1985-01-01
suggested that the concerted reaction should be allowed photochemically and the conrotatory mode should be favored. The data were in accord with this...crossing), or (4) reaction to form products, e.g., isomers or fragments, directly from the excited state. Further radiative, non-radiative, and photochemical ...processes can occur from intermediate excited states. Typical photochemical reactions observed in simple ketones in the gas phase are: (1) Norrish
Mendieta-Moreno, Jesús I; Trabada, Daniel G; Mendieta, Jesús; Lewis, James P; Gómez-Puertas, Paulino; Ortega, José
2016-11-03
The absorption of ultraviolet radiation by DNA may result in harmful genetic lesions that affect DNA replication and transcription, ultimately causing mutations, cancer, and/or cell death. We analyze the most abundant photochemical reaction in DNA, the cyclobutane thymine dimer, using hybrid quantum mechanics/molecular mechanics (QM/MM) techniques and QM/MM nonadiabatic molecular dynamics. We find that, due to its double helix structure, DNA presents a free energy barrier between nonreactive and reactive conformations leading to the photolesion. Moreover, our nonadiabatic simulations show that most of the photoexcited reactive conformations return to standard B-DNA conformations after an ultrafast nonradiative decay to the ground state. This work highlights the importance of dynamical effects (free energy, excited-state dynamics) for the study of photochemical reactions in biological systems.
Kramer, Zeb C; Takahashi, Kaito; Skodje, Rex T
2010-11-03
The possible catalysis of photochemical reactions by water molecules is considered. Using theoretical simulations, we investigate the HF-elimination reaction of fluoromethanol in small water clusters initiated by the overtone excitation of the hydroxyl group. The reaction occurs in competition with the process of water evaporation that dissipates the excitation and quenches the reaction. Although the transition state barrier is stabilized by over 20 kcal/mol through hydrogen bonding with water, the quantum yield versus energy shows a pronounced delayed threshold that effectively eliminates the catalytic effect. It is concluded that the quantum chemistry calculations of barrier lowering are not sufficient to infer water catalysis in some photochemical reactions, which instead require dynamical modeling.
Temporal mapping of photochemical reactions and molecular excited states with carbon specificity
NASA Astrophysics Data System (ADS)
Wang, K.; Murahari, P.; Yokoyama, K.; Lord, J. S.; Pratt, F. L.; He, J.; Schulz, L.; Willis, M.; Anthony, J. E.; Morley, N. A.; Nuccio, L.; Misquitta, A.; Dunstan, D. J.; Shimomura, K.; Watanabe, I.; Zhang, S.; Heathcote, P.; Drew, A. J.
2017-04-01
Photochemical reactions are essential to a large number of important industrial and biological processes. A method for monitoring photochemical reaction kinetics and the dynamics of molecular excitations with spatial resolution within the active molecule would allow a rigorous exploration of the pathway and mechanism of photophysical and photochemical processes. Here we demonstrate that laser-excited muon pump-probe spin spectroscopy (photo-μSR) can temporally and spatially map these processes with a spatial resolution at the single-carbon level in a molecule with a pentacene backbone. The observed time-dependent light-induced changes of an avoided level crossing resonance demonstrate that the photochemical reactivity of a specific carbon atom is modified as a result of the presence of the excited state wavefunction. This demonstrates the sensitivity and potential of this technique in probing molecular excitations and photochemistry.
Time-resolved EPR study on the photochemical reactions of benzil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukai, Masahiro; Yamnauchi, Seigo; Hirota, Noboru
1992-04-16
TREPR and optical studies on the photochemical reactions of benzil in 2-propanol and benzene-TEA conclude that emissive signals are due to the reaction from T{sub n} produced via the S{sub n} pointing right T{sub n} intersystem crossing process. The free-pair radical-pair mechanism can account for the main features of the slow rise component of the chemically induced dynamic electron polarization signal of the ketyl radical in 2-propanol. 27 refs., 10 figs., 2 tabs.
NASA Astrophysics Data System (ADS)
Carrasquillo, A. J.; Gelfond, C. E.; Kocar, B. D.
2016-12-01
Photochemical reactions of natural organic matter (NOM) represent potentially important pathways for biologically recalcitrant material to be chemically altered in aquatic systems. Irradiation can alter the physical state of organic matter by facilitating the cycling between the particulate (POM) and dissolved (DOM) pools, however, a molecular level understanding of this chemically dynamic system is currently lacking. Photochemical reactions of a target molecule proceed by the direct absorption of a photon, or through reaction with a second photolytically generated species (i.e. the hydroxyl radical, singlet oxygen, excited triplet state NOM, hydrogen peroxide, etc.). Here, we isolate the major direct and indirect photochemical reactions of a lignocellulose-rich POM material (Phragmites australis) to determine their relative importance in changing the the chemical structure of the parent POM, and in the production of DOM. We measured POM molecular structure using a combination of NMR and FTIR for bulk analyses and scanning transmission x-ray microscopy (STXM) for spatially resolved chemistry, while the chemical composition of photo-produced DOM was measured using ultra-high resolution mass spectrometry. Results are discussed in the context of the differences in chemical composition of both NOM pools resulting from the isolated photochemical pathways. All treatments result in an increase in DOM with reaction time, indicating that the larger POM matrix is likely fragmenting into smaller more soluble species. Spectroscopic measurements, on the other hand, point to functionalization reactions which increase the abundance of alcohol, acid, and carbonyl moieties in both carbon pools. This unique dataset provides new insight into how photochemical reactions alter the chemical composition of NOM while highlighting the relative importance of indirect pathways.
NASA Astrophysics Data System (ADS)
Trinidad Pérez-Rivera, Danilo; Romani, Paul N.; Lopez-Encarnacion, Juan Manuel
2016-10-01
Titan's atmosphere is arguably the atmosphere of greatest interest that we have an abundance of data for from both ground based and spacecraft observations. As we have learned more about Titan's atmospheric composition, the presence of pre-biotic molecules in its atmosphere has generated more and more fascination about the photochemical process and pathways it its atmosphere. Our computational laboratory has been extensively working throughout the past year characterizing nitrile synthesis reactions, making significant progress on the energetics and dynamics of the reactions of .CN with the hydrocarbons acetylene (C2H2), propylene (CH3CCH), and benzene (C6H6), developing a clear picture of the mechanistic aspects through which these three reactions proceed. Specifically, first principles calculations of the reaction profiles and molecular dynamics studies for gas-phase reactions of .CN and C2H2, .CN and CH3CCH, and .CN and C6H6 have been carried out. A very accurate determination of potential energy surfaces of these reactions will allow us to compute the reaction rates which are indispensable for photochemical modeling of Titan's atmosphere.The work at University of Puerto Rico at Cayey was supported by Puerto Rico NASA EPSCoR IDEAS-ER program (2015-2016) and DTPR was sponsored by the Puerto Rico NASA Space Grant Consortium Fellowship. *E-mail: juan.lopez15@upr.edu
Cordes, Thorben; Schadendorf, Torsten; Priewisch, Beate; Rück-Braun, Karola; Zinth, Wolfgang
2008-01-31
The photochemical reaction dynamics of a set of photochromic compounds based on thioindigo and stilbene molecular parts (hemithioindigos, HTI) are presented. Photochemical Z/E isomerization around the central double bond occurs with time constants of 216 ps (Z --> E) and 10 ps (E --> Z) for a 5-methyl-hemithioindigo. Chemical substitution on the stilbene moiety causes unusually strong changes in the reaction rate. Electron-donating substituents in the position para to the central double bond (e.g., para-methoxy) strongly accelerate the reaction, while the reaction is drastically slowed by electron-withdrawing groups in this position (e.g., para-nitrile). We correlate the experimental data of seven HTI-compounds in a quantitative manner using the Hammett equation and present a qualitative explanation for the application of ground-state Hammett constants to describe the photoisomerization reaction.
A Tractable Numerical Model for Exploring Nonadiabatic Quantum Dynamics
ERIC Educational Resources Information Center
Camrud, Evan; Turner, Daniel B.
2017-01-01
Numerous computational and spectroscopic studies have demonstrated the decisive role played by nonadiabatic coupling in photochemical reactions. Nonadiabatic coupling drives photochemistry when potential energy surfaces are nearly degenerate at avoided crossings or truly degenerate at unavoided crossings. The dynamics induced by nonadiabatic…
Lynch, Michael S; Slenkamp, Karla M; Cheng, Mark; Khalil, Munira
2012-07-05
Obtaining a detailed description of photochemical reactions in solution requires measuring time-evolving structural dynamics of transient chemical species on ultrafast time scales. Time-resolved vibrational spectroscopies are sensitive probes of molecular structure and dynamics in solution. In this work, we develop doubly resonant fifth-order nonlinear visible-infrared spectroscopies to probe nonequilibrium vibrational dynamics among coupled high-frequency vibrations during an ultrafast charge transfer process using a heterodyne detection scheme. The method enables the simultaneous collection of third- and fifth-order signals, which respectively measure vibrational dynamics occurring on electronic ground and excited states on a femtosecond time scale. Our data collection and analysis strategy allows transient dispersed vibrational echo (t-DVE) and dispersed pump-probe (t-DPP) spectra to be extracted as a function of electronic and vibrational population periods with high signal-to-noise ratio (S/N > 25). We discuss how fifth-order experiments can measure (i) time-dependent anharmonic vibrational couplings, (ii) nonequilibrium frequency-frequency correlation functions, (iii) incoherent and coherent vibrational relaxation and transfer dynamics, and (iv) coherent vibrational and electronic (vibronic) coupling as a function of a photochemical reaction.
Simulations of photochemical smog formation in complex urban areas
NASA Astrophysics Data System (ADS)
Muilwijk, C.; Schrijvers, P. J. C.; Wuerz, S.; Kenjereš, S.
2016-12-01
In the present study we numerically investigated the dispersion of photochemical reactive pollutants in complex urban areas by applying an integrated Computational Fluid Dynamics (CFD) and Computational Reaction Dynamics (CRD) approach. To model chemical reactions involved in smog generation, the Generic Reaction Set (GRS) approach is used. The GRS model was selected since it does not require detailed modeling of a large set of reactive components. Smog formation is modeled first in the case of an intensive traffic emission, subjected to low to moderate wind conditions in an idealized two-dimensional street canyon with a building aspect ratio (height/width) of one. It is found that Reactive Organic Components (ROC) play an important role in the chemistry of smog formation. In contrast to the NOx/O3 photochemical steady state model that predicts a depletion of the (ground level) ozone, the GRS model predicts generation of ozone. Secondly, the effect of direct sunlight and shadow within the street canyon on the chemical reaction dynamics is investigated for three characteristic solar angles (morning, midday and afternoon). Large differences of up to one order of magnitude are found in the ozone production for different solar angles. As a proof of concept for real urban areas, the integrated CFD/CRD approach is applied for a real scale (1 × 1 km2) complex urban area (a district of the city of Rotterdam, The Netherlands) with high traffic emissions. The predicted pollutant concentration levels give realistic values that correspond to moderate to heavy smog. It is concluded that the integrated CFD/CRD method with the GRS model of chemical reactions is both accurate and numerically robust, and can be used for modeling of smog formation in complex urban areas.
Studies in organic and physical photochemistry - an interdisciplinary approach.
Oelgemöller, Michael; Hoffmann, Norbert
2016-08-21
Traditionally, organic photochemistry when applied to synthesis strongly interacts with physical chemistry. The aim of this review is to illustrate this very fruitful interdisciplinary approach and cooperation. A profound understanding of the photochemical reactivity and reaction mechanisms is particularly helpful for optimization and application of these reactions. Some typical reactions and particular aspects are reported such as the Norrish-Type II reaction and the Yang cyclization and related transformations, the [2 + 2] photocycloadditions, particularly the Paternò-Büchi reaction, photochemical electron transfer induced transformations, different kinds of catalytic reactions such as photoredox catalysis for organic synthesis and photooxygenation are discussed. Particular aspects such as the structure and reactivity of aryl cations, photochemical reactions in the crystalline state, chiral memory, different mechanisms of hydrogen transfer in photochemical reactions or fundamental aspects of stereoselectivity are discussed. Photochemical reactions are also investigated in the context of chemical engineering. Particularly, continuous flow reactors are of interest. Novel reactor systems are developed and modeling of photochemical transformations and different reactors play a key role in such studies. This research domain builds a bridge between fundamental studies of organic photochemical reactions and their industrial application.
Catalysis of Photochemical Reactions.
ERIC Educational Resources Information Center
Albini, A.
1986-01-01
Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)
Atmospheric chemistry and transport modeling in the outer solar system
NASA Astrophysics Data System (ADS)
Lee, Yuan-Tai (Anthony)
2001-11-01
This thesis consists of 1-D and 2-D photochemical- dynamical modeling in the upper atmospheres of outer planets. For 1-D modeling, a unified hydrocarbon photochemical model has been studied in Jupiter, Saturn, Uranus, Neptune, and Titan, by comparing with the Voyager observations, and the recent measurements of methyl radicals by ISO in Saturn and Neptune. The CH3 observation implies a kinetically sensitive test to the measured and estimated hydrocarbon rate constants at low temperatures. We identify the key reactions that control the concentrations of CH3 in the model, such as the three-body recombination reaction, CH3 + CH3 + M --> C 2H6 + M, and the recycling reaction H + CH3 + M --> CH4 + M. The results show reasonable agreement with ISO values. In Chapter 4, the detection of PH3 in the lower stratosphere and upper troposphere of Jupiter has provided a photochemical- dynamical coupling model to derive the eddy diffusion coefficient in the upper troposphere of Jupiter. Using a two-layers photochemical model with updated photodissociation cross-sections and chemical rate constants for NH3 and PH 3, we find that the upper tropospheric eddy diffusion coefficient <10 5 cm2 sec-1, and the deeper tropospheric value >106 cm2 sec-1, are required to match the derived PH3 vertical profile by the observation. The best-fit functional form derivation of eddy diffusion coefficient in the upper troposphere of Jupiter above 400 mbar is K = 2.0 × 104 (n/2.2 × 1019)-0.5 cm 2 sec-1. On the other hand, Chapter 5 demonstrates a dynamical-only 2-D model of C2H6 providing a complete test for the current 2-D transport models in Jovian lower stratosphere and upper troposphere (270 to 0.1 mbar pressure levels). Different combinations of residual advection, horizontal eddy dispersion, and vertical eddy mixing are examined at different latitudes.
PHOTOCHEMICAL MODELING APPLIED TO NATURAL WATERS
The study examines the application of modeling photochemical processes in natural water systems. For many photochemical reactions occurring in natural waters, a simple photochemical model describing reaction rate as a function of intensity, radiation attenuation, reactant absorpt...
1985-12-11
RD-R162 462 PHOTOCHEMICAL REACTIONS OF(N(S)-P NTANETNYLCVCLPENTADIENYL)-DICARRONVLIR.. (U) MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF CHEMISTRY...34 Photochemical Reactions of (n5-Pentamethylcyclpentadienyl)- Dicarbonyliron-Alkyl and -Silyl Complexes: Reversible Ethylene Insertion into an Iron-Silicon Bond...Chemical Society) PHOTOCHEMICAL REACTIONS OF (n5-PENTAMETHYLCYCLOPENTADIENYL)- DICARBONYLIRON-ALKYL AND -SILYL COMPLEXES: REVERSIBLE ETHYLENE INSERTION INTO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Prabir K.
2001-09-30
Aluminosilicate zeolites provide an excellent host for photochemical charge separation. Because of the constraints provided by the zeolite, the back electron transfer from the reduced acceptor to the oxidized sensitizer is slowed down. This provides the opportunity to separate the charge and use it in a subsequent reaction for water oxidation and reduction. Zeolite-based ruthenium oxide catalysts have been found to be efficient for the water splitting process. This project has demonstrated the usefulness of zeolite hosts for photolytic splitting of water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, Zeb C.; Takahashi, Kaito; Skodje, Rex T.
2012-04-28
The possibility of water catalysis in the vibrational overtone-induced dehydration reaction of methanediol is investigated using ab initio dynamical simulations of small methanediol-water clusters. Quantum chemistry calculations employing clusters with one or two water molecules reveal that the barrier to dehydration is lowered by over 20 kcal/mol because of hydrogen-bonding at the transition state. Nevertheless, the simulations of the reaction dynamics following OH-stretch excitation show little catalytic effect of water and, in some cases, even show an anticatalytic effect. The quantum yield for the dehydration reaction exhibits a delayed threshold effect where reaction does not occur until the photon energymore » is far above the barrier energy. Unlike thermally induced reactions, it is argued that competition between reaction and the irreversible dissipation of photon energy may be expected to raise the dynamical threshold for the reaction above the transition state energy. It is concluded that quantum chemistry calculations showing barrier lowering are not sufficient to infer water catalysis in photochemical reactions, which instead require dynamical modeling.« less
Photochemical reactions of aromatic compounds and the concept of the photon as a traceless reagent.
Hoffmann, Norbert
2012-11-01
Electronic excitation significantly changes the reactivity of chemical compounds. Compared to ground state reactions, photochemical reactions considerably enlarge the application spectrum of a particular functional group in organic synthesis. Multistep syntheses may be simplified and perspectives for target oriented synthesis (TOS) and diversity oriented synthesis (DOS) are developed. New compound families become available or may be obtained more easily. In contrast to common chemical reagents, photons don't generate side products resulting from the transformation of a chemical reagent. Therefore, they are considered as a traceless reagent. Consequently, photochemical reactions play a central role in the methodology of sustainable chemistry. This aspect has been recognized since the beginning of the 20th century. As with many other photochemical transformations, photochemical reactions of aromatic, benzene-like compounds illustrate well the advantages in this context. Photochemical cycloadditions of aromatic compounds have been investigated for a long time. Currently, they are applied in various fields of organic synthesis. They are also studied in supramolecular structures. The phenomena of reactivity and stereoselectivity are investigated. During recent years, photochemical electron transfer mediated reactions are particularly focused. Such transformations have likewise been performed with aromatic compounds. Reactivity and selectivity as well as application to organic synthesis are studied.
Mapping the Complete Reaction Path of a Complex Photochemical Reaction.
Smith, Adam D; Warne, Emily M; Bellshaw, Darren; Horke, Daniel A; Tudorovskya, Maria; Springate, Emma; Jones, Alfred J H; Cacho, Cephise; Chapman, Richard T; Kirrander, Adam; Minns, Russell S
2018-05-04
We probe the dynamics of dissociating CS_{2} molecules across the entire reaction pathway upon excitation. Photoelectron spectroscopy measurements using laboratory-generated femtosecond extreme ultraviolet pulses monitor the competing dissociation, internal conversion, and intersystem crossing dynamics. Dissociation occurs either in the initially excited singlet manifold or, via intersystem crossing, in the triplet manifold. Both product channels are monitored and show that, despite being more rapid, the singlet dissociation is the minor product and that triplet state products dominate the final yield. We explain this by a consideration of accurate potential energy curves for both the singlet and triplet states. We propose that rapid internal conversion stabilizes the singlet population dynamically, allowing for singlet-triplet relaxation via intersystem crossing and the efficient formation of spin-forbidden dissociation products on longer timescales. The study demonstrates the importance of measuring the full reaction pathway for defining accurate reaction mechanisms.
Mapping the Complete Reaction Path of a Complex Photochemical Reaction
NASA Astrophysics Data System (ADS)
Smith, Adam D.; Warne, Emily M.; Bellshaw, Darren; Horke, Daniel A.; Tudorovskya, Maria; Springate, Emma; Jones, Alfred J. H.; Cacho, Cephise; Chapman, Richard T.; Kirrander, Adam; Minns, Russell S.
2018-05-01
We probe the dynamics of dissociating CS2 molecules across the entire reaction pathway upon excitation. Photoelectron spectroscopy measurements using laboratory-generated femtosecond extreme ultraviolet pulses monitor the competing dissociation, internal conversion, and intersystem crossing dynamics. Dissociation occurs either in the initially excited singlet manifold or, via intersystem crossing, in the triplet manifold. Both product channels are monitored and show that, despite being more rapid, the singlet dissociation is the minor product and that triplet state products dominate the final yield. We explain this by a consideration of accurate potential energy curves for both the singlet and triplet states. We propose that rapid internal conversion stabilizes the singlet population dynamically, allowing for singlet-triplet relaxation via intersystem crossing and the efficient formation of spin-forbidden dissociation products on longer timescales. The study demonstrates the importance of measuring the full reaction pathway for defining accurate reaction mechanisms.
Najdanova, Marija; Gräsing, Daniel; Alia, A; Matysik, Jörg
2018-01-01
The origin of the functional symmetry break in bacterial photosynthesis challenges since several decades. Although structurally very similar, the two branches of cofactors in the reaction center (RC) protein complex act very differently. Upon photochemical excitation, an electron is transported along one branch, while the other remains inactive. Photochemically induced dynamic nuclear polarization (photo-CIDNP) magic-angle spinning (MAS) 13 C NMR revealed that the two bacteriochlorophyll cofactors forming the "Special Pair" donor dimer are already well distinguished in the electronic ground state. These previous studies are relying solely on 13 C- 13 C correlation experiments as radio-frequency-driven recoupling (RFDR) and dipolar-assisted rotational resonance (DARR). Obviously, the chemical-shift assignment is difficult in a dimer of tetrapyrrole macrocycles, having eight pyrrole rings of similar chemical shifts. To overcome this problem, an INADEQUATE type of experiment using a POST C7 symmetry-based approach is applied to selectively isotope-labeled bacterial RC of Rhodobacter (R.) sphaeroides wild type (WT). We, therefore, were able to distinguish unresolved sites of the macromolecular dimer. The obtained chemical-shift pattern is in-line with a concentric assembly of negative charge within the common center of the Special Pair supermolecule in the electronic ground state. © 2017 The American Society of Photobiology.
Pauson-Khand reactions in a photochemical flow microreactor.
Asano, Keisuke; Uesugi, Yuki; Yoshida, Jun-ichi
2013-05-17
Pauson-Khand reactions were achieved at ambient temperature without any additive using a photochemical flow microreactor. The efficiency of the reaction was better than that in a conventional batch reactor, and the reaction could be operated continuously for 1 h.
ERIC Educational Resources Information Center
Rao, G. Nageswara; Janardhana, Chelli; Ramanathan, V.; Rajesh, T.; Kumar, P. Harish
2006-01-01
Chemical reactions induced by light have been utilized for synthesizing highly strained, thermodynamically unstable compounds, which are inaccessible through non-photochemical methods. Photochemical cycloaddition reactions, especially those leading to the formation of four-membered rings, constitute a convenient route to compounds that are…
Yago, Tomoaki; Wakasa, Masanobu
2015-04-21
A practical method to calculate time evolutions of magnetic field effects (MFEs) on photochemical reactions involving radical pairs is developed on the basis of the theory of the chemically induced dynamic spin polarization proposed by Pedersen and Freed. In theory, the stochastic Liouville equation (SLE), including the spin Hamiltonian, diffusion motions of the radical pair, chemical reactions, and spin relaxations, is solved by using the Laplace and the inverse Laplace transformation technique. In our practical approach, time evolutions of the MFEs are successfully calculated by applying the Miller-Guy method instead of the final value theorem to the inverse Laplace transformation process. Especially, the SLE calculations are completed in a short time when the radical pair dynamics can be described by the chemical kinetics consisting of diffusions, reactions and spin relaxations. The SLE analysis with a short calculation time enables one to examine the various parameter sets for fitting the experimental date. Our study demonstrates that simultaneous fitting of the time evolution of the MFE and of the magnetic field dependence of the MFE provides valuable information on the diffusion motions of the radical pairs in nano-structured materials such as micelles where the lifetimes of radical pairs are longer than hundreds of nano-seconds and the magnetic field dependence of the spin relaxations play a major role for the generation of the MFE.
Zhang, Jianbin; Zhang, Pengyan; Zhang, Zhengfu; Wei, Xionghui
2009-05-07
Magnesium tetraphenylporphyrin (MgTPP) was synthesized from meso-tetraphenylporphyrin (H(2)TPP) in N,N-dimethylformamide (DMF). The photochemical properties of MgTPP in the presence of oxygen were investigated in dichloromethane (CH(2)Cl(2)) by conventional fluorescence, UV-vis, (1)H NMR, MALDI-TOF-MS, FTIR, and XPS spectroscopic techniques. Spectral analyses showed that under irradiation, MgTPP molecules reacted with O(2) molecules, and a stable 1:1 adduct was produced. During the photochemical reaction process, one oxygen molecule was bound to the pyrrolenine nitrogens in the MgTPP molecule, and the characteristic N-O bonds were identified using the FTIR and XPS techniques. The kinetics of the photochemical reaction of MgTPP with O(2) has been studied in an oxygen-saturated solution. Under irradiation conditions, the experimental rate follows a pseudo-first-order reaction for MgTPP, having a half-life from 40 to 130 min under various irradiation intensities. The kinetic rate constant of photochemical reaction of MgTPP with O(2) showed a linear dependence.
Thermodynamics and mechanics of photochemcially reacting polymers
NASA Astrophysics Data System (ADS)
Long, Rong; Qi, H. Jerry; Dunn, Martin L.
2013-11-01
We develop a thermodynamics and mechanics theory for polymers that when irradiated with light, undergo photochemical reactions that alter their macromolecular structure, e.g., by bond breaking and/or reformation, and in turn affect their mechanical and physical behavior. This emerging class of highly-engineered active materials shows great promise for myriad applications and is a subset of a broader class of polymers with covalent bonds that can be dynamically tuned with various environmental stimuli. We formulate a general thermodynamic and kinetic framework to model the complex photochemical-thermal-mechanical coupling in these materials. Our theory considers the behavior of a polymer that is subjected to the combination of mechanical and thermal loading while simultaneously irradiated by light with multiple frequency components and directions. We introduce an approach to model the photochemical reactions that can change the network topology, resulting chemical species transport, heat conduction and finite deformation. We describe the interaction of the material with light via a radiometric description and show how it can be linked to a full electromagnetic treatment when appropriate and if desired. Our approach is sufficiently general to permit the modeling of various materials that operate via different photochemical reaction mechanisms. After formulating the general theory, we specialize it to a polymer that when irradiated with light undergoes a series of photochemical reactions that cause chain scission and reformation which continuously rearrange the polymer network into a stress-free configuration. Based on the operant physical mechanisms we develop a constitutive model using a polymer chain decomposition and evolution approach to track the molecular structure changes during simultaneous irradiation and mechanical loading. In the special case of isothermal conditions with monochromatic and unidirectional irradiation, we recover a previous model based on intuitive ad-hoc assumptions and thus put it on strong thermodynamic footing. Finally we use our model to simulate the behavior of a polymer that is biaxially stretched and then irradiated with light from one side. We simulate the process and emphasize the spontaneous bending that occurs due to inhomogeneous photoinduced stress relaxation. From our theory, we obtain an analytical expression of a characteristic time for photo-induced stress relaxation in terms of the dominating system parameters.
Degradation of artificial sweeteners via direct and indirect photochemical reactions.
Perkola, Noora; Vaalgamaa, Sanna; Jernberg, Joonas; Vähätalo, Anssi V
2016-07-01
We studied the direct and indirect photochemical reactivity of artificial sweeteners acesulfame, saccharin, cyclamic acid and sucralose in environm entally relevant dilute aqueous solutions. Aqueous solutions of sweeteners were irradiated with simulated solar radiation (>290 nm; 96 and 168 h) or ultraviolet radiation (UVR; up to 24 h) for assessing photochemical reactions in surface waters or in water treatment, respectively. The sweeteners were dissolved in deionised water for examination of direct photochemical reactions. Direct photochemical reactions degraded all sweeteners under UVR but only acesulfame under simulated solar radiation. Acesulfame was degraded over three orders of magnitude faster than the other sweeteners. For examining indirect photochemical reactions, the sweeteners were dissolved in surface waters with indigenous dissolved organic matter or irradiated with aqueous solutions of nitrate (1 mg N/L) and ferric iron (2.8 mg Fe/L) introduced as sensitizers. Iron enhanced the photodegradation rates but nitrate and dissolved organic matter did not. UVR transformed acesulfame into at least three products: iso-acesulfame, hydroxylated acesulfame and hydroxypropanyl sulfate. Photolytic half-life was one year for acesulfame and more than several years for the other sweeteners in surface waters under solar radiation. Our study shows that the photochemical reactivity of commonly used artificial sweeteners is variable: acesulfame may be sensitive to photodegradation in surface waters, while saccharin, cyclamic acid and sucralose degrade very slowly even under the energetic UVR commonly used in water treatment.
Enantioselective catalysis of photochemical reactions.
Brimioulle, Richard; Lenhart, Dominik; Maturi, Mark M; Bach, Thorsten
2015-03-23
The nature of the excited state renders the development of chiral catalysts for enantioselective photochemical reactions a considerable challenge. The absorption of a 400 nm photon corresponds to an energy uptake of approximately 300 kJ mol(-1) . Given the large distance to the ground state, innovative concepts are required to open reaction pathways that selectively lead to a single enantiomer of the desired product. This Review outlines the two major concepts of homogenously catalyzed enantioselective processes. The first part deals with chiral photocatalysts, which intervene in the photochemical key step and induce an asymmetric induction in this step. In the second part, reactions are presented in which the photochemical excitation is mediated by an achiral photocatalyst and the transfer of chirality is ensured by a second chiral catalyst (dual catalysis). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Autonomous cycling between excitatory and inhibitory coupling in photosensitive chemical oscillators
NASA Astrophysics Data System (ADS)
Yengi, Desmond; Tinsley, Mark R.; Showalter, Kenneth
2018-04-01
Photochemically coupled Belousov-Zhabotinsky micro-oscillators are studied in experiments and simulations. The photosensitive oscillators exhibit excitatory or inhibitory coupling depending on the surrounding reaction mixture composition, which can be systematically varied. In-phase or out-of-phase synchronization is observed with predominantly excitatory or inhibitory coupling, respectively, and complex frequency cycling between excitatory and inhibitory coupling is found between these extremes. The dynamical behavior is characterized in terms of the corresponding phase response curves, and a map representation of the dynamics is presented.
Photochemically Switching Diamidocarbene Spin States Leads to Reversible Büchner Ring Expansions.
Perera, Tharushi A; Reinheimer, Eric W; Hudnall, Todd W
2017-10-18
The discovery of thermal and photochemical control by Woodward and Hoffmann revolutionized how we understand chemical reactivity. Similarly, we now describe the first example of a carbene that exhibits differing thermal and photochemical reactivity. When a singlet ground-state N,N'-diamidocarbene 1 was photolyzed at 380 nm, excitation to a triplet state was observed. The triplet-state electronic structure was characteristic of the expected biradical σ 1 p π 1 spin configuration according to a combination of spectroscopic and computational methods. Surprisingly, the triplet state of 1 was found to engage a series of arenes in thermally reversible Büchner ring expansion reactions, marking the first examples where both cyclopropanation and ring expansion of arenes were rendered reversible. Not only are these photochemical reactions different from the known thermal chemistry of 1, but the reversibility enabled us to perform the first examples of photochemically induced arene exchange/expansion reactions at a single carbon center.
Photochemical Effects of Sunlight
Daniels, Farrington
1972-01-01
The importance of sunlight in bringing about not only photosynthesis in plants, but also other photochemical effects, is reviewed. More effort should be devoted to photochemical storage of the sun's energy without the living plant. There is no theoretical reason to believe that such reactions are impossible. Ground rules for searching for suitable solar photochemical reactions are given, and a few attempts are described, but nothing successful has yet been found. Future possibilities are suggested. Photogalvanic cells which convert sunlight into electricity deserve further research. Eugene Rabinowitch has been an active pioneer in these fields. PMID:5037333
Photochemical effects of sunlight.
Daniels, F
1972-07-01
The importance of sunlight in bringing about not only photosynthesis in plants, but also other photochemical effects, is reviewed. More effort should be devoted to photochemical storage of the sun's energy without the living plant. There is no theoretical reason to believe that such reactions are impossible. Ground rules for searching for suitable solar photochemical reactions are given, and a few attempts are described, but nothing successful has yet been found. Future possibilities are suggested. Photogalvanic cells which convert sunlight into electricity deserve further research. Eugene Rabinowitch has been an active pioneer in these fields.
Iminium and enamine catalysis in enantioselective photochemical reactions.
Zou, You-Quan; Hörmann, Fabian M; Bach, Thorsten
2018-01-22
Although enantioselective catalysis under thermal conditions has been well established over the last few decades, the enantioselective catalysis of photochemical reactions is still a challenging task resulting from the complex enantiotopic face differentiation in the photoexcited state. Recently, remarkable achievements have been reported by a synergistic combination of organocatalysis and photocatalysis, which have led to the expedient construction of a diverse range of enantioenriched molecules which are generally not easily accessible under thermal conditions. In this tutorial review, we summarize and highlight the most significant advances in iminium and enamine catalysis of enantioselective photochemical reactions, with an emphasis on catalytic modes and reaction types.
Iminium and enamine catalysis in enantioselective photochemical reactions
Hörmann, Fabian M.
2018-01-01
Although enantioselective catalysis under thermal conditions has been well established over the last few decades, the enantioselective catalysis of photochemical reactions is still a challenging task resulting from the complex enantiotopic face differentiation in the photoexcited state. Recently, remarkable achievements have been reported by a synergistic combination of organocatalysis and photocatalysis, which have led to the expedient construction of a diverse range of enantioenriched molecules which are generally not easily accessible under thermal conditions. In this tutorial review, we summarize and highlight the most significant advances in iminium and enamine catalysis of enantioselective photochemical reactions, with an emphasis on catalytic modes and reaction types. PMID:29155908
Mosquera, Angeles; Férnandez, M Isabel; Canle Lopez, Moisés; Pérez Sestelo, José; Sarandeses, Luis A
2014-10-27
The synthesis and photochemical study of novel nonsymmetrical 1,2-dithienylethenes (DTEs) with a maleimide bridge have been carried out. The synthetic approach to the DTEs was based on successive selective palladium-catalyzed cross-coupling reactions of 5-susbtituted-2-methyl-3-thiophenyl indium reagents with 3,4-dichloromaleimides. The required organoindium reagents were prepared from 2-methyl-3,5-dibromothiophene by a selective (C-5) coupling reaction with triorganoindium compounds (R3 In) and subsequent metal-halogen exchange. The coupling reactions usually gave good yields and have a high atom economy with substoichiometric amounts of R3 In. The results of photochemical studies show that these novel dithienylmaleimides undergo a photocyclization reaction upon irradiation in the UV region and a photocycloreversion after excitation in the visible region, thus they can be used as photochemical switches. ON-OFF operations can be repeated in successive cycles without appreciable loss of effectiveness in the process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photochemical Creation of Fluorescent Quantum Defects in Semiconducting Carbon Nanotube Hosts.
Wu, Xiaojian; Kim, Mijin; Kwon, Hyejin; Wang, YuHuang
2018-01-15
Quantum defects are an emerging class of synthetic single-photon emitters that hold vast potential for near-infrared imaging, chemical sensing, materials engineering, and quantum information processing. Herein, we show that it is possible to optically direct the synthetic creation of molecularly tunable fluorescent quantum defects in semiconducting single-walled carbon nanotube hosts through photochemical reactions. By exciting the host semiconductor with light that resonates with its electronic transition, we find that halide-containing aryl groups can covalently bond to the sp 2 carbon lattice. The introduced quantum defects generate bright photoluminescence that allows tracking of the reaction progress in situ. We show that the reaction is independent of temperature but correlates strongly with the photon energy used to drive the reaction, suggesting a photochemical mechanism rather than photothermal effects. This type of photochemical reactions opens the possibility to control the synthesis of fluorescent quantum defects using light and may enable lithographic patterning of quantum emitters with electronic and molecular precision. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Barter, Laura M. C.; Durrant, James R.; Klug, David R.
2003-01-01
Light-induced charge separation is the primary photochemical event of photosynthesis. Efficient charge separation in photosynthetic reaction centers requires the balancing of electron and excitation energy transfer processes, and in Photosystem II (PSII), these processes are particularly closely entangled. Calculations that treat the cofactors of the PSII reaction center as a supermolecular complex allow energy and electron transfer reactions to be described in a unified way. This calculational approach is shown to be in good agreement with experimentally observed energy and electron transfer dynamics. This supermolecular view also correctly predicts the effect of changing the redox potentials of cofactors by site-directed mutagenesis, thus providing a unified and quantitative structure–function relationship for the PSII reaction center. PMID:12538865
Criegee intermediate-hydrogen sulfide chemistry at the air/water interface.
Kumar, Manoj; Zhong, Jie; Francisco, Joseph S; Zeng, Xiao C
2017-08-01
We carry out Born-Oppenheimer molecular dynamic simulations to show that the reaction between the smallest Criegee intermediate, CH 2 OO, and hydrogen sulfide (H 2 S) at the air/water interface can be observed within few picoseconds. The reaction follows both concerted and stepwise mechanisms with former being the dominant reaction pathway. The concerted reaction proceeds with or without the involvement of one or two nearby water molecules. An important implication of the simulation results is that the Criegee-H 2 S reaction can provide a novel non-photochemical pathway for the formation of a C-S linkage in clouds and could be a new oxidation pathway for H 2 S in terrestrial, geothermal and volcanic regions.
Molotokaite, Egle; Remelli, William; Casazza, Anna Paola; Zucchelli, Giuseppe; Polli, Dario; Cerullo, Giulio; Santabarbara, Stefano
2017-10-26
The dynamics of excited state equilibration and primary photochemical trapping have been investigated in the photosystem I-light harvesting complex I isolated from spinach, by the complementary time-resolved fluorescence and transient absorption approaches. The combined analysis of the experimental data indicates that the excited state decay is described by lifetimes in the ranges of 12-16 ps, 32-36 ps, and 64-77 ps, for both detection methods, whereas faster components, having lifetimes of 550-780 fs and 4.2-5.2 ps, are resolved only by transient absorption. A unified model capable of describing both the fluorescence and the absorption dynamics has been developed. From this model it appears that the majority of excited state equilibration between the bulk of the antenna pigments and the reaction center occurs in less than 2 ps, that the primary charge separated state is populated in ∼4 ps, and that the charge stabilization by electron transfer is completed in ∼70 ps. Energy equilibration dynamics associated with the long wavelength absorbing/emitting forms harbored by the PSI external antenna are also characterized by a time mean lifetime of ∼75 ps, thus overlapping with radical pair charge stabilization reactions. Even in the presence of a kinetic bottleneck for energy equilibration, the excited state dynamics are shown to be principally trap-limited. However, direct excitation of the low energy chlorophyll forms is predicted to lengthen significantly (∼2-folds) the average trapping time.
PHOTOCHEMICAL REACTIONS AMONG FORMALDEHYDE, CHLORINE, AND NITROGEN DIOXIDE IN AIR
Photochemical reactions among chlorine, nitrogen dioxide, and formaldehyde were studied, using parts-per-million concentrations in 1 atm of air. The reactant mixtures were irradiated by ultraviolet fluorescent lamps and simultaneously analyzed by the Fourier transform infrared te...
A Simple Parallel Photochemical Reactor for Photodecomposition Studies
ERIC Educational Resources Information Center
Xiaobo Chen; Halasz, Sarah M.; Giles, Eric C.; Mankus, Jessica V.; Johnson, Joseph C.; Burda, Clemens
2006-01-01
A simple and useful parallel photochemical reactor intended to study the photodecomposition of dyes using semiconductor photocatalysis is presented. The photochemical reactions are followed through time-dependent changes in the ground-state absorption spectra of the dyes.
Surface retention and photochemical reactivity of the diphenylether herbicide oxyfluorfen.
Scrano, Laura; Bufo, Sabino A; Cataldi, Tommaso R I; Albanis, Triantafyllos A
2004-01-01
The photochemical behavior of oxyfluorfen [2-chloro-1-(3-etoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene] on two Greek soils was investigated. Soils were sampled from Nea Malgara and Preveza regions, characterized by a different organic matter content. Soils were spiked with the diphenyl-ether herbicide and irradiation experiments were performed either in the laboratory with a solar simulator (xenon lamp) or outside, under natural sunlight irradiation; other soil samples were kept in the dark to control the retention reaction. Kinetic parameters of both retention and photochemical reactions were calculated using zero-, first- and second- (Langmuir-Hinshelwood) order equations, and best fit was checked through statistical analysis. The soil behaviors were qualitatively similar but quantitatively different, with the soil sampled from the Nea Malgara region much more sorbent as compared with Preveza soil. All studied reactions followed second-order kinetics and photochemical reactions were influenced by retaining capability of the soils. The contributions of the photochemical processes to the global dissipation rates were also calculated. Two main metabolites were identified as 2-chloro-1-(3-ethoxy-4-hydroxyphenoxy)-4-(trifluoromethyl)benzene and 2-chloro-1- (3-hydroxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene.
NASA Technical Reports Server (NTRS)
Osif, T. L.
1976-01-01
An experimental, laboratory study of the various photochemical reactions that can occur in the mesosphere and stratosphere is presented. N2O was photolyzed at 2139 A in the presence of CH3OH and CO. The O(id) produced in the photolysis reacted with CH3OH to produce OH radicals, and thus the reactions of both O(id) and OH were able to be studied. Also considered was the oxidation of the HCO radical. Mixtures of Cl2, O2, H2CO, and sometimes N2 or He were irradiated at 3660 A at several temperatures to photodecompose the Cl2. The photochemical oxidation of formaldehyde was studied as follows: formaldehyde in the presence of N2 and/or O2 (usually dry air) was photolyzed with a medium pressure Hg lamp used in conjunction with various filters which transmit different relative amounts of Hg lines from 2894 A to 3660 A. Results are presented and discussed, along with a description of experimental procedures and apparatus, and chemical reaction kinetics.
Evaluation of Data Used for Modelling the Stratosphere of Saturn
NASA Astrophysics Data System (ADS)
Armstrong, Eleanor Sophie; Irwin, Patrick G. J.; Moses, Julianne I.
2015-11-01
Planetary atmospheres are modeled through the use of a photochemical and kinetic reaction scheme constructed from experimentally and theoretically determined rate coefficients, photoabsorption cross sections and branching ratios for the molecules described within them. The KINETICS architecture has previously been developed to model planetary atmospheres and is applied here to Saturn’s stratosphere. We consider the pathways that comprise the reaction scheme of a current model, and update the reaction scheme according the to findings in a literature investigation. We evaluate contemporary photochemical literature, studying recent data sets of cross-sections and branching ratios for a number of hydrocarbons used in the photochemical scheme of Model C of KINETICS. In particular evaluation of new photodissociation branching ratios for CH4, C2H2, C2H4, C3H3, C3H5 and C4H2, and new cross-sectional data for C2H2, C2H4, C2H6, C3H3, C4H2, C6H2 and C8H2 are considered. By evaluating the techniques used and data sets obtained, a new reaction scheme selection was drawn up. These data are then used within the preferred reaction scheme of the thesis and applied to the KINETICS atmospheric model to produce a model of the stratosphere of Saturn in a steady state. A total output of the preferred reaction scheme is presented, and the data is compared both with the previous reaction scheme and with data from the Cassini spacecraft in orbit around Saturn.One of the key findings of this work is that there is significant change in the model’s output as a result of temperature dependent data determination. Although only shown within the changes to the photochemical portion of the preferred reaction scheme, it is suggested that an equally important temperature dependence will be exhibited in the kinetic section of the reaction scheme. The photochemical model output is shown to be highly dependent on the preferred reaction scheme used within it by this thesis. The importance of correct and temperature-appropriate photochemical and kinetic data for the atmosphere under examination is emphasised as a consequence.
Spectroscopy and reactions of molecules important in chemical evolution
NASA Technical Reports Server (NTRS)
Becker, R. S.
1974-01-01
The research includes: (1) hot hydrogen atom reactions in terms of the nature of products produced, mechanism of the reactions and the implication and application of such reactions for molecules existing in interstellar clouds, in planetary atmospheres, and in chemical evolution; (2) photochemical reactions that can lead to molecules important in chemical evolution, interstellar clouds and as constituents in planetary atmospheres; and (3) spectroscopic and theoretical properties of biomolecules and their precursors and where possible, use these to understand their photochemical behavior.
Upper atmosphere research: Reaction rate and optical measurements
NASA Technical Reports Server (NTRS)
Stief, L. J.; Allen, J. E., Jr.; Nava, D. F.; Payne, W. A., Jr.
1990-01-01
The objective is to provide photochemical, kinetic, and spectroscopic information necessary for photochemical models of the Earth's upper atmosphere and to examine reactions or reactants not presently in the models to either confirm the correctness of their exclusion or provide evidence to justify future inclusion in the models. New initiatives are being taken in technique development (many of them laser based) and in the application of established techniques to address gaps in the photochemical/kinetic data base, as well as to provide increasingly reliable information.
Onoue, Satomi; Takahashi, Haruki; Kawabata, Yohei; Seto, Yoshiki; Hatanaka, Junya; Timmermann, Barbara; Yamada, Shizuo
2010-04-01
Considerable interest has been focused on curcumin due to its use to treat a wide variety of disorders, however, the therapeutic potential of curcumin could often be limited by its poor solubility, bioavailability, and photostability. To overcome these drawbacks, efficacious formulations of curcumin, including nanocrystal solid dispersion (CSD-Cur), amorphous solid dispersion (ASD-Cur), and nanoemulsion (NE-Cur), were designed with the aim of improving physicochemical and pharmacokinetic properties. Physicochemical properties of the prepared formulations were characterized by scanning/transmission electron microscope for morphological analysis, laser diffraction, and dynamic light scattering for particle size analysis, and polarized light microscope, powder X-ray diffraction and differential scanning calorimetry for crystallinity assessment. In dissolution tests, all curcumin formulations exhibited marked improvement in the dissolution behavior when compared with crystalline curcumin. Significant improvement in pharmacokinetic behavior was observed in the newly developed formulations, as evidenced by 12- (ASD-Cur), 16- (CSD-Cur), and 9-fold (NE-Cur) increase of oral bioavailability. Upon photochemical characterization, curcumin was found to be photoreactive and photodegradable in the solution state, possibly via type 2 photochemical reaction, whereas high photochemical stability was seen in the solid formulations, especially CSD-Cur. On the basis of these observations, taken together with dissolution and pharmacokinetic behaviors, CSD strategy would be efficacious to enhance bioavailability of curcumin with high photochemical stability. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
NASA Astrophysics Data System (ADS)
Ohta, Ayumi; Kobayashi, Osamu; Danielache, Sebastian O.; Nanbu, Shinkoh
2017-03-01
The ultra-fast photoisomerization reactions between 1,3-cyclohexadiene (CHD) and 1,3,5-cis-hexatriene (HT) in both hexane and ethanol solvents were revealed by nonadiabatic ab initio molecular dynamics (AI-MD) with a particle-mesh Ewald summation method and our Own N-layered Integrated molecular Orbital and molecular Mechanics model (PME-ONIOM) scheme. Zhu-Nakamura version trajectory surface hopping method (ZN-TSH) was employed to treat the ultra-fast nonadiabatic decaying process. The results for hexane and ethanol simulations reasonably agree with experimental data. The high nonpolar-nonpolar affinity between CHD and the solvent was observed in hexane solvent, which definitely affected the excited state lifetimes, the product branching ratio of CHD:HT, and solute (CHD) dynamics. In ethanol solvent, however, the CHD solute was isomerized in the solvent cage caused by the first solvation shell. The photochemical dynamics in ethanol solvent results in the similar property to the process appeared in vacuo (isolated CHD dynamics).
Polycyclic aromatic hydrocarbons - Primitive pigment systems in the prebiotic environment
NASA Technical Reports Server (NTRS)
Deamer, D. W.
1992-01-01
The chemical evolution of meteoritic organics in the primitive earth is examined experimentally with attention given to the photochemical effects of hydrocarbon/water mixtures. Also addressed are the generation of amphiphilic products by photochemical reactions and the transduction of light energy into potentially useful forms. Polycyclic aromatic hydrocarbons (PAHs) absorb light and exist in carbonaceous chondrites; PAHs are therefore examined as primitive pigments by means of salt solutions with pyrene, fluoranthene, and pyrene derivatives with hexadecane. The hexadecane undergoes photochemical oxidation and yields long-chain amphiphiles with oxygen supplied by water, and acid pH shifts also occur. PAHs are also tested in lipid bilayer membranes to examine light-energy transduction. Protons are found to accumulate within the membrane-bounded volume to form proton gradients, and this reaction is theorized to be a good model of primitive photochemical reactions that related to the transduction of light energy into useable forms.
Konieczny, Krzysztof; Bąkowicz, Julia; Turowska-Tyrk, Ilona
2015-05-01
Contrary to the known 4-(2,4,6-triisopropylbenzoyl)benzoate salts, di-μ-aqua-bis[tetraaquasodium(I)] bis[4-(2,4,6-triisopropylbenzoyl)benzoate] dihydrate, [Na2(H2O)10](C23H27O3)2·2H2O, (1), does not undergo a photochemical Norrish-Yang reaction in the crystalline state. In order to explain this photochemical inactivity, the intermolecular interactions were analyzed by means of the Hirshfeld surface and intramolecular geometrical parameters describing the possibility of a Norrish-Yang reaction were calculated. The reasons for the behaviour of the title salt are similar crystalline environments for both the o-isopropyl groups in the anion, resulting in similar geometrical parameters and orientations, and that these interaction distances differ significantly from those found in salts where the photochemical reaction occurs.
A renewable amine for photochemical reduction of CO(2).
Richardson, Robert D; Holland, Edward J; Carpenter, Barry K
2011-04-01
Photochemical reduction of CO₂ (to produce formic acid) can be seen both as a method to produce a transportable hydrogen-based fuel and also to reduce levels of CO₂ in the atmosphere. However, an often overlooked necessity for photochemical CO₂ reduction is the need for a sacrificial electron donor, usually a tertiary amine. Here, we describe a new strategy for coupling the photochemical reduction of CO₂ to photochemical water splitting, and illustrate this with a prototype example. Instead of seeking to eliminate the use of an external reducing agent altogether, our alternative strategy makes the reducing agent recyclable. This has two potential advantages over the direct coupling of CO₂ reduction and water oxidation. First, it allows the two redox reactions to be carried out with existing chemistry, and second, it permits these reactions to be conducted under mutually incompatible conditions.
Zhang, Heming; Wei, Xiaoxuan; Song, Xuedan; Shah, Shaheen; Chen, Jingwen; Liu, Jianhui; Hao, Ce; Chen, Zhongfang
2018-01-01
For organic pollutants, photodegradation, as a major abiotic elimination process and of great importance to the environmental fate and risk, involves rather complicated physical and chemical processes of excited molecules. Herein, we systematically studied the photophysical and photochemical processes of a widely used antibiotic, namely sulfapyridine. By means of density functional theory (DFT) computations, we examined the rate constants and the competition of both photophysical and photochemical processes, elucidated the photochemical reaction mechanism, calculated reaction quantum yield (Φ) based on both photophysical and photochemical processes, and subsequently estimated the photodegradation rate constant. We further conducted photolysis experiments to measure the photodegradation rate constant of sulfapyridine. Our computations showed that sulfapyridine at the lowest excited singlet state (S 1 ) mainly undergoes internal conversion to its ground state, and is difficult to transfer to the lowest excited triplet states (T 1 ) via intersystem crossing (ISC) and emit fluorescence. In T 1 state, compared with phosphorescence emission and ISC, chemical reaction is much easier to initiate. Encouragingly, the theoretically predicted photodegradation rate constant is close to the experimentally observed value, indicating that quantum chemistry computation is powerful enough to study photodegradation involving ultra-fast photophysical and photochemical processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Klem, Michael T; Mosolf, Jesse; Young, Mark; Douglas, Trevor
2008-04-07
The Fe storage protein ferritin was used as a size-constrained reaction vessel for the photoreduction and reoxidation of complexed Eu, Fe, and Ti precursors for the formation of oxyhydroxide nanoparticles. The resultant materials were characterized by dynamic light scattering, gel electrophoresis, UV-vis spectroscopy, and transmission electron microscopy. The photoreduction and reoxidation process is inspired by biological sequestration mechanisms observed in some marine siderophore systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bursten, B.E.; McKee, S.D.; Platz, M.S.
1989-04-26
Cp{sub 2}Fe{sub 2}(CO){sub 2}({mu}-CO){sub 2} (1: Cp = {eta}{sup 5}-C{sub 5}H{sub 5}) has a rich and diverse photochemistry, as evidenced by the plethora of synthetic and mechanistic studies of it in the literature. Early photochemical studies of 1 have demonstrated homolysis to the radical Cp(CO){sub 2}Fe{sup {sm bullet}} (2). Recent work on metal dimers indicates that a dinuclear species is formed concomitantly. Tyler, Schmidt, and Gray (TSG) first proposed that irradiation of 1 leads to the dinuclear species 3, which they suggested was the intermediate responsible for phosphine substitution. Research by other individuals has indicated that the substitutionally active speciesmore » is the CO-loss photoproduct CpFe({mu}-CO){sub 3}FeCp (4). The authors interest in the photochemistry of 1 stemmed from their theoretical studies on piano-stool dimers. One reaction of particular concern is the photochemical insertion of alkynes into 1 to yield dimetallacyclopentenone 5. On the basis of MO calculations, the authors proposed a possible LUMO-controlled mechanism for this reaction that involved alkyne addition to the TSG transition state 3, followed by CO loss. In this contribution, they report initial experimental studies which demonstrate that 4 is the photochemical intermediate responsible for this reaction. They consider this reaction to be a paradigm for photochemical substitution and insertion reaction in such systems.« less
NASA Technical Reports Server (NTRS)
Ko, M. K. W.; Rodriquez, J. M.; Hu, W.; Danilin, M. Y.; Shia, R.-L.
1998-01-01
The proposed work utilized Upper Atmosphere Research Satellite (UARS) measurements of short-lived and long-lived species, in conjunction with existing photochemical "box" models, trajectory models, and two-dimensional global models, to elucidate outstanding questions in our understanding of photochemical and dynamical mechanisms in the stratosphere. Particular emphasis was given to arriving at the best possible understanding of the chemical and dynamical contributions to the stratospheric ozone budget. Such understanding will increase confidence in the simulations carried out by assessment models.
NASA Technical Reports Server (NTRS)
Ko, Malcolm K. W.; Rodriquez, Jose M.; Hu, Wenjie; Danilin, Michael Y.; Shia, Run-Li
1998-01-01
The proposed work utilized Upper Atmosphere Research Satellite (UARS) measurements of short-lived and long-lived species, in conjunction with existing photochemical "box" models, trajectory models, and two-dimensional global models, to elucidate outstanding questions in our understanding of photochemical and dynamical mechanisms in the stratosphere. Particular emphasis was given to arriving at the best possible understanding of the chemical and dynamical contribution to the stratospheric ozone budget. Such understanding will increase confidence in the simulations carried out by assessment models.
Increased Sensitivity of HIV-1 p24 ELISA Using a Photochemical Signal Amplification System.
Bystryak, Simon; Santockyte, Rasa
2015-10-01
In this study we describe a photochemical signal amplification method (PSAM) for increasing of the sensitivity of enzyme-linked immunosorbent assay (ELISA) for determination of HIV-1 p24 antigen. The photochemical signal amplification method is based on an autocatalytic photochemical reaction of a horseradish peroxidase (HRP) substrate, orthophenylenediamine (OPD). To compare the performance of PSAM-boosted ELISA with a conventional colorimetric ELISA for determination of HIV-1 p24 antigen we employed a PerkinElmer HIV-1 p24 ELISA kit, using conventional ELISA alongside ELISA + PSAM. In the present study, we show that PSAM technology allows one to increase the analytical sensitivity and dynamic range of a commercial HIV-1 p24 ELISA kit, with and without immune-complex disruption, by a factor of approximately 40-fold. ELISA + PSAM is compatible with commercially available microtiter plate readers, requires only an inexpensive illumination device, and the PSAM amplification step takes no longer than 15 min. This method can be used for both commercially available and in-house ELISA tests, and has the advantage of being considerably simpler and less costly than alternative signal amplification methods. This method can be used for both commercially available and in-house ELISA tests, and has the advantage of being considerably simpler and less costly than alternative signal amplification methods.
15N photo-CIDNP MAS NMR analysis of reaction centers of Chloracidobacterium thermophilum.
Zill, Jeremias C; He, Zhihui; Tank, Marcus; Ferlez, Bryan H; Canniffe, Daniel P; Lahav, Yigal; Bellstedt, Peter; Alia, A; Schapiro, Igor; Golbeck, John H; Bryant, Donald A; Matysik, Jörg
2018-03-30
Photochemically induced dynamic nuclear polarization (photo-CIDNP) has been observed in the homodimeric, type-1 photochemical reaction centers (RCs) of the acidobacterium, Chloracidobacterium (Cab.) thermophilum, by 15 N magic-angle spinning (MAS) solid-state NMR under continuous white-light illumination. Three light-induced emissive (negative) signals are detected. In the RCs of Cab. thermophilum, three types of (bacterio)chlorophylls have previously been identified: bacteriochlorophyll a (BChl a), chlorophyll a (Chl a), and Zn-bacteriochlorophyll a' (Zn-BChl a') (Tsukatani et al. in J Biol Chem 287:5720-5732, 2012). Based upon experimental and quantum chemical 15 N NMR data, we assign the observed signals to a Chl a cofactor. We exclude Zn-BChl because of its measured spectroscopic properties. We conclude that Chl a is the primary electron acceptor, which implies that the primary donor is most likely Zn-BChl a'. Chl a and 8 1 -OH Chl a have been shown to be the primary electron acceptors in green sulfur bacteria and heliobacteria, respectively, and thus a Chl a molecule serves this role in all known homodimeric type-1 RCs.
ERIC Educational Resources Information Center
Cooke, Jason; Berry, David E.; Fawkes, Kelli L.
2007-01-01
The photochemical synthesis and subsequent ligand exchange reactions of Ru(CO)[subscript 4] (eta[superscript2]-alkene) compounds has provided a novel experiment for upper-level inorganic chemistry laboratory courses. The experiment is designed to provide a system in which the changing electronic properties of the alkene ligands could be easily…
Fabrication of refractive index distributions in polymer using a photochemical reaction
NASA Astrophysics Data System (ADS)
Kada, Takeshi; Obara, Atsushi; Watanabe, Toshiyuki; Miyata, Seizo; Liang, Chuan Xin; Machida, Hideaki; Kiso, Koichi
2000-01-01
We demonstrate that a photochemical reaction can create various distributions of refractive index in polymer. When the polymer containing a photochemically active material is irradiated by UV light, the photochemical reaction which breaks the π-conjugated system in the material and decreases its linear polarizability can reduce refractive index of the polymer. We prepared a PMMA film added DMAPN ((4-N,N-dimethylaminophenyl)-N'-phenylnitrone) with a rate of 23 wt % by use of spin coating. Electronic structural change of DMAPN and refractive indices of the film before and after UV irradiation were evaluated by UV absorption spectra and m-line method, respectively. The UV irradiation decreased λmax at 380 nm in the absorption spectra, which is attributed to nitrone, and the refractive indices exponentially with irradiation time. The change of refractive indices reached 0.028. The refractive index profile upon depth of the film was investigated by measuring refractive indices of stacked DMAPN/PMMA films. When UV with a power of 10.7 mW/cm2 irradiated upon three stacked DMAPN/PMMA films for 35 s, variation of the refractive index change showed a quadratic profile. The refractive index profile with various irradiation time can be accounted with the combination of the chemical kinetics with the steady state approximation and Lambert-Beer's law. Thus, the photochemical reaction can be used to control the refractive index distribution in polymer.
Reciprocity theory of homogeneous reactions
NASA Astrophysics Data System (ADS)
Agbormbai, Adolf A.
1990-03-01
The reciprocity formalism is applied to the homogeneous gaseous reactions in which the structure of the participating molecules changes upon collision with one another, resulting in a change in the composition of the gas. The approach is applied to various classes of dissociation, recombination, rearrangement, ionizing, and photochemical reactions. It is shown that for the principle of reciprocity to be satisfied it is necessary that all chemical reactions exist in complementary pairs which consist of the forward and backward reactions. The backward reaction may be described by either the reverse or inverse process. The forward and backward processes must satisfy the same reciprocity equation. Because the number of dynamical variables is usually unbalanced on both sides of a chemical equation, it is necessary that this balance be established by including as many of the dynamical variables as needed before the reciprocity equation can be formulated. Statistical transformation models of the reactions are formulated. The models are classified under the titles free exchange, restricted exchange and simplified restricted exchange. The special equations for the forward and backward processes are obtained. The models are consistent with the H theorem and Le Chatelier's principle. The models are also formulated in the context of the direct simulation Monte Carlo method.
Hentschel, Carsten; Fontein, Florian; Stegemann, Linda; Hoeppener, Christiane; Fuchs, Harald; Hoeppener, Stefanie
2014-01-01
Summary A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM) of (3-aminopropyl)triethoxysilane (APTES) is explored with three different processes: 1) a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2) a chemical process induced by oxygen plasma etching as well as 3) a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL), which is either exposed to visible light, oxygen plasma or an UV–ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern. PMID:25247126
Sarwar, Golam; Gantt, Brett; Schwede, Donna; Foley, Kristen; Mathur, Rohit; Saiz-Lopez, Alfonso
2015-08-04
Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen chemistry in a comprehensive atmospheric modeling system. The enhanced ozone deposition treatment accounts for the interaction of iodide in seawater with ozone and increases deposition velocities by 1 order of magnitude. Halogen chemistry includes detailed chemical reactions of organic and inorganic bromine and iodine species. Two different simulations are completed with the halogen chemistry: without and with photochemical reactions of higher iodine oxides. Enhanced deposition reduces mean summer-time surface ozone by ∼3% over marine regions in the Northern Hemisphere. Halogen chemistry without the photochemical reactions of higher iodine oxides reduces surface ozone by ∼15% whereas simulations with the photochemical reactions of higher iodine oxides indicate ozone reductions of ∼48%. The model without these processes overpredicts ozone compared to observations whereas the inclusion of these processes improves predictions. The inclusion of photochemical reactions for higher iodine oxides leads to ozone predictions that are lower than observations, underscoring the need for further refinement of the halogen emissions and chemistry scheme in the model.
Atomistic mechanisms of rapid energy transport in light-harvesting molecules
NASA Astrophysics Data System (ADS)
Ohmura, Satoshi; Koga, Shiro; Akai, Ichiro; Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2011-03-01
Synthetic supermolecules such as π-conjugated light-harvesting dendrimers efficiently harvest energy from sunlight, which is of significant importance for the global energy problem. Key to their success is rapid transport of electronic excitation energy from peripheral antennas to photochemical reaction cores, the atomistic mechanisms of which remains elusive. Here, quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals the key molecular motion that significantly accelerates the energy transport based on the Dexter mechanism.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Stewart, Richard W.
1991-01-01
Random photochemical reaction rates are employed in a 1D photochemical model to examine uncertainties in tropospheric concentrations and thereby determine critical kinetic processes and significant correlations. Monte Carlo computations are used to simulate different chemical environments and their related imprecisions. The most critical processes are the primary photodissociation of O3 (which initiates ozone destruction) and NO2 (which initiates ozone formation), and the OH/methane reaction is significant. Several correlations and anticorrelations between species are discussed, and the ozone/transient OH correlation is examined in detail. One important result of the modeling is that estimates of global OH are generally about 25 percent uncertain, limiting the precision of photochemical models. Techniques for reducing the imprecision are discussed which emphasize the use of species and radical species measurements.
2017-01-01
We report the construction and use of a vortex reactor which uses a rapidly rotating cylinder to generate Taylor vortices for continuous flow thermal and photochemical reactions. The reactor is designed to operate under conditions required for vortex generation. The flow pattern of the vortices has been represented using computational fluid dynamics, and the presence of the vortices can be easily visualized by observing streams of bubbles within the reactor. This approach presents certain advantages for reactions with added gases. For reactions with oxygen, the reactor offers an alternative to traditional setups as it efficiently draws in air from the lab without the need specifically to pressurize with oxygen. The rapid mixing generated by the vortices enables rapid mass transfer between the gas and the liquid phases allowing for a high efficiency dissolution of gases. The reactor has been applied to several photochemical reactions involving singlet oxygen (1O2) including the photo-oxidations of α-terpinene and furfuryl alcohol and the photodeborylation of phenyl boronic acid. The rotation speed of the cylinder proved to be key for reaction efficiency, and in the operation we found that the uptake of air was highest at 4000 rpm. The reactor has also been successfully applied to the synthesis of artemisinin, a potent antimalarial compound; and this three-step synthesis involving a Schenk-ene reaction with 1O2, Hock cleavage with H+, and an oxidative cyclization cascade with triplet oxygen (3O2), from dihydroartemisinic acid was carried out as a single process in the vortex reactor. PMID:28781513
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePoorter, G.L.; Rofer-DePoorter, C.K.
1976-01-01
Laser photochemistry is surveyed as a possible improvement upon the Purex process for reprocessing spent nuclear fuel. Most of the components of spent nuclear fuel are photochemically active, and lasers can be used to selectively excite individual chemical species. The great variety of chemical species present and the degree of separation that must be achieved present difficulties in reprocessing. Lasers may be able to improve the necessary separations by photochemical reaction or effects on rates and equilibria of reactions. (auth)
NASA Technical Reports Server (NTRS)
Gupta, A.; Coulbert, C.
1978-01-01
An actinometer has been developed to measure outdoor irradiance in the range 295-400 nm. Actinometric measurements of radiation are based on determination of photochemical reaction rates for reactions of known quantum efficiency. Actinometers have the advantage of providing irradiance data over surfaces of difficult accessibility; in addition, actinometrically determined irradiance data are wavelength weighted and therefore provide a useful means of assessing the degradation rates of polymers employed in solar energy systems.
Aqueous-Phase Photochemical Production of Oxidants in Atmospheric Waters.
NASA Astrophysics Data System (ADS)
Allen, John Morrison
1992-01-01
The photochemical formation and subsequent reactions of oxidants plays an important role in the overall chemistry of the atmosphere. Much of the interest in atmospheric oxidation reactions has been fueled by the environmental consequences of the oxidation of sulfur dioxide (SO _2) forming sulfuric acid (H_2 SO_4). Oxidation reactions also play a crucial role in other atmospheric chemical transformations such as: (1) the destruction of tropospheric ozone, (2) redox cycling of transition metals, and (3) oxidation of organic compounds. Much of the research pertaining to atmospheric oxidant formation and the reactions that these oxidants undergo has centered upon gas-phase photochemical oxidant formation and: (1) subsequent reactions in the gas phase, or (2) partitioning of oxidants into cloud and fog drops and subsequent reactions in the aqueous phase. Only a very limited amount of data is available concerning aqueous -phase photochemical sources of oxidants in cloud and fog drops. The focus of one aspect of the work presented in this dissertation is upon the aqueous-phase sunlight photochemical formation of oxidants in authentic cloud and fog water samples from across the United States and Canada. It will be demonstrated that atmospheric waters typically absorb solar ultraviolet radiation at wavelengths ranging from 290 to 340 nm. This absorption is due to the presence of chemical constituents in the cloud and fog waters that contain chromophoric functional groups that give rise to the formation of: (1) singlet molecular oxygen O_2(^1Delta_ {rm g}), (2) peroxyl radicals (HO _2cdot and RO_2 cdot), (3) peroxides (HOOH, ROOH, and ROOR '), and (4) hydroxyl radical ( cdotOH). This work will demonstrate that aqueous-phase photochemical reactions are a significant and in some cases dominant source of these oxidants in cloud and fog drops. The transition metal catalyzed oxidation of SO _2 to H_2SO _4 by molecular oxygen has been extensively studied. This reaction is thought to be an important pathway by which a strong acid is produced within cloud drops under certain conditions. Experiments performed in distilled, deionized water presented in this dissertation will demonstrate that the oxidation of SO_2 in the presence of Fe(III) is much slower in sunlight than in the dark.
Implementation of marine halogen chemistry into the Community Multiscale Air Quality (CMAQ) model
NASA Astrophysics Data System (ADS)
Gantt, B.; Sarwar, G.
2017-12-01
In two recent studies (Sarwar et al, 2015 and Gantt et al., 2017), the impact of marine halogen (bromine and iodine) chemistry on air quality has been evaluated using the Community Multiscale Air Quality (CMAQ) model. We found that marine halogen chemistry not only has the expected effect of reducing marine boundary layer ozone concentrations, but also reduces ozone in the free troposphere and inland from the coast. In Sarwar et al. (2015), the impact of the halogen chemistry without and with photochemical reactions of higher iodine oxides over the Northern Hemisphere was examined using the coarse horizontal grids of a hemispheric domain. Halogen chemistry without and with the photochemical reactions of higher iodine oxides reduces ozone over seawater by 15% and 48%, respectively. Using the results of the chemistry without the photochemical reactions of higher iodine oxides, we developed a simple first order ozone loss rate and implemented it into the public version of CMAQv52. In Gantt et al. (2017), the impact of the simple first order loss rate as well as the full halogen chemistry without photochemical reactions of higher iodine oxides over the continental United States was examined using finer horizontal grids of the regional domain and boundary conditions from the hemispheric domain with and without marine halogen chemistry. The boundary conditions obtained with the halogen chemistry as well as the simple halogen chemistry reduces ozone along the coast where CMAQ typically overpredicts the concentrations. Development of halogen chemistry in CMAQ has continued with the implementation of several heterogeneous reactions of bromine and iodine species, revised reactions of higher iodine oxides, and a refined marine halogen emissions inventory. Our latest version of halogen chemistry with photochemical reactions of higher iodine oxides reduces ozone by 23% over the seawater. This presentation will discuss the previous and ongoing implementation of revised halogen chemistry in CMAQ and its impacts on air quality.
Photochemical Water Oxidation Using {PMo12O40@Mo72Fe30}n Based Soft Oxometalate
NASA Astrophysics Data System (ADS)
Das, Santu; Roy, Soumyajit
Finding an alternative energy resource which can produce clean energy at a low cost is one of the major concerns of our times. The conversion of light energy into chemical energy is one key step forward in the direction. With that end in view photochemical water oxidation to produce oxygen plays a crucial role. In the present paper we have synthesized a soft oxometalate {PMo12O40@Mo72Fe30}n(1) from its well-known precursor polyoxometalate constituent [Muller et al., Chem. Commun. 1, 657 (2001)]. It is known that in the matter of catalysis, high surface area, possibility of heterogenization, recoverability makes soft oxometalates (SOMs) attractive as catalytic materials. Here we exploit such advantages of SOMs. The SOM based material acts as an active catalyst for photochemical water oxidation reaction with a maximum turnover number of 20256 and turnover frequency of 24.11min-1. The catalyst material is stable under photochemical reaction conditions and therefore can be reused for multiple photo catalytic water oxidation reaction cycles.
Seasonal Photochemical Transformations of Nitrogen Species in a Forest Stream and Lake
Porcal, Petr; Kopáček, Jiří; Tomková, Iva
2014-01-01
The photochemical release of inorganic nitrogen from dissolved organic matter is an important source of bio-available nitrogen (N) in N-limited aquatic ecosystems. We conducted photochemical experiments and used mathematical models based on pseudo-first-order reaction kinetics to quantify the photochemical transformations of individual N species and their seasonal effects on N cycling in a mountain forest stream and lake (Plešné Lake, Czech Republic). Results from laboratory experiments on photochemical changes in N speciation were compared to measured lake N budgets. Concentrations of organic nitrogen (Norg; 40–58 µmol L−1) decreased from 3 to 26% during 48-hour laboratory irradiation (an equivalent of 4–5 days of natural solar insolation) due to photochemical mineralization to ammonium (NH4 +) and other N forms (Nx; possibly N oxides and N2). In addition to Norg mineralization, Nx also originated from photochemical nitrate (NO3 −) reduction. Laboratory exposure of a first-order forest stream water samples showed a high amount of seasonality, with the maximum rates of Norg mineralization and NH4 + production in winter and spring, and the maximum NO3 − reduction occurring in summer. These photochemical changes could have an ecologically significant effect on NH4 + concentrations in streams (doubling their terrestrial fluxes from soils) and on concentrations of dissolved Norg in the lake. In contrast, photochemical reactions reduced NO3 − fluxes by a negligible (<1%) amount and had a negligible effect on the aquatic cycle of this N form. PMID:25551441
PHOTOCHEMICAL HEATING OF DENSE MOLECULAR GAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glassgold, A. E.; Najita, J. R.
2015-09-10
Photochemical heating is analyzed with an emphasis on the heating generated by chemical reactions initiated by the products of photodissociation and photoionization. The immediate products are slowed down by collisions with the ambient gas and then heat the gas. In addition to this direct process, heating is also produced by the subsequent chemical reactions initiated by these products. Some of this chemical heating comes from the kinetic energy of the reaction products and the rest from collisional de-excitation of the product atoms and molecules. In considering dense gas dominated by molecular hydrogen, we find that the chemical heating is sometimesmore » as large, if not much larger than, the direct heating. In very dense gas, the total photochemical heating approaches 10 eV per photodissociation (or photoionization), competitive with other ways of heating molecular gas.« less
Excited-State Dynamics of Dithienylethenes Functionalized for Self-Supramolecular Assembly.
Hamdi, I; Buntinx, G; Poizat, O; Perrier, A; Le Bras, L; Delbaere, S; Barrau, S; Louati, M; Takeshita, M; Tokushige, K; Takao, M; Aloïse, S
2018-04-12
The photoswitching and competitive processes of two photochromic dithienylethenes (DTEs) functionalized at both sides with 2-ureido-4[1H]-pyrimidone (UPy) quadruple hydrogen-bonding recognition patterns have been investigated with NMR experiments, ultrafast spectroscopy, and density functional theory (DFT) calculations. The originality of these molecules is their ability to form large supramolecular assemblies induced by light for the closed form (CF) species while the open form (OF) species exist as small oligomers. Photochromic parameters have been determined and photochemical pathways have been rationalized with clear distinction between the antiparallel (OF-AP) and parallel (OF-P) species. A new photocyclization pathway via triplet manifold has been evidenced. The effect of the supramolecular assembly on the photochemical response is discussed. Unlike the photoreversion process, which is unaffected by supramolecular assembly, rate constants of the photocyclization reaction and intersystem crossing process are sensitive to the presence of small OF oligomers.
The Type 1 Homodimeric Reaction Center in Heliobacterium modesticaldum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golbeck, John
In this funding period, we (i) found that strong illumination of Heliobacterium modesticaldum cells results in saturation of the electron acceptor pool, leading to reduction of the acceptor side and the creation of a back-reacting state that gives rise to delayed fluorescence; (ii) noted that when the FX cluster is reduced in purified reaction centers, no electron transfer occurs beyond A0, even though a quinone is present; (iii) observed by photochemically induced dynamic nuclear polarization (photo-CIDNP) studies of whole cells of Heliobacterium mobilis that primary charge separation is retained even after conversion of the majority of BChl g to Chlmore » aF. ; and (iv) purified a homogeneous preparation of reaction center cores, which led to promising crystallization trials to obtain a three-dimensional structure.« less
Potential Chemical Systems for Intramolecular Cycloaddition Cures
1979-05-01
allowed electrocyclic photochemical ring closure of stilbene to dihydrophenanthrene is well known (Reference 12). The presence of an oxidant , e.g...CH (c) R 3 0 00 > 0 I I (42) The keto-diynes 36 follow a uniform reaction pathway with chlorotris- ( triphenylphosphine )rhodium[I] to yield the...Irradiation of 36b similarly gives 49. The mechanism proposed for the photochemical reaction involves an initial formation of the reactive cyclobutadiene by
Fabbri, Debora; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide
2015-01-01
This work models the phototransformation kinetics in surface waters of five phenylurea herbicides (diuron, fenuron, isoproturon, metoxuron and chlortoluron), for which important photochemical parameters are available in the literature (direct photolysis quantum yields and reaction rate constants with ·OH, CO3(-·) and the triplet states of chromophoric dissolved organic matter, (3)CDOM*). Model calculations suggest that isoproturon and metoxuron would be the least photochemically persistent and diuron the most persistent compound. Reactions with ·OH and (3)CDOM* would be the main phototransformation pathways for all compounds in the majority of environmental conditions. Reaction with CO3(-) could be important in waters with low dissolved organic carbon (DOC), while direct photolysis would be negligible for fenuron, quite important for chlortoluron, and somewhat significant for the other compounds. The direct photolysis of metoxuron and diuron is known to increase toxicity, and such a photoreaction pathway would be enhanced at intermediate DOC values (1-4 mg C L(1)). The reaction between phenylureas and ·OH is known to produce toxic intermediates, differently from (3)CDOM*. Therefore, the shift of reactivity from ·OH to (3)CDOM* with increasing DOC could reduce the environmental impact of photochemical transformation. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Li; Liu, Jian-Yong; Zhou, Pan-Wang
2017-11-01
A detailed theoretical investigation based on the ab initio on-the-fly surface hopping dynamics simulations and potential energy surfaces calculations has been performed to unveil the mechanism of the photoinduced non-adiabatic relaxation process of the isolated blue fluorescent protein (BFP) chromophore in gas phase. The data analysis presents that the dominant reaction coordinate of the BFP chromophore is driven by a rotation motion around the CC double bridging bond, which is in remarkable difference with a previous result which supports a Hula-Twist rotation pattern. Such behavior is consistent with the double bond rotation pattern of the GFP neutral chromophore. In addition, the dynamics simulations give an estimated decay time of 1.1 ps for the S1 state, which is agrees well with the experimental values measured in proteins. The present work offers a straightforward understanding for the decay mechanism of the BFP chromophore and suggestions of the photochemical properties of analogous protein chromophores. We hope the current work would be helpful for further exploration of the BFP photochemical and photophysical properties in various environments, and can provide guidance and prediction for rational design of the fluorescent proteins catering for different demands.
Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides
Kim, J. Dongun; Yee, Nathan; Nanda, Vikas; Falkowski, Paul G.
2013-01-01
Photochemical reactions of minerals are underappreciated processes that can make or break chemical bonds. We report the photooxidation of siderite (FeCO3) by UV radiation to produce hydrogen gas and iron oxides via a two-photon reaction. The calculated quantum yield for the reaction suggests photooxidation of siderite would have been a significant source of molecular hydrogen for the first half of Earth’s history. Further, experimental results indicate this abiotic, photochemical process may have led to the formation of iron oxides under anoxic conditions. The reaction would have continued through the Archean to at least the early phases of the Great Oxidation Event, and provided a mechanism for oxidizing the atmosphere through the loss of hydrogen to space, while simultaneously providing a key reductant for microbial metabolism. We propose that the photochemistry of Earth-abundant minerals with wide band gaps would have potentially played a critical role in shaping the biogeochemical evolution of early Earth. PMID:23733945
Liu, Lihong; Liu, Jian; Martinez, Todd J.
2015-12-17
Here, we investigate the photoisomerization of a model retinal protonated Schiff base (trans-PSB3) using ab initio multiple spawning (AIMS) based on multi-state second order perturbation theory (MSPT2). Discrepancies between the photodynamical mechanism computed with three-root state-averaged complete active space self-consistent field (SA-3-CASSCF, which does not include dynamic electron correlation effects) and MSPT2 show that dynamic correlation is critical in this photoisomerization reaction. Furthermore, we show that the photodynamics of trans-PSB3 is not well described by predictions based on minimum energy conical intersections (MECIs) or minimum energy conical intersection (CI) seam paths. Instead, most of the CIs involved in the photoisomerizationmore » are far from MECIs and minimum energy CI seam paths. Thus, both dynamical nuclear effects and dynamic electron correlation are critical to understanding the photochemical mechanism.« less
JPRS Report, Science & Technology, USSR: Chemistry
1990-11-08
desorption cycle. The photochemical activity of the oxides was determined by irradiating them with UV light at 353 K during the oxidation reactions of...No 1, Jan 90] 8 Acid-Base Properties Photochemically Active Titanium Oxide Surfaces [N D. Konovalova, V. I. Stepanenko, etal; UKRAINSKIY...Figures 4; references 13: 10 Russian, 3 Western. UDC 541.183 Acid-Base Properties Photochemically Active Titanium Oxide Surfaces 907M0149B Kiev
Koehler, Birgit; Barsotti, Francesco; Minella, Marco; Landelius, Tomas; Minero, Claudio; Tranvik, Lars J; Vione, Davide
2018-02-01
Lake water constituents, such as chromophoric dissolved organic matter (CDOM) and nitrate, absorb sunlight which induces an array of photochemical reactions. Although these reactions are a substantial driver of pollutant degradation in lakes they are insufficiently understood, in particular on large scales. Here, we provide for the first time comprehensive photochemical maps covering a large geographic region. Using photochemical kinetics modeling for 1048 lakes across Sweden we simulated the steady-state concentrations of four photoreactive transient species, which are continuously produced and consumed in sunlit lake waters. We then simulated the transient-induced photochemical transformation of organic pollutants, to gain insight into the relevance of the different photoreaction pathways. We found that boreal lakes were often unfavorable environments for photoreactions mediated by hydroxyl radicals (OH) and carbonate radical anions (CO 3 - ), while photoreactions mediated by CDOM triplet states ( 3 CDOM*) and, to a lesser extent, singlet oxygen ( 1 O 2 ) were the most prevalent. These conditions promote the photodegradation of phenols, which are used as plastic, medical drug and herbicide precursors. When CDOM concentrations increase, as is currently commonly the case in boreal areas such as Sweden, 3 CDOM* will also increase, promoting its importance in photochemical pathways even more. Copyright © 2017 Elsevier Ltd. All rights reserved.
Huang, H; Akustu, Y; Arai, M; Tamura, M
2001-07-01
In order to give an effective and rapid analysis of the photochemical pollution and information for emission control strategies, a photochemical box model (PBM) was applied to one moderate summer episode, 11 July 1996, and one typical winter episode, 3 December 1996, in the center of Tokyo, Japan. The box model gave a good prediction of the photochemical pollution with minimal investment. As expected, the peak ozone in summer is higher than in winter. The NOx concentrations in winter are higher than those in summer. In summer, NO and NO2 have one peak in the morning. In winter, NO and NO2 show two peaks during the day. Three model runs including no reactions, a zero ozone boundary condition and dark reactions were conducted to understand the photochemical processes. The effects of emission reduction on the formation of the photochemical pollution in the center of Tokyo have been studied. The results show that the reduction of NMHC emission can decrease the ozone, however, the reduction of NOx emission can increase the ozone. It can be concluded that if the NOx emission are reduced, the reduction of NMHC should be more emphasized in order to decrease the ozone concentration in the center of Tokyo, Japan, especially the reduction of the NMHC from stationary source emission.
Photochemical isotope separation
Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith
1987-01-01
A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.
Photochemical Reaction Altered Cardiac Toxicity of Diesel Exhaust Inhalation
Rationale: Epidemiological studies have indicated an association between urban air pollution exposure and cardiovascular morbidity and mortality. The present study was designed to evaluate the cardiac effects of inhaled diesel exhaust and compared with photochemically altered d...
Willumstad, Thomas P.; Haze, Olesya; Mak, Xiao Yin; Lam, Tin Yiu; Wang, Yu-Pu; Danheiser*, Rick L.
2013-01-01
Highly substituted polycyclic aromatic and heteroaromatic compounds are produced via a two-stage tandem benzannulation/cyclization strategy. The initial benzannulation step proceeds via a pericyclic cascade mechanism triggered by thermal or photochemical Wolff rearrangement of a diazo ketone. The photochemical process can be performed using a continuous flow reactor which facilitates carrying out reactions on a large scale and minimizes the time required for photolysis. Carbomethoxy ynamides as well as more ketenophilic bissilyl ynamines and N-sulfonyl and N-phosphoryl ynamides serve as the reaction partner in the benzannulation step. In the second stage of the strategy, RCM generates benzofused nitrogen heterocycles, and various heterocyclization processes furnish highly substituted and polycyclic indoles of types that were not available by using the previous cyclobutenone-based version of the tandem strategy. PMID:24116731
The effect of photochemical models on calculated equilibria and cooling rates in the stratosphere
NASA Technical Reports Server (NTRS)
Blake, D.; Lindzen, R. S.
1973-01-01
Simplified models were developed for radiative heating and cooling and for ozone photochemistry in the region 22-60 km. The latter permit the inclusion of nitrogen and hydrogen reactions in addition to simple oxygen reactions. The simplicity of the scheme facilitates the use of a wide variety of cooling and reaction rates. It is shown that joint radiative-photochemical equilibrium is appropriate to the mean state of the atmosphere between 35 and 60 km. The relaxation of perturbations from joint radiative-photochemical equilibrium was also investigated. In all cases the coupling between temperature dependent ozone photochemistry and radiation lead to a reduction of the thermal relaxation time from its purely radiative value. The latter, which amounts to about 10 days, is reduced to 2-4 days at heights of 31-35 km. This greatly enhances the dissipation of waves traveling through the stratosphere.
Photochemical and thermal bergman cyclization of a pyrimidine enediynol and enediynone.
Choy, N; Blanco, B; Wen, J; Krishan, A; Russell, K C
2000-11-30
[reaction: see text] Novel 10-membered pyrimidine enediynes (3 and 4) were synthesized in seven and eight steps, respectively. These compounds were compared for their abilities to undergo Bergman cyclization both thermally and photochemically. Alcohol 3 readily cyclized both thermally and photochemically in (i)PrOH, while ketone 4 only showed efficient thermal cyclization. Both compounds were also shown to cleave dsDNA under the appropriate conditions.
Energy and molecules from photochemical/photocatalytic reactions. An overview.
Ravelli, Davide; Protti, Stefano; Albini, Angelo
2015-01-16
Photocatalytic reactions have been defined as those processes that require both a (not consumed) catalyst and light. A previous definition was whether such reactions brought a system towards or away from the (thermal) equilibrium. This consideration brings in the question whether a part of the photon energy is incorporated into the photochemical reaction products. Data are provided for representative organic reactions involving or not molecular catalysts and show that energy storage occurs only when a heavily strained structure is generated, and in that case only a minor part of photon energy is actually stored (ΔG up to 25 kcal·mol-1). The green role of photochemistry/photocatalysis is rather that of forming highly reactive intermediates under mild conditions.
Shao, Yutian; Yang, Chao; Gui, Weijun; Liu, Yang; Xia, Wujiong
2012-04-11
Irradiation of terminal aromatic γ,δ-epoxy ketones with a 450 W UV lamp led to Norrish type II cyclization/semi-pinacol rearrangement cascade reaction which formed the benzocyclobutanones containing a full-carbon quaternary center, whereas irradiation of substituted aromatic γ,δ-epoxy ketones led to the indanones through a photochemical epoxy rearrangement and 1,5-biradicals cyclization tandem reaction. This journal is © The Royal Society of Chemistry 2012
NASA Technical Reports Server (NTRS)
Gaffron, H.
1971-01-01
The present state of knowledge regarding the truly photochemical reactions in photosynthesis is considered. Nine-tenths of the available knowledge is of a biochemical nature. Questions regarding the activities of the chlorophyll system are examined. The simplest photochemical response observed in living hydrogen-adapted algal cells is the release of molecular hydrogen, which continues even after all other known natural reactions have been eliminated either by heating or the action of poisons.
PHOTOCHEMICAL MINERALIZATION OF DISSOLVED ORGANIC NITROGEN TO AMMONIUM IN THE BALTIC SEA
Solar radiation-induced photochemistry can be considered as a new source of nutrients when photochemical reactions release bioavailable nitrogen from biologically non-reactive dissolved organic nitrogen (DON). Pretreatments of Baltic Sea waters in the dark indicated that >72% of ...
Photochemical isotope separation
Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.
1987-04-28
A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.
FIBER OPTICS: Role of point defects in the photosensitivity of hydrogen-loaded phosphosilicate glass
NASA Astrophysics Data System (ADS)
Larionov, Yu V.
2010-08-01
It is shown that point defect modifications in hydrogen-loaded phosphosilicate glass (PSG) do not play a central role in determining its photosensitivity. Photochemical reactions that involve a two-step point defect modification and pre-exposure effect are incapable of accounting for photoinduced refractive index changes. It seems likely that a key role in UV-induced refractive index modifications is played by structural changes in the PSG network. Experimental data are presented that demonstrate intricate network rearrangement dynamics during UV exposure of PSG.
Characterizing non-photochemical quenching in leaves through fluorescence lifetime snapshots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylak-Glassman, Emily J.; Zaks, Julia; Amarnath, Kapil
2015-03-12
A technique is described to measure the fluorescence decay profiles of intact leaves during adaptation to high light and subsequent relaxation to dark conditions. We illustrate how to ensure that photosystem II reaction centers are closed and compare data for wild type Arabidopsis thaliana with conventional pulse-amplitude modulated (PAM) fluorescence measurements. Unlike PAM measurements, the lifetime measurements are not sensitive to photobleaching or chloroplast shielding, and the form of the fluorescence decay provides additional information to test quantitative models of excitation dynamics in intact leaves.
Oxidation of Fe(II) in rainwater.
Willey, J D; Whitehead, R F; Kieber, R J; Hardison, D R
2005-04-15
Photochemically produced Fe(II) is oxidized within hours under environmentally realistic conditions in rainwater. The diurnal variation between photochemical production and reoxidation of Fe(II) observed in our laboratory accurately mimics the behavior of ferrous iron observed in field studies where the highest concentrations of dissolved Fe(ll) occur in afternoon rain during the period of maximum sunlight intensity followed by gradually decreasing concentrations eventually returning to early morning pre-light values. The experimental work presented here, along with the results of kinetics studies done by others, suggests thatthe primary process responsible for the decline in photochemically produced Fe(II) concentrations is oxidation by hydrogen peroxide. This reaction is first order with respect to both the concentrations of Fe(II) and H2O2. The second-order rate constant determined for six different authentic rain samples varied over an order of magnitude and was always less than or equal to the rate constant determined for this reaction in simple acidic solutions. Oxidation of photochemically produced ferrous iron by other oxidants including molecular oxygen, ozone, hydroxyl radical, hydroperoxyl/superoxide radical, and hexavalent chromium were found to be insignificant under the conditions present in rainwater. This study shows that Fe(II) occurs as at least two different chemical species in rain; photochemically produced Fe(II) that is oxidized over time periods of hours, and a background Fe(II) that is protected against oxidation, perhaps by organic complexation, and is stable against oxidation for days. Because the rate of oxidation of photochemically produced Fe(II) does not increase with increasing rainwater pH, the speciation of this more labile form of Fe(II) is also not controlled by simple hydrolysis reactions.
NASA Astrophysics Data System (ADS)
Kosma, Kyriaki; Trushin, Sergei A.; Schmid, Wolfram E.; Fuß, Werner
2015-12-01
The main primary photoproducts of cycloocta-1,3,5-triene (COT) are a strained mono-E isomer, Z,Z-octatetraene (OT, from electrocyclic ring opening) and benzene + ethylene. We investigated the excited-state dynamics of COT by time-resolved mass spectroscopy, probing by near-IR photoionization. Unexpectedly, we found only one reaction channel. We assign it to the pericyclic reactions. Evidence for an early branching between this and the Z-E channel is taken from previous resonance Raman data. This channel confirms previously formulated rules on the excited states involved, the reaction path and driving forces and contributes to their rationalization. Bicyclo[4.2.0]octa-2,4-diene undergoes only two pericyclic reactions: ring opening to OT and cleavage to benzene + ethylene. We investigated it briefly in its equilibrium mixture with COT. The data are consistent with a common path on the excited surfaces. Suggestions are made for structures of conical intersections, and driving forces are considered. All processes were found to be barrierless.
NASA Astrophysics Data System (ADS)
Summers, David P.; Noveron, Juan; Basa, Ranor C. B.
2009-04-01
Amphiphilic bilayer membrane structures (vesicles) have been postulated to have been abiotically formed and spontaneously assemble on the prebiotic Earth, providing compartmentalization for the origin of life. These vesicles are similar to modern cellular membranes and can serve to contain water-soluble species, concentrate species, and have the potential to catalyze reactions. The origin of the use of photochemical energy in metabolism (i.e. energy transduction) is one of the central issues in the origin of life. This includes such questions as how energy transduction may have occurred before complex enzymatic systems, such as required by contemporary photosynthesis, had developed and how simple a photochemical system is possible. It has been postulated that vesicle structures developed the ability to capture and transduce light, providing energy for reactions. It has also been shown that pH gradients across the membrane surface can be photochemically created, but coupling these to drive chemical reactions has been difficult. Colloidal semiconducting mineral particles are known to photochemically drive redox chemistry. We propose that encapsulation of these particles has the potential to provide a source of energy transduction inside vesicles, and thereby drive protocellular chemistry, and represents a model system for early photosynthesis. In our experiments we show that TiO2 particles, in the ~20 nm size range, can be incorporated into vesicles and retain their photoactivity through the dehydration/rehydration cycles that have been shown to concentrate species inside a vesicle.
Summers, David P; Noveron, Juan; Basa, Ranor C B
2009-04-01
Amphiphilic bilayer membrane structures (vesicles) have been postulated to have been abiotically formed and spontaneously assemble on the prebiotic Earth, providing compartmentalization for the origin of life. These vesicles are similar to modern cellular membranes and can serve to contain water-soluble species, concentrate species, and have the potential to catalyze reactions. The origin of the use of photochemical energy in metabolism (i.e. energy transduction) is one of the central issues in the origin of life. This includes such questions as how energy transduction may have occurred before complex enzymatic systems, such as required by contemporary photosynthesis, had developed and how simple a photochemical system is possible. It has been postulated that vesicle structures developed the ability to capture and transduce light, providing energy for reactions. It has also been shown that pH gradients across the membrane surface can be photochemically created, but coupling these to drive chemical reactions has been difficult. Colloidal semiconducting mineral particles are known to photochemically drive redox chemistry. We propose that encapsulation of these particles has the potential to provide a source of energy transduction inside vesicles, and thereby drive protocellular chemistry, and represents a model system for early photosynthesis. In our experiments we show that TiO2 particles, in the approximately 20 nm size range, can be incorporated into vesicles and retain their photoactivity through the dehydration/rehydration cycles that have been shown to concentrate species inside a vesicle.
Arceo, Elena; Jurberg, Igor D; Alvarez-Fernández, Ana; Melchiorre, Paolo
2013-09-01
Asymmetric catalytic variants of sunlight-driven photochemical processes hold extraordinary potential for the sustainable preparation of chiral molecules. However, the involvement of short-lived electronically excited states inherent to any photochemical reaction makes it challenging for a chiral catalyst to dictate the stereochemistry of the products. Here, we report that readily available chiral organic catalysts, with well-known utility in thermal asymmetric processes, can also confer a high level of stereocontrol in synthetically relevant intermolecular carbon-carbon bond-forming reactions driven by visible light. A unique mechanism of catalysis is proposed, wherein the catalyst is involved actively in both the photochemical activation of the substrates (by inducing the transient formation of chiral electron donor-acceptor complexes) and the stereoselectivity-defining event. We use this approach to enable transformations that are extremely difficult under thermal conditions, such as the asymmetric α-alkylation of aldehydes with alkyl halides, the formation of all-carbon quaternary stereocentres and the control of remote stereochemistry.
NASA Technical Reports Server (NTRS)
Rodriguez, Jose M.; Sze, Nien-Dak; Ko, Malcolm K. W.
1988-01-01
The rapid decrease in O3 column densities observed during Antarctic spring has been attributed to several chemical mechanisms involving nitrogen, bromine, or chlorine species, to dynamical mechanisms, or to a combination of the above. Chlorine-related theories, in particular, predict greatly elevated concentrations of ClO and OClO and suppressed abundances of NO2 below 22 km. The heterogeneous reactions and phase transitions proposed by these theories could also impact the concentrations of HCl, ClNO3 and HNO3 in this region. Observations of the above species have been carried out from the ground by the National Ozone Expedition (NOZE-I, 1986, and NOZE-II, 1987), and from aircrafts by the Airborne Antarctic Ozone Experiment (AAOE) during the austral spring of 1987. Observations of aerosol concentrations, size distribution and backscattering ratio from AAOE, and of aerosol extinction coefficients from the SAM-II satellite can also be used to deduce the altitude and temporal behavior of surfaces which catalyze heterogeneous mechanisms. All these observations provide important constraints on the photochemical processes suggested for the spring Antarctic stratosphere. Results are presented for the concentrations and time development of key trace gases in the Antarctic stratosphere, utilizing the AER photochemical model. This model includes complete gas-phase photochemistry, as well as heterogeneous reactions. Heterogeneous chemistry is parameterized in terms of surface concentrations of aerosols, collision frequencies between gas molecules and aerosol surfaces, concentrations of HCl/H2O in the frozen particles, and probability of reaction per collision (gamma). Values of gamma are taken from the latest laboratory measurements. The heterogeneous chemistry and phase transitions are assumed to occur between 12 and 22 km. The behavior of trace species at higher altitudes is calculated by the AER 2-D model without heterogeneous chemistry. Calculations are performed for solar illumination conditions typical of 60, 70, and 80 S, from July 15 to October 31.
Sajna, K V; Kumara Swamy, K C
2012-10-05
Thermolysis of phosphorus-based vinyl azides under solvent- and catalyst-free conditions furnished a new route for 1,4-pyrazines. A simple one-pot, Mn(III)-catalyzed photochemical route has been developed for multisubstituted pyrroles starting from allenes and 1,3-dicarbonyls via in situ-generated vinyl azides. The utility of new phosphorus-based pyrroles is also demonstrated in the Horner reaction. The structures of key products are unequivocally confirmed by X-ray crystallography.
NASA Astrophysics Data System (ADS)
Spörlein, Sebastian; Carstens, Heiko; Satzger, Helmut; Renner, Christian; Behrendt, Raymond; Moroder, Luis; Tavan, Paul; Zinth, Wolfgang; Wachtveitl, Josef
2002-06-01
Femtosecond time-resolved spectroscopy on model peptides with built-in light switches combined with computer simulation of light-triggered motions offers an attractive integrated approach toward the understanding of peptide conformational dynamics. It was applied to monitor the light-induced relaxation dynamics occurring on subnanosecond time scales in a peptide that was backbone-cyclized with an azobenzene derivative as optical switch and spectroscopic probe. The femtosecond spectra permit the clear distinguishing and characterization of the subpicosecond photoisomerization of the chromophore, the subsequent dissipation of vibrational energy, and the subnanosecond conformational relaxation of the peptide. The photochemical cis/trans-isomerization of the chromophore and the resulting peptide relaxations have been simulated with molecular dynamics calculations. The calculated reaction kinetics, as monitored by the energy content of the peptide, were found to match the spectroscopic data. Thus we verify that all-atom molecular dynamics simulations can quantitatively describe the subnanosecond conformational dynamics of peptides, strengthening confidence in corresponding predictions for longer time scales.
Chemical degradation of proteins in the solid state with a focus on photochemical reactions.
Mozziconacci, Olivier; Schöneich, Christian
2015-10-01
Protein pharmaceuticals comprise an increasing fraction of marketed products but the limited solution stability of proteins requires considerable research effort to prepare stable formulations. An alternative is solid formulation, as proteins in the solid state are thermodynamically less susceptible to degradation. Nevertheless, within the time of storage a large panel of kinetically controlled degradation reactions can occur such as, e.g., hydrolysis reactions, the formation of diketopiperazine, condensation and aggregation reactions. These mechanisms of degradation in protein solids are relatively well covered by the literature. Considerably less is known about oxidative and photochemical reactions of solid proteins. This review will provide an overview over photolytic and non-photolytic degradation reactions, and specially emphasize mechanistic details on how solid structure may affect the interaction of protein solids with light. Copyright © 2014 Elsevier B.V. All rights reserved.
A New Pathway for Protein Haptenation by β-Lactams.
Pérez-Ruíz, Raúl; Lence, Emilio; Andreu, Inmaculada; Limones-Herrero, Daniel; González-Bello, Concepción; Miranda, Miguel A; Jiménez, M Consuelo
2017-10-09
The covalent binding of β-lactams to proteins upon photochemical activation has been demonstrated by using an integrated approach that combines photochemical, proteomic and computational studies, selecting human serum albumin (HSA) as a target protein and ezetimibe (1) as a probe. The results have revealed a novel protein haptenation pathway for this family of drugs that is an alternative to the known nucleophilic ring opening of β-lactams by the free amino group of lysine residues. Thus, photochemical ring splitting of the β-lactam ring, following a formal retro-Staudinger reaction, gives a highly reactive ketene intermediate that is trapped by the neighbouring lysine residues, leading to an amide adduct. For the investigated 1/HSA system, covalent modification of residues Lys414 and Lys525, which are located in sub-domains IIIA and IIIB, respectively, occurs. The observed photobinding may constitute the key step in the sequence of events leading to photoallergy. Docking and molecular dynamics simulation studies provide an insight into the molecular basis of the selectivity of 1 for these HSA sub-domains and the covalent modification mechanism. Computational studies also reveal positive cooperative binding of sub-domain IIIB that explains the experimentally observed modification of Lys414, which is located in a barely accessible pocket (sub-domain IIIA). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shaheen, R.; Smirnova, V.; Jackson, T. L.; Mang, L.; Thiemens, M. H.
2016-12-01
The planet Mars is unique in our solar system with a positive O-isotope anomaly observed in its bulk silicate and carbonates minerals ranging from 0.3 to 0.6 ‰. The carbonate isotopic signature can be used to reveal its origin, past history and atmosphere-hydrosphere-geosphere-interactions. Ozone is a powerful natural tracer of photochemical processes in Earth's atmosphere. It possess the highest enrichment in heavy isotopes δ17O ≈ δ18O (70-150‰) and oxygen isotopic anomaly (Δ17O = 30-40‰). The oxygen isotopic anomaly from ozone is transferred to other oxygen carrying molecules in the atmosphere through different mechanisms. Laboratory experiments were conducted with the JSC-Mars Simulant and iron oxide to investigate how this anomaly can be transferred to water and minerals under conditions similar to present day Mars. Three sets of laboratory experiments (O3-H2O-UV-minerals; O2-H2O-UV-minerals; O3-H2O-minerals) were performed. The oxygen triple isotopic analysis of product mineral carbonates formed from adsorbed CO2 reaction showed an oxygen isotopic anomaly (Δ17O = 0.4-3‰). The oxygen triple isotopic composition of water at photochemical equilibrium shifted towards ozone with Δ17O = 9‰ indicating reaction of ozone with water vapor via electronically excited oxygen atoms and transfer of the anomaly via hydroxyl radicals. HOx (HO, HO2) are extremely reactive and have very short life time (< μs), however, our data indicate that its signature is preserved through surficial interactions with adsorbed CO2 on mineral surfaces. Hydroxyl radicals may have played a significant role in heterogeneous photochemical transformations on mineral dust in the atmosphere of Mars and transfer of ozone anomaly to water and other oxygen bearing minerals through surficial reactions. Series of experiments were performed to constrain the amount of H2O required to preserve the oxygen isotope anomaly observed in carbonate minerals in the Martian meteorites. These observation will help refine Mars photochemistry models and also to constrain the past hydrological cycle and its coupling with the regolith. The observed inverse correlation between ozone and water vapor also suggests a dynamic role of hydroxyl radical chemistry in the atmosphere of Mars.
Ishida, Kento; Tobita, Fumiya; Kusama, Hiroyuki
2018-01-12
Intermolecular carbon-carbon bond-forming reaction between readily available acylsilanes and aldehydes was achieved under photoirradiation conditions with assistance of a catalytic amount of Lewis acid. Nucleophilic addition of photochemically generated siloxycarbenes to aldehydes followed by 1,4-silyl migration afforded synthetically useful α-siloxyketones. Electrophilic activation of aldehydes by Lewis acid is highly important to realize this reaction efficiently, otherwise the yield of the desired coupling products were significantly decreased. Noteworthy is that a formal cross benzoin-type reaction using acylsilanes was achieved under Lewis acidic conditions. This is the first example of Lewis acid-catalyzed reaction of photochemically generated siloxycarbenes with electrophiles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Minella, Marco; Rogora, Michela; Vione, Davide; Maurino, Valter; Minero, Claudio
2011-08-15
A model-based approach is here developed and applied to predict the long-term trends of indirect photochemical processes in the surface layer (5m water depth) of Lake Maggiore, NW Italy. For this lake, time series of the main parameters of photochemical importance that cover almost two decades are available. As a way to assess the relevant photochemical reactions, the modelled steady-state concentrations of important photogenerated transients ((•)OH, ³CDOM* and CO₃(-•)) were taken into account. A multivariate analysis approach was adopted to have an overview of the system, to emphasise relationships among chemical, photochemical and seasonal variables, and to highlight annual and long-term trends. Over the considered time period, because of the decrease of the dissolved organic carbon (DOC) content of water and of the increase of alkalinity, a significant increase is predicted for the steady-state concentrations of the radicals (•)OH and CO₃(-•). Therefore, the photochemical degradation processes that involve the two radical species would be enhanced. Another issue of potential photochemical importance is related to the winter maxima of nitrate (a photochemical (•)OH source) and the summer maxima of DOC ((•)OH sink and ³CDOM* source) in the lake water under consideration. From the combination of sunlight irradiance and chemical composition data, one predicts that the processes involving (•)OH and CO₃(-•) would be most important in spring, while the reactions involving ³CDOM* would be most important in summer. Copyright © 2011 Elsevier B.V. All rights reserved.
Modeling of a solar-pumped iodine laser
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Lee, J. H.
1980-01-01
The direct conversion in space of solar radiation into laser radiation for power transmission to earth, satellites, or deep space probes shows promise as a reasonably simple technology and may have cost advantage in deployment and greater reliability compared to other methods of space power generation and transmission. The main candidates for solar pumping are the gas dynamic, photochemical, and direct photoexcited lasers. Here consideration is given to the photochemical reaction of alkyliodides which predominantly excite the I(2P1/2) state which then lases at 1.315 microns. The iodine ground state is eventually lost to reconstituting the gas or in the formation of molecular iodine. The rates at which the gas is required to be recycled through the laser system are modest. The side exposure at 100-fold solar concentration of a 100-m long tube with a 1 sq m cross section is estimated to provide 20 kW of continuous laser output. Scaling laws and optimum operating conditions of this system are discussed.
ERIC Educational Resources Information Center
Wilke, Bryn M.; Castellano, Felix N.
2013-01-01
Photochemical upconversion is a regenerative process that transforms lower-energy photons into higher-energy light through two sequential bimolecular reactions, triplet sensitization of an appropriate acceptor followed by singlet fluorescence producing triplet-triplet annihilation derived from two energized acceptors. This laboratory directly…
NASA Astrophysics Data System (ADS)
Xiong, F.; McAvey, K. M.; Pratt, K. A.; Groff, C. J.; Hostetler, M. A.; Lipton, M. A.; Starn, T. K.; Seeley, J. V.; Bertman, S. B.; Teng, A. P.; Crounse, J. D.; Nguyen, T. B.; Wennberg, P. O.; Misztal, P. K.; Goldstein, A. H.; Guenther, A. B.; Koss, A. R.; Olson, K. F.; de Gouw, J. A.; Baumann, K.; Edgerton, E. S.; Feiner, P. A.; Zhang, L.; Miller, D. O.; Brune, W. H.; Shepson, P. B.
2015-07-01
Isoprene hydroxynitrates (IN) are tracers of the photochemical oxidation of isoprene in high NOx environments. Production and loss of IN have a significant influence on the NOx cycle and tropospheric O3 chemistry. To better understand IN chemistry, a series of photochemical reaction chamber experiments were conducted to determine the IN yield from isoprene photooxidation at high NO concentrations (> 100 ppt). By combining experimental data and calculated isomer distributions, a total IN yield of 9(+4/-3) % was derived. The result was applied in a zero-dimensional model to simulate production and loss of ambient IN observed in a temperate forest atmosphere, during the Southern Oxidant and Aerosol Study (SOAS) field campaign, from 27 May to 11 July 2013. By comparing field observations with model simulations, we identified NO as the limiting factor for ambient IN production during SOAS, but vertical mixing at dawn might also contribute (~ 27 %) to IN dynamics. A close examination of isoprene's oxidation products indicates that its oxidation transitioned from a high-NO dominant chemical regime in the morning into a low-NO dominant regime in the afternoon. A significant amount of IN produced in the morning high NO regime could be oxidized in the low NO regime, and a possible reaction scheme was proposed.
Wan, Wei; Zhu, Ming-Qiang; Tian, Zhiyuan; Li, Alexander D Q
2015-04-08
A pair of reversible photochemical reactions correlates their reactant and product specifically, and such a correlation uniquely distinguishes their correlated signal from others that are not linked by this reversible reaction. Here a nanoparticle-shielded fluorophore is photodriven to undergo structural dynamics, alternating between a green-fluorescence state and a red-fluorescence state. As time elapses, the fluorophore can be in either state but not both at the same time. Thus, the red fluorescence is maximized while the green fluorescence is minimized and vice versa. Such an antiphase dual-color (AD) corelationship between the red and green fluorescence maxima as well as between their minima can be exploited to greatly improve the signal-to-noise ratio, thus enhancing the ultimate detection limit. Potential benefits of this correlation include elimination of all interferences originating from single-color dyes and signal amplification of AD photoswitching molecules by orders of magnitude.
Photochemical Stereocontrol Using Tandem Photoredox–Chiral Lewis Acid Catalysis
2016-01-01
Conspectus The physical, biological, and materials properties of organic compounds are determined by their three-dimensional molecular shape. The development of methods to dictate the stereochemistry of organic reactions has consequently emerged as one of the central themes of contemporary synthetic chemistry. Over the past several decades, chiral catalysts have been developed to control the enantioselectivity of almost every class of synthetically useful transformation. Photochemical reactions, however, are a conspicuous exception. Relatively few examples of highly enantioselective catalytic photoreactions have been reported to date, despite almost a century of research in this field. The development of robust strategies for photochemical enantiocontrol has thus proven to be a long-standing and surprisingly difficult challenge. For the past decade, our laboratory has been studying the application of transition metal photocatalysts to a variety of problems in synthetic organic chemistry. These efforts have recently culminated in the discovery of an effective system in which the activity of a visible light absorbing transition metal photoredox catalyst is combined with a second stereocontrolling chiral Lewis acid catalyst. This dual catalyst strategy has been applied to a diverse range of photochemical reactions; these have included highly enantioselective photocatalytic [2 + 2] cycloadditions, [3 + 2] cycloadditions, and radical conjugate addition reactions. This Account describes the development of the tandem Lewis acid photoredox catalysis strategy utilized in our laboratory. It provides an analysis of the factors that we believe to be particularly important to the success of this seemingly robust approach to photocatalytic stereocontrol. (1) The photocatalysts utilized in our systems are activated by wavelengths of visible light where the organic substrates are transparent, which minimizes the possibility of competitive racemic background photoreactions. (2) The high degree of tolerance that Ru(bpy)32+ and similar octahedral metal polypyridine complexes exhibit toward Lewis acids affords great flexibility in tuning the structure of the stereocontrolling chiral catalyst without perturbing the photoredox properties of the photocatalyst. (3) Synthetic chemists have amassed a substantial understanding of the features that are common in highly successful chiral Lewis acid catalyzed reactions, and these deep, well-validated insights are readily applied to the reactions of a variety of photogenerated intermediates. We hope that the recent success of this and similar dual catalytic systems will provide a useful foundation for the further development of powerful, stereocontrolled photochemical reactions. PMID:27505691
Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis.
Yoon, Tehshik P
2016-10-18
The physical, biological, and materials properties of organic compounds are determined by their three-dimensional molecular shape. The development of methods to dictate the stereochemistry of organic reactions has consequently emerged as one of the central themes of contemporary synthetic chemistry. Over the past several decades, chiral catalysts have been developed to control the enantioselectivity of almost every class of synthetically useful transformation. Photochemical reactions, however, are a conspicuous exception. Relatively few examples of highly enantioselective catalytic photoreactions have been reported to date, despite almost a century of research in this field. The development of robust strategies for photochemical enantiocontrol has thus proven to be a long-standing and surprisingly difficult challenge. For the past decade, our laboratory has been studying the application of transition metal photocatalysts to a variety of problems in synthetic organic chemistry. These efforts have recently culminated in the discovery of an effective system in which the activity of a visible light absorbing transition metal photoredox catalyst is combined with a second stereocontrolling chiral Lewis acid catalyst. This dual catalyst strategy has been applied to a diverse range of photochemical reactions; these have included highly enantioselective photocatalytic [2 + 2] cycloadditions, [3 + 2] cycloadditions, and radical conjugate addition reactions. This Account describes the development of the tandem Lewis acid photoredox catalysis strategy utilized in our laboratory. It provides an analysis of the factors that we believe to be particularly important to the success of this seemingly robust approach to photocatalytic stereocontrol. (1) The photocatalysts utilized in our systems are activated by wavelengths of visible light where the organic substrates are transparent, which minimizes the possibility of competitive racemic background photoreactions. (2) The high degree of tolerance that Ru(bpy) 3 2+ and similar octahedral metal polypyridine complexes exhibit toward Lewis acids affords great flexibility in tuning the structure of the stereocontrolling chiral catalyst without perturbing the photoredox properties of the photocatalyst. (3) Synthetic chemists have amassed a substantial understanding of the features that are common in highly successful chiral Lewis acid catalyzed reactions, and these deep, well-validated insights are readily applied to the reactions of a variety of photogenerated intermediates. We hope that the recent success of this and similar dual catalytic systems will provide a useful foundation for the further development of powerful, stereocontrolled photochemical reactions.
Effects of 1,3-Butadiene, Isoprene, and Their Photochemical Degradation Products on Human Lung Cells
Doyle, Melanie; Sexton, Kenneth G.; Jeffries, Harvey; Bridge, Kevin; Jaspers, Ilona
2004-01-01
Because of potential exposure both in the workplace and from ambient air, the known carcinogen 1,3-butadiene (BD) is considered a priority hazardous air pollutant. BD and its 2-methyl analog, isoprene (ISO), are chemically similar but have very different toxicities, with ISO showing no significant carcinogenesis. Once released into the atmosphere, reactions with species induced by sunlight and nitrogen oxides convert BD and ISO into several photochemical reaction products. In this study, we determined the relative toxicity and inflammatory gene expression induced by exposure of A549 cells to BD, ISO, and their photochemical degradation products in the presence of nitric oxide. Gas chromatography and mass spectrometry analyses indicate the initial and major photochemical products produced during these experiments for BD are acrolein, acetaldehyde, and formaldehyde, and products for ISO are methacrolein, methyl vinyl ketone, and formaldehyde; both formed < 200 ppb of ozone. After exposure the cells were examined for cytotoxicity and interleukin-8 (IL-8) gene expression, as a marker for inflammation. These results indicate that although BD and ISO alone caused similar cytotoxicity and IL-8 responses compared with the air control, their photochemical products significantly enhanced cytotoxicity and IL-8 gene expression. This suggests that once ISO and BD are released into the environment, reactions occurring in the atmosphere transform these hydrocarbons into products that induce potentially greater adverse health effects than the emitted hydrocarbons by themselves. In addition, the data suggest that based on the carbon concentration or per carbon basis, biogenic ISO transforms into products with proinflammatory potential similar to that of BD products. PMID:15531432
Paschenko, V Z; Churin, A A; Gorokhov, V V; Grishanova, N P; Korvatovskii, B N; Maksimov, E G; Mamedov, M D
2016-12-01
In a direct experiment, the rate constants of photochemical k p and non-photochemical k p + quenching of the chlorophyll fluorescence have been determined in spinach photosystem II (PS II) membrane fragments, oxygen-evolving PS II core, as well as manganese-depleted PS II particles using pulse fluorimetry. In the dark-adapted reaction center(s) (RC), the fluorescence decay kinetics of the antenna were measured at low-intensity picosecond pulsed excitation. To create a "closed" P680 + Q A - state, RCs were illuminated by high-intensity actinic flash 8 ns prior to the measuring flash. The obtained data were approximated by the sum of two decaying exponents. It was found that the antennae fluorescence quenching efficiency by the oxidized photoactive pigment of RC P680 + was about 1.5 times higher than that of the neutral P680 state. These results were confirmed by a single-photon counting technique, which allowed to resolve the additional slow component of the fluorescence decay. Slow component was assigned to the charge recombination of P680 + Pheo - in PS II RC. Thus, for the first time, the ratio k p + /k p ≅ 1.5 was found directly. The mechanism of the higher efficiency of non-photochemical quenching comparing to photochemical quenching is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferraudi, G.
1979-04-01
The photochemical reactivity of the dimeric, mixed dimer, and monomeric sulfophthalocyanines of cobalt (III) and iron (II) was investigated by steady-state and flash irradiations. The dimeric species photodissociated into sulfophthalocyanine radicals which were coordinated to either Co(III) or Fe(II) metal centers. Reactions of such intermediates were investigated by interception with alcohols and O/sub 2/. Also, photoredox reactions were detected with monomeric acidocobalt(III) sulfophtahlocyanines. These processes produce the oxidation of the acido ligands (Cl/sup -/, Br/sup -/, N/sub 3//sup -/, I/sup -/) and the reduction of the metal center. The photoredox dissociation was also investigated by using mixed dimers of themore » cobalt sulfophthalocyanines with Cr(bpy)/sub 3//sup 3 +/ and Ru(bpy)/sub 3//sup 2 +/. The photogeneration of sulfophthalocyanine radicals was observed as a general reaction which was produced by excitation of either the Cr(bby)/sub 3//sup 3 +/ or Ru(bpy)/sub 3//sup 2 +/ units in the mixed dimer. The nature of the reactive excited states involved in the various photochemical reactions of the sulfophthalocyanines of Co(II), Co(III), Cu(II), and Fe(II) is discussed.« less
Kikukawa, Yuu; Fukuda, Takamitsu; Fuyuhiro, Akira; Ishikawa, Naoto; Kobayashi, Nagao
2011-08-14
Soluble copper phthalocyanine (CuPc) and naphthalocyanine (CuNc) precursors which can be converted thermally and photochemically into insoluble CuPc and CuNc, respectively, have been synthesized by a one-step reaction using commercially available chemicals. This journal is © The Royal Society of Chemistry 2011
Laboratory measurements. [chemical and photochemical data relative to stratospheric modeling
NASA Technical Reports Server (NTRS)
1977-01-01
A compilation of chemical and photochemical data that are relevant to stratospheric modeling is presented. There are three broad categories of data: (1) rate constants for chemical reactions, including temperature and pressure dependencies along with product distributions; (2) absorption cross sections, photodissociation quantum yield, and photolysis; (3) heterogeneous chemical processes.
On the atmospheric photochemistry of nitric acid
NASA Technical Reports Server (NTRS)
Austin, J.; Garcia, R. R.; Russell, J. M., III; Solomon, S.; Tuck, A. F.
1986-01-01
Measurements of the temporal and spatial variations in HNO3, particularly those from the Nimbus 7 limb IR monitor of the stratosphere (LIMS) satellite experiment, are compared to both a two-dimensional chemical/dynamical model and to chemistry/parcel trajectory analyses. Significant discrepancies are found between the observed and modeled variations in the winter season, especially in the polar night region. The study of the evolution of HNO3 suggests that an important source exists for this species in the high-latitude winter stratosphere that is not included in presently accepted photochemical schemes. Possible reactions to account for this discrepancy are explored.
NASA Astrophysics Data System (ADS)
Chandramouli, Bharadwaj; Kamens, Richard M.
Decamethyl cyclopentasiloxane (D 5) and decamethyl tetrasiloxane (MD 2M) were injected into a smog chamber containing fine Arizona road dust particles (95% surface area <2.6 μM) and an urban smog atmosphere in the daytime. A photochemical reaction - gas-particle partitioning reaction scheme, was implemented to simulate the formation and gas-particle partitioning of hydroxyl oxidation products of D 5 and MD 2M. This scheme incorporated the reactions of D 5 and MD 2M into an existing urban smog chemical mechanism carbon bond IV and partitioned the products between gas and particle phase by treating gas-particle partitioning as a kinetic process and specifying an uptake and off-gassing rate. A photochemical model PKSS was used to simulate this set of reactions. A Langmuirian partitioning model was used to convert the measured and estimated mass-based partitioning coefficients ( KP) to a molar or volume-based form. The model simulations indicated that >99% of all product silanol formed in the gas-phase partition immediately to particle phase and the experimental data agreed with model predictions. One product, D 4TOH was observed and confirmed for the D 5 reaction and this system was modeled successfully. Experimental data was inadequate for MD 2M reaction products and it is likely that more than one product formed. The model set up a framework into which more reaction and partitioning steps can be easily added.
1,2-diketones promoted degradation of poly(epsilon-caprolactone)
NASA Astrophysics Data System (ADS)
Danko, Martin; Borska, Katarina; Ragab, Sherif Shaban; Janigova, Ivica; Mosnacek, Jaroslav
2012-07-01
Photochemical reactions of Benzil and Camphorquinone were used for modification of poly(ɛ-caprolactone) polymer films. Photochemistry of dopants was followed by infrared spectroscopy, changes on polymer chains of matrix were followed by gel permeation chromatography. Benzoyl peroxide was efficiently photochemically generated from benzyl in solid polymer matrix in the presence of air. Following decomposition of benzoyl peroxide led to degradation of matrix. Photochemical transformation of benzil in vacuum led to hydrogen abstraction from the polymer chains in higher extent, which resulted to chains recombination and formation of gel. Photochemical transformation of camphorquinone to corresponding camphoric peroxide was not observed. Only decrease of molecular weight of polymer matrix doped with camphorquinone was observed during the irradiation.
NASA Astrophysics Data System (ADS)
Orkin, V. L.; Khamaganov, V. G.; Martynova, L. E.; Kurylo, M. J.
2012-12-01
The emissions of halogenated (Cl, Br containing) organics of both natural and anthropogenic origin contribute to the balance of and changes in the stratospheric ozone concentration. The associated chemical cycles are initiated by the photochemical decomposition of the portion of source gases that reaches the stratosphere. Reactions with hydroxyl radicals and photolysis are the main processes dictating the compound lifetime in the troposphere and release of active halogen in the stratosphere for a majority of halogen source gases. Therefore, the accuracy of photochemical data is of primary importance for the purpose of comprehensive atmospheric modeling and for simplified kinetic estimations of global impacts on the atmosphere, such as in ozone depletion (i.e., the Ozone Depletion Potential, ODP) and climate change (i.e., the Global Warming Potential, GWP). The sources of critically evaluated photochemical data for atmospheric modeling, NASA/JPL Publications and IUPAC Publications, recommend uncertainties within 10%-60% for the majority of OH reaction rate constants with only a few cases where uncertainties lie at the low end of this range. These uncertainties can be somewhat conservative because evaluations are based on the data from various laboratories obtained during the last few decades. Nevertheless, even the authors of the original experimental works rarely estimate the total combined uncertainties of the published OH reaction rate constants to be less than ca. 10%. Thus, uncertainties in the photochemical properties of potential and current atmospheric trace gases obtained under controlled laboratory conditions still may constitute a major source of uncertainty in estimating the compound's environmental impact. One of the purposes of the presentation is to illustrate the potential for obtaining accurate laboratory measurements of the OH reaction rate constant over the temperature range of atmospheric interest. A detailed inventory of accountable sources of instrumental uncertainties related to our FP-RF experiment proves a total uncertainty of the OH reaction rate constant to be as small as ca. 2-3%. The high precision of kinetic measurements allows reliable determination of weak temperature dependences of the rate constants and clear resolution of the curvature of the Arrhenius plots for the OH reaction rate constants of various compounds. The results of OH reaction rate constant determinations between 220 K and 370 K will be presented. Similarly, the accuracy of UV and IR absorption measurements will be highlighted to provide an improved basis for atmospheric modeling.
Atmospheric Production of Perchlorate on Earth and Mars
NASA Astrophysics Data System (ADS)
Claire, M.; Catling, D. C.; Zahnle, K. J.
2009-12-01
Natural production and preservation of perchlorate on Earth occurs only in arid environments. Isotopic evidence suggests a strong role for atmospheric oxidation of chlorine species via pathways including ozone or its photochemical derivatives. As the Martian atmosphere is both oxidizing and drier than the driest places on Earth, we propose an atmospheric origin for the Martian perchlorates measured by NASA's Phoenix Lander. A variety of hypothetical formation pathways can be proposed including atmospheric photochemical reactions, electrostatic discharge, and gas-solid reactions. Here, we investigate gas phase formation pathways using a 1-D photochemical model (Catling et al. 2009, accepted by JGR). Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we start with a study of the means to produce Atacama perchlorate. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. These results are sensitive to estimated reaction rates for ClO3 species. The feasibility of gas phase production for the Atacama provides justification for further investigations of gas phase photochemistry as a possible source for Martian perchlorate. In addition to the Atacama results, we will present a preliminary study incorporating chlorine chemistry into an existing Martian photochemical model (Zahnle et al. JGR 2008).
The composition dependence of the photochemical reactivity of strontium barium titanate
NASA Astrophysics Data System (ADS)
Bhardwaj, Abhilasha
The efficiency of particulate water photolysis catalysts is impractically low due to the recombination of intermediate species and charge carriers. The back reaction can occur easily if the oxidation and reduction sites on the surface of the catalyst are not far enough apart. It is hypothesized that it will be possible to increase the separation of the sites of the two half reactions and reduce the recombination of photogenerated charge carriers by using a ferroelectric material with permanent internal dipolar fields. This separation of the reaction sites may significantly increase the efficiency of the process. The present work compares the photochemical reactivities of ferroelectric and nonferroelectric materials (SrxBa1-xTiO 3, 0.0≤ x ≤1.0) with similar composition and structure. The reactivities are compared by measuring the color change of methylene blue dye after the aqueous dye solution reacts on the surface of ceramic sample pellets as a result of exposure to UV light. The reactivities are also compared by measuring the amount of silver that is formed when an aqueous AgNO3 solution photochemically reacts on the surface. The change in the color of the dye is measured by diffuse reflectance spectroscopy and absorbance measurements. The amount of silver is measured by atomic force microscopy. The photochemical reactivity of SrxBa1-xTiO3 shows a local maximum at the composition of the ferroelectric to non-ferroelectric transition. Also, the reactivities decrease as BaTiO3 and SrTiO3 become less pure. The dominant factors causing this trend in reactivities of SrxBa1-xTiO3 are the dielectric constant and alloy scattering. It is found that higher values of the dielectric constant increase the photochemical reactivity by enlarging the space charge region. The increase in alloy scattering in SrxBa1-xTiO 3 solid solutions as x increases from zero or decreases from 1, has adverse effect on reactivity. There are other factors such as ferroelectric polarization, relative band edge positions and pH of the solution that can influence the reactivity. However, these factors are not significant in determining the composition dependence of the photochemical reactivity of SrxBa 1-xTiO3. The comparison of the surfaces of SrxBa 1-xTiO3 samples imaged by AFM after reaction (with silver nitrate) also showed that the mode of reaction gradually changes from spatially selective reactivity for BaTiO3 to spatially uniform reactivity for SrTiO3. The spatially selective reactivity disappears completely when x in SrxBa1-xTiO3 is greater than or equal to 0.28. The mechanism of the photochemical reaction of methylene blue dye on SrxBa1-xTiO3 was also studied. It is found that the dye reacts by a mechanism similar to that of silver. The methylene blue dye and silver reduce on the surfaces of positively charged domains and the reduced reaction products remain at the reduction reaction site. Extensions of this research would be to experimentally determine the band edges and defect concentrations in SrxBa1-xTiO 3 to get a better understanding of their influence on photochemical reactivity. Since the long term goal of this research is to find a efficient particulate catalyst for photocatalysis of water, the next step in this research is to carry out the photocatalysis of water using SrxBa1-x TiO3 powders. The effect of catalyst particle size should also be analyzed.
Mercury Isotopes in Earth and Environmental Sciences
NASA Astrophysics Data System (ADS)
Blum, Joel D.; Sherman, Laura S.; Johnson, Marcus W.
2014-05-01
Virtually all biotic, dark abiotic, and photochemical transformations of mercury (Hg) produce Hg isotope fractionation, which can be either mass dependent (MDF) or mass independent (MIF). The largest range in MDF is observed among geological materials and rainfall impacted by anthropogenic sources. The largest positive MIF of Hg isotopes (odd-mass excess) is caused by photochemical degradation of methylmercury in water. This signature is retained through the food web and measured in all freshwater and marine fish. The largest negative MIF of Hg isotopes (odd-mass deficit) is caused by photochemical reduction of inorganic Hg and has been observed in Arctic snow and plant foliage. Ratios of MDF to MIF and ratios of 199Hg MIF to 201Hg MIF are often diagnostic of biogeochemical reaction pathways. More than a decade of research demonstrates that Hg isotopes can be used to trace sources, biogeochemical cycling, and reactions involving Hg in the environment.
NASA Technical Reports Server (NTRS)
Ferris, J. P.; Guillemin, J. C.
1991-01-01
Titan has an atmosphere which is subject to dramatic chemical evolution due mainly to the dramatic effect of the UV flux from the Sun. The energetic solar photons and other particles are converting the methane-nitrogen atmosphere into the unsaturated carbon compounds observed by the Voyager probes. These same solar photons are also converting some of these unsaturated reaction products into the aerosols observed in the atmosphere which obscure the view of the surface of Titan. In particular, the photochemical reactions of cyanoacetylene, dicyanoacetylene, acetylene and ethylene may result in the formation of the higher hydrocarbons and polymers which result in the aerosols observed in Titan's atmosphere. Polymers are the principal reaction products formed by irradiation of cyanoacetylene and dicyanoacetylene. Irradiation of cyanoacetylene with 185 nm of light also yields 1,3,5-tricyanobenzene while irradiation at 254 nm yields 1,2,4-tricyanobenzene and tetracyano cyclooctatetraenes. Photolyses of mixtures of cyanoacetylene and acetylene yields mono- and di- cyanobenzenes. The 1-Cyanocyclobutene is formed from the photochemical addition of cyanoacetylene with ethylene. The photolysis of dicyanoacetylene with acetylene yields 2,3-dicyano-1,3-butadiene and 1,2-dicyanobenzene. Tetracyano cyclooctatetraene products were also observed in the photolysis of mixtures of dicyanoacetylene and acetylene with 254 nm light. The 1,2-Dicyano cyclobutene is obtained from the photolysis dicyanoacetylene and ethylene. Reaction mechanisms will be proposed to explain the observed photoproducts.
Photochemical Reactions of Tris (Oxalato) Iron (III): A First-Year Chemistry Experiment.
ERIC Educational Resources Information Center
Baker, A. D.; And Others
1980-01-01
Describes a first-year chemistry experiment that illustrates the fundamental concepts of a photoinduced reaction. Qualitative and quantitative parts of the photoreduction of potassium ferrioxalate are detailed. (CS)
Photochemical transformations of diazocarbonyl compounds: expected and novel reactions
NASA Astrophysics Data System (ADS)
Galkina, O. S.; Rodina, L. L.
2016-05-01
Photochemical reactions of diazocarbonyl compounds are well positioned in synthetic practice as an efficient method for ring contraction and homologation of carboxylic acids and as a carbene generation method. However, interpretation of the observed transformations of diazo compounds in electronically excited states is incomplete and requires a careful study of the fine mechanisms of these processes specific to different excited states of diazo compounds resorting to modern methods of investigation, including laser technology. The review is devoted to analysis of new data in the chemistry of excited states of diazocarbonyl compounds. The bibliography includes 155 references.
Kinetics of the Br2-CH3CHO Photochemical Chain Reaction
NASA Technical Reports Server (NTRS)
Nicovich, J. M.; Shackelford, C. J.; Wine, P. H.
1997-01-01
Time-resolved resonance fluorescence spectroscopy was employed in conjunction with laser flash photolysis of Br2 to study the kinetics of the two elementary steps in the photochemical chain reaction nBr2 + nCH3CHO + hv yields nCH3CBrO + nHBr. In the temperature range 255-400 K, the rate coefficient for the reaction Br((sup 2)P(sub 3/2)) + CH3CHO yields CH3CO + HBr is given by the Arrhenius expression k(sub 6)(T) = (1.51 +/- 0.20) x 10(exp -11) exp(-(364 +/- 41)/T)cu cm/(molecule.s). At 298 K, the reaction CH3CO + Br2 yields CH3CBrO + Br proceeds at a near gas kinetic rate, k(sub 7)(298 K) = (1.08 +/- 0.38) x 10(exp -10)cu cm/(molecule.s).
Recent Advances in the Synthesis of Cyclobutanes by Olefin [2 + 2] Photocycloaddition Reactions
2016-01-01
The [2 + 2] photocycloaddition is undisputedly the most important and most frequently used photochemical reaction. In this review, it is attempted to cover all recent aspects of [2 + 2] photocycloaddition chemistry with an emphasis on synthetically relevant, regio-, and stereoselective reactions. The review aims to comprehensively discuss relevant work, which was done in the field in the last 20 years (i.e., from 1995 to 2015). Organization of the data follows a subdivision according to mechanism and substrate classes. Cu(I) and PET (photoinduced electron transfer) catalysis are treated separately in sections 2 and 4, whereas the vast majority of photocycloaddition reactions which occur by direct excitation or sensitization are divided within section 3 into individual subsections according to the photochemically excited olefin. PMID:27018601
1,2-diketones promoted degradation of poly(epsilon-caprolactone)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danko, Martin; Borska, Katarina; Ragab, Sherif Shaban
2012-07-11
Photochemical reactions of Benzil and Camphorquinone were used for modification of poly({epsilon}-caprolactone) polymer films. Photochemistry of dopants was followed by infrared spectroscopy, changes on polymer chains of matrix were followed by gel permeation chromatography. Benzoyl peroxide was efficiently photochemically generated from benzyl in solid polymer matrix in the presence of air. Following decomposition of benzoyl peroxide led to degradation of matrix. Photochemical transformation of benzil in vacuum led to hydrogen abstraction from the polymer chains in higher extent, which resulted to chains recombination and formation of gel. Photochemical transformation of camphorquinone to corresponding camphoric peroxide was not observed. Only decreasemore » of molecular weight of polymer matrix doped with camphorquinone was observed during the irradiation.« less
Light limitation plays a central role in regulating DOM reactions in temperate watersheds
NASA Astrophysics Data System (ADS)
Yoon, B.; Hosen, J. D.; Kyzivat, E.; Fair, J. H.; Weber, L.; Aho, K. S.; Stubbins, A.; Lowenthal, R. S.; Raymond, P. A.
2017-12-01
Biological uptake and photochemical oxidation determine how much dissolved organic matter (DOM) can be removed and exported from inland waters. It is thus critical to understand the control on the biological and photochemical oxidation of DOM, and identify potential synergy between these two DOM removal processes. Yet, the variability of biological and photochemical lability, and the prevalence of priming effects between the two removal mechanisms are poorly understood at larger spatiotemporal scale. To address this knowledge gap, we analyzed the lability of 900 samples collected throughout the Connecticut River across two years (n = 510 for biolability, n=394 for photolability). Furthermore, we measured the effect of photochemical priming for biological removal and of biological priming for photochemical removal (n= 151, n=146, respectively). Our results show that photolability is on average 5 times greater than biolability, and that the mass of photolabile DOM can be predicted from UV absorbance at 254 nm. Photochemical DOM removal also led to additional "unlocking" of previously bio-recalcitrant DOM in 80% of the samples, and increased the biological lability by threefold on average. Scaling further, we extrapolate our model to estimate that the DOM fluxes leaving the Connecticut River and the Mississippi River are 49% and 45% photolabile, respectively. The significant photoreactivity observed across the samples and the subsequent increase in biolability demonstrate that sunlight is a more potent agent of DOM removal than the biological reactions. Yet, the photolability of DOM fluxes leaving the Connecticut River and Mississippi River indicates that the full photo-oxidation potential is not achieved due to light limitation.
Karaköse, Hande; Jaiswal, Rakesh; Deshpande, Sagar; Kuhnert, Nikolai
2015-04-08
Mono- and diacyl chlorogenic acids undergo photochemical trans-cis isomerization under ultraviolet (UV) irradiation. The photochemical equilibrium composition was established for eight selected derivatives. In contrast to all other dicaffeoylquinic acid derivatives, cynarin (1,3-dicaffeoylquinic acid) undergoes a [2 + 2] photochemical cycloaddition reaction, constituting a first example of Schmidt's law in a natural product family. The relevance of photochemical isomerization in agricultural practice was investigated using 120 samples of Stevia rebaudiana leave samples grown under defined cultivation conditions. Ratios of cis to trans chlorogenic acids were determined in leaf samples and correlated with climatic and harvesting conditions. The data indicate a clear correlation between the formation of cis-caffeoyl derivatives and sunshine hours prior to harvesting and illustrate the relevance of UV exposure to plant material affecting its phytochemical composition.
Chizhik, Stanislav; Sidelnikov, Anatoly; Zakharov, Boris; Naumov, Panče; Boldyreva, Elena
2018-02-28
Photomechanically reconfigurable elastic single crystals are the key elements for contactless, timely controllable and spatially resolved transduction of light into work from the nanoscale to the macroscale. The deformation in such single-crystal actuators is observed and usually attributed to anisotropy in their structure induced by the external stimulus. Yet, the actual intrinsic and external factors that affect the mechanical response remain poorly understood, and the lack of rigorous models stands as the main impediment towards benchmarking of these materials against each other and with much better developed soft actuators based on polymers, liquid crystals and elastomers. Here, experimental approaches for precise measurement of macroscopic strain in a single crystal bent by means of a solid-state transformation induced by light are developed and used to extract the related temperature-dependent kinetic parameters. The experimental results are compared against an overarching mathematical model based on the combined consideration of light transport, chemical transformation and elastic deformation that does not require fitting of any empirical information. It is demonstrated that for a thermally reversible photoreactive bending crystal, the kinetic constants of the forward (photochemical) reaction and the reverse (thermal) reaction, as well as their temperature dependence, can be extracted with high accuracy. The improved kinematic model of crystal bending takes into account the feedback effect, which is often neglected but becomes increasingly important at the late stages of the photochemical reaction in a single crystal. The results provide the most rigorous and exact mathematical description of photoinduced bending of a single crystal to date.
NASA Technical Reports Server (NTRS)
Summers, D. P.
1999-01-01
An analysis of sources and sinks for ammonia and nitrite on the early Earth was conducted. Rates of formation and destruction, and steady state concentrations of both species were determined by steady state kinetics. The importance of the reaction of nitrite with ammonia on the feasibility of ammonia formation from nitrite was evaluated. The analysis considered conditions such as temperature, ferrous iron concentration, and pH. For sinks we considered the reduction of nitrite to ammonia, reaction between nitrite and ammonia, photochemical destruction of both species, and destruction at hydrothermal vents. Under most environmental conditions, the primary sink for nitrite is reduction to ammonia. The reaction between ammonia and nitrite is not an important sink for either nitrite or ammonia. Destruction at hydrothermal vents is important at acidic pH's and at low ferrous iron concentrations. Photochemical destruction, even in a worst case scenario, is unimportant under many conditions except possibly under acidic, low iron concentration, or low temperature conditions. The primary sink for ammonia is photochemical destruction in the atmosphere. Under acidic conditions, more of the ammonia is tied up as ammonium (reducing its vapor pressure and keeping it in solution) and hydrothermal destruction becomes more important.
NASA Astrophysics Data System (ADS)
Xiong, F.; McAvey, K. M.; Pratt, K. A.; Groff, C. J.; Hostetler, M. A.; Lipton, M. A.; Starn, T. K.; Seeley, J. V.; Bertman, S. B.; Teng, A. P.; Crounse, J. D.; Nguyen, T. B.; Wennberg, P. O.; Misztal, P. K.; Goldstein, A. H.; Guenther, A. B.; Koss, A. R.; Olson, K. F.; de Gouw, J. A.; Baumann, K.; Edgerton, E. S.; Feiner, P. A.; Zhang, L.; Miller, D. O.; Brune, W. H.; Shepson, P. B.
2015-10-01
Isoprene hydroxynitrates (IN) are tracers of the photochemical oxidation of isoprene in high NOx environments. Production and loss of IN have a significant influence on the NOx cycle and tropospheric O3 chemistry. To better understand IN chemistry, a series of photochemical reaction chamber experiments was conducted to determine the IN yield from isoprene photooxidation at high NO concentrations (> 100 ppt). By combining experimental data and calculated isomer distributions, a total IN yield of 9(+4/-3) % was derived. The result was applied in a zero-dimensional model to simulate production and loss of ambient IN observed in a temperate forest atmosphere, during the Southern Oxidant and Aerosol Study (SOAS) field campaign, from 27 May to 11 July 2013. The 9 % yield was consistent with the observed IN/(MVK+MACR) ratios observed during SOAS. By comparing field observations with model simulations, we identified NO as the limiting factor for ambient IN production during SOAS, but vertical mixing at dawn might also contribute (~ 27 %) to IN dynamics. A close examination of isoprene's oxidation products indicates that its oxidation transitioned from a high-NO dominant chemical regime in the morning into a low-NO dominant regime in the afternoon. A significant amount of IN produced in the morning high NO regime could be oxidized in the low NO regime, and a possible reaction scheme was proposed.
From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective
NASA Astrophysics Data System (ADS)
Gruber, J. Michael; Malý, Pavel; Krüger, Tjaart P. J.; Grondelle, Rienk van
2018-01-01
The conversion of solar radiation to chemical energy in plants and green algae takes place in the thylakoid membrane. This amphiphilic environment hosts a complex arrangement of light-harvesting pigment-protein complexes that absorb light and transfer the excitation energy to photochemically active reaction centers. This efficient light-harvesting capacity is moreover tightly regulated by a photoprotective mechanism called non-photochemical quenching to avoid the stress-induced destruction of the catalytic reaction center. In this review we provide an overview of single-molecule fluorescence measurements on plant light-harvesting complexes (LHCs) of varying sizes with the aim of bridging the gap between the smallest isolated complexes, which have been well-characterized, and the native photosystem. The smallest complexes contain only a small number (10-20) of interacting chlorophylls, while the native photosystem contains dozens of protein subunits and many hundreds of connected pigments. We discuss the functional significance of conformational dynamics, the lipid environment, and the structural arrangement of this fascinating nano-machinery. The described experimental results can be utilized to build mathematical-physical models in a bottom-up approach, which can then be tested on larger in vivo systems. The results also clearly showcase the general property of biological systems to utilize the same system properties for different purposes. In this case it is the regulated conformational flexibility that allows LHCs to switch between efficient light-harvesting and a photoprotective function.
Klementova, Sarka; Zlamal, Martin
2013-04-01
Photochemical degradation of atrazine under different conditions was studied and compared, namely degradation via photocatalysis on TiO2, UV C photolysis, and homogeneous photocatalysis in the presence of added ferric ions. The reaction rate constants in heterogeneous photocatalytic reactions on TiO2 and of photolytic degradation by means of UV C light are similar, 0.018 min(-1) and 0.020 min(-1), respectively. The reaction rate constants in homogeneous photocatalytic reactions with Fe(III) added depend strongly on the Fe(III) concentration, 0.0017 min(-1) for 1.6 × 10(-6) mol l(-1) Fe(III) to 0.105 min(-1) for 3.3 × 10(-4) mol l(-1) Fe(III). In all types of reactions, dechlorination was observed; in homogeneous photocatalytic reactions and in UV C (250-300 nm) photolysis, dechlorination proceeds with a 1 : 1 stoichiometry to atrazine degradation, in photocatalytic reactions on TiO2, dechlorination measured as chloride ion release reaches only 1/5 of the substrate degradation. In photocatalytic reactions on TiO2, mineralisation of 40% carbon was observed.
Holographic interferometry imaging monitoring of photodynamic (PDT) reactions in gelatin biophantom
NASA Astrophysics Data System (ADS)
Davidenko, N.; Mahdi, H.; Zheng, X.; Davidenko, I.; Pavlov, V.; Kuranda, N.; Chuprina, N.; Studzinsky, S.; Pandya, A.; Karia, H.; Tajouri, S.; Dervenis, M.; Gergely, C.; Douplik, A.
2018-01-01
Heat and photochemical reactions with human hemoglobin and photosensitizer were monitored by holography interference method in gelatin phantom. The method has successfully facilitated monitoring the reactions as a highresolution refraction index mapping in real time video regime. Methylene Blue was exploited as a photosensitizer.
Koike, Kazuhide; Okoshi, Nobuaki; Hori, Hisao; Takeuchi, Koji; Ishitani, Osamu; Tsubaki, Hideaki; Clark, Ian P; George, Michael W; Johnson, Frank P A; Turner, James J
2002-09-25
We report herein the mechanism of the photochemical ligand substitution reactions of a series of fac-[Re(X(2)bpy)(CO)(3)(PR(3))](+) complexes (1) and the properties of their triplet ligand-field ((3)LF) excited states. The reason for the photostability of the rhenium complexes [Re(X(2)bpy)(CO)(3)(py)](+) (3) and [Re(X(2)bpy)(CO)(3)Cl] (4) was also investigated. Irradiation of an acetonitrile solution of 1 selectively gave the biscarbonyl complexes cis,trans-[Re(X(2)bpy)(CO)(2)(PR(3))(CH(3)CN)](+) (2). Isotope experiments clearly showed that the CO ligand trans to the PR(3) ligand was selectively substituted. The photochemical reactions proceeded via a dissociative mechanism from the (3)LF excited state. The thermodynamical data for the (3)LF excited states of complexes 1 and the corrective nonradiative decay rate constants for the triplet metal-to-ligand charge-transfer ((3)MLCT) states were obtained from temperature-dependence data for the emission lifetimes and for the quantum yields of the photochemical reactions and the emission. Comparison of 1 with [Re(X(2)bpy)(CO)(3)(py)](+) (3) and [Re(X(2)bpy)(CO)(3)Cl] (4) indicated that the (3)LF states of some 3- and 4-type complexes are probably accessible from the (3)MLCT state even at ambient temperature, but these complexes were stable to irradiation at 365 nm. The photostability of 3 and 4, in contrast to 1, can be explained by differences in the trans effects of the PR(3), py, and Cl(-) ligands.
Wang, Huibin; Zhang, Yiming; Yuan, Xun; Chen, Yi; Yan, Mingdi
2010-01-01
A universal photochemical method has been established for the immobilization of intact carbohydrates and their analogues, and for the fabrication of carbohydrate microarrays. The method features the use of perfluorophenyl azide (PFPA)-modified substrates and the photochemical reaction of surface azido groups with printed carbohydrates. Various aldoses, ketoses, non-reducing sugars such as alditols and their derivatives can be directly arrayed on the PFPA-modified chips. The lectin-recognition ability of arrayed mannose, glucose and their oligo- and polysaccharides were confirmed using surface plasmon resonance imaging and laser-induced fluorescence imaging. PMID:21138274
Wang, Huibin; Zhang, Yiming; Yuan, Xun; Chen, Yi; Yan, Mingdi
2011-01-19
A universal photochemical method has been established for the immobilization of intact carbohydrates and their analogues, and for the fabrication of carbohydrate microarrays. The method features the use of perfluorophenyl azide (PFPA)-modified substrates and the photochemical reaction of surface azido groups with printed carbohydrates. Various aldoses, ketoses, nonreducing sugars such as alditols, and their derivatives can be directly arrayed on the PFPA-modified chips. The lectin-recognition ability of arrayed mannose, glucose, and their oligo- and polysaccharides were confirmed using surface plasmon resonance imaging and laser-induced fluorescence imaging.
High-resolution biophysical analysis of the dynamics of nucleosome formation
Hatakeyama, Akiko; Hartmann, Brigitte; Travers, Andrew; Nogues, Claude; Buckle, Malcolm
2016-01-01
We describe a biophysical approach that enables changes in the structure of DNA to be followed during nucleosome formation in in vitro reconstitution with either the canonical “Widom” sequence or a judiciously mutated sequence. The rapid non-perturbing photochemical analysis presented here provides ‘snapshots’ of the DNA configuration at any given moment in time during nucleosome formation under a very broad range of reaction conditions. Changes in DNA photochemical reactivity upon protein binding are interpreted as being mainly induced by alterations in individual base pair roll angles. The results strengthen the importance of the role of an initial (H3/H4)2 histone tetramer-DNA interaction and highlight the modulation of this early event by the DNA sequence. (H3/H4)2 binding precedes and dictates subsequent H2A/H2B-DNA interactions, which are less affected by the DNA sequence, leading to the final octameric nucleosome. Overall, our results provide a novel, exciting way to investigate those biophysical properties of DNA that constitute a crucial component in nucleosome formation and stabilization. PMID:27263658
Probing how initial retinal configuration controls photochemical dynamics in retinal proteins
NASA Astrophysics Data System (ADS)
Wand, A.; Rozin, R.; Eliash, T.; Friedman, N.; Jung, K. H.; Sheves, M.; Ruhman, S.
2013-03-01
The effects of the initial retinal configuration and the active isomerization coordinate on the photochemistry of retinal proteins (RPs) are assessed by comparing photochemical dynamics of two stable retinal ground state configurations (all-trans,15-anti vs. 13-cis,15-syn), within two RPs: Bacteriorhodopsin (BR) and Anabaena Sensory Rhodopsin (ASR). Hyperspectral pump-probe spectroscopy shows that photochemistry starting from 13-cis retinal in both proteins is 3-10 times faster than when started in the all-trans state, suggesting that the hastening is ubiquitous to microbial RPs, regardless of their different biological functions and origin. This may also relate to the known disparity of photochemical rates between microbial RPs and visual pigments. Importance and possible underlying mechanisms are discussed as well.
Evaluated kinetic and photochemical data for atmospheric chemistry
NASA Technical Reports Server (NTRS)
Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Troe, J.; Watson, R. T.
1980-01-01
This paper contains a critical evaluation of the kinetics and photochemistry of gas phase chemical reactions of neutral species involved in middle atmosphere chemistry (10-55 km altitude). Data sheets have been prepared for 148 thermal and photochemical reactions, containing summaries of the available experimental data with notes giving details of the experimental procedures. For each reaction a preferred value of the rate coefficient at 298 K is given together with a temperature dependency where possible. The selection of the preferred value is discussed, and estimates of the accuracies of the rate coefficients and temperature coefficients have been made for each reaction. The data sheets are intended to provide the basic physical chemical data needed as input for calculations which model atmospheric chemistry. A table summarizing the preferred rate data is provided, together with an appendix listing the available data on enthalpies of formation of the reactant and product species.
Straathof, Natan J W; Su, Yuanhai; Hessel, Volker; Noël, Timothy
2016-01-01
In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime.
NASA Astrophysics Data System (ADS)
Hong, Peng; Sekine, Yasuhito; Sasamori, Tsutoni; Sugita, Seiji
2018-06-01
Formation of organic aerosols driven by photochemical reactions has been observed and suggested in CH4-containing atmospheres, including Titan and early Earth. However, the detailed production and growth mechanisms of organic aerosols driven by solar far ultraviolet (FUV) light remain poorly constrained. We conducted laboratory experiments simulating photochemical reactions in a CH4sbnd CO2 atmosphere driven by the FUV radiations dominated by the Lyman-α line. In the experiments, we analyzed time variations in thickness and infrared spectra of solid organic film formed on an optical window in a reaction cell. Gas species formed by FUV irradiation were also analyzed and compared with photochemical model calculations. Our experimental results show that the growth rate of the organic film decreases as the CH4/CO2 ratio of reactant gas mixture decreases, and that the decrease becomes very steep for CH4/CO2 < 1. Comparison with photochemical model calculations suggests that polymerizations of gas-phase hydrocarbons, such as polyynes and aromatics, cannot account for the growth rate of the organic film but that the addition reaction of CH3 radicals onto the organic film with the reaction probability around 10-2 can explain the growth rate. At CH4/CO2 < 1, etching by O atom formed by CO2 photolysis would reduce or inhibit the growth of the organic film. Our results suggest that organic aerosols would grow through CH3 addition onto the surface during the precipitation of aerosol particles in the middle atmosphere of Titan and early Earth. On Titan, effective CH3 addition would reduce C2H6 production in the atmosphere. On early Earth, growth of aerosol particles would be less efficient than those on Titan, possibly resulting in small-sized monomers and influencing UV shielding.
Gu, X.; Kim, Y. S.; Kaiser, R. I.; Mebel, A. M.; Liang, M. C.; Yung, Y. L.
2009-01-01
For the last four decades, the role of polyynes such as diacetylene (HCCCCH) and triacetylene (HCCCCCCH) in the chemical evolution of the atmosphere of Saturn's moon Titan has been a subject of vigorous research. These polyacetylenes are thought to serve as an UV radiation shield in planetary environments; thus, acting as prebiotic ozone, and are considered as important constituents of the visible haze layers on Titan. However, the underlying chemical processes that initiate the formation and control the growth of polyynes have been the least understood to date. Here, we present a combined experimental, theoretical, and modeling study on the synthesis of the polyyne triacetylene (HCCCCCCH) via the bimolecular gas phase reaction of the ethynyl radical (CCH) with diacetylene (HCCCCH). This elementary reaction is rapid, has no entrance barrier, and yields the triacetylene molecule via indirect scattering dynamics through complex formation in a single collision event. Photochemical models of Titan's atmosphere imply that triacetylene may serve as a building block to synthesize even more complex polyynes such as tetraacetylene (HCCCCCCCCH). PMID:19805262
Gu, X; Kim, Y S; Kaiser, R I; Mebel, A M; Liang, M C; Yung, Y L
2009-09-22
For the last four decades, the role of polyynes such as diacetylene (HCCCCH) and triacetylene (HCCCCCCH) in the chemical evolution of the atmosphere of Saturn's moon Titan has been a subject of vigorous research. These polyacetylenes are thought to serve as an UV radiation shield in planetary environments; thus, acting as prebiotic ozone, and are considered as important constituents of the visible haze layers on Titan. However, the underlying chemical processes that initiate the formation and control the growth of polyynes have been the least understood to date. Here, we present a combined experimental, theoretical, and modeling study on the synthesis of the polyyne triacetylene (HCCCCCCH) via the bimolecular gas phase reaction of the ethynyl radical (CCH) with diacetylene (HCCCCH). This elementary reaction is rapid, has no entrance barrier, and yields the triacetylene molecule via indirect scattering dynamics through complex formation in a single collision event. Photochemical models of Titan's atmosphere imply that triacetylene may serve as a building block to synthesize even more complex polyynes such as tetraacetylene (HCCCCCCCCH).
A dual-catalysis approach to enantioselective [2 + 2] photocycloadditions using visible light.
Du, Juana; Skubi, Kazimer L; Schultz, Danielle M; Yoon, Tehshik P
2014-04-25
In contrast to the wealth of catalytic systems that are available to control the stereochemistry of thermally promoted cycloadditions, few similarly effective methods exist for the stereocontrol of photochemical cycloadditions. A major unsolved challenge in the design of enantioselective catalytic photocycloaddition reactions has been the difficulty of controlling racemic background reactions that occur by direct photoexcitation of substrates while unbound to catalyst. Here, we describe a strategy for eliminating the racemic background reaction in asymmetric [2 + 2] photocycloadditions of α,β-unsaturated ketones to the corresponding cyclobutanes by using a dual-catalyst system consisting of a visible light-absorbing transition-metal photocatalyst and a stereocontrolling Lewis acid cocatalyst. The independence of these two catalysts enables broader scope, greater stereochemical flexibility, and better efficiency than previously reported methods for enantioselective photochemical cycloadditions.
Direct evidence of photochemical α-cleavage of benzoin in fluid solutions
NASA Astrophysics Data System (ADS)
Koyanagi, Motohiko; Futami, Hiroshi; Mukai, Masahiro; Yamauchi, Seigo
1989-02-01
By means of optical absorption, 1 NMR, and transient EPR techniques, the fate of diluted benzoin upon light irradiation to its S 1 (nπ*) state has been investigated in methylcyclohexane and benzene solutions at room temperature. The CIDEP spectrum of benzoin is observed for the first time, and the intermediate radicals involved are assigned. The overall results show that the main scheme of the photochemical reactions is the α-cleavage occurring in the excited triplet state of benzoin, as proved in the almost net emission pattern of the CIDEP spectra. A stoichiometric reaction leading to effective benzaldehyde formation is established for the benzoin solutions.
Photochemical reduction of cytochrome c by a 1,4,5,8-naphthalenediimide radical anion.
Campos, Ivana B; Nantes, Iseli L; Politi, Mario J; Brochsztain, Sergio
2004-01-01
Steady-state UV irradiation of aqueous solutions containing cytochrome c (cyt c) and N,N'-bis(2-phosphonoethyl)-1,4,5,8-naphthalenediimide (BPNDI), a water-soluble aromatic imide, resulted in the reduction of the heme iron from the Fe(III) to the Fe(II) oxidation state. The reaction kinetics were followed by the increase of the ferrocytochrome c absorbance band at 549 nm. The rate of the photochemical reaction was pH dependent, reaching its maximum values over the pH range 4-7. Addition of electrolyte (NaCl) at pH 5 resulted in a decrease in the reaction rate, as expected for reactions between oppositely charged species. Flash photolysis studies revealed that the actual reductant in the reaction was a photogenerated BPNDI radical anion, which transferred an electron to the cyt c heme iron. The participation of imide radicals in the process was confirmed by the ready reduction of cyt c by BPNDI radicals chemically generated with sodium dithionite.
NASA Astrophysics Data System (ADS)
Toyota, K.; Kanaya, Y.; Takahashi, M.; Akimoto, H.
2004-09-01
A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry) to investigate photochemical interactions between volatile organic compounds (VOCs) and reactive halogen species in the marine boundary layer (MBL). Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit description of oxidative degradation of up to C3-hydrocarbons (CH4, C2H6, C3H8, C2H4, C3H6, and C2H2) initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in forming halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO) and alkenes (especially C3H6) are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from a reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. The reaction between Br atoms and C2H2 is shown to be unimportant for determining the degree of bromine activation in the remote MBL. These results imply that reactive halogen chemistry can mediate a link between the oceanic emissions of VOCs and the behaviors of compounds that are sensitive to halogen chemistry such as dimethyl sulfide, NOx, and O3 in the MBL.
Non-adiabatic dynamics of molecules in optical cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalewski, Markus, E-mail: mkowalew@uci.edu; Bennett, Kochise; Mukamel, Shaul, E-mail: smukamel@uci.edu
2016-02-07
Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes likemore » the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dellinger, B.; Graham, J.L.; Berman, J.M.
1994-05-01
Application of concentrated solar energy has been proposed to be a viable waste disposal option. Specifically, this concept of solar induced high-temperature photochemistry is based on the synergistic contribution of concentrated infrared (IR) radiation, which acts as an intense heating source, and near ultraviolet and visible (UV-VIS) radiation, which can induce destructive photochemical processes. Some significant advances have been made in the theoretical framework of high-temperature photochemical processes (Section 2) and development of experimental techniques for their study (Section 3). Basic thermal/photolytic studies have addressed the effect of temperature on the photochemical destruction of pure compounds (Section 4). Detailed studiesmore » of the destruction of reaction by-products have been conducted on selected waste molecules (Section 5). Some very limited results are available on the destruction of mixtures (Section 6). Fundamental spectroscopic studies have been recently initiated (Section 7). The results to date have been used to conduct some relatively simple scale-up studies of the solar detoxification process. More recent work has focused on destruction of compounds that do not directly absorb solar radiation. Research efforts have focused on homogeneous as well as heterogeneous methods of initiating destructive reaction pathways (Section 9). Although many conclusions at this point must be considered tentative due to lack of basic research, a clearer picture of the overall process is emerging (Section 10). However, much research remains to be performed and most follow several veins, including photochemical, spectroscopic, combustion kinetic, and engineering scale-up (Section 11).« less
Sunlight-induced Transformations of Graphene-based Nanomaterials in Aquatic Environments
Graphene-based nanomaterials and other related carbon nanomaterials (CNMs) can be released from products during their life cycles. Upon entry into aquatic environments, they are potentially transformed by photochemical reactions, oxidation reactions and biological processes, all ...
The photochemical reaction of hydrocarbons under extreme thermobaric conditions
NASA Astrophysics Data System (ADS)
Serovaiskii, Aleksandr; Kolesnikov, Anton; Mukhina, Elena; Kutcherov, Vladimir
2017-10-01
The photochemical reaction of hydrocarbons was found to play an important role in the experiments with the synthetic petroleum conducted in Diamond Anvil Cell (DAC). Raman spectroscopy with a green laser (514.5 nm) was used for in situ sample analysis. This photochemical effect was investigated in the pressure range of 0.7-5 GPa, in the temperature interval from the ambient conditions to 450°C. The power of laser used in these experiment series was from 0.05 W to 0.6 W. The chemical transformation was observed when the necessary threshold pressure (~2.8 GPa) was reached. This transformation correlated with the luminescence appearance on the Raman spectra and a black opaque spot in the sample was observed in the place where the laser focus was forwarded. The exposure time and laser power (at least in the 0.1-0.5 W range) did not play a role in the 0.1-0.5 GPa range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feliz, M.; Ferraudi, G.; Altmiller, H.
1992-01-09
The photochemistry of fac-ClRe(CO){sub 3}L{sub 2}, L = 4-phenylpyridine and 4-cyanopyridine, has been investigated by monochromatic steady-state and flash photolyses between 400 and 229 nm. Two parallel photoprocesses, the photogeneration of the emissive MLCT state and the photoredox dissociation in (ClRe(CO){sub 3}L{sup +}, L{sup {sm_bullet}{minus}}) products, have been observed with both compounds. A third photoprocess, namely, the photogeneration of a Re(I)-ligand biradical, has been observed only in photolyses of the 4-phenylpyridine complex. While this Re(I)-ligand biradical reduces Cu{sup II}(TIM){sup 2+} to the corresponding Cu(I) species, no such reaction is undergone by the MLCT state. Differences between the electronic structures ofmore » these complexes, shown by extended Hueckel MO calculations, were related to their intrinsic photochemical behavior. 54 refs., 9 figs., 1 tab.« less
Su, Yuanhai; Straathof, Natan J W; Hessel, Volker; Noël, Timothy
2014-08-18
Continuous-flow photochemistry is used increasingly by researchers in academia and industry to facilitate photochemical processes and their subsequent scale-up. However, without detailed knowledge concerning the engineering aspects of photochemistry, it can be quite challenging to develop a suitable photochemical microreactor for a given reaction. In this review, we provide an up-to-date overview of both technological and chemical aspects associated with photochemical processes in microreactors. Important design considerations, such as light sources, material selection, and solvent constraints are discussed. In addition, a detailed description of photon and mass-transfer phenomena in microreactors is made and fundamental principles are deduced for making a judicious choice for a suitable photomicroreactor. The advantages of microreactor technology for photochemistry are described for UV and visible-light driven photochemical processes and are compared with their batch counterparts. In addition, different scale-up strategies and limitations of continuous-flow microreactors are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the detection of carbon monoxide as an anti-biosignature in exoplanetary atmospheres
NASA Astrophysics Data System (ADS)
Wang, Yuwei; Tian, Feng; Li, Tong; Hu, Yongyun
2016-03-01
Recent works suggest that oxygen can be maintained on lifeless exoplanets in the habitable zones of M dwarfs as the results of photochemical reactions. However, the same photochemical models also predict high concentrations of carbon monoxide (CO) in the corresponding atmospheres. Here we use a line-by-line radiative transfer model to investigate the observation requirements of O2 and CO in such atmospheres. The results show that photochemically produced CO can be readily detected at 1.58, 2.34, and 4.67 μm. We suggest that future missions aiming at characterization of exoplanetary atmospheres consider detections of CO as an anti-biosignature.
SOA FROM ISOPRENE OXIDATION PRODUCTS: MODEL SIMULATION OF CLOUD CHEMISTRY
Recent laboratory evidence supports the hypothesis that secondary organic aerosol (SOA) is formed in the atmosphere through aqueous-phase reactions in clouds. The results of batch photochemical reactions of glyoxal, methylglyoxal and hydrogen peroxide are presented. These labor...
Acrylic Tanks for Stunning Chemical Demonstrations
ERIC Educational Resources Information Center
Mirholm, Alexander; Ellervik, Ulf
2009-01-01
We describe the use of acrylic tanks (400 x 450 x 27 mm) for visualization of chemical demonstrations in aqueous solutions. Examples of well-suited demonstrations are oscillating reactions, pH indicators, photochemical reduction of Lauth's violet, and chemoluminiscent reactions. (Contains 1 figure.)
NASA Technical Reports Server (NTRS)
Fegley, Bruce, Jr.
1989-01-01
Theoretical models of solar nebula and early solar system chemistry which take into account the interplay between chemical, physical, and dynamical processes have great utility for deciphering the origin and evolution of the abundant chemically reactive volatiles (H, O, C, N, S) observed in comets. In particular, such models are essential for attempting to distinguish between presolar and solar nebula products and for quantifying the nature and duration of nebular and early solar system processing to which the volatile constituents of comets have been subjected. The diverse processes and energy sources responsible for chemical processing in the solar nebula and early solar system are discussed. The processes considered include homogeneous and heterogeneous thermochemical and photochemical reactions, and disequilibration resulting from fluid transport, condensation, and cooling whenever they occur on timescales shorter than those for chemical reactions.
Fluorescence correlation spectroscopy: novel variations of an established technique.
Haustein, Elke; Schwille, Petra
2007-01-01
Fluorescence correlation spectroscopy (FCS) is one of the major biophysical techniques used for unraveling molecular interactions in vitro and in vivo. It allows minimally invasive study of dynamic processes in biological specimens with extremely high temporal and spatial resolution. By recording and correlating the fluorescence fluctuations of single labeled molecules through the exciting laser beam, FCS gives information on molecular mobility and photophysical and photochemical reactions. By using dual-color fluorescence cross-correlation, highly specific binding studies can be performed. These have been extended to four reaction partners accessible by multicolor applications. Alternative detection schemes shift accessible time frames to slower processes (e.g., scanning FCS) or higher concentrations (e.g., TIR-FCS). Despite its long tradition, FCS is by no means dated. Rather, it has proven to be a highly versatile technique that can easily be adapted to solve specific biological questions, and it continues to find exciting applications in biology and medicine.
Aspée, Alexis; Aliaga, Christian; Maretti, Luca; Zúñiga-Núñez, Daniel; Godoy, Jessica; Pino, Eduardo; Cárdenas-Jirón, Gloria; Lopez-Alarcon, Camilo; Scaiano, Juan C; Alarcon, Emilio I
2017-07-06
8-Hydroxy-1,3,6-pyrenetrisulfonic acid (pyranine, PyOH) free radicals were induced by laser excitation at visible wavelengths (470 nm). The photochemical process involves photoelectron ejection from PyO- to produce PyO• and PyO•- with maxima absorption at 450 and 510 nm, respectively. The kinetic rate constants for phenolic antioxidants with PyO•, determined by nanosecond time-resolved spectroscopy, were largely reliant on the ionic strength depending on the antioxidant phenol/phenolate dissociation constant. Further, the apparent rate constant measured in the presence of Triton X100 micelles was influenced by the antioxidant partition between the micelle and the dispersant aqueous media but limited by its exit rates from the micelle. Similarly, the rate reaction between ascorbic acid and PyO• was markedly affected by the presence of human serum albumin responding to the dynamic of the ascorbic acid binding to the protein.
Topical Hazard Evaluation Program Procedural Guide.
1982-01-01
conditions and are percent (w/v) Oil of tion reaction under test not expected to cause a Bergamot solution conditions. photochemical irritation...photochemical skin irritant ( Bergamot oil). d. All compounds-are handled with caution. Current test procedures cannot eliminate the possibility of individual...percent ethyl alcohol. One additional compound applied along with the test compounds is a 10 percent solution (w/v) of Bergamot oil" in 95 percent ethyl
Tsushima, Satoru
2009-06-01
A well-known photochemical process of U(VI)O(2)(2+) reduction to U(V)O(2)(+) in the presence of alcohols was studied by density functional theory (DFT) calculations. It was found that the first process which takes place is a photoexcitation of the ground-state UO(2)(2+) to the triplet excited state (*UO(2)(2+)) followed by a significant shortening of the *UO(2)(2+)-to-alcohol O(ax)-H distance. A charge transfer from *UO(2)(2+) to alcohol and hydrogen abstraction takes place in the following step. Consequently, U(VI)O(2)(2+) gets reduced to U(V)O(OH)(2+). The photochemical byproduct RCHOH acts further as a reducing agent toward UO(2)(2+) to yield UO(2)(+) and RCHO (aldehyde). Only a combination of these two reactions can explain a high quantum yield of this reaction. In the absence of alcohol, the lowest-lying triplet state exhibits a different character, and photoreduction is unlikely to take place via the same mechanism. The present results agree well with recent experimental finding [J. Am. Chem. Soc. 2006, 128, 14024] and supports the idea that the O(ax)-H linkage between UO(2)(2+) and the solvent molecule is the key to the photochemical reduction process.
Tsuo, S.; Langford, A.A.
1989-03-28
Unwanted build-up of the film deposited on the transparent light-transmitting window of a photochemical vacuum deposition (photo-CVD) chamber is eliminated by flowing an etchant into the part of the photolysis region in the chamber immediately adjacent the window and remote from the substrate and from the process gas inlet. The respective flows of the etchant and the process gas are balanced to confine the etchant reaction to the part of the photolysis region proximate to the window and remote from the substrate. The etchant is preferably one that etches film deposit on the window, does not etch or affect the window itself, and does not produce reaction by-products that are deleterious to either the desired film deposited on the substrate or to the photolysis reaction adjacent the substrate. 3 figs.
Tsuo, Simon; Langford, Alison A.
1989-01-01
Unwanted build-up of the film deposited on the transparent light-transmitting window of a photochemical vacuum deposition (photo-CVD) chamber is eliminated by flowing an etchant into the part of the photolysis region in the chamber immediately adjacent the window and remote from the substrate and from the process gas inlet. The respective flows of the etchant and the process gas are balanced to confine the etchant reaction to the part of the photolysis region proximate to the window and remote from the substrate. The etchant is preferably one that etches film deposit on the window, does not etch or affect the window itself, and does not produce reaction by-products that are deleterious to either the desired film deposited on the substrate or to the photolysis reaction adjacent the substrate.
A Dual-Catalysis Approach to Enantioselective [2+2] Photocycloadditions Using Visible Light
Du, Juana; Skubi, Kazimer L.; Schultz, Danielle M.; Yoon, Tehshik P.
2015-01-01
In contrast to the wealth of catalytic systems that are available to control the stereochemistry of thermally promoted cycloadditions, few similarly effective methods exist for the stereocontrol of photochemical cycloadditions. A major unsolved challenge in the design of enantioselective catalytic photocycloaddition reactions has been the difficulty of controlling racemic background reactions that occur by direct photoexcitation of substrates while unbound to catalyst. Here we describe a strategy for eliminating the racemic background reaction in asymmetric [2+2] photocycloadditions of α,β-unsaturated ketones to the corresponding cyclobutanes by employing a dual-catalyst system consisting of a visible light-absorbing transition metal photocatalyst and a stereocontrolling Lewis acid co-catalyst. The independence of these two catalysts enables broader scope, greater stereochemical flexibility, and better efficiency than previously reported methods for enantioselective photochemical cycloadditions. PMID:24763585
Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.
1988-01-01
A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.
Isotope separation by laser means
Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith
1982-06-15
A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, F.; McAvey, Kevin; Pratt, Kerri A.
2015-10-09
Isoprene hydroxynitrates (IN) are tracers of the photochemical oxidation of isoprene in high NO x environ-ments. Production and loss of IN have a significant influ-ence on the NO x cycle and tropospheric O 3 chemistry. To better understand IN chemistry, a series of photochemical re-action chamber experiments was conducted to determine the IN yield from isoprene photooxidation at high NO concentra-tions (> 100 ppt). By combining experimental data and cal-culated isomer distributions, a total IN yield of 9(+4/-3) %was derived. The result was applied in a zero-dimensional model to simulate production and loss of ambient IN ob-served in a temperatemore » forest atmosphere, during the Southern Oxidant and Aerosol Study (SOAS) field campaign, from 27 May to 11 July 2013. The 9 % yield was consistent with the observed IN/(MVK+MACR) ratios observed during SOAS. By comparing field observations with model simulations, we identified NO as the limiting factor for ambient IN produc-tion during SOAS, but vertical mixing at dawn might also contribute (~ 27 %) to IN dynamics. A close examination of isoprene’s oxidation products indicates that its oxidation transitioned from a high-NO dominant chemical regime in the morning into a low-NO dominant regime in the after-noon. A significant amount of IN produced in the morning high NO regime could be oxidized in the low NO regime, and a possible reaction scheme was proposed.« less
Thiol-ene and photo-cleavage chemistry for controlled presentation of biomolecules in hydrogels.
Grim, Joseph C; Marozas, Ian A; Anseth, Kristi S
2015-12-10
Hydrogels have emerged as promising scaffolds in regenerative medicine for the delivery of biomolecules to promote healing. However, increasing evidence suggests that the context that biomolecules are presented to cells (e.g., as soluble verses tethered signals) can influence their bioactivity. A common approach to deliver biomolecules in hydrogels involves physically entrapping them within the network, such that they diffuse out over time to the surrounding tissues. While simple and versatile, the release profiles in such system are highly dependent on the molecular weight of the entrapped molecule relative to the network structure, and it can be difficult to control the release of two different signals at independent rates. In some cases, supraphysiologically high loadings are used to achieve therapeutic local concentrations, but uncontrolled release can then cause deleterious off-target side effects. In vivo, many growth factors and cytokines are stored in the extracellular matrix (ECM) and released on demand as needed during development, growth, and wound healing. Thus, emerging strategies in biomaterial chemistry have focused on ways to tether or sequester biological signals and engineer these bioactive scaffolds to signal to delivered cells or endogenous cells. While many strategies exist to achieve tethering of peptides, protein, and small molecules, this review focuses on photochemical methods, and their usefulness as a mild reaction that proceeds with fast kinetics in aqueous solutions and at physiological conditions. Photo-click and photo-caging methods are particularly useful because one can direct light to specific regions of the hydrogel to achieve spatial patterning. Recent methods have even demonstrated reversible introduction of biomolecules to mimic the dynamic changes of native ECM, enabling researchers to explore how the spatial and dynamic context of biomolecular signals influences important cell functions. This review will highlight how two photochemical methods have led to important advances in the tissue regeneration community, namely the thiol-ene photo-click reaction for bioconjugation and photocleavage reactions that allow for the removal of protecting groups. Specific examples will be highlighted where these methodologies have been used to engineer hydrogels that control and direct cell function with the aim of inspiring their use in regenerative medicine. Copyright © 2015 Elsevier B.V. All rights reserved.
A system consisting of a photochemical reaction was used to evaluate the kinetic parameters, such as reaction order and rate constant for the elemental mercury uptake by TiO2 in the presence of uv irradiation. TiO2 particles generated by an aerosol route were used in a fixed bed...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
... through atmospheric photochemical reactions. Different VOCs have different levels of reactivity--that is...: (i) The reaction rate constant (known as k OH ) with the hydroxyl radical (OH); (ii) the maximum... per mole basis. Differences between these three metrics are discussed below. The k OH is the reaction...
Photodecomposition of Mo(CO)/sub 6/ adsorbed on Si(100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creighton, J.R.
1985-01-01
The photochemical decomposition of Mo(CO)/sub 6/ layers physisorbed on Si(100) was investigated to determine the feasibility of molybdenum deposition and also to examine the photochemical reaction mechanism and efficiency. Temperature programmed desorption (TPD) was used to investigate the interaction of Mo(CO)/sub 6/ with the silicon surface before and after irradiation. Auger spectroscopy was used to determine surface elemental composition before Mo(CO)/sub 6/ adsorption and after photodecomposition.
A DIRECT ROUTE TO ACYLHYDROQUINONES FROM ALPHA-KETO ACIDS AND ALPHA-CARBOXAMIDO ACIDS. (R825330)
The reaction of quinones with in situ generated acyl- or carboxamido radicals provides a direct route to the synthesis of acylhydroquinones not accessible by the photochemical reaction of quinones with aldehydes.
NASA Technical Reports Server (NTRS)
Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.
1978-01-01
Observations of nonequilibrium phenomena on the Saturn satellite Titan indicate the occurrence of organic chemical evolution. Greenhouse and thermal inversion models of Titan's atmosphere provide environmental constraints within which various pathways for organic chemical synthesis are assessed. Experimental results and theoretical modeling studies suggest that the organic chemistry of the satellite may be dominated by two atmospheric processes: energetic-particle bombardment and photochemistry. Reactions initiated in various levels of the atmosphere by cosmic ray, Saturn wind, and solar wind particle bombardment of a CH4 - N2 atmospheric mixture can account for the C2-hydrocarbons, the UV-visible-absorbing stratospheric haze, and the reddish color of the satellite. Photochemical reactions of CH4 can also account for the presence of C2-hydrocarbons. In the lower Titan atmosphere, photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. Hot H-atom reactions initiated by photo-dissociation of NH3 can couple the chemical reactions of NH3 and CH4 and produce organic matter.
NASA Astrophysics Data System (ADS)
Tinel, Liselotte; Rossignol, Stéphanie; Ciuraru, Raluca; George, Christian
2015-04-01
Investigating the pathway for the photochemical formation of VOCs in presence of an organic monolayer at the air/water interface. Liselotte Tinel, Stéphanie Rossignol, Raluca Ciuraru and Christian George Université de Lyon, Université Lyon 1, CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, F-69626, France Recently the surface microlayer (SML) has received growing attention for its role in the deposition and emission of trace gases. This SML is presumably a highly efficient environment for photochemical reactions thanks to its physical and chemical properties, showing enrichment in chromophores [1]. Still, little is known about the possible photochemical processes that could influence the emission and deposition of volatile organic compounds (VOCs) in the SML. A recent study underlines the particularity of the presence of an organic microlayer, showing enhanced formation of peptide bonds at the air-water interface, although this reaction is thermodynamically disfavoured in bulk water [2]. Also, emissions of small gas phase carbonyl compounds formed photochemically by dissolved organic matter have been measured above natural water and glyoxal, for example, measured above the open ocean is thought to be photochemically produced [3, 4]. This study presents the results of a set of laboratory studies set up in order to better understand the role of the SML in the photochemical production of VOCs. Recently, our group has shown the formation of VOCs by light driven reactions in a small quartz reactor (14mL) containing aqueous solutions of humic acids (HA) in the presence of an organic (artificial or natural) microlayer [5]. The main VOCs produced were oxidized species, such as aldehydes, ketones and alcohols, as classically can be expected by the oxidation of the organics present at the interface initiated by triplet excited chromophores present in the HA. But also alkenes, dienes, including isoprene and unsaturated aldehydes were detected and a reaction pathway, initiated by a H-abstraction of the surfactant by the excited HA*, has been proposed. This mechanism infers that the presence of the surface microlayer will enhance protonation and self-reactions, leading to the formation of dimers as suggested in [6]. These products could explain the formation of the unsaturated products observed. To confirm the hypothesis of an initiative step of H-abstraction, the system was simplified using OH radicals, generated by the photolysis of H2O2, in presence of an artificial organic layer of nonanoic acid. The VOCs produced, monitored by PTR/SRI-TOF-MS in NO+ and H3O+ ionization mode, were less abundant compared to the system with HA, but the same classes of products could be observed, including oxidation products such as aldehydes but also unsatured products like dienes. The underlying water was sampled before and after the experiment and analysed by HR-ESI-MS, showing mostly enrichment of oxidative products, such as hydroxy- and keto-acids immediately derived from the photochemical oxidation of the nonanoic acid layer. These products, showing lower volatility and higher polarity, partition preferentially to the bulk water. The results of this simplified system confirm the reaction mechanism proposed and the role an organic layer can play in the photochemical formation of VOCs, which could influence the marine boundary layer chemistry. 1. Peter S. Liss, R.A.D., ed. Sea Surface and Global Change. 1997, Cambridge University Press: Cambridge. 509. 2. Griffith, E.C. and V. Vaida, In situ observation of peptide bond formation at the water-air interface. Proceedings of the National Academy of Sciences, 2012. 109(39): p. 15697-15701. 3. Sinreich, R., et al., Ship-based detection of glyoxal over the remote tropical Pacific Ocean. Atmospheric Chemistry and Physics, 2010. 10(23): p. 11359-11371. 4. Kieber, R.J., X.L. Zhou, and K. Mopper, Formation of carbonyl-compounds from uv-induced photodegradation of humic substances in natural-waters - fate of riverine carbon in the sea. Limnology and Oceanography, 1990. 35(7): p. 1503-1515. 5. R. Ciuraru, L. Fine, M. van Pinxteren, B. D'Anna, H. Herrmann, C. George, Unravelling new processes at interfaces: chemical isoprene production at the sea surface. submitted. 6. Griffith, E.C., et al., Photoinitiated Synthesis of Self-Assembled Vesicles. Journal of the American Chemical Society, 2014. 136(10): p. 3784-3787.
Schneck, Felix; Ahrens, Jennifer; Finger, Markus; Stückl, A Claudia; Würtele, Christian; Schwarzer, Dirk; Schneider, Sven
2018-03-21
Direct hydrogenation of CO 2 to CO, the reverse water-gas shift reaction, is an attractive route to CO 2 utilization. However, the use of molecular catalysts is impeded by the general reactivity of metal hydrides with CO 2 . Insertion into M-H bonds results in formates (MO(O)CH), whereas the abnormal insertion to the hydroxycarbonyl isomer (MC(O)OH), which is the key intermediate for CO-selective catalysis, has never been directly observed. We here report that the selectivity of CO 2 insertion into a Ni-H bond can be inverted from normal to abnormal insertion upon switching from thermal to photochemical conditions. Mechanistic examination for abnormal insertion indicates photochemical N-H reductive elimination as the pivotal step that leads to an umpolung of the hydride ligand. This study conceptually introduces metal-ligand cooperation for selectivity control in photochemical transformations.
Fluorogenic, catalytic, photochemical reaction for amplified detection of nucleic acids.
Dutta, Subrata; Fülöp, Annabelle; Mokhir, Andriy
2013-09-18
Photochemical, nucleic acid-induced reactions, which are controlled by nontoxic red light, are well-suited for detection of nucleic acids in live cells, since they do not require any additives and can be spatially and temporally regulated. We have recently described the first reaction of this type, in which a phenylselenyl derivative of thymidine (5'-PhSeT-ODNa) is cleaved in the presence of singlet oxygen (Fülöp, A., Peng, X., Greenberg, M. M., Mokhir, A. (2010) A nucleic acid directed, red light-induced chemical reaction. Chem. Commun. 46, 5659-5661). The latter reagent is produced upon exposure of a photosensitizer 3'-PS-ODNb (PS = Indium(III)-pyropheophorbide-a-chloride: InPPa) to >630 nm light. In 2012 we reported on a fluorogenic version of this reaction (Dutta, S., Flottmann, B., Heilemann, M., Mokhir, A. (2012) Hybridization and reaction-based, fluorogenic nucleic acid probes. Chem. Commun. 47, 9664-9666), which is potentially applicable for the detection of nucleic acids in cells. Unfortunately, its yield does not exceed 25% and no catalytic turnover could be observed in the presence of substrate excess. This problem occurs due to the efficient, competing oxidation of the substrate containing an electron rich carbon-carbon double bonds (SCH═CHS) in the presence of singlet oxygen with formation of a noncleavable product (SCH═CHSO). Herein we describe a related, but substantially improved photochemical, catalytic transformation of a fluorogenic, organic substrate, which consists of 9,10-dialkoxyanthracene linked to fluorescein, with formation of a bright fluorescent dye. In highly dilute solution this reaction occurs only in the presence of a nucleic acid template. We developed three types of such a reaction and demonstrated that they are high yielding and generate over 7.7 catalytic turnovers, are sensitive to single mismatches in nucleic acid targets, and can be applied for determination of both the amount of nucleic acids and potentially their localization.
1983-05-21
JEOL FX9OQ Fourier transform or Bruker 250 or 270 MHz Fourier transform spectrometer. Irradiations. Photochemical reactions were carried out using a...Ph 3 ) 3nd -t-Etin V,- a 313 nm quantum yield of -0.6. The process is photochemically everse if the cis-mer-HM(SiPh 3 )(CO) 3 (PPh 3) is irradiated...process is photochemically reversed if the cis-mer-HM(SiPh 3 )(CO)3 (PPh 3 ) is irradiated in t.e presence of excess Et3SiH. Irradiation of cis-mer-HM
Ultrafast Adiabatic Photodehydration of 2-Hydroxymethylphenol and the Formation of Quinone Methide.
Škalamera, Đani; Antol, Ivana; Mlinarić-Majerski, Kata; Vančik, Hrvoj; Phillips, David Lee; Ma, Jiani; Basarić, Nikola
2018-04-20
The photochemical reactivity of 2-hydroxymethylphenol (1) was investigated experimentally by photochemistry under cryogenic conditions, by detecting reactive intermediates by IR spectroscopy, and by using nanosecond and femtosecond transient absorption spectroscopic methods in solution at room temperature. In addition, theoretical studies were performed to facilitate the interpretation of the experimental results and also to simulate the reaction pathway to obtain a better understanding of the reaction mechanism. The main finding of this work is that photodehydration of 1 takes place in an ultrafast adiabatic photochemical reaction without any clear intermediate, delivering quinone methide (QM) in the excited state. Upon photoexcitation to a higher vibrational level of the singlet excited state, 1 undergoes vibrational relaxation leading to two photochemical pathways, one by which synchronous elimination of H 2 O gives QM 2 in its S 1 state and the other by which homolytic cleavage of the phenolic O-H bond produces a phenoxyl radical (S 0 ). Both are ultrafast processes that occur within a picosecond. The excited state of QM 2 (S 1 ) probably deactivates to S 0 through a conical intersection to give QM 2 (S 0 ), which subsequently delivers benzoxete 4. Elucidation of the reaction mechanisms for the photodehydration of phenols by which QMs are formed is important to tune the reactivity of QMs with DNA and proteins for the potential application of QMs in medicine as therapeutic agents. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D
2016-07-01
In UV-254 nm/H2O2 advanced oxidation process (AOP), the potential degradation pathways for organic pollutants include (1) hydrolysis, (2) direct H2O2 oxidation, (3) UV direct photolysis, and (4) hydroxyl radical (HO(•)) reaction. In this study, the contribution of these pathways was quantitatively assessed in the photochemical destruction of 4-chlorophenol (4-CP), demonstrating pathways (3) and (4) to be predominantly responsible for the removal of 4-CP by UV/H2O2 in 50 mM phosphate buffer solution. Increasing reaction pH could significantly enhance the contribution of direct photolysis in UV/H2O2 process. The contribution of HO(•) oxidation was improved with increasing initial H2O2 concentration probably due to the increased formation of HO(•). Presence of sodium carbonate (Na2CO3) as in UV/H2O2/Na2CO3 system promoted the degradation of 4-CP, with carbonate radical (CO3 (•-)) reaction and direct photolysis identified to be the main contributing pathways. The trends in the contribution of each factor were further evaluated and validated on the degradation of the antibiotic compound oxytetracycline (OTC). This study provides valuable information on the relative importance of different reaction pathways on the photochemical degradation of organic contaminants such as 4-CP and OTC in the presence and absence of a CO3 (•-) precursor.
Photochemical Studies of Chemistry in the Outer Solar System
NASA Technical Reports Server (NTRS)
Yung, Yuk L.
2003-01-01
The goal of the proposed science investigation is to gain a quantitative understanding of chemical processes and their coupling with atmospheric dynamics in the reducing atmospheres of the outer solar system, with a particular focus on Infrared Space Observatory (ISO) observations and future experiments such as the Cassini Mission to Saturn and Titan. The proposed work is divided into two related tasks. We have carried out a systematic comparison between atmospheric models for every giant planet and Titan, which employ a consistent set of photochemical reactions. Combined with recent observations of hydrocarbon species by ISO, this can provide the most rigorous test of our current understanding of the photochemistry of hydrocarbon in the outer solar system. The emphasis will be on the methyl radical (CH3), first detected by IS0 in the atmospheres of Saturn and Neptune (Bezard et al. 1998). CH3 is one of the most important radicals in the hydrocarbon photochemistry because it is the primary product of methane photolysis and plays an essential role in forming C2H6, the most abundant and stable C2 species. A fundamental understanding of the distribution of CH3 provides unique insights into the chemistry of hydrocarbons as well as comparative planetology.
RESEARCH ACTIVITIES IN THE FIELD OF MATERIALS SCIENCE.
MAGNETIC RESONANCE, COMPLEX COMPOUNDS, CRYSTAL STRUCTURE, ELECTROCHEMISTRY, CHEMILUMINESCENCE, PHOTOCHEMICAL REACTIONS, PHOSPHORUS HETEROCYCLIC COMPOUNDS...RADIATION CHEMISTRY, POLYMERS, ROCK, SUPERCONDUCTORS, POSITRONS , DAMAGE, RADIATION EFFECTS, HALIDES
Three probes for diagnosing photochemical dynamics are presented and applied to specialized ambient surface-level observations and to a numerical photochemical model to better understand rates of production and other process information in the atmosphere and in the model. Howeve...
NASA Astrophysics Data System (ADS)
Toyota, K.; Kanaya, Y.; Takahashi, M.; Akimoto, H.
2003-09-01
A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry) to investigate photochemical interactions between volatile organic compounds (VOCs) and reactive halogen species in the marine boundary layer (MBL). Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit treatment of oxidative degradation of up to C3-hydrocarbons CH4, C2H6, C3H8, C2H4, C3H6, and C2H2) initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in the formation of halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO) and alkenes (especially C3H6) are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. On the other hand, the reaction between Br atoms and C2H2 is unimportant for determining the degree of bromine activation in the remote MBL. It is suggested that peroxyacetic acid formed via CH3CHO oxidation is one of the important chemical agents for triggering autocatalytic halogen release from sea-salt aerosols. These results imply that reactive halogen chemistry can mediate a link between the oceanic emissions of VOCs and the behaviors of compounds that are sensitive to halogen chemistry such as dimethyl sulfide, NOx, and O3 in the MBL.
Atmospheric origins of perchlorate on Mars and in the Atacama
NASA Astrophysics Data System (ADS)
Catling, D. C.; Claire, M. W.; Zahnle, K. J.; Quinn, R. C.; Clark, B. C.; Hecht, M. H.; Kounaves, S.
2010-01-01
Isotopic studies indicate that natural perchlorate is produced on Earth in arid environments by the oxidation of chlorine species through pathways involving ozone or its photochemical products. With this analogy, we propose that the arid environment on Mars may have given rise to perchlorate through the action of atmospheric oxidants. A variety of hypothetical pathways can be proposed including photochemical reactions, electrostatic discharge, and gas-solid reactions. Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we made a preliminary study of the means to produce Atacama perchlorate to help shed light on the origin of Martian perchlorate. We investigated gas phase pathways using a 1-D photochemical model. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. The feasibility of gas phase production for the Atacama provides justification for future investigations of gas phase photochemistry as a possible source for Martian perchlorate.
Luo, Hong-Wei; Yin, Xiangping; Jubb, Aaron M.; ...
2016-11-09
Atmospheric deposition of mercury (Hg) to surface water is one of the dominant sources of Hg in aquatic environments and ultimately drives methylmercury (MeHg) toxin accumulation in fish. It is known that freshly deposited Hg is more readily methylated by microorganisms than aged or preexisting Hg; however the underlying mechanism of this process is unclear. Here we report that Hg bioavailability is decreased by photochemical reactions between Hg and dissolved organic matter (DOM) in water. Photo-irradiation of Hg-DOM complexes results in loss of Sn(II)-reducible (i.e. reactive) Hg and up to an 80% decrease in MeHg production by the methylating bacteriummore » Geobacter sulfurreducens PCA. Loss of reactive Hg proceeded at a faster rate with a decrease in the Hg to DOM ratio and is attributed to the possible formation of mercury sulfide (HgS). Lastly, these results suggest a new pathway of abiotic photochemical formation of HgS in surface water and provide a mechanism whereby freshly deposited Hg is readily methylated but, over time, progressively becomes less available for microbial uptake and methylation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Hong-Wei; Yin, Xiangping; Jubb, Aaron M.
Atmospheric deposition of mercury (Hg) to surface water is one of the dominant sources of Hg in aquatic environments and ultimately drives methylmercury (MeHg) toxin accumulation in fish. It is known that freshly deposited Hg is more readily methylated by microorganisms than aged or preexisting Hg; however the underlying mechanism of this process is unclear. Here we report that Hg bioavailability is decreased by photochemical reactions between Hg and dissolved organic matter (DOM) in water. Photo-irradiation of Hg-DOM complexes results in loss of Sn(II)-reducible (i.e. reactive) Hg and up to an 80% decrease in MeHg production by the methylating bacteriummore » Geobacter sulfurreducens PCA. Loss of reactive Hg proceeded at a faster rate with a decrease in the Hg to DOM ratio and is attributed to the possible formation of mercury sulfide (HgS). Lastly, these results suggest a new pathway of abiotic photochemical formation of HgS in surface water and provide a mechanism whereby freshly deposited Hg is readily methylated but, over time, progressively becomes less available for microbial uptake and methylation.« less
Oelgemöller, Michael
2016-09-14
Natural sunlight offers a cost-efficient and sustainable energy source for photochemical reactions. In contrast to the lengthy and small-scale "flask in the sun" procedures of the past, modern solar concentrator systems nowadays significantly shorten reaction times and enable technical-scale operations. After a brief historical introduction, this review presents the most important solar reactor types and their successful application in preparative solar syntheses. The examples demonstrate that solar manufacturing of fine chemicals is technically feasible and environmentally sustainable. After over 100 years, Ciamician's prophetic vision of "the photochemistry of the future" as a clean and green manufacturing methodology has yet to be realized. At the same time, his warning "for nature is not in a hurry but mankind is" is still valid today. It is hoped that this review will lead to a renewed interest in this truly enlightening technology, that it will stimulate photochemists and photochemical engineers to "go back to the roots onto the roofs" and that it will ultimately result in industrial applications in the foreseeable future.
Photochemical processes on Titan: Irradiation of mixtures of gases that simulate Titan's atmosphere
NASA Astrophysics Data System (ADS)
Tran, Buu N.; Joseph, Jeffrey C.; Force, Michael; Briggs, Robert G.; Vuitton, Veronique; Ferris, James P.
2005-09-01
Photochemical reaction pathways in Titan's atmosphere were investigated by irradiation of the individual components and the mixture containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene. The quantum yields for the loss of the reactants and the formation of products were determined. Photolysis of ethylene yields mainly saturated compounds (ethane, propane, and butane) while photolysis of acetylene yields the same saturated compounds as well as ethylene and diacetylene. Irradiation of cyanoacetylene yields mainly hydrogen cyanide and small amounts of acetonitrile. When an amount of methane corresponding to its mixing ratio on Titan was added to these mixtures the quantum yields for the loss of reactants decreased and the quantum yields for hydrocarbon formation increased indicative of a hydrogen atom abstraction from methane by the photochemically generated radicals. GC/MS analysis of the products formed by irradiation of mixtures of all these gases generated over 120 compounds which were mainly aliphatic hydrocarbons containing double and triple bonds along with much smaller amounts of aromatic compounds like benzene, toluene and phenylacetylene. The reaction pathways were investigated by the use of 13C acetylene in these gas mixtures. No polycyclic aromatic compounds were detected. Vapor pressures of these compounds under conditions present in Titan's atmosphere were calculated. The low molecular weight compounds likely to be present in the atmosphere and aerosols of Titan as a result of photochemical processes are proposed.
The chitosan - Porphyrazine hybrid materials and their photochemical properties.
Chełminiak-Dudkiewicz, Dorota; Ziegler-Borowska, Marta; Stolarska, Magdalena; Sobotta, Lukasz; Falkowski, Michal; Mielcarek, Jadwiga; Goslinski, Tomasz; Kowalonek, Jolanta; Węgrzynowska-Drzymalska, Katarzyna; Kaczmarek, Halina
2018-04-01
Three magnesium sulfanyl porphyrazines differing in the size of peripheral substituents (3,5-dimethoxybenzylsulfanyl, (3,5-dimethoxybenzyloxy)benzylsulfanyl, 3,5-bis[(3,5-bis[(3,5-dimethoxybenzyloxy)benzyloxy]benzylsulfanyl) were exposed to visible and ultraviolet radiation (UV A + B + C) in order to determine their photochemical properties. The course of photochemical reactions in dimethylformamide solutions and the ability of the systems to generate singlet oxygen were studied by UV-Vis spectroscopy, which additionally gave information on aggregation processes. The porphyrazines were found to be stable upon visible light irradiation conditions, but when exposed to high energy UV radiation, the efficient photodegradation of these macrocycles was observed. Therefore, these three magnesium sulfanyl porphyrazines were incorporated into chitosan matrix. The obtained thin films of chitosan doped with porphyrazines were subjected to polychromatic UV-radiation and studied by spectroscopic methods (UV-Vis, FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Application of chitosan as a polymer matrix for porphyrazines was found to be successful method that effectively stopped the unwelcome degradation of macrocycles, thus worth considering for their photoprotection. In addition, the surface properties of the hybrid material were determined by contact angle measurements and calculation of surface free energy. Intermolecular interactions between these novel porphyrazines and chitosan were detected. The mechanism of photochemical reactions occurring in studied systems has been discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Miyashita, H; Iwasaki, S; Hoshino, T
1998-05-15
Photochemically induced focal lesions in guinea pig cochleas were studied by light microscopy and transmission electron microscopy. The lesions were induced in the second cochlear turns of 35 adult guinea pigs by illumination for 10 minutes with a focused green light immediately after a rose bengal solution was injected into the jugular vein. The cochlear lateral wall and organ of Corti were examined 5, 10, 20, 30, and 90 minutes, 12 and 24 hours, and 3, 7, and 30 days after the procedure. Aggregations of platelets and red blood cells were found in strial capillaries at 5 minutes after illumination. After 30 minutes, marginal cell surfaces protruded into the endolymphatic space; surface membranes were ruptured and the cytoplasm was expelled into the space. In outer hair cells, disruption of the cellular membrane was found near the cuticular plate 12 hours after the procedure. All cellular elements of the lateral wall and organ of Corti were markedly degenerated in the 30-day specimens. Histological changes found in the stria vascularis were consistent with cell damage caused by active oxygen species. It is likely that the stria vascularis is more sensitive to the photochemical reaction than other parts of the cochlea. Cell damage in other parts of the cochlea seemed to have been caused by local microvascular ischemia in addition to the action of active oxygen species induced by the photochemical reaction.
Modelling the photochemical attenuation pathways of the fibrate drug gemfibrozil in surface waters.
Fabbri, Debora; Maurino, Valter; Minella, Marco; Minero, Claudio; Vione, Davide
2017-03-01
Gemfibrozil (GFZ) is a relatively persistent pollutant in surface-water environments and it is rather recalcitrant to biological degradation. The GFZ photochemical lifetimes are relatively short in shallow waters with low levels of dissolved organic carbon (DOC), but they can reach the month-year range in deep and high-DOC waters. The main reason is that GFZ undergoes negligible reaction with singlet oxygen or degradation sensitised by the triplet states of chromophoric dissolved organic matter, which are the usually prevalent photochemical pathways in deep and high-DOC sunlit waters. Nitrate and nitrite scarcely affect the overall GFZ lifetimes, but they can shift photodegradation from direct photolysis to the OH process. These two pathways are the main GFZ phototransformation routes, with the direct photolysis prevailing in shallow environments during summer. Under these conditions the GFZ photochemical lifetimes are also shorter and the environmental significance of photodegradation correspondingly higher. The direct photolysis of GFZ under UVB irradiation yielded several transformation intermediates deriving from oxidation or cleavage of the aliphatic lateral chain. A quinone derivative (2,5-dimethyl-1,4-benzoquinone), a likely oxidation product of the transformation intermediate 2,5-dimethylphenol, is expected to be the most acutely and chronically toxic compound arising from GFZ direct photolysis. Interestingly, literature evidence suggests that the same toxic intermediate would be formed upon OH reaction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Online monitoring of a photocatalytic reaction by real-time high resolution FlowNMR spectroscopy.
Hall, Andrew M R; Broomfield-Tagg, Rachael; Camilleri, Matthew; Carbery, David R; Codina, Anna; Whittaker, David T E; Coombes, Steven; Lowe, John P; Hintermair, Ulrich
2017-12-19
We demonstrate how FlowNMR spectroscopy can readily be applied to investigate photochemical reactions that require sustained input of light and air to yield mechanistic insight under realistic conditions. The Eosin Y mediated photo-oxidation of N-allylbenzylamine is shown to produce imines as primary reaction products from which undesired aldehydes form after longer reaction times. Facile variation of reaction conditions during the reaction in flow allows for probe experiments that give information about the mode of action of the photocatalyst.
Theory of time-resolved x-ray photoelectron diffraction from transient conformational molecules
NASA Astrophysics Data System (ADS)
Tsuru, Shota; Sako, Tokuei; Fujikawa, Takashi; Yagishita, Akira
2017-04-01
We formulate x-ray photoelectron diffraction (XPD) from molecules undergoing photochemical reactions induced by optical laser pulses, and then apply the formula to the simulation of time-dependent XPD profiles from both dissociating I2 molecules and bending C S2 molecules. The dependence of nuclear wave-packet motions on the intensity and shape of the optical laser pulses is examined. As a result, the XPD simulations based on such nuclear wave-packet calculations are observed to exhibit characteristic features, which are compared with the XPD profiles due to classical trajectories of nuclear motions. The present study provides a methodology toward creating "molecular movies" of ultrafast photochemical reactions by means of femtosecond XPD with x-ray free-electron lasers.
Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.
1975-11-26
A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.
Photogenerated radical intermediates of vitamin K 1: a time-resolved resonance Raman study
NASA Astrophysics Data System (ADS)
Balakrishnan, G.; Umapathy, S.
1999-01-01
Quinones play a vital role in the process of electron transfer in bacterial photosynthetic reaction centers. It is of interest to investigate the photochemical reactions involving quinones with a view to elucidating the structure-function relationships in the biological processes. Resonance Raman spectra of radical anions and the time-resolved resonance Raman spectra of vitamin K 1 (model compound for Q A in Rhodopseudomonas viridis, a bacterial photosynthetic reception center) are presented. The photochemical intermediates of vitamin K 1, viz. radical anion, ketyl radical and o-quinone methide have been identified. The vibrational assignments of all these intermediates are made on the basis of comparison with our earlier TR3 studies on radical anions of naphthoquinone and menaquinone.
Photophysical and Photochemical Properties of Some Fluorescent Derivatives of Vitamin B1
NASA Astrophysics Data System (ADS)
Marciniak, B.
1987-05-01
Absorption and emission spectra, depopulation kinetics of the lowest excited singlet and triplet states and acid-base equilibria of two fluorescent vitamin B, derivatives, the products I and II of the reaction of N-methylated vitamine B, with cytidine and adenosine, respectively, were investigated. Analysis of the lifetime and quantum yield data indicate that at 77 K emissions are the main processes of deactivation of the S1 and T1 states for the free ion and protonated forms. The pKa values indicate a much higher acidity in the excited singlet and triplet states than in the ground state. I and II undergo very slow photochemical reactions in solution in the presence of oxygen (Φ ~ 10-4).
NASA Astrophysics Data System (ADS)
Geng, Ting; Schalk, Oliver; Neville, Simon P.; Hansson, Tony; Thomas, Richard D.
2017-04-01
The involvement of intermediate Rydberg states in the relaxation dynamics of small organic molecules which, after excitation to the valence manifold, also return to the valence manifold is rarely observed. We report here that such a transiently populated Rydberg state may offer the possibility to modify the outcome of a photochemical reaction. In a time resolved photoelectron study on pyrrole and its methylated derivatives, N-methyl pyrrole and 2,5-dimethyl pyrrole, 6.2 eV photons (200 nm) are used to excite these molecules into a bright ππ* state. In each case, a π3p-Rydberg state, either the B1(π3py) or the A2(π3pz) state, is populated within 20-50 fs after excitation. The wavepacket then proceeds to the lower lying A2(πσ*) state within a further 20 fs, at which point two competing reaction channels can be accessed: prompt N-H (N-CH3) bond cleavage or return to the ground state via a conical intersection accessed after ring puckering, the latter of which is predicted to require an additional 100-160 fs depending on the molecule.
On the link between martian total ozone and potential vorticity
NASA Astrophysics Data System (ADS)
Lewis, S.; Holmes, J.; Patel, M.
2016-12-01
We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable.The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone can be of use to investigate the origin of potential vorticity filaments.
On the link between martian total ozone and potential vorticity
NASA Astrophysics Data System (ADS)
Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.
2017-01-01
We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable. The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone of the northern polar vortex can potentially be used to determine the origin of potential vorticity filaments.
Coherent Multidimensional Core Spectroscopy of Molecules with Multiple X-ray pulses
NASA Astrophysics Data System (ADS)
Mukamel, Shaul
2017-04-01
Multidimensional spectroscopy uses sequences of optical pulses to study dynamical processes in complex molecules through correlation plots involving several time delay periods. Extensions of these techniques to the x-ray regime will be discussed. Ultrafast nonlinear x-ray spectroscopy is made possible by newly developed free electron laser and high harmonic generation sources. The attosecond duration of X-ray pulses and the atomic selectivity of core X-ray excitations offer a uniquely high spatial and temporal resolution. We demonstrate how stimulated Raman detection of an X-ray probe may be used to monitor the phase and dynamics of the nonequilibrium valence electronic state wavepacket created by e.g. photoexcitation, photoionization and Auger processes. Spectroscopy of multiplecore excitations provides a new window into electron correlations. Applications will be presented to long-range charge transfer in proteins and to excitation energy transfer in porphyrin arrays. Conical intersections (CoIn) dominate the pathways and outcomes of virtually all photophysical and photochemical molecular processes. Despite extensive experimental and theoretical effort CoIns have not been directly observed yet and the experimental evidence is being inferred from fast reaction rates and some vibrational signatures. Novel ultrafast X ray probes for these processes will be presented. Short X-ray pulses can directly detect the passage through a CoIn with the adequate temporal and spectral sensitivity. The technique is based on a coherent Raman process that employs a composite femtosecond/attosecond X-ray pulse to directly detect the electronic coherences (rather than populations) that are generated as the system passes through the CoIn. Streaking of time-resolved photoelectron spectroscopy (TRPES) signals offers another powerful window into the joint electronic/vibrational dynamics at concial intersections. Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby manipulating the photophysical and photochemical reaction pathways. The photonic vacuum state of a localized cavity mode can be strongly mixed with the molecular degrees of freedom to create hybrid field-matter states known as polaritons. Simulations of the avoided crossing of sodium iodide in a cavity which incorporate the quantized cavity field into the nuclear wave packet dynamics will be presented. Numerical results show how the branching ratio between the covalent and ionic dissociation channels can be strongly manipulated by the optical cavity.
Su, Hua; Fang, Yimin; Chen, Fangyuan; Wang, Wei
2018-02-14
The capability of semiconductor nanomaterials to convert solar energy to chemical energy has led to many promising applications, for instance, photocatalyzed H 2 generation. Studying this important photocatalytic reaction at the single nanocatalyst level provides a great opportunity to understand the microscopic reaction kinetics and mechanism by overcoming the chemical and structural heterogeneity among individuals. Here we report a fluorescence (FL) labeling strategy to visualize individual H 2 nanobubbles that are generated at single CdS nanoparticles during photocatalysis. In operando imaging of nanobubble growth kinetics allows for determination of the photocatalytic activity of single nanocatalysts, which was found to randomly alternate among high activity, low activity and inactive states. In addition to H 2 nanobubbles, the present labeling strategy is also suitable for other types of gas nanobubbles. Since nanomaterial-catalyzed gas generation is widely involved in many important photochemical (water splitting), electrochemical (electrolysis) and chemical (nanomotors) reactions, the present work is promising for the general applicability of single nanoparticle catalysis in broad basic and industrial fields by lighting up nanobubbles under commercial and conventional FL microscopes.
Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet (UV) radiation that reaches the surface of aquatic environments. Recent studies have demonstrated that these UV increases cause changes in photochemical reactions that affect the...
Oliveira Silva, Catarina; Petersen, Steffen B.; Pinto Reis, Catarina; Rijo, Patrícia; Molpeceres, Jesús; Vorum, Henrik; Neves-Petersen, Maria Teresa
2015-01-01
The presence of aromatic residues and their close spatial proximity to disulphide bridges makes hen egg white lysozyme labile to UV excitation. UVB induced photo-oxidation of tryptophan and tyrosine residues leads to photochemical products, such as, kynurenine, N–formylkynurenine and dityrosine and to the disruption of disulphide bridges in proteins. We here report that lysozyme UV induced photochemistry is modulated by temperature, excitation power, illumination time, excitation wavelength and by the presence of plasmonic quencher surfaces, such as gold, and by the presence of natural fluorescence quenchers, such as hyaluronic acid and oleic acid. We show evidence that the photo-oxidation effects triggered by 295 nm at 20°C are reversible and non-reversible at 10°C, 25°C and 30°C. This paper provides evidence that the 295 nm damage threshold of lysozyme lies between 0.1 μW and 0.3 μW. Protein conformational changes induced by temperature and UV light have been detected upon monitoring changes in the fluorescence emission spectra of lysozyme tryptophan residues and SYPRO® Orange. Lysozyme has been conjugated onto gold nanoparticles, coated with hyaluronic acid and oleic acid (HAOA). Steady state and time resolved fluorescence studies of free and conjugated lysozyme onto HAOA gold nanoparticles reveals that the presence of the polymer decreased the rate of the observed photochemical reactions and induced a preference for short fluorescence decay lifetimes. Size and surface charge of the HAOA gold nanoparticles have been determined by dynamic light scattering and zeta potential measurements. TEM analysis of the particles confirms the presence of a gold core surrounded by a HAOA matrix. We conclude that HAOA gold nanoparticles may efficiently protect lysozyme from the photochemical effects of UVB light and this nanocarrier could be potentially applied to other proteins with clinical relevance. In addition, this study confirms that the temperature plays a critical role in the photochemical pathways a protein enters upon UV excitation. PMID:26656259
Oliveira Silva, Catarina; Petersen, Steffen B; Pinto Reis, Catarina; Rijo, Patrícia; Molpeceres, Jesús; Vorum, Henrik; Neves-Petersen, Maria Teresa
2015-01-01
The presence of aromatic residues and their close spatial proximity to disulphide bridges makes hen egg white lysozyme labile to UV excitation. UVB induced photo-oxidation of tryptophan and tyrosine residues leads to photochemical products, such as, kynurenine, N-formylkynurenine and dityrosine and to the disruption of disulphide bridges in proteins. We here report that lysozyme UV induced photochemistry is modulated by temperature, excitation power, illumination time, excitation wavelength and by the presence of plasmonic quencher surfaces, such as gold, and by the presence of natural fluorescence quenchers, such as hyaluronic acid and oleic acid. We show evidence that the photo-oxidation effects triggered by 295 nm at 20°C are reversible and non-reversible at 10°C, 25°C and 30°C. This paper provides evidence that the 295 nm damage threshold of lysozyme lies between 0.1 μW and 0.3 μW. Protein conformational changes induced by temperature and UV light have been detected upon monitoring changes in the fluorescence emission spectra of lysozyme tryptophan residues and SYPRO® Orange. Lysozyme has been conjugated onto gold nanoparticles, coated with hyaluronic acid and oleic acid (HAOA). Steady state and time resolved fluorescence studies of free and conjugated lysozyme onto HAOA gold nanoparticles reveals that the presence of the polymer decreased the rate of the observed photochemical reactions and induced a preference for short fluorescence decay lifetimes. Size and surface charge of the HAOA gold nanoparticles have been determined by dynamic light scattering and zeta potential measurements. TEM analysis of the particles confirms the presence of a gold core surrounded by a HAOA matrix. We conclude that HAOA gold nanoparticles may efficiently protect lysozyme from the photochemical effects of UVB light and this nanocarrier could be potentially applied to other proteins with clinical relevance. In addition, this study confirms that the temperature plays a critical role in the photochemical pathways a protein enters upon UV excitation.
Photochemically Induced Intramolecular Radical Cyclization Reactions with Imines.
Lefebvre, Corentin; Michelin, Clément; Martzel, Thomas; Djou'ou Mvondo, Vaneck; Bulach, Véronique; Abe, Manabu; Hoffmann, Norbert
2018-02-16
The photochemically induced intramolecular hydrogen abstraction or hydrogen atom transfer in cyclic imines 8a,b followed by a cyclization is investigated. Two types of products are observed, one resulting from the formation of a C-C bond, the other from the formation of a C-N bond. A computational study reveals that hydrogen is exclusively transferred to the imine nitrogen leading to a triplet diradical intermediate. After intersystem crossing, the resulting zwitterionic intermediate undergoes cyclization leading to the final product.
Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes
Crabtree, Robert H.; Brown, Stephen H.
1988-01-01
The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.
Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes
Crabtree, R.H.; Brown, S.H.
1988-02-16
The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.
Heyes, Derren J.; Ruban, Alexander V.; Wilks, Helen M.; Hunter, C. Neil
2002-01-01
The chlorophyll biosynthesis enzyme protochlorophyllide reductase (POR) catalyzes the light-dependent reduction of protochlorophyllide (Pchlide) into chlorophyllide in the presence of NADPH. As POR is light-dependent, catalysis can be initiated by illumination of the enzyme-substrate complex at low temperatures, making it an attractive model for studying aspects of biological proton and hydride transfers. The early stages in the photoreduction, involving Pchlide binding and an initial photochemical reaction, have been studied in vitro by using low-temperature fluorescence and absorbance measurements. Formation of the ternary POR-NADPH-Pchlide complex produces red shifts in the fluorescence and absorbance maxima of Pchlide, allowing the dissociation constant for Pchlide binding to be measured. We demonstrate that the product of an initial photochemical reaction, which can occur below 200 K, is a nonfluorescent intermediate with a broad absorbance band at 696 nm (A696) that is suggested to represent an ion radical complex. The temperature dependence of the rate of A696 formation has allowed the activation energy for the photochemical step to be calculated and has shown that POR catalysis can proceed at much lower temperatures than previously thought. Calculations of differences in free energy between various reaction intermediates have been calculated; these, together with the quantum efficiency for Pchlide conversion, suggest a quantitative model for the thermodynamics of the light-driven step of Pchlide reduction. PMID:12177453
Products of BVOC oxidation: ozone and organic aerosols
NASA Astrophysics Data System (ADS)
Wildt, Jürgen; Andres, Stefanie; Carriero, Giulia; Ehn, Mikael; Fares, Silvano; Hoffmann, Thorsten; Hacker, Lina; Kiendler-Scharr, Astrid; Kleist, Einhard; Paoletti, Elena; Pullinen, Iida; Rohrer, Franz; Rudich, Yinon; Springer, Monika; Tillmann, Ralf; Wahner, Andreas; Wu, Cheng; Mentel, Thomas
2015-04-01
Biogenic Volatile Organic Compounds (BVOC) are important precursors in photochemical O3 and secondary organic aerosol (SOA) formation. We conducted a series of laboratory experiments with OH-induced oxidation of monoterpenes to elucidate pathways and efficiencies of O3 and SOA formation. At high NOx conditions ([BVOC] / [NOx] < 7 ppbC / ppb) photochemical ozone formation was observed. For -pinene as individual BVOC as well as for the monoterpene mixes emitted from different plant species we observed increasing ozone formation with increasing [NOX]. Between 2 and 3 O3-molecules were formed from 1 monoterpene when ozone formation was BVOC limited. Under such high NOX conditions, new particle formation was suppressed. Increasing [BVOC] / [NOX] ratios caused increasing efficiency of new particle formation indicating that peroxy radicals are the key intermediates in both, photochemical ozone- and new particle formation. The classical chemistry of peroxy radicals is well established (e.g. Master Chemical Mechanism). Peroxy radicals are produced by addition of molecular oxygen to the alkyl radical formed after OH attack at the BVOC. They either react with NO which leads to ozone formation or they react with other peroxy radicals and form chemically stable products (hydroperoxides, alkoholes and ketones). Much less knowledge exists on such reactions for Highly Oxidized Peroxy Radicals, (HOPR). Such HOPR were observed during ozonolysis of several volatiles and, in case of monoterpenes as precursors, they can contain more than 12 Oxygen atoms (Mentel et al., 2015). Although the OH-initiated formation of HOPR is yet not fully understood, their basic gas phase reactions seem to follow classical photochemical rules. In reactions with NO they can act as precursor for O3 and in reactions with other HOPR or with classical less oxidized peroxy radicals they can form highly oxidized stable products and alkoxy radicals. In addition, HOPR-HOPR reactions lead to the formation of dimers that, in case of monoterpenes as reactants, consist of a skeleton with 20 carbon atoms. These dimers seem to play a major role in new particle formation and their existence may explain the observations of Wildt et al. (2014) who found power law dependence with an exponent approaching -2 between new particle formation and ozone formation. The monomer products of HOPR-HOPR reactions play a dominant role in SOA mass formation because their vapour pressures are low enough to allow condensation on pre-existing particulate matter (Ehn et al., 2014). Furthermore, the minor impacts of NOX on particle mass formation (Wildt et al., 2014) are explainable by similar yields of alkoxy radicals in HOPR-HOPR and HOPR-NO reactions, respectively.
Stratospheric warmings: Synoptic, dynamic and general-circulation aspects
NASA Technical Reports Server (NTRS)
Mcinturff, R. M. (Editor)
1978-01-01
Synoptic descriptions consist largely of case studies, which involve a distinction between major and minor warmings. Results of energetics studies show the importance of tropospheric-stratospheric interaction, and the significance of the pressure-work term near the tropopause. Theoretical studies have suggested the role of wave-zonal flow interaction as well as nonlinear interaction between eddies, chemical and photochemical reactions, boundary forcing, and other factors. Numerical models have been based on such considerations, and these are discussed under various categories. Some indication is given as to why some of the models have been more successful than others in simulating warnings. The question of ozone and its role in warmings is briefly discussed. Finally, a broad view is taken of stratospheric warmings in relation to man's activities.
Evaluation of different photosensitizers for use in photochemical gene transfection.
Prasmickaite, L; Høgset, A; Berg, K
2001-04-01
Many potentially therapeutic macromolecules, e.g. transgenes used in gene therapy, are taken into the cells by endocytosis, and have to be liberated from endocytic vesicles in order to express a therapeutic function. To achieve this we have developed a new technology, named photochemical internalization (PCI), based on photochemical reactions inducing rupture of endocytic vesicles. The aim of this study was to clarify which properties of photosensitizers are important for obtaining the PCI effect improving gene transfection. The photochemical effect on transfection of human melanoma THX cells has been studied employing photosensitizers with different physicochemical properties and using two gene delivery vectors: the cationic polypeptide polylysine and the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). Photochemical treatment by photosensitizers that do not localize in endocytic vesicles (tetra[3-hydroxyphenyl]porphyrin and 5-aminolevulinic acid-induced protoporphyrin IX) do not stimulate transfection, irrespective of the gene delivery vector. In contrast, photosensitizers localized in endocytic vesicles stimulate polylysine-mediated transfection, and amphiphilic photosensitizers (disulfonated aluminium phthalocyanine [AlPcS2a] and meso-tetraphenylporphynes) show the strongest positive effect, inducing approximately 10-fold increase in transfection efficiency. In contrast, DOTAP-mediated transfection is inhibited by all photochemical treatments irrespective of the photosensitizer used. Neither AlPcS2a nor Photofrin affects the uptake of the transfecting DNA over the plasma membrane, therefore photochemical permeabilization of endocytic vesicles seems to be the most likely mechanism responsible for the positive PCI effect on gene transfection.
Ruetzel, Stefan; Diekmann, Meike; Nuernberger, Patrick; Walter, Christof; Engels, Bernd; Brixner, Tobias
2014-06-14
Upon ultraviolet excitation, photochromic spiropyran compounds can be converted by a ring-opening reaction into merocyanine molecules, which in turn can form several isomers differing by cis and trans configurations in the methine bridge. Whereas the spiropyran-merocyanine conversion reaction of the nitro-substituted indolinobenzopyran 6-nitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indoline] (6-nitro BIPS) has been studied extensively in theory and experiments, little is known about photoisomerization among the merocyanine isomers. In this article, we employ femtosecond transient absorption spectroscopy with variable excitation wavelengths to investigate the excited-state dynamics of the merocyanine in acetonitrile at room temperature, where exclusively the trans-trans-cis (TTC) and trans-trans-trans (TTT) isomers contribute. No photochemical ring-closure pathways exist for the two isomers. Instead, we found that (18±4)% of excited TTC isomers undergo an ultrafast excited-state cis→trans photoisomerization to TTT within 200 fs, while the excited-state lifetime of TTC molecules that do not isomerize is 35 ps. No photoisomerization was detected for the TTT isomer, which relaxes to the ground state with a lifetime of roughly 160 ps. Moreover, signal oscillations at 170 cm(-1) and 360 cm(-1) were observed, which can be ascribed to excited-state wave-packet dynamics occurring in the course of the TTC→TTT isomerization. The results of high-level time-dependent density functional theory in conjunction with polarizable continuum models are presented in the subsequent article [C. Walter, S. Ruetzel, M. Diekmann, P. Nuernberger, T. Brixner, and B. Engels, J. Chem. Phys. 140, 224311 (2014)].
The EPA Mobile Reaction Chamber (MRC) is a 24-foot trailer containing a 14.3-m3 Teflon lined photochemical chamber used to generate simulated urban atmospheres. Photochemistry in the MRC is catalyzed by 120 fluorescent bulbs evenly mixed with black light bulbs and UV bulbs (300 &...
ERIC Educational Resources Information Center
Abdel-Kader, M. H.; Steiner, U.
1983-01-01
Three experiments using merocyanine M suitable as an integrated laboratory experience for undergraduates are described. Experiments demonstrate: complete molecular cycle composed of photochemical, thermal, and protolytic reaction steps; kinetics of cis-trans isomerization of the dye; and mechanism of base catalysis for thermal isomerization of the…
Synthesis of perfluorinated polyethers. [for sealers
NASA Technical Reports Server (NTRS)
Depasquale, R. J.; Padgett, C. D.; Patton, J. R.; Psarras, T.
1982-01-01
A series of highly fluorinated acetylenes was prepared and their cyclization reactions were studied. A series of perfluoropolytriazines with -CF2I pendent groups were prepared. These materials can be cured thermally or photochemically to an elastomeric gum. Perfluoropolytriazines with -CN pendent groups were prepared. These materials can be crosslinked by reaction with terephthalonitrile oxide.
Highly oriented photosynthetic reaction centers generate a proton gradient in synthetic protocells
Altamura, Emiliano; Milano, Francesco; Tangorra, Roberto R.; Trotta, Massimo; Omar, Omar Hassan; Stano, Pasquale
2017-01-01
Photosynthesis is responsible for the photochemical conversion of light into the chemical energy that fuels the planet Earth. The photochemical core of this process in all photosynthetic organisms is a transmembrane protein called the reaction center. In purple photosynthetic bacteria a simple version of this photoenzyme catalyzes the reduction of a quinone molecule, accompanied by the uptake of two protons from the cytoplasm. This results in the establishment of a proton concentration gradient across the lipid membrane, which can be ultimately harnessed to synthesize ATP. Herein we show that synthetic protocells, based on giant lipid vesicles embedding an oriented population of reaction centers, are capable of generating a photoinduced proton gradient across the membrane. Under continuous illumination, the protocells generate a gradient of 0.061 pH units per min, equivalent to a proton motive force of 3.6 mV⋅min−1. Remarkably, the facile reconstitution of the photosynthetic reaction center in the artificial lipid membrane, obtained by the droplet transfer method, paves the way for the construction of novel and more functional protocells for synthetic biology. PMID:28320948
NASA Astrophysics Data System (ADS)
Bennett, David A.; Cargnello, Matteo; Diroll, Benjamin T.; Murray, Christopher B.; Vohs, John M.
2016-12-01
Structure-activity relationships and the influence of particle size and shape on the partial- and photo-oxidation of methanol on nanocrystalline anatase TiO2 were investigated using temperature-programmed desorption. The study employed two distinct nanoparticle morphologies: truncated bipyramids exposing primarily {101} facets, and flatter platelets exposing primarily {001} surfaces, whose nominal sizes ranged from 10 to 25 nm. The platelets were found to be more active for thermally-driven reactions, such as coupling of methoxide groups to produce dimethyl ether, and deoxygenation to produce methane. A dependence of the reactivity of {001} facets for the coupling of methoxide groups to produce dimethyl ether on facet size was also observed. In contrast to the thermally-driven reactions, the bipyramidal nanoparticles were observed to be more active for a range of photochemical reactions, including oxidation and coupling to produce methyl formate, and photo-decomposition of surface methoxide species. This study also shows how well-defined nanocrystals can be used to help bridge the materials gap between studies of single crystal model catalysts and their high surface area industrial analogs.
The determination and role of peroxyacetil nitrate in photochemical processes in atmosphere
2012-01-01
Peroxyacetilnitrates (PAN) is the most characteristic photoxidant of a range of secondary pollutants formed by the photochemical reaction of hydrocarbons with nitrogen oxides in the atmosphere: it is phytotoxic and shows an increasing role in human health effects due to ambient air exposure, especially in presence of high ozone concentrations. Because of the similarity of the conditions required for their photochemical production PAN is observed in conjunction with elevated ozone concentrations. PAN has very low natural background concentrations so it is the very specific indicator of anthropogenic photochemical air pollution. In this paper we report PAN concentrations determined in Rome urban area during winter- and summer-period. PAN measurements were carried out by means of a gas-chromatograph equipped with an Electron Capture Detector (ECD) detector. For identifying the acute episodes of atmospheric photochemical pollutants the relationship between PAN and the variable Ox (=NO2+O3) which describes the oxidation process evolution is investigated. The role of Volatile Organic Compounds and PAN in the ozone formation is investigated as well the issue of taking in account the autovehicular emissions for checking the NOx fraction in fuel. PMID:22594443
Wols, B A; Harmsen, D J H; Wanders-Dijk, J; Beerendonk, E F; Hofman-Caris, C H M
2015-05-15
UV/H2O2 treatment is a well-established technique to degrade organic micropollutants. A CFD model in combination with an advanced kinetic model is presented to predict the degradation of organic micropollutants in UV (LP)/H2O2 reactors, accounting for the hydraulics, fluence rate, complex (photo)chemical reactions in the water matrix and the interactions between these processes. The model incorporates compound degradation by means of direct UV photolysis, OH radical and carbonate radical reactions. Measurements of pharmaceutical degradations in pilot-scale UV/H2O2 reactors are presented under different operating conditions. A comparison between measured and modeled degradation for a group of 35 pharmaceuticals resulted in good model predictions for most of the compounds. The research also shows that the degradation of organic micropollutants can be dependent on temperature, which is relevant for full-scale installations that are operated at different temperatures over the year. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chemical compass model of avian magnetoreception.
Maeda, Kiminori; Henbest, Kevin B; Cintolesi, Filippo; Kuprov, Ilya; Rodgers, Christopher T; Liddell, Paul A; Gust, Devens; Timmel, Christiane R; Hore, P J
2008-05-15
Approximately 50 species, including birds, mammals, reptiles, amphibians, fish, crustaceans and insects, are known to use the Earth's magnetic field for orientation and navigation. Birds in particular have been intensively studied, but the biophysical mechanisms that underlie the avian magnetic compass are still poorly understood. One proposal, based on magnetically sensitive free radical reactions, is gaining support despite the fact that no chemical reaction in vitro has been shown to respond to magnetic fields as weak as the Earth's ( approximately 50 muT) or to be sensitive to the direction of such a field. Here we use spectroscopic observation of a carotenoid-porphyrin-fullerene model system to demonstrate that the lifetime of a photochemically formed radical pair is changed by application of < or =50 microT magnetic fields, and to measure the anisotropic chemical response that is essential for its operation as a chemical compass sensor. These experiments establish the feasibility of chemical magnetoreception and give insight into the structural and dynamic design features required for optimal detection of the direction of the Earth's magnetic field.
Surey of Alternate Stored Chemical Energy Reactions.
1985-12-01
Fr., Report No. CEA-N-1293, 36 p. Pilipovich. D.; Rogers, H. H. and Wilson, R. D., 1972, Chlorine trifluoride oxide. II. Photochemical synthesis...some fluorine and chlorine compounds: Zh. Fiz. Khim., V. 43, No. 2, p. 386-9. Rogers, H. H. and Pilipovich, D., 1973, Oxychlorine trifluoride (Patent...chemical energy reactions has been made for purposes of comparison with the lithium- aluminum /water, lithium/sulfur hexafluoride, and other reaction schemes
Quantum Chemical Investigation on Photochemical Reactions of Nonanoic Acids at Air-Water Interface.
Xiao, Pin; Wang, Qian; Fang, Wei-Hai; Cui, Ganglong
2017-06-08
Photoinduced chemical reactions of organic compounds at the marine boundary layer have recently attracted significant experimental attention because this kind of photoreactions has been proposed to have substantial impact on local new particle formation and their photoproducts could be a source of secondary organic aerosols. In this work, we have employed first-principles density functional theory method combined with cluster models to systematically explore photochemical reaction pathways of nonanoic acids (NAs) to form volatile saturated and unsaturated C 9 and C 8 aldehydes at air-water interfaces. On the basis of the results, we have found that the formation of C 9 aldehydes is not initiated by intermolecular Norrish type II reaction between two NAs but by intramolecular T 1 C-O bond fission of NA generating acyl and hydroxyl radicals. Subsequently, saturated C 9 aldehydes are formed through hydrogenation reaction of acyl radical by another intact NA. Following two dehydrogenation reactions, unsaturated C 9 aldehydes are generated. In parallel, the pathway to C 8 aldehydes is initiated by T 1 C-C bond fission of NA, which generates octyl and carboxyl radicals; then, an octanol is formed through recombination reaction of octyl with hydroxyl radical. In the following, two dehydrogenation reactions result into an enol intermediate from which saturated C 8 aldehydes are produced via NA-assisted intermolecular hydrogen transfer. Finally, two dehydrogenation reactions generate unsaturated C 8 aldehydes. In these reactions, water and NA molecules are found to play important roles. They significantly reduce relevant reaction barriers. Our work has also explored oxygenation reactions of NA with molecular oxygen and radical-radical dimerization reactions.
Denham, K; Milofsky, R E
1998-10-01
A postcolumn photochemical reaction detection scheme, based on the reaction of 3-substituted pyrroles with singlet molecular oxygen ((1)O(2)), has been developed. The method is selective and sensitive for the determination of a class of organic compounds called (1)O(2)-sensitizers and is readily coupled to HPLC. Following separation by HPLC, analytes ((1)O(2)-sensitizers) are excited by a Hg pen-ray lamp. Analytes that are efficient (1)O(2)-sensitizers promote ground-state O(2) ((3)Σ(g)(-)) to an excited state ((1)Σ(g)(+) or (1)Δ(g)), which reacts rapidly with tert-butyl-3,4,5-trimethylpyrrolecarboxylate (BTMPC) or N-benzyl-3-methoxypyrrole-2-tert-carboxylate (BMPC), which is added to the mobile phase. Detection is based on the loss of pyrrole (BTMPC or BMPC). The reaction is catalytic in nature since one analyte molecule may absorb light many times, producing large amounts of (1)O(2). Detection limits for several (1)O(2)-sensitizers were improved by 1-2 orders of magnitude over optimized UV-absorbance detection. This paper discusses the optimization of the reaction conditions for this photochemical reaction detection scheme and its application to the detection of PCBs, nitrogen heterocycles, nitro and chloro aromatics, and other substituted aromatic compounds.
NASA Astrophysics Data System (ADS)
Keane, Thomas C.
2017-09-01
Laboratory studies provide a fundamental understanding of photochemical processes in planetary atmospheres. Photochemical reactions taking place on giant planets like Jupiter and possibly comets and the interstellar medium are the subject of this research. Reaction pathways are proposed for the coupled photochemistry of NH3 (ammonia) and C2H2 (acetylene) within the context Jupiter's atmosphere. We then extend the discussion to the Great Red Spot, Extra-Solar Giant Planets, Comets and Interstellar Organic Synthesis. Reaction rates in the form of quantum yields were measured for the decomposition of reactants and the formation of products and stable intermediates: HCN (hydrogen cyanide), CH3CN (acetonitrile), CH3CH = N-N = CHCH3 (acetaldazine), CH3CH = N-NH2 (acetaldehyde hydrazone), C2H5NH2 (ethylamine), CH3NH2 (methylamine) and C2H4 (ethene) in the photolysis of NH3/C2H2 mixtures. Some of these compounds, formed in our investigation of pathways for HCN synthesis, were not encountered previously in observational, theoretical or laboratory photochemical studies. The quantum yields obtained allowed for the formulation of a reaction mechanism that attempts to explain the observed results under varying experimental conditions. In general, the results of this work are consistent with the initial observations of Ferris and Ishikawa (1988). However, their proposed reaction pathway which centers on the photolysis of CH3CH = N-N = CHCH3 does not explain all of the results obtained in this study. The formation of CH3CH = N-N = CHCH3 by a radical combination reaction of CH3CH = N• was shown in this work to be inconsistent with other experiments where the CH3CH = N• radical is thought to form but where no CH3CH = N-N = CHCH3 was detected. The importance of the role of H atom abstraction reactions was demonstrated and an alternative pathway for CH3CH = N-N = CHCH3 formation involving nucleophilic reaction between N2H4 and CH3CH = NH is advanced.
Keane, Thomas C
2017-09-01
Laboratory studies provide a fundamental understanding of photochemical processes in planetary atmospheres. Photochemical reactions taking place on giant planets like Jupiter and possibly comets and the interstellar medium are the subject of this research. Reaction pathways are proposed for the coupled photochemistry of NH 3 (ammonia) and C 2 H 2 (acetylene) within the context Jupiter's atmosphere. We then extend the discussion to the Great Red Spot, Extra-Solar Giant Planets, Comets and Interstellar Organic Synthesis. Reaction rates in the form of quantum yields were measured for the decomposition of reactants and the formation of products and stable intermediates: HCN (hydrogen cyanide), CH 3 CN (acetonitrile), CH 3 CH = N-N = CHCH 3 (acetaldazine), CH 3 CH = N-NH 2 (acetaldehyde hydrazone), C 2 H 5 NH 2 (ethylamine), CH 3 NH 2 (methylamine) and C 2 H 4 (ethene) in the photolysis of NH 3 /C 2 H 2 mixtures. Some of these compounds, formed in our investigation of pathways for HCN synthesis, were not encountered previously in observational, theoretical or laboratory photochemical studies. The quantum yields obtained allowed for the formulation of a reaction mechanism that attempts to explain the observed results under varying experimental conditions. In general, the results of this work are consistent with the initial observations of Ferris and Ishikawa (1988). However, their proposed reaction pathway which centers on the photolysis of CH 3 CH = N-N = CHCH 3 does not explain all of the results obtained in this study. The formation of CH 3 CH = N-N = CHCH 3 by a radical combination reaction of CH 3 CH = N• was shown in this work to be inconsistent with other experiments where the CH 3 CH = N• radical is thought to form but where no CH 3 CH = N-N = CHCH 3 was detected. The importance of the role of H atom abstraction reactions was demonstrated and an alternative pathway for CH 3 CH = N-N = CHCH 3 formation involving nucleophilic reaction between N 2 H 4 and CH 3 CH = NH is advanced.
Chu, Chiheng; Lundeen, Rachel A; Remucal, Christina K; Sander, Michael; McNeill, Kristopher
2015-05-05
Photochemical transformations greatly affect the stability and fate of amino acids (AAs) in sunlit aquatic ecosystems. Whereas the direct phototransformation of dissolved AAs is well investigated, their indirect photolysis in the presence of chromophoric dissolved organic matter (CDOM) is poorly understood. In aquatic systems, CDOM may act both as sorbent for AAs and as photosensitizer, creating microenvironments with high concentrations of photochemically produced reactive intermediates, such as singlet oxygen (1O2). This study provides a systematic investigation of the indirect photochemical transformation of histidine (His) and histamine by 1O2 in solutions containing CDOM as a function of solution pH. Both His and histamine showed pH-dependent enhanced phototransformation in the CDOM systems as compared to systems in which model, low-molecular-weight 1O2 sensitizers were used. Enhanced reactivity resulted from sorption of His and histamine to CDOM and thus exposure to elevated 1O2 concentrations in the CDOM microenvironment. The extent of reactivity enhancement depended on solution pH via its effects on the protonation state of His, histamine, and CDOM. Sorption-enhanced reactivity was independently supported by depressed rate enhancements in the presence of a cosorbate that competitively displaced His and histamine from CDOM. Incorporating sorption and photochemical transformation processes into a reaction rate prediction model improved the description of the abiotic photochemical transformation rates of His in the presence of CDOM.
Cho, Dae Won; Latham, John A; Park, Hea Jung; Yoon, Ung Chan; Langan, Paul; Dunaway-Mariano, Debra; Mariano, Patrick S
2011-04-15
New types of tetrameric lignin model compounds, which contain the common β-O-4 and β-1 structural subunits found in natural lignins, have been prepared and carbon-carbon bond fragmentation reactions of their cation radicals, formed by photochemical (9,10-dicyanoanthracene) and enzymatic (lignin peroxidase) SET-promoted methods, have been explored. The results show that cation radical intermediates generated from the tetrameric model compounds undergo highly regioselective C-C bond cleavage in their β-1 subunits. The outcomes of these processes suggest that, independent of positive charge and odd-electron distributions, cation radicals of lignins formed by SET to excited states of sensitizers or heme-iron centers in enzymes degrade selectively through bond cleavage reactions in β-1 vs β-O-4 moieties. In addition, the findings made in the enzymatic studies demonstrate that the sterically large tetrameric lignin model compounds undergo lignin peroxidase-catalyzed cleavage via a mechanism involving preliminary formation of an enzyme-substrate complex.
Light-Induced C-H Arylation of (Hetero)arenes by In Situ Generated Diazo Anhydrides.
Cantillo, David; Mateos, Carlos; Rincon, Juan A; de Frutos, Oscar; Kappe, C Oliver
2015-09-07
Diazo anhydrides (Ar-N=N-O-N=N-Ar) have been known since 1896 but have rarely been used in synthesis. This communication describes the development of a photochemical catalyst-free C-H arylation methodology for the preparation of bi(hetero)aryls by the one-pot reaction of anilines with tert-butyl nitrite and (hetero)arenes under neutral conditions. The key step in this procedure is the in situ formation and subsequent photochemical (>300 nm) homolytic cleavage of a transient diazo anhydride intermediate. The generated aryl radical then efficiently reacts with a (hetero)arene to form the desired bi(hetero)aryls producing only nitrogen, water, and tert-butanol as byproducts. The scope of the reaction for several substituted anilines and (hetero)arenes was investigated. A continuous-flow protocol increasing selectivity and safety has been developed enabling the experimentally straightforward preparation of a variety of substituted bi(hetero)aryls within 45 min of reaction time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of high pressure on the photochemical reaction center from Rhodobacter sphaeroides R26.1.
Gall, A; Ellervee, A; Bellissent-Funel, M C; Robert, B; Freiberg, A
2001-01-01
High-pressure studies on the photochemical reaction center from the photosynthetic bacterium Rhodobacter sphaeroides, strain R26.1, shows that, up to 0.6 GPa, this carotenoid-less membrane protein does not loose its three-dimensional structure at room temperature. However, as evidenced by Fourier-transform preresonance Raman and electronic absorption spectra, between the atmospheric pressure and 0.2 GPa, the structure of the bacterial reaction center experiences a number of local reorganizations in the binding site of the primary electron donor. Above that value, the apparent compressibility of this membrane protein is inhomogeneous, being most noticeable in proximity to the bacteriopheophytin molecules. In this elevated pressure range, no more structural reorganization of the primary electron donor binding site can be observed. However, its electronic structure becomes dramatically perturbed, and the oscillator strength of its Q(y) electronic transition drops by nearly one order of magnitude. This effect is likely due to very small, pressure-induced changes in its dimeric structure. PMID:11222309
NASA Technical Reports Server (NTRS)
Zare, Richard N.
2005-01-01
The work funded by this research grant includes four specific projects: (1) Mapping the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in a variety of meteoritic samples and comparing this distribution with mineralogical features of the meteorite to determine whether a correlation exists between the two. (2) Developing a method for detection of fullerenes in extraterrestrial samples using microprobe laser-desorption laser-ionization mass spectrometry ( pL2MS) and utilizing this technique to investigate fullerene presence, while exploring the possibility of spatially mapping the fullerene distribution in these samples through in situ detection. (3) Investigating a possible formation pathway for meteoritic and ancient terrestrial kerogen involving the photochemical reactions of PAHs with alkanes under prebiotic and astrophysically relevant conditions. (4) Studying reaction pathways and identifying the photoproducts generated during the photochemical evolution of PAH-containing interstellar ice analogs as part of an ongoing collaboration with researchers at the Astrochemistry Lab at NASA Ames.
Taple-top imaging of the non-adiabatically driven isomerization in the acetylene cation
NASA Astrophysics Data System (ADS)
Beaulieu, Samuel; Ibrahim, Heide; Wales, Benji; Schmidt, Bruno E.; Thiré, Nicolas; Bisson, Éric; Hebeisen, Christoph T.; Wanie, Vincent; Giguere, Mathieu; Kieffer, Jean-Claude; Sanderson, Joe; Schuurman, Michael S.; Légaré, François
2014-05-01
One of the primary goals of modern ultrafast science is to follow nuclear and electronic evolution of molecules as they undergo a photo-chemical reaction. Most of the interesting dynamics phenomena in molecules occur when an electronically excited state is populated. When the energy difference between electronic ground and excited states is large, Free Electron Laser (FEL) and HHG-based VUV sources were, up to date, the only light sources able to efficiently initiate those non-adiabatic dynamics. We have developed a simple table-top approach to initiate those rich dynamics via multiphoton absorption. As a proof of principle, we studied the ultrafast isomerization of the acetylene cation. We have chosen this model system for isomerization since the internal conversion mechanism which leads to proton migration is still under debate since decades. Using 266 nm multiphoton absorption as a pump and 800 nm induced Coulomb Explosion as a probe, we have shoot the first high-resolution molecular movie of the non-adiabatically driven proton migration in the acetylene cation. The experimental results are in excellent agreement with high level ab initio trajectory simulations.
Dynamics starting at a conical intersection: Application to the photochemistry of pyrrole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sellner, Bernhard; Barbatti, Mario; Lischka, Hans
The photochemical ring opening process in pyrrole has been investigated by performing classical on-the-fly dynamics using the multiconfiguration self-consistent field method for the computation of energies and energy gradients. As starting point for the dynamics the conical intersection corresponding to the ring-puckered ring-opened structure, determined previously [Barbatti et al., J. Chem. Phys. 125, 164323 (2006)], has been chosen. Two sets of initial conditions for the nuclear velocities were constructed: (i) nuclear velocities in the branching (g,h) plane of the conical intersection and (ii) statistical distribution for all atoms. Both sets of initial conditions show very similar results. Reactive trajectories aremore » only found in a very limited sector in the (g,h) plane and reaction products are very similar. Within the simulation time of 1 ps, ring opening of pyrrole to the biradical NH=CH-CH-CH=CH chain followed by ring closure to a substituted cyclopropene structure (NH=CH-C{sub 3}H{sub 3}) is observed. The computed structural data correlate well with the experimentally observed dissociation products.« less
Excimer laser induced surface chemical modification of polytetrafluoroethylene
NASA Astrophysics Data System (ADS)
Révész, K.; Hopp, B.; Bor, Z.
1997-02-01
Polytetrafluoroethylene has a notoriously non adhesive and non reactive character. Its successful surface photochemical modification was performed by irradiating the polytetrafluoroethylene/liquid triethylamine interface with an ArF excimer laser (λ=193 nm). Due to the photochemical treatment the polytetrafluoroethylene surface became more hydrophilic. The water receding contact angle decreased from 94° to 43°. The reaction cross section was determined from the decrease of the contact angles. It was found to be as high as 6.4×10-18 cm2. XPS measurements evidenced the removal of fluorine from the polytetrafluoroethylene, incorporation of alkyl carbon and nitrogen. Photochemical dissociation path of the triethylamine makes probable that it bonded to the fluoropolymer backbone via the α-carbon atom of an ethyl group. A radical, or a photoinduced electron transfer mechanism was suggested to describe this reaction. A selective area electroless plating of silver was performed after pretreating the sample with patterned photomodification. The increased adhesion of the sample was proved by gluing with epoxy resin. As a result of the surface modification the tensile strength of gluing increased by 210× and reached 24% of the value characteristic for the bulk material.
Growth of fluorescence gold clusters using photo-chemically activated ligands
NASA Astrophysics Data System (ADS)
Mishra, Dinesh; Aldeek, Fadi; Michael, Serge; Palui, Goutam; Mattoussi, Hedi
2016-03-01
Ligands made of lipoic acid (LA) appended with a polyethylene glycol (PEG) chain have been used in the aqueous phase growth of luminescent gold clusters with distinct emission from yellow to near-IR, using two different routes. In the first route, the gold-ligand complex was chemically reduced using sodium borohydride in alkaline medium, which gave near- IR luminescent gold clusters with maximum emission around 745 nm. In the second method, LA-PEG ligand was photochemically modified to a mixture of thiols, oligomers and oxygenated species under UV-irradiation, which was then used as both reducing agent and stabilizing ligand. By adjusting the pH, temperature, and time of the reaction, we were able to obtain clusters with two distinct emission properties. Refluxing the gold-ligand complex in alkaline medium in the presence of excess ligand gave yellow emission within the first two hours and the emission shifted to red after overnight reaction. Mass spectrometry and chemical assay were used to understand the photo-chemical transformation of Lipoic Acid (LA). Mass spectroscopic studies showed the photo-irradiated product contains thiols, oligomers (dimers, trimers and tetramers) as well as oxygenated species. The amount of thiol formed under different conditions of irradiation was estimated using Ellman's assay.
NASA Astrophysics Data System (ADS)
Delidovich, I. V.; Taran, O. P.; Simonov, A. N.; Matvienko, L. G.; Parmon, V. N.
2011-08-01
The article analyzes new and previously reported data on several catalytic and photochemical processes yielding biologically important molecules. UV-irradiation of formaldehyde aqueous solution yields acetaldehyde, glyoxal, glycolaldehyde and glyceraldehyde, which can serve as precursors of more complex biochemically relevant compounds. Photolysis of aqueous solution of acetaldehyde and ammonium nitrate results in formation of alanine and pyruvic acid. Dehydration of glyceraldehyde catalyzed by zeolite HZSM-5-17 yields pyruvaldehyde. Monosaccharides are formed in the course of the phosphate-catalyzed aldol condensation reactions of glycolaldehyde, glyceraldehyde and formaldehyde. The possibility of the direct synthesis of tetroses, keto- and aldo-pentoses from pure formaldehyde due to the combination of the photochemical production of glycolahyde and phosphate-catalyzed carbohydrate chain growth is demonstrated. Erythrulose and 3-pentulose are the main products of such combined synthesis with selectivity up to 10%. Biologically relevant aldotetroses, aldo- and ketopentoses are more resistant to the photochemical destruction owing to the stabilization in hemiacetal cyclic forms. They are formed as products of isomerization of erythrulose and 3-pentulose. The conjugation of the concerned reactions results in a plausible route to the formation of sugars, amino and organic acids from formaldehyde and ammonia under presumed 'prebiotic' conditions.
NASA Technical Reports Server (NTRS)
Austin, J.; Jones, R. L.; Mckenna, D. S.; Buckland, A. T.; Anderson, J. G.; Fahey, D. W.; Farmer, C. B.; Heidt, L. E.; Proffitt, M. H.; Vedder, J. F.
1989-01-01
A photochemical model consisting of 40 species and 107 reactions is integrated along 80-day air parcel trajectories calculated in the lower stratosphere for the springtime Antarctic. For the trajectory starting at 58 deg S, which may be regarded as outside the circumpolar vortex, only a small change in O3 occurs in the model. In contrast, for the air parcel starting in the vortex at 74 deg S, the O3 concentration is reduced by 93 percent during the 80 days from the beginning of August to late October. The model results for several species are compared with measurements from the Airborne Antarctic Ozone Experiment and, in general, good agreement is obtained. In the model, the dentrification of the air parcels in polar stratospheric clouds increases the amount of chlorine present in active form. Heterogeneous reactions maintain high active chlorine which destroys O3 via the formation of the ClO dimer. Results of calculations with reduced concentrations of inorganic chlorine show considerably reduced O3 destruction rates and compare favorably with the behavior of total O3 since the late 1970s. The remaining major uncertainties in the photochemical aspects of the Antarctic ozone hole are highlighted.
Molecular-beam Studies of Primary Photochemical Processes
DOE R&D Accomplishments Database
Lee, Y. T.
1982-12-01
Application of the method of molecular-beam photofragmentation translational spectroscopy to the investigation of primary photochemical processes of polyatomic molecules is described. Examples will be given to illustrate how information concerning the energetics, dynamics, and mechanism of dissociation processes can be obtained from the precise measurements of angular and velocity distributions of products in an experiment in which a well-defined beam of molecules is crossed with a laser.
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1981-01-01
Provides procedures for demonstrations: (1) the ferrioxalate actinometer, which demonstrates a photochemical reaction; and (2) the silver mirror, which demonstrates the reduction of a metal salt to the metal and/or the reducing power of sugars. (CS)
Catalysts for low-energy aldehyde processes
NASA Technical Reports Server (NTRS)
Gupta, A.; Rembaum, A.; Frazier, C.; Gray, H. B.
1977-01-01
Photochemical reaction of dicobalt octacarbonyl with polymeric support systems results in formation of polymer bonded metal catalyst. Catalyst is used in hydroformylation (addition of carbon dioxide and hydrogen) of olefins to yield aldehydes.
Extensions of a Basic Laboratory Experiment: [4+2] and [2+2] Cycloadditions
ERIC Educational Resources Information Center
Amarne, Hazem Y.; Bain, Alex D.; Neumann, Karen; Zelisko, Paul M.
2008-01-01
We describe an extended third-year undergraduate chemistry laboratory exercise in which a number of techniques and concepts are applied to the same set of chemical reactions. The reactions are the photochemical and thermal cycloadditions of [beta]-nitrostyrene and 2,3-dimethylbutadiene. This can be viewed as a single long lab or a series of…
Trajectory-based nonadiabatic dynamics with time-dependent density functional theory.
Curchod, Basile F E; Rothlisberger, Ursula; Tavernelli, Ivano
2013-05-10
Understanding the fate of an electronically excited molecule constitutes an important task for theoretical chemistry, and practical implications range from the interpretation of atto- and femtosecond spectroscopy to the development of light-driven molecular machines, the control of photochemical reactions, and the possibility of capturing sunlight energy. However, many challenging conceptual and technical problems are involved in the description of these phenomena such as 1) the failure of the well-known Born-Oppenheimer approximation; 2) the need for accurate electronic properties such as potential energy surfaces, excited nuclear forces, or nonadiabatic coupling terms; and 3) the necessity of describing the dynamics of the photoexcited nuclear wavepacket. This review provides an overview of the current methods to address points 1) and 3) and shows how time-dependent density functional theory (TDDFT) and its linear-response extension can be used for point 2). First, the derivation of Ehrenfest dynamics and nonadiabatic Bohmian dynamics is discussed and linked to Tully's trajectory surface hopping. Second, the coupling of these trajectory-based nonadiabatic schemes with TDDFT is described in detail with special emphasis on the derivation of the required electronic structure properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photochemical synthesis of biomolecules under anoxic conditions
NASA Technical Reports Server (NTRS)
Folsome, C.; Brittain, A.; Zelko, M.
1983-01-01
The long-wavelength UV anoxic photosynthesis of uracil, various sugars (including deoxyribose and glycoaldehyde), amino acids, and other organic photoproducts is reported. The reactions were conducted in a mixture of water, calcium carbonate, hydrazine, and formaldehyde which were subjected to 24 hr or 72 hr radiation. Product yields were greatest when the hydrazine/formaldehyde ratio was one, and when the reactant concentrations were low. These data suggest that organic products can be formed in variety from those amounts of formaldehyde and hydazine precursors which are themselves formed under anoxic UV photochemical conditions.
NASA Technical Reports Server (NTRS)
Sander, S. P.; Friedl, R. R.; Barker, J. R.; Golden, D. M.; Kurylo, M. J.; Wine, P. H.; Abbatt, J.; Burkholder, J. B.; Kolb, C. E.; Moortgat, G. K.;
2009-01-01
This is the supplement to the fifteenth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The data are used primarily to model stratospheric and upper tropospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available in electronic form and may be printed from the following Internet URL: http://jpldataeval.jpl.nasa.gov/.
Gombár, Melinda; Józsa, Éva; Braun, Mihály; Ősz, Katalin
2012-10-01
An inexpensive photoreactor using LED light sources and a fibre-optic CCD spectrophotometer as a detector was built by designing a special cell holder for standard 1.000 cm cuvettes. The use of this device was demonstrated by studying the aqueous photochemical reaction of 2,5-dichloro-1,4-benzoquinone. The developed method combines the highly quantitative data collection of CCD spectrophotometers with the possibility of illuminating the sample independently of the detecting light beam, which is a substantial improvement of the method using diode array spectrophotometers as photoreactors.
1990-11-01
output at -355 nm) until significant conversion of the tricarbonyl to the dicarbonyl phosphine was achieved, as determined by IR. The disubstitited product...forms rapidly once the dicarbonyl phosphine is present in solution so care was taken to stop the irradiation prior to extensive formation of...photochemical behavior and yields photoproducts analogous to those formed upon irradiation of (T5 -C 5 H4 )Mn(CO) 3 in the presence of phosphines . 7 UV
Crabtree, Robert H.; Brown, Stephen H.
1989-01-01
The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.
Crabtree, R.H.; Brown, S.H.
1989-10-17
The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.
Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre
2016-01-01
Sulfur isotopic anomalies (∆33S and ∆36S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ34S values at ∼+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆33S between −1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ34S peak at +9‰ is associated with non–33S-anomalous barites displaying negative ∆36S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere. PMID:27330111
Stadler, Eduard; Eibel, Anna; Fast, David; Freißmuth, Hilde; Holly, Christian; Wiech, Mathias; Moszner, Norbert; Gescheidt, Georg
2018-05-16
We have developed a simple method for determining the quantum yields of photo-induced reactions. Our setup features a fibre coupled UV-Vis spectrometer, LED irradiation sources, and a calibrated spectrophotometer for precise measurements of the LED photon flux. The initial slope in time-resolved absorbance profiles provides the quantum yield. We show the feasibility of our methodology for the kinetic analysis of photochemical reactions and quantum yield determination. The typical chemical actinometers, ferrioxalate and ortho-nitrobenzaldehyde, as well as riboflavin, a spiro-compound, phosphorus- and germanium-based photoinitiators for radical polymerizations and the frequently utilized photo-switch azobenzene serve as paradigms. The excellent agreement of our results with published data demonstrates the high potential of the proposed method as a convenient alternative to the time-consuming chemical actinometry.
NASA Astrophysics Data System (ADS)
Heyns, A. M.; de Waal, D.
1989-01-01
The photochemical isomerization reaction of [Co(NH 3) 5NO 2]Cl 2 to [Co(NH 3) 5ONO]Cl 2 has been studied in the solid state by means of i.r. spectroscopy. The reaction is first order with k = 2.53±0.05 × 10 -4s -1 and is much faster ( t1/2=49min) than the well-known spontaneous nitrito → nitro isomerization ( t1/2 = 6 days). The i.r. bands of both the NH 3 and ONO - -groups in the range 4000-50 cm -1 indicate minor differences between the structures of freshly and photochemically prepared [Co(NH 3) 5ONO]Cl 2. The far i.r. spectra indicate the disorder existing in the intermediate products during the isomerization processes.
PHOTOCHEMICAL REACTION OF NITRO-POLYCYCLIC AROMATIC HYDROCARBONS: EFFECT BY SOLVENT AND STRUCTURE
Stewart, Gernerique; Smith, Keonia; Chornes, Ashley; Harris, Tracy; Honeysucker, Tiffany; Dasary, Suman Raj; Yu, Hongtao
2010-01-01
Photochemical degradation of 1-nitropyrene, 2-nitrofluorene, 2,7-dinitrofluorene, 6-nitrochrysene, 3-nitrofluoranthene, 5-nitroacenaphthene, and 9-nitroanthracene were examined in CHCl3, CH2Cl2, DMF, DMF/H2O (80/20), CH3CN, or CH3CN/H2O (80/20). The degradation follows mostly the 1st order kinetics; but a few follow 2nd order kinetics or undergo self-catalysis. The photodegradation rates follow the order: CHCl3 > CH2Cl2 > DMF > DMF/H2O > CH3CN > CH3CN/H2O. DMF is an exceptional solvent because 3 of the 7 compounds undergo self-catalytic reaction. 9-Nitroanthracene, which has a perpendicular nitro group, is the fastest, while the more compact 1-nitropyrene and 3-nitrofluoranthene, are the slowest degrading compounds. PMID:21170286
Suppression of new particle formation from monoterpene oxidation by NOx
NASA Astrophysics Data System (ADS)
Wildt, J.; Mentel, T. F.; Kiendler-Scharr, A.; Hoffmann, T.; Andres, S.; Ehn, M.; Kleist, E.; Müsgen, P.; Rohrer, F.; Rudich, Y.; Springer, M.; Tillmann, R.; Wahner, A.
2013-10-01
The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory set up. At high NOx conditions (BVOC/NOx < 7, NOx > 23 ppb) no new particles were formed. Instead photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. As soon as [NO] was reduced to below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF orders of magnitude slower than in analogous experiments at low NOx conditions (NOx ~ 300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF suggesting that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent of approximately -2. This exponent indicated that the overall peroxy radical concentration must have been the same whenever NPF appeared. Thus permutation reactions of first generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy radical like molecules limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was less sensitive to NOx concentrations, if at all. Only at very high NOx concentrations yields were reduced by about an order of magnitude.
Suppression of new particle formation from monoterpene oxidation by NOx
NASA Astrophysics Data System (ADS)
Wildt, J.; Mentel, T. F.; Kiendler-Scharr, A.; Hoffmann, T.; Andres, S.; Ehn, M.; Kleist, E.; Müsgen, P.; Rohrer, F.; Rudich, Y.; Springer, M.; Tillmann, R.; Wahner, A.
2014-03-01
The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory setup. At high NOx conditions ([BVOC] / [NOx] < 7, [NOx] > 23 ppb) new particle formation was suppressed. Instead, photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. When [NO] was reduced back to levels below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF to be slowed by orders of magnitude compared to analogous experiments at low NOx conditions ([NOx] ~300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF. This suggests that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent approaching -2. This exponent indicated that the overall peroxy radical concentration must have been similar when NPF occurred. Thus, permutation reactions of first-generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy-radical-like intermediates limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was substantially less sensitive to NOx concentrations. If at all, yields were reduced by about an order of magnitude only at very high NOx concentrations.
Mahboob, Abdullah; Vassiliev, Serguei; Poddutoori, Prashanth K; van der Est, Art; Bruce, Doug
2013-01-01
Photosystem II (PSII) of photosynthesis has the unique ability to photochemically oxidize water. Recently an engineered bacterioferritin photochemical 'reaction centre' (BFR-RC) using a zinc chlorin pigment (ZnCe6) in place of its native heme has been shown to photo-oxidize bound manganese ions through a tyrosine residue, thus mimicking two of the key reactions on the electron donor side of PSII. To understand the mechanism of tyrosine oxidation in BFR-RCs, and explore the possibility of water oxidation in such a system we have built an atomic-level model of the BFR-RC using ONIOM methodology. We studied the influence of axial ligands and carboxyl groups on the oxidation potential of ZnCe6 using DFT theory, and finally calculated the shift of the redox potential of ZnCe6 in the BFR-RC protein using the multi-conformational molecular mechanics-Poisson-Boltzmann approach. According to our calculations, the redox potential for the first oxidation of ZnCe6 in the BRF-RC protein is only 0.57 V, too low to oxidize tyrosine. We suggest that the observed tyrosine oxidation in BRF-RC could be driven by the ZnCe6 di-cation. In order to increase the efficiency of tyrosine oxidation, and ultimately oxidize water, the first potential of ZnCe6 would have to attain a value in excess of 0.8 V. We discuss the possibilities for modifying the BFR-RC to achieve this goal.
Lavaud, Johann; Rousseau, Bernard; van Gorkom, Hans J.; Etienne, Anne-Lise
2002-01-01
The pool size of the xanthophyll cycle pigment diadinoxanthin (DD) in the diatom Phaeodactylum tricornutum depends on illumination conditions during culture. Intermittent light caused a doubling of the DD pool without significant change in other pigment contents and photosynthetic parameters, including the photosystem II (PSII) antenna size. On exposure to high-light intensity, extensive de-epoxidation of DD to diatoxanthin (DT) rapidly caused a very strong quenching of the maximum chlorophyll fluorescence yield (Fm, PSII reaction centers closed), which was fully reversed in the dark. The non-photochemical quenching of the minimum fluorescence yield (Fo, PSII centers open) decreased the quantum efficiency of PSII proportionally. For both Fm and Fo, the non-photochemical quenching expressed as F/F′ − 1 (with F′ the quenched level) was proportional to the DT concentration. However, the quenching of Fo relative to that of Fm was much stronger than random quenching in a homogeneous antenna could explain, showing that the rate of photochemical excitation trapping was limited by energy transfer to the reaction center rather than by charge separation. The cells can increase not only the amount of DT they can produce, but also its efficiency in competing with the PSII reaction center for excitation. The combined effect allowed intermittent light grown cells to down-regulate PSII by 90% and virtually eliminated photoinhibition by saturating light. The unusually rapid and effective photoprotection by the xanthophyll cycle in diatoms may help to explain their dominance in turbulent waters. PMID:12114593
Lynch, Michael S; Slenkamp, Karla M; Khalil, Munira
2012-06-28
Fifth-order nonlinear visible-infrared spectroscopy is used to probe coherent and incoherent vibrational energy relaxation dynamics of highly excited vibrational modes indirectly populated via ultrafast photoinduced back-electron transfer in a trinuclear cyano-bridged mixed-valence complex. The flow of excess energy deposited into four C≡N stretching (ν(CN)) modes of the molecule is monitored by performing an IR pump-probe experiment as a function of the photochemical reaction (τ(vis)). Our results provide experimental evidence that the nuclear motions of the molecule are both coherently and incoherently coupled to the electronic charge transfer process. We observe that intramolecular vibrational relaxation dynamics among the highly excited ν(CN) modes change significantly en route to equilibrium. The experiment also measures a 7 cm(-1) shift in the frequency of a ∼57 cm(-1) oscillation reflecting a modulation of the coupling between the probed high-frequency ν(CN) modes for τ(vis) < 500 fs.
Yu, Lu; Smith, Jeremy; Laskin, Alexander; ...
2016-04-13
Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants – the triplet excited state of an aromatic carbonyl ( 3C *) and hydroxyl radical ( • OH). Changes in themore » molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OS C) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ~2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OS C values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers ( n C) below 6. The average n C of phenolic aqSOA decreases while average OS C increases over the course of photochemical aging. In addition, the saturation vapor pressures ( C *) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C * values is observed, varying from < 10 –20 µg m –3 for functionalized phenolic oligomers to > 10 µg m –3 for small open-ring species. Furthermore, the detection of abundant extremely low-volatile organic compounds (ELVOC) indicates that aqueous reactions of phenolic compounds are likely an important source of ELVOC in the atmosphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Lu; Smith, Jeremy; Laskin, Alexander
Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants – the triplet excited state of an aromatic carbonyl ( 3C *) and hydroxyl radical ( • OH). Changes in themore » molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OS C) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ~2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OS C values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers ( n C) below 6. The average n C of phenolic aqSOA decreases while average OS C increases over the course of photochemical aging. In addition, the saturation vapor pressures ( C *) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C * values is observed, varying from < 10 –20 µg m –3 for functionalized phenolic oligomers to > 10 µg m –3 for small open-ring species. Furthermore, the detection of abundant extremely low-volatile organic compounds (ELVOC) indicates that aqueous reactions of phenolic compounds are likely an important source of ELVOC in the atmosphere.« less
NASA Astrophysics Data System (ADS)
Yu, L.; Smith, J.; Laskin, A.; George, K. M.; Anastasio, C.; Laskin, J.; Dillner, A. M.; Zhang, Q.
2015-10-01
Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants - the triplet excited state of an aromatic carbonyl (3C*) and hydroxyl radical (•OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ∼ 2 h irradiation under midday, winter solstice sunlight in northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated open-ring molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures C*) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C* values is observed, varying from < 10-20 μg m-3 for functionalized phenolic oligomers to > 10 μg m-3 for small open-ring species. The detection of abundant extremely low volatile organic compounds (ELVOC) indicates that aqueous reactions of phenolic compounds are likely an important source of ELVOC in the atmosphere.
NASA Astrophysics Data System (ADS)
Yu, Lu; Smith, Jeremy; Laskin, Alexander; George, Katheryn M.; Anastasio, Cort; Laskin, Julia; Dillner, Ann M.; Zhang, Qi
2016-04-01
Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants - the triplet excited state of an aromatic carbonyl (3C∗) and hydroxyl radical (
Savarino, J; Bhattacharya, S K; Morin, S; Baroni, M; Doussin, J-F
2008-05-21
Atmospheric nitrate shows a large oxygen isotope anomaly (Delta 17 O), characterized by an excess enrichment of 17 O over 18 O, similar to the ozone molecule. Modeling and observations assign this specific isotopic composition mainly to the photochemical steady state that exists in the atmosphere between ozone and nitrate precursors, namely, the nitrogen oxides (NOx=NO+NO2). However, this transfer is poorly quantified and is built on unverified assumptions about which oxygen atoms of ozone are transferred to NO(x), greatly weakening any interpretation of the nitrate oxygen isotopic composition in terms of chemical reaction pathways and the oxidation state of the atmosphere. With the aim to improve our understanding and quantify how nitrate inherits this unusual isotopic composition, we have carried out a triple isotope study of the reaction NO+O3. Using ozone intramolecular isotope distributions available in the literature, we have found that the central atom of the ozone is abstracted by NO with a probability of (8+/-5)%(+/-2 sigma) at room temperature. This result is at least qualitatively supported by dynamical reaction experiments, the non-Arrhenius behavior of the kinetic rate of this reaction, and the kinetic isotope fractionation factor. Finally, we have established the transfer function of the isotope anomaly of O3 to NO2, which is described by the linear relationship Delta 17 O(NO2)=A x Delta 17 O(O3)+B, with A=1.18+/-0.07(+/-1 sigma) and B=(6.6+/-1.5)[per thousand](+/-1 sigma). Such a relationship can be easily incorporated into models dealing with the propagation of the ozone isotope anomaly among oxygen-bearing species in the atmosphere and should help to better interpret the oxygen isotope anomaly of atmospheric nitrate in terms of its formation reaction pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Bing; Baine, Teera; Ma, Xuan Anh N.
2013-04-17
The use of sunlight to drive chemical reactions that lead to the reduction of water to produce hydrogen is a potential avenue of solar energy utilization. There are many individual steps that take place in this process. This paper reports the investigation of a particular system that involves light absorbing molecules, electron donating agents and a catalyst for water reduction to hydrogen. We evaluated the efficiency of the light induced formation of a strong electron donor, the use of this donor to reduce the catalyst and finally the efficiency of the catalyst to produce hydrogen from water. From this, themore » sources of loss of efficiency could be clearly identified and used in the design of better systems to produce hydrogen from water.« less
NASA Astrophysics Data System (ADS)
Pahk, Ian
Non-photochemical quenching (NPQ) is a photoprotective regulatory mechanism essential to the robustness of the photosynthetic apparatus of green plants. Energy flow within the low-light adapted reaction centers is dynamically optimized to match the continuously fluctuating light conditions found in nature. Activated by compartmentalized decreases in pH resulting from photosynthetic activity during periods of elevated photon flux, NPQ induces rapid thermal dissipation of excess excitation energy that would otherwise overwhelm the apparatus's ability to consume it. Consequently, the frequency of charge separation decreases and the formation of potentially deleterious, high-energy intermediates slows, thereby reducing the threat of photodamage by disallowing their accumulation. Herein is described the synthesis and photophysical analysis of a molecular triad that mimics the effects of NPQ on charge separation within the photosynthetic reaction centers. Steady-state absorption and emission, time-resolved fluorescence, and transient absorption spectroscopies were used to demonstrate reversible quenching of the first singlet excited state affecting the quantum yield of charge separation by approximately one order of magnitude. As in the natural system, the populations of unquenched and quenched states and, therefore, the overall yields of charge separation were found to be dependent upon acid concentration.
Additive and Photochemical Manufacturing of Copper
Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-01-01
In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics. PMID:28000733
Additive and Photochemical Manufacturing of Copper
NASA Astrophysics Data System (ADS)
Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-12-01
In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics.
Investigation of power-plant plume photochemistry using a reactive plume model
NASA Astrophysics Data System (ADS)
Kim, Y. H.; Kim, H. S.; Song, C. H.
2016-12-01
Emissions from large-scale point sources have continuously increased due to the rapid industrial growth. In particular, primary and secondary air pollutants are directly relevant to atmospheric environment and human health. Thus, we tried to precisely describe the atmospheric photochemical conversion from primary to secondary air pollutants inside the plumes emitted from large-scale point sources. A reactive plume model (RPM) was developed to comprehensively consider power-plant plume photochemistry with 255 condensed photochemical reactions. The RPM can simulate two main components of power-plant plumes: turbulent dispersion of plumes and compositional changes of plumes via photochemical reactions. In order to evaluate the performance of the RPM developed in the present study, two sets of observational data obtained from the TexAQS II 2006 (Texas Air Quality Study II 2006) campaign were compared with RPM-simulated data. Comparison shows that the RPM produces relatively accurate concentrations for major primary and secondary in-plume species such as NO2, SO2, ozone, and H2SO4. Statistical analyses show good correlation, with correlation coefficients (R) ranging from 0.61 to 0.92, and good agreement with the Index of Agreement (IOA) ranging from 0.70 to 0.95. Following evaluation of the performance of the RPM, a demonstration was also carried out to show the applicability of the RPM. The RPM can calculate NOx photochemical lifetimes inside the two plumes (Monticello and Welsh power plants). Further applicability and possible uses of the RPM are also discussed together with some limitations of the current version of the RPM.
Laboratory simulation of photochemistry on Titan
NASA Astrophysics Data System (ADS)
Ferris, J.; Tran, B.; Force, M.; Briggs, R.; Vuitton, V.
Solar UV radiation is the principal energy source driving the chemistry in Titan's atmosphere ....(Sagan and Thompson, 1984). We have investigated the photochemical reactions in Titan's atmosphere in a flow reactor using the 185 and 254 nm UV emissions from a low-pressure mercury lamp ....(Clarke, et al., 2000) .....(Tran, et al., 2003). A solid product is formed using this apparatus and its optical properties have been measured since it is an analog of the haze layer on Titan. The complex refractive index of the solid material was determined and compared with the corresponding refractive index derived from the optical data obtained from Voyager 1 .......(Tran, et al., 2003). The current research focuses on the volatile reaction products. The principal gaseous compounds that absorb 185 nm light in Titan's atmosphere (acetylene, ethylene, and cyanoacetylene) were irradiated individually and in the presence of other atmospheric constituents at their mixing ratios in the Titan atmosphere. The objectives of this study are to determine the reaction pathways and to construct a model that reproduces the experimental results. Quantum yields for the loss of reactants and the formation of products were determined from the rates measured by gas chromatographic analysis. Irradiation of a mixture of acetylene, ethylene, cyanoacetylene, methane, hydrogen and nitrogen generated over 120 compounds. The structures of about 100 of these compounds were determined by GC/MS. The structures of many of these compounds were confirmed by use of authentic samples. The similarities and difference in the products obtained photochemically and by plasma discharges will be discussed. Clarke D. W., J. C. Joseph and J. P. Ferris, 2000, The design and use of a photochemical flow reactor: A laboratory study of the atmospheric chemistry of cyanoacetylene on Titan, Icarus, 282-291. Sagan C. and W. R. Thompson, 1984, Production and condensation of organic gases in the atmosphere of Titan, Icarus, 59, 133-161. Tran B. N., J. P. Ferris and J. J. Chera, 2003, The photochemical formation of a Titan haze analog. Structural analysis by X-ray photoelectron and infrared spectroscopy, Icarus, 162, 114-124. Tran B. N., J. C. Joseph, J. P. Ferris, P. D. Persans and J. J. Chera, 2003, Simulation of Titan haze formation using a photochemical flow reactor: The Optical constants of the polymer. Icarus, 165, 379-390.
Lasers: A Valuable Tool for Chemists.
ERIC Educational Resources Information Center
Findsen, E. W.; Ondrias, M. R.
1986-01-01
Discusses the properties of laser light, reviews types of lasers, presents operating principles, and considers mechanical aspects of laser light production. Applications reviewed include spectroscopy, photochemical reaction initiation, and investigation of biological processes involving porphyrins. (JM)
Hill, R; Larkum, A W D; Frankart, C; Kühl, M; Ralph, P J
2004-01-01
Mass coral bleaching is linked to elevated sea surface temperatures, 1-2 degrees C above average, during periods of intense light. These conditions induce the expulsion of zooxanthellae from the coral host in response to photosynthetic damage in the algal symbionts. The mechanism that triggers this release has not been clearly established and to further our knowledge of this process, fluorescence rise kinetics have been studied for the first time. Corals that were exposed to elevated temperature (33 degrees C) and light (280 mumol photons m(-2) s(-1)), showed distinct changes in the fast polyphasic induction of chlorophyll-a fluorescence, indicating biophysical changes in the photochemical processes. The fluorescence rise over the first 2000ms was monitored in three species of corals for up to 8 h, with a PEA fluorometer and an imaging-PAM. Pocillopora damicornis showed the least impact on photosynthetic apparatus, while Acropora nobilis was the most sensitive, with Cyphastrea serailia intermediate between the other two species. A. nobilis showed a remarkable capacity for recovery from bleaching conditions. For all three species, a steady decline in the slope of the initial rise and the height of the J-transient was observed, indicating the loss of functional Photosystem II (PS II) centres under elevated-temperature conditions. A significant loss of PS II centres was confirmed by a decline in photochemical quenching when exposed to bleaching stress. Non-photochemical quenching was identified as a significant mechanism for dissipating excess energy as heat under the bleaching conditions. Photophosphorylation could explain this decline in PS II activity. State transitions, a component of non-photochemical quenching, was a probable cause of the high non-photochemical quenching during bleaching and this mechanism is associated with the phosphorylation-induced dissociation of the light harvesting complexes from the PS II reaction centres. This reversible process may account for the coral recovery, particularly in A. nobilis.
Photochemical reactions involving colored dissolved organic matter (CDOM) in natural waters are important determinants of nutrient cycling, trace gas production and control of light penetration into the water column. In this study the role of the hydroxyl radical ((OH)-O-.) in CD...
Blue light induced free radicals from riboflavin on E. coli DNA damage.
Liang, Ji-Yuan; Yuann, Jeu-Ming P; Cheng, Chien-Wei; Jian, Hong-Lin; Lin, Chin-Chang; Chen, Liang-Yu
2013-02-05
The micronutrients in many cellular processes, riboflavin (vitamin B(2)), FMN, and FAD are photo-sensitive to UV and visible light to generate reactive oxygen species (ROS). The riboflavin photochemical treatment with UV light has been applied for the inactivation of microorganisms to serve as an effective and safe technology. Ultra-violet or high-intensity radiation is, however, considered as a highly risky practice. This study was working on the application of visible LED lights to riboflavin photochemical reactions to development an effective antimicrobial treatment. The photosensitization of bacterial genome with riboflavin was investigated in vitro and in vivo by light quality and irradiation dosage. The riboflavin photochemical treatment with blue LED light was proved to be able to inactivate E. coli by damaging nucleic acids with ROS generated. Riboflavin is capable of intercalating between the bases of bacterial DNA or RNA and absorbs lights in the visible regions. LED light illumination could be a more accessible and safe practice for riboflavin photochemical treatments to achieve hygienic requirements in vitro. Copyright © 2013 Elsevier B.V. All rights reserved.
Dickson; Odom; Ducheneaux; Murray; Milofsky
2000-07-15
Despite the impressive separation efficiency afforded by capillary electrochromatography (CEC), the detection of UV-absorbing compounds following separation in capillary dimensions remains limited by the short path length (5-75 microm) through the column. Moreover, analytes that are poor chromophores present an additional challenge with respect to sensitive detection in CEC. This paper illustrates a new photochemical reaction detection scheme for CEC that takes advantage of the catalytic nature of type II photooxidation reactions. The sensitive detection scheme is selective toward molecules capable of photosensitizing the formation of singlet molecular oxygen (1O2). Following separation by CEC, UV-absorbing analytes promote groundstate 3O2 to an excited state (1O2) which reacts rapidly with tert-butyl-3,4,5-trimethylpyrrolecarboxylate, which is added to the running buffer. Detection is based on the loss of pyrrole. The reaction is catalytic in nature since one analyte molecule may absorb light many times, producing large amounts of 1O2. The detection limit for 9-acetylanthracene, following separation by CEC, is approximately 6 x 10(-9) M (S/N = 3). Optimization of the factors effecting the S/N for four model compounds is discussed.
$sup 18$O enrichment process in UO$sub 2$F$sub 2$ utilizing laser light
DePoorter, G.L.; Rofer-DePoorter, C.K.
1975-12-01
Photochemical reaction induced by laser light is employed to separate oxygen isotopes. A solution containing UO$sub 2$F$sub 2$, HF, H$sub 2$O and a large excess of CH$sub 3$OH is irradiated with laser light of appropriate wavelength to differentially excite the UO$sub 2$$sup 2+$ ions containing $sup 16$O atoms and cause a reaction to proceed in accordance with the reaction 2 UO$sub 2$F$sub 2$ + CH$sub 3$OH + 4 HF $Yields$ 2 UF$sub 4$ down arrow + HCOOH + 3 H$sub 2$O. Irradiation is discontinued when about 10 percent of the UO$sub 2$F$sub 2$ has reacted, the UF$sub 4$ is filtered from the reaction mixture and the residual CH$sub 3$OH and HF plus the product HCOOH and H$sub 2$O are distilled away from the UO$sub 2$F$sub 2$ which is thereby enriched in the $sup 18$O isotope, or the solution containing the UO$sub 2$F$sub 2$ may be photochemically processed again to provide further enrichment in the $sup 18$O isotope.
Kim, Myeong-Ho; Lee, Young-Ahn; Kim, Jinseo; Park, Jucheol; Ahn, Seungbae; Jeon, Ki-Joon; Kim, Jeong Won; Choi, Duck-Kyun; Seo, Hyungtak
2015-10-27
The photochemical tunability of the charge-transport mechanism in metal-oxide semiconductors is of great interest since it may offer a facile but effective semiconductor-to-metal transition, which results from photochemically modified electronic structures for various oxide-based device applications. This might provide a feasible hydrogen (H)-radical doping to realize the effectively H-doped metal oxides, which has not been achieved by thermal and ion-implantation technique in a reliable and controllable way. In this study, we report a photochemical conversion of InGaZnO (IGZO) semiconductor to a transparent conductor via hydrogen doping to the local nanocrystallites formed at the IGZO/glass interface at room temperature. In contrast to thermal or ionic hydrogen doping, ultraviolet exposure of the IGZO surface promotes a photochemical reaction with H radical incorporation to surface metal-OH layer formation and bulk H-doping which acts as a tunable and stable highly doped n-type doping channel and turns IGZO to a transparent conductor. This results in the total conversion of carrier conduction property to the level of metallic conduction with sheet resistance of ∼16 Ω/□, room temperature Hall mobility of 11.8 cm(2) V(-1) sec(-1), the carrier concentration at ∼10(20) cm(-3) without any loss of optical transparency. We demonstrated successful applications of photochemically highly n-doped metal oxide via optical dose control to transparent conductor with excellent chemical and optical doping stability.
Reaction Gradients Viewed Inside Single Photoactive Particles
NASA Astrophysics Data System (ADS)
Alpert, P.; Corral Arroyo, P.; Dou, J.; Kreiger, U.; Luo, B.; Peter, T.; Ammann, M.
2017-12-01
In terms of chemical selectivity and spatial resolution, a technique known as scanning transmission X-ray microscopy coupled to near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) is unmatched and will remain so for years into the future. We present a recent development coupling STXM/NEXAFS to a custom-built photochemical environmental reactor in which aerosol particles reside allowing for in situ chemical imaging. A laboratory investigation of metal-organic complex photochemistry was conducted. Transition metals are of great importance to atmospheric chemistry and aerosol photochemical aging due to their ability to catalyze oxidation reactions. Aerosol particles composed of mixtures of citric acid and iron citrate were probed for their organic carbon composition and iron oxidation state under atmospherically relevant conditions. At 40% relative humidity, oxygen diffusion and reaction was severely limited. Fe was reoxidized in the first 200 nm of the particle surface leaving reduced iron in the core. Similar gradients were observed at 60% RH, however waiting approximately 2 hours in the dark resulted in a recovery of the initial Fe(III) concentration. We draw two main conclusions from our findings. Frist, the oxidation gradients must have been the result of anoxic conditions at the interior of aerosol particles. This was predicted using a newly developed model for molecular diffusion through multiple layers with a reaction framework describing the photochemical processing of the metal organic matrix. Second, the lifetime of organic radicals in an anoxic diffusion limited organic matrix must be considerably long ( hours) to completely reoxidize iron as they wait for molecular oxygen. Long radical lifetimes in viscous organic aerosol in turn, could create high radical concentrations or favor radical-radical reactions in particles typically not considered when oxygen is plentiful. Our results impact predictions of aerosol physiochemical properties, e.g. aerosol toxicity, hygroscopicity, lifetime and light scattering properties over time which may be limited and evolve at different rates at the surface or core of particles.
1983-05-31
slower (100 hrs) than the ambient temperature chlorination of that compound (10 minutes). The reaction was followed by gas phase infrared spectroscopy...excess of bromine to chlorine and a slightly shorter (254 hrs) reaction time slightly increases the yield of bromo-F-neopentane. The 19F NMR data (Table... chlorination products, however, optimal bromina- tion (4.4:1) occurred for reaction 4 which produced predominately 1-bromo-3- hydryl-F-neopentane (48%). It
Conforti, Patrick F; Prasad, Manish; Garrison, Barbara J
2008-08-01
[Figure: see text]. Laser ablation harnesses photon energy to remove material from a surface. Although applications such as laser-assisted in situ keratomileusis (LASIK) surgery, lithography, and nanoscale device fabrication take advantage of this process, a better understanding the underlying mechanism of ablation in polymeric materials remains much sought after. Molecular simulation is a particularly attractive technique to study the basic aspects of ablation because it allows control over specific process parameters and enables observation of microscopic mechanistic details. This Account describes a hybrid molecular dynamics-Monte Carlo technique to simulate laser ablation in poly(methyl methacrylate) (PMMA). It also discusses the impact of thermal and chemical excitation on the ensuing ejection processes. We used molecular dynamics simulation to study the molecular interactions in a coarse-grained PMMA substrate following photon absorption. To ascertain the role of chemistry in initiating ablation, we embedded a Monte Carlo protocol within the simulation framework. These calculations permit chemical reactions to occur probabilistically during the molecular dynamics calculation using predetermined reaction pathways and Arrhenius rates. With this hybrid scheme, we can examine thermal and chemical pathways of decomposition separately. In the simulations, we observed distinct mechanisms of ablation for each type of photoexcitation pathway. Ablation via thermal processes is governed by a critical number of bond breaks following the deposition of energy. For the case in which an absorbed photon directly causes a bond scission, ablation occurs following the rapid chemical decomposition of material. A detailed analysis of the processes shows that a critical energy for ablation can describe this complex series of events. The simulations show a decrease in the critical energy with a greater amount of photochemistry. Additionally, the simulations demonstrate the effects of the energy deposition rate on the ejection mechanism. When the energy is deposited rapidly, not allowing for mechanical relaxation of the sample, the formation of a pressure wave and subsequent tensile wave dominates the ejection process. This study provides insight into the influence of thermal, chemical, and mechanical processes in PMMA and facilitates greater understanding of the complex nature of polymer ablation. These simulations complement experiments that have used chemical design to harness the photochemical properties of materials to enhance laser ablation. We successfully fit the results of the simulations to established analytical models of both photothermal and photochemical ablation and demonstrate their relevance. Although the simulations are for PMMA, the mechanistic concepts are applicable to a large range of systems and provide a conceptual foundation for interpretation of experimental data.
Fecko, Christopher J; Munson, Katherine M; Saunders, Abbie; Sun, Guangxing; Begley, Tadhg P; Lis, John T; Webb, Watt W
2007-01-01
Crosslinking proteins to the nucleic acids they bind affords stable access to otherwise transient regulatory interactions. Photochemical crosslinking provides an attractive alternative to formaldehyde-based protocols, but irradiation with conventional UV sources typically yields inadequate product amounts. Crosslinking with pulsed UV lasers has been heralded as a revolutionary technique to increase photochemical yield, but this method had only been tested on a few protein-nucleic acid complexes. To test the generality of the yield enhancement, we have investigated the benefits of using approximately 150 fs UV pulses to crosslink TATA-binding protein, glucocorticoid receptor and heat shock factor to oligonucleotides in vitro. For these proteins, we find that the quantum yields (and saturating yields) for forming crosslinks using the high-peak intensity femtosecond laser do not improve on those obtained with low-intensity continuous wave (CW) UV sources. The photodamage to the oligonucleotides and proteins also has comparable quantum yields. Measurements of the photochemical reaction yields of several small molecules selected to model the crosslinking reactions also exhibit nearly linear dependences on UV intensity instead of the previously predicted quadratic dependence. Unfortunately, these results disprove earlier assertions that femtosecond pulsed laser sources provide significant advantages over CW radiation for protein-nucleic acid crosslinking.
Photochemical dimerization of organic compounds
Crabtree, Robert H.; Brown, Stephen H.; Muedas, Cesar A.; Ferguson, Richard R.
1992-01-01
At least one of selectivity and reaction rate of photosensitized vapor phase dimerizations, including dehydrodimerizations, hydrodimerizations and cross-dimerizations of saturated and unsaturated organic compounds is improved by conducting the dimerization in the presence of hydrogen or nitrous oxide.
Applying green chemistry to the photochemical route to artemisinin
NASA Astrophysics Data System (ADS)
Amara, Zacharias; Bellamy, Jessica F. B.; Horvath, Raphael; Miller, Samuel J.; Beeby, Andrew; Burgard, Andreas; Rossen, Kai; Poliakoff, Martyn; George, Michael W.
2015-06-01
Artemisinin is an important antimalarial drug, but, at present, the environmental and economic costs of its semi-synthetic production are relatively high. Most of these costs lie in the final chemical steps, which follow a complex acid- and photo-catalysed route with oxygenation by both singlet and triplet oxygen. We demonstrate that applying the principles of green chemistry can lead to innovative strategies that avoid many of the problems in current photochemical processes. The first strategy combines the use of liquid CO2 as solvent and a dual-function solid acid/photocatalyst. The second strategy is an ambient-temperature reaction in aqueous mixtures of organic solvents, where the only inputs are dihydroartemisinic acid, O2 and light, and the output is pure, crystalline artemisinin. Everything else—solvents, photocatalyst and aqueous acid—can be recycled. Some aspects developed here through green chemistry are likely to have wider application in photochemistry and other reactions.
NASA Technical Reports Server (NTRS)
Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.
1979-01-01
Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.
Applying green chemistry to the photochemical route to artemisinin.
Amara, Zacharias; Bellamy, Jessica F B; Horvath, Raphael; Miller, Samuel J; Beeby, Andrew; Burgard, Andreas; Rossen, Kai; Poliakoff, Martyn; George, Michael W
2015-06-01
Artemisinin is an important antimalarial drug, but, at present, the environmental and economic costs of its semi-synthetic production are relatively high. Most of these costs lie in the final chemical steps, which follow a complex acid- and photo-catalysed route with oxygenation by both singlet and triplet oxygen. We demonstrate that applying the principles of green chemistry can lead to innovative strategies that avoid many of the problems in current photochemical processes. The first strategy combines the use of liquid CO2 as solvent and a dual-function solid acid/photocatalyst. The second strategy is an ambient-temperature reaction in aqueous mixtures of organic solvents, where the only inputs are dihydroartemisinic acid, O2 and light, and the output is pure, crystalline artemisinin. Everything else-solvents, photocatalyst and aqueous acid-can be recycled. Some aspects developed here through green chemistry are likely to have wider application in photochemistry and other reactions.
Annihilation of photochemical reactivity of photo-alignment layer.
Hong, S H; Hwang, Y J; Lee, S G; Shin, D M
2008-09-01
The gas-polymer and liquid-polymer interfacial reactions of photosensitive polyimide can annihilate photo-reactive carbon-carbon double bonds, which remain after photo-alignment process. The annihilation processes dramatically affect voltage holding ratio and reorientation of photo-active functional groups. Photochemical dimerizations were identified using UV-visible and FT-IR spectroscopy. Polyimide films containing cinnamate groups were irradiated by linear polarized ultra violet (LPUV) light. Schadt et al. claims that the photo-alignment results from the anisotropy depletion of the cinnamate side chains as a consequence of the (2+2) cycloaddition reactions. The photo-aligned polyimide induces the orientation of nematic liquid crystals perpendicular to the polarization axis. However, the un-reacted photo-sensitive functional groups generate problems such as image sticking and reduced contrast ratio. Voltage holding ratio and photo-fading observed from photo-alignment layer can be dramatically improved by annihilation process of remnant photoreactive groups.
Ohnishi, Yasutaka; Matsumoto, Hiroyuki; Iwamori, Satoru
2016-03-01
Active oxygen species (AOS) generated under ultraviolet (UV) lamps can be applied for various industrial processes owing to extremely strong oxidative abilities. We have already reported on an application of the AOS for a sterilization process of microorganisms. Here, a sterilization method using active oxygen generated under ultraviolet (UV) lamps introducing nitrous oxide (N2O) and oxygen gases into a vacuum chamber was investigated. Nitrogen dioxide (NO2) gas was readily produced from N2O by UV photochemical reactions under the low-pressure mercury lamp and then used to sterilize medical devices. We compared the ability of the N2O gas to sterilize Geobacillus stearothermophilus spores with those of conventional methods. Successful sterilization of spores on various biological indicators was achieved within 60 min, not only in sterilization bags but also in a lumen device. Copyright © 2016 Elsevier B.V. All rights reserved.
Degradation and mineralization of 2,4,6-trinitroresorcine in various photochemical systems.
Khue, Do Ngoc; Chat, Nguyen Van; Minh, Do Binh; Lam, Tran Dai; Lan, Pham Hong; Loi, Vu Duc
2013-05-01
Comparison was observed for degradation and mineralization of the explosive 2,4,6-trinitroresorcine (TNR) in different photochemical systems TNR/UV, TNR/UV/TiO2, TNR/UV/H2O2, TNR/UV/O3, TNR/UV/TiO2/H2O2 and TNR/UV/TiO2/O3 using High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC/MS) and Total Organic Carbon (TOC) analysis. Addition of oxidizing agents such as H2O2 or O3 accelerated the rate of TNR conversion and mineralization. Highest reaction rate was obtained in TNR/UV/TiO2/H2O2 system. The intermediate products were characterized and identified by LS-MS technique. The similarity in intermediate products of TNR suggested the analogous reaction pathways of the TNR degradation by these different systems. Copyright © 2013 Elsevier B.V. All rights reserved.
A novel solid state photocatalyst for living radical polymerization under UV irradiation
NASA Astrophysics Data System (ADS)
Fu, Qiang; McKenzie, Thomas G.; Ren, Jing M.; Tan, Shereen; Nam, Eunhyung; Qiao, Greg G.
2016-02-01
This study presents the development of a novel solid state photocatalyst for the photoinduced controlled radical polymerization of methacrylates under mild UV irradiation (λmax ≈ 365 nm) in the absence of conventional photoinitiators, metal-catalysts or dye sensitizers. The photocatalyst design was based on our previous finding that organic amines can act in a synergistic photochemical reaction with thiocarbonylthio compounds to afford well controlled polymethacrylates under UV irradiation. Therefore, in the current contribution an amine-rich polymer was covalently grafted onto a solid substrate, thus creating a heterogeneous catalyst that would allow for facile removal, recovery and recyclability when employed for such photopolymerization reactions. Importantly, the polymethacrylates synthesized using the solid state photocatalyst (ssPC) show similarly excellent chemical and structural integrity as those catalysed by free amines. Moreover, the ssPC could be readily recovered and re-used, with multiple cycles of polymerization showing minimal effect on the integrity of the catalyst. Finally, the ssPC was employed in various photo-“click” reactions, permitting high yielding conjugations under photochemical control.
Ozone budgets from the Dynamics and Chemistry of Marine Stratocumulus experiment
NASA Technical Reports Server (NTRS)
Kawa, S. R.; Pearson, R., Jr.
1989-01-01
Measurements from the Dynamics and Chemistry of marine Stratocumulus experiment have been used to study components of the regional ozone budget. The surface destruction rate is determined by eddy correlation of ozone and vertical velocity measured by a low-flying aircraft. Significant variability is found in the measured surface resistance; it is partially correlated with friction velocity but appears to have other controlling influences as well. The mean resistance is 4190 s/m which is higher (slower destruction) than most previous estimates for seawater. Flux and mean measurements throughout the marine boundary layer are used to estimate the net rate of in situ photochemical production/destruction of ozone. Averaged over the flights, ozone concentration is found to be near steady state, and a net of photochemical destruction of 0.02-0.07 ng/cu m per sec is diagnosed. This is an important confirmation of photochemical model results for the remote marine boundary layer. Ozone vertical distributions above the boundary layer show a strongly layered structure with very sharp gradients. These distributions are possibly related to the stratospheric ozone source.
L-Cysteine Capped CdSe Quantum Dots Synthesized by Photochemical Route.
Singh, Avinash; Kunwar, Amit; Rath, M C
2018-05-01
L-cysteine capped CdSe quantum dots were synthesized via photochemical route in aqueous solution under UV photo-irradiation. The as grown CdSe quantum dots exhibit broad fluorescence at room temperature. The CdSe quantum dots were found to be formed only through the reactions of the precursors, i.e., Cd(NH3)2+4 and SeSO2-3 with the photochemically generated 1-hydroxy-2-propyl radicals, (CH3)2COH radicals, which are formed through the process of H atom abstraction by the photoexcited acetone from 2-propanol. L-Cysteine was found to act as a suitable capping agent for the CdSe quantum dots and increases their biocompatability. Cytotoxicty effects of these quantum dots were evaluated in Chinese Hamster Ovary (CHO) epithelial cells, indicated a significant lower level for the L-cysteine capped CdSe quantum dots as compare to the bare ones.
Manbeck, Gerald F.; Fujita, Etsuko
2015-03-30
This review summarizes research on the electrochemical and photochemical reduction of CO₂ using a variety of iron and cobalt porphyrins, phthalocyanines, and related complexes. Metalloporphyrins and metallophthalocyanines are visible light absorbers with extremely large extinction coefficients. However, yields of photochemically-generated active catalysts for CO₂ reduction are typically low owing to the requirement of a second photoinduced electron. This requirement is not relevant to the case of electrochemical CO₂ reduction. Recent progress on efficient and stable electrochemical systems includes the use of FeTPP catalysts that have prepositioned phenyl OH groups in their second coordination spheres. This has led to remarkable progressmore » in carrying out coupled proton-electron transfer reactions for CO₂ reduction. Such ground-breaking research has to be continued in order to produce renewable fuels in an economically feasible manner.« less
Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide
2016-11-01
The shallow lakes located in Terra Nova Bay, Antarctica, are free from ice for only up to a couple of months (mid December to early/mid February) during the austral summer. In the rest of the year, the ice cover shields the light and inhibits the photochemical processes in the water columns. Previous work has shown that chromophoric dissolved organic matter (CDOM) in these lakes is very reactive photochemically. A model assessment is here provided of lake-water photoreactivity in field conditions, based on experimental data of lake water absorption spectra, chemistry and photochemistry obtained previously, taking into account the water depth and the irradiation conditions of the Antarctic summer. The chosen sample contaminants were the solar filter benzophenone-3 and the antimicrobial agent triclosan, which have very well known photoreactivity and have been found in a variety of environmental matrices in the Antarctic continent. The two compounds would have a half-life time of just a few days or less in the lake water during the Antarctic summertime, largely due to reaction with CDOM triplet states ((3)CDOM*). In general, pollutants that occur in the ice and could be released to lake water upon ice melting (around or soon after the December solstice) would be quickly photodegraded if they undergo fast reaction with (3)CDOM*. With some compounds, the important (3)CDOM* reactions might favour the production of harmful secondary pollutants, such as 2,8-dichlorodibenzodioxin from the basic (anionic) form of triclosan. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spectral Dependence of Chlorophyll Biosynthesis Pathways in Plant Leaves.
Belyaeva, O B; Litvin, F F
2015-12-01
This review covers studies on the dependence of chlorophyll photobiosynthesis reactions from protochlorophyllide on the spectral composition of actinic light. A general scheme of the reaction sequence for the photochemical stage in chlorophyll biosynthesis for etiolated plant leaves is presented. Comparative analysis of the data shows that the use of light with varied wavelengths for etiolated plant illumination reveals parallel transformation pathways of different protochlorophyllide forms into chlorophyllide, including a pathway for early photosystem II reaction center P-680 pigment formation.
Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Alexander J.; Center for Nonlinear Studies; Gorshkov, Vyacheslav N.
2014-11-14
Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantummore » mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.« less
Mendive-Tapia, David; Perrier, Aurélie; Bearpark, Michael J; Robb, Michael A; Lasorne, Benjamin; Jacquemin, Denis
2014-09-14
The photochromic properties of diarylethenes, some of the most studied class of molecular switches, are known to be controlled by non-adiabatic decay at a conical intersection seam. Nevertheless, as their fatigue-reaction mechanism - leading to non-photochromic products - is yet to be understood, we investigate the photo-chemical formation of the so-called by-product isomer using three complementary computational methods (MMVB, CASSCF and CASPT2) on three model systems of increasing complexity. We show that for the ring-opening reaction a transition state on S1(2A) involving bond breaking of the penta-ring leads to a low energy S1(2A)/S0(1A) conical intersection seam, which lies above one of the transition states leading to the by-product isomer on the ground state. Therefore, radiationless decay and subsequent side-product formation can take place explaining the photo-degradation responsible for the by-product generation in diarylethene-type molecules. The effect of dynamic electron correlation and the possible role of inter-system crossing along the penta-ring opening coordinate are discussed as well.
Singlet oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter.
Cory, Rose M; McNeill, Kristopher; Cotner, James P; Amado, Andre; Purcell, Jeremiah M; Marshall, Alan G
2010-05-15
Dissolved organic matter (DOM) is a significant (>700 Pg) global C pool. Transport of terrestrial DOM to the inland waters and coastal zones represents the largest flux of reduced C from land to water (215 Tg yr(-1)) (Meybeck, M. Am. J. Sci. 1983, 282, 401-450). Oxidation of DOM by interdependent photochemical and biochemical processes largely controls the fate of DOM entering surface waters. Reactive oxygen species (ROS) have been hypothesized to play a significant role in the photooxidation of DOM, because they may oxidize the fraction of DOM that is inaccessible to direct photochemical degradation by sunlight. We followed the effects of photochemically produced singlet oxygen ((1)O(2)) on DOM by mass spectrometry with (18)O-labeled oxygen, to understand how (1)O(2)-mediated transformations of DOM may lead to altered DOM bioavailability. The photochemical oxygen uptake by DOM attributed to (1)O(2) increased with DOM concentration, yet it remained a minority contributor to photochemical oxygen uptake even at very high DOM concentrations. When DOM samples were exposed to (1)O(2)-generating conditions (Rose Bengal and visible light), increases were observed in DOM constituents with higher oxygen content and release of H(2)O(2) was detected. Differential effects of H(2)O(2) and (1)O(2)-treated DOM showed that (1)O(2)-treated DOM led to slower bacterial growth rates relative to unmodified DOM. Results of this study suggested that the net effect of the reactions between singlet oxygen and DOM may be production of partially oxidized substrates with correspondingly lower potential biological energy yield.
Bodrato, Marco; Vione, Davide
2014-04-01
The APEX software predicts the photochemical transformation kinetics of xenobiotics in surface waters as a function of: photoreactivity parameters (direct photolysis quantum yield and second-order reaction rate constants with transient species, namely ˙OH, CO₃(-)˙, (1)O₂ and the triplet states of chromophoric dissolved organic matter, (3)CDOM*), water chemistry (nitrate, nitrite, bicarbonate, carbonate, bromide and dissolved organic carbon, DOC), and water depth (more specifically, the optical path length of sunlight in water). It applies to well-mixed surface water layers, including the epilimnion of stratified lakes, and the output data are average values over the considered water column. Based on intermediate formation yields from the parent compound via the different photochemical pathways, the software can also predict intermediate formation kinetics and overall yield. APEX is based on a photochemical model that has been validated against available field data of pollutant phototransformation, with good agreement between model predictions and field results. The APEX software makes allowance for different levels of knowledge of a photochemical system. For instance, the absorption spectrum of surface water can be used if known, or otherwise it can be modelled from the values of DOC. Also the direct photolysis quantum yield can be entered as a detailed wavelength trend, as a single value (constant or average), or it can be defined as a variable if unknown. APEX is based on the free software Octave. Additional applications are provided within APEX to assess the σ-level uncertainty of the results and the seasonal trend of photochemical processes.
Greer, Dennis H
2015-12-01
The objective of this study was to follow changes in the temperature-dependent responses of photosynthesis and photosystem II performance in leaves of field-grown trees of Malus domestica (Borkh.) cv. 'Red Gala' before and after exposure to a long-term heat event occurring late in the growing season. Light-saturated photosynthesis was optimal at 25 °C before the heat event. The high temperatures caused a reduction in rates at low temperatures (15-20 °C) but increased rates at high temperatures (30-40 °C) and a shift in optimum to 30 °C. Rates at all temperatures increased after the heat event and the optimum shifted to 33 °C, indicative of some acclimation to the high temperatures occurring. Photosystem II attributes were all highly temperature-dependent. The operating quantum efficiency of PSII during the heat event declined, but mostly at high temperatures, partly because of decreased photochemical quenching but also from increased non-photochemical quenching. However, a further reduction in PSII operating efficiency occurred after the heat event subsided. Non-photochemical quenching had subsided, whereas photochemical quenching had increased in the post-heat event period and consistent with a greater fraction of open PSII reaction centres. What remained uncertain was why these effects on PSII performance appeared to have no effect on the process of light-saturated photosynthesis. However, the results provide an enhanced understanding of the impacts of sustained high temperatures on the photosynthetic process and its underlying reactions, notably photochemistry. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Haitjema, Jarich; Liu, Xiaomeng; Johansson, Fredrik; Lindblad, Andreas; Castellanos, Sonia; Ottosson, Niklas; Brouwer, Albert M.
2017-03-01
Several metal-containing molecular inorganic materials are currently considered as photoresists for extreme ultraviolet lithography (EUVL). This is primarily due to their high EUV absorption cross section and small building block size, properties which potentially allow both high sensitivity and resolution as well as low line-edge roughness. The photochemical reaction mechanisms that allow these kinds of materials to function as photoresists, however, are still poorly understood. As a step in this direction, we here discuss photochemical reactions upon deep UV (DUV) irradiation of a model negative-tone EUV photoresist material, namely the well-defined molecular tin-oxo cage compound [(SnR)12O14(OH)6]X2 (R = organic group; X = anion) which is spin coated to thin layers of 20 nm. The core electronic structure (Sn 3d, O 1s and C 1s) of fresh and DUV exposed films were then investigated using synchrotron radiationbased hard X-ray photoelectron spectroscopy (HAXPES). This method provides information about the structure and chemical state of the respective atoms in the material. We performed a comparative HAXPES study of the composition of the tin-oxo cage compound [(SnR)12O14(OH)6](OH)2, either fresh directly after spin-coated vs. DUV-exposed materials under either ambient condition or under a dry N2 atmosphere. Different chemical oxidation states and concentrations of atoms and atom types in the fresh and exposed films were found. We further found that the chemistry resulting from exposure in air and N2 is strikingly different, clearly illustrating the influence of film-gas interactions on the (photo)chemical processes that eventually determine the photoresist. Finally, a mechanistic hypothesis for the basic DUV photoreactions in molecular tin-oxo cages is proposed.
Porcel, Rosa; Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Aroca, Ricardo; Garcia, Rosalva; Ruiz-Lozano, Juan Manuel
2015-08-01
Rice is the most important food crop in the world and is a primary source of food for more than half of the world population. However, salinity is considered the most common abiotic stress reducing its productivity. Soil salinity inhibits photosynthetic processes, which can induce an over-reduction of the reaction centres in photosystem II (PSII), damaging the photosynthetic machinery. The arbuscular mycorrhizal (AM) symbiosis may improve host plant tolerance to salinity, but it is not clear how the AM symbiosis affects the plant photosynthetic capacity, particularly the efficiency of PSII. This study aimed at determining the influence of the AM symbiosis on the performance of PSII in rice plants subjected to salinity. Photosynthetic activity, plant gas-exchange parameters, accumulation of photosynthetic pigments and rubisco activity and gene expression were also measured in order to analyse comprehensively the response of the photosynthetic processes to AM symbiosis and salinity. Results showed that the AM symbiosis enhanced the actual quantum yield of PSII photochemistry and reduced the quantum yield of non-photochemical quenching in rice plants subjected to salinity. AM rice plants maintained higher net photosynthetic rate, stomatal conductance and transpiration rate than nonAM plants. Thus, we propose that AM rice plants had a higher photochemical efficiency for CO2 fixation and solar energy utilization and this increases plant salt tolerance by preventing the injury to the photosystems reaction centres and by allowing a better utilization of light energy in photochemical processes. All these processes translated into higher photosynthetic and rubisco activities in AM rice plants and improved plant biomass production under salinity. Copyright © 2015 Elsevier GmbH. All rights reserved.
Yu, Hwa-Lung; Lin, Yuan-Chien; Kuo, Yi-Ming
2015-09-01
Understanding the temporal dynamics and interactions of particulate matter (PM) concentration and composition is important for air quality control. This paper applied a dynamic factor analysis method (DFA) to reveal the underlying mechanisms of nonstationary variations in twelve ambient concentrations of aerosols and gaseous pollutants, and the associations with meteorological factors. This approach can consider the uncertainties and temporal dependences of time series data. The common trends of the yearlong and three selected diurnal variations were obtained to characterize the dominant processes occurring in general and specific scenarios in Taipei during 2009 (i.e., during Asian dust storm (ADS) events, rainfall, and under normal conditions). The results revealed the two distinct yearlong NOx transformation processes, and demonstrated that traffic emissions and photochemical reactions both critically influence diurnal variation, depending upon meteorological conditions. During an ADS event, transboundary transport and distinct weather conditions both influenced the temporal pattern of identified common trends. This study shows the DFA method can effectively extract meaningful latent processes of time series data and provide insights of the dominant associations and interactions in the complex air pollution processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser.
Nogly, Przemyslaw; Weinert, Tobias; James, Daniel; Carbajo, Sergio; Ozerov, Dmitry; Furrer, Antonia; Gashi, Dardan; Borin, Veniamin; Skopintsev, Petr; Jaeger, Kathrin; Nass, Karol; Båth, Petra; Bosman, Robert; Koglin, Jason; Seaberg, Matthew; Lane, Thomas; Kekilli, Demet; Brünle, Steffen; Tanaka, Tomoyuki; Wu, Wenting; Milne, Christopher; White, Thomas; Barty, Anton; Weierstall, Uwe; Panneels, Valerie; Nango, Eriko; Iwata, So; Hunter, Mark; Schapiro, Igor; Schertler, Gebhard; Neutze, Richard; Standfuss, Jörg
2018-06-14
Ultrafast isomerization of retinal is the primary step in photoresponsive biological functions including vision in humans and ion-transport across bacterial membranes. We studied the sub-picosecond structural dynamics of retinal isomerization in the light-driven proton pump bacteriorhodopsin using an x-ray laser. A series of structural snapshots with near-atomic spatial and temporal resolution in the femtosecond regime show how the excited all- trans retinal samples conformational states within the protein binding pocket prior to passing through a twisted geometry and emerging in the 13 -cis conformation. Our findings suggest ultrafast collective motions of aspartic acid residues and functional water molecules in the proximity of the retinal Schiff base as a key ingredient for this stereo-selective and efficient photochemical reaction. Copyright © 2018, American Association for the Advancement of Science.
The GFDL 'SKYHI' general circulation model has been used to simulate the effect of the Antarctic "ozone hole" phenomenon on the radiative and dynamical environment of the lower stratosphere. oth the polar ozone destruction and photochemical restoration chemistries are calculated ...
Photochemical Cycling of Humic-Like Substances in Atmospheric Aerosols
NASA Astrophysics Data System (ADS)
Rincon, A. G.; Guzman, M. I.; Hoffmann, M. R.; Colussi, A. J.
2007-12-01
Colored, humic-like substances (HULIS) arising from the biodegradation of organic detritus are widespread in natural surface waters, where they ultimately undergo solar photolysis into small alpha-dicarbonylic species, such as glyoxal, glyoxylic and pyruvic acids. Diversely generated and chemically dissimilar HULIS are also found in the atmospheric aerosol. How are significant levels of colored HULIS produced and sustained in the concentrated aerosol phase under intense solar irradiation? Here, this issue is tackled by investigating the solar photolysis of aqueous pyruvic acid (PA) solutions at concentrations representative of the atmospheric aerosol using UV-absorption, high resolution electrospray mass, and nuclear magnetic resonance spectrometries. Under such conditions, PA is not photodegraded but yields polyfunctional polymers, whose mass and UV-absorption spectra remain unaffected after 3, 8 and 22 h photolysis. Unless diluted, these polymers undergo condensation/polymerization in the post-photolysis period into mass < 700 Da species that absorb in the visible, and are bleached upon resuming irradiation. The re- photolyzed solutions recover the mass and UV-absorption spectra of first photolyzed solutions. Whereas initial pH has no effect on the mechanism of reaction, ammonium bisulfate, a major component of the aerosol, markedly influences these processes. These findings suggest that the chemical identity and concentration levels of complex organic substances in the aerosol are the result of dynamic photochemical processing in the condensed phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromberg, S.E.
1998-05-01
When certain organometallic compounds are photoexcited in room temperature alkane solution, they are able to break or activate the C-H bonds of the solvent. Understanding this potentially practical reaction requires a detailed knowledge of the entire reaction mechanism. Because of the dynamic nature of chemical reactions, time-resolved spectroscopy is commonly employed to follow the important events that take place as reactants are converted to products. For the organometallic reactions examined here, the electronic/structural characteristics of the chemical systems along with the time scales for the key steps in the reaction make ultrafast UV/Vis and IR spectroscopy along with nanosecond Step-Scanmore » FTIR spectroscopy the ideal techniques to use for this study. An initial study of the photophysics of (non-activating) model metal carbonyls centering on the photodissociation of M(CO){sub 6} (M = Cr, W, Mo) was carried out in alkane solutions using ultrafast IR spectroscopy. Next, picosecond UV/vis studies of the C-H bond activation reaction of Cp{sup *}M(CO){sub 2} (M = Rh, Ir), conducted in room temperature alkane solution, are described in an effort to investigate the origin of the low quantum yield for bond cleavage ({approximately}1%). To monitor the chemistry that takes place in the reaction after CO is lost, a system with higher quantum yield is required. The reaction of Tp{sup *}Rh(CO){sub 2} (Tp{sup *} = HB-Pz{sub 3}{sup *}, Pz{sup *} = 3,5-dimethylpyrazolyl) in alkanes has a quantum yield of {approximately}30%, making time resolved spectroscopic measurements possible. From ultrafast IR experiments, two subsequently formed intermediates were observed. The nature of these intermediates are discussed and the first comprehensive reaction mechanism for a photochemical C-H activating organometallic complex is presented.« less
T.E. KLEINDIENST, E.W. CORSE, F.T. BLANCHARD, W.A. LONNEMAN
Carbonyl compounds are important constituents in urban and global atmospheres. n urban atmospheres these compounds frequently serve to initiate photochemical smog and certainly sustain the chain reactions leading to ozone formation. easurement of carbonyl compounds under atmosphe...
Photochemical production of H2SO4 aerosols on Venus
NASA Technical Reports Server (NTRS)
Yuk, L. Yung
1986-01-01
The quantum yields for producing O2(a (1 delta g)) and O2(b(1 sigma g +)) for the reaction, O + ClO yields Cl + O2, are summarized. Also included are results for other simple reactions capable of producing the singlet oxygen states. An episodic injection of SO2 into the upper atmosphere of Venus is considered as a possible explanation for the airglow values.
Duan, Ying; Zhang, Mengxia; Gao, Jin; Li, Pengmin; Goltsev, Vasilij; Ma, Fengwang
2015-11-01
During the seasonal shift from June to August, air temperatures increase. To explore how apple trees improve their thermotolerance during this shift, we examined the photochemical reaction capacity of apple tree leaves by simultaneous measurement of prompt chlorophyll fluorescence, delayed chlorophyll fluorescence, and modulated 820 nm reflection at varying temperatures. It was found that the reaction centers and antennae of photosystem II (PSII) and photosystem I (PSI), the donor side of PSII, the electron transfer capacity from QA to QB, and the reoxidation capacity of plastoquinol were all sensitive to heat stress, particularly in June. As the season shifted, apple tree leaves improved in thermotolerance. Interestingly, the acclimation to seasonal shift enhanced the thermotolerance of PSII and PSI reaction centers more than that of their antennae, and the activity of PSII more than that of PSI. This may be a strategy for plant adaptation to changes in environmental temperatures. In addition, results from prompt and delayed fluorescence, as well as modulated 820 nm reflection corroborate each other. We suggest that the simultaneous measurement of the three independent signals may provide more information on thermal acclimation mechanisms of photochemical reactions in plant leaves. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Waxman, E.; Slowik, J. G.; Kampf, C. J.; Timkovsky, J.; Noziere, B.; Praplan, A. P.; Pfaffenberger, L.; Holzinger, R.; Hoffmann, T.; Dommen, J.; Prevot, A. S.; Baltensperger, U.; Volkamer, R.
2011-12-01
Glyoxal forms secondary organic aerosol (SOA) by partitioning to the aerosol aqueous phase according to Henry's law. The subsequent processing by heterogeneous and multiphase reactions shifts the partitioning towards aerosols. Currently it is not well understood whether these reactions result in reversible or irreversible SOA formation, and what parameters influence the rate limiting step of multiphase processing. We conducted a series of simulation chamber experiments at PSI in April and May 2011 to investigate processing under dark conditions, UV and/or visible light irradiated conditions, and in the presence and absence of OH radicals. Experiments used ammonium sulfate or ammonium sulfate/fulvic acid mixtures as seed aerosols, and were conducted between 50% and 85% relative humidity at approximately constant RH over the course of any given experiment. Glyoxal was produced photochemically from acetylene, using HONO photolysis as the OH radical source. Gas-phase glyoxal was measured by the CU LED-Cavity Enhanced-DOAS. The Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS) and Ion Chromatography Mass Spectrometer (IC-MS) monitored both gas and aerosol-phase organic reaction products. Particle composition was monitored by High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS), and HPLC-ESI MS/MS and LC-MS analysis of filter samples.
NASA Astrophysics Data System (ADS)
Waxman, E.; Slowik, J.; Kampf, C.; Timkovsky, J.; Noziere, B.; Praplan, A.; Pffafenberger, L.; Holzinger, R.; Hoffmann, T.; Dommen, J.; Prevot, A.; Baltensperger, U.; Volkamer, R.
2012-04-01
Glyoxal forms secondary organic aerosol (SOA) by partitioning to the aerosol aqueous phase according to Henry's law. The subsequent processing by heterogeneous and multiphase reactions shifts the partitioning towards aerosols. Currently it is not well understood whether these reactions result in reversible or irreversible SOA formation, and what parameters influence the rate limiting step of multiphase processing. We conducted a series of simulation chamber experiments at PSI in April and May 2011 to investigate processing under dark conditions, UV and/or visible light irradiated conditions, and in the presence and absence of OH radicals. Experiments used ammonium sulfate or ammonium sulfate/fulvic acid mixtures as seed aerosols, and were conducted between 50% and 85% relative humidity at approximately constant RH over the course of any given experiment. Glyoxal was produced photochemically from acetylene, using HONO photolysis as the OH radical source. Gas-phase glyoxal was measured by the CU LED-Cavity Enhanced-DOAS. The Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS) and Ion Chromatography Mass Spectrometer (IC-MS) monitored both gas and aerosol-phase organic reaction products. Particle composition was monitored by High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS), and HPLC-ESI MS/MS and LC-MS analysis of filter samples.
Roibu, Anca; Fransen, Senne; Leblebici, M Enis; Meir, Glen; Van Gerven, Tom; Kuhn, Simon
2018-04-03
Coupling photochemistry with flow microreactors enables novel synthesis strategies with higher efficiencies compared to batch systems. Improving the reproducibility and understanding of the photochemical reaction mechanisms requires quantitative tools such as chemical actinometry. However, the choice of actinometric systems which can be applied in microreactors is limited, due to their short optical pathlength in combination with a large received photon flux. Furthermore, actinometers for the characterization of reactions driven by visible light between 500 and 600 nm (e.g. photosensitized oxidations) are largely missing. In this paper, we propose a new visible-light actinometer which can be applied in flow microreactors between 480 and 620 nm. This actinometric system is based on the photoisomerization reaction of a diarylethene derivative from its closed to the open form. The experimental protocol for actinometric measurements is facile and characterized by excellent reproducibility and we also present an analytical estimation to calculate the photon flux. Furthermore, we propose an experimental methodology to determine the average pathlength in microreactors using actinometric measurements. In the context of a growing research interest on using flow microreactors for photochemical reactions, the proposed visible-light actinometer facilitates the determination of the received photon flux and average pathlength in confined geometries.
Kirk, Benjamin B.; Savee, John D.; Trevitt, Adam J.; ...
2015-07-16
The reaction of small hydrocarbon radicals (i.e. ˙CN, ˙C 2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C 2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC≡C˙), a likely product frommore » the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d 4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (–H = 27%, –CH 3 = 73%) and (–H = 14%, –CH 3 = 86%), respectively. Altogether, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.« less
Kirk, Benjamin B; Savee, John D; Trevitt, Adam J; Osborn, David L; Wilson, Kevin R
2015-08-28
The reaction of small hydrocarbon radicals (i.e.˙CN, ˙C2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC[triple bond, length as m-dash]C˙), a likely product from the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (-H = 27%, -CH3 = 73%) and (-H = 14%, -CH3 = 86%), respectively. Together, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirk, Benjamin B.; Savee, John D.; Trevitt, Adam J.
The reaction of small hydrocarbon radicals (i.e. ˙CN, ˙C 2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C 2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC≡C˙), a likely product frommore » the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d 4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (–H = 27%, –CH 3 = 73%) and (–H = 14%, –CH 3 = 86%), respectively. Altogether, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.« less
Bayrakçeken, Fuat
2008-02-01
The reactions of photochemically generated deuterium atoms of selected initial translational energy with ethane have been investigated. At each initial energy the relative probability of the atoms undergoing reaction or energy loss on collision with ethane was investigated, and the phenomenological threshold energy was measured as 30+/-5kJmol(-1) for the abstraction from the secondary C-H bonds. The ratio of relative yields per bond, secondary:primary was approximately 3 at the higher energies studied. The correlation of threshold energies with bond dissociation energies, heats of reaction and activation energies is discussed for abstraction reactions with several hydrocarbons.
Lee, Do-Jin; Kim, Byung Hoon; Kim, Sun-Jae; Kim, Jung-Sik; Lee, Heon; Jung, Sang-Chul
2015-01-01
An MDEL/TiO2 photo-catalyst hybrid system was applied, for the first time, for the production of low molecular weight heparin. The molecular weight of produed heparin decreased with increasing microwave intensity and treatment time. The abscission of the chemical bonds between the constituents of heparin by photo-catalytic reaction did not alter the characteristics of heparin. Formation of by-products due to side reaction was not observed. It is suggested that heparin was depolymerized by active oxygen radicals produced during the MDEL/TiO2 photo-chemical reaction.
Kajimoto, Shinji; Shirasawa, Daisuke; Horimoto, Noriko Nishizawa; Fukumura, Hiroshi
2013-05-14
Ultrafast phase separation of water and 2-butoxyethanol mixture was induced by nanosecond IR laser pulse irradiation. After a certain delay time, a UV laser pulse was introduced to induce photoreduction of aurate ions, which led to the formation of gold nanoparticles in dynamic phase-separating media. The structure and size of the nanoparticles varied depending on the delay time between the IR and UV pulses. For a delay time of 5 and 6 μs, gold square plates having edge lengths of 150 and 100 nm were selectively obtained, respectively. With a delay time of 3 μs, on the other hand, the size of the square plates varied widely from 100 nm to a few micrometers. The size of the gold square plates was also varied by varying the total irradiation time of the IR and UV pulses. The size distribution of the square plates obtained under different conditions suggests that the growth process of the square plates was affected by the size of the nanophases during phase separation. Electron diffraction patterns of the synthesized square plates showed that the square plates were highly crystalline with a Au(100) surface. These results showed that the nanophases formed during laser-induced phase separation can provide detergent-free reaction fields for size-controlled nanomaterial synthesis.
NASA Astrophysics Data System (ADS)
Botta, Lorenzo; Mattia Bizzarri, Bruno; Piccinino, Davide; Fornaro, Teresa; Robert Brucato, John; Saladino, Raffaele
2017-07-01
The photochemical transformation of formamide in the presence of a mixture of TiO2 and ZnO metal oxides as catalysts afforded a large panel of molecules of biological relevance, including carboxylic acids, amino acids and nucleic acid bases. The reaction was less effective when performed in the presence of only one mineral, highlighting the role of synergic effects between the photoactive catalysts. Taken together, these results suggest that the synthesis of chemical precursors for both the genetic and the metabolic apparatuses might have occurred in a simple environment, consisting of formamide, photoactive metal oxides and UV-radiation.
Efficiency of photochemical stages of photosynthesis in purple bacteria (a critical survey).
Borisov, A Yu
2014-03-01
Based on currently available data, the energy transfer efficiency in the successive photophysical and photochemical stages has been analyzed for purple bacteria. This analysis covers the stages starting from migration of the light-induced electronic excitations from the bulk antenna pigments to the reaction centers up to irreversible stage of the electron transport along the transmembrane chain of cofactors-carriers. Some natural factors are revealed that significantly increase the rates of efficient processes in these stages. The influence on their efficiency by the "bottleneck" in the energy migration chain is established. The overall quantum yield of photosynthesis in these stages is determined.
Atmospheric photochemistry at a fatty acid coated air/water interface
NASA Astrophysics Data System (ADS)
George, Christian; Rossignol, Stéphanie; Passananti, Monica; Tinel, Liselotte; Perrier, Sebastien; Kong, Lingdong; Brigante, Marcello; Bianco, Angelica; Chen, Jianmin; Donaldson, James
2017-04-01
Over the past 20 years, interfacial processes have become increasingly of interest in the field of atmospheric chemistry, with many studies showing that environmental surfaces display specific chemistry and photochemistry, enhancing certain reactions and acting as reactive sinks or sources for various atmospherically relevant species. Many molecules display a free energy minimum at the air-water interface, making it a favored venue for compound accumulation and reaction. Indeed, surface active molecules have been shown to undergo specific photochemistry at the air-water interface. This presentation will address some recent surprises. Indeed, while fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds (VOCs) are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over monolayer NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet state NA molecules excited by direct absorption of actinic light at the water surface. As fatty acids covered interfaces are ubiquitous in the environment, such photochemical processing will have a significant impact on local ozone and particle formation. In addition, it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds photochemically on various unsaturated fatty acids compounds, and may therefore have a general environmental impact. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could be in excess of 5%.
VOLATILE ORGANIC COMPOUNDS (VOCS) CHAPTER 31.
The term "volatile organic compounds' (VOCs) was originally coined to refer, as a class, to carbon-containing chemicals that participate in photochemical reactions in the ambient (outdoor) are. The regulatory definition of VOCs used by the U.S. EPA is: Any compound of carbon, ex...
Photolysis of Indole-Containing Mycotoxins to Fluorescent Products
USDA-ARS?s Scientific Manuscript database
Photochemical reaction of the non-fluorescent mycotoxin cyclopiazonic acid (CPA) to fluorescent products was recently reported. Because CPA contains an indole moiety, believed to contribute to the fluorescence, it was of interest to determine whether the effect might be more generally applicable to ...
Overhead Projector Demonstrations.
ERIC Educational Resources Information Center
Kolb, Doris, Ed.
1988-01-01
Provides two demonstrations: (1) electrolyte migration of ions using colored ions which cross a strip of gelatin allowing for noticeable migration; and (2) photochemical reduction of Fe+3 by the citrate ion. Points out both reactions can be done in a Petri dish using common lab materials. (MVL)
Nitrogen Oxides in Early Earth's Atmosphere as Electron Acceptors for Life's Emergence
NASA Astrophysics Data System (ADS)
Wong, Michael L.; Charnay, Benjamin D.; Gao, Peter; Yung, Yuk L.; Russell, Michael J.
2017-10-01
We quantify the amount of nitrogen oxides (NOx) produced through lightning and photochemical processes in the Hadean atmosphere to be available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO3-) and nitrite (NO2-) are the most attractive high-potential electron acceptors for pulling and enabling crucial redox reactions of autotrophic metabolic pathways at submarine alkaline hydrothermal vents. The Hadean atmosphere, dominated by CO2 and N2, will produce nitric oxide (NO) when shocked by lightning. Photochemical reactions involving NO and H2O vapor will then produce acids such as HNO, HNO2, HNO3, and HO2NO2 that rain into the ocean. There, they dissociate into or react to form nitrate and nitrite. We present new calculations based on a novel combination of early-Earth global climate model and photochemical modeling, and we predict the flux of NOx to the Hadean ocean. In our 0.1-, 1-, and 10-bar pCO2 models, we calculate the NOx delivery to be 2.4 × 105, 6.5 × 108, and 1.9 × 108 molecules cm-2 s-1. After only tens of thousands to tens of millions of years, these NOx fluxes are expected to produce sufficient (micromolar) ocean concentrations of high-potential electron acceptors for the emergence of life.
Light-activated control of protein channel assembly mediated by membrane mechanics
NASA Astrophysics Data System (ADS)
Miller, David M.; Findlay, Heather E.; Ces, Oscar; Templer, Richard H.; Booth, Paula J.
2016-12-01
Photochemical processes provide versatile triggers of chemical reactions. Here, we use a photoactivated lipid switch to modulate the folding and assembly of a protein channel within a model biological membrane. In contrast to the information rich field of water-soluble protein folding, there is only a limited understanding of the assembly of proteins that are integral to biological membranes. It is however possible to exploit the foreboding hydrophobic lipid environment and control membrane protein folding via lipid bilayer mechanics. Mechanical properties such as lipid chain lateral pressure influence the insertion and folding of proteins in membranes, with different stages of folding having contrasting sensitivities to the bilayer properties. Studies to date have relied on altering bilayer properties through lipid compositional changes made at equilibrium, and thus can only be made before or after folding. We show that light-activation of photoisomerisable di-(5-[[4-(4-butylphenyl)azo]phenoxy]pentyl)phosphate (4-Azo-5P) lipids influences the folding and assembly of the pentameric bacterial mechanosensitive channel MscL. The use of a photochemical reaction enables the bilayer properties to be altered during folding, which is unprecedented. This mechanical manipulation during folding, allows for optimisation of different stages of the component insertion, folding and assembly steps within the same lipid system. The photochemical approach offers the potential to control channel assembly when generating synthetic devices that exploit the mechanosensitive protein as a nanovalve.
Su, Hua; Fang, Yimin; Chen, Fangyuan
2018-01-01
The capability of semiconductor nanomaterials to convert solar energy to chemical energy has led to many promising applications, for instance, photocatalyzed H2 generation. Studying this important photocatalytic reaction at the single nanocatalyst level provides a great opportunity to understand the microscopic reaction kinetics and mechanism by overcoming the chemical and structural heterogeneity among individuals. Here we report a fluorescence (FL) labeling strategy to visualize individual H2 nanobubbles that are generated at single CdS nanoparticles during photocatalysis. In operando imaging of nanobubble growth kinetics allows for determination of the photocatalytic activity of single nanocatalysts, which was found to randomly alternate among high activity, low activity and inactive states. In addition to H2 nanobubbles, the present labeling strategy is also suitable for other types of gas nanobubbles. Since nanomaterial-catalyzed gas generation is widely involved in many important photochemical (water splitting), electrochemical (electrolysis) and chemical (nanomotors) reactions, the present work is promising for the general applicability of single nanoparticle catalysis in broad basic and industrial fields by lighting up nanobubbles under commercial and conventional FL microscopes. PMID:29719679
Suzuki-Trotter Formula for Real-Time Dependent LDA I: Electron Dynamics
NASA Astrophysics Data System (ADS)
Sugino, Osamu; Miyamoto, Yoshiyuki
1998-03-01
To investigate various physical and chemical processes where electron dynamics play a role (e.g. collisions or photochemical reactions), solving the real-time Schrödinger equation is essentially important. ihbar fracpartialφpartial t=H φ Trial of solving eqn. (1) from first principles has begun very recently(K. Yabana and G. F. Bertch, Phys. Rev. B54) 4484 (1996)., and it is now in the stage of establishing efficient, stable, and accurate method for numerical calculation. In this talk, we present several improvements in the method of solving eqn. (1) within the density functional theory: (A) higher order Suzuki-Trotter formula(M. Suzuki, Phys. Lett. A146) 319 (1990). to integrate eqn. (1) keeping the orthonormality of the wavefunctions, (B) special interpolation scheme for the self-consistent potential to reduce the drift in the total-energy, and (C) the preconditioning techniques to increase the time step for the simulation. We will demonstrate numerical stability and efficiency using several cluster calculations, and will address the accuracy by comparing the computed cross sections for atom-electron collisions with experiment.
NASA Astrophysics Data System (ADS)
Zhang, Juntao; Gao, Xuejuan; Xing, Da; Liu, Lei
2007-11-01
Low-power laser irradiation (LPLI) leads to photochemical reaction and then activates intracellular several signaling pathway. Reactive oxygen species (ROS) are considered to be the primary messengers produced by LPLI. Here, we studied the signaling pathway mediated by ROS upon the stimulation of LPLI. Src tyrosine kinases are well-known targets of ROS and can be activated by oxidative events. Using a Src reporter based on fluorescence resonance energy transfer (FRET) technique, we visualized the dynamic Src activation in Hela cells immediately after LPLI. Moreover, Src activity was enhanced by increasing the duration of LPLI. In addition, our results suggested that ROS were key mediators of Src activation, as ROS scavenger, vitamin C decreased and exogenous H IIO II increased the activity of Src. Meanwhile, Gö6983 loading did not block the effect of LPLI. CCK-8 experiments proved that cell vitality was prominently improved by LPLI with all the doses we applied in our experiments ranging from 3 to 25J/cm2. The results indicated that LPLI/ROS/Src pathway may be involved in the LPLI biostimulation effects.
Photochemical versus Thermal Synthesis of Cobalt Oxyhydroxide Nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarado, Samuel R.; Guo, Yijun; Ruberu, T. Purnima A.
2012-04-18
Photochemical methods facilitate the generation, isolation, and study of metastable nanomaterials having unusual size, composition, and morphology. These harder-to-isolate and highly reactive phases, inaccessible using conventional high-temperature pyrolysis, are likely to possess enhanced and unprecedented chemical, electromagnetic, and catalytic properties. We report a fast, low-temperature and scalable photochemical route to synthesize very small (3 nm) monodisperse cobalt oxyhydroxide (Co(O)OH) nanocrystals. This method uses readily and commercially available pentaamminechlorocobalt(III) chloride, [Co(NH3)5Cl]Cl2, under acidic or neutral pH and proceeds under either near-UV (350 nm) or Vis (575 nm) illumination. Control experiments showed that the reaction proceeds at competent rates only in themore » presence of light, does not involve a free radical mechanism, is insensitive to O2, and proceeds in two steps: (1) Aquation of [Co(NH3)5Cl]2+ to yield [Co(NH3)5(H2O)]3+, followed by (2) slow photoinduced release of NH3 from the aqua complex. This reaction is slow enough for Co(O)OH to form but fast enough so that nanocrystals are small (ca. 3 nm). The alternative dark thermal reaction proceeds much more slowly and produces much larger (250 nm) polydisperse Co(O)OH aggregates. UV–Vis absorption measurements and ab initio calculations yield a Co(O)OH band gap of 1.7 eV. Fast thermal annealing of Co(O)OH nanocrystals leads to Co3O4 nanocrystals with overall retention of nanoparticle size and morphology. Thermogravimetric analysis shows that oxyhydroxide to mixed-oxide phase transition occurs at significantly lower temperatures (up to ΔT = 64 °C) for small nanocrystals compared with the bulk.« less
Lackner, Florian; Chatterley, Adam S.; Pemmaraju, C. D.; ...
2016-12-21
Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (C 4H 4Se). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (~58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations. The experiments simultaneously capture the instantaneous population of stable molecular ions, the emergence and decay of excited cation states, and the appearance of atomic fragments. The experiments reveal, in particular, insight into the strong-field inducedmore » ring-opening dynamics in the selenophene cation, which are traced by the emergence of non-cyclic molecules as well as the liberation of Se + ions within an overall time scale of approximately 170 fs. In this study, we propose that both products may be associated with dynamics on the same electronic surfaces but with different degrees of vibrational excitation. The time-dependent inner-shell absorption features provide direct evidence for a complex relaxation mechanism that may be approximated by a two-step model, whereby the initially prepared, excited cyclic cation decays within τ 1 = 80 ± 30 fs into a transient molecular species, which then gives rise to the emergence of bare Se + and ring-open cations within an additional τ 2 = 80 ± 30 fs. The combined experimental and theoretical results suggest a close relationship between σ* excited cation states and the observed ring-opening reactions. In conclusion, the findings demonstrate that the combination of femtosecond time-resolved core-level spectroscopy with ab initio estimates of spectroscopic signatures provide new insights into complex, ultrafast photochemical reactions such as ring-opening dynamics in organic molecules in real-time and with simultaneous sensitivity for electronic and structural rearrangements.« less
Photochemical Haze Formation in the Atmospheres of Super-Earths and Mini-Neptunes
NASA Technical Reports Server (NTRS)
He, Chao; Hoerst, Sarah M.; Lewis, Nikole K.; Yu, Xinting; Moses, Julianne I.; Kempton, Eliza M.- R.; Marley, Mark S.; McGuiggan, Patricia; Morley, Caroline V.; Valenti, Jeff A.;
2018-01-01
UV (ultraviolet) radiation can induce photochemical processes in the atmospheres of exoplanet and produce haze particles. Recent transmission spectra of super-Earths and mini-Neptunes have demonstrated the possibility that exoplanets have haze/cloud layers at high altitudes in their atmospheres. Haze particles play an important role in planetary atmospheres because they affect the chemistry, dynamics, and radiation flux in planetary atmospheres, and may provide a source of organic material to the surface which may impact the origin or evolution of life. However, very little information is known about photochemical processes in cool, high-metallicity exoplanetary atmospheres. We present here photochemical haze formation in laboratory simulation experiments with UV radiation; we explored temperatures ranging from 300 to 600 degrees Kelvin and a range of atmospheric metallicities (100 times, 1000 times, and 10000 times solar metallicity). We find that photochemical hazes are generated in all simulated atmospheres, but the haze production rates appear to be temperature dependent: the particles produced in each metallicity group decrease as the temperature increases. The images taken with an atomic force microscope (AFM) show that the particle size (15 nanometers to 190 nanometers) varies with temperature and metallicity. Our results provide useful laboratory data on the photochemical haze formation and particle properties, which can serve as critical inputs for exoplanet atmosphere modeling, and guide future observations of exoplanets with the Transiting Exoplanet Survey Satellite (TESS), the James Webb Space Telescope (JWST), and the Wide-Field Infrared Survey Telescope (WFIRST).
Modeling Photochemical Dynamics in Optically Active Energetic Materials
NASA Astrophysics Data System (ADS)
Nelson, Tammie; Bjorgaard, Josiah; Greenfield, Margo; Bolme, Cindy; Brown, Katie; McGrane, Shawn; Scharff, R. Jason; Tretiak, Sergei
Most high explosives (HEs) absorb in the UV range, making it difficult to develop HEs that can be excited with standard lasers. The conventional optical initiation mechanisms require high laser intensity and occur via indirect thermal or shock processes. A photochemical initiation mechanism could allow control over the chemistry contributing to decomposition leading to initiation. We combine UV femtosecond transient absorption (TA) spectroscopy and excited state femtosecond stimulated Raman spectroscopy (FSRS) with Nonadiabatic Excited State Molecular Dynamics (NA-ESMD) to model the photochemical pathways in nitromethane (NM), a low sensitivity HE known to undergo UV photolysis. We investigate the ultrafast photodecomposition of NM from the nπ* state excited at 266 nm. The FSRS photoproduct spectrum points to methyl nitrite formation as the dominant photoproduct. A total photolysis quantum yield of 0.27 and an nπ* state lifetime of 20 fs were predicted from simulations. Predicted time scales reveal that NO2 dissociation occurs in 81 +/-4 fs and methyl nitrite formation is much slower at 452 +/-9 fs corresponding to the absorption feature in the TA spectrum. The relative time scales are consistent with isomerization by NO2 dissociation and ONO rebinding.
Feedbacks between microphysics and photochemical aging in viscous aerosol
NASA Astrophysics Data System (ADS)
Dou, Jing; Corral Arroyo, Pablo; Alpert, Peter A.; Ammann, Markus; Peter, Thomas; Krieger, Ulrich K.
2017-04-01
Fe(III)-citrate complex photochemistry, which plays an important role in aerosol aging, especially in lower troposphere, has been widely recognized in both solution and solid states. It can get excited by light below about 500 nm, inducing the oxidation of carboxylate ligands and the production of peroxides (e.g., OH•, HO2•), which have a significant impact on the climate, air quality and health. Recently, there is literature reporting that aqueous aerosol particles may attain highly viscous, semi-solid or even glassy physical states under a wide range of atmospheric conditions. However, systematic studies on the effect of high viscosity on photochemical processes are scarce. In this research, mass and size changes of a single, aqueous Fe(III)-citrate/citric acid particle levitated in an electrodynamic balance (EDB) are tracked during photochemical processing. We observe an overall mass loss during photochemical processing due to evaporation of volatile (e.g., CO2) and semi-volatile (e.g., ketones) compounds. It is known that relative humidity and temperature strongly effects the viscosity of citric acid. Hence, under light intensities large enough not limiting photochemical processing (at a wavelength of either 375 nm or 473 nm), the quasi-steady state evaporation rate in our experiments depends on relative humidity and temperature. The same holds true for the characteristic time scale for reaching thermodynamic equilibrium after switching off the light source. We are focusing on the high viscosity case (i.e., reduced molecular mobility and low water content), which slows down the transport of products but can also affect chemical reaction rates (e.g., initial absorption process, charge and energy transfer). Data are compared to kinetic modeling and diffusivities for semi-volatile compounds are estimated aiming at a more detailed understanding of the feedbacks between microphysics and photochemical aging.
Extraterrestrial cold chemistry. A need for a specific database.
NASA Astrophysics Data System (ADS)
Pernot, P.; Carrasco, N.; Dobrijevic, M.; Hébrard, E.; Plessis, S.; Wakelam, V.
2008-09-01
The major resource databases for building chemical models for photochemistry in cold environments are mainly based on those designed for Earth atmospheric chemistry or combustion, in which reaction rates are reported for temperatures typically above 300 K [1,2]. Kinetic data measured at low temperatures are very sparse; for instance, in stateoftheart photochemical models of Titan atmosphere, less than 10% of the rates have been measured in the relevant temperature range (100200 K) [35]. In consequence, photochemical models rely mostly on lowT extrapolations by Arrheniustype laws. There is more and more evidence that this is often inappropriate [6], and low T extrapolations are hindered by very high uncertainty [3] (Fig.1). The predictions of models based on those extrapolations are expected to be very inaccurate [4,7]. We argue that there is not much sense in increasing the complexity of the present models as long as this predictivity issue has not been resolved. Fig. 1 Uncertainty of low temperature extrapolation for the N(2D) +C2H4 reaction rate, from measurements in the range 225 292 K [10], assuming an Arrhenius law (blue line). The sample of rate laws is generated by Monte Carlo uncertainty propagation after a Bayesian Data reAnalysis (BDA) of experimental data. A dialogue between modellers and experimentalists is necessary to improve this situation. Considering the heavy costs of low temperature reaction kinetics experiments, the identification of key reactions has to be based on an optimal strategy to improve the predictivity of photochemical models. This can be achieved by global sensitivity analysis, as illustrated on Titan atmospheric chemistry [8]. The main difficulty of this scheme is that it requires a lot of inputs, mainly the evaluation of uncertainty for extrapolated reaction rates. Although a large part has already been achieved by Hébrard et al. [3], extension and validation requires a group of experts. A new generation of collaborative kinetic database is needed to implement efficiently this scheme. The KIDA project [9], initiated by V. Wakelam for astrochemistry, has been joined by planetologists with similar prospects. EuroPlaNet will contribute to this effort through the organization of comities of experts on specific processes in atmospheric photochemistry.
Ford, Peter C.
2001-01-01
Tmore » he discoveries that nitric oxide (a.k.a. nitrogen monoxide) serves important roles in mammalian bioregulation and immunology have stimulated intense interest in the chemistry and biochemistry of NO and derivatives such as metal nitrosyl complexes. Also of interest are strategies to deliver NO to biological targets on demand. One such strategy would be to employ a precursor which displays relatively low thermal reactivity but is photochemically active to release NO. his proposition led us to investigate laser flash and continuous photolysis kinetics of nitrosyl complexes such as the Roussin's iron-sulfur-nitrosyl cluster anions Fe 2 S 2 ( NO ) 4 2 − and Fe 4 S 3 ( NO ) 7 − and several ruthenium salen and porphyrin nitrosyls. hese include studies using metal-nitrosyl photochemistry as a vehicle for delivering NO to hypoxic cell cultures in order to sensitize γ -radiation damage. Also studied were the rates and mechanisms of NO “on” reactions with model water soluble heme compounds, the ferriheme protein met-myoglobin and various ruthenium complexes using ns laser flash photolysis techniques. An overview of these studies is presented.« less
PHOTOREACTIONS IN SURFACE WATERS AND THEIR ROLE IN BIOGEOCHEMICAL CYCLES
During the past decade significant interest has developed in the influence of photochemical reactions on biogeochemical cycles in surface waters of lakes and the sea. A major portion of recent research on these photoreactions has focused on the colored component of dissolved org...
COMPARISONS OF SPATIAL PATTERNS OF WET DEPOSITION TO MODEL PREDICTIONS
The Community Multiscale Air Quality model, (CMAQ), is a "one-atmosphere" model, in that it uses a consistent set of chemical reactions and physical principles to predict concentrations of primary pollutants, photochemical smog, and fine aerosols, as well as wet and dry depositi...
Middle Atmosphere Program. Handbook for MAP, volume 4
NASA Technical Reports Server (NTRS)
Sechrist, C. F., Jr. (Editor)
1982-01-01
Topics include winter in the Northern Hemisphere, temperature measurement, geopotential heights, wind measurement, atmospheric motions, photochemical reactions, solar spectral irradiance, trace constituents, tides, gravity waves, and turbulence. Highlights from the Map Steering Committee and a Map Open Meeting including organizational structure are also given.
Solar radiation provides the primary driving force for the biogeochemical cycles upon which life and climate depend. Recent studies have demonstrated that the absorption of solar radiation, especially 'm the ultraviolet spectral region, results in photochemical reactions that can...
Effects of Isoprene- and Toluene-Generated Smog on Allergic Inflammation in Mice
Reactions of organic compounds with nitric oxide (NO) and sunlight produce complex mixtures of pollutants including secondary organic aerosol (SOA), ozone (O3), nitrogen dioxide (NO2), and reactive aldehydes. The health effects of these photochemical smog mixtures in susceptible ...
Removal of sulfur compounds from diesel using ArF laser and oxygen.
Gondal, M A; Siddiqui, M N; Al-Hooshani, K
2013-01-01
A laser-based technique for deep desulfurization of diesel and other hydrocarbon fuels by removal of dimethyldibenzothiophene (DMDBT), a persistent sulfur contaminant in fuel oils has been developed. We report a selective laser excitation of DMDBT in diesel and model compounds such as n-hexane in a reaction chamber under oxygen environment where oxidative reactions can take place. ArF laser emitting at 193 nm was employed for excitation of oxygen and DMDBT, while for process optimization, the laser energy was varied from 50 to 200 mJ/cm(2). The laser-irradiated DMDBT solution under continuous oxygen flow was analyzed by UV absorption spectrometer to determine the photochemical oxidative degradation of DMDBT. In just 5 min of laser irradiation time, almost 95% DMDBT was depleted in a diesel containing 200 ppm of DMDBT. This article provides a new method for the removal of sulfur compounds from diesel by laser based photochemical process.
NASA Astrophysics Data System (ADS)
Silvi, Mattia; Verrier, Charlie; Rey, Yannick P.; Buzzetti, Luca; Melchiorre, Paolo
2017-09-01
Chiral iminium ions—generated upon condensation of α,β-unsaturated aldehydes and amine catalysts—are used extensively by chemists to make chiral molecules in enantioenriched form. In contrast, their potential to absorb light and promote stereocontrolled photochemical processes remains unexplored. This is despite the fact that visible-light absorption by iminium ions is a naturally occurring event that triggers the mechanism of vision in higher organisms. Herein we demonstrate that the direct excitation of chiral iminium ions can unlock unconventional reaction pathways, enabling enantioselective catalytic photochemical β-alkylations of enals that cannot be realized via thermal activation. The chemistry uses readily available alkyl silanes, which are recalcitrant to classical conjugate additions, and occurs under illumination by visible-light-emitting diodes. Crucial to success was the design of a chiral amine catalyst with well-tailored electronic properties that can generate a photo-active iminium ion while providing the source of stereochemical induction. This strategy is expected to offer new opportunities for reaction design in the field of enantioselective catalytic photochemistry.
Photochemical reactions in interstellar grains photolysis of CO, NH3, and H2O
NASA Technical Reports Server (NTRS)
Agarwal, V. K.; Ferris, J. P.; Schutte, W.; Greenberg, J. M.; Briggs, R.
1985-01-01
The interstellar grains are currently considered to be the basic building blocks of comets and, possibly, meteorites. To test this theory, a simulation of the organic layer accreted onto interstellar dust particles was prepared by slow deposition of a CO:NH3:H2O gas mixture on an Al block at 10 K, with concomitant irradiation with vacuum UV. The results of the HPLC and IR analyses of the nonvolatile residue formed by photolysis at 10 K are compared with those observed at 77 K and 298 K. Some of the compounds that may be present on the surfaces of interstellar dust particles have been identified, and some specific predictions concerning the types of molecular species present in comets could be drawn. The results also suggest that photochemical reactions may have been important for the formation of meteorite components. The implication of the findings to the questions of the source of organic matter on earth and the origin of life are discussed.
NASA Astrophysics Data System (ADS)
Belgio, Erica; Kapitonova, Ekaterina; Chmeliov, Jevgenij; Duffy, Christopher D. P.; Ungerer, Petra; Valkunas, Leonas; Ruban, Alexander V.
2014-07-01
The light-harvesting antenna of higher plant photosystem II has an intrinsic capability for self-defence against intense sunlight. The thermal dissipation of excess energy can be measured as the non-photochemical quenching of chlorophyll fluorescence. It has recently been proposed that the transition between the light-harvesting and self-defensive modes is associated with a reorganization of light-harvesting complexes. Here we show that despite structural changes, the photosystem II cross-section does not decrease. Our study reveals that the efficiency of energy trapping by the non-photochemical quencher(s) is lower than the efficiency of energy capture by the reaction centres. Consequently, the photoprotective mechanism works effectively for closed rather than open centres. This type of defence preserves the exceptional efficiency of electron transport in a broad range of light intensities, simultaneously ensuring high photosynthetic productivity and, under hazardous light conditions, sufficient photoprotection for both the reaction centre and the light-harvesting pigments of the antenna.
Xu, Huacheng; Jiang, Helong
2013-11-01
Cyanobacterial blooms represent a significant ecological and human health problem worldwide. In aquatic environments, cyanobacterial blooms are actually surrounded by dissolved organic matter (DOM) and attached organic matter (AOM) that bind with algal cells. In this study, DOM and AOM fractionated from blooming cyanobacteria in a eutrophic freshwater lake (Lake Taihu, China) were irradiated with a polychromatic UV lamp, and the photochemical heterogeneity was investigated using fluorescence excitation-emission matrix (EEM)-parallel factor (PARAFAC) analysis and synchronous fluorescence (SF)-two dimensional correlation spectroscopy (2DCOS). It was shown that a 6-day UV irradiation caused more pronounced mineralization for DOM than AOM (59.7% vs. 41.9%). The EEM-PARAFAC analysis identified one tyrosine-, one humic-, and two tryptophan-like components in both DOM and AOM, and high component photodegradation rates were observed for DOM versus AOM (k > 0.554 vs. <0.519). Moreover, SF-2DCOS found that the photodegradation of organic matters followed the sequence of tyrosine-like > humic-like > tryptophan-like substances. Humic-like substances promoted the indirect photochemical reactions, and were responsible for the higher photochemical rate for DOM. The lower photodegradation of AOM benefited the integrality of cells in cyanobacterial blooms against the negative impact of UV irradiation. Therefore, the photochemical behavior of organic matter was related to the adaptation of enhanced-duration cyanobacterial blooms in aquatic environments. Copyright © 2013 Elsevier Ltd. All rights reserved.
Photochemical Escape of Atomic Carbon from Mars
NASA Astrophysics Data System (ADS)
Fox, J. L.; Hac, A. B.
2009-12-01
Determining the escape rate of C over time is necessary to reconstructing the time-dependent history of volatiles on Mars. We report initial results from a one-dimensional spherical Monte Carlo calculation of photochemical escape fluxes and rates of atomic carbon from the Martian atmosphere. This model has recently been used to estimate the photochemical escape flux of O from Mars. We include as sources photodissociation of CO, dissociative recombination of CO+, photoelectron-impact dissociation of CO, photodissociative ionization and photoelectron impact dissociative ionization. Dissociative recombination of CO2+ has been suggested as a source of C (in the channel that produces C + O2) but later studies have found that the yield of this channel is negligible. We test the potential importance of this reaction by comparing the final results produced by including it and excluding it. Finally we compare the range of the escape rate to that of C in ions that have been modeled or measured by ASPERA instruments on MEX and Phobos.
NASA Astrophysics Data System (ADS)
Chen, Sha; Li, Kang; Zhao, Fang; Zhang, Lei; Pan, Mei; Fan, Yan-Zhong; Guo, Jing; Shi, Jianying; Su, Cheng-Yong
2016-11-01
Photocatalytic water splitting is a natural but challenging chemical way of harnessing renewable solar power to generate clean hydrogen energy. Here we report a potential hydrogen-evolving photochemical molecular device based on a self-assembled ruthenium-palladium heterometallic coordination cage, incorporating multiple photo- and catalytic metal centres. The photophysical properties are investigated by absorption/emission spectroscopy, electrochemical measurements and preliminary DFT calculations and the stepwise electron transfer processes from ruthenium-photocentres to catalytic palladium-centres is probed by ultrafast transient absorption spectroscopy. The photocatalytic hydrogen production assessments reveal an initial reaction rate of 380 μmol h-1 and a turnover number of 635 after 48 h. The efficient hydrogen production may derive from the directional electron transfers through multiple channels owing to proper organization of the photo- and catalytic multi-units within the octahedral cage, which may open a new door to design photochemical molecular devices with well-organized metallosupramolecules for homogenous photocatalytic applications.
Du, Likai; Lan, Zhenggang
2015-04-14
Nonadiabatic dynamics simulations have rapidly become an indispensable tool for understanding ultrafast photochemical processes in complex systems. Here, we present our recently developed on-the-fly nonadiabatic dynamics package, JADE, which allows researchers to perform nonadiabatic excited-state dynamics simulations of polyatomic systems at an all-atomic level. The nonadiabatic dynamics is based on Tully's surface-hopping approach. Currently, several electronic structure methods (CIS, TDHF, TDDFT(RPA/TDA), and ADC(2)) are supported, especially TDDFT, aiming at performing nonadiabatic dynamics on medium- to large-sized molecules. The JADE package has been interfaced with several quantum chemistry codes, including Turbomole, Gaussian, and Gamess (US). To consider environmental effects, the Langevin dynamics was introduced as an easy-to-use scheme into the standard surface-hopping dynamics. The JADE package is mainly written in Fortran for greater numerical performance and Python for flexible interface construction, with the intent of providing open-source, easy-to-use, well-modularized, and intuitive software in the field of simulations of photochemical and photophysical processes. To illustrate the possible applications of the JADE package, we present a few applications of excited-state dynamics for various polyatomic systems, such as the methaniminium cation, fullerene (C20), p-dimethylaminobenzonitrile (DMABN) and its primary amino derivative aminobenzonitrile (ABN), and 10-hydroxybenzo[h]quinoline (10-HBQ).
Leroy, Céline Marie; Wang, Hong Feng; Fargues, Alexandre; Cardinal, Thierry; Jubera, Véronique; Treguer-Delapierre, Mona; Boissière, Cédric; Grosso, David; Sanchez, Clément; Viana, Bruno; Pellé, Fabienne
2011-07-07
Periodic mesoporous Eu(3+) doped titania materials were obtained through the EISA (Evaporation Induced Self Assembly) process. Eu(3+) ions, entrapped within the semi-crystalline walls of the highly porous framework, appear to be advantageous during the probing of surface photochemical reactions. Its emission intensity is very sensitive to the presence of physisorbed molecules, in gas or liquid phase, that reside within the pores. In particular, strong fluctuations in intensity of the (5)D(0)→(7)F(2) transition were observed under UV light exposure on the time scale of tens of seconds. The emission modulation dynamics show a strong correlation with the crystallinity of the titania matrix. Correlation of the emission with the photocatalytic activity of the semiconductor for photodegradation of an organic molecule is observed. A model is proposed to describe the involved mechanisms. This journal is © the Owner Societies 2011
On-surface synthesis on a bulk insulator surface
NASA Astrophysics Data System (ADS)
Richter, Antje; Floris, Andrea; Bechstein, Ralf; Kantorovich, Lev; Kühnle, Angelika
2018-04-01
On-surface synthesis has rapidly emerged as a most promising approach to prepare functional molecular structures directly on a support surface. Compared to solution synthesis, performing chemical reactions on a surface offers several exciting new options: due to the absence of a solvent, reactions can be envisioned that are otherwise not feasible due to the insolubility of the reaction product. Perhaps even more important, the confinement to a two-dimensional surface might enable reaction pathways that are not accessible otherwise. Consequently, on-surface synthesis has attracted great attention in the last decade, with an impressive number of classical reactions transferred to a surface as well as new reactions demonstrated that have no classical analogue. So far, the majority of the work has been carried out on conducting surfaces. However, when aiming for electronic decoupling of the resulting structures, e.g. for the use in future molecular electronic devices, non-conducting surfaces are highly desired. Here, we review the current status of on-surface reactions demonstrated on the (10.4) surface of the bulk insulator calcite. Besides thermally induced C-C coupling of halogen-substituted aryls, photochemically induced [2 + 2] cycloaddition has been proven possible on this surface. Moreover, experimental evidence exists for coupling of terminal alkynes as well as diacetylene polymerization. While imaging of the resulting structures with dynamic atomic force microscopy provides a direct means of reaction verification, the detailed reaction pathway often remains unclear. Especially in cases where the presence of metal atoms is known to catalyze the corresponding solution chemistry reaction (e.g. in the case of the Ullmann reaction), disclosing the precise reaction pathway is of importance to understand and generalize on-surface reactivity on a bulk insulator surface. To this end, density-functional theory calculations have proven to provide atomic-scale insights that have greatly contributed to unravelling the details of on-surface synthesis on a bulk insulator surface.
Murphy, Robert C; Okuno, Toshiaki; Johnson, Christopher A; Barkley, Robert M
2017-08-15
The positions of double bonds along the carbon chain of methylene interrupted polyunsaturated fatty acids are unique identifiers of specific fatty acids derived from biochemical reactions that occur in cells. It is possible to obtain direct structural information as to these double bond positions using tandem mass spectrometry after collisional activation of the carboxylate anions of an acetone adduct at each of the double bond positions formed by the photochemical Paternò-Büchi reaction with acetone. This reaction can be carried out by exposing a small portion of an inline fused silica capillary to UV photons from a mercury vapor lamp as the sample is infused into the electrospray ion source of a mass spectrometer. Collisional activation of [M - H] - yields a series of reverse Paternò-Büchi reaction product ions that essentially are derived from cleavage of the original carbon-carbon double bonds that yield an isopropenyl carboxylate anion corresponding to each double bond location. Aldehydic reverse Paternò-Büchi product ions are much less abundant as the carbon chain length and number of double bonds increase. The use of a mixture of D 0 /D 6 -acetone facilitates identification of these double bonds indicating product ions as shown for arachidonic acid. If oxygen is present in the solvent stream undergoing UV photoactivation, ozone cleavage ions are also observed without prior collisional activation. This reaction was used to determine the double bond positions in a 20:3 fatty acid that accumulated in phospholipids of RAW 264.7 cells cultured for 3 days.
PRODUCTION OF HYDRATED ELECTRONS FROM PHOTOIONIZATION OF DISSOLVED ORGANIC MATTER IN NATURAL WATERS
Under UV irradiation, an important primary photochemical reaction of colored dissolved organic matter (CDOM) is electron ejection, producing hydrated electrons (e-aq). The efficiency of this process has been studied in both fresh and seawater samples with both steady-state scave...
INTERACTIONS OF SOLAR UV RADIATION AND DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS
Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet (UV) radiation that reaches the surface of aquatic environments. Recent studies have demonstrated that these UV increases cause changes in photochemical reactions that affect the...
Sharma, Hemant K; Arias-Ugarte, Renzo; Metta-Magana, Alejandro; Pannell, Keith H
2010-07-07
Formation of an Sn-CH(3) bond, concomitantly with an Sn-M (M = Fe, Mo), is readily achieved from the photochemical reactions of (t)Bu(2)SnH(2) with (eta(5)-C(5)H(5))M(CO)(n)Me (M = Fe, n = 2; M = Mo, n = 3) via the intermediacy of (eta(5)-C(5)H(5))M(CO)(n)Sn(t)Bu(2)H.
Photocatalytic Iron Oxide Micro-Swimmers for Environmental Remediation
NASA Astrophysics Data System (ADS)
Richard, Cynthia; Simmchen, Juliane; Eychmüller, Alexander
2018-05-01
Harvesting energy from photochemical reactions has long been studied as an efficient means of renewable energy, a topic that is increasingly gaining importance also for motion at the microscale. Iron oxide has been a material of interest in recent studies. Thus, in this work different synthesis methods and encapsulation techniques were used to try and optimize the photo-catalytic properties of iron oxide colloids. Photodegradation experiments were carried out following the encapsulation of the nanoparticles and the Fenton effect was also verified. The end goal would be to use the photochemical degradation of peroxide to propel an array of swimmers in a controlled manner while utilizing the Fenton effect for the degradation of dyes or waste in wastewater remediation.
Rühe, J
2017-09-26
In photolithographic processes, the light inducing the photochemical reactions is confined to a small volume, which enables direct writing of micro- and nanoscale features onto solid surfaces without the need of a predefined photomask. The direct writing process can be used to generate topographic patterns through photopolymerization or photo-cross-linking or can be employed to use light to generate chemical patterns on the surface with high spatial control, which would make such processes attractive for bioapplications. The prospects of maskless photolithography technologies with a focus on two-photon lithography and scanning-probe-based photochemical processes based on scanning near-field optical microscopy or beam pen lithography are discussed.
Photochemical reactions of water and carbon monoxide in earth's primitive atmosphere
NASA Technical Reports Server (NTRS)
Bar-Nun, A.; Chang, S.
1983-01-01
The gas-phase photolysis of H2O at 1849 A in the presence of CO yields mainly CO2 and H2 and a variety of organic compounds, including C1-C3 hydrocarbons, alcohols, aldehydes, acetone, and acetic acid. The overall quantum yield for conversion of CO to organic compounds varies between 0.23 and 0.03 as a function of the CO abundance. These results indicate that even if primitive earth's atmosphere initially contained no molecular hydrogen and contained carbon only in the form of CO or a mixture of CO and CO2, the prebiotic environment would have become enriched with a variety of organic compounds produced by photochemical processes.
NASA Technical Reports Server (NTRS)
Chameides, W. L.; Davis, D. D.; Rodgers, M. O.; Bradshaw, J.; Sandholm, S.; Sachse, G.; Hill, G.; Gregory, G.
1987-01-01
The role of photochemistry in the budget of tropospheric ozone is studied. Measurements of O3, NO, CO, H2O vapor, and temperature obtained during the fall of 1983 during the GTE/CITE project over the eastern and central North Pacific Ocean are analyzed. The effect of altitude on the measurements is discussed. The analysis reveals a correlation between ozone and NO levels; both increase in concentration and variability with altitude. It is observed that an additional source of secondary importance associated wih CO-rich air parcels exists. A photochemical model is utilized to calculate the net rate of ozone production by photochemical reactions. A net photochemical source of ozone in the free troposphere and a net sink in the boundary layer are detected. The relation between the ozone source in the free troposphere and NO is examined. It is estimated that photochemistry provides a net ozone source to the free troposphere overlying the eastern and central North Pacific Ocean of about 5 x 10 to the 10th molecules/sq cm sec and a net sink of ozone to the boundary layer overlying this region of about 3 x 10 to the 10th molecules/sq cm sec.
Photochemical reaction between triclosan and nitrous acid in the atmospheric aqueous environment
NASA Astrophysics Data System (ADS)
Ma, Jianzhong; Zhu, Chengzhu; Lu, Jun; Lei, Yu; Wang, Jizhong; Chen, Tianhu
2017-05-01
Nitrous acid (HONO) is an important tropospheric pollutant and a major source of hydroxyl radical in the atmospheric gas phase. However, studies on the role of HONO in atmospheric aqueous phase chemistry processes are relatively few. The present work investigated the photochemical reaction of HONO with triclosan (TCS), which is an emerging contaminant, using a combination of laser flash photolysis spectrometry and gas chromatography mass spectrometry. With these techniques, the reaction pathway of HONO with TCS was proposed by directly monitoring the transient species and detecting the stable products. ·OH was generated from the photodissociation of the HONO aqueous solution and attacked TCS molecules on different sites to produce the TCS-OH adducts with a second-order rate constant of 1.11 × 109 L mol-1 s-1. The ·OH added a C atom adjacent to the ether bond in the aromatic ring of TCS and self-decayed when the ether bond broke. The intermediates generated from the addition of ·OH to the benzene ring of the TCS molecular structure were immediately nitrated by HONO, which played a key role in the formation process of nitrocompounds. An atmospheric model suggests that the aqueous oxidation of TCS by ·OH is a major reaction at high liquid water concentrations, and the photolysis of TCS dominates under low-humidity conditions.
Zhang, Xingwang; Biekert, Nicolas; Choi, Shinhyuk; Naylor, Carl H; De-Eknamkul, Chawina; Huang, Wenzhuo; Zhang, Xiaojie; Zheng, Xiaorui; Wang, Dake; Johnson, A T Charlie; Cubukcu, Ertugrul
2018-02-14
Active tunability of photonic resonances is of great interest for various applications such as optical switching and modulation based on optoelectronic materials. Manipulation of charged excitons in atomically thin transition metal dichalcogenides (TMDCs) like monolayer MoS 2 offers an unexplored route for diverse functionalities in optoelectronic nanodevices. Here, we experimentally demonstrate the dynamic photochemical and optoelectronic control of the photonic crystal Fano resonances by optical and electrical tuning of monolayer MoS 2 refractive index via trions without any chemical treatment. The strong spatial and spectral overlap between the photonic Fano mode and the active MoS 2 monolayer enables efficient modulation of the Fano resonance. Our approach offers new directions for potential applications in the development of optical modulators based on emerging 2D direct band gap semiconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lackner, Florian; Chatterley, Adam S.; Pemmaraju, C. D.
Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (C 4H 4Se). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (~58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations. The experiments simultaneously capture the instantaneous population of stable molecular ions, the emergence and decay of excited cation states, and the appearance of atomic fragments. The experiments reveal, in particular, insight into the strong-field inducedmore » ring-opening dynamics in the selenophene cation, which are traced by the emergence of non-cyclic molecules as well as the liberation of Se + ions within an overall time scale of approximately 170 fs. In this study, we propose that both products may be associated with dynamics on the same electronic surfaces but with different degrees of vibrational excitation. The time-dependent inner-shell absorption features provide direct evidence for a complex relaxation mechanism that may be approximated by a two-step model, whereby the initially prepared, excited cyclic cation decays within τ 1 = 80 ± 30 fs into a transient molecular species, which then gives rise to the emergence of bare Se + and ring-open cations within an additional τ 2 = 80 ± 30 fs. The combined experimental and theoretical results suggest a close relationship between σ* excited cation states and the observed ring-opening reactions. In conclusion, the findings demonstrate that the combination of femtosecond time-resolved core-level spectroscopy with ab initio estimates of spectroscopic signatures provide new insights into complex, ultrafast photochemical reactions such as ring-opening dynamics in organic molecules in real-time and with simultaneous sensitivity for electronic and structural rearrangements.« less
NASA Astrophysics Data System (ADS)
Abaskharon, Rachel M.
As ubiquitous and diverse biopolymers, proteins are dynamic molecules that are constantly engaging in inter- and intramolecular interactions responsible for their structure, fold, and function. Because of this, gaining a comprehensive understanding of the factors that control protein conformation and dynamics remains elusive as current experimental techniques often lack the ability to initiate and probe a specific interaction or conformational transition. For this reason, this thesis aims to develop methods to control and monitor protein conformations, conformational transitions, and dynamics in a site-specific manner, as well as to understand how specific and non-specific interactions affect the protein folding energy landscape. First, by using the co-solvent, trifluoroethanol (TFE), we show that the rate at which a peptide folds can be greatly impacted and thus controlled by the excluded volume effect. Secondly, we demonstrate the utility of several light-responsive molecules and reactions as methods to manipulate and investigate protein-folding processes. Using an azobenzene linker as a photo-initiator, we are able to increase the folding rate of a protein system by an order of magnitude by channeling a sub-population through a parallel, faster folding pathway. Additionally, we utilize a tryptophan-mediated electron transfer process to a nearby disulfide bond to strategically unfold a protein molecule with ultraviolet light. We also demonstrate the potential of two ruthenium polypyridyl complexes as ultrafast phototriggers of protein reactions. Finally, we develop several site-specific spectroscopic probes of protein structure and environment. Specifically, we demonstrate that a 13C-labeled aspartic acid residue constitutes a useful site-specific infrared probe for investigating salt-bridges and hydration dynamics of proteins, particularly in proteins containing several acidic amino acids. We also show that a proline-derivative, 4-oxoproline, possesses novel infrared properties that can be exploited to monitor the cis-trans isomerization process of individual proline residues in proteins.
HYDROXYL RADICAL AND OZONE INITIATED PHOTOCHEMICAL REACTIONS OF 1,3-BUTADIENE. (R826247)
1,3-Butadiene, classified as hazardous in the 1990 Clean Air Act Amendments, is an important ambient air pollutant. Understanding its atmospheric transformation is useful for its own sake, and is also helpful for eliciting isoprene's fate in the atmosphere (isoprene dominates ...
Demonstrating the Antioxidative Capacity of Substances with Lightsticks
ERIC Educational Resources Information Center
Wieczorek, Robert R.; Sommer, Katrin
2011-01-01
The antioxidative capacity of phytochemical compounds is often discussed in life science courses (to prevent or slow cancer) and food science courses (to prevent the oxidation of sensitive ingredients). Thus, we developed a laboratory experiment where the photochemical reaction of lightsticks is used to qualitatively demonstrate the antioxidative…
Long term impact of anthropogenic emissions of halogenated hydrocarbons on stratospheric ozone level
NASA Technical Reports Server (NTRS)
1977-01-01
Reaction kinetics are studied for stratospheric chlorine atoms, OH initiated degradation of carbon-chlorine compounds, the chemical decomposition of stratospheric HCl and ClONO2. A photochemical study is made of the decomposition of O3 over the wavelength range 2935 to 3165 deg A.
ROLE OF HUMIC SUBSTANCES ON THE PHOTOCHEMICAL REDUCTION OF MERCURY
Solutions containing mercury and fulvic acids (isolated from the Florida Everglades) were exposed to simulated sunlight from a 1000-W Xenon lamp. In the ensuing reaction, ionic mercury was reduced to elemental mercury, which was collected on a gold trap and measured on a cold va...
Development of fibrin-free intraocular lens with photochemical surface modification
NASA Astrophysics Data System (ADS)
Sato, Yuji; Tanizawa, Katsuya; Anai, Hiroyuki; Sato, Nobuhiro; Sato, Yuki; Ajiki, Tooru; Parel, Jean-Marie; Murahara, Masataka
2004-07-01
Having substituted the hydrophilic and hydrophobic groups alternately on the soft acrylic resin intraocular lens (IOL) surface by using an ArF excimer laser and a Xe2 excimer lamp, we have developed the IOL that is free from fibrin. Acrylic resin or PMMA lens has been used as an intraocular lens for 50 years. However, protein and fat are stuck onto the IOL surface after a long implantation, which opacifies the surface (after-cataract). Thus, we designed the micro domain structures of hydrophilic and hydrophobic groups on the IOL surface for fibrin-free. Firstly, the IOL was irradiated with the Xe2 excimer lamp in the presence of perfluoropolyether in order to make it hydrophobic. By this photochemical reaction, the CF3 functional groups were substituted on the IOL surface. Secondly, the ArF laser was projected on the IOL through the mask pattern in reduced size in the presence of water in order to be hydrophilic. With the photochemical reaction, the OH groups were substituted at the part exposed. The fibrin adsorption test of the modified IOL surface was carried out with FT-IR; which revealed that the fibrin-sticking rate of the treated sample has decreased by 23% compared with that of the non-treated sample. As a result, the fibrin-free IOL has been made by modifying the surface of the IOL to have the micro domain structures of the hydrophilic and hydrophobic groups that are arrayed alternately. In conclusion, the ideal intraocular lens has been demonstrated.
Nitrogen Oxides in Early Earth's Atmosphere as Electron Acceptors for Life's Emergence.
Wong, Michael L; Charnay, Benjamin D; Gao, Peter; Yung, Yuk L; Russell, Michael J
2017-10-01
We quantify the amount of nitrogen oxides (NOx) produced through lightning and photochemical processes in the Hadean atmosphere to be available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO 3 - ) and nitrite (NO 2 - ) are the most attractive high-potential electron acceptors for pulling and enabling crucial redox reactions of autotrophic metabolic pathways at submarine alkaline hydrothermal vents. The Hadean atmosphere, dominated by CO 2 and N 2 , will produce nitric oxide (NO) when shocked by lightning. Photochemical reactions involving NO and H 2 O vapor will then produce acids such as HNO, HNO 2 , HNO 3 , and HO 2 NO 2 that rain into the ocean. There, they dissociate into or react to form nitrate and nitrite. We present new calculations based on a novel combination of early-Earth global climate model and photochemical modeling, and we predict the flux of NOx to the Hadean ocean. In our 0.1-, 1-, and 10-bar pCO 2 models, we calculate the NOx delivery to be 2.4 × 10 5 , 6.5 × 10 8 , and 1.9 × 10 8 molecules cm -2 s -1 . After only tens of thousands to tens of millions of years, these NOx fluxes are expected to produce sufficient (micromolar) ocean concentrations of high-potential electron acceptors for the emergence of life. Key Words: Nitrogen oxides-Nitrate-Nitrite-Photochemistry-Lightning-Emergence of life. Astrobiology 17, 975-983.
Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Osto, Luca; Cazzaniga, Stefano; Bressan, Mauro
Oxygenic photoautotrophs require mechanisms for rapidly matching the level of chlorophyll excited states from light harvesting with the rate of electron transport from water to carbon dioxide. These photoprotective reactions prevent formation of reactive excited states and photoinhibition. The fastest response to excess illumination is the so-called non-photochemical quenching which, in higher plants, requires the luminal pH sensor PsbS and other yet unidentified components of the photosystem II antenna. Both trimeric light-harvesting complex II (LHCII) and monomeric LHC proteins have been indicated as site(s) of the heat-dissipative reactions. Different mechanisms have been proposed: Energy transfer to a lutein quencher inmore » trimers, formation of a zeaxanthin radical cation in monomers. Here, we report on the construction of a mutant lacking all monomeric LHC proteins but retaining LHCII trimers. Its non-photochemical quenching induction rate was substantially slower with respect to the wild type. A carotenoid radical cation signal was detected in the wild type, although it was lost in the mutant. Here, we conclude that non-photochemical quenching is catalysed by two independent mechanisms, with the fastest activated response catalysed within monomeric LHC proteins depending on both zeaxanthin and lutein and on the formation of a radical cation. Trimeric LHCII was responsible for the slowly activated quenching component whereas inclusion in supercomplexes was not required. Finally, this latter activity does not depend on lutein nor on charge transfer events, whereas zeaxanthin was essential.« less
Shim, Sangdeok; Mathies, Richard A
2008-04-17
We have developed a tunable femtosecond stimulated Raman spectroscopy (FSRS) apparatus and used it to perform time-resolved resonance Raman experiments with <100 fs temporal and <35 cm(-1) spectral resolution. The key technical change that facilitates this advance is the use of a tunable narrow-bandwidth optical parametric amplifier (NB-OPA) presented recently by Shim et al. (Shim, S.; Mathies, R. A. Appl. Phys. Lett. 2006, 89, 121124). The practicality of tunable FSRS is demonstrated by examining the photophysical dynamics of beta-carotene. Using 560 nm Raman excitation, the resonant S1 state modes are enhanced by a factor of approximately 200 compared with 800 nm FSRS experiments. The improved signal-to-noise ratios facilitate the measurement of definitive time constants for beta-carotene dynamics including the 180 fs appearance of the S1 vibrational features due to direct internal conversion from S2 and their characteristic 9 ps decay to S0. By tuning the FSRS system to 590 nm Raman excitation, we are able to selectively enhance vibrational features of the hot ground state S hot 0 and monitor its approximately 5 ps cooling dynamics. This tunable FSRS system is valuable because it facilitates the direct observation of structural changes of selected resonantly enhanced states and intermediates during photochemical and photobiological reactions.
NASA Astrophysics Data System (ADS)
Byun, D. W.; Rappenglueck, B.; Lefer, B.
2007-12-01
Accurate meteorological and photochemical modeling efforts are necessary to understand the measurements made during the Texas Air Quality Study (TexAQS-II). The main objective of the study is to understand the meteorological and chemical processes of high ozone and regional haze events in the Eastern Texas, including the Houston-Galveston metropolitan area. Real-time and retrospective meteorological and photochemical model simulations were performed to study key physical and chemical processes in the Houston Galveston Area. In particular, the Vertical Mixing Experiment (VME) at the University of Houston campus was performed on selected days during the TexAQS-II. Results of the MM5 meteorological model and CMAQ air quality model simulations were compared with the VME and other TexAQS-II measurements to understand the interaction of the boundary layer dynamics and photochemical evolution affecting Houston air quality.
Radiative-photochemical response of the mesosphere to dynamical forcing
NASA Technical Reports Server (NTRS)
Frederick, J. E.
1981-01-01
Combination of the chemical continuity equation for odd oxygen with the second law of thermodynamics yields analytic solutions which describe the coupled behavior of temperature and ozone perturbations in response to an externally specified forcing. The results appear in a form which allows easy physical interpretation of the coupling between radiative and photochemical processes. When the forcing is chosen to mimic a planetary scale wave, the theory shows that photochemical acceleration of radiative damping reduces the amplitude of the temperature perturbation by an amount which increases with the wave period. Although ozone fluctuations are anti-correlated with those in temperature, minima in ozone do not coincide exactly in longitude with temperature maxima. The percentage variation in ozone increases upward and is always larger than that in temperature at the same pressure. This demonstrates that variations in ozone on constant pressure surfaces may serve as a sensitive indicator of wave activity in the mesosphere.
Lee, Do-Jin; Kim, Hangun; Park, Young-Kwon; Kim, Byung Hoon; Lee, Heon; Jungf, Sana-Chul
2016-02-01
In this study, an MDEL/TiO2 photocatalyst hybrid system was applied to the production of low molecular weight gelatin. The molecular weight of produed gelatin decreased with increasing microwave intensity and increasing treatment time. The abscission of the chemical bonds between the con- stituents of gelatin by photocatalytic reaction did not alter the characteristics of gelatin. Formation of any by-products due to side reaction was not observed. It is suggested that gelatin was depolymerized by hydroxyl radicals produced during the MDEL/TiO2 photochemical reaction.
Li, Shang-Zhong; Fan, Ting-Lu; Wang, Yong; Zhao, Gang; Wang, Lei; Tang, Xiao-Ming; Dang, Yi; Zhao, Hui
2014-02-01
The differences on chlorophyll fluorescence parameters, yield and water use efficiency of dryland maize were compared among full plastic film mulching on double ridges and planting in catchment furrows (FFDRF), half plastic film mulching on double ridges and planting in catchment furrows (HFDRF), plastic film mulching on ridge and planting in film-side (FS), and flat planting with no plastic film mulching (NM) under field conditions in dry highland of Loess Plateau in 2007-2012. The results showed that fluorescence yield (Fo), the maximum fluorescence yield (Fm), light-adapted fluorescence yield when PS II reaction centers were totally open (F), light-adapted fluorescence yield when PS II reaction centers closed (Fm'), the maximal photochemical efficiency of PS II (Fv/Fm), the actual photochemical efficiency of PS II in the light (Phi PS II), the relative electron transport rate (ETR), photochemical quenching (qP) and non-photochemical quenching (qN) in maize leaves of FFDRF were higher than that of control (NM), and the value of 1-qP was lower than that of control, at 13:00, chlorophyll fluorescence parameters values of FFDRF was significantly higher than control, which were increased by 5.3%, 56.8%, 10.7%, 36.3%, 23.6%, 56.7%, 64.4%, 45.5%, 23.6% and -55.6%, respectively, compared with the control. Yield and water use efficiency of FFDRF were the highest in every year no matter dry year, normal year, humid year and hail disaster year. Average yield and water use efficiency of FFDRF were 12,650 kg x hm(-2) and 40.4 kg x mm(-1) x hm(-2) during 2007-2012, increased by 57.8% and 61.6% compared with the control, respectively, and also significantly higher compared with HFDRF and PS. Therefore, it was concluded that FFDRF had significantly increased the efficiency of light energy conversion and improved the production capacity of dryland maize.
Impact of Diurnal Variations of Precursors on the Prediction of Ozone
NASA Astrophysics Data System (ADS)
Hamer, P. D.; Bowman, K. W.; Henze, D. K.; Singh, K.
2009-12-01
Using a photochemical box model and its adjoint, constructed using the Kinetic Pre-Processor, we investigate the impacts of changing observational capacity, observation frequency and quality upon the ability to both understand and predict the nature of peak ozone events within a variety of polluted environments. The model consists of a chemical mechanism based on the Master Chemical Mechanism utilising 171 chemical species and 524 chemical reactions interacting with emissions, dry deposition and mixing schemes. The model was run under a variety of conditions designed to simulate a range of summertime polluted environments spanning a range of NOx and volatile organic compound regimes (VOCs). Using the forward model we were able to generate simulated atmospheric conditions representative of a particular polluted environment, which could in turn be used to generate a set of pseudo observations of key photochemical constituents. The model was then run under somewhat less polluted conditions to generate a background and then perturbed back towards the polluted trajectory using sequential data assimilation and the pseudo observations. Using a combination of the adjoint sensitivity analysis and the sequential data assimilation described here we assess the optimal time of observation and the diversity of observed chemical species required to provide acceptable forecast estimates of ozone concentrations. As the photochemical regime changes depending on NOx and VOC concentrations different observing strategies become favourable. The impact of using remote sensing based observations of the free tropospheric photochemical state are investigated to demonstrate the advantage of gaining knowledge of atmospheric trace gases away from the immediate photochemical environment.
Photochemical tools to study dynamic biological processes
Specht, Alexandre; Bolze, Frédéric; Omran, Ziad; Nicoud, Jean-François; Goeldner, Maurice
2009-01-01
Light-responsive biologically active compounds offer the possibility to study the dynamics of biological processes. Phototriggers and photoswitches have been designed, providing the capability to rapidly cause the initiation of wide range of dynamic biological phenomena. We will discuss, in this article, recent developments in the field of light-triggered chemical tools, specially how two-photon excitation, “caged” fluorophores, and the photoregulation of protein activities in combination with time-resolved x-ray techniques should break new grounds in the understanding of dynamic biological processes. PMID:20119482
Nagao, Ryo; Ueno, Yoshifumi; Yokono, Makio; Shen, Jian-Ren; Akimoto, Seiji
2018-07-01
Maintenance of energy balance under changeable light conditions is an essential function of photosynthetic organisms to achieve efficient photochemical reactions. Among the photosynthetic organisms, diatoms possess light-harvesting fucoxanthin chlorophyll (Chl) a/c-binding protein (FCP) as peripheral antennas. However, how diatoms regulate excitation-energy distribution between FCP and the two photosystem cores during light adaptation is poorly understood. In this study, we examined spectroscopic properties of a marine diatom Chaetoceros gracilis adapted in the dark and at photosynthetic photon flux density at 30 and 300 μmol photons m -2 s -1 . Absorption spectra at 77 K showed significant changes in the Soret region, and 77-K steady-state fluorescence spectra showed significant differences in the spectral shape and relative fluorescence intensity originating from both PSII and PSI, among the cells grown under different light conditions. These results suggest alterations of pigment composition and their interactions under the different light conditions. These alterations affected the excitation-energy dynamics monitored by picosecond time-resolved fluorescence analyses at 77 K significantly. The contributions of Chls having lower energy levels than the reaction center Chls in the two photosystems to the energy dynamics were clearly identified in the three cells but with presumably different roles. These findings provide insights into the regulatory mechanism of excitation-energy balance in diatoms under various light conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Greenbaum, Elias
1987-01-01
The invention is primarily a metallized chloroplast composition for use in a photosynthetic reaction. A catalytic metal is precipitated on a chloroplast membrane at the location where a catalyzed reduction reaction occurs. This metallized chloroplast is stabilized by depositing it on a support medium such as fiber so that it can be easily handled. A possible application of this invention is the splitting of water to form hydrogen and oxygen that can be used as a renewable energy source.
Abdiaj, Irini; Alcázar, Jesús
2017-12-01
We report herein the transfer of dual photoredox and nickel catalysis for C(sp 2 )C(sp 3 ) cross coupling form batch to flow. This new procedure clearly improves the scalability of the previous batch reaction by the reactor's size and operating time reduction, and allows the preparation of interesting compounds for drug discovery in multigram amounts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Visible-light sensitization of vinyl azides by transition-metal photocatalysis.
Farney, Elliot P; Yoon, Tehshik P
2014-01-13
Irradiation of vinyl and aryl azides with visible light in the presence of Ru photocatalysts results in the formation of reactive nitrenes, which can undergo a variety of C-N bond-forming reactions. The ability to use low-energy visible light instead of UV in the photochemical activation of azides avoids competitive photodecomposition processes that have long been a significant limitation on the synthetic use of these reactions. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Singh, V; Alam, S Q
2000-11-20
Synthesis of 11-methyl-3-oxa-tricyclo[5.2.2.0(1,5)]undecenones by intramolecular Diels-Alder reaction of highly labile spiroepoxycyclohexa-2,4-dienones and its photochemical reactions upon triplet (3T) and singlet (1S) excitation leading to a stereoselective route to oxa-triquinane and oxa-sterpurane, respectively, is described.
Margetic; Russell; Warrener
2000-12-14
The norbornanecyclobutene epoxides 1a-1c containing a fused 1, 4-dimethoxynaphthalene chromophore have been reacted with cyclobutenes, cyclohexenes, norbornenes, 7-isopropylidenenorbornenes, 7-azanorbornenes, and other cyclic or electron-deficient alkenes at room temperature to form 1:1 adducts in stereoselective 1,3-dipolar cycloaddition reactions; alkynes can also participate in this reaction. The ability to form 2:1 adducts has also been demonstrated, thereby opening up opportunities for preparing functionalized products with large chromophore separations.
Ashwood, Brennan; Jockusch, Steffen; Crespo-Hernández, Carlos E
2017-02-28
6-Thioguanine, an immunosuppressant and anticancer prodrug, has been shown to induce DNA damage and cell death following exposure to UVA radiation. Its metabolite, 6-thioguanosine, plays a major role in the prodrug's overall photoreactivity. However, 6-thioguanine itself has proven to be cytotoxic following UVA irradiation, warranting further investigation into its excited-state dynamics. In this contribution, the excited-state dynamics and photochemical properties of 6-thioguanine are studied in aqueous solution following UVA excitation at 345 nm in order to provide mechanistic insight regarding its photochemical reactivity and to scrutinize whether N9-glycosylation modulates its phototoxicity in solution. The experimental results are complemented with time-dependent density functional calculations that include solvent dielectric effects by means of a reaction-field solvation model. UVA excitation results in the initial population of the S₂(ππ*) state, which is followed by ultrafast internal conversion to the S₁(nπ*) state and then intersystem crossing to the triplet manifold within 560 ± 60 fs. A small fraction (ca. 25%) of the population that reaches the S₁(nπ*) state repopulates the ground state. The T₁(ππ*) state decays to the ground state in 1.4 ± 0.2 μs under N₂-purged conditions, using a 0.2 mM concentration of 6-thioguanine, or it can sensitize singlet oxygen in 0.21 ± 0.02 and 0.23 ± 0.02 yields in air- and O₂-saturated solution, respectively. This demonstrates the efficacy of 6-thioguanine to act as a Type II photosensitizer. N9-glycosylation increases the rate of intersystem crossing from the singlet to triplet manifold, as well as from the T₁(ππ*) state to the ground state, which lead to a ca. 40% decrease in the singlet oxygen yield under air-saturated conditions. Enhanced vibronic coupling between the singlet and triplet manifolds due to a higher density of vibrational states is proposed to be responsible for the observed increase in the rates of intersystem crossing in 6-thioguanine upon N9-glycosylation.
Alabugin, Igor V; Timokhin, Vitaliy I; Abrams, Jason N; Manoharan, Mariappan; Abrams, Rachel; Ghiviriga, Ion
2008-08-20
Despite being predicted to be stereoelectronically favorable by the Baldwin rules, efficient formation of a C-C bond through a 5-endo-dig radical cyclization remained unknown for more than 40 years. This work reports a remarkable increase in the efficiency of this process upon beta-Ts substitution, which led to the development of an expedient approach to densely functionalized cyclic 1,3-dienes. Good qualitative agreement between the increased efficiency and stereoselectivity for the 5-endo-dig cyclization of Ts-substituted vinyl radicals and the results of density functional theory analysis further confirms the utility of computational methods in the design of new radical processes. Although reactions of Br atoms generated through photochemical Ts-Br bond homolysis lead to the formation of cyclic dibromide side products, the yields of target bromosulfones in the photochemically induced reactions can be increased by recycling the dibromide byproduct into the target bromosulfones through a sequence of addition/elimination reactions at the exocyclic double bond. Discovery of a relatively efficient radical 5-endo-dig closure, accompanied by a C-C bond formation, provides further support to stereoelectronic considerations at the heart of the Baldwin rules and fills one of the last remaining gaps in the arsenal of radical cyclizations.
NASA Astrophysics Data System (ADS)
Momeni, Mohamad Mohsen
2015-12-01
Copper decorated WO3-TiO2 nanotubes (Cu/WTNs) with a high photocatalytic activity were prepared by anodizing and photochemical deposition. Highly ordered WO3-TiO2 nanotubes (WTNs) on pure titanium foils were successfully fabricated by electrochemical anodizing and copper deposited on these nanotubes (Cu/WTNs) by photoreduction method. The resulting samples were characterized by various methods. Only the anatase phase was detected by X-ray diffraction analysis. The presence of copper in the structure of thin films was confirmed by energy dispersive X-ray spectrometry and X-ray diffraction. The extension of optical absorption into the visible region of as-prepared films was indicated by UV/Vis spectroscopy. The degradation of methylene blue was used as a model reaction to evaluate the photocatalytic activity of the obtained samples. Results showed that the photocatalytic activity of Cu/WTNs samples is higher than bare WTNs sample. Kinetic research showed that the reaction rate constant of Cu/WTNs is approximately 2.5 times higher than the apparent reaction rate constant of bare WTNs. These results not only offer an economical method for constructing Cu/WTNs photocatalysts, but also shed new insight on the rational design of a low cost and high-efficiency photocatalyst for environmental remediation.
Process for light-driven hydrocarbon oxidation at ambient temperatures
Shelnutt, John A.
1990-01-01
A photochemical reaction for the oxidation of hydrocarbons uses molecular oxygen as the oxidant. A reductive photoredox cycle that uses a tin(IV)- or antimony(V)-porphyrin photosensitizer generates the reducing equivalents required to activate oxygen. This artificial photosynthesis system drives a catalytic cycle, which mimics the cytochrome P.sub.450 reaction, to oxidize hydrocarbons. An iron(III)- or manganese(III)-porphyrin is used as the hydrocarbon-oxidation catalyst. Methylviologen can be used as a redox relay molecule to provide for electron-transfer from the reduced photosensitizer to the Fe or Mn porphyrin. The system is long-lived and may be used in photo-initiated spectroscopic studies of the reaction to determine reaction rates and intermediates.
Fréchette, Emmanuelle; Chang, Christine Yao-Yun; Ensminger, Ingo
2016-01-01
The photochemical reflectance index (PRI) is a proxy for the activity of the photoprotective xanthophyll cycle and photosynthetic light use efficiency (LUE) in plants. Evergreen conifers downregulate photosynthesis in autumn in response to low temperature and shorter photoperiod, and the dynamic xanthophyll cycle-mediated non-photochemical quenching (NPQ) is replaced by sustained NPQ. We hypothesized that this shift in xanthophyll cycle-dependent energy partitioning during the autumn is the cause for variations in the PRI–LUE relationship. In order to test our hypothesis, we characterized energy partitioning and pigment composition during a simulated summer–autumn transition in a conifer and assessed the effects of temperature and photoperiod on the PRI–LUE relationship. We measured gas exchange, chlorophyll fluorescence and leaf reflectance during the photosynthetic downregulation in Pinus strobus L. seedlings exposed to low temperature/short photoperiod or elevated temperature/short photoperiod conditions. Shifts in energy partitioning during simulated autumn were observed when the pools of chlorophylls decreased and pools of photoprotective carotenoids increased. On a seasonal timescale, PRI was controlled by carotenoid pool sizes rather than xanthophyll cycle dynamics. Photochemical reflectance index variation under cold autumn conditions mainly reflected long-term pigment pool adjustments associated with sustained NPQ, which impaired the PRI–LUE relationship. Exposure to warm autumn conditions prevented the induction of sustained NPQ but still impaired the PRI–LUE relationship. We therefore conclude that alternative zeaxanthin-independent NPQ mechanisms, which remain undetected by the PRI, are present under both cold and warm autumn conditions, contributing to the discrepancy in the PRI–LUE relationship during autumn. PMID:26846980
Fréchette, Emmanuelle; Chang, Christine Yao-Yun; Ensminger, Ingo
2016-03-01
The photochemical reflectance index (PRI) is a proxy for the activity of the photoprotective xanthophyll cycle and photosynthetic light use efficiency (LUE) in plants. Evergreen conifers downregulate photosynthesis in autumn in response to low temperature and shorter photoperiod, and the dynamic xanthophyll cycle-mediated non-photochemical quenching (NPQ) is replaced by sustained NPQ. We hypothesized that this shift in xanthophyll cycle-dependent energy partitioning during the autumn is the cause for variations in the PRI-LUE relationship. In order to test our hypothesis, we characterized energy partitioning and pigment composition during a simulated summer-autumn transition in a conifer and assessed the effects of temperature and photoperiod on the PRI-LUE relationship. We measured gas exchange, chlorophyll fluorescence and leaf reflectance during the photosynthetic downregulation in Pinus strobus L. seedlings exposed to low temperature/short photoperiod or elevated temperature/short photoperiod conditions. Shifts in energy partitioning during simulated autumn were observed when the pools of chlorophylls decreased and pools of photoprotective carotenoids increased. On a seasonal timescale, PRI was controlled by carotenoid pool sizes rather than xanthophyll cycle dynamics. Photochemical reflectance index variation under cold autumn conditions mainly reflected long-term pigment pool adjustments associated with sustained NPQ, which impaired the PRI-LUE relationship. Exposure to warm autumn conditions prevented the induction of sustained NPQ but still impaired the PRI-LUE relationship. We therefore conclude that alternative zeaxanthin-independent NPQ mechanisms, which remain undetected by the PRI, are present under both cold and warm autumn conditions, contributing to the discrepancy in the PRI-LUE relationship during autumn. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere
NASA Technical Reports Server (NTRS)
Kharchenko, Vasili
2003-01-01
We have investigated the energy distributions of the metastable oxygen atoms in the terrestrial thermosphere. Nascent O(lD) atoms play a fundamental role in the energy balance and chemistry of the terrestrial atmosphere, because they are produced by photo-chemical reactions in the excited electronic states and carry significant translational energies.
USDA-ARS?s Scientific Manuscript database
Oxygenic photosynthesis involves capture and conversion of light energy into chemical energy, a process fundamental to life including plant productivity on Earth. Photosynthetic electron transport is catalyzed by two photochemical reaction centres in series, photosystem II (PS II) and photosytem I (...
40 CFR 60.711 - Definitions, symbols, and cross reference tables.
Code of Federal Regulations, 2011 CFR
2011-07-01
... audio or video recording or information storage. (14) Natural draft opening means any opening in a room... control device. (18) Utilize refers to the use of solvent that is delivered to coating mix preparation... participate in atmospheric photochemical reactions or that are measured by Method 18, 24, 25, or 25A or an...
40 CFR 60.711 - Definitions, symbols, and cross reference tables.
Code of Federal Regulations, 2013 CFR
2013-07-01
... audio or video recording or information storage. (14) Natural draft opening means any opening in a room... control device. (18) Utilize refers to the use of solvent that is delivered to coating mix preparation... participate in atmospheric photochemical reactions or that are measured by Method 18, 24, 25, or 25A or an...
40 CFR 60.711 - Definitions, symbols, and cross reference tables.
Code of Federal Regulations, 2012 CFR
2012-07-01
... audio or video recording or information storage. (14) Natural draft opening means any opening in a room... control device. (18) Utilize refers to the use of solvent that is delivered to coating mix preparation... participate in atmospheric photochemical reactions or that are measured by Method 18, 24, 25, or 25A or an...
40 CFR 60.711 - Definitions, symbols, and cross reference tables.
Code of Federal Regulations, 2010 CFR
2010-07-01
... audio or video recording or information storage. (14) Natural draft opening means any opening in a room... control device. (18) Utilize refers to the use of solvent that is delivered to coating mix preparation... participate in atmospheric photochemical reactions or that are measured by Method 18, 24, 25, or 25A or an...
40 CFR 60.711 - Definitions, symbols, and cross reference tables.
Code of Federal Regulations, 2014 CFR
2014-07-01
... audio or video recording or information storage. (14) Natural draft opening means any opening in a room... control device. (18) Utilize refers to the use of solvent that is delivered to coating mix preparation... participate in atmospheric photochemical reactions or that are measured by Method 18, 24, 25, or 25A or an...
A mechanistic model to predict the capture of gas phase mercury species using in-situ generated titania nanosize particles activated by UV irradiation is developed. The model is an extension of a recently reported model1 for photochemical reactions that accounts for the rates of...
ERIC Educational Resources Information Center
Olmsted, John
1984-01-01
Describes a five-period experiment which: (1) integrates preparative and analytical techniques; (2) utilizes a photochemical reaction that excites student interest both from visual impact and as an introduction to photoinduced processes; (3) provides accurate results; and (4) costs less than $0.20 per student per laboratory session. (JN)
Raising the shields: PCR in the presence of metallic surfaces protected by tailor-made coatings.
Scherag, Frank D; Brandstetter, Thomas; Rühe, Jürgen
2014-10-01
The implementation of PCR reactions in the presence of metallic surfaces is interesting for the generation of novel bioanalytical devices, because metals exhibit high mechanical stability, good thermal conductivity, and flexibility during deformation. However, metallic substrates are usually non-compatible with enzymatic reactions such as PCR due to poisoning of the active center of the enzyme or nonspecific adsorption of the enzymeto the metal surface, which could result in protein denaturation. We present a method for the generation of polymer coatings on metallic surfaces which are designed to minimize protein adsorption and also prevent the release of metal ions. These coatings consist of three layers covalently linked to each other; a self-assembled monolayer to promote adhesion, a photochemically generated barrier layer and a photochemically generated hydrogel. The coatings can be deposited onto aluminum, stainless steel, gold and copper surfaces. We compare PCR efficiencies in the presence of bare metallic surfaces with those of surfaces treated with the novel coating system. Copyright © 2014 Elsevier B.V. All rights reserved.
Key role of pH in the photochemical conversion of NO2 to HONO on humic acid
NASA Astrophysics Data System (ADS)
Han, Chong; Yang, Wangjin; Wu, Qianqian; Yang, He; Xue, Xiangxin
2016-10-01
The heterogeneous photochemical reactions of NO2 with humic acid (HA) were performed using a flow tube reactor coupled to a NOx analyzer. The effects of the pH on the uptake coefficient (γ) of NO2 and HONO and NO yields were investigated in detail. With increasing the pH in the range of 2-12, γ was almost constant with an average value of (4.21 ± 0.46) × 10-6, whereas the HONO yield and NO yield linearly decreased from (81.07 ± 4.07)% and (10.35 ± 3.86)% to (13.87 ± 9.15)% and (1.51 ± 0.94)%, respectively. According to the characterization of HA compositions and possible reaction paths, it can be concluded that the pH may influence the transfer of protons and the equilibrium of HONO with NO2- by varying the contents of carboxyl and phenol groups in HA, which should primarily contribute to the change in the HONO yield with the pH.
A Model for Negative Ion Chemistry in Titan’s Ionosphere
NASA Astrophysics Data System (ADS)
Mukundan, Vrinda; Bhardwaj, Anil
2018-04-01
We developed a one-dimensional photochemical model for the dayside ionosphere of Titan for calculating the density profiles of negative ions under steady-state photochemical equilibrium condition. We concentrated on the T40 flyby of the Cassini orbiter and used the in situ measurements from instruments on board Cassini as input to the model. Using the latest available reaction rate coefficients and dissociative electron attachment cross sections, the densities of 10 anions are calculated. Our study shows CN‑ as the dominant anion, followed by C3N‑, which agrees with the results of previous calculations. We suggest that H‑ could be an important anion in Titan’s ionosphere and is the second most abundant anion at altitudes greater than 1200 km. The main production channel of the major ion CN‑ is the reaction of H‑ with HCN. The H‑ also play a major role in the production of anions C2H‑, C6H‑, and OH‑. We present a comparison of the calculated ion density profiles with the relative density profiles derived using recently reported Cassini CAPS/ELS observations.
Chen, Hao Ming; Chen, Chih Kai; Chen, Chih-Jung; Cheng, Liang-Chien; Wu, Pin Chieh; Cheng, Bo Han; Ho, You Zhe; Tseng, Ming Lun; Hsu, Ying-Ya; Chan, Ting-Shan; Lee, Jyh-Fu; Liu, Ru-Shi; Tsai, Din Ping
2012-08-28
Artificial photosynthesis using semiconductors has been investigated for more than three decades for the purpose of transferring solar energy into chemical fuels. Numerous studies have revealed that the introduction of plasmonic materials into photochemical reaction can substantially enhance the photo response to the solar splitting of water. Until recently, few systematic studies have provided clear evidence concerning how plasmon excitation and which factor dominates the solar splitting of water in photovoltaic devices. This work demonstrates the effects of plasmons upon an Au nanostructure-ZnO nanorods array as a photoanode. Several strategies have been successfully adopted to reveal the mutually independent contributions of various plasmonic effects under solar irradiation. These have clarified that the coupling of hot electrons that are formed by plasmons and the electromagnetic field can effectively increase the probability of a photochemical reaction in the splitting of water. These findings support a new approach to investigating localized plasmon-induced effects and charge separation in photoelectrochemical processes, and solar water splitting was used herein as platform to explore mechanisms of enhancement of surface plasmon resonance.
NASA Astrophysics Data System (ADS)
Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep
2016-07-01
For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.
Photochemical transformation of azoxystrobin in aqueous solutions.
Boudina, A; Emmelin, C; Baaliouamer, A; Païssé, O; Chovelon, J M
2007-07-01
The photochemical behaviour of azoxystrobin fungicide (AZX) in water was studied under laboratory conditions. Photodegradation was initiated using a solar simulator (xenon arc lamp) or a jacketed Pyrex reaction cell equipped with a 125 W, high-pressure mercury lamp. HPLC/MS analysis (APCI and ESI in positive and negative modes) was used to identify AZX photoproducts. The calculated polychromatic quantum efficiencies (phi) of AZX at pH 4.5, 7 and 9 were 5.42 x 10(-3), 3.47 x 10(-3) and 3.06 x 10(-3) (degraded molecules per absorbed photon), respectively. The relatively narrow range of values indicates the stability of AZX with respect to photodegradation in the studied pH range. Results from the HPLC/MS analysis suggest that the phototransformation of AZX proceeds via multiple, parallel reaction pathways including: (1) photo-isomerization (E-->Z), (2) photo-hydrolysis of the methyl ester and of the nitrile group, (3) cleavage of the acrylate double bond, (4) photohydrolytic ether cleavage between the aromatic ring giving phenol, and (5) oxidative cleavage of the acrylate double bond.
Dewez, David; Didur, Olivier; Vincent-Héroux, Jonathan; Popovic, Radovan
2008-01-01
Photosynthetic-fluorescence parameters were investigated to be used as valid biomarkers of toxicity when alga Scenedesmus obliquus was exposed to isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea] effect. Chlorophyll fluorescence induction of algal cells treated with isoproturon showed inactivation of photosystem II (PSII) reaction centers and strong inhibition of PSII electron transport. A linear correlation was found (R2>or=0.861) between the change of cells density affected by isoproturon and the change of effective PSII quantum yield (PhiM'), photochemical quenching (qP) and relative photochemical quenching (qP(rel)) values. The cells density was also linearly dependent (R2=0.838) on the relative unquenched fluorescence parameter (UQF(rel)). Non-linear correlation was found (R2=0.937) only between cells density and the energy transfer efficiency from absorbed light to PSII reaction center (ABS/RC). The order of sensitivity determined by the EC-50% was: UQF(rel)>PhiM'>qP>qP(rel)>ABS/RC. Correlations between cells density and those photosynthetic-fluorescence parameters provide supporting evidence to use them as biomarkers of toxicity for environmental pollutants.
NASA Astrophysics Data System (ADS)
Giocondi, Jennifer Lynn
Experiments have been conducted to determine the effects of dipolar fields, surface termination, and surface orientation on the photochemical reactivity of several transition metal oxides. These compounds include BaTiO3, SrTiO3, BaTi4O9, Sr2Nb2O 7, and Sr2Ta2O7 which were studied as polycrystalline ceramics, single crystals, micron-sized faceted particles, or some combination of these forms. The reduction of Ag+ from an aqueous AgNO3 solution (Ag0 product) and the oxidation of Pb2+ from an aqueous lead acetate solution (PbO 2 product) were selected as probe reactions because they leave insoluble products on the oxide surfaces. The reactivity of ferroelectric BaTiO3 was dominated by the effect of dipolar fields on the transport of photogenerated charge carriers. Silver was reduced on domains with a positive surface charge while lead was oxidized on domains with a negative surface charge. This reactivity implies that the dipolar field in individual domains drives photogenerated charge carriers to oppositely charged surfaces. This reaction mechanism results in a physical separation of the photogenerated charge carriers and the locations of the oxidation and reduction half reactions on the catalyst surface. Experiments performed on polycrystalline ceramics, single crystals, and micron-sized particles all showed this domain specific reactivity. SrTiO3 has the ideal cubic perovskite structure from which the tetragonally distorted ferroelectric BaTiO3 phase is derived. Polished and annealed surfaces of randomly oriented grain surfaces were bound by some combination of the following three planes: {110}, {111}, and a complex facet inclined approximately 24° from {100}. Surfaces with the complex {100} facet were found to be the most active for Ag reduction. Single crystal studies also showed that the nonpolar (100) surface is the most reactive and that the composition of the termination layer does not influence this reaction. However, the polar (111) and (110) surfaces had a non-uniform distribution of reaction products. For these orientations, the location of the reduction and oxidation reactions is determined by the chemical and charge terminations of the different terraces or facets. The reactivity for silver reduction on the faceted particles is ranked as (100) > (111) > (110) while the (100) surface was least reactive for lead oxidation. Overall, these results show that the photochemical reactivity of SrTiO3 is anisotropic and that on polar surfaces, dipolar fields arising from charged surface domains influence the transport of photogenerated charge carriers and promote spatially selective oxidation and reduction reactions. (Abstract shortened by UMI.)
Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets.
Antonelli, Michael A; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J; Lyons, James R; Hoek, Joost; Farquhar, James
2014-12-16
Achondrite meteorites have anomalous enrichments in (33)S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying (33)S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the (33)S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous (33)S depletions in IIIF iron meteorites (<-0.02 per mil), and (33)S enrichments in other magmatic iron meteorite groups. The (33)S depletions support the idea that differentiated planetesimals inherited sulfur that was photochemically derived from gases in the early inner solar system (<∼2 AU), and that bulk inner solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content.
Enhanced photochemical conversion of NO2 to HONO on humic acids in the presence of benzophenone.
Han, Chong; Yang, Wangjin; Yang, He; Xue, Xiangxin
2017-12-01
The photochemical conversion of NO 2 to HONO on humic acids (HA) in the presence of benzophenone (BP) was investigated using a flow tube reactor coupled to a NO x analyzer at ambient pressure. BP significantly enhanced the reduction of NO 2 to HONO on HA under simulated sunlight, as shown by the increase of NO 2 uptake coefficient (γ) and HONO yield with the mass ratio of BP to HA. The γ and HONO yield on the mixtures of HA and BP obviously depended on the environmental conditions. Both γ and HONO yield increased with the increase of irradiation intensity and temperature, whereas they decreased with pH. The γ exhibited a negative dependence on the NO 2 concentration, which had slight influences on the HONO yield. There were maximum values for the γ and HONO yield at relative humidity (RH) of 22%. Finally, atmospheric implications about the photochemical reaction of NO 2 and HA in the presence of photosensitive species were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bisht, Rajesh; Singh, Saumya; Krishnamoorthy, Kothandam; Nithyanandhan, Jayaraj
2018-05-25
3',5'-Dimethoxybenzoin esters are important photoremovable protecting groups which form 2-phenylbenzofuran derivatives upon photo-release. We utilized a similar concept to test a photochemical method of installing a benzofuran moiety to the conjugated backbone by subjecting O-acetylated (3',5'-dimethylphenyl)heteroaryl acyloin derivatives through direct photo irradiation and a photo-induced electron transfer reaction. These photochemical methods were explored for a variety of heteroaromatic substrates appended on the ketone part of the O-acetylated cross-acyloin derivatives. The furan, thiophene and bithiophene derivatives led to the expected cyclized (benzofuran capped) products but the derivatives with extended conjugation decomposed under direct irradiation. However, under irradiation in the presence of an electron donor such as triethylamine, the extended acyloin derivatives afforded both cyclized and deacetoxylated products. The semiconducting nature of the extended cyclized products was also explored and tested for solution-processed organic field effect transistors, providing a maximum hole mobility of 1.3 × 10-6 cm2 V-1 s-1.
Shi, Sheng-Bo; Chen, Wen-Jie; Shi, Rui; Li, Miao; Zhang, Huai-Gang; Sun, Ya-Nan
2014-09-01
Taking four wheat varieties developed by Northwest Institute of Plateau Biology, Chinese Academy of Sciences, as test materials, with the measurement of content of photosynthetic pigments, leaf area, fresh and dry mass of flag leaf, the PS II photochemistry efficiency of abaxial and adaxial surface of flag leaf and its adaptation to strong solar radiation during the period of heading stage in Xiangride region were investigated with the pulse-modulated in-vivo chlorophyll fluorescence technique. The results indicated that flag leaf angle mainly grew in horizontal state in Gaoyuan 314, Gaoyuan 363 and Gaoyuan 584, and mainly in vertical state in Gaoyuan 913 because of its smaller leaf area and larger width. Photosynthetic pigments were different among the 4 varieties, and positively correlated with intrinsic PS II photochemistry efficiencies (Fv/Fm). In clear days, especially at noon, the photosynthetic photoinhibition was more serious in abaxial surface of flag leaf due to directly facing the solar radiation, but it could recover after reduction of sunlight intensity in the afternoon, which meant that no inactive damage happened in PS II reaction centers. There were significant differences of PS II actual and maximum photochemical efficiencies at the actinic light intensity (ΦPS II and Fv'/Fm') between abaxial and adaxial surface, and their relative variation trends were on the contrary. The photochemical and non-photochemical quenching coefficients (qP and NPQ) had a similar tendency in both abaxial and adaxial surfaces. Although ΦPS II and qP were lower in adaxial surface of flag leaf, the Fv'/Fm' was significantly higher, which indicated that the potential PS II capture efficiency of excited energy was higher. The results demonstrated that process of photochemical and non-photochemical quenching could effectively dissipate excited energy caused by strong solar radiation, and there were higher adaptation capacities in wheat varieties natively cultivated in Qinghai-Tibetan Plateau area.
Watching the dynamics of electrons and atoms at work in solar energy conversion.
Canton, S E; Zhang, X; Liu, Y; Zhang, J; Pápai, M; Corani, A; Smeigh, A L; Smolentsev, G; Attenkofer, K; Jennings, G; Kurtz, C A; Li, F; Harlang, T; Vithanage, D; Chabera, P; Bordage, A; Sun, L; Ott, S; Wärnmark, K; Sundström, V
2015-01-01
The photochemical reactions performed by transition metal complexes have been proposed as viable routes towards solar energy conversion and storage into other forms that can be conveniently used in our everyday applications. In order to develop efficient materials, it is necessary to identify, characterize and optimize the elementary steps of the entire process on the atomic scale. To this end, we have studied the photoinduced electronic and structural dynamics in two heterobimetallic ruthenium-cobalt dyads, which belong to the large family of donor-bridge-acceptor systems. Using a combination of ultrafast optical and X-ray absorption spectroscopies, we can clock the light-driven electron transfer processes with element and spin sensitivity. In addition, the changes in local structure around the two metal centers are monitored. These experiments show that the nature of the connecting bridge is decisive for controlling the forward and the backward electron transfer rates, a result supported by quantum chemistry calculations. More generally, this work illustrates how ultrafast optical and X-ray techniques can disentangle the influence of spin, electronic and nuclear factors on the intramolecular electron transfer process. Finally, some implications for further improving the design of bridged sensitizer-catalysts utilizing the presented methodology are outlined.
Chaur, Manuel N; Collado, Daniel; Lehn, Jean-Marie
2011-01-03
The C=N group of hydrazones can undergo E/Z isomerization both photochemically and thermally, allowing the generation of a closed process that can be tuned by either of these two physical stimuli. On the other hand, hydrazine-exchange reactions enable a constitutional change in a given hydrazone. The two classes of processes: 1) configurational (physically stimulated) and 2) constitutional (chemically stimulated) give access to short-term and long-term information storage, respectively. Such transformations are reported herein for two hydrazones (bis-pyridyl hydrazone and 2-pyridinecarboxaldehyde phenylhydrazone) that undergo a closed, chemically or physically driven process, and, in addition, can be locked or unlocked at will by metal-ion coordination or removal. These features also extend to acyl hydrazones derived from 2-pyridinecarboxaldehyde. Similarly to the terpydine-like hydrazones, such acyl hydrazones can undergo both constitutional and configurational changes, as well as metal-ion coordination. All these types of hydrazones represent dynamic systems capable of acting as multiple state molecular devices, in which the presence of coordination sites furthermore allows the metal ion-controlled locking and unlocking of the interconversion of the different states. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kozikowski, Raymond T.; Sorg, Brian S.
2012-03-01
Chemotherapy is a standard treatment for metastatic cancer. However drug toxicity limits the dosage that can safely be used, thus reducing treatment efficacy. Drug carrier particles, like liposomes, can help reduce toxicity by shielding normal tissue from drug and selectively depositing drug in tumors. Over years of development, liposomes have been optimized to avoid uptake by the Reticuloendothelial System (RES) as well as effectively retain their drug content during circulation. As a result, liposomes release drug passively, by slow leakage, but this uncontrolled drug release can limit treatment efficacy as it can be difficult to achieve therapeutic concentrations of drug at tumor sites even with tumor-specific accumulation of the carriers. Lipid membranes can be photochemically lysed by both Type I (photosensitizer-substrate) and Type II (photosensitizer-oxygen) reactions. It has been demonstrated in red blood cells (RBCs) in vitro that these photolysis reactions can occur in two distinct steps: a light-initiated reaction followed by a thermally-initiated reaction. These separable activation steps allow for the delay of photohemolysis in a controlled manner using the irradiation energy, temperature and photosensitizer concentration. In this work we have translated this technique from RBCs to liposomal nanoparticles. To that end, we present in vitro data demonstrating this delayed bolus release from liposomes, as well as the ability to control the timing of this event. Further, we demonstrate for the first time the improved delivery of bioavailable cargo selectively to target sites in vivo.
Carraher, Jack M; Pestovsky, Oleg; Bakac, Andreja
2012-05-21
Near-UV photolysis of aqueous solutions of propionic acid and aqueous Fe(3+) in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe(2+). The reaction becomes mildly catalytic (about five turnovers) in the presence of oxygen which converts a portion of alkyl radicals to oxidizing intermediates that reoxidize Fe(2+). The photochemistry in the presence of halide ions (X(-) = Cl(-), Br(-)) generates ethyl halides via halogen atom abstraction from FeX(n)(3-n) by ethyl radicals. Near-quantitative yields of C(2)H(5)X are obtained at ≥0.05 M X(-). Competition experiments with Co(NH(3))(5)Br(2+) provided kinetic data for the reaction of ethyl radicals with FeCl(2+) (k = (4.0 ± 0.5) × 10(6) M(-1) s(-1)) and with FeBr(2+) (k = (3.0 ± 0.5) × 10(7) M(-1) s(-1)). Photochemical decarboxylation of propionic acid in the presence of Cu(2+) generates ethylene and Cu(+). Longer-chain acids also yield alpha olefins as exclusive products. These reactions become catalytic under constant purge with oxygen which plays a dual role. It reoxidizes Cu(+) to Cu(2+), and removes gaseous olefins to prevent accumulation of Cu(+)(olefin) complexes and depletion of Cu(2+). The results underscore the profound effect that the choice of metal ions, the medium, and reaction conditions exert on the photochemistry of carboxylic acids.
Photodegradation and ecotoxicology of acyclovir in water under UV254 and UV254/H2O2 processes.
Russo, Danilo; Siciliano, Antonietta; Guida, Marco; Galdiero, Emilia; Amoresano, Angela; Andreozzi, Roberto; Reis, Nuno M; Li Puma, Gianluca; Marotta, Raffaele
2017-10-01
The photochemical and ecotoxicological fate of acyclovir (ACY) through UV 254 direct photolysis and in the presence of hydroxyl radicals (UV 254 /H 2 O 2 process) were investigated in a microcapillary film (MCF) array photoreactor, which provided ultrarapid and accurate photochemical reaction kinetics. The UVC phototransformation of ACY was found to be unaffected by pH in the range from 4.5 to 8.0 and resembled an apparent autocatalytic reaction. The proposed mechanism included the formation of a photochemical intermediate (ϕ ACY = (1.62 ± 0.07)·10 -3 mol ein -1 ) that further reacted with ACY to form by-products (k' = (5.64 ± 0.03)·10 -3 M -1 s -1 ). The photolysis of ACY in the presence of hydrogen peroxide accelerated the removal of ACY as a result of formation of hydroxyl radicals. The kinetic constant for the reaction of OH radicals with ACY (k OH/ACY ) determined with the kinetic modeling method was (1.23 ± 0.07)·10 9 M -1 s -1 and with the competition kinetics method was (2.30 ± 0.11)·10 9 M -1 s -1 with competition kinetics. The acute and chronic effects of the treated aqueous mixtures on different living organisms (Vibrio fischeri, Raphidocelis subcapitata, D. magna) revealed significantly lower toxicity for the samples treated with UV 254 /H 2 O 2 in comparison to those collected during UV 254 treatment. This result suggests that the addition of moderate quantity of hydrogen peroxide (30-150 mg L -1 ) might be a useful strategy to reduce the ecotoxicity of UV 254 based sanitary engineered systems for water reclamation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sources and Potential Photochemical Roles of Formaldehyde in an Urban Atmosphere in South China
NASA Astrophysics Data System (ADS)
Wang, Chuan; Huang, Xiao-Feng; Han, Yu; Zhu, Bo; He, Ling-Yan
2017-11-01
Formaldehyde (HCHO) is an important intermediate in tropospheric photochemistry. However, study of its evolution characteristics under heavy pollution conditions in China is limited, especially for high temporal resolutions, making it difficult to analyze its sources and environmental impacts. In this study, ambient levels of HCHO were monitored using a proton-transfer reaction mass spectrometer at an urban site in the Pearl River Delta of China. Continuous monitoring campaigns were conducted in the spring, summer, fall, and winter in 2016. The highest averaged HCHO concentrations were observed in autumn (5.1 ± 3.1 ppbv) and summer (5.0 ± 4.4 ppbv), followed by winter (4.2 ± 2.2 ppbv) and spring (3.4 ± 1.6 ppbv). The daily maximum of HCHO occurs in the early afternoon and shows good correlations with O3 and the secondary organic aerosol tracer during the day, revealing close relationships between ambient HCHO and secondary formations in Shenzhen, especially in summer and autumn. The daytime HCHO is estimated to be the major contributor to O3 formation and OH radical production, indicating that HCHO plays a key role in the urban atmospheric photochemical reactions. Anthropogenic secondary formation was calculated to be the dominant source of HCHO using a photochemical age-based parameterization method, with an average proportion of 39%. The contributions of biogenic sources in summer (41%) and autumn (39%) are much higher than those in spring (26%) and winter (28%), while the contributions of anthropogenic primary sources in spring (20%) and winter (18%) are twice those in summer (9%) and autumn (9%).
Photochemical Grafting of Organic Alkenes to Single-Crystal TiO2 Surfaces: A Mechanistic Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franking, Ryan A.; Kim, Heesuk; Chambers, Scott A.
2012-08-21
The UV-induced photochemical grafting of terminal alkenes has emerged as a versatile way to form molecular layers on semiconductor surfaces. Recent studies have shown that grafting reactions can be initiated by photoelectron emission into the reactant liquid as well as by excitation across the semiconductor bandgap, but the relative importance of these two processes is expected to depend on the nature of the semiconductor and the reactant alkene and the excitation wavelength. Here we report a study of the wavelength-dependent photochemical grafting of alkenes onto single-crystal TiO2 samples. Trifluoroacetamide-protected 10-aminododec-1-ene (TFAAD), 10-N-BOC-aminodec-1-ene (t-BOC) and 1-dodecene were used as model alkenes.more » On rutile(110), photons with energy above the bandgap but below the expected work function are not effective at inducing grafting, while photons with energy sufficient to induce electronic transitions from the TiO2 Fermi level to electronic acceptor states of the reactant molecules induce grafting. A comparison of rutile (110), rutile(001), anatase (001), and anatase(101) samples shows slightly enhanced grafting for rutile but no difference between crystal faces for a given crystal phase. Hydroxylation of the surface increases the reaction rate by lowering the work function and thereby facilitating photoelectron ejection into the adjacent alkene. These results demonstrate that photoelectron emission is the dominant mechanism responsible for grafting when using short-wavelength (~254 nm) light and suggest that photoemission events beginning on mid-gap states may play a crucial role.« less
NASA Astrophysics Data System (ADS)
Nah, T.; Sanchez, J.; Boyd, C.; Ng, N. L.
2015-12-01
The nitrate radical (NO3), one of the most important oxidants in the nocturnal atmosphere, can react rapidly with a variety of biogenic volatile organic compounds (BVOCs) to form high mass concentrations of secondary organic aerosol (SOA) and organic nitrates (ON). Despite its critical importance in aerosol formation, the mechanisms and products from the NO3 oxidation of BVOCs have been largely unexplored, and the fates of their SOA and ON after formation are not well characterized. In this work, we studied the formation of SOA and ON from the NO3 oxidation of α-pinene and β-pinene and investigated for the first time how they evolve during dark and photochemical aging through a series of chamber experiments performed at the Georgia Tech Environmental Chamber (GTEC) facility. The α-pinene and β-pinene SOA are characterized using real-time gas- and particle-phase measurements, which are used to propose mechanisms for SOA and organic nitrate formation and aging. Highly oxygenated gas- and particle-phase ON (containing as many as 9 oxygen atoms) are detected during the NO3 reaction. In addition, the β-pinene SOA and α-pinene SOA exhibited drastically different behavior during photochemical aging. Our results indicate that nighttime ON formed by NO3+monoterpene chemistry can serve as either NOx reservoirs or sinks depending on the monoterpene precursor. Results from this study provide fundamental data for evaluating the contributions of NO3+monoterpene reactions to ambient OA measured in the Southeastern U.S.
Photochemical CVD of Ru on functionalized self-assembled monolayers from organometallic precursors
NASA Astrophysics Data System (ADS)
Johnson, Kelsea R.; Arevalo Rodriguez, Paul; Brewer, Christopher R.; Brannaka, Joseph A.; Shi, Zhiwei; Yang, Jing; Salazar, Bryan; McElwee-White, Lisa; Walker, Amy V.
2017-02-01
Chemical vapor deposition (CVD) is an attractive technique for the metallization of organic thin films because it is selective and the thickness of the deposited film can easily be controlled. However, thermal CVD processes often require high temperatures which are generally incompatible with organic films. In this paper, we perform proof-of-concept studies of photochemical CVD to metallize organic thin films. In this method, a precursor undergoes photolytic decomposition to generate thermally labile intermediates prior to adsorption on the sample. Three readily available Ru precursors, CpRu(CO)2Me, (η3-allyl)Ru(CO)3Br, and (COT)Ru(CO)3, were employed to investigate the role of precursor quantum yield, ligand chemistry, and the Ru oxidation state on the deposition. To investigate the role of the substrate chemistry on deposition, carboxylic acid-, hydroxyl-, and methyl-terminated self-assembled monolayers were used. The data indicate that moderate quantum yields for ligand loss (φ ≥ 0.4) are required for ruthenium deposition, and the deposition is wavelength dependent. Second, anionic polyhapto ligands such as cyclopentadienyl and allyl are more difficult to remove than carbonyls, halides, and alkyls. Third, in contrast to the atomic layer deposition, acid-base reactions between the precursor and the substrate are more effective for deposition than nucleophilic reactions. Finally, the data suggest that selective deposition can be achieved on organic thin films by judicious choice of precursor and functional groups present on the substrate. These studies thus provide guidelines for the rational design of new precursors specifically for selective photochemical CVD on organic substrates.
NASA Astrophysics Data System (ADS)
Tang, Guiqian; Zhu, Xiaowan; Xin, Jinyuan; Hu, Bo; Song, Tao; Sun, Yang; Wang, Lili; Wu, Fangkun; Sun, Jie; Cheng, Mengtian; Chao, Na; Li, Xin; Wang, Yuesi
2017-09-01
The implementation of emission reduction measures during the Olympics provided a valuable opportunity to study regional photochemical pollution over northern China. In this study, the fifth-generation Pennsylvania State University/National Centre for Atmospheric Research Mesoscale Model and Community Multiscale Air Quality model system was applied to conduct two sets of modelling analyses of the period from July 20 to September 20, 2008, to illustrate the influences of emission reduction measures on regional photochemical pollution over northern China during the Beijing Olympics. The results indicated that the implementation of emission control measures decreased the concentrations of ozone (O3) precursors, namely nitrogen oxide (NOx) and volatile organic compounds (VOCs), throughout the boundary layer. The concentrations of these compounds were reduced by 45% in the central urban area of Beijing at the ground level. Although the average O3 concentration in the central urban area increased by more than 8 ppbv, the total oxidant concentration decreased significantly by more than 5 ppbv. Greater O3 concentrations mainly occurred during periods with weak photochemical reactions. During periods of strong photochemical production, the O3 concentration decreased significantly due to a weakening vertical circulation between the lower and upper boundary layer. Consequently, the number of days when the O3 concentration exceeded 100 ppbv decreased by 25% in Beijing. The emission control measures altered the sensitivity of the regional O3 production. The coordinated control region of NOx and VOCs expanded, and the control region of VOCs decreased in size. The reduction of non-point-source emissions, such as fugitive VOCs and vehicles, was more useful for controlling regional photochemical pollution over northern China.
NASA Technical Reports Server (NTRS)
Rodriquez, Jose M.; Hu, Wenjie; Ko, Malcolm K.W.
1996-01-01
The global three-dimensional measurement of long- and short-lived species from Upper Atmospheric Research Satellite (UARS) provides a unique opportunity to validate chemistry and dynamics mechanisms in the middle atmosphere. During the past three months, we focused on expanding our study of data-model comparisons to whole time periods when Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument were operating.
Dynamics and composition of the Asian summer monsoon anticyclone
NASA Astrophysics Data System (ADS)
Gottschaldt, Klaus-Dirk; Schlager, Hans; Baumann, Robert; Sinh Cai, Duy; Eyring, Veronika; Graf, Phoebe; Grewe, Volker; Jöckel, Patrick; Jurkat-Witschas, Tina; Voigt, Christiane; Zahn, Andreas; Ziereis, Helmut
2018-04-01
This study places HALO research aircraft observations in the upper-tropospheric Asian summer monsoon anticyclone (ASMA) into the context of regional, intra-annual variability by hindcasts with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The observations were obtained during the Earth System Model Validation (ESMVal) campaign in September 2012. Observed and simulated tracer-tracer relations reflect photochemical O3 production as well as in-mixing from the lower troposphere and the tropopause layer. The simulations demonstrate that tropospheric trace gas profiles in the monsoon season are distinct from those in the rest of the year, and the measurements reflect the main processes acting throughout the monsoon season. Net photochemical O3 production is significantly enhanced in the ASMA, where uplifted precursors meet increased NOx, mainly produced by lightning. An analysis of multiple monsoon seasons in the simulation shows that stratospherically influenced tropopause layer air is regularly entrained at the eastern ASMA flank and then transported in the southern fringe around the interior region. Radial transport barriers of the circulation are effectively overcome by subseasonal dynamical instabilities of the anticyclone, which occur quite frequently and are of paramount importance for the trace gas composition of the ASMA. Both the isentropic entrainment of O3-rich air and the photochemical conversion of uplifted O3-poor air tend to increase O3 in the ASMA outflow.
USDA-ARS?s Scientific Manuscript database
Gold nanoparticles (AuNPs) have been used extensively as surface-enhanced Raman spectroscopic (SERS) substrates for their large SERS enhancements and widely believed chemical stability. Presented is the finding that iodide can rapidly reduce the SERS intensity of the ligands, including organothiols ...
From containers to catalysts: supramolecular catalysis within cucurbiturils.
Pemberton, Barry C; Raghunathan, Ramya; Volla, Sabine; Sivaguru, Jayaraman
2012-09-24
Cucurbiturils are a family of molecular container compounds with superior molecular recognition properties. The use of cucurbiturils for supramolecular catalysis is highlighted in this concept. Both photochemical reactions as well as thermal transformations are reviewed with an eye towards tailoring substrates for supramolecular catalysis mediated by cucurbiturils. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1984-05-25
bonded arrangement (2) as depicted in Figure 1-1. Fe Fe.’. % V3 1 2 Figure I-1 Proposed Structures of Ferrocene In order to understand clearly the... phosphines (PR3) or methanol (CH3OH) results in the formation nf o-alkylmetal complexes (Scheme Ill-1, 1). If stable, further reaction of these
The Catalytic Enantioselective Total Synthesis of (+)-Liphagal**
Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.; Kolding, Helene; Alleva, Jennifer L.; Stoltz, Brian M.
2012-01-01
Ring a ding: The first catalytic enantioselective total synthesis of the meroterpenoid natural product (+)-liphagal is disclosed. The approach showcases a variety of technology including enantioselective enolate alkylation, a photochemical alkyne-alkene [2+2] reaction, microwave-assisted metal catalysis, and an intramolecular aryne capture cyclization reaction. Pivotal to the successful completion of the synthesis was a sequence involving ring expansion from a [6-5-4] tricycle to a [6-7] bicyclic core followed by stereoselective hydrogenation of a sterically occluded tri-substituted olefin to establish the trans homodecalin system found in the natural product. PMID:21671325
Cuadros, Sara; Dell'Amico, Luca
2017-01-01
Abstract Reported herein is a light‐triggered organocatalytic strategy for the desymmetrization of achiral 2‐fluoro‐substituted cyclopentane‐1,3‐diketones. The chemistry is based on an intermolecular aldol reaction of photochemically generated hydroxy‐o‐quinodimethanes and simultaneously forges two adjacent fully substituted carbon stereocenters, with one bearing a stereogenic carbon–fluorine unit. The method uses readily available substrates, a simple chiral organocatalyst, and mild reaction conditions to afford an array of highly functionalized chiral 2‐fluoro‐3‐hydroxycyclopentanones. PMID:28746742
Vázquez-Romero, Ana; Rodríguez, Julia; Lledó, Agustí; Verdaguer, Xavier; Riera, Antoni
2008-10-16
A new enantioselective approach to carbanucleosides from Pauson-Khand (PK) adduct 1 is disclosed. The chiral cyclopentenone 1 is readily accessible in enantiomerically pure form via PK reaction of trimethylsilylacetylene and norbornadiene using N-benzyl-N-diphenylphosphino-tert-butyl-sulfinamide as a chiral P,S ligand. (-)-Carbavir and (-)-Abacavir were enantioselectively synthesized starting from (-)-1. The key steps of the sequence are a photochemical conjugate addition of a hydroxymethyl radical, a retro-Diels-Alder reaction, and a palladium catalyzed allylic substitution to introduce the nucleobase.
NASA Astrophysics Data System (ADS)
Stief, L. J.; Pimentel, A. S.; Payne, W. A.; Nesbitt, F. L.; Cody, R. J.
2003-05-01
Photochemical models of the atmospheres of Jupiter and Saturn predict the reaction H + C2H5 to be the most important loss process for C2H5 in these atmospheres. In addition, the reaction channel H + C2H5 -> 2 CH3 is a significant source of the methyl radical. There are only two relatively modern studies of the H + C2H5 reaction, both of which depend on extensive modeling involving eight elementary reactions. The motivation for the present study is the lack of direct, absolute measurements of the rate constant for the H + C2H5 reaction at low pressures and temperatures appropriate for outer planet models. In the present experiments the reactants H and C2H5 are rapidly and simultaneously generated by reaction of F with appropriate mixtures of H2 and C2H6. Using the technique of discharge-flow with collision-free sampling to a mass spectrometer, we monitor the decay of C2H5 in excess H. In contrast to previous studies of this reaction, the primary H + C2H5 reaction is isolated and the radical decays only by reaction with H and by loss at the wall. Secondary reactions such as the self-reaction of C2H5 are negligible. At P = 1 Torr He we measure k (298K) = 1.13 x 10-10 cm3 molecule-1 s-1 and k (202K) = 1.18 x 10-10 cm3 molecule-1 s-1. Experiments at T = 155 K are in progress. The reaction is temperature independent as expected based on studies of other atom-radical reactions. Our result at T = 298 K lies between those of the two relatively modern but complex studies of this reaction. The present total rate constant data and planned product yield studies at low pressures and temperatures will then be available for use in future photochemical models of the atmospheres of the outer planets. The Planetary Atmospheres Program of NASA Headquarters is supporting this research.
Uchida, Noriyuki; Okuro, Kou; Niitani, Yamato; Ling, Xiao; Ariga, Takayuki; Tomishige, Michio; Aida, Takuzo
2013-03-27
A water-soluble dendron with a fluorescein isothiocyanate (FITC) fluorescent label and bearing nine pendant guanidinium ion (Gu(+))/benzophenone (BP) pairs at its periphery (Glue(BP)-FITC) serves as a "photoclickable molecular glue". By multivalent salt-bridge formation between Gu(+) ions and oxyanions, Glue(BP)-FITC temporarily adheres to a kinesin/microtubule hybrid. Upon subsequent exposure to UV light, this noncovalent binding is made permanent via a cross-linking reaction mediated by carbon radicals derived from the photoexcited BP units. This temporal-to-permanent transformation by light occurs quickly and efficiently in this preorganized state, allowing the movements of microtubules on a kinesin-coated glass plate to be photochemically controlled. A fundamental difference between such temporal and permanent bindings was visualized by the use of "optical tweezers".
Shushakov, Anton A; Pozdnyakov, Ivan P; Grivin, Vjacheslav P; Plyusnin, Victor F; Vasilchenko, Danila B; Zadesenets, Andrei V; Melnikov, Alexei A; Chekalin, Sergey V; Glebov, Evgeni M
2017-07-25
Diazide diamino complexes of Pt(iv) are considered as prospective prodrugs in oxygen-free photodynamic therapy (PDT). Primary photophysical and photochemical processes for cis,trans,cis-[Pt(N 3 ) 2 (OH) 2 (NH 3 ) 2 ] and trans,trans,trans-[Pt(N 3 ) 2 (OH) 2 (NH 3 ) 2 ] complexes were studied by means of stationary photolysis, nanosecond laser flash photolysis and ultrafast kinetic spectroscopy. The process of photolysis is multistage. The first stage is the photosubstitution of an azide ligand to a water molecule. This process was shown to be a chain reaction involving redox stages. Pt(iv) and Pt(iii) intermediates responsible for the chain propagation were recorded using ultrafast kinetic spectroscopy and nanosecond laser flash photolysis. The mechanism of photosubstitution is proposed.
Efficient Photochemical Dihydrogen Generation Initiated by a Bimetallic Self-Quenching Mechanism
Chambers, Matthew B.; Kurtz, Daniel A.; Pitman, Catherine L.; ...
2016-09-27
Artificial photosynthesis relies on coupling light absorption with chemical fuel generation. A mechanistic study of visible light-driven H 2 production from [Cp*Ir(bpy)H] + (1) has revealed a new, highly efficient pathway for integrating light absorption with bond formation. The net reaction of 1 with a proton source produces H 2, but the rate of excited state quenching is surprisingly acid-independent and displays no observable deuterium kinetic isotopic effect. Time-resolved photoluminescence and labeling studies are consistent with diffusion-limited bimetallic self-quenching by electron transfer. Accordingly, the quantum yield of H 2 release nearly reaches unity as the concentration of 1 increases. Furthermore,more » this unique pathway for photochemical H 2 generation provides insight into transformations catalyzed by 1.« less
Fabrication of gallium nitride nanowires by metal-assisted photochemical etching
NASA Astrophysics Data System (ADS)
Zhang, Miao-Rong; Jiang, Qing-Mei; Zhang, Shao-Hui; Wang, Zu-Gang; Hou, Fei; Pan, Ge-Bo
2017-11-01
Gallium nitride (GaN) nanowires (NWs) were fabricated by metal-assisted photochemical etching (MaPEtch). Gold nanoparticles (AuNPs) as metal catalyst were electrodeposited on the GaN substrate. SEM and HRTEM images show the surface of GaN NWs is smooth and clean without any impurity. SAED and FFT patterns demonstrate GaN NWs have single crystal structure, and the crystallographic orientation of GaN NWs is (0002) face. On the basis of the assumption of localized galvanic cells, combined with the energy levels and electrochemical potentials of reactants in this etching system, the generation, transfer and consumption of electron-hole pairs reveal the whole MaPEtch reaction process. Such easily fabricated GaN NWs have great potential for the assembly of GaN-based single-nanowire nanodevices.
Photochemical Dual-Catalytic Synthesis of Alkynyl Sulfides.
Santandrea, Jeffrey; Minozzi, Clémentine; Cruché, Corentin; Collins, Shawn K
2017-09-25
A photochemical dual-catalytic cross-coupling to form alkynyl sulfides via C(sp)-S bond formation is described. The cross-coupling of thiols and bromoalkynes is promoted by a soluble organic carbazole-based photocatalyst using continuous flow techniques. Synthesis of alkynyl sulfides bearing a wide range of electronically and sterically diverse aromatic alkynes and thiols can be achieved in good to excellent yields (50-96 %). The simple continuous flow setup also allows for short reaction times (30 min) and high reproducibility on gram scale. In addition, we report the first application of photoredox/nickel dual catalysis towards macrocyclization, as well as the first example of the incorporation of an alkynyl sulfide functional group into a macrocyclic scaffold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
McCabe, Andrew J; Arnold, William A
2016-07-01
The hydrology and water chemistry of prairie pothole wetlands vary spatially and temporally, on annual and decadal timescales. Pesticide contamination of wetlands arising from agricultural activities is a foremost concern. Photochemical reactions are important in the natural attenuation of pesticides and may be important in limiting ecological and human exposure. Little is known, however, about the variable influence of wetland water chemistry on indirect photochemistry. In this study, seasonal water samples were collected from seven sites throughout the prairie pothole region over three years to understand the spatiotemporal dynamics of reactive intermediate photoproduction. Samples were classified by the season in which they were collected (spring, summer, or fall) and the typical hydroperiod of the wetland surface water (temporary or semi-permanent). Under photostable conditions, steady-state concentrations and apparent quantum yields or quantum yield coefficients were measured for triplet excited states of dissolved organic matter, singlet oxygen, hydroxyl radical, and carbonate radical under simulated sunlight. Steady-state concentrations and quantum yields increased on average by 15% and 40% from spring to fall, respectively. Temporary wetlands had 40% higher steady-state concentrations of reactive intermediates than semi-permanent wetlands, but 50% lower quantum yields. Computed quantum yields for reactive intermediate formation were used to predict the indirect photochemical half-lives of seven pesticides in average temporary and semi-permanent prairie pothole wetlands. As a first approximation, the predictions agree to within two orders of magnitude of previously reported half-lives. Copyright © 2016 Elsevier Ltd. All rights reserved.
Photo-CIDNP NMR spectroscopy of amino acids and proteins.
Kuhn, Lars T
2013-01-01
Photo-chemically induced dynamic nuclear polarization (CIDNP) is a nuclear magnetic resonance (NMR) phenomenon which, among other things, is exploited to extract information on biomolecular structure via probing solvent-accessibilities of tryptophan (Trp), tyrosine (Tyr), and histidine (His) amino acid side chains both in polypeptides and proteins in solution. The effect, normally triggered by a (laser) light-induced photochemical reaction in situ, yields both positive and/or negative signal enhancements in the resulting NMR spectra which reflect the solvent exposure of these residues both in equilibrium and during structural transformations in "real time". As such, the method can offer - qualitatively and, to a certain extent, quantitatively - residue-specific structural and kinetic information on both the native and, in particular, the non-native states of proteins which, often, is not readily available from more routine NMR techniques. In this review, basic experimental procedures of the photo-CIDNP technique as applied to amino acids and proteins are discussed, recent improvements to the method highlighted, and future perspectives presented. First, the basic principles of the phenomenon based on the theory of the radical pair mechanism (RPM) are outlined. Second, a description of standard photo-CIDNP applications is given and it is shown how the effect can be exploited to extract residue-specific structural information on the conformational space sampled by unfolded or partially folded proteins on their "path" to the natively folded form. Last, recent methodological advances in the field are highlighted, modern applications of photo-CIDNP in the context of biological NMR evaluated, and an outlook into future perspectives of the method is given.
Donor-bridge-acceptor energetics determine the distance dependence of electron tunneling in DNA
NASA Astrophysics Data System (ADS)
Lewis, Frederick D.; Liu, Jianqin; Weigel, Wilfried; Rettig, Wolfgang; Kurnikov, Igor V.; Beratan, David N.
2002-10-01
Electron transfer (ET) processes in DNA are of current interest because of their involvement in oxidative strand cleavage reactions and their relevance to the development of molecular electronics. Two mechanisms have been identified for ET in DNA, a single-step tunneling process and a multistep charge-hopping process. The dynamics of tunneling reactions depend on both the distance between the electron donor and acceptor and the nature of the molecular bridge separating the donor and acceptor. In the case of protein and alkane bridges, the distance dependence is not strongly dependent on the properties of the donor and acceptor. In contrast, we show here that the distance decay of DNA ET rates varies markedly with the energetics of the donor and acceptor relative to the bridge. Specifically, we find that an increase in the energy of the bridge states by 0.25 eV (1 eV = 1.602 × 1019 J) relative to the donor and acceptor energies for photochemical oxidation of nucleotides, without changing the reaction free energy, results in an increase in the characteristic exponential distance decay constant for the ET rates from 0.71 to 1.1 Å1. These results show that, in the small tunneling energy gap regime of DNA ET, the distance dependence is not universal; it varies strongly with the tunneling energy gap. These DNA ET reactions fill a "missing link" or transition regime between the large barrier (rapidly decaying) tunneling regime and the (slowly decaying) hopping regime in the general theory of bridge-mediated ET processes.
NASA Astrophysics Data System (ADS)
Ma, Prettiny K.; Zhao, Yunliang; Robinson, Allen L.; Worton, David R.; Goldstein, Allen H.; Ortega, Amber M.; Jimenez, Jose L.; Zotter, Peter; Prévôt, André S. H.; Szidat, Sönke; Hayes, Patrick L.
2017-08-01
Secondary organic aerosol (SOA) is an important contributor to fine particulate matter (PM) mass in polluted regions, and its modeling remains poorly constrained. A box model is developed that uses recently published literature parameterizations and data sets to better constrain and evaluate the formation pathways and precursors of urban SOA during the CalNex 2010 campaign in Los Angeles. When using the measurements of intermediate-volatility organic compounds (IVOCs) reported in Zhao et al. (2014) and of semi-volatile organic compounds (SVOCs) reported in Worton et al. (2014) the model is biased high at longer photochemical ages, whereas at shorter photochemical ages it is biased low, if the yields for VOC oxidation are not updated. The parameterizations using an updated version of the yields, which takes into account the effect of gas-phase wall losses in environmental chambers, show model-measurement agreement at longer photochemical ages, even though some low bias at short photochemical ages still remains. Furthermore, the fossil and non-fossil carbon split of urban SOA simulated by the model is consistent with measurements at the Pasadena ground site. Multi-generation oxidation mechanisms are often employed in SOA models to increase the SOA yields derived from environmental chamber experiments in order to obtain better model-measurement agreement. However, there are many uncertainties associated with these aging mechanisms. Thus, SOA formation in the model is compared to data from an oxidation flow reactor (OFR) in order to constrain SOA formation at longer photochemical ages than observed in urban air. The model predicts similar SOA mass at short to moderate photochemical ages when the aging mechanisms or the updated version of the yields for VOC oxidation are implemented. The latter case has SOA formation rates that are more consistent with observations from the OFR though. Aging mechanisms may still play an important role in SOA chemistry, but the additional mass formed by functionalization reactions during aging would need to be offset by gas-phase fragmentation of SVOCs. All the model cases evaluated in this work show a large majority of the urban SOA (70-83 %) at Pasadena coming from the oxidation of primary SVOCs (P-SVOCs) and primary IVOCs (P-IVOCs). The importance of these two types of precursors is further supported by analyzing the percentage of SOA formed at long photochemical ages (1.5 days) as a function of the precursor rate constant. The P-SVOCs and P-IVOCs have rate constants that are similar to highly reactive VOCs that have been previously found to strongly correlate with SOA formation potential measured by the OFR. Finally, the volatility distribution of the total organic mass (gas and particle phase) in the model is compared against measurements. The total SVOC mass simulated is similar to the measurements, but there are important differences in the measured and modeled volatility distributions. A likely reason for the difference is the lack of particle-phase reactions in the model that can oligomerize and/or continue to oxidize organic compounds even after they partition to the particle phase.
THE ROLE OF NITROGEN IN CHROMOPHORIC AND FLUORESCENT DISSOLVED ORGANIC MATTER FORMATION
Microbial and photochemical processes affect chromophoric dissolved organic matter (CDOM) dynamics in the ocean. Some evidence suggests that dissolved nitrogen plays a role in CDOM formation, although this has received little systematic attention in marine ecosystems. Coastal sea...
Non-linear optical techniques and optical properties of condensed molecular systems
NASA Astrophysics Data System (ADS)
Citroni, Margherita
2013-06-01
Structure, dynamics, and optical properties of molecular systems can be largely modified by the applied pressure, with remarkable consequences on their chemical stability. Several examples of selective reactions yielding technologically attractive products can be cited, which are particularly efficient when photochemical effects are exploited in conjunction with the structural conditions attained at high density. Non-linear optical techniques are a basic tool to unveil key aspects of the chemical reactivity and dynamic properties of molecules. Their application to high-pressure samples is experimentally challenging, mainly because of the small sample dimensions and of the non-linear effects generated in the anvil materials. In this talk I will present results on the electronic spectra of several aromatic crystals obtained through two-photon induced fluorescence and two-photon excitation profiles measured as a function of pressure (typically up to about 25 GPa), and discuss the relationship between the pressure-induced modifications of the electronic structure and the chemical reactivity at high pressure. I will also present the first successful pump-probe infrared measurement performed as a function of pressure on a condensed molecular system. The system under examination is liquid water, in a sapphire anvil cell, up to 1 GPa along isotherms at 298 and 363 K. These measurements give a new enlightening insight into the dynamical properties of low- and high-density water allowing a definition of the two structures.
Wang, Zhuo; Li, Min; Zhou, Yueming; Lan, Pengfei; Lu, Peixiang
2017-02-20
The partition of the photon energy into the subsystems of molecules determines many photon-induced chemical and physical dynamics in laser-molecule interactions. The electron-nuclear energy sharing from multiphoton ionization of molecules has been used to uncover the correlated dynamics of the electron and fragments. However, most previous studies focus on symmetric molecules. Here we study the electron-nuclear energy sharing in strong-field photoionization of HeH 2+ by solving the one-dimensional time-dependent Schrödinger equation (TDSE). Compared with symmetric molecules, the joint electron-nuclear energy spectrum (JES) of HeH 2+ reveals an anomalous energy shift at certain nuclear energies, while it disappears at higher and lower nuclear energies. Through tracing the time evolution of the wavepacket of bound states, we identify that this energy shift originates from the joint effect of the Stark shift, associated with the permanent dipole, and the Autler-Townes effect due to the coupling of the 2pσ and 2sσ states in strong fields. The energy shift in the JES appears at certain nuclear distances only when both Stark effect and Autler-Townes effect play important roles. We further demonstrate that the electron-nuclei energy sharing can be controlled by varying laser intensity for asymmetric molecules, providing alternative approaches to manipulate photochemical reactions for more complex molecules.
Okuno, Yusuke; Cavagnero, Silvia
2016-01-01
Photochemically induced dynamic nuclear polarization (photo-CIDNP) is a powerful approach for sensitivity enhancement in NMR spectroscopy. In liquids, inter-molecular photo-CIDNP depends on the transient bimolecular reaction between photoexcited dye and sample of interest. Hence the extent of polarization is sample-concentration dependent. This study introduces fluorescein (FL) as a photo-CIDNP dye whose performance is exquisitely tailored to data collection at extremely low sample concentrations. The photo-CIDNP resonance intensities of tryptophan in the presence of either FL or FMN (i.e., the routinely employed flavin mononucleotide photosensitizer) in the liquid state show that FL yields superior sensitivity and enables rapid data collection down to an unprecedented 1 micromolar concentration. This result was achieved on a conventional spectrometer operating at 14.1 Tesla, and equipped with a room-temperature probe (i.e., non-cryogenic). Kinetic simulations show that the excellent behavior of FL arises from its long excited-state triplet lifetime and superior photostability relative to conventional photo-CIDNP sensitizers. PMID:26744790
Electron affinity of liquid water
Gaiduk, Alex P.; Pham, Tuan Anh; Govoni, Marco; ...
2018-01-16
Understanding redox and photochemical reactions in aqueous environments requires a precise knowledge of the ionization potential and electron affinity of liquid water. The former has been measured, but not the latter. We predict the electron affinity of liquid water and of its surface from first principles, coupling path-integral molecular dynamics with ab initio potentials, and many-body perturbation theory. Our results for the surface (0.8 eV) agree well with recent pump-probe spectroscopy measurements on amorphous ice. Those for the bulk (0.1-0.3 eV) differ from several estimates adopted in the literature, which we critically revisit. We show that the ionization potential ofmore » the bulk and surface are almost identical; instead their electron affinities differ substantially, with the conduction band edge of the surface much deeper in energy than that of the bulk. We also discuss the significant impact of nuclear quantum effects on the fundamental gap and band edges of the liquid.« less
Drop-on-Demand Sample Delivery for Studying Biocatalysts in Action at XFELs
Fuller, Franklin D.; Gul, Sheraz; Chatterjee, Ruchira; Burgie, Ernest S.; Young, Iris D.; Lebrette, Hugo; Srinivas, Vivek; Brewster, Aaron S.; Michels-Clark, Tara; Clinger, Jonathan A.; Andi, Babak; Ibrahim, Mohamed; Pastor, Ernest; de Lichtenberg, Casper; Hussein, Rana; Pollock, Christopher J.; Zhang, Miao; Stan, Claudiu A.; Kroll, Thomas; Fransson, Thomas; Weninger, Clemens; Kubin, Markus; Aller, Pierre; Lassalle, Louise; Bräuer, Philipp; Miller, Mitchell D.; Amin, Muhamed; Koroidov, Sergey; Roessler, Christian G.; Allaire, Marc; Sierra, Raymond G.; Docker, Peter T.; Glownia, James M.; Nelson, Silke; Koglin, Jason E.; Zhu, Diling; Chollet, Matthieu; Song, Sanghoon; Lemke, Henrik; Liang, Mengning; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Boal, Amie K.; Bollinger, J. Martin; Krebs, Carsten; Högbom, Martin; Phillips, George N.; Vierstra, Richard D.; Sauter, Nicholas K.; Orville, Allen M.; Kern, Jan; Yachandra, Vittal K.; Yano, Junko
2017-01-01
X-ray crystallography at X-ray free-electron laser (XFEL) sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy (XES), both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing new insights into the interplay between the protein structure/dynamics and chemistry at an active site. Implementing such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly impacts the data quality. We present here a new, robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method. PMID:28250468
Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers.
Fuller, Franklin D; Gul, Sheraz; Chatterjee, Ruchira; Burgie, E Sethe; Young, Iris D; Lebrette, Hugo; Srinivas, Vivek; Brewster, Aaron S; Michels-Clark, Tara; Clinger, Jonathan A; Andi, Babak; Ibrahim, Mohamed; Pastor, Ernest; de Lichtenberg, Casper; Hussein, Rana; Pollock, Christopher J; Zhang, Miao; Stan, Claudiu A; Kroll, Thomas; Fransson, Thomas; Weninger, Clemens; Kubin, Markus; Aller, Pierre; Lassalle, Louise; Bräuer, Philipp; Miller, Mitchell D; Amin, Muhamed; Koroidov, Sergey; Roessler, Christian G; Allaire, Marc; Sierra, Raymond G; Docker, Peter T; Glownia, James M; Nelson, Silke; Koglin, Jason E; Zhu, Diling; Chollet, Matthieu; Song, Sanghoon; Lemke, Henrik; Liang, Mengning; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Boal, Amie K; Bollinger, J Martin; Krebs, Carsten; Högbom, Martin; Phillips, George N; Vierstra, Richard D; Sauter, Nicholas K; Orville, Allen M; Kern, Jan; Yachandra, Vittal K; Yano, Junko
2017-04-01
X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.
Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers
Fuller, Franklin D.; Gul, Sheraz; Chatterjee, Ruchira; ...
2017-02-27
X-ray crystallography at X-ray free-electron laser (XFEL) sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy (XES), both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing new insights into the interplay between the protein structure/dynamics and chemistry at an active site. However, implementing such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly impacts the data quality. We present here a new, robust way of delivering controlled sample amountsmore » on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.« less
Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion
Narang, Prineha; Sundararaman, Ravishankar; Atwater, Harry A.
2016-06-11
Surface plasmons provide a pathway to efficiently absorb and confine light in metallic nanostructures, thereby bridging photonics to the nano scale. The decay of surface plasmons generates energetic ‘hot’ carriers, which can drive chemical reactions or be injected into semiconductors for nano-scale photochemical or photovoltaic energy conversion. Novel plasmonic hot carrier devices and architectures continue to be demonstrated, but the complexity of the underlying processes make a complete microscopic understanding of all the mechanisms and design considerations for such devices extremely challenging.Here,we review the theoretical and computational efforts to understand and model plasmonic hot carrier devices.We split the problem intomore » three steps: hot carrier generation, transport and collection, and review theoretical approaches with the appropriate level of detail for each step along with their predictions. As a result, we identify the key advances necessary to complete the microscopic mechanistic picture and facilitate the design of the next generation of devices and materials for plasmonic energy conversion.« less
Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuller, Franklin D.; Gul, Sheraz; Chatterjee, Ruchira
X-ray crystallography at X-ray free-electron laser (XFEL) sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy (XES), both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing new insights into the interplay between the protein structure/dynamics and chemistry at an active site. However, implementing such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly impacts the data quality. We present here a new, robust way of delivering controlled sample amountsmore » on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.« less
Electron affinity of liquid water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaiduk, Alex P.; Pham, Tuan Anh; Govoni, Marco
Understanding redox and photochemical reactions in aqueous environments requires a precise knowledge of the ionization potential and electron affinity of liquid water. The former has been measured, but not the latter. We predict the electron affinity of liquid water and of its surface from first principles, coupling path-integral molecular dynamics with ab initio potentials, and many-body perturbation theory. Our results for the surface (0.8 eV) agree well with recent pump-probe spectroscopy measurements on amorphous ice. Those for the bulk (0.1-0.3 eV) differ from several estimates adopted in the literature, which we critically revisit. We show that the ionization potential ofmore » the bulk and surface are almost identical; instead their electron affinities differ substantially, with the conduction band edge of the surface much deeper in energy than that of the bulk. We also discuss the significant impact of nuclear quantum effects on the fundamental gap and band edges of the liquid.« less
The production of trace gases by photochemistry and lightning in the early atmosphere
NASA Technical Reports Server (NTRS)
Levine, J. S.; Tennille, G. M.; Towe, K. M.; Khanna, R. K.
1986-01-01
Recent atmospheric calculation suggest that the prebiological atmosphere was most probably composed of nitrogen, carbon dioxide, and water vapor, resulting from volatile outgassing, as opposed to the older view of a strongly reducing early atmosphere composed of methane, ammonia, and hydrogen. Photochemical calculations indicate that methane would have been readily destroyed via reaction with the hydroxyl radical produced from water vapor and that ammonia would have been readily lost via photolysis and rainout. The rapid loss of methane and ammonia, coupled with the absence of a significant source of these gases, suggest that atmospheric methane and ammonia were very short lived, if they were present at all. An early atmosphere of N2, CO2, and H2O is stable and leads to the chemical production of a number of atmospheric species of biological significance, including oxygen, ozone, carbon monoxide, formaldehyde, and hydrogen cyanide. Using a photochemical model of the early atmosphere, the chemical productionof these species over a wide range of atmospheric parameters were investigated. These calculations indicate that early atmospheric levels of O3 were significantly below the levels needed to provide UV shielding. The fate of volcanically emitted sulfur species, e.g., sulfur dioxide and hydrogen sulfide, was investigated in the early atmosphere to assess their UV shielding properties. The photochemical calculations show that these species were of insufficient levels, due in part to their short photochemical lifetimes, to provide UV shielding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabello, G., E-mail: gerardocabelloguzman@hotmail.com; Lillo, L.; Caro, C.
2016-05-15
Highlights: • ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films were prepared by photo-chemical method. • The Zn(II), Mg(II) and Al(III) β-diketonate complexes were used as precursors. • The photochemical reaction was monitored by UV–vis and FT-IR spectroscopy. • The results reveal spinel oxide formation and the generation of intermediate products. - Abstract: ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films were grown on Si(100) and quartz plate substrates using a photochemical method in the solid phase with thin films of β-diketonate complexes as the precursors. The films were deposited by spin-coating and subsequently photolyzed at room temperaturemore » using 254 nm UV light. The photolysis of these films results in the deposition of metal oxide thin films and fragmentation of the ligands from the coordination sphere of the complexes. The obtained samples were post-annealed at different temperatures (350–1100 °C) for 2 h and characterized by FT-Infrared spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force miscroscopy (AFM), and UV–vis spectroscopy. The results indicate the formation of spinel-type structures and other phases. These characteristics determined the quality of the films, which were obtained from the photodeposition of ternary metal oxides.« less
NASA Astrophysics Data System (ADS)
Le Breton, Michael; Hallquist, Åsa M.; Kant Pathak, Ravi; Simpson, David; Wang, Yujue; Zheng, Jing; Yang, Yudong; Shang, Dongjie; Wang, Haichao; Lu, Keding; Guo, Song; Hu, Min; Hallquist, Mattias
2017-04-01
Severe pollution events across China pose a major threat to air quality and climate through the direct emission of pollutants, but also via the production of photochemically induced secondary pollutants. Nitryl chloride (ClNO2), produced from heterogeneous reactions of dinitrogen pentoxide (N2O5) and aerosols containing chloride, is photolysed rapidly in sunlight and activates chlorine. Subsequent daytime oxidation via the chlorine atom can proceed orders of magnitude faster than that of the hydroxyl radical and therefore significantly perturb radical budgets and concentrations of ozone and secondary pollutants. Knowledge of the formation pathways, abundance and fate of these secondary pollutants, which can depend on ClNO2 abundance, is not fully understood but is necessary to support abatement strategies which will efficiently account for both primary and secondary pollutants. A Time of Flight Chemical Ionisation Mass Spectrometer (ToF CIMS) utilising the Filter Inlet for Gases and AEROsols (FIGAERO) was deployed in Changping, Beijing, during June and July, 2016 as part of an intercollaborative project to assess the photochemical smog in China. Concentrations of ClNO2 regularly exceeded 500 ppt throughout the campaign and reached a maximum concentration of 2.8 ppb, whereas relatively low N2O5 concentrations were observed, indicating a rapid heterogeneous production of ClNO2. Correlation of particulate chloride and carbon monoxide during the campaign suggests an anthropogenic chlorine source, also supported by high daytime Cl2 concentrations. Observations of ClNO2 desorptions using the FIGAERO suggest a possible unaccounted particulate reservoir of active chlorine in highly polluted regions. The persistence of ClNO2 several hours passed sunrise significantly increases the atomic chlorine production rate throughout the day further perturbing standard daytime oxidation processes. Simultaneous ToF CIMS measurements of Cl2, ClNO2, HCl, HOCl, OClO and ClONO2 were implemented into steady state calculations using the Master Chemical Mechanism (MCM) to assess how the daytime activation of chlorine competes with OH as a dominant oxidant in this heavily polluted region. The reactions of atomic chlorine with VOCs are traced and assessed via the gas and particle phase measurements of chlorinated VOCs and supporting Proton Transfer Reaction Mass Spectrometer (PTR MS) VOC measurements. This provides the first high frequency measurements of unique tracers for chlorine atom chemistry, several of which are represented in the MCM, in both the gas and particle phase and enable the detailed assessment of their diurnal variation and importance for photochemical smog formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.; Lyubinetsky, Igor
The field of heterogeneous photocatalysis has grown considerably in the decades since Fujishima and Honda's ground-breaking publications of photoelectrochemistry on TiO2. Numerous review articles continue to point to both progress made in the use of heterogeneous materials (such as TiO2) to perform photoconversion processes, and the many opportunities and challenges in heterogeneous photocatalysis research such as solar energy conversion and environmental remediation. The past decade has also seen an increase in the use of molecular-level approaches applied to model single crystal surfaces in an effort to obtain new insights into photocatalytic phenomena. In particular, scanning probe techniques (SPM) have enabledmore » researchers to take a ‘nanoscale’ approach to photocatalysis that includes interrogation of the reactivities of specific sites and adsorbates on a model photocatalyst surface. The rutile TiO2(110) surface has become the prototypical oxide single crystal surface for fundamental studies of many interfacial phenomena. In particular, TiO2(110) has become an excellent model surface for probing photochemical and photocatalytic reactions at the molecular level. A variety of experimental approaches have emerged as being ideally suited for studying photochemical reactions on TiO2(110), including desorption-oriented approaches and electronic spectroscopies, but perhaps the most promising techniques for evaluating site-specific properties are those of SPM. In this review, we highlight the growing use of SPM techniques in providing molecular-level insights into surface photochemistry on the model photocatalyst surface of rutile TiO2(110). Our objective is to both illustrate the unique knowledge that scanning probe techniques have already provided the field of photocatalysis, and also to motivate a new generation of effort into the use of such approaches to obtain new insights into the molecular level details of photochemical events occurring at interfaces. Discussion will start with an examination of how scanning probe techniques are being used to characterize the TiO2(110) surface in ways that are relevant to photocatalysis. We will then discuss specific classes of photochemical reaction on TiO2(110) for which SPM has proven indispensible in providing unique molecular-level insights, and conclude with discussion of future areas in which SPM studies may prove valuable to photocatalysis on TiO2. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. I.L. was partially supported by a Pacific Northwest National Laboratory (PNNL) Chemical Imaging Initiative project. PNNL is a multiprogram national laboratory operated for DOE by Battelle.« less
Rupenyan, Alisa; van Stokkum, Ivo H M; Arents, Jos C; van Grondelle, Rienk; Hellingwerf, Klaas J; Groot, Marie Louise
2009-12-17
Proteorhodopsin (pR) is a membrane-embedded proton pump from the microbial rhodopsin family. Light absorption by its retinal chromophore initiates a photocycle, driven by trans/cis isomerization on the femtosecond to picosecond time scales. Here, we report a study on the photoisomerization dynamics of the retinal chromophore of pR, using dispersed ultrafast pump-dump-probe spectroscopy. The application of a pump pulse initiates the photocycle, and with an appropriately tuned dump pulse applied at a time delay after the dump, the molecules in the initial stages of the photochemical process can be de-excited and driven back to the ground state. In this way, we were able to resolve an intermediate on the electronic ground state that represents chromophores that are unsuccessful in isomerization. In particular, the fractions of molecules that undergo slow isomerization (20 ps) have a high probability to enter this state rather than the isomerized K-state. On the ground state reaction surface, return to the stable ground state conformation via a structural or vibrational relaxation occurs in 2-3 ps. Inclusion of this intermediate in the kinetic scheme led to more consistent spectra of the retinal-excited state, and to a more accurate estimation of the quantum yield of isomerization (Phi = 0.4 at pH 6).
Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction.
Fairbanks, Benjamin D; Singh, Samir P; Bowman, Christopher N; Anseth, Kristi S
2011-04-26
Various techniques have been adopted to impart a biological responsiveness to synthetic hydrogels for the delivery of therapeutic agents as well as the study and manipulation of biological processes and tissue development. Such techniques and materials include polyelectrolyte gels that swell and deswell with changes in pH, thermosensitive gels that contract at physiological temperatures, and peptide cross-linked hydrogels that degrade upon peptidolysis by cell-secreted enzymes. Herein we report a unique approach to photochemically deform and degrade disulfide cross-linked hydrogels, mitigating the challenges of light attenuation and low quantum yield, permitting the degradation of hydrogels up to 2 mm thick within 120 s at low light intensities (10 mW/cm(2) at 365 nm). Hydrogels were formed by the oxidation of thiol-functionalized 4-armed poly(ethylene glycol) macromolecules. These disulfide cross-linked hydrogels were then swollen in a lithium acylphosphinate photoinitiator solution. Upon exposure to light, photogenerated radicals initiate multiple fragmentation and disulfide exchange reactions, permitting and promoting photodeformation, photowelding, and photodegradation. This novel, but simple, approach to generate photoadaptable hydrogels portends the study of cellular response to mechanically and topographically dynamic substrates as well as novel encapsulations by the welding of solid substrates. The principles and techniques described herein hold implications for more than hydrogel materials but also for photoadaptable polymers more generally.
Luca, Oana R; Fenwick, Aidan Q
2015-11-01
The present review covers organic transformations involved in the reduction of CO2 to chemical fuels. In particular, we focus on reactions of CO2 with organic molecules to yield carboxylic acid derivatives as a first step in CO2 reduction reaction sequences. These biomimetic initial steps create opportunities for tandem electrochemical/chemical reductions. We draw parallels between long-standing knowledge of CO2 reactivity from organic chemistry, organocatalysis, surface science and electrocatalysis. We point out some possible non-faradaic chemical reactions that may contribute to product distributions in the production of solar fuels from CO2. These reactions may be accelerated by thermal effects such as resistive heating and illumination. Copyright © 2015 Elsevier B.V. All rights reserved.
Gas-Phase Formation Rates of Nitric Acid and Its Isomers Under Urban Conditions
NASA Technical Reports Server (NTRS)
Okumura, M.; Mollner, A. K.; Fry, J. L.; Feng, L.
2005-01-01
Ozone formation in urban smog is controlled by a complex set of reactions which includes radical production from photochemical processes, catalytic cycles which convert NO to NO2, and termination steps that tie up reactive intermediates in long-lived reservoirs. The reaction OH + NO2 + M -4 HONO2 + M (la) is a key termination step because it transforms two short-lived reactive intermediates, OH and NO2, into relatively long-lived nitric acid. Under certain conditions (low VOC/NOx), ozone production in polluted urban airsheds can be highly sensitive to this reaction, but the rate parameters are not well constrained. This report summarizes the results of new laboratory studies of the OH + NO2 + M reaction including direct determination of the overall rate constant and branching ratio for the two reaction channels under atmospherically relevant conditions.
Chemical reactions directed Peptide self-assembly.
Rasale, Dnyaneshwar B; Das, Apurba K
2015-05-13
Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.
Chemical Reactions Directed Peptide Self-Assembly
Rasale, Dnyaneshwar B.; Das, Apurba K.
2015-01-01
Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Kenta; Department of Chemistry, Biology, and Biotechnology, University of Perugia, 06123 Perugia; Gotoda, Hiroshi
2016-05-15
The convective motions within a solution of a photochromic spiro-oxazine being irradiated by UV only on the bottom part of its volume, give rise to aperiodic spectrophotometric dynamics. In this paper, we study three nonlinear properties of the aperiodic time series: permutation entropy, short-term predictability and long-term unpredictability, and degree distribution of the visibility graph networks. After ascertaining the extracted chaotic features, we show how the aperiodic time series can be exploited to implement all the fundamental two-inputs binary logic functions (AND, OR, NAND, NOR, XOR, and XNOR) and some basic arithmetic operations (half-adder, full-adder, half-subtractor). This is possible duemore » to the wide range of states a nonlinear system accesses in the course of its evolution. Therefore, the solution of the convective photochemical oscillator results in hardware for chaos-computing alternative to conventional complementary metal-oxide semiconductor-based integrated circuits.« less
Role of nitrite in the photochemical formation of radicals in the snow.
Jacobi, Hans-Werner; Kleffmann, Jörg; Villena, Guillermo; Wiesen, Peter; King, Martin; France, James; Anastasio, Cort; Staebler, Ralf
2014-01-01
Photochemical reactions in snow can have an important impact on the composition of the atmosphere over snow-covered areas as well as on the composition of the snow itself. One of the major photochemical processes is the photolysis of nitrate leading to the formation of volatile nitrogen compounds. We report nitrite concentrations determined together with nitrate and hydrogen peroxide in surface snow collected at the coastal site of Barrow, Alaska. The results demonstrate that nitrite likely plays a significant role as a precursor for reactive hydroxyl radicals as well as volatile nitrogen oxides in the snow. Pollution events leading to high concentrations of nitrous acid in the atmosphere contributed to an observed increase in nitrite in the surface snow layer during nighttime. Observed daytime nitrite concentrations are much higher than values predicted from steady-state concentrations based on photolysis of nitrate and nitrite indicating that we do not fully understand the production of nitrite and nitrous acid in snow. The discrepancy between observed and expected nitrite concentrations is probably due to a combination of factors, including an incomplete understanding of the reactive environment and chemical processes in snow, and a lack of consideration of the vertical structure of snow.
Zhou, Zeyu; Zhang, Yaxin; Wang, Hongtao; Chen, Tan; Lu, Wenjing
2014-01-01
Photochemical treatment is increasingly being applied to remedy environmental problems. TiO2-derived catalysts are efficiently and widely used in photodegradation applications. The efficiency of various photochemical treatments, namely, the use of UV irradiation without catalyst or with TiO2/graphene-TiO2 photodegradation methods was determined by comparing the photodegadation of two main types of hydrophobic chlorinated aromatic pollutants, namely, pentachlorophenol (PCP) and polychlorinated biphenyls (PCBs). Results show that photodegradation in methanol solution under pure UV irradiation was more efficient than that with either one of the catalysts tested, contrary to previous results in which photodegradation rates were enhanced using TiO2-derived catalysts. The effects of various factors, such as UV light illumination, addition of methanol to the solution, catalyst dosage, and the pH of the reaction mixture, were examined. The degradation pathway was deduced. The photochemical treatment in methanol soil washing solution did not benefit from the use of the catalysts tested. Pure UV irradiation was sufficient for the dechlorination and degradation of the PCP and PCBs. PMID:25254664
Huang, Zhenxun; Sun, Fengqiang; Zhang, Yu; Gu, Kaiyuan; Zou, Xueqiong; Huang, Yuying; Wu, Qingsong; Zhang, Zihe
2011-04-15
Taking a colloidal monolayer floating on the surface of a precursor solution as template, free-standing CdS/Cd composites and pure CdS (CdS-based) ordered porous films had been prepared by a temperature-assisted photochemical strategy. After irradiation with UV-light and heat treatment, the films formed hemi-spherical pores due to the preferable deposition of CdS and Cd onto the PS spheres during the photochemical and interfacial reactions. When the temperature increased from 15 to 60°C, the air/water interface gradually changed into a vapor/water interface on the surface of the solution, resulting in variations of the final compositions. The optical properties of the films were hence changed. Because of the free-standing characteristic, the ordered porous films were first transferred on surface of polluted solutions as photocatalysts, which was a new mode in application of photocatalysts. The photocatalytic activities of films showed regular variations with the compositions in photodegradation of Rhodamine B. This method provides a simple route for tuning the properties of porous films through control of its composition and a flexible application of films on any surface. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Osterman, G. B.; Salawitch, R. J.; Sen, B.; Toon, G. C.; Stachnik, R. A.; Pickett, H. M.; Margitan, J. J.; Blavier, J.-F.; Peterson, D. B.
1997-01-01
Measurements of hydrogen, nitrogen and chlorine radicals from a balloon flight on 25 September 1993 from Ft. Sumner, NM provide an opportunity to quantify photochemical production and loss of stratospheric ozone. Ozone loss rates determined using measured radical concentrations agree fairly well with loss rates calculated using a photochemical model. Catalytic cycles involving OH and HO2 are shown to dominate photochemical loss of ozone for altitudes between 44 and 50 km. Reactions involving NO and NO2 are the dominant sink for ozone between 25 and 38 km. The total ozone loss rate determined from the measurements balances calculated production rates for altitudes between 30 and 40 km. However, loss of ozone exceeds production by -35% between 42 and 50 km. The imbalance between production and loss of ozone above 42 km is larger than the uncertainty of any one of the critical kinetic parameters or species concentrations. No single adjustment to any of these parameters can simultaneously resolve the imbalance and satisfy constraints imposed by measured OH, HO2, NO2 and ClO. Our results are consistent with an additional mechanism for ozone production above 40 km other than photolysis of ground state O2.
Kuramochi, Yusuke; Itabashi, Jun; Fukaya, Kyohei; Enomoto, Akito; Yoshida, Makoto
2015-01-01
Photochemical CO2 reduction catalysed by trans(Cl)–Ru(bpy)(CO)2Cl2 (bpy = 2,2′-bipyridine) efficiently produces carbon monoxide (CO) and formate (HCOO–) in N,N-dimethylacetamide (DMA)/water containing [Ru(bpy)3]2+ as a photosensitizer and 1-benzyl-1,4-dihydronicotinamide (BNAH) as an electron donor. We have unexpectedly found catalyst concentration dependence of the product ratio (CO/HCOO–) in the photochemical CO2 reduction: the ratio of CO/HCOO– decreases with increasing catalyst concentration. The result has led us to propose a new mechanism in which HCOO– is selectively produced by the formation of a Ru(i)–Ru(i) dimer as the catalyst intermediate. This reaction mechanism predicts that the Ru–Ru bond dissociates in the reaction of the dimer with CO2, and that the insufficient electron supply to the catalyst results in the dominant formation of HCOO–. The proposed mechanism is supported by the result that the time-course profiles of CO and HCOO– in the photochemical CO2 reduction catalysed by [Ru(bpy)(CO)2Cl]2 (0.05 mM) are very similar to those of the reduction catalysed by trans(Cl)–Ru(bpy)(CO)2Cl2 (0.10 mM), and that HCOO– formation becomes dominant under low-intensity light. The kinetic analyses based on the proposed mechanism could excellently reproduce the unusual catalyst concentration effect on the product ratio. The catalyst concentration effect observed in the photochemical CO2 reduction using [Ru(4dmbpy)3]2+ (4dmbpy = 4,4′-dimethyl-2,2′-bipyridine) instead of [Ru(bpy)3]2+ as the photosensitizer is also explained with the kinetic analyses, reflecting the smaller quenching rate constant of excited [Ru(4dmbpy)3]2+ by BNAH than that of excited [Ru(bpy)3]2+. We have further synthesized trans(Cl)–Ru(6Mes-bpy)(CO)2Cl2 (6Mes-bpy = 6,6′-dimesityl-2,2′-bipyridine), which bears bulky substituents at the 6,6′-positions in the 2,2′-bipyridyl ligand, so that the ruthenium complex cannot form the dimer due to the steric hindrance. We have found that this ruthenium complex selectively produces CO, which strongly supports the catalytic mechanism proposed in this work. PMID:28706681
1985-01-10
irritation photochemical chemical and 10 percent reaction under test con- irritation in humans. (wlv) Oil of Bergamot ditions. 2 * - Study No. 75-51-0367-85...control (oil of Bergamot ), than unirradiated skin areas. a and diluent were applied to additional skin areas to serve as unirradiated control sites
A new model is described for computing in-chamber actinic flux using site specific conditions that include time of day, air pressure, total column ozone, total column water vapor, relative humidity, aerosol type, aerosol optical density at 500 nm, and the spectral albedo of the g...
Testing a Conceptual Model of Soil Emissions of Nitrous and Nitric Oxides
Eric A. Davidson; Michael Keller; Heather E. Erickson; Verchot NO-VALUE; Edzo Veldkamp
2000-01-01
Nitrous and nitric oxides are often studied separately by atmospheric chemists because they play such different roles in the atmosphere. N2O is a stable greenhouse gas in the lower atmosphere (the troposphere; Ramanathan et al. 1985), but it participates in photochemical reactions in the upper atmosphere (the stratosphere) that destroy ozone (Crutzen 1970). In contrast...
Excitation of nucleobases from a computational perspective I: reaction paths.
Giussani, Angelo; Segarra-Martí, Javier; Roca-Sanjuán, Daniel; Merchán, Manuela
2015-01-01
The main intrinsic photochemical events in nucleobases can be described on theoretical grounds within the realm of non-adiabatic computational photochemistry. From a static standpoint, the photochemical reaction path approach (PRPA), through the computation of the respective minimum energy path (MEP), can be regarded as the most suitable strategy in order to explore the electronically excited isolated nucleobases. Unfortunately, the PRPA does not appear widely in the studies reported in the last decade. The main ultrafast decay observed experimentally for the gas-phase excited nucleobases is related to the computed barrierless MEPs from the bright excited state connecting the initial Franck-Condon region and a conical intersection involving the ground state. At the highest level of theory currently available (CASPT2//CASPT2), the lowest excited (1)(ππ*) hypersurface for cytosine has a shallow minimum along the MEP deactivation pathway. In any case, the internal conversion processes in all the natural nucleobases are attained by means of interstate crossings, a self-protection mechanism that prevents the occurrence of photoinduced damage of nucleobases by ultraviolet radiation. Many alternative and secondary paths have been proposed in the literature, which ultimately provide a rich and constructive interplay between experimentally and theoretically oriented research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Karacan; T. Torul
2007-08-15
The effect of the power of ultraviolet (UV) irradiation on the tetrahydrofuran (THF) solubles yield (the total soluble product) and the soluble product distribution of the dissolution of Turkish lignites (Beypazari and Tuncbilek lignite) in tetralin at ambient temperatures has been investigated. The lignite samples were exposed to UV irradiation for 1, 2, 3, 5, and 10 days in the power of irradiation ranging from 0 to 180 W at 60 W intervals. The yields of THF solubles and oils increased with increasing irradiation power and time. The optimum irradiation power depends on the irradiation time to obtain the highestmore » degradation products. However, the yield of degradation products depends also on the lignite type. The largest fraction obtained from lignites by photochemical energy is oil. While the yields of THF solubles and oils sharply increased with irradiation power at longer reaction times, the yields of asphaltenes (AS) slightly decreased. Increasing oil yields is relatively larger when AS yields tend to decrease. These trends of AS and oil yields are ascribable to conversion of AS to oils at higher power. Small changes were observed in the PAS yields under all conditions. 27 refs., 5 figs., 1 tab.« less
Spectroscopic Evidence Against Nitric Acid Trihydrate in Polar Stratospheric Clouds
NASA Technical Reports Server (NTRS)
Toon, Owen B.; Tolbert, Margaret A.
1995-01-01
Heterogeneous reactions on polar stratospheric clouds (PSC's) play a key role in the photochemical mechanism thought to be responsible for ozone depletion in the Antarctic and Arctic. Reactions of PSC particles activate chlorine to forms that are capable of photochemical ozone destruction, and sequester nitrogen oxides (NOx) that would otherwise deactivate the chlorine. Although the heterogeneous chemistry is now well established, the composition of the clouds themselves is uncertain. It is commonly thought that they are composed of nitric acid trihydrate, although observations have left this question unresolved. Here we reanalyse infrared spectra of type 1 PSCs obtained in Antarctica in September 1987, using recently measured optical constants of the various compounds that might be present in PSCs. We find these PSCs were not composed of nitric acid trihydrate but instead had a more complex compositon, perhaps that of a ternary solution. Because cloud formation is sensitive to their composition, this finding will alter our understanding of the locations and conditions in which PSCs form. In addition, the extent of ozone loss depends on the ability of the PSCs to remove NOx permanently through sedimentation, The sedimentation rates depend on PSC particle size which in turn is controlled by the composition and formation mechanism.
Photocatalytic production and processing of conjugated linoleic acid-rich soy oil.
Jain, Vishal P; Proctor, Andrew
2006-07-26
Daily intake of conjugated linoleic acid (CLA), an anticarcinogenic, antiatherosclerotic, antimutagenic agent, and antioxidant, from dairy and meat products is substantially less than estimated required values. The objective of this study was to obtain CLA-rich soybean oil by a customized photochemical reaction system with an iodine catalyst and evaluate the effect of processing on iodine and iodo compounds after adsorption. After 144 h of irradiation, a total CLA yield of 24% (w/w) total oil was obtained with 0.15% (w/w) iodine. Trans,trans isomers (17.5%) formed the majority of the total yield and are also associated with health benefits. The isomers cis-9,trans-11 and trans-10,cis-12 CLA, associated with maximum health benefits, formed approximately 3.5% of the total oil. This amount is quite significant considering that total CLA obtained from dairy sources is only 0.6%. ATR-FTIR, 1H NMR, and GC-MS analyses indicated the absence of peroxide and aldehyde protons, providing evidence that secondary lipid oxidation products were not formed during the photochemical reaction. Adsorption processing vastly reduced the iodine and iodocompounds without CLA loss. Photocatalysis significantly increased the levels of CLA in soybean oil.
NASA Astrophysics Data System (ADS)
Pacheco-Blas, M. A.; Novaro, O. A.; Pacheco-Sánchez, J. H.
2010-11-01
The photochemical activation of Al atoms in cryogenic matrices to induce their reaction with methane has been experimentally studied before. Here, a theoretical study of the nonadiabatic transition probabilities for the ground (P2:3s23p1) and the lowest excited states (S2:3s24s1 and D2:3s23d1) of an aluminum atom interacting with a methane molecule (CH4) was carried out through ab initio Hartree-Fock self-consistent field calculations. This was followed by a multiconfigurational study of the correlation energy obtained by extensive variational and perturbational configuration interaction analyses using the CIPSI program. The D2 state is readily inserted into a C-H bond, this being a prelude to a sequence of avoided crossings with the initially repulsive (to CH4) lower lying states P2 and S2. We then use a direct extension of the Landau-Zener theory to obtain transition probabilities at each avoided crossing, allowing the formation of an HAlCH3 intermediate that eventually leads to the final pair of products H+AlCH3 and HAl+CH3.
Photosensitizer fluorescence emission during photodynamic therapy applied to dermatological diseases
NASA Astrophysics Data System (ADS)
Salas-García, I.; Fanjul-Vélez, F.; Ortega-Quijano, N.; Arce-Diego, J. L.
2011-09-01
Photodynamic Therapy (PDT) is an optical treatment modality that allows malignant tissue destruction. It is based on the administration of a photosensitizer and the posterior irradiation by an optical source. Photosensitizer molecules absorb the excitation light photons triggering a series of photochemical reactions in the presence of oxygen in the target tissue. During such interactions it is produced the de-excitation of the photosensitizer molecules in the singlet excited state which return to their minimum energy state by emitting fluorescence photons. These days, there are fixed clinical PDT protocols that make use of a particular optical dose and photosensitizer amount. However treatment response varies among patients and the type of pathology. In order to adjust an optimal dosimetry, the development of accurate predictive models plays an important role. The photosensitizer fluorescence can be used to estimate the degradation of the photoactive agent and as an implicit dosimetric measurement during treatment. However it is complex to know the fluorescence dependence with the depth in the tumor from observed fluorescence in the pathology surface. We present a first approach to predict the photosensitizer fluorescence dependence with depth during the PDT treatment applied to a skin disease commonly treated in the dermatological clinical practice. The obtained results permit us to know the photosensitizer temporal fluorescence evolution in different points of the tumor sample during the photochemical reactions involved in PDT with a predictive purpose related to the treatment evolution. The model presented also takes into account the distribution of a topical photosensitizer, the propagation of light in a biological media and the subsequent photochemical interactions between light and tissue. This implies that different parameters related with the photosensitizer distribution or the optical source characteristics could be adjusted to provide a specific treatment to a particular pathology.
Photochemical behavior of dissolved and colloidal organic matter in estuarine and oceanic waters.
Zhu, Wen-Zhuo; Yang, Gui-Peng; Zhang, Hong-Hai
2017-12-31
Chromophoric dissolved organic matter (CDOM), carbohydrates, and amino acids were analyzed to investigate the photochemistry of total dissolved (<0.22μm) organic matter (DOM), high-molecular-weight (HMW, 1kDa-0.22μm) DOM and low-molecular-weight (LMW, <1kDa) DOM at stations in the Yangtze River and its coastal area, and in the Western Pacific Ocean. Results revealed that the humic-like and tryptophan-like CDOM fluorescent components in riverine, coastal, and oceanic surface waters were photodegraded during irradiation. However, the photochemical behavior of tyrosine-like component was obscured by the excessive fluorescence intensities of humic- and tryptophan-like fluorescent components. Light sensitivity varied depending on the source material; terrestrially derived DOM was more susceptible to irradiation than autochthonous DOM. In contrast to the expected photodegradation of CDOM, photo-induced synthetic reaction transformed the LMW matters to polysaccharides (PCHO) and degradation reaction decomposed the HMW DOM to Monosaccharides. Colloidal DOM preferentially underwent photodegradation, whereas permeate DOM mainly photosynthesized PCHO. The total hydrolysable amino acid (THAA) pool changed because of the additional input by the photodegradation of DOM or THAA itself. The compositions of THAA changed during the irradiation experiments, indicating that the different photochemical behavior of individual amino acids were related to their different original photoreactivities; the relatively stable amino acids (e.g., Ser and Gly) significantly accumulated during irradiation, whereas photo-active aromatic amino acids (e.g. Tyr and His) were prone to photodegradation. The data presented here demonstrated that irradiation significantly influence the conversion between dissolved and colloid organic matter. These results can promote the understanding of irradiation effect on the carbon and nitrogen cycle in riverine, estuarine and oceanic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bosco, S. R.
1982-01-01
The photochemistry of the reactions of NH2 was investigated in an attempt to explain the existence of an abundance of ammonia in the Jovian atmosphere. The production of ammonia reservoirs from the coupling of ammonia with other atmospheric constituents was considered. The rate constants for the reactions of NH2 radicals with phosphine, acetylene, and ethylene were measured. Flash photolysis was used for the production of NH2 radicals and laser induced fluorescence was employed for radical detection. It was determined that the rates of the reactions were too slow to be significant as a source of ammonia reservoirs in the Jovian atmosphere.
Fundamental insights into interfacial catalysis.
Gong, Jinlong; Bao, Xinhe
2017-04-03
Surface and interfacial catalysis plays a vital role in chemical industries, electrochemistry and photochemical reactions. The challenges of modern chemistry are to optimize the chemical reaction processes and understand the detailed mechanism of chemical reactions. Since the early 1960s, the foundation of surface science systems has allowed the study of surface and interfacial phenomena on atomic/molecular level, and thus brought a number of significant developments to fundamental and technological processes, such as catalysis, material science and biochemistry, just to name a few. This themed issue describes the recent advances and developments in the fundamental understanding of surface and interfacial catalysis, encompassing areas of knowledge from metal to metal oxide, carbide, graphene, hexagonal boron nitride, and transition metal dichalcogenides under ultrahigh vacuum conditions, as well as under realistic reaction conditions.
Photochemical Modeling of CH3 Abundances in the Outer Solar System
NASA Technical Reports Server (NTRS)
Lee, Anthony Y. T.; Yung, Yuk L.; Moses, Julianne
2000-01-01
Recent measurements of methyl radicals (CH3) in the upper atmospheres of Saturn and Neptune by the Infrared Space Observatory (ISO) provide new constraints to photochemical models of hydrocarbon chemistry in the outer solar system. The derived column abundances of CH3 on Saturn above 10 mbar and Neptune above the 0.2 mbar pressure level are (2.5 - 6.0) x 10(exp 13) / sq cm and (0.7 - 2.8) x 10(exp 13) / sq cm, respectively. We use the updated Caltech/Jet Propulsion Laboratory photochemical model, which incorporates hydrocarbon photochemistry, vertical molecular and bulk atmospheric eddy diffusion, and realistic radiative transfer modeling, to study the CH3 abundances in the upper atmosphere of the giant planets and Titan. We identify the key reactions that control the concentrations of CH3 in the model, such as the three-body recombination reaction, CH3 + CH3 + M yields C2H6 + M. We evaluate and extrapolate the three-body rate constant of this reaction to the low-temperature limit (1.8 x 10(exp -16) T(sup -3.75) e(sup -300/T), T < 300 K) and compare methyl radical abundances in five atmospheres: Jupiter, Saturn, Uranus, Neptune, and Titan. The sensitivity of our models to the rate coefficients for the reactions H + CH3 + M yields CH4 + M, H + C2H3 yields C2H2 + H2, (sup 1)CH2 + H2 yields CH3 + H, and H + C2H5 yields 2CH3, the branching ratios of CH4 photolysis, vertical mixing in the five atmospheres, and Lyman alpha photon enhancement at the orbit of Neptune have all been tested. The results of our model CH3 abundances for both Saturn (5.1 x 10(exp 13) / sq cm) and Neptune (2.2 x 10(exp 13) / sq cm) show good agreement with ISO Short Wavelength Spectrometer measurements. Using the same chemical reaction set, our calculations also successfully generate vertical profiles of stable hydrocarbons consistent with Voyager and ground-based measurements in these outer solar system atmospheres. Predictions of CH3 column concentrations (for p <= 0.2 mbar) in the atmospheres of Jupiter (3.3 x 10(exp 13) /sq cm), Uranus (2.5 x 10(exp 12) / sq cm), and Titan (1.9 x 10(exp 15) / sq cm) may be checked by future observations.
NASA Astrophysics Data System (ADS)
Dehghany, Mohammad; Zhang, Haohui; Naghdabadi, Reza; Hu, Yuhang
2018-07-01
Gels are composed of crosslinked polymer network and solvent molecules. When the main chain network is incorporated with functional groups that can undergo photo-chemical reaction upon light irradiation, the gel becomes light-responsive. Under irradiation, the photosensitive groups may undergo photo-ionization process and generate charges that are attached to the main chain or diffuse into the solvent. The newly generated ions disturb the osmotic balance of the gel medium. As a result, water molecules and mobile ions are driven into or out of the network to compensate the osmotic imbalance, which eventually leads to macroscopic swelling or shrinking of the gel. In this work, we develop a rigorous nonequilibrium thermodynamic framework to study the coupled photo-chemo-electro-mechanical responses of the photo-ionizable gels. We first discuss the mathematical descriptions of the light propagation and photo-induced chemical reactions inside the gel, as well as the equations governing the kinetics of the photo-chemical reactions. We then explore the consequences of the fundamental laws of thermodynamics in deriving the governing equations of the photo-ionizable gels. The continuous light irradiation drives the gel system towards a new thermodynamic stationary state that is away from equilibrium and is accompanied by energy dissipation. Next, we focus on the photo stationary state of the gel and explore the consequences of the continuous irradiation on the mechanical response of the gel in both optically thin and optically thick configurations. In the optically thin cases, we quantitatively compare the theoretical prediction with experimental data available in the literature. In one example, we show that the model can quantitatively capture the photo-tunable volume-phase transition of the Poly(N-isopropylacrylamide) (PNIPAM) gel grafted with photo-responsive triphenylmethane leucocyanide groups. In another example, we show that the model can quantitatively study the effect of salt concentration and pH value of the external solution on the photo-induced swelling of the polyacrylamide gels incorporated with triphenylmethane leucohydroxide groups. Finally, for the optically thick gels, we develop a finite element code to study their inhomogeneous deformations due to the light attenuation. This work will be of great importance for precise control and optimal design of photo-ionizable gels in future applications.
Investigation into photostability of soybean oils by thermal lens spectroscopy
NASA Astrophysics Data System (ADS)
Savi, E. L.; Malacarne, L. C.; Baesso, M. L.; Pintro, P. T. M.; Croge, C.; Shen, J.; Astrath, N. G. C.
2015-06-01
Assessment of photochemical stability is essential for evaluating quality and the shelf life of vegetable oils, which are very important aspects of marketing and human health. Most of conventional methods used to investigate oxidative stability requires long time experimental procedures with high consumption of chemical inputs for the preparation or extraction of sample compounds. In this work we propose a time-resolved thermal lens method to analyze photostability of edible oils by quantitative measurement of photoreaction cross-section. An all-numerical routine is employed to solve a complex theoretical problem involving photochemical reaction, thermal lens effect, and mass diffusion during local laser excitation. The photostability of pure oil and oils with natural and synthetic antioxidants is investigated. The thermal lens results are compared with those obtained by conventional methods, and a complete set of physical properties of the samples is presented.
Seasonal budgets of ozone and oxidant precursors in an industrial coastal area of northern Italy
NASA Technical Reports Server (NTRS)
Georgiadis, T.; Alberti, L.; Bonasoni, P.; Fortezza, F.; Giovanelli, G.; Strocchi, V.
1994-01-01
The seasonal budgets and evolution of photochemical oxidants reported for greater Ravenna's urban-industrial area in the present study were calculated using the combined data from on-site systematic surveys (1978-1989) and from the monitoring network of the local environmental authorities. The notable differences in the concentrations of ozone and nitrogen oxides depended on season, and meteorological variables showed a marked correlation to the seasonal budget of trace constituents. The weak local circulation, the land-sea breeze system, and high solar radiation in summer, which may persist at length because of the anticyclonic conditions, can produce episodes of intense photochemical reactions. In winter, by contrast, low solar radiation and the absence of the breeze system results in very different evolutions of both pollutant concentrations and their seasonal budget.
Measurements of lower carbonyls in Rome ambient air
NASA Astrophysics Data System (ADS)
Possanzini, M.; Di Palo, V.; Petricca, M.; Fratarcangeli, R.; Brocco, D.
Ambient levels and diurnal profiles of lower carbonyls were measured in Rome during selected days of summer 1994 and winter 1995. The most abundant carbonyls were formaldehyde (up to 27 ppb) followed by ethanal (< 17 ppb) and acetone (< 9 ppb). Gas-phase concentrations of other seven carbonyls were in the 0-3 ppb range. The results were discussed with respect to direct emissions and photochemical production. Using carbonyl/CO concentration ratios mobil source emissions of carbonyls were estimated for the urban area. The secondary production of C 1-C 3 aldehydes from reactions of alkenes with O 3 and OH radicals during the early morning hours of summer days was also calculated. The daytime pattern of carbonyls was found to be similar to that of toluene in wintertime and close to that of ozone in summer periods conductive to photochemical pollution episodes.
Comparison of Direct and Indirect Photolysis in Imazosulfuron Photodegradation.
Rering, Caitlin; Williams, Katryn; Hengel, Matt; Tjeerdema, Ronald
2017-04-19
Imazosulfuron, a sulfonylurea herbicide used in rice cultivation, has been shown to undergo photodegradation in water, but neither the photochemical mechanism nor the role of indirect photolysis is known. The purpose of this study was to investigate the underlying processes that operate on imazosulfuron during aqueous photodegradation. Our data indicate that in the presence of oxygen, most photochemical degradation proceeds through a direct singlet-excited state pathway, whereas triplet-excited state imazosulfuron enhanced decay rates under low dissolved oxygen conditions. Oxidation by hydroxyl radical and singlet oxygen were not significant. At dissolved organic matter (DOM) concentrations representative of rice field conditions, fulvic acid solutions exhibited faster degradation than rice field water containing both humic and fulvic acid fractions. Both enhancement, via reaction with triplet-state DOM, and inhibition, via competition for photons, of degradation was observed in DOM solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varma, S.D.; Mooney, J.M.
Studies have been conducted to examine the implications of photochemical generation of O2- and its derivatization to H/sub 2/O/sub 2/ and OH in the physiology of the lens in vitro. Physiological status was determined by measuring the uptake of rubidium by the intact tissue when cultured in riboflavin-containing medium, in dark and light, and in the presence and absence of various scavengers. In the presence of light, the uptake of rubidium in the lens was greatly diminished; this suggests photodamage to the tissue. MnSOD and ferricyanide protected against this photochemical damage. The damaging process was thus initiated by the generationmore » of O2-. The tissue damage was also attenuated by catalase, ferrocyanide, and mannitol. These results, therefore, suggest the participation of hydrogen peroxide and the subsequent Haber-Weiss reaction in the photodamaging process.« less
Solar ultraviolet radiation induced variations in the stratosphere and mesosphere
NASA Technical Reports Server (NTRS)
Hood, L. L.
1987-01-01
The detectability and interpretation of short-term solar UV induced responses of middle atmospheric ozone, temperature, and dynamics are reviewed. The detectability of solar UV induced perturbations in the middle atmosphere is studied in terms of seasonal and endogenic dynamical variations. The interpretation of low-latitude ozone and possible temperature responses on the solar rotation time scale is examined. The use of these data to constrain or test photochemical model predictions is discussed.
Drama in Dynamics: Boom, Splash, and Speed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Netzloff, Heather Marie
2004-12-19
The full nature of chemistry and physics cannot be captured by static calculations alone. Dynamics calculations allow the simulation of time-dependent phenomena. This facilitates both comparisons with experimental data and the prediction and interpretation of details not easily obtainable from experiments. Simulations thus provide a direct link between theory and experiment, between microscopic details of a system and macroscopic observed properties. Many types of dynamics calculations exist. The most important distinction between the methods and the decision of which method to use can be described in terms of the size and type of molecule/reaction under consideration and the type andmore » level of accuracy required in the final properties of interest. These considerations must be balanced with available computational codes and resources as simulations to mimic ''real-life'' may require many time steps. As indicated in the title, the theme of this thesis is dynamics. The goal is to utilize the best type of dynamics for the system under study while trying to perform dynamics in the most accurate way possible. As a quantum chemist, this involves some level of first principles calculations by default. Very accurate calculations of small molecules and molecular systems are now possible with relatively high-level ab initio quantum chemistry. For example, a quantum chemical potential energy surface (PES) can be developed ''on-the-fly'' with dynamic reaction path (DRP) methods. In this way a classical trajectory is developed without prior knowledge of the PES. In order to treat solvation processes and the condensed phase, large numbers of molecules are required, especially in predicting bulk behavior. The Effective Fragment Potential (EFP) method for solvation decreases the cost of a fully quantum mechanical calculation by dividing a chemical system into an ab initio region that contains the solute and an ''effective fragment'' region that contains the remaining solvent molecules. But, despite the reduced cost relative to fully QM calculations, the EFP method, due to its complex, QM-based potential, does require more computation time than simple interaction potentials, especially when the method is used for large scale molecular dynamics simulations. Thus, the EFP method was parallelized to facilitate these calculations within the quantum chemistry program GAMESS. The EFP method provides relative energies and structures that are in excellent agreement with the analogous fully quantum results for small water clusters. The ability of the method to predict bulk water properties with a comparable accuracy is assessed by performing EFP molecular dynamics simulations. Molecular dynamics simulations can provide properties that are directly comparable with experimental results, for example radial distribution functions. The molecular PES is a fundamental starting point for chemical reaction dynamics. Many methods can be used to obtain a PES; for example, assuming a global functional form for the PES or, as mentioned above, performing ''on-the-fly'' dynamics with Al or semi-empirical calculations at every molecular configuration. But as the size of the system grows, using electronic structure theory to build a PES and, therefore, study reaction dynamics becomes virtually impossible. The program Grow builds a PES as an interpolation of Al data; the goal is to attempt to produce an accurate PES with the smallest number of Al calculations. The Grow-GAMESS interface was developed to obtain the Al data from GAMESS. Classical or quantum dynamics can be performed on the resulting surface. The interface includes the novel capability to build multi-reference PESs; these types of calculations are applicable to problems ranging from atmospheric chemistry to photochemical reaction mechanisms in organic and inorganic chemistry to fundamental biological phenomena such as photosynthesis.« less
NASA Astrophysics Data System (ADS)
Cunning, Ross; Silverstein, Rachel N.; Baker, Andrew C.
2018-03-01
Dynamic symbioses with functionally diverse dinoflagellate algae in the genus Symbiodinium may allow some reef corals to alter their phenotypes through `symbiont shuffling', or changes in symbiont community composition. In particular, corals may become more bleaching resistant by increasing the relative abundance of thermally tolerant Symbiodinium in clade D after bleaching. Despite the immediate relevance of this phenomenon to corals living in warming oceans—and to interventions aimed at boosting coral resilience—the mechanisms governing how, why, and when symbiont shuffling occurs are still poorly understood. Here, we performed controlled thermal bleaching and recovery experiments on three species of Caribbean corals hosting mixtures of D1a ( S. trenchii) and other symbionts in clades B or C. We show that the degree of symbiont shuffling is related to (1) the duration of stress exposure and (2) the difference in photochemical efficiency ( F v /F m) of co-occurring symbionts under stress (i.e., the `photochemical advantage' of one symbiont over the other). The advantage of D1a under stress was greatest in Montastraea cavernosa, intermediate in Siderastrea siderea, and lowest in Orbicella faveolata and correlated positively with the magnitude of shuffling toward D1a. In holobionts where D1a had less of an advantage over co-occurring symbionts (i.e., only slightly higher F v /F m under stress), a longer stress duration was required to elicit commensurate increases in D1a abundance. In fact, across these three coral species, 92.9% of variation in the degree of symbiont shuffling could be explained by the time-integrated photochemical advantage of D1a under heat stress. Although F v /F m is governed by numerous factors that this study is unable to resolve mechanistically, its strong empirical relationship with symbiont shuffling helps elucidate general features that govern this process in reef corals, which will help refine predictions of coral responses to environmental change and inform interventions to manipulate symbiont communities to enhance coral resilience.
Infrared matrix-isolation and theoretical studies of the reactions of ferrocene with ozone.
Kugel, Roger W; Pinelo, Laura F; Ault, Bruce S
2015-03-19
The reactions between ferrocene (Cp2Fe) (2a) and ozone (O3) were studied using low-temperature matrix-isolation techniques coupled with theoretical density functional theory (DFT) calculations. Co-deposition of Ar/Cp2Fe and Ar/O3 gas mixtures onto a cryogenically cooled CsI window produced a dark-green charge-transfer complex, Cp2Fe-O3, that photodecomposed upon red (λ ≥ 600 nm) and infrared (λ ≥ 1000 nm) irradiation but was stable to green or blue irradiation. Products of photodecomposition were characterized by FT-IR, oxygen-18 labeling, and DFT calculations using the B3LYP functionals and the 6-311G++(d,2p) basis set. Likely, photochemical products included four structures having the molecular formula C10H10FeO, identified by DFT calculations based on their calculated infrared spectra and (18)O isotope shifts. Each of these calculated molecules had one intact and fully coordinated η(5)-C5H5 cyclopentadienyl (Cp) ring and (1) an η(5)-C5H5O cyclic ether (pyran ring) (2b), (2) an η(4)-C5H5O linear aldehyde (2c), (3) a bidentate cyclic aldehyde with a seven-membered ring including the iron atom (2d), or (4) an Fe-O bond and an η(2)-C5H5 (Cp) ring (2e). No conclusive evidence for a gas-phase thermal reaction between ferrocene and ozone was observed under the conditions of these experiments. However, strong evidence for a surface-catalyzed thermal reaction was observed in merged-jet experiments wherein the gases were premixed before deposition. Surface-catalyzed ferrocene-ozone reaction products included a thin film of Fe2O3 observed on the walls of the merged tube as well as cyclopentadiene (C5H6), cyclopentadienone (C5H4O), and further oxidation products observed in the matrix. Possible mechanisms for both the photochemical and the thermal reactions are discussed.
Physicochemical application of capillary chromatography
NASA Astrophysics Data System (ADS)
Vasil'ev, A. V.; Aleksandrov, E. N.
1992-04-01
The application of capillary gas chromatography in the determination of the free energy, enthalpy, and entropy of sorption, the saturated vapour pressure and activity coefficients, the assessment of the lipophilicity of volatile compounds, and the study of the properties of polymers and liquid crystals is described. The use of reaction cappillary chromatography in kinetic studies of conformational conversions, thermal degradation, and photochemical reactions is examined. Studies on the use of capillary columns for determination of the second virial coefficients and viscosity of gases and the diffusion coefficients in gases, liquids, supercritical fluids, and polymers are analysed. The bibliography includes 114 references.
Shimoda, Tomoe; Morishima, Takeshi; Kodama, Koichi; ...
2018-04-26
Trigonal-bipyramidal Co(II) complexes are used for photochemical carbon dioxide (CO 2) reduction with Ru(bpy) 3 2+ as a photosensitizer, tri-p-tolylamine (TTA) as a reversible quencher, and triethylamine (TEA) as a sacrificial electron donor to produce carbon monoxide and dihydrogen. Here, the CO 2 reduction is slow because of the large structural changes, spin flipping in the cobalt catalytic intermediates, and an uphill reaction for reduction to catalytically active Co(0) by the photoproduced [Ru(bpy) 3] +.
Cuadros, Sara; Dell'Amico, Luca; Melchiorre, Paolo
2017-09-18
Reported herein is a light-triggered organocatalytic strategy for the desymmetrization of achiral 2-fluoro-substituted cyclopentane-1,3-diketones. The chemistry is based on an intermolecular aldol reaction of photochemically generated hydroxy-o-quinodimethanes and simultaneously forges two adjacent fully substituted carbon stereocenters, with one bearing a stereogenic carbon-fluorine unit. The method uses readily available substrates, a simple chiral organocatalyst, and mild reaction conditions to afford an array of highly functionalized chiral 2-fluoro-3-hydroxycyclopentanones. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimoda, Tomoe; Morishima, Takeshi; Kodama, Koichi
Trigonal-bipyramidal Co(II) complexes are used for photochemical carbon dioxide (CO 2) reduction with Ru(bpy) 3 2+ as a photosensitizer, tri-p-tolylamine (TTA) as a reversible quencher, and triethylamine (TEA) as a sacrificial electron donor to produce carbon monoxide and dihydrogen. Here, the CO 2 reduction is slow because of the large structural changes, spin flipping in the cobalt catalytic intermediates, and an uphill reaction for reduction to catalytically active Co(0) by the photoproduced [Ru(bpy) 3] +.
Van Kuiken, Benjamin E.; Ross, Matthew R.; Strader, Matthew L.; ...
2017-05-08
Picosecond X-ray absorption (XA) spectroscopy at the S K-edge (~2.4 keV) is demonstrated and used to monitor excited state dynamics in a small organosulfur molecule (2-Thiopyridone, 2TP) following optical excitation. Multiple studies have reported that the thione (2TP) is converted into the thiol (2-Mercaptopyridine, 2MP) following photoexcitation. However, the timescale and photochemical pathway of this reaction remain uncertain. In this work, time-resolved XA spectroscopy at the S K-edge is used to monitor the formation and decay of two transient species following 400nm excitation of 2TP dissolved in acetonitrile. The first transient species forms within the instrument response time (70 ps)more » and decays within 6 ns. The second transient species forms on a timescale of ~400 ps and decays on a 15 ns timescale. Time-dependent density functional theory is used to identify the first and second transient species as the lowestlying triplet states of 2TP and 2MP, respectively. This study demonstrates transient S K-edge XA spectroscopy as a sensitive and viable probe of time-evolving charge dynamics near sulfur sites in small molecules with future applications towards studying complex biological and material systems.« less
Watching the dynamics of electrons and atoms at work in solar energy conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canton, S. E.; Zhang, X.; Liu, Y.
2015-07-06
The photochemical reactions performed by transition metal complexes have been proposed as viable routes towards solar energy conversion and storage into other forms that can be conveniently used in our everyday applications. In order to develop efficient materials, it is necessary to identify, characterize and optimize the elementary steps of the entire process on the atomic scale. To this end, we have studied the photoinduced electronic and structural dynamics in two heterobimetallic ruthenium–cobalt dyads, which belong to the large family of donor–bridge–acceptor systems. Using a combination of ultrafast optical and X-ray absorption spectroscopies, we can clock the light-driven electron transfermore » processes with element and spin sensitivity. In addition, the changes in local structure around the two metal centers are monitored. These experiments show that the nature of the connecting bridge is decisive for controlling the forward and the backward electron transfer rates, a result supported by quantum chemistry calculations. More generally, this work illustrates how ultrafast optical and X-ray techniques can disentangle the influence of spin, electronic and nuclear factors on the intramolecular electron transfer process. Finally, some implications for further improving the design of bridged sensitizer-catalysts utilizing the presented methodology are outlined.« less
More rapid polar ozone depletion through the reaction of HOCl with HCl on polar stratospheric clouds
NASA Technical Reports Server (NTRS)
Prather, Michael J.
1992-01-01
The direct reaction of HOCl with HCl is shown here to play a critical part in polar ozone loss. Observations of high levels of OClO and ClO in the springtime Antarctic stratosphere confirm that most of the available chlorine is in the form of ClO(x). But current photochemical models have difficulty converting HCl to ClO(x) rapidly enough in early spring to account fully for the observations. Here, a chemical model is used to show that the direct reaction of HOCl with HCl provides the missing mechanism. As alternative sources of nitrogen-containing oxidants have been converted in the late autumn to inactive HNO3 by known reactions on the sulfate layer aerosols, the reaction of HOCl with HCl on polar stratospheric clouds becomes the most important pathway for releasing that stratospheric chlorine which goes into polar night as HCl.