa – 10kDa), although all undergo exchange more slowly than their small molecule analogue (MW = 300 g/mol). The maximum exchange efficiencies (% disulfides exchanged after 24 h) are not siginificantly affected by thiol size or pH, but somewhat affected by disulfide size. Therefore, while all three factors investigated (pH, disulfide size and thiolate size) can influence the exchange kinetics and extent of reaction, the size of the thiolate and its accessibility plays the most significant role. PMID:23865598

  12. Solvent Effect on the Formation of Photoactive Thin Films for the Polymeric Solar Cells

    NASA Astrophysics Data System (ADS)

    Yusli, Mohd Nizam; Sulaiman, Khaulah

    2009-07-01

    This work investigates the influence of the solvent used on the morphology of polymer photoactive layer for solar cells. The photoactive layer consists a mixture of poly(3-hexylthiophene) (P3HT) and [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), to produce P3HT:PCBM (1:1 ratio) blend thin films, deposited by spin-coating technique of the materials solution. Two types of the solvents used namely; 100% dichlorobenzene (DCB) and 50%:50% cosolvent of DCB and chloroform. The morphological characterizations of P3HT:PCBM blend thin films have been carried out by UV-Visible absorption spectroscopy, X-ray diffraction (XRD) spectroscopy, and Atomic Force Microscopy (AFM). The results reveal that the mixtures of solvent give a better solubility than the pure single solvent. And thus, the choice of solvent used during the fabrication process can significantly affect the optical and morphological properties of the films.

  13. Photoactive Self-Shaping Hydrogels as Noncontact 3D Macro/Microscopic Photoprinting Platforms.

    PubMed

    Liao, Yue; An, Ning; Wang, Ning; Zhang, Yinyu; Song, Junfei; Zhou, Jinxiong; Liu, Wenguang

    2015-12-01

    A photocleavable terpolymer hydrogel cross-linked with o-nitrobenzyl derivative cross-linker is shown to be capable of self-shaping without losing its physical integrity and robustness due to spontaneous asymmetric swelling of network caused by UV-light-induced gradient cleavage of chemical cross-linkages. The continuum model and finite element method are used to elucidate the curling mechanism underlying. Remarkably, based on the self-changing principle, the photosensitive hydrogels can be developed as photoprinting soft and wet platforms onto which specific 3D characters and images are faithfully duplicated in macro/microscale without contact by UV light irradiation under the cover of customized photomasks. Importantly, a quick response (QR) code is accurately printed on the photoactive hydrogel for the first time. Scanning QR code with a smartphone can quickly connect to a web page. This photoactive hydrogel is promising to be a new printing or recording material.

  14. Fluorinated ethylene propylene copolymer coating for the stability enhancement of electroactive and photoactive systems

    NASA Astrophysics Data System (ADS)

    Zhao, Luping; Neoh, K. G.; Zhang, Yan; Kang, E. T.

    2003-11-01

    The effectiveness of radio frequency sputtered fluorinated ethylene propylene copolymer (FEP) for the stability enhancement of electroactive and photoactive systems was investigated. Two kinds of electroactive polymer systems, polyaniline (PANI) coated low density polyethylene (LDPE) film and PANI-viologen assembly, were tested. In both cases, a sputtered FEP coating of <10 nm in thickness significantly enhanced the electrical stability of the films in water. The enhancement of the electrical stability of the PANI-LDPE film was also achieved in basic aqueous solution of pH up to 12 with a FEP coating of 40-50 nm in thickness. The deposition of a FEP coating on the photoactive viologen system (viologen grafted on LDPE film) prolonged its photochromic effect by inhibiting the diffusion of oxygen, and hence the reoxidation of the highly colored viologen radical cations to the dication state.

  15. Photoactivity and stability of Ag2WO4 for organic degradation in aqueous suspensions

    NASA Astrophysics Data System (ADS)

    Chen, Haihang; Xu, Yiming

    2014-11-01

    Silver tungstate as photocatalyst for water splitting and dye degradation has been reported, but the catalyst stability is not known. In this work, we find that both α- and β-Ag2WO4 are not stable under UV light for the photocatalytic degradation of phenol and azo-dye X3B in aqueous solutions. Comparatively, β-Ag2WO4 was more photoactive, but less stable than α-Ag2WO4. Solid characterization with X-ray diffraction and scanning electron microscope showed that metallic silver particles were produced with the two catalysts, consequently resulting into decrease in the activity for organic degradation. Measurement of photoluminescence revealed that β-Ag2WO4 had a weaker band gap emission and higher portion of structural defects than α-Ag2WO4. A possible mechanism responsible for the observed difference in photoactivity and stability between the two tungstates is proposed.

  16. Low-Temperature Curable Photo-Active Anisotropic Conductive Films (PA-ACFs)

    NASA Astrophysics Data System (ADS)

    Kim, Il; Paik, Kyung-Wook

    2014-09-01

    Photo-active anisotropic conductive films (PA-ACFs) with curing temperatures below 120°C were introduced using photo-active curing agents. The PA-ACFs showed no curing before UV activation, and the crosslinking systems of the PA-ACFs were not activated under fluorescent light exposure. However, after UV activation, the PA-ACFs were completely cured at 120°C within 10 s. Flex-on-board (FOB) assembly using PA-ACFs had adhesion strength and joint resistances similar to those of the FOB assemblies using conventional epoxy-based ACFs. This study demonstrates that PA-ACFs provide reliable interconnection and minimal thermal deformation among all the commercially available ACFs, especially for low T g substrate applications.

  17. Chemical shift and coupling constant analysis of dibenzyloxy disulfides

    NASA Astrophysics Data System (ADS)

    Stoutenburg, Eric G.; Gryn'ova, Ganna; Coote, Michelle L.; Priefer, Ronny

    2015-02-01

    Dialkoxy disulfides have found applications in the realm of organic synthesis as an S2 or alkoxy donor, under thermal and photolytic decompositions conditions, respectively. Spectrally, dibenzyloxy disulfides possess an ABq in the 1H NMR, which can shift by over 1.1 ppm depending on the substituents present on the aromatic ring, as well as the solvent employed. The effect of the said substituents and solvent were analyzed and compared to the center of the ABq, geminal coupling, and the differences in chemical shifts of the individual doublets. Additionally, quantum-chemical calculations demonstrated the intramolecular H-bonding arrangement, found within the dibenzyloxy disulfides.

  18. Protein disulfide isomerase a multifunctional protein with multiple physiological roles

    NASA Astrophysics Data System (ADS)

    Ali Khan, Hyder; Mutus, Bulent

    2014-08-01

    Protein disulfide isomerase (PDI), is a member of the thioredoxin superfamily of redox proteins. PDI has three catalytic activities including, thiol-disulfide oxireductase, disulfide isomerase and redox-dependent chaperone. Originally, PDI was identified in the lumen of the endoplasmic reticulum and subsequently detected at additional locations, such as cell surfaces and the cytosol. This review will provide an overview of the recent advances in relating the structural features of PDI to its multiple catalytic roles as well as its physiological and pathophysiological functions related to redox regulation and protein folding.

  19. Selective reduction of the disulfide bonds of ovine placental lactogen.

    PubMed

    Caridad, J J; Wolfenstein-Todel, C

    1988-01-01

    Reduction and carbamidomethylation of two of the three disulfide bridges of ovine placental lactogen was accomplished by the use of 20-fold molar excess of dithiothreitol over protein disulfide content. The derivative retained its binding capacity to somatogenic as well as lactogenic rat liver receptors, although the latter was somewhat diminished. The two disulfide bonds exposed to the reducing agent are those located near the carboxy- and amino-terminus, while the larger loop remained intact after reduction. This behaviour is similar to that of bovine growth hormone, where the larger loop was also more resistant to reduction.

  20. Catalysis of Protein Disulfide Bond Isomerization in a Homogeneous Substrate†

    PubMed Central

    Kersteen, Elizabeth A.; Barrows, Seth R.; Raines, Ronald T.

    2008-01-01

    Protein disulfide isomerase (PDI) catalyzes the rearrangement of nonnative disulfide bonds in the endoplasmic reticulum of eukaryotic cells, a process that often limits the rate at which polypeptide chains fold into a native protein conformation. The mechanism of the reaction catalyzed by PDI is unclear. In assays involving protein substrates, the reaction appears to involve the complete reduction of some or all of its nonnative disulfide bonds followed by oxidation of the resulting dithiols. The substrates in these assays are, however, heterogeneous, which complicates mechanistic analyses. Here, we report the first analysis of disulfide bond isomerization in a homogeneous substrate. Our substrate is based on tachyplesin I, a 17-mer peptide that folds into a _-hairpin stabilized by two disulfide bonds. We describe the chemical synthesis of a variant of tachyplesin I in which its two disulfide bonds are in a nonnative state and side chains near its N-and C-terminus contain a fluorescence donor (tryptophan) and acceptor (N_-dansyllysine). Fluorescence resonance energy transfer from 280 to 465 nm increases by 28-fold upon isomerization of the disulfide bonds into their native state (which has a lower E°_ = -0.313 V than does PDI). We use this continuous assay to analyze catalysis by wild-type human PDI and a variant in which the C-terminal cysteine residue within each Cys—Gly—His—Cys active site is replaced with alanine. We find that wild-type PDI catalyzes the isomerization of the substrate with kcat/KM = 1.7 _ 105 M–1M s–1, which is the largest value yet reported for catalysis of disulfide bond isomerization. The variant, which is a poor catalyst of disulfide bond reduction and dithiol oxidation, retains virtually all of the activity of wild-type PDI in catalysis of disulfide bond isomerization. Thus, the C-terminal cysteine residues play an insignificant role in the isomerization of the disulfide bonds in nonnative tachyplesin I. We conclude that

  1. Radical cations of sulfides and disulfides: An ESR study

    SciTech Connect

    Bonazzola, L.; Michaut, J.P.; Roncin, J.

    1985-09-15

    Exposure of dilute solutions of dimethylsulfide, methanethiol, tetrahydrothiophene, terbutyl and diterbutyl-sulfides, dimethyl-disulfide, and diterbutyldisulfide, in freon at 77 K to /sup 60/Co ..gamma.. rays gave the corresponding cations. From the reported ESR spectra, g tensors were obtained. It was found that both sulfide and disulfide cations exhibit the same g tensor: (g/sub max/ = 2.034 +- 0.002, g/sub int/ = 2.017 +- 0.001, g/sub min/ = 2.001 +- 0.005). From this result it has been shown that the disulfide cation is planar. This finding was supported by fully optimized geometry ab initio calculations.

  2. Chiral Hydrogen Bond Environment Providing Unidirectional Rotation in Photoactive Molecular Motors.

    PubMed

    García-Iriepa, Cristina; Marazzi, Marco; Zapata, Felipe; Valentini, Alessio; Sampedro, Diego; Frutos, Luis Manuel

    2013-05-02

    Generation of a chiral hydrogen bond environment in efficient molecular photoswitches is proposed as a novel strategy for the design of photoactive molecular motors. Here, the following strategy is used to design a retinal-based motor presenting singular properties: (i) a single excitation wavelength is needed to complete the unidirectional rotation process (360°); (ii) the absence of any thermal step permits the process to take place at low temperatures; and (iii) the ultrafast process permits high rotational frequencies.

  3. One-pot Synthesis of Soluble Nanoscale CIGS Photoactive Functional Materials

    PubMed Central

    2008-01-01

    Promising alternatives for solar energy utilization are thin film technologies involving various new materials. This contribution describes an easy and inexpensive synthetic method that can be used to prepare soluble nanoscale triphenyl phosphine-coordinated CIGS (TPP-CIGS) photoactive functional materials. This complex is stable in the solid state under the irradiation of the ambient light, but its solution becomes a little bit unstable under the illumination of the low intensity laser. PMID:21777488

  4. One-pot Synthesis of Soluble Nanoscale CIGS Photoactive Functional Materials.

    PubMed

    Lin, Ying; Chen, Yu; Feng, Miao; Yan, Aixia; Zhuang, Xiaodong

    2007-12-04

    Promising alternatives for solar energy utilization are thin film technologies involving various new materials. This contribution describes an easy and inexpensive synthetic method that can be used to prepare soluble nanoscale triphenyl phosphine-coordinated CIGS (TPP-CIGS) photoactive functional materials. This complex is stable in the solid state under the irradiation of the ambient light, but its solution becomes a little bit unstable under the illumination of the low intensity laser.

  5. Visualization of Gas Tungsten Arc Weld Pools

    DTIC Science & Technology

    1991-09-01

    flow visualization of Gas Tungsten Arc weld pools for HY-80 steel is presented using a pulsed laser light source and a conventional night~vision...visualization of Gas Tungsten Arc weld pools for HY-80 steel is presented using a pulsed laser light source and a conventional night-vision image-intensifier...effects of electromagnetic stirring on GTA welds in austenitic stainless steel . Changes in shape and solidification structure of welds observed

  6. International strategic mineral issues summary report: tungsten

    USGS Publications Warehouse

    Werner, Antony B.T.; Sinclair, W. David; Amey, Earle B.

    1998-01-01

    In 1995, China and the former Soviet Union accounted for over three-fourths of the world's mine production of tungsten. China alone produced about two-thirds of world output. Given its vast resources, China will likely maintain its prominent role in world tungsten supply. By the year 2020, changes in supply patterns are likely to result from declining output from individual deposits in Australia, Austria, and Portugal and the opening of new mines in Canada, China, and the United Kingdom.

  7. Speciation and Geochemistry of Tungsten in Soil

    DTIC Science & Technology

    2006-11-01

    sodium tungstate dihydrate was purchased from Sigma Aldrich (St. Louis, MO) and Alfa Aesar (Ward Hill, MA), respectively. Single element and mixed...yielding an amorphous tungsten oxide (WO3) coating. This coating rapidly dissolves to yield the tungstate anion (WO42-), which can migrate in...well characterized. Tungsten exists in most environmental matrices as the soluble and mobile tungstate anion, which can polymerize with itself and

  8. Strain aging in tungsten heavy alloys

    SciTech Connect

    Dowding, R.J.; Tauer, K.J. . Materials Technology Lab.)

    1991-01-01

    This paper reports on tungsten heavy alloys which are two-phase mixtures of body center cubic (BCC) tungsten surrounded by a face center cubic (FCC) matrix. The matrix is most often composed of nickel and iron in a ratio of 70:30 but, occasionally, the matrix may also contain cobalt or copper. Nickel, however, is always the primary matrix component. The tungsten heavy alloy is fabricated through powder metallurgy techniques. Elemental powders are blended, pressed to shape, and sintered. Depending upon the tungsten content, the sintering temperatures are usually in the range of 1450{degrees}C to 1525{degrees}C. These temperatures are high enough that, as a result, the matrix is at the liquid phase and the process is known as liquid phase sintering. At the liquid phase temperature, the matrix becomes saturated with tungsten, but this does not change the FCC character of the matrix. The sintering is usually done in a hydrogen atmosphere furnace in order to reduce the oxides on the tungsten powder surfaces and create clean, active surfaces which will enhance the adherence between the tungsten and the matrix. The hydrogen atmosphere also creates the presence of excess dissolved hydrogen in the alloy. It has been shown that the hydrogen degrades the toughness and ductility of the heavy alloy. A post-sintering vacuum heat treatment is generally required to insure that there is no residual hydrogen present. The as-sintered tensile strength of a 90% tungsten, 7% nickel, 3% iron alloy (90W) is in the range of 800 to 940 MPa and can be increased significantly by cold working, usually rolling or swaging. Swaging to reductions in area of 20% can result in tensile strengths of 1250 MPa or more. As the strength increases, the elongation, which may have been 30% or more, decreases to less than 5%.

  9. 21 CFR 520.1802a - Piperazine-carbon disulfide complex suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Piperazine-carbon disulfide complex suspension... § 520.1802a Piperazine-carbon disulfide complex suspension. (a) Specifications. Each fluid ounce of suspension contains 7.5 grams of piperazine-carbon disulfide complex. The piperazine-carbon disulfide...

  10. 21 CFR 520.1802a - Piperazine-carbon disulfide complex suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Piperazine-carbon disulfide complex suspension... § 520.1802a Piperazine-carbon disulfide complex suspension. (a) Specifications. Each fluid ounce of suspension contains 7.5 grams of piperazine-carbon disulfide complex. The piperazine-carbon disulfide...

  11. 21 CFR 520.1802a - Piperazine-carbon disulfide complex suspension.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Piperazine-carbon disulfide complex suspension... § 520.1802a Piperazine-carbon disulfide complex suspension. (a) Specifications. Each fluid ounce of suspension contains 7.5 grams of piperazine-carbon disulfide complex. The piperazine-carbon disulfide...

  12. 21 CFR 520.1802a - Piperazine-carbon disulfide complex suspension.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Piperazine-carbon disulfide complex suspension... § 520.1802a Piperazine-carbon disulfide complex suspension. (a) Specifications. Each fluid ounce of suspension contains 7.5 grams of piperazine-carbon disulfide complex. The piperazine-carbon disulfide...

  13. 21 CFR 520.1802a - Piperazine-carbon disulfide complex suspension.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Piperazine-carbon disulfide complex suspension... § 520.1802a Piperazine-carbon disulfide complex suspension. (a) Specifications. Each fluid ounce of suspension contains 7.5 grams of piperazine-carbon disulfide complex. The piperazine-carbon disulfide...

  14. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    PubMed Central

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  15. Tungsten targets the tumor microenvironment to enhance breast cancer metastasis.

    PubMed

    Bolt, Alicia M; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients' years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans.

  16. A Potent, Versatile Disulfide-Reducing Agent from Aspartic Acid

    PubMed Central

    2013-01-01

    Dithiothreitol (DTT) is the standard reagent for reducing disulfide bonds between and within biological molecules. At neutral pH, however, >99% of DTT thiol groups are protonated and thus unreactive. Herein, we report on (2S)-2-amino-1,4-dimercaptobutane (dithiobutylamine or DTBA), a dithiol that can be synthesized from l-aspartic acid in a few high-yielding steps that are amenable to a large-scale process. DTBA has thiol pKa values that are ∼1 unit lower than those of DTT and forms a disulfide with a similar E°′ value. DTBA reduces disulfide bonds in both small molecules and proteins faster than does DTT. The amino group of DTBA enables its isolation by cation-exchange and facilitates its conjugation. These attributes indicate that DTBA is a superior reagent for reducing disulfide bonds in aqueous solution. PMID:22353145

  17. Improved molybdenum disulfide-silver motor brushes have extended life

    NASA Technical Reports Server (NTRS)

    Horton, J. C.; King, H. M.

    1964-01-01

    Motor brushes of proper quantities of molybdenum disulfide and copper or silver are manufactured by sintering techniques. Graphite molds are used. These brushes operate satisfactorily for long periods in normal atmosphere or in a high-vacuum environment.

  18. Association of thiol disulfide homeostasis with slow coronary flow.

    PubMed

    Kundi, Harun; Gok, Murat; Cetin, Mustafa; Kiziltunç, Emrullah; Topcuoglu, Canan; Neşelioğlu, Salim; Erel, Ozcan; Ulusoy, Feridun Vasfi

    2016-08-01

    Objective The aim of this study was to investigate the role of thiol disulfide homeostasis in the presence of slow coronary flow. Material and methods In this cross-sectional study, a total of 110 patients who admitted to our hospital between March 2014 and December 2015 were included in the study. There were 65 patients in the slow coronary flow, and 45 patients in the normal flow groups. Results We found significant differences between slow coronary flow and the normal flow groups for thiol disulfide homeostasis, and the results of our study indicated that hsCRP, and thiol disulfide ratio were independently associated with slow coronary flow. Conclusion Our study showed that thiol disulfide homeostasis was significantly and independently related to the presence of slow coronary flow.

  19. Transfer-Free Growth of Atomically Thin Transition Metal Disulfides Using a Solution Precursor by a Laser Irradiation Process and Their Application in Low-Power Photodetectors.

    PubMed

    Huang, Chi-Chih; Medina, Henry; Chen, Yu-Ze; Su, Teng-Yu; Li, Jian-Guang; Chen, Chia-Wei; Yen, Yu-Ting; Wang, Zhiming M; Chueh, Yu-Lun

    2016-04-13

    Although chemical vapor deposition is the most common method to synthesize transition metal dichalcogenides (TMDs), several obstacles, such as the high annealing temperature restricting the substrates used in the process and the required transfer causing the formation of wrinkles and defects, must be resolved. Here, we present a novel method to grow patternable two-dimensional (2D) transition metal disulfides (MS2) directly underneath a protective coating layer by spin-coating a liquid chalcogen precursor onto the transition metal oxide layer, followed by a laser irradiation annealing process. Two metal sulfides, molybdenum disulfide (MoS2) and tungsten disulfide (WS2), are investigated in this work. Material characterization reveals the diffusion of sulfur into the oxide layer prior to the formation of the MS2. By controlling the sulfur diffusion, we are able to synthesize continuous MS2 layers beneath the top oxide layer, creating a protective coating layer for the newly formed TMD. Air-stable and low-power photosensing devices fabricated on the synthesized 2D WS2 without the need for a further transfer process demonstrate the potential applicability of TMDs generated via a laser irradiation process.

  20. Heterogeneous catalytic conversion of dialkyl disulfides into alkanethiols

    SciTech Connect

    Mashkina, A.V.; Borodin, B.P.; Mashkin, V.Y.

    1995-03-01

    The decomposition of dimethyl and diethyl disulfides on solid catalysts at elevated temperatures in a He or H{sub 2}S medium results mainly in the formation of alkanethiols. The reaction is supposed to involve the donor-acceptor interaction of the sulfur atom of the disulfide with the acid center of the catalyst with the subsequent rupture of S-S bonds and the formation of RS groups at the surface, which interact with surface protons.

  1. Electronic Transitions of Tungsten Monosulfide

    NASA Astrophysics Data System (ADS)

    Tsang, L. F.; Chan, Man-Chor; Zou, Wenli; Cheung, Allan S. C.

    2017-06-01

    Electronic transition spectrum of the tungsten monosulfide (WS) molecule in the near infrared region between 725 nm and 885 nm has been recorded using laser ablation/reaction free-jet expansion and laser induced fluorescence spectroscopy. The WS molecule was produced by reacting laser - ablated tungsten atoms with 1% CS_{2} seeded in argon. Fifteen vibrational bands with resolved rotational structure have been recorded and analyzed, which were organized into seven electronic transition systems. The ground state has been identified to be the X^{3}Σ^{-}(0^{+}) state, and the determined vibrational frequency, ΔG_{1/2} and bond length, r_{0}, are respectively 556.7 cm^{-1} and 2.0676 Å. In addition, vibrational bands belong to another transition system involving lower state with Ω = 1 component have also been analyzed. Least-squares fit of the measured line positions yielded molecular constants for the electronic states involved. The low-lying Λ-S states and Ω sub-states of WS have been calculated using state-averaged complete active space self-consistent field (SA-CASSCF) and followed by MRCISD+Q (internally contracted multi-reference configuration interaction with singles and doubles plus Davidson's cluster correction). The active space consists of 10 electrons in 9 orbitals corresponding to the W 5d6s and S 3p shells. The lower molecular orbitals from W 5s5p and S 3s are inactive but are also correlated, and relativistic effective core potential (RECPs) are adopted to replace the core orbitals with 60 (W) and 10 (S) core electrons, respectively. Spin-orbit coupling (SOC) is calculated via the state-interaction (SI) approach with RECP spin-orbit operators using SA-CASSCF wavefunctions, where the diagonal elements in the SOC matrix are replaced by the corresponding MRCISD+Q energies calculated above. Spectroscopic constants and potential energy curves of the ground and many low-lying Λ-S states and Ω sub-states of the WS molecule are obtained. The calculated

  2. Regulation of a Phage Endolysin by Disulfide Caging ▿

    PubMed Central

    Kuty, Gabriel F.; Xu, Min; Struck, Douglas K.; Summer, Elizabeth J.; Young, Ry

    2010-01-01

    In contrast to canonical phage endolysins, which require holin-mediated disruption of the membrane to gain access to attack the cell wall, signal anchor release (SAR) endolysins are secreted by the host sec system, where they accumulate in an inactive form tethered to the membrane by their N-terminal SAR domains. SAR endolysins become activated by various mechanisms upon release from the membrane. In its inactive form, the prototype SAR endolysin, LyzP1, of coliphage P1, has an active-site Cys covalently blocked by a disulfide bond; activation involves a disulfide bond isomerization driven by a thiol in the newly released SAR domain, unblocking the active-site Cys. Here, we report that Lyz103, the endolysin of Erwinia phage ERA103, is also a SAR endolysin. Although Lyz103 does not have a catalytic Cys, genetic evidence suggests that it also is activated by a thiol-disulfide isomerization triggered by a thiol in the SAR domain. In this case, the inhibitory disulfide in nascent Lyz103 is formed between cysteine residues flanking a catalytic glutamate, caging the active site. Thus, LyzP1 and Lyz103 define subclasses of SAR endolysins that differ in the nature of their inhibitory disulfide, and Lyz103 is the first enzyme found to be regulated by disulfide bond caging of its active site. PMID:20833810

  3. Influence of disulfide density and molecular weight on disulfide cross-linked polyethylenimine as gene vectors.

    PubMed

    Peng, Qi; Hu, Chu; Cheng, Juan; Zhong, Zhenlin; Zhuo, Renxi

    2009-02-01

    Disulfide cross-linked polyethylenimines (PEI(X)-SS(Y), where X refers to the molecular weight of raw PEI, and Y refers to the thiolation degree) were prepared in two steps: First, thiol groups were introduced on a raw polyethylenimine (PEI) by the amine-induced ring-opening reaction of thiirane. Second, thiol groups were oxidized by DMSO to form the disulfide cross-links. The cross-linked PEI(800)-SS(Y) polymers with a moderate thiolation degree (PEI(800)-SS(2.6,) PEI(800)-SS(3.5), and PEI(800)-SS(4.5)) could form compact polyplexes with a size of 200-300 nm at an adequate N/P ratio. In contrast, those with a too low or too high thiolation degree (Y below 2.6 or above 4.5) formed much looser polyplexes with a size above 600 nm. The polyplexes of PEI(X)-SS(3.0-4.0) series (X = 800, 1800, and 25,000) formed small particles with a size below 400 nm at a wide range of N/P ratios. Efficiency of the cross-linked PEIs as gene vectors was evaluated in vitro by transfection of pGL3 to HeLa, COS7, 293T, and CHO cells. The efficiency is disulfide content and molecular weight dependent. The PEI(800)-SS(Y) series with an adequate thiolation degree between 2.6 and 4.5 have relatively lower cytotoxicity and higher gene transfection efficiency than 25 KDa PEI. The polymers with very low or very high thiolation degrees were unable to form compact polyplexes and had very poor transfection efficiency. A suitable molecular weight of raw PEI is also essential to obtain a highly efficient disulfide cross-linked PEI gene vector. Among the three raw PEIs of different molecular weights tested (800 Da, 1800 Da, and 25 KDa), the cross-linked polymer prepared from 800 Da PEI that has the lowest molecular weight gave the best results.

  4. Atomic scale calculations of tungsten surface binding energy and beryllium-induced tungsten sputtering

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Hassanein, Ahmed

    2014-02-01

    Tungsten surface binding energy is calculated using classical molecular dynamic simulations with three many-body potentials. We present the consistency in tungsten sputtering yield by beryllium bombardment between molecular dynamic LAMMPS code and binary collision approximation ITMC code using the new surface binding energy (11.75 eV). The commonly used heat of sublimation value (8.68 eV) could lead to overestimated sputtering yield results. The analysis of the sputtered tungsten angular distributions show that molecular dynamic accurately reproduced the [1 1 1] most prominent preferential ejection directions in bcc tungsten, while the distinct shapes by typical MC codes such as ITMC code is caused by the treatment of amorphous target. The ITMC calculated emitted tungsten energy profile matches the Thompson energy spectrum, while the molecular dynamic results generally follow the Falcone energy spectrum.

  5. Monoclonal antibody disulfide reduction during manufacturing

    PubMed Central

    Hutterer, Katariina M.; Hong, Robert W.; Lull, Jonathon; Zhao, Xiaoyang; Wang, Tian; Pei, Rex; Le, M. Eleanor; Borisov, Oleg; Piper, Rob; Liu, Yaoqing Diana; Petty, Krista; Apostol, Izydor; Flynn, Gregory C.

    2013-01-01

    Manufacturing-induced disulfide reduction has recently been reported for monoclonal human immunoglobulin gamma (IgG) antibodies, a widely used modality in the biopharmaceutical industry. This effect has been tied to components of the intracellular thioredoxin reduction system that are released upon cell breakage. Here, we describe the effect of process parameters and intrinsic molecule properties on the extent of reduction. Material taken from cell cultures at the end of production displayed large variations in the extent of antibody reduction between different products, including no reduction, when subjected to the same reduction-promoting harvest conditions. Additionally, in a reconstituted model in which process variables could be isolated from product properties, we found that antibody reduction was dependent on the cell line (clone) and cell culture process. A bench-scale model using a thioredoxin/thioredoxin reductase regeneration system revealed that reduction susceptibility depended on not only antibody class but also light chain type; the model further demonstrates that the trend in reducibility was identical to DTT reduction sensitivity following the order IgG1λ > IgG1κ > IgG2λ > IgG2κ. Thus, both product attributes and process parameters contribute to the extent of antibody reduction during production. PMID:23751615

  6. Penicillamine disulfide (PNS) and alkaline cations.

    PubMed

    Apruzzese, Fabrizio; Bottari, Emilio; Festa, Maria Rosa

    2004-01-01

    D-penicillamine disulfide (PNS) shows protolytic properties and is able to form complexes with cations, because it has two aminic groups and two carboxylic groups. The four protonation constants of its deprotonated species were determined by means of electromotive force (e.m.f.) measurements of a galvanic cell involving a glass electrode at 25 degrees C and in a constant ionic medium constituted by N(CH3)4Cl 3.00 or 1.00 mol dm-3. At 25 degrees C and in 3.00 mol dm-3 N(CH3)4Cl as ionic medium, equilibria taking place between PNS and lithium, sodium and potassium ions were investigated. Experimental data, again obtained from e.m.f. measurements, were explained by assuming the formation of species of the type MH2PNS ed M2H2PNS, where M indicates a cation. Stability constants for each proposed species were calculated. A comparison with cystine is discussed.

  7. Ordered mesoporous tungsten suboxide counter electrode for highly efficient iodine-free electrolyte-based dye-sensitized solar cells.

    PubMed

    Jeong, Inyoung; Jo, Changshin; Anthonysamy, Arockiam; Kim, Jung-Min; Kang, Eunae; Hwang, Jongkook; Ramasamy, Easwaramoorthi; Rhee, Shi-Woo; Kim, Jin Kon; Ha, Kyoung-Su; Jun, Ki-Won; Lee, Jinwoo

    2013-02-01

    A disulfide/thiolate (T(2)/T(-)) redox-couple electrolyte, which is a promising iodine-free electrolyte owing to its transparent and noncorrosive properties, requires alternative counter-electrode materials because conventional Pt shows poor catalytic activity in such an electrolyte. Herein, ordered mesoporous tungsten suboxide (m-WO(3-x)), synthesized by using KIT-6 silica as a hard template followed by a partial reduction, is used as a catalyst for a counter electrode in T(2)/T(-)-electrolyte-based dye-sensitized solar cells (DSCs). The mesoporous tungsten suboxide, which possesses interconnected pores of 4 and 20 nm, provides a large surface area and efficient electrolyte penetration into the m-WO(3-x) pores. In addition to the advantages conferred by the mesoporous structure, partial reduction of tungsten oxide creates oxygen vacancies that can function as active catalytic sites, which causes a high electrical conductivity because of intervalence charge transfer between the W(5+) and W(6+) ions. m-WO(3-x) shows a superior photovoltaic performance (79 % improvement in the power conversion efficiency) over Pt in the T(2)/T(-) electrolyte. The superior catalytic activity of m-WO(3-x) is investigated by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Tafel polarization curve analysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A mechanism for selectivity loss during tungsten CVD

    SciTech Connect

    Creighton, J.R.

    1989-01-01

    The authors have investigated possible mechanisms for the loss of selectivity (i.e., deposition on silicon dioxide) during tungsten CVD by reduction of tungsten hexafluoride and found strong evidence that selectivity loss is initiated by desorption of tungsten subfluorides formed by the reaction of WF/sub 6/ with metallic tungsten surfaces. Adsorption and disproportionation of the tungsten subfluorides on the silicon dioxide surface produces a reactive state of tungsten that can lead directly to selectivity loss. The key feature of the experimental setup is the ability to independently heat a tungsten foil and a nearby oxide-covered silicon sample in the presence of tungsten hexafluoride. With the tungsten foil at 600/sup 0/C and the SiO/sub 2//Si sample at --30/sup 0/C under a WF/sub 6/ ambient, a tungsten subfluoride was found to deposit on the SiO/sub 2/ surface. Auger electron spectroscopy was used to measure a F/W ratio of 3.7 +- 0.5. Heating this tungsten subfluoride overlayer resulted in disporportionation to yield gas-phase WF/sub 6/ and metallic tungsten which remained on the surface. With the tungsten foil at 600/sup 0/C and the SiO/sub 2//Si sample at 300/sup 0/C in the presence of WF/sub 6/, metallic tungsten deposited directly on the SiO/sub 2/ without stopping at the subfluoride adsorption step. The net effect of this tungsten subfluoride desorption-disproportionation mechanism is the transport of tungsten from tungsten surfaces to silicon dioxide surfaces as well as other regions in the deposition chamber. Extrapolated rates for this process are high enough to explain the magnitude of the selectivity loss seen at normal CVD temperatures.

  9. Tungsten Spectroscopy for Fusion Plasmas

    SciTech Connect

    Neu, R.; Puetterich, T.; Dux, R.; Pospieszczyk, A.; Sergienko, G.

    2007-04-06

    Tungsten is one of very few candidate materials for plasma facing components in future fusion devices. Therefore, investigations have been started at fusion devices and EBITs to provide atomic data for W in fusion plasmas. Usually the influx of impurities is deduced from the intensity of spectral lines from neutrals or ions in a low ionisation state. For this purpose the appropriate ionisation rates and excitation rates have to be known. At the moment, a WI transition (7S-7P) at 400.9 nm is used, but an extension of the method to other lines is under investigation. In the core of present day plasmas ionisation states up to W56+ can be reached and in a reactor states up to around W68+ will be present. In order to extract information on the local W concentrations over the whole plasma radius atomic data (wavelength, excitation, ionisation, recombination) for all the charge states up to the maximum ionisation state are necessary. Similarly, a high sensitivity has to be achieved since the central W concentrations should stay below 10-4. For an unambiguous identification of the transitions EBIT measurements are of great advantage, but due to the lower electron density compared to fusion plasmas, investigations there are indispensable.

  10. Ion mobility mass spectrometry as a potential tool to assign disulfide bonds arrangements in peptides with multiple disulfide bridges.

    PubMed

    Echterbille, Julien; Quinton, Loïc; Gilles, Nicolas; De Pauw, Edwin

    2013-05-07

    Disulfide bridges play a major role in defining the structural properties of peptides and proteins. However, the determination of the cysteine pairing is still challenging. Peptide sequences are usually achieved using tandem mass spectrometry (MS/MS) spectra of the totally reduced unfolded species, but the cysteine pairing information is lost. On the other hand, MS/MS experiments performed on native folded species show complex spectra composed of nonclassical ions. MS/MS alone does not allow either the cysteine pairing or the full sequence of an unknown peptide to be determined. The major goal of this work is to set up a strategy for the full structural characterization of peptides including disulfide bridges annotation in the sequence. This strategy was developed by combining ion mobility spectrometry (IMS) and collision-induced dissociation (CID). It is assumed that the opening of one S-S bridge in a peptide leads to a structural evolution which results in a modification of IMS drift time. In the presence of multiple S-S bridges, the shift in arrival time will depend on which disulfide(s) has (have) been reduced and on the shape adopted by the generated species. Due to specific fragmentations observed for each species, CID experiments performed after the mobility separation could provide not only information on peptide sequence but also on the localization of the disulfide bridges. To achieve this goal, synthetic peptides containing two disulfides were studied. The openings of the bridges were carried out following different experimental conditions such as reduction, reduction/alkylation, or oxidation. Due to disulfide scrambling highlighted with the reduction approaches, oxidation of S-S bonds into cysteic acids appeared to be the best strategy. Cysteine connectivity was then unambiguously determined for the two peptides, without any disulfide scrambling interference.

  11. Status of research on tungsten oxide-based photoelectrochemical devices at the University of Hawai'i

    NASA Astrophysics Data System (ADS)

    Gaillard, N.; Chang, Y.; Kaneshiro, J.; Deangelis, A.; Miller, E. L.

    2010-08-01

    For more than a decade, the Hawaii Natural Energy Institute has conducted research on photoelectrochemical (PEC) technologies and achieved major milestones, including the fabrication of high-performance photoactive thin film materials and the development of innovative device integrations (hybrid-photo-electrode). In this paper, we focus our discussion on tungsten oxide-based materials, one of our two principal topics of research in this field. After a description of pure WO3 physical, chemical and energetic properties we present our latest results on tungsten oxide PEC properties improvement. In our general approach, each component of the PEC electrode is addressed, from the absorber (bulk) to the surface energetics (near-surface) and catalysis (surface). Recently, progresses have been made on surface treatment for catalytic purposes as well as on PEC materials integration. In the case of catalytic treatment, our studies show that reactive sputtering technique is suitable to form high quality RuO2 thin films and nanoparticles. Tests conducted on RuO2 thin films pointed out an oxygen evolution reaction potential as low as 0.2 V. When used as an anode in 2- electrode configuration, RuO2 thin films lead to a photocurrent onset potential reduction as low as 500 mV for p-type PEC materials (CGSe2 and a-SiC, so far tested) when compared to platinum. In the case of RuO2 nanoparticles, a photocurrent density increase of approx. 20% was observed on treated tungsten oxide films. Finally, we present a new integration scheme to increase photocurrent density using highly textured substrates (HTS). In our approach, HTS were obtained by anisotropic etching of [100] silicon substrates in KOH solution. Initial results indicated a very good coverage of WO3 onto the silicon pyramids and a photocurrent doubling is observed when compared to WO3 deposited on flat silicon substrates.

  12. Evaporites and strata-bound tungsten mineralization

    SciTech Connect

    Ririe, G.T. )

    1989-02-01

    Discoidal gypsum crystal cavities occur in quartzites that host varying amounts of strata-bound scheelite mineralization near Halls Creek in Western Australia. The host quartzites have been regionally metamorphosed to greenschist facies and are contained within a Middle Proterozoic sequence that includes pelites, mafic and felsic volcanics, and volcaniclastic rocks. Textural, fluid inclusion, and oxygen isotope data indicate that scheelite was present in the host quartzites prior to regional metamorphism. The presence of crystal cavities after gypsum in the quartzites implies an evaporitic origin for this sequence. The continental-sabkha playa basins of the Mojave Desert, California, are suggested to be possible modern analogs-e.g., Searles Lake, where the tungsten content is up to 70 ppm WO{sub 3} in brines and 118 ppm in muds, and exceeds the amount of tungsten in all known deposits in the United States. Metamorphism of a continental evaporitic sequence containing tungsten could produce an assemblage of rocks very similar to those reported from several stratabound tungsten deposits. Some of these, such as at Halls Creek, may be related to original accumulations of tungsten in nonmarine evaporitic environments.

  13. Ultrasonic drawing of tungsten wire for incandescent lamps production.

    PubMed

    Mordyuk, B N; Mordyuk, V S; Buryak, V V

    2004-04-01

    An influence of ultrasonic treatment (drawing) on structure, high temperature durability, evaporation and creep behaviours of tungsten single crystal and wires were investigated. A relation of tungsten wires properties with dislocation distribution was determined.

  14. Some Tungsten Oxidation-Reduction Chemistry: A Paint Pot Titration.

    ERIC Educational Resources Information Center

    Pickering, Miles; Monts, David L.

    1982-01-01

    Reports an oxidation-reduction experiment using tungsten, somewhat analogous to the classical student experiment involving oxidation-reduction of vanadium. Includes experimental procedures, results, and toxicity/cost of tungsten compounds. (Author/JN)

  15. Growth of tungsten oxide on carbon nanowalls templates

    SciTech Connect

    Wang, Hua; Su, Yan; Chen, Shuo; Quan, Xie

    2013-03-15

    Highlights: ► Tungsten oxide deposited on carbon nanowalls by hot filament chemical vapor deposition technique. ► This composite has two-dimensional uniform morphology with a crystalline structure of monoclinic tungsten trioxide. ► Surface photoelectric voltage measurements show that this product has photoresponse properties. - Abstract: In the present work we present a simple approach for coupling tungsten oxide with carbon nanowalls. The two-dimensional carbon nanowalls with open boundaries were grown using plasma enhanced hot filament chemical vapor deposition, and the subsequent tungsten oxide growth was performed in the same equipment by direct heating of a tungsten filament. The tungsten oxide coating is found to have uniform morphology with a crystalline structure of monoclinic tungsten trioxide. Surface photoelectric voltage measurements show that this product has photoresponse properties. The method of synthesis described here provides an operable route to the production of two-dimensional tungsten oxide nanocomposites.

  16. Some Tungsten Oxidation-Reduction Chemistry: A Paint Pot Titration.

    ERIC Educational Resources Information Center

    Pickering, Miles; Monts, David L.

    1982-01-01

    Reports an oxidation-reduction experiment using tungsten, somewhat analogous to the classical student experiment involving oxidation-reduction of vanadium. Includes experimental procedures, results, and toxicity/cost of tungsten compounds. (Author/JN)

  17. Rhenium Disulfide Depletion-Load Inverter

    NASA Astrophysics Data System (ADS)

    McClellan, Connor; Corbet, Chris; Rai, Amritesh; Movva, Hema C. P.; Tutuc, Emanuel; Banerjee, Sanjay K.

    2015-03-01

    Many semiconducting Transition Metal Dichalcogenide (TMD) materials have been effectively used to create Field-Effect Transistor (FET) devices but have yet to be used in logic designs. We constructed a depletion-load voltage inverter using ultrathin layers of Rhenium Disulfide (ReS2) as the semiconducting channel. This ReS2 inverter was fabricated on a single micromechanically-exfoliated flake of ReS2. Electron beam lithography and physical vapor deposition were used to construct Cr/Au electrical contacts, an Alumina top-gate dielectric, and metal top-gate electrodes. By using both low (Aluminum) and high (Palladium) work-function metals as two separate top-gates on a single ReS2 flake, we create a dual-gated depletion mode (D-mode) and enhancement mode (E-mode) FETs in series. Both FETs displayed current saturation in the output characteristics as a result of the FET ``pinch-off'' mechanism and On/Off current ratios of 105. Field-effect mobilities of 23 and 17 cm2V-1s-1 and subthreshold swings of 97 and 551 mV/decade were calculated for the E-mode and D-mode FETs, respectively. With a supply voltage of 1V, at low/negative input voltages the inverter output was at a high logic state of 900 mV. Conversely with high/positive input voltages, the inverter output was at a low logic state of 500 mV. The inversion of the input signal demonstrates the potential for using ReS2 in future integrated circuit designs and the versatility of depletion-load logic devices for TMD research. NRI SWAN Center and ARL STTR Program.

  18. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.; Fang, Zhigang Zak; Ren, Chai; Oya, Yasuhisa; Otsuka, Teppei; Yamauchi, Yuji; Whaley, Josh A.

    2016-03-25

    Here, to address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungsten being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D2 pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation of the temperature for brittle membranes above the ductile-to-brittle transition temperature.

  19. Process for the recovery of tungsten in a pure form from tungsten-containing materials

    SciTech Connect

    Fruchter, M.; Moscovici, A.

    1986-12-16

    A process is described for the recovery of tungsten from tungsten-containing materials which comprises the steps of (i) admixing the tungsten-containing material with a melt at a temperature of between 680/sup 0/C and 750/sup 0/C. The melt consists of a salt selected from the group consisting of sodium nitrate, sodium nitrite and mixtures thereof in a substantially stoichiometrical amount to the tungsten constituent of the tungsten-containing material. This is done to disintegrate the tungsten-containing material and to form sodium tungstate, cooling the melt, and leaching the cooled melt with water to obtain an aqueous solution of sodium tungstate; (ii) admixing a solution of calcium chloride with the aqueous solution of sodium tungstate at a temperature of between 40/sup 0/C and 95/sup 0/C to form a calcium tungstate precipitate and separating the calcium tungstate; (iii) admixing the calcium tungstate with a preheated concentrated hydrochloric acid solution to form a tungstic acid precipitate and a CaCl/sub 2/ solution having a concentration of between 80 g/l and 180 g/l free HCl and separating the tungstic acid precipitate and obtaining tungstic acid which is substantially free of calcium ions, and (iv) calcining the tungstic acid to convert it to tungstic oxide and reducing the tungstic oxide to form metallic tungsten.

  20. Fabrication and evaluation of chemically vapor deposited tungsten heat pipe

    NASA Technical Reports Server (NTRS)

    Bacigalupi, R. J.

    1972-01-01

    A network of lithium-filled tungsten heat pipes is considered as a method of heat extraction from high temperature nuclear reactors. The need for material purity and shape versatility in these applications dictates the use of chemically vapor deposited (CVD) tungsten. Adaptability of CVD tungsten to complex heat pipe designs is shown. Deposition and welding techniques are described. Operation of two lithium-filled CVD tungsten heat pipes above 1800 K is discussed.

  1. Characterization of plasma coated tungsten heavy alloy

    SciTech Connect

    Bose, A.; Kapoor, D.; Lankford, J. Jr.; Nicholls, A.E.

    1996-06-01

    The detrimental environmental impact of Depleted Uranium-based penetrators have led to tremendous development efforts in the area of tungsten heavy alloy based penetrators. One line of investigation involves the coating of tungsten heavy alloys with materials that are prone to shear localization. Plasma spraying of Inconel 718 and 4340 steel have been used to deposit dense coatings on tungsten heavy alloy substrates. The aim of the investigation was to characterize the coating primarily in terms of its microstructure and a special push-out test. The paper describes the results of the push-out tests and analyzes some of the possible failure mechanisms by carrying out microstructural characterization of the failed rings obtained from the push out tests.

  2. Superhard Diamond/tungsten Carbide Nanocomposites

    SciTech Connect

    Z Lin; J Zhang; B Li; L Wang; H Mao; R Hemley; Y Zhao

    2011-12-31

    We investigated the processing conditions of diamond/tungsten carbide (WC) composites using in situ synchrotron x-ray diffraction (XRD) and reactive sintering techniques at high pressure and high temperatures. The as-synthesized composites were characterized by synchrotron XRD, scanning electron microscopy, high-resolution transmission electron microscopy, and indentation hardness measurements. Through tuning of the reaction temperature and time, we produced fully reacted, well-sintered, and nanostructured diamond composites with Vickers hardness of about 55 GPa and the grain size of WC binding matrix smaller than 50 nm. A specific set of orientation relationships between WC and tungsten is identified to gain microstructural insight into the reaction mechanism between diamond and tungsten.

  3. Element 74, the Wolfram Versus Tungsten Controversy

    SciTech Connect

    Holden,N.E.

    2008-08-11

    Two and a quarter centuries ago, a heavy mineral ore was found which was thought to contain a new chemical element called heavy stone (or tungsten in Swedish). A few years later, the metal was separated from its oxide and the new element (Z=74) was called wolfram. Over the years since that time, both the names wolfram and tungsten were attached to this element in various countries. Sixty years ago, IUPAC chose wolfram as the official name for the element. A few years later, under pressure from the press in the USA, the alternative name tungsten was also allowed by IUPAC. Now the original, official name 'wolfram' has been deleted by IUPAC as one of the two alternate names for the element. The history of this controversy is described here.

  4. TPV Systems with Solar Powered Tungsten Emitters

    SciTech Connect

    Vlasov, A. S.; Khvostikov, V. P.; Khvostikova, O. A.; Gazaryan, P. Y.; Sorokina, S. V.; Andreev, V. M.

    2007-02-22

    A solar TPV generator development and characterization are presented. A double stage sunlight concentrator ensures 4600x concentration ratio. TPV modules based on tungsten emitters and GaSb cells were designed, fabricated and tested at indoor and outdoor conditions. The performance of tungsten emitter under concentrated solar radiation was analyzed. Emitter temperatures in the range of 1400-2000 K were measured, depending on the emitter size. The light distribution in the module has been characterized, 1x1 cm GaSb TPV cells were fabricated with the use of the Zn-diffusion and LPE technologies. The cell efficiency of 19% under illumination by a tungsten emitter (27% under spectra cut-off at {lambda} > 1820 nm) heated up to 1900-2000 K had been derived from experimentally measured PV parameters. The series connection of PV cells was ensured by the use of BeO ceramics. The possibilities of system performance improvement are discussed.

  5. 40 CFR 721.10168 - Cesium tungsten oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cesium tungsten oxide. 721.10168... Substances § 721.10168 Cesium tungsten oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cesium tungsten oxide (PMN P-08-275; CAS No....

  6. 40 CFR 721.10168 - Cesium tungsten oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cesium tungsten oxide. 721.10168... Substances § 721.10168 Cesium tungsten oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cesium tungsten oxide (PMN P-08-275; CAS No....

  7. 40 CFR 721.10168 - Cesium tungsten oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cesium tungsten oxide. 721.10168... Substances § 721.10168 Cesium tungsten oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cesium tungsten oxide (PMN P-08-275; CAS No....

  8. 40 CFR 721.10168 - Cesium tungsten oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Cesium tungsten oxide. 721.10168... Substances § 721.10168 Cesium tungsten oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cesium tungsten oxide (PMN P-08-275; CAS No....

  9. 40 CFR 721.10168 - Cesium tungsten oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cesium tungsten oxide. 721.10168... Substances § 721.10168 Cesium tungsten oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cesium tungsten oxide (PMN P-08-275; CAS No....

  10. Raman scattering from rapid thermally annealed tungsten silicide

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.

    1987-01-01

    Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.

  11. Raman scattering from rapid thermally annealed tungsten silicide

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.

    1987-01-01

    Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.

  12. Bandgap- and local field-dependent photoactivity of Ag/black phosphorus nanohybrids

    SciTech Connect

    Lei, Wanying; Zhang, Tingting; Liu, Ping; Rodriguez, Jose A.; Liu, Gang; Liu, Minghua

    2016-10-18

    Black phosphorus (BP) is the most exciting post-graphene layered nanomaterial that serendipitously bridges the 2D materials gap between semimetallic graphene and large bandgap transition-metal dichalcogenides in terms of high charge-carrier mobility and tunable direct bandgap, yet research into BP-based solar to chemical energy conversion is still in its infancy. Herein, a novel hybrid photocatalyst with Ag nanoparticles supported on BP nanosheets is prepared using a chemical reduction approach. Spin-polarized density functional theory (DFT) calculations show that Ag nanoparticles are stabilized on BP by covalent bonds at the Ag/BP interface and Ag–Ag interactions. In the visible-light photocatalysis of rhodamine B by Ag/BP plasmonic nanohybrids, a significant rise in photoactivity compared with pristine BP nanosheets is observed either by decreasing BP layer thickness or increasing Ag particle size, with the greatest enhancement being up to ~20-fold. By virtue of finite-difference time domain (FDTD) simulations and photocurrent measurements, we give insights into the enhanced photocatalytic performance of Ag/BP nanohybrids, including the effects of BP layer thickness and Ag particle size. In comparison with BP, Ag/BP nanohybrids present intense local field amplification at the perimeter of Ag NPs, which is increased by either decreasing the BP layer thickness from multiple to few layers or increasing the Ag particle size from 20 to 40 nm. Additionally, when the BP layer thickness is decreased from multiple to few layers, the bandgap becomes favorable to generate more strongly oxidative holes in the proximity of the Ag/BP interface to enhance photoactivity. Our findings illustrate a synergy between locally enhanced electric fields and BP bandgap, in which BP layer thickness and Ag particle size can be independently tuned to enhance photoactivity. Lastly, this study may open a new avenue for further exploiting BP-based plasmonic nanostructures in photocatalysis

  13. Bandgap- and local field-dependent photoactivity of Ag/black phosphorus nanohybrids

    DOE PAGES

    Lei, Wanying; Zhang, Tingting; Liu, Ping; ...

    2016-10-18

    Black phosphorus (BP) is the most exciting post-graphene layered nanomaterial that serendipitously bridges the 2D materials gap between semimetallic graphene and large bandgap transition-metal dichalcogenides in terms of high charge-carrier mobility and tunable direct bandgap, yet research into BP-based solar to chemical energy conversion is still in its infancy. Herein, a novel hybrid photocatalyst with Ag nanoparticles supported on BP nanosheets is prepared using a chemical reduction approach. Spin-polarized density functional theory (DFT) calculations show that Ag nanoparticles are stabilized on BP by covalent bonds at the Ag/BP interface and Ag–Ag interactions. In the visible-light photocatalysis of rhodamine B bymore » Ag/BP plasmonic nanohybrids, a significant rise in photoactivity compared with pristine BP nanosheets is observed either by decreasing BP layer thickness or increasing Ag particle size, with the greatest enhancement being up to ~20-fold. By virtue of finite-difference time domain (FDTD) simulations and photocurrent measurements, we give insights into the enhanced photocatalytic performance of Ag/BP nanohybrids, including the effects of BP layer thickness and Ag particle size. In comparison with BP, Ag/BP nanohybrids present intense local field amplification at the perimeter of Ag NPs, which is increased by either decreasing the BP layer thickness from multiple to few layers or increasing the Ag particle size from 20 to 40 nm. Additionally, when the BP layer thickness is decreased from multiple to few layers, the bandgap becomes favorable to generate more strongly oxidative holes in the proximity of the Ag/BP interface to enhance photoactivity. Our findings illustrate a synergy between locally enhanced electric fields and BP bandgap, in which BP layer thickness and Ag particle size can be independently tuned to enhance photoactivity. Lastly, this study may open a new avenue for further exploiting BP-based plasmonic nanostructures in

  14. Assessment of disulfide and hinge modifications in monoclonal antibodies.

    PubMed

    Moritz, Bernd; Stracke, Jan Olaf

    2016-12-16

    During the last years there was a substantial increase in the use of antibodies and related proteins as therapeutics. The emphasis of the pharmaceutical industry is on IgG1, IgG2, and IgG4 antibodies, which are therefore in the focus of this article. In order to ensure appropriate quality control of such biopharmaceuticals, deep understanding of their chemical degradation pathways and the resulting impact on potency, pharmacokinetics, and safety is required. Criticality of modifications may be specific for individual antibodies and has to be assessed for each molecule. However, some modifications of conserved structure elements occur in all or at least most IgGs. In these cases, criticality assessment may be applicable to related molecules or molecule formats. The relatively low dissociation energy of disulfide bonds and the high flexibility of the hinge region frequently lead to modifications and cleavages. Therefore, the hinge region and disulfide bonds require specific consideration during quality assessment of mAbs. In this review, available literature knowledge on underlying chemical reaction pathways of modifications, analytical methods for quantification and criticality are discussed. The hinge region is prone to cleavage and is involved in pathways that lead to thioether bond formation, cysteine racemization, and iso-Asp (Asp, aspartic acid) formation. Disulfide or sulfhydryl groups were found to be prone to reductive cleavage, trisulfide formation, cysteinylation, glutathionylation, disulfide bridging to further light chains, and disulfide scrambling. With regard to potency, disulfide cleavage, hinge cleavage, disulfide bridging to further light chains, and cysteinylation were found to influence antigen binding and fragment crystallizable (Fc) effector functionalities. Renal clearance of small fragments may be faster, whereas clearance of larger fragments appears to depend on their neonatal Fc receptor (FcRn) functionality, which in turn may be impeded by

  15. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein

    SciTech Connect

    Tenboer, Jason; Basu, Shibom; Zatsepin, Nadia; Pande, Kanupriya; Milathianaki, Despina; Frank, Matthias; Hunter, Mark; Boutet, Sebastien; Williams, Garth J.; Koglin, Jason E.; Oberthuer, Dominik; Heymann, Michael; Kupitz, Christopher; Conrad, Chelsie; Coe, Jesse; Roy-Chowdhury, Shatabdi; Weierstall, Uwe; James, Daniel; Wang, Dingjie; Grant, Thomas; Barty, Anton; Yefanov, Oleksandr; Scales, Jennifer; Gati, Cornelius; Seuring, Carolin; Srajer, Vukica; Henning, Robert; Schwander, Peter; Fromme, Raimund; Ourmazd, Abbas; Moffat, Keith; Van Thor, Jasper J.; Spence, John C. H.; Fromme, Petra; Chapman, Henry N.; Schmidt, Marius

    2014-12-05

    We report that serial femtosecond crystallography using ultrashort pulses from X-ray Free Electron Lasers (XFELs) offers the possibility to study light-triggered dynamics of biomolecules. Using microcrystals of the blue light photoreceptor, photoactive yellow protein, as a model system, we present high resolution, time-resolved difference electron density maps of excellent quality with strong features, which allow the determination of structures of reaction intermediates to 1.6 Å resolution. These results open the way to the study of reversible and non-reversible biological reactions on time scales as short as femtoseconds under conditions which maximize the extent of reaction initiation throughout the crystal.

  16. Photoactive energetic materials: linear and nonlinear photochemistry of chromophore linked energetic materials

    NASA Astrophysics Data System (ADS)

    Greenfield, Margo; McGrane, Shawn; Bolme, Cindy; Chavez, David; Veauthier, Jacqueline; Hanson, Susan; Myers, Thomas; Scharff, Jason

    2015-06-01

    In general, conventional molecular explosives are white to off-white in color and only absorb ultraviolet light. A novel approach to synthetically link optically active energetic chromophores to existing molecular energetic materials has resulted in increased photoactivity in the visible (532 nm) region of the electromagnetic spectrum. Tetrazine, an energetic optically active chromophore, which absorbs around 532 nm, has been derivatized with various energetic materials including pentaeythritol tetranitrate (PETN), nitroglycerine (NG) and dinitroazetidine (DNAZ). We report the corresponding photochemistry and photochemical quantum yields of these new materials under various wavelength and intensity regimes.

  17. Time-Resolved Serial Crystallography Captures High Resolution Intermediates of Photoactive Yellow Protein

    PubMed Central

    Tenboer, Jason; Basu, Shibom; Zatsepin, Nadia; Pande, Kanupria; Milathianaki, Despina; Frank, Matthias; Hunter, Mark; Boutet, Sébastien; Williams, Garth J.; Koglin, Jason E.; Oberthuer, Dominik; Heymann, Michael; Kupitz, Christopher; Conrad, Chelsie; Coe, Jesse; Roy-Chowdhury, Shatabdi; Weierstall, Uwe; James, Daniel; Wang, Dingjie; Grant, Thomas; Barty, Anton; Yefanov, Oleksandr; Scales, Jennifer; Gati, Cornelius; Seuring, Carolin; Srajer, Vukica; Henning, Robert; Schwander, Peter; Fromme, Raimund; Ourmazd, Abbas; Moffat, Keith; Van Thor, Jasper; Spence, John H. C.; Fromme, Petra; Chapman, Henry N.; Schmidt, Marius

    2015-01-01

    Serial femtosecond crystallography using ultrashort pulses from X-ray Free Electron Lasers (XFELs) offers the possibility to study light-triggered dynamics of biomolecules. Using microcrystals of the blue light photoreceptor, photoactive yellow protein, as a model system, we present high resolution, time-resolved difference electron density maps of excellent quality with strong features, which allow the determination of structures of reaction intermediates to 1.6 Å resolution. These results open the way to the study of reversible and non-reversible biological reactions on time scales as short as femtoseconds under conditions which maximize the extent of reaction initiation throughout the crystal. PMID:25477465

  18. Origin of the absorption maxima of the photoactive yellow protein resolved via ab initio multiconfigurational methods.

    PubMed

    Coto, Pedro B; Martí, Sergio; Oliva, Mónica; Olivucci, Massimo; Merchán, Manuela; Andrés, Juan

    2008-06-19

    We discuss the role of the protein in controlling the absorption spectra of photoactive yellow protein (PYP), the archetype xanthopsin photoreceptor, using quantum mechanics/molecular mechanics (QM/MM) methods based on ab initio multireference perturbation theory, combined with molecular dynamics (MD) simulations. It is shown that in order to get results in agreement with the experimental data, it is necessary to use a model that allows for a proper relaxation of the whole system and treats the states involved in the electronic spectrum in a balanced way, avoiding biased results due to the effect of nonrepresentative electrostatic interactions on the chromophore.

  19. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein

    DOE PAGES

    Tenboer, Jason; Basu, Shibom; Zatsepin, Nadia; ...

    2014-12-05

    We report that serial femtosecond crystallography using ultrashort pulses from X-ray Free Electron Lasers (XFELs) offers the possibility to study light-triggered dynamics of biomolecules. Using microcrystals of the blue light photoreceptor, photoactive yellow protein, as a model system, we present high resolution, time-resolved difference electron density maps of excellent quality with strong features, which allow the determination of structures of reaction intermediates to 1.6 Å resolution. These results open the way to the study of reversible and non-reversible biological reactions on time scales as short as femtoseconds under conditions which maximize the extent of reaction initiation throughout the crystal.

  20. Synthesis of Photoactive Materials by Sonication: Application in Photocatalysis and Solar Cells.

    PubMed

    Colmenares, Juan C; Kuna, Ewelina; Lisowski, Paweł

    2016-10-01

    In recent years, a good number of methods have become available for the preparation of an important group of photoactive materials for applications in photocatalysis and solar cells. Nevertheless, the benefits derived from preparing those materials through unconventional approaches are very attractive from the green chemistry point of view. This critical review work is focused on sonication as one of these promising new synthetic procedures that allow control over size, morphology, nanostructure and tuning of catalytic properties. Ultrasound-based procedures offer a facile, versatile synthetic tool for the preparation of light-activated materials often inaccessible through conventional methods.

  1. Improving the efficiency of organic solar cells by varying the material concentration in the photoactive layer

    NASA Astrophysics Data System (ADS)

    Latimer, Kevin Anthony

    Polymer-fullerene bulk heterojunction solar cells have been a rapidly improving technology over the past decade. To further improve the relatively low energy conversion efficiencies of these solar cells, several modifications need to be made to the overall device structure. Emerging technologies include cells that are fabricated with interfacial layers to facilitate charge transport, and tandem structures are being introduced to harness the absorption spectrum of polymers with varying bandgap energies. When new structures are implemented, each layer of the cell must be optimized in order for the entire device to function efficiently. The most volatile layer of these devices is the photoactive layer solution of poly-3(hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PC 61BM). Even slight variations in pre-application and post-treatment will lead to large variations in the electrical, physical, and optical properties of the solar cell module. To improve the effectiveness of the photoactive layer, the material concentration of P3HT and PC61BM in the liquid phase, prior to application, was altered. The weight ratio of P3HT to PC61BM was kept at a constant 1 to 0.8, while the amounts of each dissolved in 2 mL of chlorobenzene were varied. Solar cells were fabricated, and J-V characterizations were performed to determine the electrical traits of the devices. Atomic force microscopy (AFM) measurements were done on the photoactive layer films to determine the physical characteristics of the films such as overall surface topology and RMS roughness. Also, variable angle spectroscopic ellipsometry (VASE) was used to determine film thickness and extinction coefficient of the active layers. To further understand the optical properties of the polymer-fullerene blend, the absorption spectrum of the films were calculated through UV-VIS spectrophotometry. It was found that an increased concentration of the polymer-fullerene blend prior to application

  2. Thiol/disulfide redox states in signaling and sensing

    PubMed Central

    Go, Young-Mi; Jones, Dean P.

    2015-01-01

    Rapid advances in redox systems biology are creating new opportunities to understand complexities of human disease and contributions of environmental exposures. New understanding of thiol-disulfide systems have occurred during the past decade as a consequence of the discoveries that thiol and disulfide systems are maintained in kinetically controlled steady-states displaced from thermodynamic equilibrium, that a widely distributed family of NADPH oxidases produces oxidants that function in cell signaling, and that a family of peroxiredoxins utilize thioredoxin as a reductant to complement the well-studied glutathione antioxidant system for peroxide elimination and redox regulation. This review focuses on thiol/disulfide redox state in biologic systems and the knowledge base available to support development of integrated redox systems biology models to better understand the function and dysfunction of thiol-disulfide redox systems. In particular, central principles have emerged concerning redox compartmentalization and utility of thiol/disulfide redox measures as indicators of physiologic function. Advances in redox proteomics show that, in addition to functioning in protein active sites and cell signaling, cysteine residues also serve as redox sensors to integrate biologic functions. These advances provide a framework for translation of redox systems biology concepts to practical use in understanding and treating human disease. Biological responses to cadmium, a widespread environmental agent, are used to illustrate the utility of these advances to the understanding of complex pleiotropic toxicities. PMID:23356510

  3. Disulfide Bridges: Bringing Together Frustrated Structure in a Bioactive Peptide.

    PubMed

    Zhang, Yi; Schulten, Klaus; Gruebele, Martin; Bansal, Paramjit S; Wilson, David; Daly, Norelle L

    2016-04-26

    Disulfide bridges are commonly found covalent bonds that are usually believed to maintain structural stability of proteins. Here, we investigate the influence of disulfide bridges on protein dynamics through molecular dynamics simulations on the cysteine-rich trypsin inhibitor MCoTI-II with three disulfide bridges. Correlation analysis of the reduced cyclic peptide shows that two of the three disulfide distances (Cys(11)-Cys(23) and Cys(17)-Cys(29)) are anticorrelated within ∼1 μs of bridge formation or dissolution: when the peptide is in nativelike structures and one of the distances shortens to allow bond formation, the other tends to lengthen. Simulations over longer timescales, when the denatured state is less structured, do not show the anticorrelation. We propose that the native state contains structural elements that frustrate one another's folding, and that the two bridges are critical for snapping the frustrated native structure into place. In contrast, the Cys(4)-Cys(21) bridge is predicted to form together with either of the other two bridges. Indeed, experimental chromatography and nuclear magnetic resonance data show that an engineered peptide with the Cys(4)-Cys(21) bridge deleted can still fold into its near-native structure even in its noncyclic form, confirming the lesser role of the Cys(4)-Cys(21) bridge. The results highlight the importance of disulfide bridges in a small bioactive peptide to bring together frustrated structure in addition to maintaining protein structural stability. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Semienzymatic cyclization of disulfide-rich peptides using Sortase A.

    PubMed

    Jia, Xinying; Kwon, Soohyun; Wang, Ching-I Anderson; Huang, Yen-Hua; Chan, Lai Y; Tan, Chia Chia; Rosengren, K Johan; Mulvenna, Jason P; Schroeder, Christina I; Craik, David J

    2014-03-07

    Disulfide-rich cyclic peptides have generated great interest in the development of peptide-based therapeutics due to their exceptional stability toward chemical, enzymatic, or thermal attack. In particular, they have been used as scaffolds onto which bioactive epitopes can be grafted to take advantage of the favorable biophysical properties of disulfide-rich cyclic peptides. To date, the most commonly used method for the head-to-tail cyclization of peptides has been native chemical ligation. In recent years, however, enzyme-mediated cyclization has become a promising new technology due to its efficiency, safety, and cost-effectiveness. Sortase A (SrtA) is a bacterial enzyme with transpeptidase activity. It recognizes a C-terminal penta-amino acid motif, LPXTG, and cleaves the amide bond between Thr and Gly to form a thioacyl-linked intermediate. This intermediate undergoes nucleophilic attack by an N-terminal poly-Gly sequence to form an amide bond between the Thr and N-terminal Gly. Here, we demonstrate that sortase A can successfully be used to cyclize a variety of small disulfide-rich peptides, including the cyclotide kalata B1, α-conotoxin Vc1.1, and sunflower trypsin inhibitor 1. These peptides range in size from 14 to 29 amino acids and contain three, two, or one disulfide bond, respectively, within their head-to-tail cyclic backbones. Our findings provide proof of concept for the potential broad applicability of enzymatic cyclization of disulfide-rich peptides with therapeutic potential.

  5. Measured emissivities of uranium and tungsten plasmas.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.

    1971-01-01

    Uranium and tungsten absorption coefficients between 2,500-8500 A were measured as functions of thermodynamic variables. A gas-driven shock tube was used to obtain plasma temperatures, heavy metal partial pressures, and total pressures in the ranges 7,000-12,000 K, 0.02-1.0 atm, and 3.0-48 atm, respectively. Emission and absorption data were recorded both photographically and photoelectrically. The spectral distributions, thermal dependence and line-to-continuum ratios of the uranium and tungsten radiation differ distinctly. The uranium data are compared with theoretical predictions and with results from other experiments.

  6. Equipment simulation of selective tungsten deposition

    SciTech Connect

    Werner, C.; Ulacia, J.I.; Hopfmann, C.; Flynn, P. )

    1992-02-01

    This paper presents the numerical modeling of a cold wall reactor for selective tungsten chemical vapor deposition. In a two dimensional simulation the mass and heat transfer equations were solved considering the five chemical species H{sub 2}, WF{sub 6}, HF, WF{sub x}, and SiF{sub y}. Detailed models for multicomponent diffusion and for the autocatalytic tungsten nucleation process were implemented. Model results are in good agreement with experimental findings. The simulations are used to study the impact of reactor design on selectivity.

  7. Measured emissivities of uranium and tungsten plasmas.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.

    1971-01-01

    Uranium and tungsten absorption coefficients between 2,500-8500 A were measured as functions of thermodynamic variables. A gas-driven shock tube was used to obtain plasma temperatures, heavy metal partial pressures, and total pressures in the ranges 7,000-12,000 K, 0.02-1.0 atm, and 3.0-48 atm, respectively. Emission and absorption data were recorded both photographically and photoelectrically. The spectral distributions, thermal dependence and line-to-continuum ratios of the uranium and tungsten radiation differ distinctly. The uranium data are compared with theoretical predictions and with results from other experiments.

  8. Tritium Decay Helium-3 Effects in Tungsten

    SciTech Connect

    Shimada, M.; Merrill, B. J.

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  9. Observation of biexcitonic emission at extremely low power density in tungsten disulfide atomic layers grown on hexagonal boron nitride.

    PubMed

    Okada, Mitsuhiro; Miyauchi, Yuhei; Matsuda, Kazunari; Taniguchi, Takashi; Watanabe, Kenji; Shinohara, Hisanori; Kitaura, Ryo

    2017-03-23

    Monolayer transition metal dichalcogenides (TMDCs) including WS2, MoS2, WSe2 and WS2, are two-dimensional semiconductors with direct bandgap, providing an excellent field for exploration of many-body effects in 2-dimensions (2D) through optical measurements. To fully explore the physics of TMDCs, the prerequisite is preparation of high-quality samples to observe their intrinsic properties. For this purpose, we have focused on high-quality samples, WS2 grown by chemical vapor deposition method with hexagonal boron nitride as substrates. We observed sharp exciton emissions, whose linewidth is typically 22~23 meV, in photoluminescence spectra at room temperature, which result clearly demonstrates the high-quality of the current samples. We found that biexcitons formed with extremely low-excitation power (240 W/cm(2)) at 80 K, and this should originate from the minimal amount of localization centers in the present high-quality samples. The results clearly demonstrate that the present samples can provide an excellent field, where one can observe various excitonic states, offering possibility of exploring optical physics in 2D and finding new condensates.

  10. Label-free tungsten disulfide quantum dots as a fluorescent sensing platform for highly efficient detection of copper (II) ions

    NASA Astrophysics Data System (ADS)

    Zhao, Xuan; He, Da-Wei; Wang, Yong-Sheng; Hu, Yin; Fu, Chen; Li, Xue

    2017-06-01

    Not Available Project supported by the National Basic Research Program, China (Grant Nos. 2016YFA0202300 and 2016YFA0202302), the National Natural Science Foundation of China (Grant Nos. 61527817, 61335006, and 61378073), and the Beijing Municipal Science and Technology Committee, China (Grant No. Z151100003315006).

  11. Influence of tungsten content, swaging, and grain size on the viscoplastic response of tungsten heavy alloys

    SciTech Connect

    Ramesh, K.T.

    1992-12-31

    The response of tungsten-nickel-iron (W-Ni-Fe) alloys to high rates of deformation has been investigated using compression and torsional Kolsky bars. The influence of tungsten content, swaging, and grain size on the dynamic behavior of commercially available alloys has been examined, The results indicate that the flow stresses sustained by these materials have a distinct dependence on strain rate, over a range from 10(exp {minus}4)/sec to 7 x 10(exp 3)/sec. The rate sensitivity itself appears to be influenced by tungsten content and degree of prior swaging, but appears to be almost independent of tungsten grain size. Metallographic analyses and microhardness measurements were performed to study the microstructural evolution with increasing strain at high rates. Adiabatic shear localization has been observed in high-rate shearing tests; relatively narrow shear bands are formed, followed immediately by catastrophic fracture.

  12. Converting disulfide bridges in native peptides to stable methylene thioacetals.

    PubMed

    Kourra, C M B K; Cramer, N

    2016-12-01

    Disulfide bridges play a crucial role in defining and rigidifying the three-dimensional structure of peptides. However, disulfides are inherently unstable in reducing environments. Consequently, the development of strategies aiming to circumvent these deficiencies - ideally with little structural disturbance - are highly sought after. Herein, we report a simple protocol converting the disulfide bond of peptides into highly stable methylene thioacetal. The transformation occurs under mild, biocompatible conditions, enabling the conversion of unprotected native peptides into analogues with enhanced stability. The developed protocol is applicable to a range of peptides and selective in the presence of a multitude of potentially reactive functional groups. The thioacetal modification annihilates the reductive lability and increases the serum, pH and temperature stability of the important peptide hormone oxytocin. Moreover, it is shown that the biological activities for oxytocin are retained.

  13. Disulfide Bond Formation in Prokaryotes: History, Diversity and Design

    PubMed Central

    Hatahet, Feras; Boyd, Dana; Beckwith, Jon

    2014-01-01

    The formation of structural disulfide bonds is essential for the function and stability of a great number of proteins, particularly those that are secreted. There exists a variety of dedicated cellular catalysts and pathways from Archaea to humans that ensure the formation of native disulfide bonds. In this review we describe the initial discoveries of these pathways and report progress in recent years in our understanding of the diversity of these pathways in prokaryotes, including those newly discovered in some Archaea. We will also discuss the various successful efforts to achieve laboratory-based evolution and design of synthetic disulfide bond formation machineries in the bacterium E. coli. These latter studies have also led to new more general insights into the redox environment of the cytoplasm and bacterial cell envelope. PMID:24576574

  14. Structural basis of protein disulfide bond generation in the cell.

    PubMed

    Inaba, Kenji

    2010-09-01

    The formation of protein disulfide bonds is an oxidative reaction that is crucial for the folding and maturation of many secreted and membrane proteins. Both prokaryotic and eukaryotic cells possess various disulfide oxidoreductases and redox-active cofactors to accelerate this oxidative reaction in a correct manner. Crystal or solution structures have been solved for some of the oxidoreductases in the past 10 years, leading to remarkable progress in the field of thiol-based redox cell biology. Consequently, structural and mechanistic similarities in the disulfide bond formation pathways have been uncovered. This review highlights the molecular basis of the elaborate oxidative systems operating in the Escherichia coli periplasm, the endoplasmic reticulum lumen and the mitochondrial intermembrane space. The accumulated knowledge provides important insights into how protein and redox homeostasis are maintained in the cell.

  15. A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter.

    PubMed

    Huang, Jun; Somu, Sivasubramanian; Busnaina, Ahmed

    2012-08-24

    We report a simple, bottom-up/top-down approach for integrating drastically different nanoscale building blocks to form a heterogeneous complementary inverter circuit based on layered molybdenum disulfide and carbon nanotube (CNT) bundles. The fabricated CNT/MoS(2) inverter is composed of n-type molybdenum disulfide (MOS(2)) and p-type CNT transistors, with a high voltage gain of 1.3. The CNT channels are fabricated using directed assembly while the layered molybdenum disulfide channels are fabricated by mechanical exfoliation. This bottom-up fabrication approach for integrating various nanoscale elements with unique characteristics provides an alternative cost-effective methodology to complementary metal-oxide-semiconductors, laying the foundation for the realization of high performance logic circuits.

  16. Assignment of the disulfide bonds in the sweet protein brazzein.

    PubMed

    Kohmura, M; Ota, M; Izawa, H; Ming, D; Hellekant, G; Ariyoshi, Y

    1996-04-01

    The thermostable sweet protein brazzein consists of 54 amino acid residues and has four intramolecular disulfide bonds, the location of which is unknown. We found that brazzein resists enzymatic hydrolysis at enzyme/substrate ratios (w/w) of 1:100-1:10 at 35-40 degrees C for 24-48 h. Brazzein was hydrolyzed using thermolysin at an enzyme/substrate ratio of 1:1 (w/w) in water, pH 5.5, for 6 h and at 50 degrees C. The disulfide bonds were determined, by a combination of mass spectrometric analysis and amino acid sequencing of cystine-containing peptides, to be between Cys4-Cys52, Cys16-Cys37, Cys22-Cys47, and Cys26-Cys49. These disulfide bonds contribute to its thermostability.

  17. Control of blood proteins by functional disulfide bonds

    PubMed Central

    Butera, Diego; Cook, Kristina M.; Chiu, Joyce; Wong, Jason W. H.

    2014-01-01

    Most proteins in nature are chemically modified after they are made to control how, when, and where they function. The 3 core features of proteins are posttranslationally modified: amino acid side chains can be modified, peptide bonds can be cleaved or isomerized, and disulfide bonds can be cleaved. Cleavage of peptide bonds is a major mechanism of protein control in the circulation, as exemplified by activation of the blood coagulation and complement zymogens. Cleavage of disulfide bonds is emerging as another important mechanism of protein control in the circulation. Recent advances in our understanding of control of soluble blood proteins and blood cell receptors by functional disulfide bonds is discussed as is how these bonds are being identified and studied. PMID:24523239

  18. From structure to redox: the diverse functional roles of disulfides and implications in disease

    PubMed Central

    Bechtel, Tyler J.; Weerapana, Eranthie

    2017-01-01

    This review provides a comprehensive overview of the functional roles of disulfide bonds and their relevance to human disease. The critical roles of disulfide bonds in protein structure stabilization and redox regulation of protein activity are addressed. Disulfide bonds are essential to the structural stability of many proteins within the secretory pathway and can exist as intramolecular or inter-domain disulfides. The proper formation of these bonds often relies on folding chaperones and oxidases such as members of the protein disulfide isomerase (PDI) family. Many of the PDI family members catalyze disulfide-bond formation, reduction and isomerization through redox-active disulfides and perturbed PDI activity is characteristic of carcinomas and neurodegenerative diseases. In addition to catalytic function in oxidoreductases, redox-active disulfides are also found on a diverse array of cellular proteins and act to regulate protein activity and localization in response to oxidative changes in the local environment. These redox-active disulfides are either dynamic intramolecular protein disulfides or mixed disulfides with small-molecule thiols generating glutathionylation and cysteinylation adducts. The oxidation and reduction of redox-active disulfides are mediated by cellular reactive oxygen species and activity of reductases, such as glutaredoxin and thioredoxin. Dysregulation of cellular redox conditions and resulting changes in mixed disulfide formation are directly linked to diseases such as cardiovascular disease and Parkinson’s disease. PMID:28044432

  19. Photoresponsive azo-doped aerosil/7CB nematic nanocomposites: the effect from concentration of the azobenzene photoactive agent

    NASA Astrophysics Data System (ADS)

    Hadjichristov, G. B.; Marinov, Y. G.; Petrov, A. G.; Prasad, S. K.

    2017-01-01

    We studied nanomaterials composed from 3 wt.% aerosil nanospheres and the room-temperature nematic liquid crystal 4-n-heptyl cyanobiphenyl (7CB), as doped with the photoactive liquid crystal 4-(4'-ethoxyphenylazo)phenyl hexanoate (EPH). The molecules of the azobenzene photoactive agent EPH were included at concentration ranging from 1 wt.% to 10 wt.%. The object of our interest is the effect of the EPH amount on the photosensitized electro-optical properties of thin films of aerosil/7CB/EPH nematic nanocomposites.

  20. Role of the Conserved Disulfide Bridge in Class A Carbapenemases.

    PubMed

    Smith, Clyde A; Nossoni, Zahra; Toth, Marta; Stewart, Nichole K; Frase, Hilary; Vakulenko, Sergei B

    2016-10-14

    Some members of the class A β-lactamase family are capable of conferring resistance to the last resort antibiotics, carbapenems. A unique structural feature of these clinically important enzymes, collectively referred to as class A carbapenemases, is a disulfide bridge between invariant Cys(69) and Cys(238) residues. It was proposed that this conserved disulfide bridge is responsible for their carbapenemase activity, but this has not yet been validated. Here we show that disruption of the disulfide bridge in the GES-5 carbapenemase by the C69G substitution results in only minor decreases in the conferred levels of resistance to the carbapenem imipenem and other β-lactams. Kinetic and circular dichroism experiments with C69G-GES-5 demonstrate that this small drop in antibiotic resistance is due to a decline in the enzyme activity caused by a marginal loss of its thermal stability. The atomic resolution crystal structure of C69G-GES-5 shows that two domains of this disulfide bridge-deficient enzyme are held together by an intensive hydrogen-bonding network. As a result, the protein architecture and imipenem binding mode remain unchanged. In contrast, the corresponding hydrogen-bonding networks in NMCA, SFC-1, and SME-1 carbapenemases are less intensive, and as a consequence, disruption of the disulfide bridge in these enzymes destabilizes them, which causes arrest of bacterial growth. Our results demonstrate that the disulfide bridge is essential for stability but does not play a direct role in the carbapenemase activity of the GES family of β-lactamases. This would likely apply to all other class A carbapenemases given the high degree of their structural similarity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Dynamic thiol-disulfide homeostasis in acute ischemic stroke patients.

    PubMed

    Bektas, Hesna; Vural, Gonul; Gumusyayla, Sadiye; Deniz, Orhan; Alisik, Murat; Erel, Ozcan

    2016-12-01

    Dynamic thiol-disulfide homeostasis plays a critical role in the cellular protection provided by antioxidation. The aim of this study was to investigate whether there is a change in thiol-disulfide homeostasis in acute ischemic stroke patients. Patients diagnosed with acute ischemic stroke that had undergone magnetic resonance diffusion-weighted imaging within the first 24 h were prospectively included in this study. The thiol, disulfide, and total thiol levels were measured during the first 24 and 72 h, and the National Institutes of Health Stroke Scale (NIHSS), modified Rankin Scale (mRS), and Barthel Index (BI) of the patients were recorded. Overall, the relationships between the thiol-disulfide levels of the patients and the infarct volumes, NIHSS, mRS, and BI scores were investigated. In this study, 54 patients and 53 healthy controls were included. The mean of the native thiol levels in the stroke group was 356.572 ± 61.659 μmol/L (min/max 228.00/546.40), while it was 415.453 ± 39.436 μmol/L (min/max 323.50/488.70) in the control group (p < 0.001). A negative, significant correlation was observed between the infarct volumes and native thiol levels (ρ = -0.378; p = 0.005), and the disulfide levels were similar between the groups (Z = 0.774; p = 0.439). Significant difference was found between the thiol levels of the mild and moderate-severe NIHSS groups (p = 0.026). The changes in the thiol levels under oxidative stress may be associated with the severity of the stroke. Substitution of thiol deficiency and correction of thiol-disulfide imbalance may be beneficial in ischemic stroke.

  2. Thermal cycling and high power density hydrogen ion beam irradiation of tungsten layers on tungsten substrate

    NASA Astrophysics Data System (ADS)

    Airapetov, A. A.; Begrambekov, L. B.; Gretskaya, I. Yu; Grunin, A. V.; Dyachenko, M. Yu; Puntakov, N. A.; Sadovskiy, Ya A.

    2016-09-01

    Tungsten layers with iron impurity were deposited on tungsten substrates modeling re-deposited layers in a fusion device. The samples were tested by thermocycling and hydrogen ion beam tests. Thermocycling revealed globule formation on the surface. The size of the globules depended on iron impurity content in the coating deposited. Pore formation was observed which in some cases lead to exfoliation of the coatings. Hydrogen ion irradiation lead to formation of blisters on the coating and finally its exfoliation.

  3. The ideal tensile strength of tungsten and tungsten alloys by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Giusepponi, Simone; Celino, Massimo

    2013-04-01

    The ideal tensile strength in the [0 0 1] direction of bcc crystal tungsten and its alloys (W-Re, W-Ta and W-V) has been investigated by using first-principles total energy method based on the density functional theory. Crystalline tungsten containing a single substitutional defect (concentration of defects about 2%) has been characterized in terms of structural and mechanical properties. The maximum tensile stress required to reach elastic instability under increasing load has been further computed.

  4. Electrical Properties of Tungsten Filaments and Films Fabricated by the Reduction of Tungsten Hexafluoride by Silicon.

    NASA Astrophysics Data System (ADS)

    Feinerman, Alan Dov

    1987-12-01

    A novel method of photolithography has been developed for fabricating ultrathin tungsten filaments and films. It is based on the selective deposition of tungsten via low pressure chemical vapor deposition on undoped polycrystalline silicon. Tungsten filaments have been fabricated with heights from 93nm down to 5nm, and with lengths from 10 to 350mu. Tungsten films from 3 to 49nm were simultaneously fabricated on the same silicon wafer. The self-limiting thickness of the deposited tungsten layer, and the amount of encroachment of tungsten into the silicon/silicon dioxide interface is affected by the surface treatment used immediately prior to the tungsten deposition. Various plasma and wet chemical treatments have been studied. A quick etch of the polycrystalline silicon in a dilute mixture of HF in HNO_ {3} acid minimizes encroachment. Encroachment is maximized by etching in CF_{4} /O_{2} plasma. Both treatments are isotropic etches of silicon. The resistance of the filaments and films has been measured from.05 to 400K and in magnetic fields up to 5 tesla. The filaments and films have a superconducting transition temperature (T_{rm c}) between.7 and 4.1K, and a critical field larger than 5 tesla. The superconducting transitions are very broad, possibly due to a distribution of grain sizes and strain. The high values obtained for T_ {rm c} and the x-ray diffraction studies suggest that the tungsten deposits in both alpha and beta phases. The broad superconducting transition suppresses localization and electron-electron interactions effects. The temperature dependence of the resistance between 30 and 400K is different for films and filaments. The filaments and films were deposited simultaneously and there should be no dimensionality effects in this temperature range.

  5. Photoactive transparent nano-crystalline glass-ceramic for remazole red dye degradation

    SciTech Connect

    Gad-Allah, Tarek A.; Margha, Fatma H.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Preparation and characterization of novel transparent nanocrystalline glass-ceramic. ► Precipitation of photoactive phases by using controlled heat-treatment. ► Conservation of transparency along with photoactivity. ► Using the prepared nanocrystalline glass-ceramic in water purification. -- Abstract: Transparent glass ceramic material was prepared from alkali-borosilicate glass containing titania by proper heat treatment scheme. The prepared samples were characterized using differential thermal analysis, X-ray diffraction, transmission electron microscope, selected area electron diffraction and UV–visible spectroscopy. The applied heat treatment program allowed the crystallization of nano-crystalline anatase, rutile, barium titanate, titanium borate and silicate phases while maintaining the transparency. The precipitated nano-crystalline anatase and rutile phases were responsible for the observed high photocatalytic activity of the prepared samples. Samples of 24.29 and 32.39 TiO{sub 2} wt% showed better efficiency for the decolorization of remazole red dye compared with commercial-TiO{sub 2} used in preparation of glass-ceramic. The reuse of prepared glass-ceramic photocatalyst with nearly same efficiency for different times was also proved.

  6. Characteristics of titanium dioxide microdispersions with different photo-activity suitable for sunscreen formulations.

    PubMed

    Kubáč, L; Akrman, J; Kejlová, K; Bendová, H; Klánová, K; Hladíková, Z; Pikal, P; Kovaříková, L; Kašparová, L; Jírová, D

    2015-03-15

    The aim of the study was the comparison of photo-activity of three types of titanium dioxide (TiO2) micro-dispersions intended for use as UV filters for cosmetic sunscreen products. The dispersions were also investigated with regard to their influence on the stability of photo-protective systems in cosmetic emulsions, their skin penetration/absorption and their photo-toxicity for humans and skin bacterial flora. All the tested micro-dispersions of rutile TiO2 type (agglomerates with diameter 120-150 nm), with primary particle size lower than 100 nm, demonstrated no phototoxic effect and insignificant antimicrobial behaviour. On the other hand, TiO2 with insufficient deactivation of photo-activity had significant negative impact on the stability of other organic UV filters and therefore on the stability of declared UV protective factors (SPF, UVA-PF). The study demonstrated that the level of deactivation of TiO2 is one of the highly important factors for evaluation of UV filters used as sunscreens.

  7. Design of Photoactive Ruthenium Complexes to Study Electron Transfer and Proton Pumping in Cytochrome Oxidase

    PubMed Central

    Durham, Bill; Millett, Francis

    2011-01-01

    This review describes the development and application of photoactive ruthenium complexes to study electron transfer and proton pumping reactions in cytochrome c oxidase (CcO). CcO uses four electrons from Cc to reduce O2 to two waters, and pumps four protons across the membrane. The electron transfer reactions in cytochrome oxidase are very rapid, and cannot be resolved by stopped-flow mixing techniques. Methods have been developed to covalently attach a photoactive tris(bipyridine)ruthenium group [Ru(II)] to Cc to form Ru-39-Cc. Photoexcitation of Ru(II) to the excited state Ru(II*), a strong reductant, leads to rapid electron transfer to the ferric heme group in Cc, followed by electron transfer to CuA in CcO with a rate constant of 60,000 s−1. Ruthenium kinetics and mutagenesis studies have been used to define the domain for the interaction between Cc and CcO. New ruthenium dimers have also been developed to rapidly inject electrons into CuA of CcO with yields as high as 60%, allowing measurement of the kinetics of electron transfer and proton release at each step in the oxygen reduction mechanism. PMID:21939635

  8. Thermal Annealing Effect on Poly(3-hexylthiophene): Fullerene:Copper-Phthalocyanine Ternary Photoactive Layer

    PubMed Central

    Derouiche, H.; Mohamed, A. B.

    2013-01-01

    We have fabricated poly(3-hexylthiophene) (P3HT)/copper phthalocyanine (CuPc)/fullerene (C60) ternary blend films. This photoactive layer is sandwiched between an indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT/PSS) photoanode and a bathocuproine (BCP)/aluminium photocathode. The thin films have been characterized by atomic force microscope (AFM) and ultraviolet/visible spectroscopy in order to study the influence of P3HT doping on the morphological and optical properties of the photoactive layer. We have also compared the I-V characteristics of three different organic solar cells: ITO/PEDOT:PSS/CuPc0.5:C600.5/BCP/Al and ITO/PEDOT:PSS/P3HT0.3:CuPc0.3:C600.4/BCP/Al with and without annealing. Both structures show good photovoltaic behaviour. Indeed, the incorporation of P3HT into CuPc:C60 thin film improves all the photovoltaic characteristics. We have also seen that thermal annealing significantly improves the optical absorption ability and stabilizes the organic solar cells making it more robust to chemical degradation. PMID:23766722

  9. Design of photoactive ruthenium complexes to study electron transfer and proton pumping in cytochrome oxidase.

    PubMed

    Durham, Bill; Millett, Francis

    2012-04-01

    This review describes the development and application of photoactive ruthenium complexes to study electron transfer and proton pumping reactions in cytochrome c oxidase (CcO). CcO uses four electrons from Cc to reduce O(2) to two waters, and pumps four protons across the membrane. The electron transfer reactions in cytochrome oxidase are very rapid, and cannot be resolved by stopped-flow mixing techniques. Methods have been developed to covalently attach a photoactive tris(bipyridine)ruthenium group [Ru(II)] to Cc to form Ru-39-Cc. Photoexcitation of Ru(II) to the excited state Ru(II*), a strong reductant, leads to rapid electron transfer to the ferric heme group in Cc, followed by electron transfer to Cu(A) in CcO with a rate constant of 60,000s(-1). Ruthenium kinetics and mutagenesis studies have been used to define the domain for the interaction between Cc and CcO. New ruthenium dimers have also been developed to rapidly inject electrons into Cu(A) of CcO with yields as high as 60%, allowing measurement of the kinetics of electron transfer and proton release at each step in the oxygen reduction mechanism.

  10. Two-photon activation of photoactive ligands bound to gold surfaces

    NASA Astrophysics Data System (ADS)

    Magill, Brenden A.; Guo, Xi; See, Erich M.; Reyes, Roberto L.; Davis, Richey M.; Santos, Webster L.; Robinson, Hans D.

    2014-03-01

    Photoactive crosslinkers are useful tools for optically driven assembly of nano-particles. We report on the use of ultra-short laser pulses to affect localized photoreactions in o-nitrobenzyl-based photoactive ligands bound to a gold surface with thiol groups. The reaction is activated through a combination of thermal activation and two-photon absorption, while at higher power densities, ligands can be ablated from the surface through breaking of the gold-thiol bond. We will present data on the interplay of these three effects as a function of laser power and exposure time, and demonstrate assembly of nanoparticles onto optically patterned surfaces. Finally, we will discuss how this effect could be used to create well-defined nanoparticle assemblies where great binding-site selectivity can be obtained through the combination of high electromagnetic intensity enhancements at plasmon hotspots and the nonlinear scaling of photoactivation efficiency in two-photon absorption processes. We acknowledge financial support from the National Science Foundation and the Institute for Critical Technology and Applied Science.

  11. High photoactive TiO2/SnO2 nanocomposites prepared by laser pyrolysis

    NASA Astrophysics Data System (ADS)

    Scarisoreanu, Monica; Fleaca, Claudiu; Morjan, Ion; Niculescu, Ana-Maria; Luculescu, Catalin; Dutu, Elena; Ilie, Alina; Morjan, Iuliana; Florescu, Lavinia Gavrila; Vasile, Eugeniu; Fort, Carmen Ioana

    2017-10-01

    TiO2/SnO2 nanocomposites have been prepared by laser pyrolysis of volatile TiCl4 and SnCl4 precursors introduced together or separately in the reaction zone in the presence of air as oxidant and ethylene as sensitizer. Prior to the obtaining of TiO2/SnO2 nanocomposites with the different Sn concentrations (1.1-4.8 at.%), the best experimental conditions were identified for preparing pure anatase phase TiO2 samples considered as photoactive reference sample. The TiO2/SnO2 composites were characterized using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (DRS) techniques. The structural results show the presence of both TiO2 main phases: anatase (65-82% - the majority one) and rutile, as well as of small amounts of SnO2 tetragonal phase, all those with mean crystallite dimensions in the 8-22 nm range. Laser synthesized TiO2/SnO2 samples have a lower band gap energy and some of them (containing 1.8 or 4.8 at.% Sn) show higher photoactivity in the process of Methyl Orange solutions UV discoloration when compared with the P25 Degussa commercial sample.

  12. Thermal annealing effect on poly(3-hexylthiophene): fullerene:copper-phthalocyanine ternary photoactive layer.

    PubMed

    Derouiche, H; Mohamed, A B

    2013-01-01

    We have fabricated poly(3-hexylthiophene) (P3HT)/copper phthalocyanine (CuPc)/fullerene (C60) ternary blend films. This photoactive layer is sandwiched between an indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT/PSS) photoanode and a bathocuproine (BCP)/aluminium photocathode. The thin films have been characterized by atomic force microscope (AFM) and ultraviolet/visible spectroscopy in order to study the influence of P3HT doping on the morphological and optical properties of the photoactive layer. We have also compared the I-V characteristics of three different organic solar cells: ITO/PEDOT:PSS/CuPc₀.₅:C60₀.₅/BCP/Al and ITO/PEDOT:PSS/P3HT₀.₃:CuPc₀.₃:C60₀.₄/BCP/Al with and without annealing. Both structures show good photovoltaic behaviour. Indeed, the incorporation of P3HT into CuPc:C60 thin film improves all the photovoltaic characteristics. We have also seen that thermal annealing significantly improves the optical absorption ability and stabilizes the organic solar cells making it more robust to chemical degradation.

  13. Photoinduced Recovery of Organic Transistor Memories with Photoactive Floating-Gate Interlayers.

    PubMed

    Jeong, Yong Jin; Yun, Dong-Jin; Kim, Se Hyun; Jang, Jaeyoung; Park, Chan Eon

    2017-04-05

    Optical memories based on photoresponsive organic field-effect transistors (OFETs) are of great interest due to their unique applications, such as multibit storage memories and flexible imaging circuits. Most studies of OFET-type memories have focused on the photoresponsive active channels, but more useful functions can be additionally given to the devices by using floating gates that can absorb light. In this case, effects of photoirradiation on photoactive floating-gate layers need to be fully understood. Herein, we studied the photoinduced erasing effects of floating-gate interlayers on the electrical responses of OFET-type memories and considered the possible mechanisms. Polymer/C60 composites were inserted between pentacene and SiO2 to form photoresponsive floating-gate interlayers in transistor memory. When exposed to light, C60 generated excitons, and these photoexcited carriers contributed to the elimination of trapped charge carriers, which resulted in the recovery of OFET performance. Such memory devices exhibited bistable current states controlled with voltage-driven programming and light-driven erasure. Furthermore, these devices maintained their charge-storing properties over 10 000 s. This proof-of-concept study is expected to open up new avenues in information technology for the development of organic memories that exhibit photoinduced recovery over a wide range of wavelengths of light when combined with appropriate photoactive floating-gate materials.

  14. Differential photoactivity of aqueous [C60] and [C70] fullerene aggregates.

    PubMed

    Moor, Kyle J; Snow, Samuel D; Kim, Jae-Hong

    2015-05-19

    Many past studies have focused on the aqueous photochemical properties of colloidal suspensions of C60 and various [C60] fullerene derivatives, yet few have investigated the photochemistry of other larger cage fullerene species (e.g., C70, C74, C84, etc.) in water. This is a critical knowledge gap because these larger fullerenes may exhibit different properties compared to C60, including increased visible light absorption, altered energy level structures, and variable cage geometries, which may greatly affect aggregate properties and resulting aqueous photoactivity. Herein, we take the first steps toward a detailed investigation of the aqueous photochemistry of larger cage fullerene species, by focusing on [C70] fullerene. We find that aqueous suspensions of C60 and C70, nC60 and nC70, respectively, exhibit many similar physicochemical properties, yet nC70 appears to be significantly more photoactive than nC60. Studies are conducted to elucidate the mechanism behind nC70's superior (1)O2 generation, including the measurement of (1)O2 production as a function of incident excitation wavelength, analysis of X-ray diffraction data to determine crystal packing arrangements, and the excited state dynamics of aggregate fullerene species via transient absorption spectroscopy.

  15. Photoactive pigment-enzyme complexes of chlorophyll precursor in plant leaves.

    PubMed

    Belyaeva, O B; Litvin, F F

    2007-12-01

    This review summarizes contemporary data on structure and function of photoactive pigment--enzyme complexes of the chlorophyll precursor that undergoes photochemical transformation to chlorophyllide. The properties and functions of the complex and its principal components are considered including the pigment (protochlorophyllide), the hydrogen donor (NADPH), and the photoenzyme protochlorophyllide oxidoreductase (POR) that catalyzes the photochemical production of chlorophyllide. Chemical variants of the chlorophyll precursor are described (protochlorophyllide, protochlorophyll, and their mono- and divinyl forms). The nature and photochemical activity of spectrally distinct native protochlorophyllide forms are discussed. Data are presented on structural organization of the photoenzyme POR, its substrate specificity, localization in etioplasts, and heterogeneity. The significance of different POR forms (PORA, PORB, and PORC) in adaptation of chlorophyll biosynthesis to various illumination conditions is considered. Attention is paid to structural and functional interactions of three main constituents of the photoactive complex and to possible existence of additional components associated with the pigment-enzyme complex. Historical aspects of the problem and the prospects of further investigations are outlined.

  16. Multifunctional Single-Phase Photocatalysts: Extended Near Infrared Photoactivity and Reliable Magnetic Recyclability

    PubMed Central

    Li, Xiaoning; Zhu, Zhu; Li, Feng; Huang, Yan; Hu, Xiang; Huang, Haoliang; Peng, Ranran; Zhai, XiaoFang; Fu, Zhengping; Lu, Yalin

    2015-01-01

    A practical photocatalyst should be able to integrate together various functions including the extended solar conversion, a feasible and economic recyclability, and above the room temperature operation potential, et al., in order to fulfill the spreading application needs in nowadays. In this report, a multifunctional single-phase photocatalyst which possesses a high photoactivity extended into the near infrared region, an easy magnetic recyclability and the high temperature stability was developed by doping Co into a new layer-structured Bi7Fe3Ti3O21 material. Light absorption and photocatalytic activity of the resulted Bi7Fe3-xCoxTi3O21 photocatalyst were extended to the long wavelength as far as 800 nm. Its strong ferromagnetism above the room temperature enables the nanopowders fully recyclable in viscous solutions simply with a magnet bar in an experimental demonstration. Furthermore, such photoactivity and magnetic recyclability were heavily tested under high-temperature and high-viscosity conditions, which was intended to simulate the actual industrial environments. This work brings the bright light to a full availability of a new multifunctional photocatalyst, via integrating the much enhanced ferromagnetic, ferroelectric, optoelectronic properties, most importantly, into a single-phase structure. PMID:26503907

  17. Localized cell stimulation by nitric oxide using a photoactive porous coordination polymer platform

    PubMed Central

    Diring, Stéphane; Wang, Dan Ohtan; Kim, Chiwon; Kondo, Mio; Chen, Yong; Kitagawa, Susumu; Kamei, Ken-ichiro; Furukawa, Shuhei

    2013-01-01

    Functional cellular substrates for localized cell stimulation by small molecules provide an opportunity to control and monitor cell signalling networks chemically in time and space. However, despite improvements in the controlled delivery of bioactive compounds, the precise localization of gaseous biomolecules at the single-cell level remains challenging. Here we target nitric oxide, a crucial signalling molecule with site-specific and concentration-dependent activities, and we report a synthetic strategy for developing spatiotemporally controllable nitric oxide-releasing platforms based on photoactive porous coordination polymers. By organizing molecules with poor reactivity into polymer structures, we observe increased photoreactivity and adjustable release using light irradiation. We embed photoactive polymer crystals in a biocompatible matrix and achieve precisely controlled nitric oxide delivery at the cellular level via localized two-photon laser activation. The biological relevance of the exogenous nitric oxide produced by this strategy is evidenced by an intracellular change in calcium concentration, mediated by nitric oxide-responsive plasma membrane channel proteins. PMID:24158008

  18. Incoherent Manipulation of the Photoactive Yellow Protein Photocycle with Dispersed Pump-Dump-Probe Spectroscopy

    PubMed Central

    Larsen, Delmar S.; van Stokkum, Ivo H. M.; Vengris, Mikas; van der Horst, Michael A.; de Weerd, Frank L.; Hellingwerf, Klaas J.; van Grondelle, Rienk

    2004-01-01

    Photoactive yellow protein is the protein responsible for initiating the “blue-light vision” of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This “incoherent” manipulation of the photocycle allows for the detailed spectroscopic investigation of the underlying photocycle dynamics and the construction of a fully self-consistent dynamical model. This model requires three kinetically distinct excited-state intermediates, two (ground-state) photocycle intermediates, I0 and pR, and a ground-state intermediate through which the protein, after unsuccessful attempts at initiating the photocycle, returns to the equilibrium ground state. Also observed is a previously unknown two-photon ionization channel that generates a radical and an ejected electron into the protein environment. This second excitation pathway evolves simultaneously with the pathway containing the one-photon photocycle intermediates. PMID:15345564

  19. Understanding the adsorptive and photoactivity properties of Ag-graphene oxide nanocomposites.

    PubMed

    Martínez-Orozco, R D; Rosu, H C; Lee, Soo-Wohn; Rodríguez-González, V

    2013-12-15

    Nanocomposites of graphene oxide (GO) and silver nanoparticles (AgNPs) were synthetized using a practical photochemical silver functionalization. Their photocatalytic activities were evaluated with two dyes, Rhodamine B and Indigo Carmine, under visible-light irradiation. The prepared nanocomposites were characterized by HRTEM, FESEM, XRD, Raman, FTIR and UV-vis absorption spectroscopy. These nanocomposites present new defect domains of sp(3) type in combination with several graphitic functional groups that act as nucleation sites for anchoring AgNPs, while the sp(2)-sp(3) edge defects domains of GO generate the photoactivity. Furthermore, their photocatalytic performances are governed by their large adsorption capacity, and strong interaction with dye chromophores. A comprehensive photocatalytic way underlying the importance of adsorption is suggested to explain the low visible-light responsive photoactivity of the AgNPs-GO nanocomposites and the possible binding-site saturation. Then, the usage of H2SO4 allows the production of ionic species and helps to confirm the strong adsorption of both dyes. The ability to synthesize AgNPs-GO nanocomposites with extensive adsorptive capacity is certainly of interest for the efficient removal of hazardous materials.

  20. n-Type reduced graphene oxide field-effect transistors (FETs) from photoactive metal oxides.

    PubMed

    Yoo, Heejoun; Kim, Youngmin; Lee, Junghyun; Lee, Hyemi; Yoon, Yeoheung; Kim, Giyoun; Lee, Hyoyoung

    2012-04-16

    Graphene is of considerable interest as a next-generation semiconductor material to serve as a possible substitute for silicon. For real device applications with complete circuits, effective n-type graphene field effect transistors (FETs) capable of operating even under atmospheric conditions are necessary. In this study, we investigated n-type reduced graphene oxide (rGO) FETs of photoactive metal oxides, such as TiO(2) and ZnO. These metal oxide doped FETs showed slight n-type electric properties without irradiation. Under UV light these photoactive materials readily generated electrons and holes, and the generated electrons easily transferred to graphene channels. As a result, the graphene FET showed strong n-type electric behavior and its drain current was increased. These n-doping effects showed saturation curves and slowly returned back to their original state in darkness. Finally, the n-type rGO FET was also highly stable in air due to the use of highly resistant metal oxides and robust graphene as a channel.

  1. Structures and related properties of helical, disulfide-stabilized peptides

    SciTech Connect

    Pagel, Mark D.

    1993-11-01

    The three dimensional structure of several peptides were determined by NMR spectroscopy and distance geometry calculations. Each peptide formed a predictable, rigid structure, consisting of an α-helix, a "scaffold" region which packed along one face of the helix, and two disulfide bridges which covalently connect the helix and scaffold regions. The peptide Apa-M5 was designed to constrain the M5 peptide from MLCK in a helical geometry using the apamin disulfide scaffold. This scaffold constrains the N- terminal end of the helix with two disulfide bridges and a reverse turn. Like the M5 peptide, Apa-M5 was found to bind calmodulin in a Ca2+-dependent 1:1 stoichiometry. However, the dissociation constant of the (Apa-M5)-calmodulin complex, 107 nM, was 100-fold higher than the dissociation constant of the M5-calmodulin complex. This difference was due to a putative steric overlap between the Apa-M5 scaffold and calmodulin. The peptide Apa-Cro was designed to replace the large structural protein matrix of λ Cro with the apamin disulfide scaffold. However, Apa-Cro did not bind the consensus DNA operator half-site of λ Cro, probably due to a steric overlap between the Apa-Cro disulfide framework and the DNA. The amino acid sequence of the scaffold-disulfide bridge arrangement of the peptide Max was derived from the core sequence of scyllatoxin, which contains an α-helix constrained at the C-terminal end by two disulfide bridges and a two-stranded βsheet scaffold. Max was shown to fold with >84% yield to form a predictable, stable structure that is similar to scyllatoxin. The folding and stability properties of Max make this scaffold and disulfide bridge arrangement an ideal candidate for the development of hybrid sequence peptides. The dynamics of a fraying C-terminal end of the helix of the peptide Apa-AlaN was determined by analysis of 15N NMR relaxation properties.

  2. Synthesis of Neoglycoconjugates by the Desulfurative Rearrangement of Allylic Disulfides

    PubMed Central

    Crich, David; Yang, Fan

    2009-01-01

    Two series of neoglucosyl donors are prepared based on connection of the allylic disulfide motif to the anomeric center via either a simple O-glycosyl linkage or N-glycosyl amide unit. Conjugation of both sets of donors to cysteine in peptides is demonstrated through classical disulfide exchange followed by the phosphine-mediated desulfurative allylic rearrangement resulting in neoglycopeptides characterized by a simple thioether spacer. The conjugation reaction functions in the absence of protecting groups on both the neoglycosyl donor and peptide in aqueous media at room temperature. PMID:18729514

  3. Thiol-Disulfide Exchange in Gram-Positive Firmicutes.

    PubMed

    Davey, Lauren; Halperin, Scott A; Lee, Song F

    2016-11-01

    Extracytoplasmic thiol-disulfide oxidoreductases (TDORs) catalyze the oxidation, reduction, and isomerization of protein disulfide bonds. Although these processes have been characterized in Gram-negative bacteria, the majority of Gram-positive TDORs have only recently been discovered. Results from recent studies have revealed distinct trends in the types of TDOR used by different groups of Gram-positive bacteria, and in their biological functions. Actinobacteria TDORs can be essential for viability, while Firmicute TDORs influence various physiological processes, including protein stability, oxidative stress resistance, bacteriocin production, and virulence. In this review we discuss the diverse extracytoplasmic TDORs used by Gram-positive bacteria, with a focus on Gram-positive Firmicutes.

  4. Disulfide-rich macrocyclic peptides as templates in drug design.

    PubMed

    Northfield, Susan E; Wang, Conan K; Schroeder, Christina I; Durek, Thomas; Kan, Meng-Wei; Swedberg, Joakim E; Craik, David J

    2014-04-22

    Recently disulfide-rich head-to-tail cyclic peptides have attracted the interest of medicinal chemists owing to their exceptional thermal, chemical and enzymatic stability brought about by their constrained structures. Here we review current trends in the field of peptide-based pharmaceuticals and describe naturally occurring cyclic disulfide-rich peptide scaffolds, discussing their pharmaceutically attractive properties and benefits. We describe how we can utilise these stable frameworks to graft and/or engineer pharmaceutically interesting epitopes to increase their selectivity and bioactivity, opening up new possibilities for addressing 'difficult' pharmaceutical targets.

  5. Electrokinetic treatment of firing ranges containing tungsten-contaminated soils.

    PubMed

    Braida, Washington; Christodoulatos, Christos; Ogundipe, Adebayo; Dermatas, Dimitris; O'Connor, Gregory

    2007-11-19

    Tungsten-based alloys and composites are being used and new formulations are being considered for use in the manufacturing of different types of ammunition. The use of tungsten heavy alloys (WHA) in new munitions systems and tungsten composites in small caliber ammunition could potentially release substantial amounts of this element into the environment. Although tungsten is widely used in industrial and military applications, tungsten's potential environmental and health impacts have not been thoroughly addressed. This necessitates the research and development of remedial technologies to contain and/or remove tungsten from soils that may serve as a source for water contamination. The current work investigates the feasibility of using electrokinetics for the remediation of tungsten-contaminated soils in the presence of other heavy metals of concern such as Cu and Pb with aim to removing W from the soil while stabilizing in situ, Pb and Cu.

  6. Visible light photoinactivation of bacteria by tungsten oxide nanostructures formed on a tungsten foil

    NASA Astrophysics Data System (ADS)

    Ghasempour, Fariba; Azimirad, Rouhollah; Amini, Abbas; Akhavan, Omid

    2015-05-01

    Antibacterial activity of tungsten oxide nanorods/microrods were studied against Escherichia coli bacteria under visible light irradiation and in dark. A two-step annealing process at temperatures up to 390 °C and 400-800 °C was applied to synthesize the tungsten oxide nanorods/microrods on tungsten foils using KOH as a catalyst. Annealing the foils at 400 °C in the presence of catalyst resulted in formation of tungsten oxide nanorods (with diameters of 50-90 nm and crystalline phase of WO3) on surface of tungsten foils. By increasing the annealing temperature up to 800 °C, tungsten oxide microrods with K2W6O19 crystalline phase were formed on the foils. The WO3 nanorods showed a strong antibacterial property under visible light irradiation, corresponding to >92% bacterial inactivation within 24 h irradiation at room temperature, while the K2W6O19 microrods formed at 800 °C could inactivate only ∼45% of the bacteria at the same conditions.

  7. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    DOE PAGES

    Buchenauer, Dean A.; Karnesky, Richard A.; Fang, Zhigang Zak; ...

    2016-03-25

    Here, to address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungstenmore » being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D2 pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation of the temperature for brittle membranes above the ductile-to-brittle transition temperature.« less

  8. Plasma-enhanced etching of tungsten, tungsten silicide, and molybdenum in chlorine-containing discharges

    SciTech Connect

    Fischl, D.S.

    1988-01-01

    Thin films of tungsten, tungsten silicide, and molybdenum were etched both within and downstream from Cl{sub 2} discharges. Without a discharge, molecular chlorine did not etch the films. Experimental conditions ranged from 0.1 to 1.0 Torr pressure, 30 to 180{degree}C electrode temperature, 0.2 to 1.0 W/cm{sup 2} power density, and 3 to 200 sccm flow rate. In-discharge etch rates varied from 10 to 90 nm/min for tungsten (W), 10 to 450 nm/min for tungsten silicide (WSi{sub x}), and 1 to 8 nm/min for molybdenum (Mo). Small additions of BCl{sub 3}, during W and WSi{sub x} etching, significantly increased the etch rates and improved the reproducibility. When samples were positioned downstream from a Cl{sub 2} discharge, etching proceeded solely by chemical reaction of the film with chlorine atoms. Downstream and in-plasma tungsten etch rates were approximately equal at 110{degree}C, but the chlorine atom etch rate dropped more rapidly than the in-plasma etch rate as temperature decreased. In contrast, molybdenum etched faster by atoms alone than in the plasma, although atom etching was not observed below 100{degree}C. Reactions of tungsten with a modulated beam of chlorine atoms and molecules were also studied.

  9. Electrospark doping of steel with tungsten

    SciTech Connect

    Denisova, Yulia Shugurov, Vladimir; Seksenalina, Malika; Ivanova, Olga Ikonnikova, Irina; Kunitsyna, Tatyana Vlasov, Victor; Klopotov, Anatoliy; Ivanov, Yuriy

    2016-01-15

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.

  10. Gas tungsten arc welder with electrode grinder

    DOEpatents

    Christiansen, David W.; Brown, William F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  11. Evidence of hydrogen embrittlement of tungsten carbide.

    PubMed

    Kennedy, G C

    1978-02-01

    Tungsten carbide vessels containing materials at high temperature and high pressure are used in many laboratories. We note that any oils at medium to high temperature which can break down and liberate hydrogen cause rapid failure of the pressure vessel, whereas perfluorated kerosenes used as lubricants inside a pressure vessel give sharply increased life of the vessel.

  12. Gas tungsten arc welder with electrode grinder

    SciTech Connect

    Christiansen, D.W.; Brown, W.F.

    1984-10-30

    A welder for automated closure of fuel pins by a gas tungsten arc process is claimed. A rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  13. Joining of Tungsten Armor Using Functional Gradients

    SciTech Connect

    John Scott O'Dell

    2006-12-31

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  14. Tungsten: A Preliminary Environmental Risk Assessment

    DTIC Science & Technology

    2011-05-01

    Tungsten Effects on Soil Microbial Communities BUILDING STRONG® Actinobacteria Bacteroidetes Firmicutes alpha- Proteobacteria beta- Proteobacteria gamma... Proteobacteria delta- Proteobacteria Nitrospira Thermotogae unknown Increasing soil [W] resulted in: • Loss in diversity • Effect on Soil Quality...Persistence of Actinobacteria & gamma- Proteobacteria • Actinobacteria – includes the actinomycetes  γ- Proteobacteria – includes a variety of microbes

  15. Processing and alloying of tungsten heavy alloys

    SciTech Connect

    Bose, A.; Dowding, R.J.

    1993-12-31

    Tungsten heavy alloys are two-phase metal matrix composites with a unique combination of density, strength, and ductility. They are processed by liquid-phase sintering of mixed elemental powders. The final microstructure consists of a contiguous network of nearly pure tungsten grains embedded in a matrix of a ductile W-Ni-Fe alloy. Due to the unique property combination of the material, they are used extensively as kinetic energy penetrators, radiation shields. counterbalances, and a number of other applications in the defense industry. The properties of these alloys are extremely sensitive to the processing conditions. Porosity levels as low as 1% can drastically degrade the properties of these alloys. During processing, care must be taken to reduce or prevent incomplete densification, hydrogen embrittlement, impurity segregation to the grain boundaries, solidification shrinkage induced porosity, and in situ formation of pores due to the sintering atmosphere. This paper will discuss some of the key processing issues for obtaining tungsten heavy alloys with good properties. High strength tungsten heavy alloys are usually fabricated by swaging and aging the conventional as-sintered material. The influence of this on the shear localization tendency of a W-Ni-Co alloy will also be demonstrated. Recent developments have shown that the addition of certain refractory metals partially replacing tungsten can significantly improve the strength of the conventional heavy alloys. This development becomes significant due to the recent interest in near net shaping techniques such as powder injection moldings. The role of suitable alloying additions to the classic W-Ni-Fe based heavy alloys and their processing techniques will also be discussed in this paper.

  16. 21 CFR 520.1802b - Piperazine-carbon disulfide complex boluses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Piperazine-carbon disulfide complex boluses. 520....1802b Piperazine-carbon disulfide complex boluses. (a) Specifications. Each bolus contains 20 grams of piperazine-carbon disulfide complex. (b) Sponsor. See 000009 in § 510.600(c) of this chapter. (c)...

  17. 21 CFR 520.1802c - Piperazine-carbon disulfide complex with phenothiazine suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Piperazine-carbon disulfide complex with... ANIMAL DRUGS § 520.1802c Piperazine-carbon disulfide complex with phenothiazine suspension. (a) Specifications. Each fluid ounce contains 5 grams of piperazine-carbon disulfide complex and 0.83 gram...

  18. 21 CFR 520.1802b - Piperazine-carbon disulfide complex boluses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Piperazine-carbon disulfide complex boluses. 520....1802b Piperazine-carbon disulfide complex boluses. (a) Specifications. Each bolus contains 20 grams of piperazine-carbon disulfide complex. (b) Sponsor. See 000009 in § 510.600(c) of this chapter. (c)...

  19. 21 CFR 520.1802c - Piperazine-carbon disulfide complex with phenothiazine suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Piperazine-carbon disulfide complex with... ANIMAL DRUGS § 520.1802c Piperazine-carbon disulfide complex with phenothiazine suspension. (a) Specifications. Each fluid ounce contains 5 grams of piperazine-carbon disulfide complex and 0.83 gram...

  20. 21 CFR 520.1802b - Piperazine-carbon disulfide complex boluses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Piperazine-carbon disulfide complex boluses. 520....1802b Piperazine-carbon disulfide complex boluses. (a) Specifications. Each bolus contains 20 grams of piperazine-carbon disulfide complex. (b) Sponsor. See 000009 in § 510.600(c) of this chapter. (c)...

  1. 21 CFR 520.1802c - Piperazine-carbon disulfide complex with phenothiazine suspension.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Piperazine-carbon disulfide complex with... ANIMAL DRUGS § 520.1802c Piperazine-carbon disulfide complex with phenothiazine suspension. (a) Specifications. Each fluid ounce contains 5 grams of piperazine-carbon disulfide complex and 0.83 gram...

  2. 21 CFR 520.1802c - Piperazine-carbon disulfide complex with phenothiazine suspension.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Piperazine-carbon disulfide complex with... ANIMAL DRUGS § 520.1802c Piperazine-carbon disulfide complex with phenothiazine suspension. (a) Specifications. Each fluid ounce contains 5 grams of piperazine-carbon disulfide complex and 0.83 gram...

  3. 21 CFR 520.1802b - Piperazine-carbon disulfide complex boluses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Piperazine-carbon disulfide complex boluses. 520....1802b Piperazine-carbon disulfide complex boluses. (a) Specifications. Each bolus contains 20 grams of piperazine-carbon disulfide complex. (b) Sponsor. See 000009 in § 510.600(c) of this chapter. (c)...

  4. 21 CFR 520.1802b - Piperazine-carbon disulfide complex boluses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Piperazine-carbon disulfide complex boluses. 520....1802b Piperazine-carbon disulfide complex boluses. (a) Specifications. Each bolus contains 20 grams of piperazine-carbon disulfide complex. (b) Sponsor. See 000009 in § 510.600(c) of this chapter. (c)...

  5. 21 CFR 520.1802c - Piperazine-carbon disulfide complex with phenothiazine suspension.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Piperazine-carbon disulfide complex with... ANIMAL DRUGS § 520.1802c Piperazine-carbon disulfide complex with phenothiazine suspension. (a) Specifications. Each fluid ounce contains 5 grams of piperazine-carbon disulfide complex and 0.83 gram...

  6. Comparison of Self-Assembled Monolayers on Gold: Coadsorption of Thiols and Disulfides

    DTIC Science & Technology

    1989-02-15

    self-assembled monolayers of thiols and disulfides. Previous studies by Dubois et alt t of the adsorption of dimethyl disulfide and methanethiol on...with an activation energy of desorption of 28 kcal/mol of disulfide, but the methanethiol was only physisorbed on the gold surface and desorbed intact

  7. Synthesis of unsymmetric disulfides as potential antiradiation drugs

    SciTech Connect

    Womble, S.W.

    1988-01-01

    This research involved the synthesis of unsymmetric disulfides which contain the radioprotective compound cysteamine attached to a biologically active molecule via a disulfide linkage. This study involved the synthesis of unsymmetric disulfides of cysteamine with amino acids, amino acid esters, steroidal thiols, glutathione, and other known radio-protective compounds which were submitted for biological evaluation. It is hoped that by attaching a known radioprotective compound to a molecule such as an amino acid or steroid we may obtain an enhanced concentration of the radioprotective substance in the target areas within the cell. The use of steroidal thiols coupled to cysteamine may result in the protection of the central nervous system for which there is no known radioprotective agent available. In the second part of this work a synthesis of a thiol containing polymer was developed which would give a highly functionalized product. This thiol containing polymer can be utilized in a solid phase synthesis scheme for the preparation of unsymmetric disulfides free of side products.

  8. Echistatin disulfide bridges: selective reduction and linkage assignment.

    PubMed Central

    Gray, W. R.

    1993-01-01

    Echistatin is the smallest member of the disintegrin family of snake venom proteins, containing four disulfides in a peptide chain of 49 residues. Partial assignment of disulfides has been made previously by NMR and chemical approaches. A full assignment was made by a newly developed chemical approach, using partial reduction with tris-(2-carboxyethyl)-phosphine at acid pH. Reduction proceeded in a stepwise manner at pH 3, and the intermediates were isolated by high performance liquid chromatography. Alkylation of free thiols, followed by sequencer analysis, enabled all four bridges to be identified: (1) at 20 degrees C a single bridge linking Cys 2-Cys 11 was broken, giving a relatively stable intermediate; (2) with further treatment at 41 degrees C the bridges Cys 7-Cys 32 and Cys 8-Cys 37 became accessible to the reagent and were reduced at approx. equal rates; (3) the two bicyclic peptides produced in this manner were less stable and could be reduced at 20 degrees C to a peptide that retains a single bridge linking Cys 20-Cys 39; and (4) the monocyclic peptide can be reduced to the linear molecule at 20 degrees C. Some disulfide exchange occurred during alkylation of the bicyclic intermediates, but results unambiguously show the pattern to be [2-11; 7-32; 8-37; 20-39]. A comparison is made with kistrin, a longer disintegrin whose disulfide structure has been proposed from NMR analysis. PMID:8251946

  9. Response of soil organisms to dimethyl disulfide fumigation

    USDA-ARS?s Scientific Manuscript database

    After the commonly used soil fumigant methyl bromide (MeBr) was phased out in the United States, alternatives to MeBr such as dimethyl disulfide (DMDS) which is known to have broad pest control spectrum, is increasingly used. However, effectiveness of DMDS has been mainly investigated to study targe...

  10. Development of Advanced Oxide Dispersion Strengthened Tungsten Heavy Alloy for Penetrator Application

    DTIC Science & Technology

    2005-09-30

    preparation, sintering, cyclic heat-treatment, swaging , and annealing processes, on microstructures and static/dynamic mechanical properties of ODS tungsten ... tungsten / tungsten contiguity. The swaging and annealing processes of ODS tungsten heavy alloy increase the tensile strength with decreasing the...Final Report for 2nd Year Contract of AOARD 034032 Development of Advanced Oxide Dispersion Strengthened Tungsten Heavy Alloy for

  11. Topology of the disulfide bonds in the antiviral lectin scytovirin

    PubMed Central

    Moulaei, Tinoush; Stuchlik, Olga; Reed, Matthew; Yuan, Weirong; Pohl, Jan; Lu, Wuyuan; Haugh-Krumpe, Lauren; O'Keefe, Barry R; Wlodawer, Alexander

    2010-01-01

    The antiviral lectin scytovirin (SVN) contains a total of five disulfide bonds in two structurally similar domains. Previous reports provided contradictory results on the disulfide pairing in each individual domain, and we have now re-examined the disulfide topology. N-terminal sequencing and mass spectrometry were used to analyze proteolytic fragments of native SVN obtained at acidic pH, yielding the assignment as Cys7–Cys55, Cys20–Cys32, Cys26–Cys38, Cys68–Cys80, and Cys74–Cys86. We also analyzed the N-terminal domain of SVN (SD1, residues 1–48) prepared by expression/oxidative folding of the recombinant protein and by chemical synthesis. The disulfide pairing in the chemically synthesized SD1 was forced into predetermined topologies: SD1A (Cys20–Cys26, Cys32–Cys38) or SD1B (Cys20–Cys32, Cys26–Cys38). The topology of native SVN was found to be in agreement with the SD1B and the one determined for the recombinant SD1 domain. Although the two synthetic forms of SD1 were distinct when subjected to chromatography, their antiviral properties were indistinguishable, having low nM activity against HIV. Tryptic fragments, the “cystine clusters” [Cys20–Cys32/Cys26–Cys38; SD1] and [Cys68–Cys80/Cys74–C-86; SD2], were found to undergo rapid disulfide interchange at pH 8. This interchange resulted in accumulation of artifactual fragments in alkaline pH digests that are structurally unrelated to the original topology, providing a rational explanation for the differences between the topology reported herein and the one reported earlier (Bokesh et al., Biochemistry 2003;42:2578–2584). Our observations emphasize the fact that proteins such as SVN, with disulfide bonds in close proximity, require considerable precautions when being fragmented for the purpose of disulfide assignment. PMID:20572021

  12. Magnetic Fe@g-C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes

    EPA Science Inventory

    A photoactive catalyst, Fe@g-C3N4, has been developed for the hydrogenation of alkenes and alkynes using hydrazine hydrate as a source of hydrogen. The magnetically separable Fe@g-C3N4 eliminates the use of high pressure hydrogenation and the reaction can be accomplished using vi...

  13. Magnetic Fe@g-C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes

    EPA Science Inventory

    A photoactive catalyst, Fe@g-C3N4, has been developed for the hydrogenation of alkenes and alkynes using hydrazine hydrate as a source of hydrogen. The magnetically separable Fe@g-C3N4 eliminates the use of high pressure hydrogenation and the reaction can be accomplished using vi...

  14. Investigation of the compatibility of tungsten and high temperature sodium

    NASA Astrophysics Data System (ADS)

    Xu, Yong-Li; Long, Bin; Xu, Yuan-Chao; Li, Hua-Qing

    2005-08-01

    The compatibility of rotary swaged tungsten and sodium was investigated at 500, 600, 700 °C, and also at 600 °C of polished tungsten. The weight loss curves for the two kinds of W-specimens appear significantly different, however their weight losses approach constant values after testing for 400 h. The asymptotic change in sodium containing 30 μg/g oxygen at 600 °C are about 2.3 and 0.8 mg/cm 2 from 400 to 1500 h, respectively for the rotary swaging tungsten and the polishing tungsten. The corrosion products at the surfaces of two kinds of W-specimens after testing in high temperature sodium are different. The grains show significant growth after testing of both kinds of tungsten. The fracture stress of the rotary swaged tungsten at room temperature decreases considerably after testing with the effect slightly increasing with temperature from 500, 600 to 700 °C. A much smaller decrease of fracture stress is observed for polished tungsten at 600 °C, which already before testing has much smaller value. The micro-morphologies of the fracture surface indicate brittle inter-granular fracture in both kinds of tungsten. Embrittlement becomes much more notable for rotary swaged tungsten, while inter- and trans-granular fracture modes appear after corrosion tests in high temperature sodium for both kinds of tungsten.

  15. Virus Capsids as Targeted Nanoscale Delivery Vessels of Photoactive Compounds for Site-Specific Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Cohen, Brian A.

    The research presented in this work details the use of a viral capsid as an addressable delivery vessel of photoactive compounds for use in photodynamic therapy. Photodynamic therapy is a treatment that involves the interaction of light with a photosensitizing molecule to create singlet oxygen, a reactive oxygen species. Overproduction of singlet oxygen in cells can cause oxidative damage leading to cytotoxicity and eventually cell death. Challenges with the current generation of FDA-approved photosensitizers for photodynamic therapy primarily stem from their lack of tissue specificity. This work describes the packaging of photoactive cationic porphyrins inside the MS2 bacteriophage capsid, followed by external modification of the capsid with cancer cell-targeting G-quadruplex DNA aptamers to generate a tumor-specific photosensitizing agent. First, a cationic porphyrin is loaded into the capsids via nucleotide-driven packaging, a process that involves charge interaction between the porphyrin and the RNA inside the capsid. Results show that over 250 porphyrin molecules associate with the RNA within each MS2 capsid. Removal of RNA from the capsid severely inhibits the packaging of the cationic porphyrins. Porphyrin-virus constructs were then shown to photogenerate singlet oxygen, and cytotoxicity in non-targeted photodynamic treatment experiments. Next, each porphyrin-loaded capsid is externally modified with approximately 60 targeting DNA aptamers by employing a heterobifunctional crosslinking agent. The targeting aptamer is known to bind the protein nucleolin, a ubiquitous protein that is overexpressed on the cell surface by many cancer cell types. MCF-7 human breast carcinoma cells and MCF-10A human mammary epithelial cells were selected as an in vitro model for breast cancer and normal tissue, respectively. Fluorescently tagged virus-aptamer constructs are shown to selectively target MCF-7 cells versus MCF-10A cells. Finally, results are shown in which porphyrin

  16. Intermolecular disulfide bond influences unphosphorylated STAT3 dimerization and function.

    PubMed

    Butturini, Elena; Gotte, Giovanni; Dell'Orco, Daniele; Chiavegato, Giulia; Marino, Valerio; Canetti, Diana; Cozzolino, Flora; Monti, Maria; Pucci, Piero; Mariotto, Sofia

    2016-10-01

    Signal transducer and activator of transcription 3 (STAT3) is a transcription factor activated by the phosphorylation of tyrosine 705 in response to many cytokines and growth factors. Recently, the roles for unphosphorylated STAT3 (U-STAT3) have been described in response to cytokine stimulation, in cancers, and in the maintenance of heterochromatin stability. It has been reported that U-STAT3 dimerizes, shuttles between the cytoplasm and nucleus, and binds to DNA, thereby driving genes transcription. Although many reports describe the active role of U-STAT3 in oncogenesis in addition to phosphorylated STAT3, the U-STAT3 functional pathway remains elusive.In this report, we describe the molecular mechanism of U-STAT3 dimerization, and we identify the presence of two intermolecular disulfide bridges between Cys367 and Cys542 and Cys418 and Cys426, respectively. Recently, we reported that the same cysteines contribute to the redox regulation of STAT3 signaling pathway both in vitro and in vivo The presence of these disulfides is here demonstrated to largely contribute to the structure and the stability of U-STAT3 dimer as the dimeric form rapidly dissociates upon reduction in the S-S bonds. In particular, the Cys367-Cys542 disulfide bridge is shown to be critical for U-STAT3 DNA-binding activity. Mutation of the two Cys residues completely abolishes the DNA-binding capability of U-STAT3. Spectroscopic investigations confirm that the noncovalent interactions are sufficient for proper folding and dimer formation, but that the interchain disulfide bonds are crucial to preserve the functional dimer. Finally, we propose a reaction scheme of U-STAT3 dimerization with a first common step followed by stabilization through the formation of interchain disulfide bonds. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  17. Semienzymatic Cyclization of Disulfide-rich Peptides Using Sortase A*

    PubMed Central

    Jia, Xinying; Kwon, Soohyun; Wang, Ching-I Anderson; Huang, Yen-Hua; Chan, Lai Y.; Tan, Chia Chia; Rosengren, K. Johan; Mulvenna, Jason P.; Schroeder, Christina I.; Craik, David J.

    2014-01-01

    Disulfide-rich cyclic peptides have generated great interest in the development of peptide-based therapeutics due to their exceptional stability toward chemical, enzymatic, or thermal attack. In particular, they have been used as scaffolds onto which bioactive epitopes can be grafted to take advantage of the favorable biophysical properties of disulfide-rich cyclic peptides. To date, the most commonly used method for the head-to-tail cyclization of peptides has been native chemical ligation. In recent years, however, enzyme-mediated cyclization has become a promising new technology due to its efficiency, safety, and cost-effectiveness. Sortase A (SrtA) is a bacterial enzyme with transpeptidase activity. It recognizes a C-terminal penta-amino acid motif, LPXTG, and cleaves the amide bond between Thr and Gly to form a thioacyl-linked intermediate. This intermediate undergoes nucleophilic attack by an N-terminal poly-Gly sequence to form an amide bond between the Thr and N-terminal Gly. Here, we demonstrate that sortase A can successfully be used to cyclize a variety of small disulfide-rich peptides, including the cyclotide kalata B1, α-conotoxin Vc1.1, and sunflower trypsin inhibitor 1. These peptides range in size from 14 to 29 amino acids and contain three, two, or one disulfide bond, respectively, within their head-to-tail cyclic backbones. Our findings provide proof of concept for the potential broad applicability of enzymatic cyclization of disulfide-rich peptides with therapeutic potential. PMID:24425873

  18. Exploring synonymous codon usage preferences of disulfide-bonded and non-disulfide bonded cysteines in the E. coli genome.

    PubMed

    Song, Jiangning; Wang, Minglei; Burrage, Kevin

    2006-07-21

    High-quality data about protein structures and their gene sequences are essential to the understanding of the relationship between protein folding and protein coding sequences. Firstly we constructed the EcoPDB database, which is a high-quality database of Escherichia coli genes and their corresponding PDB structures. Based on EcoPDB, we presented a novel approach based on information theory to investigate the correlation between cysteine synonymous codon usages and local amino acids flanking cysteines, the correlation between cysteine synonymous codon usages and synonymous codon usages of local amino acids flanking cysteines, as well as the correlation between cysteine synonymous codon usages and the disulfide bonding states of cysteines in the E. coli genome. The results indicate that the nearest neighboring residues and their synonymous codons of the C-terminus have the greatest influence on the usages of the synonymous codons of cysteines and the usage of the synonymous codons has a specific correlation with the disulfide bond formation of cysteines in proteins. The correlations may result from the regulation mechanism of protein structures at gene sequence level and reflect the biological function restriction that cysteines pair to form disulfide bonds. The results may also be helpful in identifying residues that are important for synonymous codon selection of cysteines to introduce disulfide bridges in protein engineering and molecular biology. The approach presented in this paper can also be utilized as a complementary computational method and be applicable to analyse the synonymous codon usages in other model organisms.

  19. Examination of the effect of increasing the number of intra-disulfide amino functional groups on the performance of small molecule cyclic polyamine disulfide vectors.

    PubMed

    Drake, Christopher R; Aissaoui, Abderrahim; Argyros, Orestis; Thanou, Maya; Steinke, Joachim H G; Miller, Andrew D

    2013-10-10

    Establishing structure-activity relationships is vital if the efficacy of non-viral vectors is to match that of their viral counter-parts. Recently, we reported on the ability of a series of small molecule, cyclic polyamine disulfides to condense and cage plasmid DNA (pDNA) by a process of thermodynamically controlled templated polymerization, leading to a series of corresponding pDNA-polyplex nanoparticles able to mediate high levels of transfection with no associated cytotoxicities. The leading cyclic polyamine disulfide was shown to be the spermine tetra-amine disulfide (TetraN-3,4,3). Herein we report on the significantly more challenging syntheses of cyclic disulfides with longer polyamine motifs. Two new cyclic polyamine disulfides, based on hexa- and octa-amine inserts, were prepared and their transfection efficacies and cytotoxicities compared with our previously reported cyclic tri- and tetra-amine disulfides. The new cyclic hexa- and octa-amine disulfides prove more effective at transfection in vitro, especially of lung epithelial A549 cell line. By contrast, our original cyclic tetra-amine disulfide remains the most efficient agent for the transfection of lung epithelial cells in vivo following intra-nasal administration. Hypothetical mechanistic reasons are presented to explain this outcome. Our data in toto support the concept of shorter cyclic polyamine disulfides as preferred agents for polycation-mediated controlled condensation and functional delivery of pDNA to lung epithelial cells in vivo.

  20. First examples of oxidizing secondary alcohols to ketones in the presence of the disulfide functional group: synthesis of novel diketone disulfides.

    PubMed

    Fang, X; Bandarage, U K; Wang, T; Schroeder, J D; Garvey, D S

    2001-06-01

    The disulfide functionality is present in a number of organic compounds of interest in the fields of both chemistry and biology. Because the disulfide group is known to be highly susceptible to further oxidation by a wide range of agents, performing a chemoselective oxidation without further oxidizing the disulfide moiety poses a synthetic challenge. Reported herein are the first examples of such a chemoselective oxidation in which a series of novel secondary alcohol disulfides 2a-f have been converted to the corresponding symmetrical diketones 3a-f utilizing a modified Swern oxidation.

  1. Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system

    PubMed Central

    Groß, Dominik P.; Burgard, Caroline A.; Reddehase, Silvia; Leitch, Jeffry M.; Culotta, Valeria C.; Hell, Kai

    2011-01-01

    The copper chaperone for superoxide dismutase 1 (Ccs1) provides an important cellular function against oxidative stress. Ccs1 is present in the cytosol and in the intermembrane space (IMS) of mitochondria. Its import into the IMS depends on the Mia40/Erv1 disulfide relay system, although Ccs1 is, in contrast to typical substrates, a multidomain protein and lacks twin CxnC motifs. We report on the molecular mechanism of the mitochondrial import of Saccharomyces cerevisiae Ccs1 as the first member of a novel class of unconventional substrates of the disulfide relay system. We show that the mitochondrial form of Ccs1 contains a stable disulfide bond between cysteine residues C27 and C64. In the absence of these cysteines, the levels of Ccs1 and Sod1 in mitochondria are strongly reduced. Furthermore, C64 of Ccs1 is required for formation of a Ccs1 disulfide intermediate with Mia40. We conclude that the Mia40/Erv1 disulfide relay system introduces a structural disulfide bond in Ccs1 between the cysteine residues C27 and C64, thereby promoting mitochondrial import of this unconventional substrate. Thus the disulfide relay system is able to form, in addition to double disulfide bonds in twin CxnC motifs, single structural disulfide bonds in complex protein domains. PMID:21865601

  2. Preparation of photoactive polymers and postmodification via nitroxide trapping under UV irradiation.

    PubMed

    Mardyukov, Artur; Studer, Armido

    2013-01-11

    New types of photoactive homo and block copolymers bearing α-hydroxyalkylphenylketone (2-hydroxy-2-methyl-1-phenylpropan-1-one) moieties as backbone substituents are prepared using nitroxide-mediated radical polymerization (NMP). Such polymers can be readily activated via the Norrish-type I photoreaction to give polymeric acyl radicals. Photolysis in the presence of a persistent nitroxide, which serves as a C- radical trapping reagent, leads to chemically modified polymers conjugated with nitroxide moieties. The number-average molecular weight (M(n)) of the prepolymers and the chemically modified polymers was determined by gel permeation chromatography (GPC). Structures were further confirmed by NMR spectroscopy and by attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy.

  3. Fabrication of carbohydrate microarrays on a poly(2-hydroxyethyl methacrylate)-based photoactive substrate.

    PubMed

    Sundhoro, Madanodaya; Wang, Hui; Boiko, Scott T; Chen, Xuan; Jayawardena, H Surangi N; Park, JaeHyeung; Yan, Mingdi

    2016-01-21

    We report the fabrication of carbohydrate microarrays on a photoactive polymer, poly(HEMA-co-HEMA-PFPA), synthesized by RAFT copolymerization of 2-hydroxyethyl methacrylate (HEMA) and perfluorophenyl azide (PFPA)-derivatized HEMA (HEMA-PFPA). PFPA allows the covalent immobilization of carbohydrates whereas the HEMA polymer provides an antifouling surface, thus the microarrays can be used directly without pretreating the array with a blocking agent. The microarrays were prepared by spin-coating the polymer followed by printing the carbohydrates. Subsequent irradiation simultaneously immobilized the carbohydrates and crosslinked the polymer matrix. The obtained 3D carbohydrate microarrays showed enhanced fluorescence signals upon treating with a fluorescent lectin in comparison with a 2D microarray. The signals were acquired at a lower lectin concentration and a shorter incubation time. When treated with E. coli bacteria, the carbohydrate microarray showed results that were consistent with their binding patterns.

  4. Structural Determinats Underlying Photoprotection in the Photoactive Orange Carotenoid Protein of Cyanobacteria

    SciTech Connect

    Wilson, Adjele; Kinney, James N.; Zwart, Petrus H.; Punginelli, Claire; D'Haene, Sandrine; Perreau, Francois; Klein, Michael G.; Kirilovsky, Diana; Kerfeld, Cheryl

    2010-04-01

    The photoprotective processes of photosynthetic organisms involve the dissipation of excess absorbed light energy as heat. Photoprotection in cyanobacteria is mechanistically distinct from that in plants; it involves the Orange Carotenoid Protein (OCP), a water-soluble protein containing a single carotenoid. The OCP is a new member of the family of blue light photoactive proteins; blue-green light triggers the OCP-mediated photoprotective response. Here we report structural and functional characterization of the wildtype and two mutant forms of the OCP, from the model organism Synechocystis PCC6803. The structural analysis provides highresolution detail of the carotenoidprotein interactions that underlie the optical properties of the OCP, unique among carotenoid-proteins in binding a single pigment per polypeptide chain. Collectively, these data implicate several key amino acids in the function of the OCP and reveal that the photoconversion and photoprotective responses of the OCP to blue-green light can be decoupled.

  5. Modern synthetic tools toward the preparation of sophisticated phthalocyanine-based photoactive systems.

    PubMed

    Ragoussi, Maria-Eleni; Torres, Tomás

    2014-10-01

    Phthalocyanines are ideal components in a variety of electronic applications due to their extraordinary photophysical characteristics combined with their synthetic versatility and robustness. They have attracted substantial attention in recent decades and are now established building blocks of sophisticated molecular materials. Synthetically, a great deal of this progress is attributed to the use of modern synthetic tools, which gave rise to phthalocyanine-based systems that could not have been envisaged in the past. In particular, Pd-catalyzed cross-coupling reactions, together with other transition-metal-catalyzed procedures, "click" chemistry, and ruthenium metathesis have been employed extensively en route to an abundant range of elaborate phthalocyanine mono- and multicomponent photoactive architectures. Herein, we describe the synthesis of a selection of key examples that are representative in certain optoelectronic applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Small Molecule-Photoactive Yellow Protein Labeling Technology in Live Cell Imaging.

    PubMed

    Gao, Feng; Gao, Tang; Zhou, Kechao; Zeng, Wenbin

    2016-08-31

    Characterization of the chemical environment, movement, trafficking and interactions of proteins in live cells is essential to understanding their functions. Labeling protein with functional molecules is a widely used approach in protein research to elucidate the protein location and functions both in vitro and in live cells or in vivo. A peptide or a protein tag fused to the protein of interest and provides the opportunities for an attachment of small molecule probes or other fluorophore to image the dynamics of protein localization. Here we reviewed the recent development of no-wash small molecular probes for photoactive yellow protein (PYP-tag), by the means of utilizing a quenching mechanism based on the intramolecular interactions, or an environmental-sensitive fluorophore. Several fluorogenic probes have been developed, with fast labeling kinetics and cell permeability. This technology allows quick live-cell imaging of cell-surface and intracellular proteins without a wash-out procedure.

  7. Design and application of carbon nanomaterials for photoactive and charge transport layers in organic solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Sunghwan; Jun, Gwang Hoon; Jeon, Seokwoo; Hong, Soon Hyung

    2016-04-01

    Commercialization of organic solar cell (OSC) has faltered due to their low power conversion efficiency (PCE) compared to inorganic solar cell. Low electrical conductivity, low charge mobility, and short-range light absorption of most organic materials limit the PCE of OSCs. Carbon nanomaterials, especially carbon nanotubes (CNTs) and graphenes, are of great interest for use in OSC applications due to their high electrical conductivity, mobility, and unique optical properties for enhancing the performance of OSCs. In this review, recent progress toward the integration of carbon nanomaterials into OSCs is described. The role of carbon nanomaterials and strategies for their integration into various layers of OSCs, including the photoactive layer and charge transport layer, are discussed. Based on these, we also discuss the prospects of carbon nanomaterials for specific OSC layers to maximize the PCE.

  8. Design and application of carbon nanomaterials for photoactive and charge transport layers in organic solar cells.

    PubMed

    Jin, Sunghwan; Jun, Gwang Hoon; Jeon, Seokwoo; Hong, Soon Hyung

    2016-01-01

    Commercialization of organic solar cell (OSC) has faltered due to their low power conversion efficiency (PCE) compared to inorganic solar cell. Low electrical conductivity, low charge mobility, and short-range light absorption of most organic materials limit the PCE of OSCs. Carbon nanomaterials, especially carbon nanotubes (CNTs) and graphenes, are of great interest for use in OSC applications due to their high electrical conductivity, mobility, and unique optical properties for enhancing the performance of OSCs. In this review, recent progress toward the integration of carbon nanomaterials into OSCs is described. The role of carbon nanomaterials and strategies for their integration into various layers of OSCs, including the photoactive layer and charge transport layer, are discussed. Based on these, we also discuss the prospects of carbon nanomaterials for specific OSC layers to maximize the PCE.

  9. Femtosecond Structural Dynamics Drives the Trans/Cis Isomerization in Photoactive Yellow Protein

    PubMed Central

    Pande, Kanupriya; Hutchison, Christopher D. M.; Groenhof, Gerrit; Aquila, Andy; Robinson, Josef S.; Tenboer, Jason; Basu, Shibom; Boutet, Sébastien; DePonte, Daniel P.; Liang, Mengning; White, Thomas A.; Zatsepin, Nadia A.; Yefanov, Oleksandr; Morozov, Dmitry; Oberthuer, Dominik; Gati, Cornelius; Subramanian, Ganesh; James, Daniel; Zhao, Yun; Koralek, Jake; Brayshaw, Jennifer; Kupitz, Christopher; Conrad, Chelsie; Roy-Chowdhury, Shatabdi; Coe, Jesse D.; Metz, Markus; Xavier, Paulraj Lourdu; Grant, Thomas D.; Koglin, Jason E.; Ketawala, Gihan; Fromme, Raimund; Šrajer, Vukica; Henning, Robert; Spence, John C. H.; Ourmazd, Abbas; Schwander, Peter; Weierstall, Uwe; Frank, Matthias; Fromme, Petra; Barty, Anton; Chapman, Henry N.; Moffat, Keith; van Thor, Jasper J.; Schmidt, Marius

    2017-01-01

    A variety of organisms have evolved mechanisms to detect and respond to light, in which the response is mediated by protein structural changes following photon absorption. The initial step is often the photo-isomerization of a conjugated chromophore. Isomerization occurs on ultrafast timescales, and is substantially influenced by the chromophore environment. Here we identify structural changes associated with the earliest steps in the trans to cis isomerization of the chromophore in photoactive yellow protein. Femtosecond, hard X-ray pulses emitted by the Linac Coherent Light Source were used to conduct time-resolved serial femtosecond crystallography on PYP microcrystals over the time range from 100 femtoseconds to 3 picoseconds to determine the structural dynamics of the photoisomerization reaction. PMID:27151871

  10. Plasmon enhanced broadband optical absorption in ultrathin silicon nanobowl array for photoactive devices applications

    SciTech Connect

    Sun, Rui-Nan; Peng, Kui-Qing Hu, Bo; Hu, Ya; Zhang, Fu-Qiang; Lee, Shuit-Tong

    2015-07-06

    Both photonic and plasmonic nanostructures are key optical components of photoactive devices for light harvesting, enabling solar cells with significant thickness reduction, and light detectors capable of detecting photons with sub-band gap energies. In this work, we study the plasmon enhanced broadband light absorption and electrical properties of silicon nanobowl (SiNB) arrays. The SiNB-metal photonic-plasmonic nanostructure-based devices exhibited superior light-harvesting ability across a wide range of wavelengths up to the infrared regime well below the band edge of Si due to effective optical coupling between the SiNB array and incident sunlight, as well as electric field intensity enhancement around metal nanoparticles due to localized surface plasmon resonance. The photonic-plasmonic nanostructure is expected to result in infrared-light detectors and high-efficiency solar cells by extending light-harvesting to infrared frequencies.

  11. Maximal light-energy transfer through a dielectric/metal-layered electrode on a photoactive device.

    PubMed

    Kim, Kyoung-Ho; Park, Q-Han

    2014-01-27

    We report the fabrication of an optimized low reflective dielectric/metal-layered electrode that provides significant electrical conductivity and light transparency in the near-infrared wavelength regime. By making the metal film thickness thick enough and choosing a proper dielectric layer with a certain thickness, we show that our suggested electrode significantly reduces the light reflection while preserving high electrical conductivity. We demonstrate our optimized electrodes present a highly conductive surface with a sheet resistance of 5.2 Ω/sq and a high light transmittance of near 85% in the near-infrared regime. We also apply our optimized electrode to thin-film organic photovoltaic devices and show the electrode helps in absorbing light energy inside an active layer. We believe that this simple but powerful layered electrode will pave the way for designing transparent electrodes on photoactive devices.

  12. Plasmon enhanced broadband optical absorption in ultrathin silicon nanobowl array for photoactive devices applications

    NASA Astrophysics Data System (ADS)

    Sun, Rui-Nan; Peng, Kui-Qing; Hu, Bo; Hu, Ya; Zhang, Fu-Qiang; Lee, Shuit-Tong

    2015-07-01

    Both photonic and plasmonic nanostructures are key optical components of photoactive devices for light harvesting, enabling solar cells with significant thickness reduction, and light detectors capable of detecting photons with sub-band gap energies. In this work, we study the plasmon enhanced broadband light absorption and electrical properties of silicon nanobowl (SiNB) arrays. The SiNB-metal photonic-plasmonic nanostructure-based devices exhibited superior light-harvesting ability across a wide range of wavelengths up to the infrared regime well below the band edge of Si due to effective optical coupling between the SiNB array and incident sunlight, as well as electric field intensity enhancement around metal nanoparticles due to localized surface plasmon resonance. The photonic-plasmonic nanostructure is expected to result in infrared-light detectors and high-efficiency solar cells by extending light-harvesting to infrared frequencies.

  13. Kinetics of the E46Q mutant of photoactive yellow protein investigated by transient grating spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Cheolhee; Kim, Tae Wu; Kim, Youngmin; Choi, Jungkweon; Lee, Sang Jin; Ihee, Hyotcherl

    2017-09-01

    To elucidate the role of internal proton transfer in the photodynamics of photoactive yellow protein (PYP), the photocycle of the Glu46Gln mutant of PYP (E46Q-PYP) is investigated by transient grating (TG) spectroscopy. Compared with wild-type PYP (wt-PYP), the first spectrally blue-shifted intermediate of E46Q-PYP is formed more slowly, which is consistent with the absence of direct protonation from Glu46 residue, if the parallel kinetic model for wt-PYP is invoked. The smaller conformational change in E46Q-PYP, as manifested by the smaller change in the diffusion coefficient, mainly arises from the relatively larger volume of the ground state E46Q-PYP than wt-PYP rather than from the smaller volume of the pB state.

  14. Femtosecond fiber laser additive manufacturing of tungsten

    NASA Astrophysics Data System (ADS)

    Bai, Shuang; Liu, Jian; Yang, Pei; Zhai, Meiyu; Huang, Huan; Yang, Lih-Mei

    2016-04-01

    Additive manufacturing (AM) is promising to produce complex shaped components, including metals and alloys, to meet requirements from different industries such as aerospace, defense and biomedicines. Current laser AM uses CW lasers and very few publications have been reported for using pulsed lasers (esp. ultrafast lasers). In this paper, additive manufacturing of Tungsten materials is investigated by using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. Fully dense Tungsten part with refined grain and increased hardness was obtained and compared with parts made with different pulse widths and CW laser. The results are evidenced that the fs laser based AM provides more dimensions to modify mechanical properties with controlled heating, rapid melting and cooling rates compared with a CW or long pulsed laser. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.

  15. Bend ductility of tungsten heavy alloys

    SciTech Connect

    Gurwell, W.E.; Garnich, M.R.; Dudder, G.B.; Lavender, C.A.

    1992-11-01

    A bend ductility test is used to indicate the formability of tungsten heavy alloys sheet. The primary test bends a notchless Charpy impact specimen to a bend angle of approximately 100C. This can be augmented by a bend-completion test. Finite element modeling as well as strain-gaged bend specimens elucidate the strain distribution in the specimen as a function of material thickness and bend angle. The bend ductilities of 70%W, 807.W and 90%W alloys are characterized. As expected, decreasing thickness or tungsten content enhances bend ductility. Oxidation is not detrimental; therefore, controlled atmosphere is not required for cooling. The potentially detrimental effects of mechanical working (e.g., rolling, roller-leveling, grit blasting, and peening) and machining (e.g., cutting and sanding) are illustrated.

  16. Bend ductility of tungsten heavy alloys

    SciTech Connect

    Gurwell, W.E.; Garnich, M.R.; Dudder, G.B.; Lavender, C.A.

    1992-11-01

    A bend ductility test is used to indicate the formability of tungsten heavy alloys sheet. The primary test bends a notchless Charpy impact specimen to a bend angle of approximately 100C. This can be augmented by a bend-completion test. Finite element modeling as well as strain-gaged bend specimens elucidate the strain distribution in the specimen as a function of material thickness and bend angle. The bend ductilities of 70%W, 807.W and 90%W alloys are characterized. As expected, decreasing thickness or tungsten content enhances bend ductility. Oxidation is not detrimental; therefore, controlled atmosphere is not required for cooling. The potentially detrimental effects of mechanical working (e.g., rolling, roller-leveling, grit blasting, and peening) and machining (e.g., cutting and sanding) are illustrated.

  17. Ultrasonic ranking of toughness of tungsten carbide

    NASA Technical Reports Server (NTRS)

    Vary, A.; Hull, D. R.

    1983-01-01

    The feasibility of using ultrasonic attenuation measurements to rank tungsten carbide alloys according to their fracture toughness was demonstrated. Six samples of cobalt-cemented tungsten carbide (WC-Co) were examined. These varied in cobalt content from approximately 2 to 16 weight percent. The toughness generally increased with increasing cobalt content. Toughness was first determined by the Palmqvist and short rod fracture toughness tests. Subsequently, ultrasonic attenuation measurements were correlated with both these mechanical test methods. It is shown that there is a strong increase in ultrasonic attenuation corresponding to increased toughness of the WC-Co alloys. A correlation between attenuation and toughness exists for a wide range of ultrasonic frequencies. However, the best correlation for the WC-Co alloys occurs when the attenuation coefficient measured in the vicinity of 100 megahertz is compared with toughness as determined by the Palmqvist technique.

  18. Tungsten fiber reinforced superalloys - A status review

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.

    1981-01-01

    After a review of refractory metal fiber/alloy matrix composite development, a discussion is presented of the fabrication techniques used in production of tungsten fiber reinforced superalloys (TFRS), their most significant properties, and their potential applications in the hot section components of gas turbine engines. Emphasis is given the development of airfoil-fabrication technology, with a view to the production of TFRS turbine blades, and attention is given the first-generation TFRS material, a tungsten alloy fiber/FeCrAlY composite currently under evaluation. Detailed properties, design criteria and cost data are presented for this material. Among the properties covered are stress-rupture strength, high and low cycle fatigue, thermal fatigue, impact strength, oxidation and corrosion and thermal conductivity.

  19. Novel infrared spectroscopic techniques for the study of adsorbed proteins on photoactive thin films

    NASA Astrophysics Data System (ADS)

    Angle, Taylor Allan

    Through the development of attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopic techniques, as well as biocompatible nanoporous gold film confining layers and photoactive nanocrystal cadmium telluride (CdTe) thin films, a system capable of in situ study of adsorbed protein films on photoactive layers was created. Due to the oxygen intolerance of the enzyme of interest for this work (a [FeFe]-hydrogenase from Clostridium acetobutylicum), techniques were developed in a manner conducive to anaerobic environments. Solid-state ligand exchange processes were shown to have no detrimental effect on the continued ability of nanocrystal CdTe layers to reduce species via the transfer of photogenerated electrons. Nanoporous gold films were shown to effectively confine poorly bound surface species including nanocrystal CdTe layers and adsorbed protein films. An ATR "stack'' structure, consisting of a silicon wafer coupled to a zinc selenide ATR crystal by a high index optical coupling fluid, was designed and implemented, leading to a tunable optical structure for use with existing ATR setups. This ATR stack was shown to maintain resolution and signal intensity of traditional ATR configurations for both aqueous and solid-state samples. Through the use of coupled silicon wafers, we significantly increased both sample throughput and the number of available chemical processes by replacing the expensive ATR crystals as the default sample substrate. Shown herein to function as initially intended, these novel methods provide the groundwork for more complex experiments, such as an in situ monitoring of the photooxidation of surface-bound hydrogenases.

  20. Potential Impacts from Using Photoactive Roads as AN Air Quality Mitigation Strategy

    NASA Astrophysics Data System (ADS)

    Toro, C.; Jobson, B. T.; Shen, S.; Chung, S. H.; Haselbach, L.

    2013-12-01

    Mobile sources are major contributors to photochemical air pollution in urban areas. It has been proposed that the use of TiO2 coated roadways ('photoactive roads') could be an effective approach to reduce mobile source emissions by oxidizing NOx and VOC emissions at the roadway surface. However, studies have shown that formation of HONO and aldehydes can occur from some TiO2 treated surfaces during the photocatalytic oxidation of NOx and VOC, respectively. By changing the NOx-to-VOC ratio and generating photolabile HOx radical precursors, photoactive roads may enhance ozone formation rates in urban areas. In this work we present results that quantify NOx and VOC loss rates onto TiO2 treated asphalt and concrete samples, as well as HONO and aldehydes yields that result from the photocatalytic process. The treatment used a commercially available product. These objectives are relevant considering that the quantification of pollutant loss rates and yields of byproducts have not been determined for asphalt and that in the US more than 90% of the roadway surface is made of this material. Surface reaction probabilities (γ) and byproduct yields were determined using a CSTR photochemical chamber under varying conditions of water vapor and UV-A light intensity. Our results indicate that asphalt surfaces have a significantly higher molar yield of HONO compared to concrete surfaces with similar TiO2 loading. Concrete surfaces have reaction probabilities with NO one order of magnitude higher than asphalt samples. Fresh asphalt samples showed negligible photocatalytic activity, presumably due to absorption of TiO2 into the bitumen substrate. Laboratory-prepared asphalt samples with a higher degree of exposed aggregates showed increased HONO molar yields when compared to real-road asphalt samples, whose HONO molar yield was ~1%. Preliminary results for aldehydes formation showed similar molar yields between aged asphalt and concrete, even though aged asphalt samples had twice

  1. Photoactive layer-by-layer films of cellulose phosphate and titanium dioxide containing phosphotungstic acid

    NASA Astrophysics Data System (ADS)

    Ullah, Sajjad; Acuña, José Javier Sáez; Pasa, André Avelino; Bilmes, Sara A.; Vela, Maria Elena; Benitez, Guillermo; Rodrigues-Filho, Ubirajara Pereira

    2013-07-01

    A versatile layer-by-layer (LbL) procedure for the preparation of highly dispersed, adherent and porous multilayer films of TiO2 nanoparticles (NPs) and phosphotungstic acid (HPW) on a variety of substrates at room temperature was developed based on the use of cellulose phosphate (CP) as an efficient and non-conventional polyelectrolyte. UV/vis absorption spectroscopy confirmed the linear and regular growth of the films with the number of immersion cycles and a strong adsorption ability of CP towards TiO2 NPs. FTIR spectroscopy showed that HPW binds to the surface of TiO2 through the oxygen atom at the corner of the Keggin structure. XPS results showed that the interaction between TiO2 and CP is through Ti-O-P linkage. A model is proposed for the TiO2-HPW interaction based on XPS and FTIR results. FEG/SEM study of the surface morphology revealed a porous film structure with a homogenous distribution of the TiO2 NPs induced by CP. HRTEM studies showed that the resulting composite films consist of crystalline anatase and rutile phases and poly-nano-crystalline HPW with a semi-crystalline TiO2-HPW interface. These CP/TiO2 and CP/TiO2/HPW LbL films showed good photoactivity against both saturated and unsaturated species, for instance, stearic acid (SA), crystal violet (CV) and methylene blue (MB) under UV irradiation. The CP/HPW films formed on bacterial cellulose (BC) showed good photochromic response which is enhanced in presence of TiO2 due to an interfacial electron transfer from TiO2 to HPW. This simple and environmentally safe method can be used to form coatings on a variety of surfaces with photoactive TiO2 and TiO2/HPW films.

  2. Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: self-quenching by photoactive energy traps

    NASA Astrophysics Data System (ADS)

    Ezquerra Riega, Sergio D.; Rodríguez, Hernán B.; San Román, Enrique

    2017-03-01

    The effect of dye concentration on the fluorescence,ΦF, and singlet molecular oxygen,ΦΔ, quantum yields of rose bengal loaded poly(2-hydroxyethyl methacrylate) thin films (∼200 nm thick) was investigated, with the aim of understanding the effect of molecular interactions on the photophysical properties of dyes in crowded constrained environments. Films were characterized by absorption and fluorescence spectroscopy, singlet molecular oxygen (1O2) production was quantified using a chemical monitor, and the triplet decay was determined by laser flash-photolysis. For the monomeric dilute dye, ΦF = 0.05 ± 0.01 and ΦΔ = 0.76 ± 0.14. The effect of humidity and the photostability of the dye were also investigated. Spectral changes in absorption and fluorescence in excess of 0.05 M and concentration self-quenching after 0.01 M are interpreted in the context of a quenching radius model. Calculations of energy migration and trapping rates were performed assuming random distribution of the dye. Best fits of fluorescence quantum yields with concentration are obtained in the whole concentration range with a quenching radius r Q = 1.5 nm, in the order of molecular dimensions. Agreement is obtained only if dimeric traps are considered photoactive, with an observed fluorescence quantum yield ratio ΦF,trap/ΦF,monomer ≈ 0.35. Fluorescent traps are capable of yielding triplet states and 1O2. Results show that the excited state generation efficiency, calculated as the product between the absorption factor and the fluorescence quantum yield, is maximized at around 0.15 M, a very high concentration for random dye distributions. Relevant information for the design of photoactive dyed coatings is provided.

  3. Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: self-quenching by photoactive energy traps.

    PubMed

    Ezquerra Riega, Sergio D; Rodríguez, Hernán B; San Román, Enrique

    2017-03-09

    The effect of dye concentration on the fluorescence,ΦF, and singlet molecular oxygen,ΦΔ, quantum yields of rose bengal loaded poly(2-hydroxyethyl methacrylate) thin films (∼200 nm thick) was investigated, with the aim of understanding the effect of molecular interactions on the photophysical properties of dyes in crowded constrained environments. Films were characterized by absorption and fluorescence spectroscopy, singlet molecular oxygen ((1)O2) production was quantified using a chemical monitor, and the triplet decay was determined by laser flash-photolysis. For the monomeric dilute dye, ΦF = 0.05 ± 0.01 and ΦΔ = 0.76 ± 0.14. The effect of humidity and the photostability of the dye were also investigated. Spectral changes in absorption and fluorescence in excess of 0.05 M and concentration self-quenching after 0.01 M are interpreted in the context of a quenching radius model. Calculations of energy migration and trapping rates were performed assuming random distribution of the dye. Best fits of fluorescence quantum yields with concentration are obtained in the whole concentration range with a quenching radius r Q = 1.5 nm, in the order of molecular dimensions. Agreement is obtained only if dimeric traps are considered photoactive, with an observed fluorescence quantum yield ratio ΦF,trap/ΦF,monomer ≈ 0.35. Fluorescent traps are capable of yielding triplet states and (1)O2. Results show that the excited state generation efficiency, calculated as the product between the absorption factor and the fluorescence quantum yield, is maximized at around 0.15 M, a very high concentration for random dye distributions. Relevant information for the design of photoactive dyed coatings is provided.

  4. Photochemical modification and patterning of polymer surfaces by surface adsorption of photoactive block copolymers.

    PubMed

    Pan, F; Wang, P; Lee, K; Wu, A; Turro, N J; Koberstein, J T

    2005-04-12

    We report a simple photolithographic approach for the creation and micropatterning of chemical functionality on polymer surfaces by use of surface-active block copolymers that contain protected photoactive functional groups. The block copolymers self-assemble at the substrate-air interface to generate a surface that is initially hydrophobic with low surface tension but that can be rendered hydrophilic and functional by photodeprotection with UV radiation. The block copolymer employed, poly(styrene-b-tert butyl acrylate), segregates preferentially to the surface of a polystyrene substrate because of the low surface tension of the polyacrylate blocks. The strong adsorption of block copolymers causes a bilayer structure to form presenting a photoactive polyacrylate layer at the surface. In the example described, the tert-butyl ester groups on the polyacrylate blocks are deprotected by exposure to UV radiation in the presence of added photoacid generators to form surface carboxylic acid groups. Surface micropatterns of carboxylic acid groups are generated by UV exposure through a contact mask. The success of surface chemical modification and pattern formation is demonstrated by X-ray photoelectron spectroscopy and contact angle measurements along with imaging by optical and fluorescence microscopy methods. The resultant chemically patterned surfaces are then used to template patterns of various biomolecules by means of selective adsorption, covalent bonding and molecular recognition mechanisms. The surface modification/patterning concept can be applied to virtually any polymeric substrate because protected functional groups have intrinsically low surface tensions, rendering properly designed block copolymers surface active in almost all polymeric substrates.

  5. Modeling of Nano-Tungsten Sintering Data

    DTIC Science & Technology

    2011-04-01

    penetration as that of depleted uranium -3/4% titanium penetrators. This type of behavior produces superior penetration performance (3). For the...Depleted Uranium Replacement Program (DURP), the source of tungsten powder feed stock with a low (~1%) concentration of oxygen was the Chongyi Zhangyuan...then spray dried to remove the solvent . A compact of the powder is formed either by cold iso-static pressing or die pressing. Next, the compact is

  6. Carcinogenicity of Embedded Tungsten Alloys in Mice

    DTIC Science & Technology

    2009-03-01

    cells to the tumorigenic phenotype by heavy metal -tungsten alloy particles: induction of genotoxic effects . Carcinogenesis 22: 115-125 (2001). 2...month mice have been implanted and are being followed to assess health effects of the implanted metals . • Mice in the 24-month high-dose Ni group...their experimental endpoints, and have been euthanized. The mice showed no adverse effects of metal implantation, although some perturbations in organ

  7. Thermal positron interactions with alkali covered tungsten

    NASA Astrophysics Data System (ADS)

    Yamashita, Takashi; Iida, Shimpei; Terabe, Hiroki; Nagashima, Yasuyuki

    2016-11-01

    The branching ratios of positron reemission, positronium emission, positronium negative ion emission and capture to the surface state for thermalized positrons at polycrystalline tungsten surfaces coated with Na, K and Cs have been measured. The data shows that the ratios depend on the coverage of the alkali-metal coating. The fraction of the emitted positronium increases with the coverage of the coating up to 90%.

  8. Mobility, Geochemistry, and Speciation of Tungsten

    DTIC Science & Technology

    2008-12-01

    deionized water used had a resistivity of 18.3 MΩ . cm. Sodium carbonate, sodium polytungstate, and sodium tungstate dihydrate was purchased from Sigma... tungstate anion, although polymerization to form poly- and heteropoly- tungstates has been shown to occur. The current study investigates tungsten...are found in a variety of minerals, which can dissolve to yield the tungstate in most common environmental matrices (Seiler, Stollenwerk, and

  9. The tungsten experiment in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Neu, R.; Asmussen, K.; Deschka, S.; Thoma, A.; Bessenrodt-Weberpals, M.; Dux, R.; Engelhardt, W.; Fuchs, J. C.; Gaffert, J.; García-Rosales, C.; Herrmann, A.; Krieger, K.; Mast, F.; Roth, J.; Rohde, V.; Weinlich, M.; Wenzel, U.; ASDEX Upgrade Team; ASDEX NI-Team

    1997-02-01

    Tungsten coated tiles, manufactured by plasma spray on graphite, were mounted in the divertor of the ASDEX Upgrade tokamak and cover almost 90% of the surface facing the plasma in the strike zone. Over 500 plasma discharges, among which around 300 were heated with heating powers up to 10 MW, were performed up to now. The tungsten flux in the divertor was monitored by a WI line at 400.8 nm. In the plasma centre an array of spectral lines at 5 nm emitted by ionisation states around W XXX was monitored. Under normal discharge conditions W-concentrations of around 10 -5 or even lower were found. The influence on the main plasma parameters was negligible. In a few low power discharges accumulation of tungsten occurred and the temperature profile was flattened. The concentrations of the intrinsic impurities carbon and oxygen are comparable to the discharges with graphite divertor. Furthermore, the density-limits and the β-limits remained unchanged and no negative influence on the energy confinement as well as on the H-mode threshold was found.

  10. The tungsten divertor experiment at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Neu, R.; Asmussen, K.; Krieger, K.; Thoma, A.; Bosch, H.-S.; Deschka, S.; Dux, R.; Engelhardt, W.; García-Rosales, C.; Gruber, O.; Herrmann, A.; Kallenbach, A.; Kaufmann, M.; Mertens, V.; Ryter, F.; Rohde, V.; Roth, J.; Sokoll, M.; Stäbler, A.; Suttrop, W.; Weinlich, M.; Zohm, H.; Alexander, M.; Becker, G.; Behler, K.; Behringer, K.; Behrisch, R.; Bergmann, A.; Bessenrodt-Weberpals, M.; Brambilla, M.; Brinkschulte, H.; Büchl, K.; Carlson, A.; Chodura, R.; Coster, D.; Cupido, L.; de Blank, H. J.; de Peña Hempel, S.; Drube, R.; Fahrbach, H.-U.; Feist, J.-H.; Feneberg, W.; Fiedler, S.; Franzen, P.; Fuchs, J. C.; Fußmann, G.; Gafert, J.; Gehre, O.; Gernhardt, J.; Haas, G.; Herppich, G.; Herrmann, W.; Hirsch, S.; Hoek, M.; Hoenen, F.; Hofmeister, F.; Hohenöcker, H.; Jacobi, D.; Junker, W.; Kardaun, O.; Kass, T.; Kollotzek, H.; Köppendörfer, W.; Kurzan, B.; Lackner, K.; Lang, P. T.; Lang, R. S.; Laux, M.; Lengyel, L. L.; Leuterer, F.; Manso, M. E.; Maraschek, M.; Mast, K.-F.; McCarthy, P.; Meisel, D.; Merkel, R.; Müller, H. W.; Münich, M.; Murmann, H.; Napiontek, B.; Neu, G.; Neuhauser, J.; Niethammer, M.; Noterdaeme, J.-M.; Pasch, E.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pitcher, C. S.; Poschenrieder, W.; Raupp, G.; Reinmüller, K.; Riedl, R.; Röhr, H.; Salzmann, H.; Sandmann, W.; Schilling, H.-B.; Schlögl, D.; Schneider, H.; Schneider, R.; Schneider, W.; Schramm, G.; Schweinzer, J.; Scott, B. D.; Seidel, U.; Serra, F.; Speth, E.; Silva, A.; Steuer, K.-H.; Stober, J.; Streibl, B.; Treutterer, W.; Troppmann, M.; Tsois, N.; Ulrich, M.; Varela, P.; Verbeek, H.; Verplancke, Ph; Vollmer, O.; Wedler, H.; Wenzel, U.; Wesner, F.; Wolf, R.; Wunderlich, R.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H.-P.

    1996-12-01

    Tungsten-coated tiles, manufactured by plasma spray on graphite, were mounted in the divertor of the ASDEX Upgrade tokamak and cover almost 90% of the surface facing the plasma in the strike zone. Over 600 plasma discharges have been performed to date, around 300 of which were auxiliary heated with heating powers up to 10 MW. The production of tungsten in the divertor was monitored by a W I line at 400.8 nm. In the plasma centre an array of spectral lines at 5 nm emitted by ionization states around W XXX was measured. From the intensity of these lines the W content was derived. Under normal discharge conditions W-concentrations around 0741-3335/38/12A/013/img12 or even lower were found. The influence on the main plasma parameters was found to be negligible. The maximum concentrations observed decrease with increasing heating power. In several low power discharges accumulation of tungsten occurred and the temperature profile was flattened. The concentrations of the intrinsic impurities carbon and oxygen were comparable to the discharges with the graphite divertor. Furthermore, the density and the 0741-3335/38/12A/013/img13 limits remained unchanged and no negative influence on the energy confinement or on the H-mode threshold was found. Discharges with neon radiative cooling showed the same behaviour as in the graphite divertor case.

  11. Controlled nanostructuration of polycrystalline tungsten thin films

    SciTech Connect

    Girault, B.; Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O.; Sauvage, T.

    2013-05-07

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  12. Tungsten-uranium penetrator target interaction

    NASA Astrophysics Data System (ADS)

    Dunn, P. S.; Damkroger, B. K.

    Several studies performed in recent years have been directed at determining the penetration mechanism of long rod kinetic energy penetrators into Rolled Homogeneous Armor (RHA). Much of the work has centered on comparing U-0.75Ti and Tungsten Heavy Alloys (WHA), with the goal being to relate the superior ballistic performance of the uranium materials to a fundamental difference in penetration mechanisms. This has been found to be true, with the dominant mechanisms being adiabatic shear in U-0.75Ti and bulk deformation in WHA. Recent work has sought to achieve improvements in the ballistic performance of the tungsten materials via both mechanical property improvements and alloy modifications designed to bring about adiabatic shear. As an alternative, the authors propose the consideration of materials which utilize mechanisms other than bulk deformation and adiabatic shear to optimize ballistic performance. This paper will present the postmortem analysis of a uranium-20 vol% tungsten composite penetrator fired into RHA at 0 degree obliquity. The analysis shows that the penetration mechanism in this material is bulk heating and extensive co-melting of the target and penetrator at the penetration interface. The results of the analysis will then be compared to a similar analysis made of targets into which U-0.75Ti penetrators had been fired.

  13. Growth rate modeling for selective tungsten LPCVD

    NASA Astrophysics Data System (ADS)

    Wolf, H.; Streiter, R.; Schulz, S. E.; Gessner, T.

    1995-10-01

    Selective chemical vapor deposition of tungsten plugs on sputtered tungsten was performed in a single-wafer cold-wall reactor using silane (SiH 4) and tungsten hexafluoride (WF 6). Extensive SEM measurements of film thickness were carried out to study the dependence of growth rates on various process conditions, wafer loading, and via dimensions. The results have been interpreted by numerical calculations based on a simulation model which is also presented. Both continuum fluid dynamics and the ballistic line-of-sight approach are used for transport modeling. The reaction rate is described by an empirical rate expression using coefficients fitted from experimental data. In the range 0.2 < p( SiH 4) /p( WF 6) < 0.75 , the reaction order was determined as 1.55 and -0.55 with respect to SiH 4 and WF 6, respectively. For higher partial pressure ratios the second-order rate dependence on p(SiH 4) and the minus first-order dependence on p(WF 6) were confirmed.

  14. The microstructure of chromium-tungsten steels

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.; Maziasz, P. J.

    1989-03-01

    Chromium-tungsten steels are being developed to replace the Cr-Mo steels for fusion-reactor applications. Eight experimental steels were produced and examined by optical and electron microscopy. Chromium concentrations of 2.25, 5, 9 and 12 pct were used. Steels with these chromium compositions and with 2 pct W and 0.25 pct V were produced. To determine the effect of tungsten and vanadium, three other 2.25Cr steels were produced as follows: an alloy with 2 pct W and 0 pct V and alloys with 0 and 1 pct W and 0.25 pct V. A 9Cr steel containing 2 pct W, 0.25 pct V, and 0.07 pct Ta also was studied. For all alloys, carbon was maintained at 0.1 pct. Two pct tungsten was required in the 2.25Cr steels to produce 100 pct bainite (no polygonal ferrite). The 5Cr and 9Cr steels were 100 pct martensite, but the 12Cr steel contained about 25 pct delta-ferrite. Precipitate morphology and precipitate types varied, depending on the chromium content. For the 2.25Cr steels, M3C and M7C3 were the primary precipitates; for the 9Cr and 12Cr steels, M23C6 was the primary precipitate. The 5Cr steel contained M7C3 and M23C6. All of the steels with vanadium also contained MC.

  15. Ballistic performance of oriented columnar-grained tungsten polycrystals

    SciTech Connect

    Leonard, W.; Magness, L.S.; Dowding, R.J.; Trogolo, J.; Chung, M.; Kapoor, D.

    1996-06-01

    Prior ballistic tests have demonstrated that the crystallographic orientation of a single crystal tungsten penetrator with respect to the penetrator axis influences penetration performance. The difference in penetration performance is attributed to anisotropy of the flow and failure of the monocrystalline tungsten penetrators during the penetration of the armor target. In preliminary ballistic experiments, the performance and deformation behaviors of polycrystalline tungsten penetrators having columnar grains oriented in the [100], [110], or [111] crystallographic directions were explored.

  16. Plasma-enhanced chemical vapor deposition of tungsten films

    NASA Astrophysics Data System (ADS)

    Chu, J. K.; Tang, C. C.; Hess, D. W.

    1982-07-01

    High-purity films of tungsten are deposited from tungsten hexafluoride and hydrogen using plasma-enhanced deposition (PED). At 400 °C deposition temperature, resistivities of ˜40 μΩ cm are attained. After annealing at 1100 °C, the resistivity falls to ˜7 μΩ cm. Below 400 °C, the as-deposited film stress is <6×109 dynes/cm2. Tensile, unlike tungsten, molybdenum films deposited by PED displayed high resistivities.

  17. The Response of a Heavy Tungsten Alloy during Shock Loading

    SciTech Connect

    Andrews, T. D.; Radford, D. D.; Tsembelis, K.

    2006-07-28

    Plate impact experiments have been performed to assess the compressive behavior of a heavy Tungsten alloy under shock loading. Experiments were performed in the longitudinal orientation, and the response measured using embedded manganin gauges and free-surface VISAR to stress levels of {approx} 24 GPa. The principal Hugoniot of the W-Alloy is compared and contrasted against published data on pure Tungsten and a number of Tungsten alloys reported in the literature.

  18. Microstructure and properties of CVD tungsten carbide from tungsten hexafluoride and dimethyl ether

    SciTech Connect

    Skaf, D.W.; Warner, A.W.; Dollahon, N.R.; Fargo, G.H. )

    1994-12-01

    Tungsten carbide was deposited from tungsten hexafluoride, dimethyl ether, and hydrogen using a horizontal, cold-wall reactor. The effects of substrate temperature, reactor pressure, and reagent ratio on the coating growth rate, morphology, composition, and microhardness were studied. Under most conditions, the solid deposit was primarily W[sub 3]C with minor amounts of W. The tungsten carbide growth rate data fit an Arrhenius rate expression for temperatures from 425 to 550 C and had an activation energy of 24 kcal/mol at 70 mmHg total pressure and a WF[sub 6]/DME ratio of 6.3. A variety of surface morphologies and microstructures were observed. The microhardness of the coated substrates increased with coating thickness to a maximum value of 2,400 kg/mm[sup 2].

  19. Nonnative Disulfide Bond Formation Activates the σ32-Dependent Heat Shock Response in Escherichia coli

    PubMed Central

    Müller, Alexandra; Hoffmann, Jörg H.; Meyer, Helmut E.; Narberhaus, Franz; Jakob, Ursula

    2013-01-01

    Formation of nonnative disulfide bonds in the cytoplasm, so-called disulfide stress, is an integral component of oxidative stress. Quantification of the extent of disulfide bond formation in the cytoplasm of Escherichia coli revealed that disulfide stress is associated with oxidative stress caused by hydrogen peroxide, paraquat, and cadmium. To separate the impact of disulfide bond formation from unrelated effects of these oxidative stressors in subsequent experiments, we worked with two complementary approaches. We triggered disulfide stress either chemically by diamide treatment of cells or genetically in a mutant strain lacking the major disulfide-reducing systems TrxB and Gor. Studying the proteomic response of E. coli exposed to disulfide stress, we found that intracellular disulfide bond formation is a particularly strong inducer of the heat shock response. Real-time quantitative PCR experiments showed that disulfide stress induces the heat shock response in E. coli σ32 dependently. However, unlike heat shock treatment, which induces these genes transiently, transcripts of σ32-dependent genes accumulated over time in disulfide stress-treated cells. Analyzing the stability of σ32, we found that this constant induction can be attributed to an increase of the half-life of σ32 upon disulfide stress. This is concomitant with aggregation of E. coli proteins treated with diamide. We conclude that oxidative stress triggers the heat shock response in E. coli σ32 dependently. The component of oxidative stress responsible for the induction of heat shock genes is disulfide stress. Nonnative disulfide bond formation in the cytoplasm causes protein unfolding. This stabilizes σ32 by preventing its DnaK- and FtsH-dependent degradation. PMID:23585533

  20. Putative disulfide-forming pathway of porcine insulin precursor during its refolding in vitro.

    PubMed

    Qiao, Z S; Guo, Z Y; Feng, Y M

    2001-03-06

    Although the structure of insulin has been well studied, the formation pathway of the three disulfide bridges during the refolding of insulin precursor is ambiguous. Here, we reported the in vitro disulfide-forming pathway of a recombinant porcine insulin precursor (PIP). In redox buffer containing L-arginine, the yield of native PIP from fully reduced/denatured PIP can reach 85%. The refolding process was quenched at different time points, and three distinct intermediates, including one with one disulfide linkage and two with two disulfide bridges, have been captured and characterized. An intra-A disulfide bridge was found in the former but not in the latter. The two intermediates with two disulfide bridges contain the common A20-B19 disulfide linkage and another inter-AB one. Based on the time-dependent formation and distribution of disulfide pairs in the trapped intermediates, two different forming pathways of disulfide bonds in the refolding process of PIP in vitro have been proposed. The first one involves the rapid formation of the intra-A disulfide bond, followed by the slower formation of one of the inter-AB disulfide bonds and then the pairing of the remaining cysteines to complete the refolding of PIP. The second pathway begins first with the formation of the A20-B19 disulfide bridge, followed immediately by another inter-AB one, possibly nonnative. The nonnative two-disulfide intermediates may then slowly rearrange between CysA6, CysA7, CysA11, and CysB7, until the native disulfide bond A6-A11 or A7-B7 is formed to complete the refolding of PIP. The proposed refolding behavior of PIP is compared with that of IGF-I and discussed.

  1. Reactive deposition of tungsten and titanium carbides by induction plasma

    NASA Astrophysics Data System (ADS)

    Jiang, X. L.; Gitzhofer, F.; Boulos, M. I.; Tiwari, R.

    1995-05-01

    A study is reported on the use of induction plasma technology for the preparation of dense free-standing deposits of tungsten carbide and titanium carbide from metallic powders and methane. Phase analysis by X-ray diffraction indicates that primary carburization of the particles takes place in-flight giving rise to the formation of W2C and TiC(1 - x). Secondary carburization occurs in the deposits resulting in the formation of tungsten and titanium carbides. Microstructures revealed by optical and scanning electron microscopy show uniform small grains of the carbides. The reactive plasma spray-formed tungsten carbide shows transgranular fracture, while pure tungsten deposits show intergranular fracture.

  2. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    DOE PAGES

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-14

    Recently, several researchers (e.g., Q. Yang, Y.-W. You, L. Liu, H. Fan, W. Ni, D. Liu, C. S. Liu, G. Benstetter, and Y. Wang, Scientific Reports 5, 10959 (2015)) have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40-63% lowermore » than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.:7px« less

  3. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    NASA Astrophysics Data System (ADS)

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-01

    Recently, several researchers [e.g., Yang et al., Sci. Rep. 5, 10959 (2015)] have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports the direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40%-63% lower than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus, the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.

  4. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    SciTech Connect

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-14

    Recently, several researchers (e.g., Q. Yang, Y.-W. You, L. Liu, H. Fan, W. Ni, D. Liu, C. S. Liu, G. Benstetter, and Y. Wang, Scientific Reports 5, 10959 (2015)) have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40-63% lower than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.:7px

  5. Recovery of tungsten and molybdenum from sulfur--bearing material

    SciTech Connect

    Ritsko, J. E.; Acia, H. L.

    1984-11-13

    Tungsten and molybdenum are recovered from sulfur bearing material such as sulfide sludges by a pollution free process in which the sulfur bearing material is heated with agitation in an aqueous solution of sodium carbonate to form water soluble molybdenum and tungsten compounds without forming any appreciable amount of water soluble sulfur compounds. The reaction mixture is oxidized to convert partially reduced tungsten values or molybdenum values to sodium tungstate and sodium molybdate respectively. The liquid phase containing tungsten and molybdenum is separated from the solid phase containing free sulfur.

  6. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    PubMed Central

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong; Oksuz, Betul Akgol; Shen, Steven; Paena, Massimilano; Medici, Serenella; Zoroddu, Maria Antonietta; Costa, Max

    2015-01-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten’s ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer related pathways in transformed clones as determined by RNA seq. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data shows the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. PMID:26164860

  7. Toxicologic evaluation of tungsten: 28-day inhalation study of tungsten blue oxide in rats.

    PubMed

    Rajendran, Narayanan; Hu, Shu-Chieh; Sullivan, Dennis; Muzzio, Miguel; Detrisac, Carol J; Venezia, Carmen

    2012-12-01

    The toxicity and toxicokinetics of tungsten blue oxide (TBO) were examined. TBO is an intermediate in the production of tungsten powder, and has shown the potential to cause cellular damage in in vitro studies. However, in vivo evidence seems to indicate a lack of adverse effects. The present study was undertaken to address the dearth of longer-term inhalation toxicity studies of tungsten oxides by investigating the biological responses induced by TBO when administered via nose-only inhalation to rats at levels of 0.08, 0.325, and 0.65 mg TBO/L of air for 6 h/day for 28 consecutive days, followed by a 14-day recovery period. Inhaled TBO was absorbed systemically and blood levels of tungsten increased as inhaled concentration increased. Among the tissues analyzed for tungsten levels, lung, femur and kidney showed increased levels, with lung at least an order of magnitude greater than kidney or femur. By exposure day 14, tungsten concentration in tissues had reached steady-state. Increased lung weight was noted for both terminal and recovery animals and was attributed to deposition of TBO in the lungs, inducing a macrophage influx. Microscopic evaluation of tissues revealed a dose-related increase in alveolar pigmented macrophages, alveolar foreign material and individual alveolar foamy macrophages in lung. After a recovery period there was a slight reduction in the incidence and severity of histopathological findings. Based on the absence of other adverse effects, the increased lung weights and the microscopic findings were interpreted as nonadverse response to exposure and were not considered a specific reaction to TBO.

  8. A visible light-sensitive tungsten carbide/tungsten trioxde composite photocatalyst

    SciTech Connect

    Kim, Young-ho; Irie, Hiroshi; Hashimoto, Kazuhito

    2008-05-05

    A photocatalyst composed of tungsten carbide (WC) and tungsten oxide (WO{sub 3}) has been prepared by the mechanical mixing of each powder. Its photocatalytic activity was evaluated by the gaseous isopropyl alcohol decomposition process. The photocatalyst showed high visible light photocatalytic activity with a quantum efficiency of 3.2% for 400-530 nm light. The photocatalytic mechanism was explained by means of enhanced oxygen reduction reaction due to WC, which may serve as a multielectron reduction catalyst, as well as the photogeneration of holes in the valence band of WO{sub 3}.

  9. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    SciTech Connect

    Airapetov, A. A.; Begrambekov, L. B.; Buzhinskiy, O. I.; Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A.

    2015-12-15

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  10. Scorpion venom peptides with no disulfide bridges: a review.

    PubMed

    Almaaytah, Ammar; Albalas, Qosay

    2014-01-01

    Scorpion venoms are rich sources of biologically active peptides that are classified into disulfide-bridged peptides (DBPs) and non-disulfide-bridged peptides (NDBPs). DBPs are the main scorpion venom components responsible for the neurotoxic effects observed during scorpion envenomation as they usually target membrane bound ion channels of excitable and non-excitable cells. Several hundred DBPs have been identified and functionally characterized in the past two decades. The NDBPs represent a novel group of molecules that have gained great interest only recently due to their high diversity both in their primary structures and bioactivities. This review provides an overview of scorpion NDBPs focusing on their therapeutic applications, modes of discovery, mechanisms of NDBPs genetic diversity and structural properties. It also provides a simple classification for NDBPs that could be adopted and applied to other NDBPs identified in future studies.

  11. Disulfide isoforms of recombinant glia maturation factor beta.

    PubMed

    Zaheer, A; Lim, R

    1990-09-14

    Recombinant human glia maturation factor beta (r-hGMF-beta) is a single-chain polypeptide (141 amino acid residues) containing three cysteines, at positions 7, 86 and 95. Nascent r-hGMF-beta exists in the reduced state and has no biological activity. The protein can be activated through oxidative refolding by incubation with a mixture of reduced and oxidized glutathione. Reverse-phase HPLC analysis of the refolded r-hGMF-beta shows the presence of four peaks, corresponding to the reduced form plus three newly generated intrachain disulfide-containing isoforms predicted from the number of cysteine residues. Only one isoform shows biological activity when tested for growth suppression on C6 glioma cells. We infer from the HPLC elution pattern that the active form contains the disulfide bridge Cys86-Cys95.

  12. A degradable polydopamine coating based on disulfide-exchange reaction.

    PubMed

    Hong, Daewha; Lee, Hojae; Kim, Beom Jin; Park, Taegyun; Choi, Ji Yu; Park, Matthew; Lee, Juno; Cho, Hyeoncheol; Hong, Seok-Pyo; Yang, Sung Ho; Jung, Sun Ho; Ko, Sung-Bo; Choi, Insung S

    2015-12-21

    Although the programmed degradation of biocompatible films finds applications in various fields including biomedical and bionanotechnological areas, coating methods have generally been limited to be substrate-specific, not applicable to any kinds of substrates. In this paper, we report a dopamine derivative, which allows for both universal coating of various substrates and stimuli-responsive film degradation, inspired by mussel-adhesive proteins. Two dopamine moieties are linked together by the disulfide bond, the cleavage of which enables the programmed film degradation. Mechanistic analysis of the degradable films indicates that the initial cleavage of the disulfide linkage causes rapid uptake of water molecules, hydrating the films, which leads to rapid degradation. Our substrate-independent coating of degradable films provides an advanced tool for drug delivery systems, tissue engineering, and anti-fouling strategies.

  13. Moderate temperature sodium cells. I - Transition metal disulfide cathodes

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Pitts, L.; Schiff, R.

    1980-01-01

    TiS2, VS2, and Nb(1.1)S2 transition metal disulfides were evaluated as cathode materials for a moderate temperature rechargeable Na cell operating at 130 C. The 1st discharge of TiS2 results in a capacity of 0.85 eq/mole; approximately half of the Na in the 1st phase spanning the Na range from zero to 0.30 and almost all the Na in the 2nd phase spanning the 0.37 to 0.80 range are rechargeable. VS2 intercalates up to one mole of Na/mole of VS2 in the 1st discharge; the resulting Na(x)VS2 ternary consists of 3 phases in the 3 ranges of Na from zero to 1. Niobium disulfide undergoes a phase change in the 1st discharge; the average rechargeable capacity in extended cycling of this cathode is 0.50 eq/mole.

  14. Pressure-time profile of multiply shocked carbon disulfide

    NASA Astrophysics Data System (ADS)

    Sutherland, G. T.; Gupta, Y. M.; Bellamy, P. M.

    1986-02-01

    An experimental method was developed to measure the pressure-time profile of a liquid in a reverberation of multiple-shock experiment. Profiles, with peak pressures to 30 kbars, were measured for carbon disulfide using shorted quartz gauges (25.4 mm diameter by 3.15 mm thick); these gauges formed the back surfaces of cells which contained the carbon disulfide. Sapphire plates were used both as impactors and as the front surfaces of the cell. Up to six pressure steps were clearly observed in the quartz-gauge output. Measured pressure-time profiles were compared to profiles calculated with available equations of state. The experiments agreed well with profiles predicted with an equation of state proposed by Sheffield (1983). Calibration experiments were performed to characterize both the initial current response and the subsequent current ramping of the shorted quartz gauges used in this study.

  15. High hemoglobin mixed disulfide content in hemolysates from stressed shark.

    PubMed

    Dafré, A L; Reischl, E

    1990-01-01

    1. Hemolysate from heavily stressed smooth hammerhead shark, Sphyrna zygaena, shows three electrophoretic components, SZ I, SZ II and SZ III, whose relative concentrations are 36.4 +/- 6.8, 36.4 +/- 5.0 and 20.8 +/- 5.7%, respectively. After reduction with DTE only SZ I remained. 2. SZ I reacted with glutathione disulfide reconstitute SZ II and SZ III. 3. Non-reduced, DTE-reduced, and denatured hemoglobin were found to have 2.0 +/- 0.4, 3.7 +/- 0.6, and 9.4 +/- 0.7-SH groups, respectively. 4. Erythrocyte non-protein--SH (NPSH), including glutathione present as mixed disulfide with SZ II and SZ III, is 1.7 NPSH/Hb.

  16. The effect of high-power plasma flows on tungsten plates with multilayer films of tungsten nanoparticles

    NASA Astrophysics Data System (ADS)

    Gorokhov, M. V.; Kozhevin, V. M.; Yavsin, D. A.; Voronin, A. V.; Gurevich, S. A.

    2017-04-01

    We have experimentally studied the action of high-power plasma flows on pure tungsten plates covered with multilayer films of tungsten nanoparticles formed by the method of laser electrodeposition. The samples were irradiated using a plasma gun producing hydrogen (helium) plasma flows with power density up to 35 GW/cm2. The resulting surface morphology was studied by scanning electron microscopy (SEM). SEM data showed that tungsten plates coated by nanoparticles are more resistant to the formation of microcracks than are pure tungsten plates.

  17. Polarization-Resolved Raman Spectroscopy of Rhenium Disulfide

    NASA Astrophysics Data System (ADS)

    Chenet, Daniel; Aslan, Ozgur; Heinz, Tony; van der Zande, Arend; Hone, James

    2015-03-01

    Rhenium Disulfide (ReS2) is a layered semiconductor with each layer exhibiting a distorted 1T crystal structure. The reduced symmetry of the distorted 1T structure creates anisotropic optical and electrical properties that have been previously studied in bulk films. Herein, we demonstrate anisotropic behavior in its Raman spectra. We then correlate these vibrational modes with polarized absorption measurements in thin films in order to develop a versatile technique for determining the crystal orientation of anisotropic semiconducting thin films.

  18. Vanadium nitride functionalization and denitrogenation by carbon disulfide and dioxide.

    PubMed

    Brask, Justin K; Durà-Vilà, Víctor; Diaconescu, Paula L; Cummins, Christopher C

    2002-04-21

    A dramatic difference in behavior is observed for the dithiocarbamate and carbamate complexes [Ar(But)N]3V(NCE2)Na(THF)2(E = S or O, respectively), prepared from the corresponding nitride species ([Ar(But)N]3V identical to NNa)2 by way of a nucleophilic addition reaction involving carbon disulfide or dioxide, and is rationalized with the aid of DFT calculations.

  19. Oxidation of kinetically trapped thiols by protein disulfide isomerase.

    PubMed

    Walker, K W; Gilbert, H F

    1995-10-17

    The formation of a stabilized structure during oxidative protein folding can severely retard disulfide formation if the structure must be disrupted to gain access to buried cysteines. These kinetic traps can slow protein folding and disulfide bond formation to the extent that unassisted folding is too slow to be kinetically competent in the cell. Protein disulfide isomerase (PDI) facilitates the oxidation of a kinetically trapped state of RTEM-1 beta-lactamase in which two cysteines that form the single disulfide bond in the native protein are buried and approximately 500-fold less reactive than exposed cysteines. Under second-order conditions, PDI-dependent oxidation of reduced, folded beta-lactamase is 500-fold faster than GSSG-dependent oxidation. The rate difference observed between PDI and GSSG can be accounted for by the 520-fold higher kinetic reactivity of PDI as an oxidant. Noncovalent interactions between PDI (35 microM) and beta-lactamase increase the reactivity or unfolding of beta-lactamase in the steady-state by less than 3-fold. At high concentrations of PDI or alkylating agents, the reaction of beta-lactamase cysteines approaches a constant rate, limited by the spontaneous unfolding of the protein (kunfold = 0.024 +/- 0.005 min-1). PDI does not substantially increase the rate of beta-lactamase unfolding; however, once beta-lactamase spontaneously unfolds, PDI at concentrations greater than 44 +/- 4 microM, oxidizes the unfolded substrate before it can refold (kfold = 1.5 +/- 0.2 min-1).(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Performance and Safety Characteristics of Lithium-molybdenum Disulfide Cells

    NASA Technical Reports Server (NTRS)

    Stiles, J. A.

    1984-01-01

    The lithium-molybdenum disulfide system offers attractive characteristics including high rate capability, successful operation up to 75 C, a very low self-discharge rate, a good cycle life and safety characteristics which compare favorably to those of other lithium cells. Moreover, the materials and manufacturing costs for the system is effectively controlled, so the cells should ultimately be competitive with currently marketed rechargeable cells.

  1. A degradable polydopamine coating based on disulfide-exchange reaction

    NASA Astrophysics Data System (ADS)

    Hong, Daewha; Lee, Hojae; Kim, Beom Jin; Park, Taegyun; Choi, Ji Yu; Park, Matthew; Lee, Juno; Cho, Hyeoncheol; Hong, Seok-Pyo; Yang, Sung Ho; Jung, Sun Ho; Ko, Sung-Bo; Choi, Insung S.

    2015-11-01

    Although the programmed degradation of biocompatible films finds applications in various fields including biomedical and bionanotechnological areas, coating methods have generally been limited to be substrate-specific, not applicable to any kinds of substrates. In this paper, we report a dopamine derivative, which allows for both universal coating of various substrates and stimuli-responsive film degradation, inspired by mussel-adhesive proteins. Two dopamine moieties are linked together by the disulfide bond, the cleavage of which enables the programmed film degradation. Mechanistic analysis of the degradable films indicates that the initial cleavage of the disulfide linkage causes rapid uptake of water molecules, hydrating the films, which leads to rapid degradation. Our substrate-independent coating of degradable films provides an advanced tool for drug delivery systems, tissue engineering, and anti-fouling strategies.Although the programmed degradation of biocompatible films finds applications in various fields including biomedical and bionanotechnological areas, coating methods have generally been limited to be substrate-specific, not applicable to any kinds of substrates. In this paper, we report a dopamine derivative, which allows for both universal coating of various substrates and stimuli-responsive film degradation, inspired by mussel-adhesive proteins. Two dopamine moieties are linked together by the disulfide bond, the cleavage of which enables the programmed film degradation. Mechanistic analysis of the degradable films indicates that the initial cleavage of the disulfide linkage causes rapid uptake of water molecules, hydrating the films, which leads to rapid degradation. Our substrate-independent coating of degradable films provides an advanced tool for drug delivery systems, tissue engineering, and anti-fouling strategies. Electronic supplementary information (ESI) available: Synthesis, characterization, and other additional details. See DOI: 10

  2. Prediction of reversible disulfide based on features from local structural signatures.

    PubMed

    Sun, Ming-An; Wang, Yejun; Zhang, Qing; Xia, Yiji; Ge, Wei; Guo, Dianjing

    2017-04-04

    Disulfide bonds are traditionally considered to play only structural roles. In recent years, increasing evidence suggests that the disulfide proteome is made up of structural disulfides and reversible disulfides. Unlike structural disulfides, reversible disulfides are usually of important functional roles and may serve as redox switches. Interestingly, only specific disulfide bonds are reversible while others are not. However, whether reversible disulfides can be predicted based on structural information remains largely unknown. In this study, two datasets with both types of disulfides were compiled using independent approaches. By comparison of various features extracted from the local structural signatures, we identified several features that differ significantly between reversible and structural disulfides, including disulfide bond length, along with the number, amino acid composition, secondary structure and physical-chemical properties of surrounding amino acids. A SVM-based classifier was developed for predicting reversible disulfides. RESULTS: By 10-fold cross-validation, the model achieved accuracy of 0.750, sensitivity of 0.352, specificity of 0.953, MCC of 0.405 and AUC of 0.751 using the RevSS_PDB dataset. The robustness was further validated by using RevSS_RedoxDB as independent testing dataset. This model was applied to proteins with known structures in the PDB database. The results show that one third of the predicted reversible disulfide containing proteins are well-known redox enzymes, while the remaining are non-enzyme proteins. Given that reversible disulfides are frequently reported from functionally important non-enzyme proteins such as transcription factors, the predictions may provide valuable candidates of novel reversible disulfides for further experimental investigation. This study provides the first comparative analysis between the reversible and the structural disulfides. Distinct features remarkably different between these two

  3. Selective Gas-Phase Ion/Ion Reactions: Enabling Disulfide Mapping via Oxidation and Cleavage of Disulfide Bonds in Intermolecularly-Linked Polypeptide Ions.

    PubMed

    Pilo, Alice L; McLuckey, Scott A

    2016-09-20

    The selective gas-phase oxidation of disulfide bonds to their thiosulfinate form using ion/ion reactions and subsequent cleavage is demonstrated here. Oxidizing reagent anions are observed to attach to all polypeptides, regardless of amino acid composition. Direct proton transfer yielding a charge-reduced peptide is also frequently observed. Activation of the ion/ion complex between an oxidizing reagent anion and a disulfide-containing peptide cation results in oxygen transfer from the reagent anion to the peptide cation to form the [M+H+O](+) species. This thiosulfinate derivative can undergo one of several rearrangements that result in cleavage of the disulfide bond. Species containing an intermolecular disulfide bond undergo separation of the two chains upon activation. Further activation can be used to generate more sequence information from each chain. These oxidation ion/ion reactions have been used to illustrate the identification of S-glutathionylated and S-cysteinylated peptides, in which low molecular weight thiols are attached to cysteine residues in peptides via disulfide bonds. The oxidation chemistry effectively labels peptide ions with readily oxidized groups, such as disulfide bonds. This enables a screening approach for the identification of disulfide-linked peptides in a disulfide mapping application involving enzymatic digestion. The mixtures of ions generated by tryptic and peptic digestions of lysozyme and insulin, respectively, without prior separation or isolation were subjected both to oxidation and proton transfer ion/ion chemistry to illustrate the identification of peptides in the mixtures with readily oxidized groups.

  4. Disulfide bridge reorganization induced by proline mutations in maurotoxin.

    PubMed

    Carlier, E; Fajloun, Z; Mansuelle, P; Fathallah, M; Mosbah, A; Oughideni, R; Sandoz, G; Di Luccio, E; Geib, S; Regaya, I; Brocard, J; Rochat, H; Darbon, H; Devaux, C; Sabatier, J M; de Waard, M

    2001-02-02

    Maurotoxin (MTX) is a 34-residue toxin that has been isolated from the venom of the chactidae scorpion Scorpio maurus palmatus, and characterized. Together with Pi1 and HsTx1, MTX belongs to a family of short-chain four-disulfide-bridged scorpion toxins acting on potassium channels. However, contrary to other members of this family, MTX exhibits an uncommon disulfide bridge organization of the type C1-C5, C2-C6, C3-C4 and C7-C8, versus C1-C5, C2-C6, C3-C7 and C4-C8 for both Pi1 and HsTx1. Here, we report that the substitution of MTX proline residues located at positions 12 and/or 20, adjacent to C3 (Cys(13)) and C4 (Cys(19)), results in conventional Pi1- and HsTx1-like arrangement of the half-cystine pairings. In this case, this novel disulfide bridge arrangement is without obvious incidence on the overall three-dimensional structure of the toxin. Pharmacological assays of this structural analog, [A(12),A(20)]MTX, reveal that the blocking activities on Shaker B and rat Kv1.2 channels remain potent whereas the peptide becomes inactive on rat Kv1.3. These data indicate, for the first time, that discrete point mutations in MTX can result in a marked reorganization of the half-cystine pairings, accompanied with a novel pharmacological profile for the analog.

  5. Labile disulfide bonds are common at the leucocyte cell surface

    PubMed Central

    Metcalfe, Clive; Cresswell, Peter; Ciaccia, Laura; Thomas, Benjamin; Barclay, A. Neil

    2011-01-01

    Redox conditions change in events such as immune and platelet activation, and during viral infection, but the biochemical consequences are not well characterized. There is evidence that some disulfide bonds in membrane proteins are labile while others that are probably structurally important are not exposed at the protein surface. We have developed a proteomic/mass spectrometry method to screen for and identify non-structural, redox-labile disulfide bonds in leucocyte cell-surface proteins. These labile disulfide bonds are common, with several classes of proteins being identified and around 30 membrane proteins regularly identified under different reducing conditions including using enzymes such as thioredoxin. The proteins identified include integrins, receptors, transporters and cell–cell recognition proteins. In many cases, at least one cysteine residue was identified by mass spectrometry as being modified by the reduction process. In some cases, functional changes are predicted (e.g. in integrins and cytokine receptors) but the scale of molecular changes in membrane proteins observed suggests that widespread effects are likely on many different types of proteins including enzymes, adhesion proteins and transporters. The results imply that membrane protein activity is being modulated by a ‘redox regulator’ mechanism. PMID:22645650

  6. Ion beam-induced hydroxylation controls molybdenum disulfide growth

    NASA Astrophysics Data System (ADS)

    Bartolucci, Stephen F.; Kaplan, Daniel; Maurer, Joshua A.

    2017-06-01

    2D materials, such as graphene and transition metal dichalcogenides, are a promising class of nanomaterials for next generation electronics, photovoltaics, electrocatalysts, sensors, and optoelectronic devices. Molybdenum disulfide (MoS2) is of particular interest due to its direct bandgap in the visible spectrum, high electron mobility, and chemical stability. Here, we demonstrate that alterations in the density of surface hydroxyl groups on silicon dioxide substrates can control nucleation and growth in molybdenum disulfide thin films produced by atmospheric-pressure chemical vapor deposition. The extent of MoS2 nucleation is linearly correlated to the density of surface hydroxyl groups. Controlling the density of surface hydroxyl groups on the initial substrate provides a method of growing patterned molybdenum disulfide. Furthermore, we establish that the surface density of hydroxyl groups on silicon dioxide (SiO2) is altered using conventional gallium focused ion beam (FIB) patterning. Upon gallium-ion beam exposure, the number of hydroxyl groups generated on the surface is directly proportional to the ion dosage. This work establishes a means of patterning large-area monolayer MoS2 on silicon dioxide substrates, which is a critical step for realizing applications in imaging, catalysis, biosensing, chemical detection, electronics and optoelectronics.

  7. Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction

    PubMed Central

    2011-01-01

    Various techniques have been adopted to impart a biological responsiveness to synthetic hydrogels for the delivery of therapeutic agents as well as the study and manipulation of biological processes and tissue development. Such techniques and materials include polyelectrolyte gels that swell and deswell with changes in pH, thermosensitive gels that contract at physiological temperatures, and peptide cross-linked hydrogels that degrade upon peptidolysis by cell-secreted enzymes. Herein we report a unique approach to photochemically deform and degrade disulfide cross-linked hydrogels, mitigating the challenges of light attenuation and low quantum yield, permitting the degradation of hydrogels up to 2 mm thick within 120 s at low light intensities (10 mW/cm2 at 365 nm). Hydrogels were formed by the oxidation of thiol-functionalized 4-armed poly(ethylene glycol) macromolecules. These disulfide cross-linked hydrogels were then swollen in a lithium acylphosphinate photoinitiator solution. Upon exposure to light, photogenerated radicals initiate multiple fragmentation and disulfide exchange reactions, permitting and promoting photodeformation, photowelding, and photodegradation. This novel, but simple, approach to generate photoadaptable hydrogels portends the study of cellular response to mechanically and topographically dynamic substrates as well as novel encapsulations by the welding of solid substrates. The principles and techniques described herein hold implications for more than hydrogel materials but also for photoadaptable polymers more generally. PMID:21512614

  8. Solid-state chemistry route for supported tungsten and tungsten carbide nanoparticles

    SciTech Connect

    Hugot, N.; Desforges, A.; Fontana, S.; Mareche, J.F.; Herold, C.; Albiniak, A.

    2012-10-15

    Nanoparticles of tungsten and tungsten carbide have been prepared using solid-state chemistry methods. After the vapor phase impregnation of a tungsten hexachloride precursor on a carbon support, a temperature-programmed reduction/carburization was performed. Several parameters were investigated and the evolution of obtained samples was followed by XRD and TEM. The optimization of the reaction parameters led to the preparation of W, W{sub 2}C and WC particles well dispersed on the support. WC phase however could not be obtained alone with less than 10 nm mean size. This could be explained by the carburization mechanism and the carbon diffusion on the support. - Graphical abstract: Bright field picture of carbon-supported WC nanoparticles dispersed on the surface of the sample 1223 K in 10% CH{sub 4}/90% H{sub 2}. Highlights: Black-Right-Pointing-Pointer We aimed at the preparation of supported nanoparticulate tungsten derivatives. Black-Right-Pointing-Pointer Several parameters were investigated. Black-Right-Pointing-Pointer The evolution of obtained samples was followed by XRD and TEM. Black-Right-Pointing-Pointer The optimal preparation led to W, W{sub 2}C and WC particles dispersed on the support.

  9. Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa

    PubMed Central

    Arts, Isabelle S.; Ball, Geneviève; Leverrier, Pauline; Garvis, Steven; Nicolaes, Valérie; Vertommen, Didier; Ize, Bérengère; Tamu Dufe, Veronica; Messens, Joris; Voulhoux, Romé; Collet, Jean-François

    2013-01-01

    ABSTRACT Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. PMID:24327342

  10. Magnetic Fe@g??C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes

    EPA Pesticide Factsheets

    A photoactive catalyst, Fe@g-C3N4, has been developed for the hydrogenation of alkenes and alkynes using hydrazine hydrate as a source of hydrogen. The magnetically separable Fe@g-C3N4 eliminates the use of high pressure hydrogenation, and the reaction can be accomplished using visible light without the need for external sources of energy.This dataset is associated with the following publication:Baig, N., S. Verma, R. Varma , and M. Nadagouda. Magnetic Fe@g-C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes. ACS Sustainable Chemistry & Engineering. American Chemical Society, Washington, DC, USA, 4(3): 1661-1664, (2016).

  11. Controlled Light-Mediated Preparation of Gold Nanoparticles by a Norrish Type I Reaction of Photoactive Polymers.

    PubMed

    Mäsing, Florian; Mardyukov, Artur; Doerenkamp, Carsten; Eckert, Hellmut; Malkus, Ursula; Nüsse, Harald; Klingauf, Jürgen; Studer, Armido

    2015-10-19

    Gold nanoparticles (AuNPs) are subjects of broad interest in scientific community due to their promising physicochemical properties. Herein we report the facile and controlled light-mediated preparation of gold nanoparticles through a Norrish type I reaction of photoactive polymers. These carefully designed polymers act as reagents for the photochemical reduction of gold ions, as well as stabilizers for the in situ generated AuNPs. Manipulating the length and composition of the photoactive polymers allows for control of AuNP size. Nanoparticle diameter can be controlled from 1.5 nm to 9.6 nm. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.

    NASA Astrophysics Data System (ADS)

    Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.

    2016-10-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.

  13. High-strength tungsten alloy with improved ductility

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Raffo, P. L.; Rubenstein, L. S.; Witzke, W. R.

    1967-01-01

    Alloy combines superior strength at elevated temperatures with improved ductility at lower temperatures relative to unalloyed tungsten. Composed of tungsten, rhenium, hafnium, and carbon, the alloy is prepared by consumable electrode vacuum arc-melting and can be fabricated into rod, plate, and sheet.

  14. Microstructure and tensile properties of tungsten at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Shen, Tielong; Dai, Yong; Lee, Yongjoong

    2016-01-01

    In order to support the development of the 5 MW spallation target for the European Spallation Source, the effect of fabrication process on microstructure, ductile-to-brittle transition temperature (DBTT), tensile and fracture behaviour of powder-metallurgy pure tungsten materials has been investigated. A hot-rolled (HR) tungsten piece of 12 mm thickness and a hot-forged (HF) piece of about 80 mm thickness were used to simulate the thin and thick blocks in the target. The two tungsten pieces were characterized with metallography analysis, hardness measurement and tensile testing. The HR piece exhibits an anisotropic grain structure with an average size of about 330 × 140 × 40 μm in rolling, long transverse and short transverse (thickness) directions. The HF piece possesses a bimodal grain structure with about 310 × 170 × 70 μm grain size in deformed part and about 25 μm sized grains remained from sintering process. Hardness (HV0.2) of the HR piece is slightly greater than that of the HF one. The ductility of the HR tungsten specimens is greater than that of the HF tungsten. For the HF tungsten piece, specimens with small grains in gauge section manifest lower ductility but higher strength. The DBTT evaluated from the tensile results is 250-300 °C for the HR tungsten and about 350 °C for the HF tungsten.

  15. Measurement of the Properties of Tungsten at High Temperatures

    NASA Technical Reports Server (NTRS)

    Margrave, J. L.

    1985-01-01

    The thermophysical properties of tungsten and other materials were measured using containerless techniques. Levitation of liquid silver, gallium and tungsten were studied. The studies of liquid aluminum are almost complete and are expected to derive new, reliable properties for liquid aluminum.

  16. Gas Tungsten Arc Welding. Welding Module 6. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching a three-unit module in gas tungsten arc welding. The module has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The basic principles involved in gas tungsten arc welding, supplies, and applications are covered. The materials included…

  17. Fabrication of large tungsten structures by chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Kahle, V. E.; Lewis, W. J.; Stubbs, V. R.

    1971-01-01

    Process is accomplished by reducing tungsten hexafluoride with hydrogen. Metallic tungsten of essentially 100 percent purity and density is produced and built up as dense deposit on heated mandrel assembly. Process variations are building up, sealing or bonding refractory metals at temperatures below transition temperatures of base metal substrates.

  18. Calibration and Temperature Profile of a Tungsten Filament Lamp

    ERIC Educational Resources Information Center

    de Izarra, Charles; Gitton, Jean-Michel

    2010-01-01

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament…

  19. Processing of tungsten scrap into powders by electroerosion disintegration

    SciTech Connect

    Fominskii, L.P.; Leuchuk, M.V.; Myuller, A.S.; Tarabrina, V.P.

    1985-04-01

    Utilization of tungsten and tungsten alloy swarf and other waste and also of rejected and worn parts is a matter of great importance in view of the shortage of this metal. The authors examine the electroerosion (EE) disintegration of tungsten in water as a means of utilizing swarf and other loose waste. Unlike chemical methods, EE disintegration ensures ecological purity since there are no effluent waters or toxic discharges. Swarf and trimmings of rods of diameters up to 20 mm obtained after the lathe-turning of tungsten bars sintered from PVN and PVV tungsten powders were disintegrated in water at room temperature between tungsten electrodes. The phase composition of the powder was studied using FeK /SUB alpha/ radiation, by x-ray diffraction methods in a DRON-2 diffractometer with a graphite monochromator on the secondary beam. When tungsten is heated to boiling during EE disintegration, the impurities present in it can evaporate and burn out. Thus, tungsten powder produced by EE disintegration can be purer than the starting metal.

  20. Calibration and Temperature Profile of a Tungsten Filament Lamp

    ERIC Educational Resources Information Center

    de Izarra, Charles; Gitton, Jean-Michel

    2010-01-01

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament…

  1. Photoactive bile salts with critical micellar concentration in the micromolar range.

    PubMed

    Gomez-Mendoza, Miguel; Marin, M Luisa; Miranda, Miguel A

    2016-05-14

    The aggregation behavior of bile salts is strongly dependent on the number of hydroxyl groups. Thus, cholic acid (CA), with three hydroxyls, starts forming aggregates at 15 mM, while deoxycholic, chenodeoxycholic or ursodeoxycholic acids, with two hydroxyls, start aggregating at 5-10 mM; for lithocholic acid, with only one hydroxyl group, aggregation is observed at lower concentration (2-3 mM). Here, the singular self-assembling properties of dansyl and naproxen derivatives of CA (3β-Dns-CA and 3β-NPX-CA, respectively) have been demonstrated on the basis of their photoactive properties. Thus, the emission spectra of 3β-Dns-CA registered at increasing concentrations (25-140 μM) showed a remarkable non-linear enhancement in the emission intensity accompanied by a hypsochromic shift of the maximum and up to a three-fold increase in the singlet lifetime. The inflection point at around 50-70 μM pointed to the formation of unprecedented assemblies at such low concentrations. In the case of 3β-NPX-CA, when the NPX relative triplet lifetime was plotted against concentration, a marked increase (up to two-fold) was observed at 40-70 μM, indicating the formation of new 3β-NPX-CA assemblies at ca. 50 μM. Additional evidence supporting the formation of new 3β-Dns-CA or 3β-NPX-CA assemblies at 40-70 μM was obtained from singlet excited state quenching experiments using iodide. Moreover, to address the potential formation of hybrid assemblies, 1 : 1 mixtures of 3β-Dns-CA and 3β-NPX-CA (2-60 μM, total concentration) were subjected to steady-state fluorescence experiments, and their behavior was compared to that of the pure photoactive derivatives. A lower increase in the emission was observed for 3β-NPX-CA in the mixture, while a huge increase was experienced by 3β-Dns-CA in the same concentration range (up to 60 μM total). A partial intermolecular energy transfer from NPX to Dns, consistent with their reported singlet energies, was revealed, pointing to the

  2. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.

    PubMed

    Shi, Wenwu; Chopra, Nitin

    2012-10-24

    Fabrication of oxide nanowire heterostructures with controlled morphology, interface, and phase purity is critical for high-efficiency and low-cost photocatalysis. Here, we have studied the formation of copper oxide-cobalt nanowire heterostructures by sputtering and subsequent air annealing to result in cobalt oxide (Co(3)O(4))-coated CuO nanowires. This approach allowed fabrication of standing nanowire heterostructures with tunable compositions and morphologies. The vertically standing CuO nanowires were synthesized in a thermal growth method. The shell growth kinetics of Co and Co(3)O(4) on CuO nanowires, morphological evolution of the shell, and nanowire self-shadowing effects were found to be strongly dependent on sputtering duration, air-annealing conditions, and alignment of CuO nanowires. Finite element method (FEM) analysis indicated that alignment and stiffness of CuO-Co nanowire heterostructures greatly influenced the nanomechanical aspects such as von Mises equivalent stress distribution and bending of nanowire heterostructures during the Co deposition process. This fundamental knowledge was critical for the morphological control of Co and Co(3)O(4) on CuO nanowires with desired interfaces and a uniform coating. Band gap energies and phenol photodegradation capability of CuO-Co(3)O(4) nanowire heterostructures were studied as a function of Co(3)O(4) morphology. Multiple absorption edges and band gap tailings were observed for these heterostructures, indicating photoactivity from visible to UV range. A polycrystalline Co(3)O(4) shell on CuO nanowires showed the best photodegradation performance (efficiency ~50-90%) in a low-powered UV or visible light illumination with a sacrificial agent (H(2)O(2)). An anomalously high efficiency (~67.5%) observed under visible light without sacrificial agent for CuO nanowires coated with thin (∼5.6 nm) Co(3)O(4) shell and nanoparticles was especially interesting. Such photoactive heterostructures demonstrate unique

  3. Synthesis and enzymatic photo-activity of an O2 tolerant hydrogenase-CdSe@CdS quantum rod bioconjugate.

    PubMed

    Hamon, C; Ciaccafava, A; Infossi, P; Puppo, R; Even-Hernandez, P; Lojou, E; Marchi, V

    2014-05-21

    This communication reports on the preparation of stable and photo-active nano-heterostructures composed of O2 tolerant [NiFe] hydrogenase extracted from the Aquifex aeolicus bacterium grafted onto hydrophilic CdSe/CdS quantum rods in view of the development of H2/O2 biofuel cells. The resulting complex is efficient towards H2 oxidation, displays good stability and new photosensitive properties.

  4. Self-assembly of interfacial and photoactive layers via one-step solution processing for efficient inverted organic solar cells.

    PubMed

    Kang, Hongkyu; Lee, Jinho; Jung, Suhyun; Yu, Kilho; Kwon, Sooncheol; Hong, Soonil; Kee, Seyoung; Lee, Seongyu; Kim, Dongwon; Lee, Kwanghee

    2013-12-07

    Vertically self-assembled bilayers with an interfacial bottom layer and a photoactive top layer are demonstrated via a single coating step of a blend composed of an amine-containing nonconjugated polyelectrolyte (NPE) and an organic electron donor-acceptor bulk heterojunction composite. The self-assembled NPE layer reduces the work function of an indium tin oxide (ITO) cathode, which leads to efficient inverted organic solar cells without any additional interface engineering of the ITO.

  5. Two-photoactive-center model applied to photorefractive self-focusing in biased LiNbO{sub 3}

    SciTech Connect

    Devaux, Fabrice; Safioui, Jassem; Chauvet, Mathieu; Passier, Remy

    2010-01-15

    We propose a time-dependent, three-dimensional numerical model where iron impurities and polarons are both considered photoactive centers to explain beam self-trapping in biased lithium niobate crystal. It shows that the intensity-dependent behavior reported experimentally is due to the competition between the drift current and the nonlinear photovoltaic current. For low light intensity, beam self-focusing occurs, while beam-splitting is observed at a higher intensity level.

  6. Tungsten fiber reinforced superalloys: A status review

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.

    1981-01-01

    Improved performance of heat engines is largely dependent upon maximum cycle temperatures. Tungsten fiber reinforced superalloys (TFRS) are the first of a family of high temperature composites that offer the potential for significantly raising hot component operating temperatures and thus leading to improved heat engine performance. This status review of TFRS research emphasizes the promising property data developed to date, the status of TFRS composite airfoil fabrication technology, and the areas requiring more attention to assure their applicability to hot section components of aircraft gas turbine engines.

  7. Xenon-Ion Drilling of Tungsten Films

    NASA Technical Reports Server (NTRS)

    Garner, C. E.

    1986-01-01

    High-velocity xenon ions used to drill holes of controlled size and distribution through tungsten layer that sheaths surface of controlled-porosity dispenser cathode of traveling wave-tube electron emitter. Controlled-porosity dispenser cathode employs barium/calcium/ aluminum oxide mixture that migrates through pores in cathode surface, thus coating it and reducing its work function. Rapid, precise drilling technique applied to films of other metals and used in other applications where micron-scale holes required. Method requires only few hours, as opposed to tens of hours by prior methods.

  8. Xenon-Ion Drilling of Tungsten Films

    NASA Technical Reports Server (NTRS)

    Garner, C. E.

    1986-01-01

    High-velocity xenon ions used to drill holes of controlled size and distribution through tungsten layer that sheaths surface of controlled-porosity dispenser cathode of traveling wave-tube electron emitter. Controlled-porosity dispenser cathode employs barium/calcium/ aluminum oxide mixture that migrates through pores in cathode surface, thus coating it and reducing its work function. Rapid, precise drilling technique applied to films of other metals and used in other applications where micron-scale holes required. Method requires only few hours, as opposed to tens of hours by prior methods.

  9. Electrical properties of complex tungsten bronze ceramics

    NASA Astrophysics Data System (ADS)

    Padhee, R.; Das, Piyush R.

    2014-09-01

    This paper highlights the electrical properties of two new complex tungsten bronze ceramics (K2Pb2Eu2W2Ti4Nb4O30 and K2Pb2Pr2W2Ti4Nb4O30) which were prepared by high temperature mixed oxide method. Variation of impedance parameters with temperature (27-500 °C) and frequency (1 kHz to 5 MHz) shows the grain and grain boundary effects in the samples. The variation of dielectric parameters with frequency is also studied. The ac conductivity variation with temperature clearly exhibits that the materials have thermally activated transport properties of Arrhenius type.

  10. Double phase conjugation in tungsten bronze crystals.

    PubMed

    Sharp, E J; Clark Iii, W W; Miller, M J; Wood, G L; Monson, B; Salamo, G J; Neurgaonkar, R R

    1990-02-20

    In this paper we report a new method for double phase conjugation particularly suited to the tungsten bronze crystal strontium barium niobate. It has also been observed to produce conjugate waves in BaTiO(3) and BSKNN. This new arrangement is called the bridge conjugator because the two beams enter opposing [100] crystal faces and fan together to form a bridge without reflection off a crystal face. Our measurements indicate that the bridge conjugator is competitive with previously reported double phase conjugate mirrors in reflectivity, response time, ease of alignment, and fidelity.

  11. Low temperature photoresponse of monolayer tungsten disulphide

    SciTech Connect

    Cao, Bingchen; Shen, Xiaonan; Shang, Jingzhi; Cong, Chunxiao; Yang, Weihuang; Eginligil, Mustafa E-mail: meginligil@ntu.edu.sg; Yu, Ting E-mail: meginligil@ntu.edu.sg

    2014-11-01

    High photoresponse can be achieved in monolayers of transition metal dichalcogenides. However, the response times are inconveniently limited by defects. Here, we report low temperature photoresponse of monolayer tungsten disulphide prepared by exfoliation and chemical vapour deposition (CVD) method. The exfoliated device exhibits n-type behaviour; while the CVD device exhibits intrinsic behaviour. In off state, the CVD device has four times larger ratio of photoresponse for laser on/off and photoresponse decay–rise times are 0.1 s (limited by our setup), while the exfoliated device has few seconds. These findings are discussed in terms of charge trapping and localization.

  12. Tungsten recycling in the United States in 2000

    USGS Publications Warehouse

    Shedd, Kim B.

    2011-01-01

    This report, which is one of a series of reports on metals recycling, defines and quantifies the flow of tungsten-bearing materials in the United States from imports and stock releases through consumption and disposition in 2000, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap). Because of tungsten's many diverse uses, numerous types of scrap were available for recycling by a wide variety of processes. In 2000, an estimated 46 percent of U.S. tungsten supply was derived from scrap. The ratio of tungsten consumed from new scrap to that consumed from old scrap was estimated to be 20:80. Of all the tungsten in old scrap available for recycling, an estimated 66 percent was either consumed in the United States or exported to be recycled.

  13. Dynamics of small mobile helium clusters near tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Hu, Lin; Hammond, Karl D.; Wirth, Brian D.; Maroudas, Dimitrios

    2014-08-01

    We report the results of a systematic atomic-scale analysis of the dynamics of small mobile helium clusters in tungsten, near tungsten surfaces. These helium clusters are attracted to tungsten surfaces due to an elastic interaction force that drives surface segregation. As the clusters migrate toward the surface, trap mutation and cluster dissociation are activated at rates higher than in the bulk. These kinetic processes are responsible for important structural, morphological, and compositional features in plasma-exposed tungsten, including surface adatoms, near-surface immobile helium-vacancy complexes, and retained helium content. Detailed results are presented for di-helium and tri-helium clusters near low-Miller-index tungsten surfaces.

  14. Atomic tungsten for ultrafast hard X-ray generation.

    PubMed

    Shan, Fang; Couch, Vernon A; Guo, Ting

    2005-05-19

    High-resolution X-ray absorption measurements (with an accuracy of +/-0.3 eV) of ZnSO(4) (aq) were performed with ultrafast selected energy X-ray absorption spectroscopy (USEXAS) using a laser-driven tungsten target X-ray source. The results were used to determine the absolute spectral positions of characteristic emission lines. By comparing these positions to those predicted for the line emission from tungsten of different oxidation states using the Dirac-Fock formula, the tungsten species responsible for ultrafast hard X-ray generation were found to be tungsten atoms. This finding provides the first direct evidence to support the mechanism of X-ray generation via high-energy electrons interacting with tungsten atoms in the solid target.

  15. Microstructure Analysis of Tungsten Carbide Hardfacing on Carbon Steel Blade

    NASA Astrophysics Data System (ADS)

    Nagentrau, M.; Tobi, A. L. Mohd; Kamdi, Z.; Ismail, M. I.; Sambu, M.

    2017-05-01

    Tungsten carbide (WC) hardfacing coating is commonly used to enhance carbon steel blade performance which works in acidic and abrasive condition during production process. This paper deals with tungsten carbide (WC) hardfacing microstructure analysis on a carbon steel blade. Mixing of ilmenite ore with sulphuric acid is performed by the carbon steel blade as part of a production process. Tungsten carbide hardfacing is deposited on the carbon steel blade to enhance its wear resistance. The carbide distribution along with elemental composition analysis of the hardfaced carbon steel blade specimens is examined using Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-Ray Diffraction (XRD) respectively. Microstructure analysis revealed that different sizes of carbides with non-uniform distribution are found around the coating region. The carbide region is contains high percentage of tungsten (W) meanwhile, non-carbide region rich in tungsten (W) and iron (Fe).

  16. Improving the Visible Light Photoactivity of Supported Fullerene Photocatalysts through the Use of [C₇₀] Fullerene.

    PubMed

    Moor, Kyle J; Valle, Dhyan C; Li, Chuanhao; Kim, Jae-Hong

    2015-05-19

    We herein present the first instance of employing [C₇₀] fullerene for photocatalytic ¹O₂ production in water, through covalent immobilization onto a mesoporous silica support via nucelophilic amine addition directly to fullerene's cage. This attachment approach prevents the aggregation of individual fullerene molecules in water, thus allowing fullerene to retain its photoactivity, yet is much less complex than other techniques commonly pursued to create such supported-fullerene materials, which typically rely on water-soluble fullerene derivatives and elaborate immobilization methods. The solid-supported C₇₀ material exhibits significantly improved aqueous visible-light photoactivity compared to previous C₆₀- and C₆₀-derivative-based supported fullerene materials. Further, this material rapidly inactivates MS2 bacteriophage under sunlight illumination, oxidizes various organic contaminants, and does not appear to be significantly fouled by natural organic matter (NOM), highlighting the potential of these materials in real-world applications. Collectively, the ease of preparation and significantly enhanced visible-light photoactivity of these materials advance fullerene-based technologies for water treatment.

  17. Improving the visible light photoactivity of In2S3-graphene nanocomposite via a simple surface charge modification approach.

    PubMed

    Yang, Min-Quan; Weng, Bo; Xu, Yi-Jun

    2013-08-20

    We report an efficient and easily accessible self-assembly route to synthesize In2S3-GR nanocomposites via electrostatic interaction of positively charged In2S3 nanoparticles with negatively charged graphene oxide (GO) followed by a hydrothermal process for reduction of GO to graphene (GR). The as-synthesized In2S3-GR nanocomposites exhibit much higher visible light photocatalytic activity toward selective reduction of nitroaromatic compounds in water than bare In2S3 nanoparticles and In2S3-GR-H that is obtained from the simple "hard" integration of GR nanosheets with solid In2S3 nanoparticles without modification of surface charge. On the basis of the joint characterizations and structure-photoactivity correlation it is disclosed that the enhanced photocatalytic performance of In2S3-GR is mainly ascribed to the more efficient interfacial contact between In2S3 and the GR nanosheets than In2S3-GR-H, which would amplify the use of electron conductivity and mobility of GR to improve the lifetime and transfer of photogenerated charge carriers more efficiently and thus boost the photoactivity more effectively. This work highlights the significant effect of preparation methods on the photoactivity of GR-semiconductor nanocomposites. It is expected that such a simple electrostatic self-assembly strategy could aid to rationally fabricate more efficient GR-semiconductor nanocomposites with improved interfacial contact and photocatalytic performance toward various photocatalytic selective transformations.

  18. Radical induced disulfide bond cleavage within peptides via ultraviolet irradiation of an electrospray plume.

    PubMed

    Stinson, Craig A; Xia, Yu

    2013-05-21

    Radical induced disulfide bond cleavage in peptides was demonstrated by ultraviolet (UV) radiation of the electrospray ionization (ESI) plume using a low pressure mercury (LP-Hg) lamp. Tandem mass spectrometry and accurate mass measurements confirmed that the primary reaction products were due to disulfide bond cleavage to form thiol (-SH) and sulfinyl radical (-SO˙). Mechanistic studies showed that the 185 nm emission from a LP-Hg lamp was responsible for UV photolysis of atmospheric O2, which further initiated secondary radical formation and subsequent disulfide bond cleavage by radical attack. The radical induced disulfide bond cleavage was found to be analytically useful in providing rich sequence information for naturally occurring peptides containing intrachain disulfide bonds. The utility of this method was also demonstrated for facile disulfide peptide identification and characterization from protein digests.

  19. Do Vicinal Disulfide Bridges Mediate Functionally Important Redox Transformations in Proteins?

    PubMed Central

    de Araujo, Aline Dantas; Herzig, Volker; Windley, Monique J.; Dziemborowicz, Sławomir; Mobli, Mehdi; Nicholson, Graham M.

    2013-01-01

    Abstract Vicinal disulfide bridges, in which a disulfide bond is formed between adjacent cysteine residues, constitute an unusual but expanding class of potential allosteric disulfides. Although vicinal disulfide rings (VDRs) are relatively uncommon, they have proven to be functionally critical in almost all proteins in which they have been discovered. However, it has proved difficult to test whether these sterically constrained disulfides participate in functionally important redox transformations. We demonstrate that chemical replacement of VDRs with dicarba or diselenide bridges can be used to assess whether VDRs function as allosteric disulfides. Our approach leads to the hypothesis that not all VDRs participate in functionally important redox reactions. Antioxid. Redox Signal. 19, 1976–1980. PMID:23646911

  20. An experimental study of the influence of oxygen on silicide formation with tungsten deposited from tungsten hexafluoride

    NASA Astrophysics Data System (ADS)

    Zhang, S.-L.; Smith, U.; Buchta, R.; Östling, M.

    1991-01-01

    Tungsten disilicide (WSi2) was formed by annealing tungsten films deposited by low-pressure chemical vapor deposition on <100>-silicon substrates. The influence of oxygen on the silicidation rate was studied. Si wafers with different oxygen content in the form of Czochralski, float-zone, and epitaxial wafers were used. Oxygen was also ion implanted into either the silicon substrate or the as-deposited tungsten film. The Rutherford backscattering technique was used to follow the progress of the silicidation. The silicidation rate was found to be dependent on the oxygen content of the Si substrates. The rate was lowest for Czochralski substrates and highest for float-zone substrates. Secondary ion mass spectroscopy was used to study the oxygen and fluorine profiles in the films prior to and after silicidation. Growth of WSi2 was found to be retarded concurrently with a pile-up of fluorine at the tungsten side of the W/WSi2 interface and a gettering of oxygen from the annealing atmosphere at the interface. Growth of WSi2 was then transferred to the tungsten surface. Oxygen implantation into silicon and tungsten, respectively, reduced the rate of silicide formation. Oxygen implantation into tungsten altered the distribution of fluorine and suppressed WSi2 growth at the tungsten surface. The observations led to a conceptual model, which ascribes the retardation in the growth of the inner WSi2 to a``poisoning'' effect caused by the increase of oxygen and fluorine levels at the interface.