Photochemical coatings for the prevention of bacterial colonization.
Dunkirk, S G; Gregg, S L; Duran, L W; Monfils, J D; Haapala, J E; Marcy, J A; Clapper, D L; Amos, R A; Guire, P E
1991-10-01
Biomaterials are being used with increasing frequency for tissue substitution. Implantable, prosthetic devices are instrumental in the saving of patients' lives and enhancing the quality of life for many others. However, the greatest barrier to expanding the use of biomedical devices is the high probability of bacterial adherence and proliferation, causing very difficult and often untreatable medical-device centered infections. The difficulty in treating such infections results in great danger to the patient, and usually retrieval of the device with considerable pain and suffering. Clearly, development of processes that make biomedical devices resistant to bacterial adherence and colonization would have widespread application in the field of biomedical technology. A photochemical surface modification process is being investigated as a generic means of applying antimicrobial coatings to biomedical devices. The photochemical process results in covalent immobilization of coatings to all classes of medical device polymers. A discussion of the photochemical surface modification process and preliminary results demonstrating the success of photochemical coatings in formulating microbial-resistant surfaces are presented in this paper.
Excimer laser induced surface chemical modification of polytetrafluoroethylene
NASA Astrophysics Data System (ADS)
Révész, K.; Hopp, B.; Bor, Z.
1997-02-01
Polytetrafluoroethylene has a notoriously non adhesive and non reactive character. Its successful surface photochemical modification was performed by irradiating the polytetrafluoroethylene/liquid triethylamine interface with an ArF excimer laser (λ=193 nm). Due to the photochemical treatment the polytetrafluoroethylene surface became more hydrophilic. The water receding contact angle decreased from 94° to 43°. The reaction cross section was determined from the decrease of the contact angles. It was found to be as high as 6.4×10-18 cm2. XPS measurements evidenced the removal of fluorine from the polytetrafluoroethylene, incorporation of alkyl carbon and nitrogen. Photochemical dissociation path of the triethylamine makes probable that it bonded to the fluoropolymer backbone via the α-carbon atom of an ethyl group. A radical, or a photoinduced electron transfer mechanism was suggested to describe this reaction. A selective area electroless plating of silver was performed after pretreating the sample with patterned photomodification. The increased adhesion of the sample was proved by gluing with epoxy resin. As a result of the surface modification the tensile strength of gluing increased by 210× and reached 24% of the value characteristic for the bulk material.
NASA Astrophysics Data System (ADS)
Sergeeva, Natalia N.; Chaika, Alexander N.; Walls, Brian; Murphy, Barry E.; Walshe, Killian; Martin, David P.; Richards, Billy D. O.; Jose, Gin; Fleischer, Karsten; Aristov, Victor Yu; Molodtsova, Olga V.; Shvets, Igor V.; Krasnikov, Sergey A.
2018-07-01
Herein, we report a simple method for a covalent modification of surface supported graphene with photoactive dyes. Graphene was fabricated on cubic-SiC/Si(001) wafers due to their low cost and suitability for mass-production of continuous graphene fit for electronic applications on millimetre scale. Functionalisation of the graphene surface was carried out in solution via white light induced photochemical generation of phenazine radicals from phenazine diazonium salt. The resulting covalently bonded phenazine-graphene hybrid structure was characterised by scanning tunnelling microscopy (STM) and spectroscopy (STS), Raman spectroscopy and density functional theory (DFT) calculations. It was found that phenazine molecules form an overlayer, which exhibit a short range order with a rectangular unit cell on the graphene surface. DFT calculations based on STM results reveal that molecules are standing up in the overlayer with the maximum coverage of 0.25 molecules per graphene unit cell. Raman spectroscopy and STM results show that the growth is limited to one monolayer of standing molecules. STS reveals that the phenazine-graphene hybrid structure has a band gap of 0.8 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulchin, Yu N; Mayor, A Yu; Proschenko, D Yu
Specific features of modification of a new photorecording material based on PMMA doped with 2,2-difluoro-4-(9-antracyl)-6-methyl-1,3,2-dioxaborine are studied. The recording of the filament distribution in the studied material occurs at the expense of two-photon photochemical processes. The three-dimensional modification of the material is achieved in the filamentation regime without supercontinuum generation. It is possible to order the volume structure by preliminary photo-modification of the near-surface layer of the material. (extreme light fields and their applications)
Development of fibrin-free intraocular lens with photochemical surface modification
NASA Astrophysics Data System (ADS)
Sato, Yuji; Tanizawa, Katsuya; Anai, Hiroyuki; Sato, Nobuhiro; Sato, Yuki; Ajiki, Tooru; Parel, Jean-Marie; Murahara, Masataka
2004-07-01
Having substituted the hydrophilic and hydrophobic groups alternately on the soft acrylic resin intraocular lens (IOL) surface by using an ArF excimer laser and a Xe2 excimer lamp, we have developed the IOL that is free from fibrin. Acrylic resin or PMMA lens has been used as an intraocular lens for 50 years. However, protein and fat are stuck onto the IOL surface after a long implantation, which opacifies the surface (after-cataract). Thus, we designed the micro domain structures of hydrophilic and hydrophobic groups on the IOL surface for fibrin-free. Firstly, the IOL was irradiated with the Xe2 excimer lamp in the presence of perfluoropolyether in order to make it hydrophobic. By this photochemical reaction, the CF3 functional groups were substituted on the IOL surface. Secondly, the ArF laser was projected on the IOL through the mask pattern in reduced size in the presence of water in order to be hydrophilic. With the photochemical reaction, the OH groups were substituted at the part exposed. The fibrin adsorption test of the modified IOL surface was carried out with FT-IR; which revealed that the fibrin-sticking rate of the treated sample has decreased by 23% compared with that of the non-treated sample. As a result, the fibrin-free IOL has been made by modifying the surface of the IOL to have the micro domain structures of the hydrophilic and hydrophobic groups that are arrayed alternately. In conclusion, the ideal intraocular lens has been demonstrated.
Direct photodecomposition and photochemically-mediated bacterial degradation (via photochemical modification of otherwise refractory DOM into biologically labile forms) provide
important pathways for the loss of dissolved organic matter in coastal waters. Here we report
lab...
Method of making gold thiolate and photochemically functionalized microcantilevers
Boiadjiev, Vassil I [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Bonnesen, Peter V [Knoxville, TN; Goretzki, Gudrun [Nottingham, GB
2009-08-25
Highly sensitive sensor platforms for the detection of specific reagents, such as chromate, gasoline and biological species, using microcantilevers and other microelectromechanical systems (MEMS) whose surfaces have been modified with photochemically attached organic monolayers, such as self-assembled monolayers (SAM), or gold-thiol surface linkage are taught. The microcantilever sensors use photochemical hydrosilylation to modify silicon surfaces and gold-thiol chemistry to modify metallic surfaces thereby enabling individual microcantilevers in multicantilever array chips to be modified separately. Terminal vinyl substituted hydrocarbons with a variety of molecular recognition sites can be attached to the surface of silicon via the photochemical hydrosilylation process. By focusing the activating UV light sequentially on selected silicon or silicon nitride hydrogen terminated surfaces and soaking or spotting selected metallic surfaces with organic thiols, sulfides, or disulfides, the microcantilevers are functionalized. The device and photochemical method are intended to be integrated into systems for detecting specific agents including chromate groundwater contamination, gasoline, and biological species.
1,2-diketones promoted degradation of poly(epsilon-caprolactone)
NASA Astrophysics Data System (ADS)
Danko, Martin; Borska, Katarina; Ragab, Sherif Shaban; Janigova, Ivica; Mosnacek, Jaroslav
2012-07-01
Photochemical reactions of Benzil and Camphorquinone were used for modification of poly(ɛ-caprolactone) polymer films. Photochemistry of dopants was followed by infrared spectroscopy, changes on polymer chains of matrix were followed by gel permeation chromatography. Benzoyl peroxide was efficiently photochemically generated from benzyl in solid polymer matrix in the presence of air. Following decomposition of benzoyl peroxide led to degradation of matrix. Photochemical transformation of benzil in vacuum led to hydrogen abstraction from the polymer chains in higher extent, which resulted to chains recombination and formation of gel. Photochemical transformation of camphorquinone to corresponding camphoric peroxide was not observed. Only decrease of molecular weight of polymer matrix doped with camphorquinone was observed during the irradiation.
1,2-diketones promoted degradation of poly(epsilon-caprolactone)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danko, Martin; Borska, Katarina; Ragab, Sherif Shaban
2012-07-11
Photochemical reactions of Benzil and Camphorquinone were used for modification of poly({epsilon}-caprolactone) polymer films. Photochemistry of dopants was followed by infrared spectroscopy, changes on polymer chains of matrix were followed by gel permeation chromatography. Benzoyl peroxide was efficiently photochemically generated from benzyl in solid polymer matrix in the presence of air. Following decomposition of benzoyl peroxide led to degradation of matrix. Photochemical transformation of benzil in vacuum led to hydrogen abstraction from the polymer chains in higher extent, which resulted to chains recombination and formation of gel. Photochemical transformation of camphorquinone to corresponding camphoric peroxide was not observed. Only decreasemore » of molecular weight of polymer matrix doped with camphorquinone was observed during the irradiation.« less
Konry, T; Novoa, A; Shemer-Avni, Y; Hanuka, N; Cosnier, S; Lepellec, Arielle; Marks, R S
2005-03-15
We describe herein a newly developed optical microbiosensor for the diagnosis of hepatitis C virus (HCV) by using a novel photoimmobilization methodology based on a photoactivable electrogenerated polymer film deposited upon surface-conductive fiber optics, which are then used to link a biological receptor to the fiber tip through light mediation. This fiber-optic electroconductive surface modification is done by the deposition of a thin layer of indium tin oxide on the silica surface of the fiber optics. Monomers are then electropolymerized onto the conductive metal oxide surface; thereafter, the fibers are immersed in a solution containing HCV-E2 envelope protein antigen and illuminated with UV light (wavelength approximately 345 nm). As a result of the photochemical reaction, a thin layer of the antigen becomes covalently bound to the benzophenone-modified surface. The photochemically modified fiber optics were tested as immunosensors for the detection of anti-E2 protein antibody analyte that was measured through chemiluminescence reaction. The biosensor was tested for sensitivity, specificity, and overall practicality. Our results suggest that the detection of anti-E2 antibodies with this microbiosensor may enhance significantly HCV serological standard testing especially among patients during dialysis, which were diagnosed as HCV negative, by standard immunological tests, but were known to carry the virus. If transformed into an easy to use procedure, this assay might be used in the future as an important clinical tool for HCV screening in blood banks.
Fan, Jiayun; Chang, Xingmao; He, Meixia; Shang, Congdi; Wang, Gang; Yin, Shiwei; Peng, Haonan; Fang, Yu
2016-07-20
Modification of naphthalene diimide (NDI) resulted in a photochemically stable, fluorescent 3,4,5-tris(dodecyloxy)benzamide derivative of NDI (TDBNDI), and introduction of the long alkyl chains endowed the compound with good compatibility with commonly found organic solvents and in particular superior self-assembly in the solution state. Further studies revealed that TDBNDI forms gels with nine of the 18 solvents tested at a concentration of 2.0% (w/v), and the critical gelation concentrations of five of the eight gels are lower than 1.0% (w/v), indicating the high efficiency of the compound as a low-molecular mass gelator (LMMG). Transmission electron microscopy, scanning electron microscopy, and confocal laser scanning microscopy studies revealed the networked fibrillar structure of the TDBNDI/methylcyclohexane (MCH) gel. On the basis of these findings, a fluorescent film was developed via simple spin-coating of the TDBNDI/MCH gel on a glass substrate surface. Fluorescence behavior and sensing performance studies demonstrated that this film is photochemically stable, and sensitive and selective to the presence of aniline vapor. Notably, the response is instantaneous, and the sensing process is fully and quickly reversible. This case study demonstrates that derivatization of photochemically stable fluorophores into LMMGs is a good strategy for developing high-performance fluorescent sensing films.
A New Pathway for Protein Haptenation by β-Lactams.
Pérez-Ruíz, Raúl; Lence, Emilio; Andreu, Inmaculada; Limones-Herrero, Daniel; González-Bello, Concepción; Miranda, Miguel A; Jiménez, M Consuelo
2017-10-09
The covalent binding of β-lactams to proteins upon photochemical activation has been demonstrated by using an integrated approach that combines photochemical, proteomic and computational studies, selecting human serum albumin (HSA) as a target protein and ezetimibe (1) as a probe. The results have revealed a novel protein haptenation pathway for this family of drugs that is an alternative to the known nucleophilic ring opening of β-lactams by the free amino group of lysine residues. Thus, photochemical ring splitting of the β-lactam ring, following a formal retro-Staudinger reaction, gives a highly reactive ketene intermediate that is trapped by the neighbouring lysine residues, leading to an amide adduct. For the investigated 1/HSA system, covalent modification of residues Lys414 and Lys525, which are located in sub-domains IIIA and IIIB, respectively, occurs. The observed photobinding may constitute the key step in the sequence of events leading to photoallergy. Docking and molecular dynamics simulation studies provide an insight into the molecular basis of the selectivity of 1 for these HSA sub-domains and the covalent modification mechanism. Computational studies also reveal positive cooperative binding of sub-domain IIIB that explains the experimentally observed modification of Lys414, which is located in a barely accessible pocket (sub-domain IIIA). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Zhenhua; Wu, Zhengfang; Yang, Peng; Yang, Wantai
2014-09-01
It is generally accepted that Ce(4+) is unable to directly oxidize unreactive alkyl C-H bonds without the assistance of adjacent polar groups. Herein, we demonstrate in our newly developed confined photochemical reaction system that this recognized issue may be challenged. As we found, when a thin layer of a CeCl(3)/HCl aqueous solution was applied to a polymeric substrate and the substrate subjected to UV irradiation, Ce(3+) was first photooxidized to form Ce(4+) in the presence of H(+), and the in situ formed Ce(4+) then performs an oxidation reaction on the C-H bonds of the polymer surface to form surface-carbon radicals for radical graft polymerization reactions and functional-group transformations, while reducing to Ce(3+) and releasing H(+) in the process. This photoinduced cerium recycling redox (PCRR) reaction behaved as a biomimetic system in an artificial recycling reaction, leading to a sustainable chemical modification strategy for directly transforming alkyl C-H bonds on polymer surfaces into small-molecule groups and polymer brushes. This method is expected to provide a green and economical tool for industrial applications of polymer-surface modification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Collioud, A; Clémence, J F; Sänger, M; Sigrist, H
1993-01-01
Light-dependent oriented and covalent immobilization of target molecules has been achieved by combining two modification procedures: light-dependent coupling of target molecules to inert surfaces and thiol-selective reactions occurring at macromolecule or substrate surfaces. For immobilization purposes the heterobifunctional reagent N-[m-[3-(trifluoromethyl)diazirin-3-yl]phenyl]-4-maleimidobutyr amide was synthesized and chemically characterized. The photosensitivity of the carbene-generating reagent and its reactivity toward thiols were ascertained. Light-induced cross-linking properties of the reagent were documented (i) by reacting first the maleimide function with a thiolated surface, followed by carbene insertion into applied target molecules, (ii) by photochemical coupling of the reagent to an inert support followed by thermochemical reactions with thiol functions, and (iii) by thermochemical modification of target molecules prior to carbene-mediated insertion into surface materials. Procedures mentioned led to light-dependent covalent immobilization of target molecules including amino acids, a synthetic peptide, and antibody-derived F(ab') fragments. Topically selective, light-dependent immobilization was attained with the bifunctional reagent by irradiation of coated surfaces through patterned masks. Glass and polystyrene served as substrates. Molecular orientation is asserted by inherently available or selectively introduced terminal thiol functions in F(ab') fragments and synthetic polypeptides, respectively.
JPRS Report, Science & Technology, USSR: Chemistry
1990-11-08
desorption cycle. The photochemical activity of the oxides was determined by irradiating them with UV light at 353 K during the oxidation reactions of...No 1, Jan 90] 8 Acid-Base Properties Photochemically Active Titanium Oxide Surfaces [N D. Konovalova, V. I. Stepanenko, etal; UKRAINSKIY...Figures 4; references 13: 10 Russian, 3 Western. UDC 541.183 Acid-Base Properties Photochemically Active Titanium Oxide Surfaces 907M0149B Kiev
Wang, Chun; Zhuang, Hao; Huang, Nan; Heuser, Steffen; Schlemper, Christoph; Zhai, Zhaofeng; Liu, Baodan; Staedler, Thorsten; Jiang, Xin
2016-06-14
As a potential material for biosensing applications, gallium nitride (GaN) films have attracted remarkable attention. In order to construct GaN biosensors, a corresponding immobilization of biolinkers is of great importance in order to render a surface bioactive. In this work, two kinds of n-alkenes with different carbon chain lengths, namely allylamine protected with trifluoroacetamide (TFAAA) and 10-aminodec-1-ene protected with trifluoroacetamide (TFAAD), were used to photochemically functionalize single crystalline GaN films. The successful linkage of both TFAAA and TFAAD to the GaN films is confirmed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurement. With increased UV illumination time, the intensity of the secondary ions corresponding to the linker molecules initially increases and subsequently decreases in both cases. Based on the SIMS measurements, the maximum coverage of TFAAA is achieved after 14 h of UV illumination, while only 2 h is required in the case of TFAAD to reach the situation of a fully covered GaN surface. This finding leads to the conclusion that the reaction rate of TFAAD is significantly higher compared to TFAAA. Measurements by atomic force microscopy (AFM) indicate that the coverage of GaN films by a TFAAA layer leads to an increased surface roughness. The atomic terraces, which are clearly observable for the pristine GaN films, disappear once the surface is fully covered by a TFAAA layer. Such TFAAA layers will feature a homogeneous surface topography even for reaction times of 24 h. In contrast to this, TFAAD shows strong cross-polymerization on the surface, this is confirmed by optical microscopy. These results demonstrate that TFAAA is a more suitable candidate as biolinker in context of the GaN surfaces due to its improved controllability.
Degradation of artificial sweeteners via direct and indirect photochemical reactions.
Perkola, Noora; Vaalgamaa, Sanna; Jernberg, Joonas; Vähätalo, Anssi V
2016-07-01
We studied the direct and indirect photochemical reactivity of artificial sweeteners acesulfame, saccharin, cyclamic acid and sucralose in environm entally relevant dilute aqueous solutions. Aqueous solutions of sweeteners were irradiated with simulated solar radiation (>290 nm; 96 and 168 h) or ultraviolet radiation (UVR; up to 24 h) for assessing photochemical reactions in surface waters or in water treatment, respectively. The sweeteners were dissolved in deionised water for examination of direct photochemical reactions. Direct photochemical reactions degraded all sweeteners under UVR but only acesulfame under simulated solar radiation. Acesulfame was degraded over three orders of magnitude faster than the other sweeteners. For examining indirect photochemical reactions, the sweeteners were dissolved in surface waters with indigenous dissolved organic matter or irradiated with aqueous solutions of nitrate (1 mg N/L) and ferric iron (2.8 mg Fe/L) introduced as sensitizers. Iron enhanced the photodegradation rates but nitrate and dissolved organic matter did not. UVR transformed acesulfame into at least three products: iso-acesulfame, hydroxylated acesulfame and hydroxypropanyl sulfate. Photolytic half-life was one year for acesulfame and more than several years for the other sweeteners in surface waters under solar radiation. Our study shows that the photochemical reactivity of commonly used artificial sweeteners is variable: acesulfame may be sensitive to photodegradation in surface waters, while saccharin, cyclamic acid and sucralose degrade very slowly even under the energetic UVR commonly used in water treatment.
NASA Astrophysics Data System (ADS)
Blacha-Grzechnik, Agata; Piwowar, Katarzyna; Krukiewicz, Katarzyna; Koscielniak, Piotr; Szuber, Jacek; Zak, Jerzy K.
2016-05-01
The selected group of four amine-derivatives of phenothiazine was covalently grafted to the glassy carbon surface in the four-step procedure consisting of the electrochemical reduction of the diazonium salt followed by the electrochemical and chemical post-modification steps. The proposed strategy involves the bonding of linker molecule to which the photosensitizer is attached. The synthesized organic layers were characterized by means of cyclic voltammetry, XPS and Raman Spectroscopy. It was shown that the phenothiazines immobilized via proposed strategy retain their photochemical properties and are able to generate 1O2 when activated by the laser radiation. The effectiveness of in situ singlet oxygen generation by those new solid photoactive materials was determined by means of UVVis spectroscopy. The reported, covalently modified solid surfaces may find their application as the singlet oxygen photogenerators in the fine chemicals' synthesis or in the wastewater treatment.
Sulfur Chemistry in the Early and Present Atmosphere of Mars
NASA Technical Reports Server (NTRS)
Levine, Joel S.; Summers, M. E.
2011-01-01
Atmospheric sulfur species resulting from volcanic emissions impact the composition and chemistry of the atmosphere, impact the climate, and hence, the habitability of Mars and impact the mineralogy and composition of the surface of Mars. The geochemical/ photochemical cycling of sulfur species between the interior (via volcanism), the atmosphere (atmospheric photochemical and chemical processes) and the deposition of sulfuric acid on the surface of Mars is an important, but as yet poorly understood geochemical/ photochemical cycle on Mars. There is no observational evidence to indicate that Mars is volcanically active at the present time, however, there is strong evidence that volcanism was an important and widespread process on early Mars. The chemistry and photochemistry of sulfur species in the early and present atmosphere of Mars will be assessed using a one-dimensional photochemical model. Since it is generally assumed that the atmosphere of early Mars was significantly denser than the present 6-millibar atmosphere, photochemical calculations were performed for the present atmosphere and for the atmosphere of early Mars with assumed surface pressures of 60 and 350-millibars, where higher surface pressure resulted from enhanced atmospheric concentrations of carbon dioxide (CO2). The following sections include the results of earlier modeling studies, a summary of the one-dimensional photochemical model used in this study, a summary of the photochemistry and chemistry of sulfur species in the atmosphere of Mars and some of the results of the calculations.
NASA Astrophysics Data System (ADS)
Liu, Chaoqun; Chen, Zhaowei; Wang, Zhenzhen; Li, Wei; Ju, Enguo; Yan, Zhengqing; Liu, Zhen; Ren, Jinsong; Qu, Xiaogang
2016-06-01
As a novel technique, photochemical internalization (PCI) has been employed as a new approach to overcome endo/lysosomal restriction, which is one of the main difficulties in both drug and gene delivery. However, the complicated synthesis procedure (usually requiring the self-assembly of polymers, photosensitizers and cargos) and payload specificity greatly limit its further application. In this paper, we employ a highly fluorescent graphitic hollow carbon nitride nanosphere (GHCNS) to simultaneously serve as a PCI photosensitizer, an imaging agent and a drug carrier. The surface modification of GHCNS with multifunctional polysaccharide hyaluronic acid (HA) endows the system with colloidal stability, biocompatibility and cancer cell targeting ability. After CD44 receptor-mediated endocytosis, the nanosystem is embedded in endo/lysosomal vesicles and HA could be specially degraded by hyaluronidase (Hyal), inducing open pores. In the following, with visible light illumination, GHCNS could produce ROS that effectively induced lipid peroxidation and caused endo/lysosomal membrane break, accelerating the cytoplasmic release of the drug in the targeted and irradiated cells. As a result, significantly increased therapeutic potency and specificity against cancer cells could be achieved.As a novel technique, photochemical internalization (PCI) has been employed as a new approach to overcome endo/lysosomal restriction, which is one of the main difficulties in both drug and gene delivery. However, the complicated synthesis procedure (usually requiring the self-assembly of polymers, photosensitizers and cargos) and payload specificity greatly limit its further application. In this paper, we employ a highly fluorescent graphitic hollow carbon nitride nanosphere (GHCNS) to simultaneously serve as a PCI photosensitizer, an imaging agent and a drug carrier. The surface modification of GHCNS with multifunctional polysaccharide hyaluronic acid (HA) endows the system with colloidal stability, biocompatibility and cancer cell targeting ability. After CD44 receptor-mediated endocytosis, the nanosystem is embedded in endo/lysosomal vesicles and HA could be specially degraded by hyaluronidase (Hyal), inducing open pores. In the following, with visible light illumination, GHCNS could produce ROS that effectively induced lipid peroxidation and caused endo/lysosomal membrane break, accelerating the cytoplasmic release of the drug in the targeted and irradiated cells. As a result, significantly increased therapeutic potency and specificity against cancer cells could be achieved. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07719b
Bodrato, Marco; Vione, Davide
2014-04-01
The APEX software predicts the photochemical transformation kinetics of xenobiotics in surface waters as a function of: photoreactivity parameters (direct photolysis quantum yield and second-order reaction rate constants with transient species, namely ˙OH, CO₃(-)˙, (1)O₂ and the triplet states of chromophoric dissolved organic matter, (3)CDOM*), water chemistry (nitrate, nitrite, bicarbonate, carbonate, bromide and dissolved organic carbon, DOC), and water depth (more specifically, the optical path length of sunlight in water). It applies to well-mixed surface water layers, including the epilimnion of stratified lakes, and the output data are average values over the considered water column. Based on intermediate formation yields from the parent compound via the different photochemical pathways, the software can also predict intermediate formation kinetics and overall yield. APEX is based on a photochemical model that has been validated against available field data of pollutant phototransformation, with good agreement between model predictions and field results. The APEX software makes allowance for different levels of knowledge of a photochemical system. For instance, the absorption spectrum of surface water can be used if known, or otherwise it can be modelled from the values of DOC. Also the direct photolysis quantum yield can be entered as a detailed wavelength trend, as a single value (constant or average), or it can be defined as a variable if unknown. APEX is based on the free software Octave. Additional applications are provided within APEX to assess the σ-level uncertainty of the results and the seasonal trend of photochemical processes.
NASA Astrophysics Data System (ADS)
Larena, A.; Ochoa, S. Jimenez de
2004-11-01
Polypropylene matrix composites, with different reinforcement degrees of long glass fibres, are usually used in different fields of the industry, like aeronautics or automotive. Owed to their huge application field, and work under diverse and severe conditions, samples of the materials were exposed to artificial accelerated photo ageing in UV chamber (Heraeus Xenotest 15OS). Although the oxidative mechanism of the PP is known enough, the fact that the material presents a high content of glass fibre, cause a surface degradation higher than that the case of no reinforced materials, owed to the presence of the fibres near the surface. In order to study this topographic modifications, the optical confocal microscopy is used that allows us the analysis of the material surface with more accuracy than a surface profiler, and with nanometric precision. We also want a correlation between surface degradation studied by confocal microscopy and reflectometer measurements. By this way, we can know the surface state, and the degradation evolution, by means of a set of easy measurements, taken with a portable reflectometer, in samples at work, without preparation. Since these materials shall fulfil some aesthetic requirements, we study also, by means of UV-vis spectroscopy, Yellow Index and White Index variations, trying to explain the photochemical processes causing these modifications. Also, the fact that these materials are usually subjected to surface treatments like adhesion or painting makes necessary the study of surface energy. We study the variation of this factor with exposing time and percentage of fibre, by means of contact angle measurements, with different liquids of known surface tensions.
FIBER OPTICS: Role of point defects in the photosensitivity of hydrogen-loaded phosphosilicate glass
NASA Astrophysics Data System (ADS)
Larionov, Yu V.
2010-08-01
It is shown that point defect modifications in hydrogen-loaded phosphosilicate glass (PSG) do not play a central role in determining its photosensitivity. Photochemical reactions that involve a two-step point defect modification and pre-exposure effect are incapable of accounting for photoinduced refractive index changes. It seems likely that a key role in UV-induced refractive index modifications is played by structural changes in the PSG network. Experimental data are presented that demonstrate intricate network rearrangement dynamics during UV exposure of PSG.
Wang, Huibin; Zhang, Yiming; Yuan, Xun; Chen, Yi; Yan, Mingdi
2010-01-01
A universal photochemical method has been established for the immobilization of intact carbohydrates and their analogues, and for the fabrication of carbohydrate microarrays. The method features the use of perfluorophenyl azide (PFPA)-modified substrates and the photochemical reaction of surface azido groups with printed carbohydrates. Various aldoses, ketoses, non-reducing sugars such as alditols and their derivatives can be directly arrayed on the PFPA-modified chips. The lectin-recognition ability of arrayed mannose, glucose and their oligo- and polysaccharides were confirmed using surface plasmon resonance imaging and laser-induced fluorescence imaging. PMID:21138274
Wang, Huibin; Zhang, Yiming; Yuan, Xun; Chen, Yi; Yan, Mingdi
2011-01-19
A universal photochemical method has been established for the immobilization of intact carbohydrates and their analogues, and for the fabrication of carbohydrate microarrays. The method features the use of perfluorophenyl azide (PFPA)-modified substrates and the photochemical reaction of surface azido groups with printed carbohydrates. Various aldoses, ketoses, nonreducing sugars such as alditols, and their derivatives can be directly arrayed on the PFPA-modified chips. The lectin-recognition ability of arrayed mannose, glucose, and their oligo- and polysaccharides were confirmed using surface plasmon resonance imaging and laser-induced fluorescence imaging.
Venus ionosphere: photochemical and thermal diffusion control of ion composition.
Bauer, S J; Donahue, T M; Hartle, R E; Taylor, H A
1979-07-06
The major photochemical sources and sinks for ten of the ions measured by the ion mass spectrometer on the Pioneer Venus bus and orbiter spacecraft that are consistent with the neutral gas composition measured on the same spacecraft have been identified. The neutral gas temperature (Tn) as a function of solar zenith angle (chi) derived from measured ion distributions in photochemical equilibrium is given by Tn (K) = 323 cos(1/5)chi. Above 200 kilometers, the altitude behavior of ions is generally controlled by plasma diffusion, with important modifications for minor ions due to thermal diffusion resulting from the observed gradients of plasma temperatures. The dayside equilibrium distributions of ions are sometimes perturbed by plasma convection, while lateral transport of ions from the dayside seems to be a major source of the nightside ionosphere.
PREFACE Surface Modifications of Diamond and Related Materials (Session D, E-MRS Spring Meeting)
NASA Astrophysics Data System (ADS)
Nebel, Christoph E.
2010-11-01
This special issue contains selected papers which were presented at the E-MRS Symposium BIOMATERIALS, SENSORS & SURFACES, D: 'Surface modifications of diamond and related materials' which was held on 7-9 June 2010 in Strasbourg (France). With about 54 oral and poster presentations given from teams all over the world it was a very interesting, dense and lively meeting. The symposium focused on chemical modifications applied to graft surfaces of diamond, nano-diamond particles, diamond-like carbon, graphene, graphite and carbon nano-tubes with linker molecular layers for realization of bio-sensors, bio-markers, separation techniques, and switchable chemical links. Presented techniques span spontaneous bonding to photo-chemical attachment, electrochemical modifications, to Suzuki-coupling of aryl molecules. Special attention was drawn to mechanisms driving bonding kinetics such as electron transfer reactions, hydrogen cleavage reactions by nucleophilic molecules and growths schemas which vary from correlated two-dimensional chain reactions to three-dimensional cross polymerization. Hydrogen terminations, surface defects, surface roughness and atomic arrangements of surface carbon atoms were of interest to elucidate bonding mechanisms. In addition, bonding stability, either of linker molecules or of complex functionalized surfaces with DNA, proteins and enzymes was discussed by several speakers as well as details of the electronic interfaces between solid transducers and bio-layers. Here the characterization of surface and interface defect densities, of Fermi level pinning and of electron transfer rates was a major topic. Miniaturization of sensor area and application of new detection schemas was discussed. Diamond nano-particles which are increasingly used as biomarkers in drug delivery experiments also attracted attention. The organizers express our gratitude to the international members of the scientific committee who actively contributed to ensure an attractive program in proposing invited speakers. Finally, our symposium would not have been successful without the strong involvement and implication of the EMRS headquarter especially P Siffert, T Lippert, S Schoeffter and C Kocher. They will all find here our sincere thanks. Christoph E Nebel (Chair) Fraunhofer-Institute for Applied Solid State Physics (IAF), Germany Takako Nakamura National Institute of Advanced Industrial Science and Technology (AIST), Japan Philippe Bergonzo CEA-LIST, France John Foord University of Oxford, United Kingdom Kian-Ping Loh National University of Singapore, Singapore
Study on the Fabrication of Paint-Type Si Quantum Dot-Sensitized Solar Cells
NASA Astrophysics Data System (ADS)
Seo, Hyunwoong; Son, Min-Kyu; Kim, Hee-Je; Wang, Yuting; Uchida, Giichiro; Kamataki, Kunihiro; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu
2013-10-01
Quantum dots (QDs) have attracted much attention with their quantum characteristics in the research field of photochemical solar cells. Si QD was introduced as one of alternatives to conventional QD materials. However, their large particles could not penetrate inside TiO2 layer. Therefore, this work proposed the paint-type Si QD-sensitized solar cell. Its heat durability was suitable for the fabrication of paint-type solar cell. Si QDs were fabricated by multihollow discharge plasma chemical vapor deposition and characterized. The paste type, sintering temperature, and Si ratio were controlled and analyzed for better performance. Finally, its performance was enhanced by ZnS surface modification and the whole process was much simplified without sensitizing process.
NASA Astrophysics Data System (ADS)
Valenzuela, Victor Hugo
Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify variability of the PREDICTED to OBSERVED ozone concentrations of both BASELINE model and simulations with modified emissions assessed by the sensitivity analysis. All simulations were found to vary within acceptable ranges of these two criteria variables. Simulation results indicate ozone formation in the PdN region is VOC-limited. Under VOC-limited conditions, modifications to NOx emissions do not produce a marked increase or decrease in ozone concentrations. Modifications to VOC emissions generated the highest variability in ozone concentrations. Increasing VOC emissions by 75% produced results which minimized model bias and error when comparing PREDICTED and OBSERVED ozone concentrations. Increasing VOC emissions by 75% either alone or in combination with a 75% increase in NOx emissions generated PREDICTED ozone concentrations very near to OBSERVED ozone. By evaluating the changes in ambient ozone concentrations through photochemical modeling, air quality planners may identify the most efficient or effective VOC emissions control strategies for area sources. Among the strategies to achieve emissions reductions are installation of gasoline vapor recovery systems, replacing high-pressure low-volume surface coating paint spray guns with high-volume low-pressure spray paint guns, requiring emissions control booths for surface coating operations as well as undertaking solvent management practices, requiring the sale of low VOC paint solvents in the surface-coating industry, and requiring low-VOC solvents in the dry cleaning industry. Other strategies to reduce VOC emissions include initiating Eco-Driving strategies to reduce fuel consumption from mobile sources and minimize vehicle idling at the international ports of entry by reducing bridge wait times. This dissertation depicts a tool for evaluating impacts of emissions on regional air quality by addressing the highly unresolved fugitive emissions in the Paso del Norte region. It provides a protocol for decision makers to assess the effects of various emission control strategies in the region. Impacts of specific source categories such as the international ports of entry, gasoline stations, paint body shops, truck stops, and military installations on the regional air quality can be easily and systematically addressed in a timely manner in the future.
Shi, Sheng-Bo; Chen, Wen-Jie; Shi, Rui; Li, Miao; Zhang, Huai-Gang; Sun, Ya-Nan
2014-09-01
Taking four wheat varieties developed by Northwest Institute of Plateau Biology, Chinese Academy of Sciences, as test materials, with the measurement of content of photosynthetic pigments, leaf area, fresh and dry mass of flag leaf, the PS II photochemistry efficiency of abaxial and adaxial surface of flag leaf and its adaptation to strong solar radiation during the period of heading stage in Xiangride region were investigated with the pulse-modulated in-vivo chlorophyll fluorescence technique. The results indicated that flag leaf angle mainly grew in horizontal state in Gaoyuan 314, Gaoyuan 363 and Gaoyuan 584, and mainly in vertical state in Gaoyuan 913 because of its smaller leaf area and larger width. Photosynthetic pigments were different among the 4 varieties, and positively correlated with intrinsic PS II photochemistry efficiencies (Fv/Fm). In clear days, especially at noon, the photosynthetic photoinhibition was more serious in abaxial surface of flag leaf due to directly facing the solar radiation, but it could recover after reduction of sunlight intensity in the afternoon, which meant that no inactive damage happened in PS II reaction centers. There were significant differences of PS II actual and maximum photochemical efficiencies at the actinic light intensity (ΦPS II and Fv'/Fm') between abaxial and adaxial surface, and their relative variation trends were on the contrary. The photochemical and non-photochemical quenching coefficients (qP and NPQ) had a similar tendency in both abaxial and adaxial surfaces. Although ΦPS II and qP were lower in adaxial surface of flag leaf, the Fv'/Fm' was significantly higher, which indicated that the potential PS II capture efficiency of excited energy was higher. The results demonstrated that process of photochemical and non-photochemical quenching could effectively dissipate excited energy caused by strong solar radiation, and there were higher adaptation capacities in wheat varieties natively cultivated in Qinghai-Tibetan Plateau area.
Photochemical preparation of sub-wavelength heterogeneous laser-induced periodic surface structures.
Kim, Hee-Cheol; Reinhardt, Hendrik; Hillebrecht, Pierre; Hampp, Norbert A
2012-04-17
Laser-induced periodic surface structures (LIPSS) are a phenomenon caused by interaction of light with solid surfaces. We present a photochemical concept which uses LIPSS-related light intensity patterns for the generation of heterogeneous nanostructures. The process facilitates arbitrary combinations of substrate and LIPSS-pattern materials. An efficient method for the generation of organometallic hybrid-nanowire arrays on porous anodic aluminum oxide is demonstrated. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improving Joint Function Using Photochemical Hydrogels for Articular Surface Repair
2013-10-01
riboflavin and blue light in hypoxic conditions. Control gels were not photochemically crosslinked . New cartilage matrix was formed in vivo in mice after 4...Sections were probed with AlexaFluor 568- conjugated secondary antibodies and counterstained with DAPI for cell nuclei. All samples were processed at...calcium deposits demonstrated with von Kossa stains; 2) A degradable form of photochemically crosslinked PEG norbomene gel was formulated and growth
NASA Technical Reports Server (NTRS)
Gudipati, Murthy S.; Jacovi, Ronen; Lignell, Antti; Couturier, Isabelle
2011-01-01
We will discuss photochemical properties of Titan's organic molecules in the condensed phase as solid aerosols or surface material, from small linear polyyenes (polyacetylenes and polycyanoacetylenes) such as C2H2, C4N2, HC5N, etc. In particular we will focus on photochemistry caused by longer wavelength UV-VIS photons (greater than 250 nm) photons that make it through Titan's atmosphere to the haze region (approximately 100 km) and on to the surface of Titan.
Photochemical Copper Coating on 3D Printed Thermoplastics
NASA Astrophysics Data System (ADS)
Yung, Winco K. C.; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-08-01
3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.
Photochemical Copper Coating on 3D Printed Thermoplastics
Yung, Winco K. C.; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-01-01
3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy. PMID:27501761
Photochemical Copper Coating on 3D Printed Thermoplastics.
Yung, Winco K C; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-08-09
3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.
NASA Astrophysics Data System (ADS)
Liu, Jiatong; Sun, Cuifeng; Fu, Ming; Long, Jie; He, Dawei; Wang, Yongsheng
2018-02-01
The development of porous materials exhibiting photon regulation abilities for improved photoelectrochemical catalysis performance is always one of the important goals of solar energy harvesting. In this study, methods to improve the photocatalytic activity of TiO2 inverse opals were discussed. TiO2 inverse opals were prepared by atomic layer deposition (ALD) using colloidal crystal templates. In addition, TiO2 inverse opal heterostructures were fabricated using colloidal heterocrystals by repeated vertical deposition using different colloidal spheres. The hydrothermal method and ALD were used to prepare ZnO- or Fe2O3-modified TiO2 inverse opals on the internal surfaces of the TiO2 porous structures. Although the photonic reflection band was not significantly varied by oxide modification, the presence of Fe2O3 in the TiO2 inverse opals enhanced their visible absorption. The conformally modified oxides on the TiO2 inverse opals could also form energy barriers and avoid the recombination of electrons and holes. The fabrication of the TiO2 photonic crystal heterostructures and modification with ZnO or Fe2O3 can enhance the photocatalytic activity of TiO2 inverse opals.
Photodecomposition of Mo(CO)/sub 6/ adsorbed on Si(100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creighton, J.R.
1985-01-01
The photochemical decomposition of Mo(CO)/sub 6/ layers physisorbed on Si(100) was investigated to determine the feasibility of molybdenum deposition and also to examine the photochemical reaction mechanism and efficiency. Temperature programmed desorption (TPD) was used to investigate the interaction of Mo(CO)/sub 6/ with the silicon surface before and after irradiation. Auger spectroscopy was used to determine surface elemental composition before Mo(CO)/sub 6/ adsorption and after photodecomposition.
NASA Astrophysics Data System (ADS)
Roy, Nitish; Hirano, Yuiri; Kuriyama, Haruo; Sudhagar, Pitchaimuthu; Suzuki, Norihiro; Katsumata, Ken-Ichi; Nakata, Kazuya; Kondo, Takeshi; Yuasa, Makoto; Serizawa, Izumi; Takayama, Tomoaki; Kudo, Akihiko; Fujishima, Akira; Terashima, Chiaki
2016-11-01
Competitive hydrogen evolution and multiple proton-coupled electron transfer reactions limit photoelectrochemical CO2 reduction in aqueous electrolyte. Here, oxygen-terminated lightly boron-doped diamond (BDDL) thin films were synthesized as a semiconductor electron source to accelerate CO2 reduction. However, BDDL alone could not stabilize the intermediates of CO2 reduction, yielding a negligible amount of reduction products. Silver nanoparticles were then deposited on BDDL because of their selective electrochemical CO2 reduction ability. Excellent selectivity (estimated CO:H2 mass ratio of 318:1) and recyclability (stable for five cycles of 3 h each) for photoelectrochemical CO2 reduction were obtained for the optimum silver nanoparticle-modified BDDL electrode at -1.1 V vs. RHE under 222-nm irradiation. The high efficiency and stability of this catalyst are ascribed to the in situ photoactivation of the BDDL surface during the photoelectrochemical reaction. The present work reveals the potential of BDDL as a high-energy electron source for use with co-catalysts in photochemical conversion.
Air Quality Criteria for Ozone and Related Photochemical Oxidants (Final Report, 2006)
In February 2006, EPA released the final document, Air Quality Criteria for Ozone and Other Photochemical Oxidants. Tropospheric or surface-level ozone (O3) is one of six major air pollutants regulated by National Ambient Air Quality Standards (NAAQS) under the U.S...
Kim, Myeong-Ho; Lee, Young-Ahn; Kim, Jinseo; Park, Jucheol; Ahn, Seungbae; Jeon, Ki-Joon; Kim, Jeong Won; Choi, Duck-Kyun; Seo, Hyungtak
2015-10-27
The photochemical tunability of the charge-transport mechanism in metal-oxide semiconductors is of great interest since it may offer a facile but effective semiconductor-to-metal transition, which results from photochemically modified electronic structures for various oxide-based device applications. This might provide a feasible hydrogen (H)-radical doping to realize the effectively H-doped metal oxides, which has not been achieved by thermal and ion-implantation technique in a reliable and controllable way. In this study, we report a photochemical conversion of InGaZnO (IGZO) semiconductor to a transparent conductor via hydrogen doping to the local nanocrystallites formed at the IGZO/glass interface at room temperature. In contrast to thermal or ionic hydrogen doping, ultraviolet exposure of the IGZO surface promotes a photochemical reaction with H radical incorporation to surface metal-OH layer formation and bulk H-doping which acts as a tunable and stable highly doped n-type doping channel and turns IGZO to a transparent conductor. This results in the total conversion of carrier conduction property to the level of metallic conduction with sheet resistance of ∼16 Ω/□, room temperature Hall mobility of 11.8 cm(2) V(-1) sec(-1), the carrier concentration at ∼10(20) cm(-3) without any loss of optical transparency. We demonstrated successful applications of photochemically highly n-doped metal oxide via optical dose control to transparent conductor with excellent chemical and optical doping stability.
R. M. Rowell
2004-01-01
Wood is a hygroscopic resource that was designed to perform, in nature, in a wet environment. Nature is programmed to recycle wood in a timely way through biological, thermal, aqueous, photochemical, chemical, and mechanical degradations. In simple terms, nature builds wood from carbon dioxide and water and has all the tools to recycle it back to the starting chemicals...
Optical Characterization of Molecular Contaminant Films
NASA Technical Reports Server (NTRS)
Visentine, James T.
2007-01-01
A semi-empirical method of optical characterization of thin contaminant films on surfaces of optical components has been conceived. The method was originally intended for application to films that become photochemically deposited on such optical components as science windows, lenses, prisms, thinfilm radiators, and glass solar-cell covers aboard spacecraft and satellites in orbit. The method should also be applicable, with suitable modifications, to thin optical films (whether deposited deliberately or formed as contaminants) on optical components used on Earth in the computer microchip laser communications and thin-film industries. The method is expected to satisfy the need for a means of understanding and predicting the reductions in spectral transmittance caused by contaminant films and the consequent deterioration of performances of sensitive optical systems. After further development, this method could become part of the basis of a method of designing optical systems to minimize or compensate for the deleterious effects of contaminant films. In the original outer-space application, these deleterious effects are especially pronounced because after photochemical deposition, the films become darkened by further exposure to solar vacuum ultraviolet (VUV) radiation. In this method, thin contaminant films are theoretically modeled as thin optical films, characterized by known or assumed values of thickness, index of refraction, and absorption coefficient, that form on the outer surfaces of the original antireflection coating on affected optical components. The assumed values are adjusted as needed to make actual spectral transmittance values approximate observed ones as closely as possible and to correlate these values with amounts of VUV radiation to which the optical components have been exposed. In an initial study, the method was applied in correlating measured changes in transmittance of high-purity fused silica photochemically coated with silicone films of various measured thicknesses and exposed to various measured amounts of VUV radiation. In each case, it was found to be possible to select an index of refraction and absorption coefficient that made the ultraviolet, visible, and infrared transmittance changes predicted by the model match the corresponding measured transmittance changes almost exactly.
Wiring photosystem I for direct solar hydrogen production.
Lubner, Carolyn E; Grimme, Rebecca; Bryant, Donald A; Golbeck, John H
2010-01-26
The generation of H(2) by the use of solar energy is a promising way to supply humankind's energy needs while simultaneously mitigating environmental concerns that arise due to climate change. The challenge is to find a way to connect a photochemical module that harnesses the sun's energy to a catalytic module that generates H(2) with high quantum yields and rates. In this review, we describe a technology that employs a "molecular wire" to connect a terminal [4Fe-4S] cluster of Photosystem I directly to a catalyst, which can be either a Pt nanoparticle or the distal [4Fe-4S] cluster of an [FeFe]- or [NiFe]-hydrogenase enzyme. The keys to connecting these two moieties are surface-located cysteine residues, which serve as ligands to Fe-S clusters and which can be changed through site-specific mutagenesis to glycine residues, and the use of a molecular wire terminated in sulfhydryl groups to connect the two modules. The sulfhydryl groups at the end of the molecular wire form a direct chemical linkage to a suitable catalyst or can chemically rescue a [4Fe-4S] cluster, thereby generating a strong coordination bond. Specifically, the molecular wire can connect the F(B) iron-sulfur cluster of Photosystem I either to a Pt nanoparticle or, by using the same type of genetic modification, to the differentiated iron atom of the distal [4Fe-4S].(Cys)(3)(Gly) cluster of hydrogenase. When electrons are supplied by a sacrificial donor, this technology forms the cathode of a photochemical half-cell that evolves H(2) when illuminated. If such a device were connected to the anode of a photochemical half-cell that oxidizes water, an in vitro solar energy converter could be realized that generates only O(2) and H(2) in the light. A similar methodology can be used to connect Photosystem I to other redox proteins that have surface-located [4Fe-4S] clusters. The controlled light-driven production of strong reductants by such systems can be used to produce other biofuels or to provide mechanistic insights into enzymes catalyzing multielectron, proton-coupled reactions.
Huang, Zhenxun; Sun, Fengqiang; Zhang, Yu; Gu, Kaiyuan; Zou, Xueqiong; Huang, Yuying; Wu, Qingsong; Zhang, Zihe
2011-04-15
Taking a colloidal monolayer floating on the surface of a precursor solution as template, free-standing CdS/Cd composites and pure CdS (CdS-based) ordered porous films had been prepared by a temperature-assisted photochemical strategy. After irradiation with UV-light and heat treatment, the films formed hemi-spherical pores due to the preferable deposition of CdS and Cd onto the PS spheres during the photochemical and interfacial reactions. When the temperature increased from 15 to 60°C, the air/water interface gradually changed into a vapor/water interface on the surface of the solution, resulting in variations of the final compositions. The optical properties of the films were hence changed. Because of the free-standing characteristic, the ordered porous films were first transferred on surface of polluted solutions as photocatalysts, which was a new mode in application of photocatalysts. The photocatalytic activities of films showed regular variations with the compositions in photodegradation of Rhodamine B. This method provides a simple route for tuning the properties of porous films through control of its composition and a flexible application of films on any surface. Copyright © 2011 Elsevier Inc. All rights reserved.
Caires, A J; Vaz, R P; Fantini, C; Ladeira, L O
2015-10-01
We report a simple and easy formation of hybrids between multi-wall carbon nanotubes and gold nanorods by one-pot in situ photochemical synthesis. Measurements of surface-enhanced Raman scattering (SERS) through the effect "coffee ring" in visible and near infrared (NIR) show high sensitivity with detection of nanomolar concentrations of aromatic dyes. The formation of nanocomposites between carbon nanotubes and gold nanorods without chemical binders simplifies the preparation. Photochemical synthesis is an advance over the techniques previously published. Copyright © 2015 Elsevier Inc. All rights reserved.
Nighttime Ozone Chemical Equilibrium in the Mesopause Region
NASA Astrophysics Data System (ADS)
Kulikov, M. Yu.; Belikovich, M. V.; Grygalashvyly, M.; Sonnemann, G. R.; Ermakova, T. S.; Nechaev, A. A.; Feigin, A. M.
2018-03-01
We examine the applicability of the assumption that nighttime ozone is in photochemical equilibrium. The analysis is based on calculations with a 3-D chemical transport model. These data are used to determine the ratio of correct (calculated) O3 density to its equilibrium value for the conditions of the nighttime mesosphere depending on the altitude, latitude, and month in the annual cycle. The results obtained demonstrate that the retrieval of O and H distributions using the assumption of photochemical ozone equilibrium may lead to a significant error below 81-87 km depending on season. Possible modifications of the currently used approach that allow improving the quality of retrieval of O and H mesospheric distributions from satellite-based observations are discussed.
Hentschel, Carsten; Fontein, Florian; Stegemann, Linda; Hoeppener, Christiane; Fuchs, Harald; Hoeppener, Stefanie
2014-01-01
Summary A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM) of (3-aminopropyl)triethoxysilane (APTES) is explored with three different processes: 1) a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2) a chemical process induced by oxygen plasma etching as well as 3) a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL), which is either exposed to visible light, oxygen plasma or an UV–ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern. PMID:25247126
Roger M. Rowell
2007-01-01
After millions of years of evolution, wood was designed to perform in a wet environment, and nature is programmed to recycle it, in a timely way, back to the basic building blocks of carbon dioxide and water through biological, thermal, aqueous, photochemical, chemical, and mechanical degradation. The properties of wood are, for the most part, a result of the chemistry...
Three probes for diagnosing photochemical dynamics are presented and applied to specialized ambient surface-level observations and to a numerical photochemical model to better understand rates of production and other process information in the atmosphere and in the model. Howeve...
NASA Astrophysics Data System (ADS)
Cui, Zhankui; Gao, Keke; Ge, Suxiang; Fa, Wenjun
2017-11-01
BiOCl nanosheets were solvothermally modified with Bi nanoparticles (NPs) using ascorbic acid as the reductant. The structures of Bi/BiOCl composites were characterized by XRD, Raman spectroscopy, FTIR spectroscopy and SEM. The light absorption properties were measured by UV-vis-NIR spectroscopy. The photocatalytic performances were evaluated by photodegrading methyl orange (MO) and the photocatalytic mechanism was investigated using trapping experiments and a fluorescent probe method. The results show that Bi NPs are uniformly distributed on the surfaces of BiOCl nanosheets and the modification amount of Bi NPs could be well controlled because of the mild property of ascorbic acid as reducing agent. The photocatalytic activities for the composites are improved obviously and the best photocatalytic performance is obtained when the weight ratio of Bi and BiOCl is1:10 and the photochemical reaction rate is 3.5 times that of pure BiOCl nanosheets and 19.7 times of Bi powders. The enhanced photocatalytic efficiency is ascribed to the favorable formation of dominant \\cdot O2- radicals caused by the increased photoinduced electrons from both Bi NPs and BiOCl nanosheets.
Photochemical grafting of methyl groups on a Si(111) surface using a Grignard reagent.
Herrera, Marvin Ustaris; Ichii, Takashi; Murase, Kuniaki; Sugimura, Hiroyuki
2013-12-01
The photochemical grafting of methyl groups onto an n-type Si(111) substrate was successfully achieved using a Grignard reagent. The preparation involved illuminating a hydrogen-terminated Si(111) that was immersed in a CH3MgBr-THF solution. The success was attributed to the ability of the n-type hydrogenated substrate to produce holes on its surface when illuminated. The rate of grafting methyl groups onto the silicon surface was higher when a larger illumination intensity or when a substrate with lower dopant concentration was used. In addition, the methylated layer has an atomically flat structure, has a hydrophobic surface, and has electron affinity that was lower than the bulk Si. Copyright © 2013 Elsevier Inc. All rights reserved.
Photochemical and photocatalytic degradation of trans-resveratrol.
Silva, Cláudia Gomes; Monteiro, Judith; Marques, Rita R N; Silva, Adrián M T; Martínez, Cristina; Canle, Moisés; Faria, Joaquim Luís
2013-04-01
Photochemical and photocatalytic degradation of the emerging pollutant trans-resveratrol has been studied under different irradiation wavelengths and using different TiO2 catalysts. trans-Resveratrol was more easily degraded when irradiated using the whole spectral range (UV-Vis) rather than with UV and near-UV to visible irradiation. The main intermediate of trans-resveratrol phototransformation was identified as its isomer cis-resveratrol. Different TiO2 catalysts were used to carry out the photocatalytic degradation of trans-resveratrol. Catalysts properties such as crystallite dimensions, surface area and presence of hydroxy surface groups are shown to be crucial to the photocatalytic efficiency of the materials tested. From the point of view of trans-resveratrol abatement, the photocatalytic process was more efficient than the pure photochemical one resulting in higher degradation rates and higher organic content removal. Six photoproducts of trans-resveratrol phototransformation were identified mainly resulting from the attack of the hydroxyl radical to the organic molecule.
Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication
Ashby, C.I.H.; Myers, D.R.; Vook, F.L.
1988-06-16
An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.
Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication
Ashby, Carol I. H.; Myers, David R.; Vook, Frederick L.
1989-01-01
An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.
NASA Astrophysics Data System (ADS)
Jayakumar, Harishankar; Shotan, Zav; Considine, Christopher; Mazkoit, Mažena; Fedder, Helmut; Wrachtrup, Joerg; Alkauskas, Audrius; Doherty, Marcus; Menon, Vinod; Meriles, Carlos
Fluorescent defects recently observed under ambient conditions in hexagonal boron nitride (h-BN) promise to open novel opportunities for the implementation of on-chip photonic devices that rely on identical photons from single emitters. Here we report on the room temperature photo-luminescence dynamics of individual emitters in multilayer h-BN flakes exposed to blue laser light. Comparison of optical spectra recorded at successive times reveals considerable spectral diffusion, possibly the result of slowly fluctuating, trapped-carrier-induced stark shifts. Large spectral jumps - reaching up to 100 nm - followed by bleaching are observed in most cases upon prolonged exposure to blue light, an indication of one-directional, photo-chemical changes likely taking place on the flake surface. Remarkably, only a fraction of the observed emitters also fluoresces on green illumination suggesting a more complex optical excitation dynamics than previously anticipated and raising questions on the physical nature of the atomic defect at play.
Diurnal variability of gas phase and surface water ethanol in southeastern North Carolina, USA
NASA Astrophysics Data System (ADS)
Kieber, R. J.; Powell, J. P.; Foley, L.; Mead, R. N.; Willey, J. D.; Avery, G. B.
2017-11-01
Diurnal variations in gas phase and surface water concentrations of ethanol and acetaldehyde were investigated at five locations in southeastern North Carolina, USA. There were distinct diurnal oscillations observed in gas phase concentrations with maxima occurring in late afternoon suggesting that photochemical production is an important process in the cycling of these analytes in the troposphere. The rapid decrease in concentrations after the mid day maximum suggests that there is also an atmospheric photochemical sink for both analytes most likely involving photo produced hydroxyl radicals with a half-life on the order of hours rather than days at ground level. Ethanol concentrations in the surface microlayer taken at the same time as gas phase samples had a very similar diurnal profile suggesting photochemical processes, in addition to atmospheric deposition, play a role in the aqueous phase cycling of both analytes. The concentration of ethanol and acetaldehyde increased significantly in flasks containing freshwater collected from the Cape Fear River exposed to simulated sunlight for 6 h underscoring the importance of in situ photochemical production. Results of this study are significant because they represent the first simultaneous analyses of the temporal variability of ethanol and acetaldehyde concentrations in the gas and aqueous phases. These measurements are essential in order to better define the processes involved in the global biogeochemical cycling of ethanol both now and in the future as our use of the biofuel continues to grow.
Veselov, Alexey A; Abraham, Bobin George; Lemmetyinen, Helge; Karp, Matti T; Tkachenko, Nikolai V
2012-01-01
Fluorescent proteins have the inherent ability to act as sensing components which function both in vitro and inside living cells. We describe here a novel study on a covalent site-specific bonding of fluorescent proteins to form self-assembled monolayers (SAMs) on the surface of etched optical fibers (EOFs). Deposition of fluorescent proteins on EOFs gives the opportunity to increase the interaction of guided light with deposited molecules relative to plane glass surfaces. The EOF modification is carried out by surface activation using 3-aminopropylthrimethoxysilane (APTMS) and bifunctional crosslinker sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (sulfo-SMCC) which exposes sulfhydryl-reactive maleimide groups followed by covalent site-specific coupling of modified yellow fluorescent protein (YFP). Steady-state and fluorescence lifetime measurements confirm the formation of SAM. The sensor applications of YPF SAMs on EOF are demonstrated by the gradual increase of emission intensity upon addition of Ca(2+) ions in the concentration range from a few tens of micromolars up to a few tens of millimolars. The studies on the effect of pH, divalent cations, denaturing agents, and proteases reveal the stability of YFP on EOFs at normal physiological conditions. However, treatments with 0.5% SDS at pH 8.5 and protease trypsin are found to denaturate or cleave the YFP from fiber surfaces.
NASA Astrophysics Data System (ADS)
Engel, A.; Galgani, L.
2016-02-01
The coastal upwelling system off Peru is characterized by high biological activity and associated subsurface oxygen minimum zone, leading to an enhanced emission of atmospheric trace gases. High biological productivity in the water column may promote the establishment of enriched organic surface films, key environments for processes regulating gas fluxes across the water-air interface. During M91 cruise to the Peruvian upwelling, we focused our attention on the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like Chromophoric Dissolved Organic Matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. In order to understand organic matter cycling in surface films, we analyzed SML and underlying water samples in 38 stations determining DOC concentrations, amino acids composition, marine gels, CDOM and bacterial abundance as indicators of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slopes (S) values and Excitation-Emission Matrix fluorescence (EEMs), which allow to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources. Profound changes in spectral slope properties were observed suggesting smaller MW CDOM in the SML compared to underlying water. Microbial and photochemical degradation are likely the main drivers for organic matter cycling in the top layer of the ocean. Consequences on the formation of inorganic and organic species highly relevant for air-sea gas exchange and for climate dynamics will be discussed.
Konieczny, Krzysztof; Bąkowicz, Julia; Turowska-Tyrk, Ilona
2015-05-01
Contrary to the known 4-(2,4,6-triisopropylbenzoyl)benzoate salts, di-μ-aqua-bis[tetraaquasodium(I)] bis[4-(2,4,6-triisopropylbenzoyl)benzoate] dihydrate, [Na2(H2O)10](C23H27O3)2·2H2O, (1), does not undergo a photochemical Norrish-Yang reaction in the crystalline state. In order to explain this photochemical inactivity, the intermolecular interactions were analyzed by means of the Hirshfeld surface and intramolecular geometrical parameters describing the possibility of a Norrish-Yang reaction were calculated. The reasons for the behaviour of the title salt are similar crystalline environments for both the o-isopropyl groups in the anion, resulting in similar geometrical parameters and orientations, and that these interaction distances differ significantly from those found in salts where the photochemical reaction occurs.
NASA Astrophysics Data System (ADS)
Okoshi, Masayuki; Iyono, Minako; Inoue, Narumi
2009-12-01
Photoluminescence spectra of silicone rubber ([SiO(CH3)2]n) photochemically modified by a 193 nm ArF excimer laser was found to be controllable. Compared with the modification in air, the photoluminescence spectra could be blueshifted by the modification in vacuum or the additional irradiation of ArF excimer laser in vacuum after the modification in air. To redshift, on the other hand, the additional irradiation of a 157 nm F2 laser in air after the modification in air, the modification in oxygen gas, or the postannealing after the modification in oxygen gas was effective. The blue and redshifts of the photoluminescence were essentially due to the acceleration of reduction and oxidation reactions of silicone rubber, respectively, because the photoluminescence derives its origin from oxygen deficiency centers and peroxy centers of the silica structure in the modified silicone rubber. On the basis of the spectra changes, colorful light-guiding sheets made of silicone rubber under illumination of a 375 nm light-emitting diode were successfully fabricated for cellular phone use.
NASA Astrophysics Data System (ADS)
Borowski, Susan C.; Biswakarma, Jagannath; Kang, Kyounglim; Schenkeveld, Walter D. C.; Hering, Janet G.; Kubicki, James D.; Kraemer, Stephan M.; Hug, Stephan J.
2018-04-01
Oxalate, together with other ligands, plays an important role in the dissolution of iron(hdyr)oxides and the bio-availability of iron. The formation and properties of oxalate surface complexes on lepidocrocite were studied with a combination of infrared spectroscopy (IR), density functional theory (DFT) calculations, dissolution, and photochemical experiments. IR spectra measured as a function of time, concentration, and pH (50-200 μM oxalate, pH 3-7) showed that several surface complexes are formed at different rates and in different proportions. Measured spectra could be separated into three contributions described by Gaussian line shapes, with frequencies that agreed well with the theoretical frequencies of three different surface complexes: an outer-sphere complex (OS), an inner-sphere monodentate mononuclear complex (MM), and a bidentate mononuclear complex (BM) involving one O atom from each carboxylate group. At pH 6, OS was formed at the highest rate. The contribution of BM increased with decreasing pH. In dissolution experiments, lepidocrocite was dissolved at rates proportional to the surface concentration of BM, rather than to the total adsorbed concentration. Under UV-light (365 nm), BM was photolyzed at a higher rate than MM and OS. Although the comparison of measured spectra with calculated frequencies cannot exclude additional possible structures, the combined results allowed the assignment of three main structures with different reactivities consistent with experiments. The results illustrate the importance of the surface speciation of adsorbed ligands in dissolution and photochemical reactions.
Fabbri, Debora; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide
2015-01-01
This work models the phototransformation kinetics in surface waters of five phenylurea herbicides (diuron, fenuron, isoproturon, metoxuron and chlortoluron), for which important photochemical parameters are available in the literature (direct photolysis quantum yields and reaction rate constants with ·OH, CO3(-·) and the triplet states of chromophoric dissolved organic matter, (3)CDOM*). Model calculations suggest that isoproturon and metoxuron would be the least photochemically persistent and diuron the most persistent compound. Reactions with ·OH and (3)CDOM* would be the main phototransformation pathways for all compounds in the majority of environmental conditions. Reaction with CO3(-) could be important in waters with low dissolved organic carbon (DOC), while direct photolysis would be negligible for fenuron, quite important for chlortoluron, and somewhat significant for the other compounds. The direct photolysis of metoxuron and diuron is known to increase toxicity, and such a photoreaction pathway would be enhanced at intermediate DOC values (1-4 mg C L(1)). The reaction between phenylureas and ·OH is known to produce toxic intermediates, differently from (3)CDOM*. Therefore, the shift of reactivity from ·OH to (3)CDOM* with increasing DOC could reduce the environmental impact of photochemical transformation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sarwar, Golam; Gantt, Brett; Schwede, Donna; Foley, Kristen; Mathur, Rohit; Saiz-Lopez, Alfonso
2015-08-04
Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen chemistry in a comprehensive atmospheric modeling system. The enhanced ozone deposition treatment accounts for the interaction of iodide in seawater with ozone and increases deposition velocities by 1 order of magnitude. Halogen chemistry includes detailed chemical reactions of organic and inorganic bromine and iodine species. Two different simulations are completed with the halogen chemistry: without and with photochemical reactions of higher iodine oxides. Enhanced deposition reduces mean summer-time surface ozone by ∼3% over marine regions in the Northern Hemisphere. Halogen chemistry without the photochemical reactions of higher iodine oxides reduces surface ozone by ∼15% whereas simulations with the photochemical reactions of higher iodine oxides indicate ozone reductions of ∼48%. The model without these processes overpredicts ozone compared to observations whereas the inclusion of these processes improves predictions. The inclusion of photochemical reactions for higher iodine oxides leads to ozone predictions that are lower than observations, underscoring the need for further refinement of the halogen emissions and chemistry scheme in the model.
The effect of clouds on photolysis rates and ozone formation in the unpolluted troposphere
NASA Technical Reports Server (NTRS)
Thompson, A. M.
1984-01-01
The photochemistry of the lower atmosphere is sensitive to short- and long-term meteorological effects; accurate modeling therefore requires photolysis rates for trace gases which reflect this variability. As an example, the influence of clouds on the production of tropospheric ozone has been investigated, using a modification of Luther's two-stream radiation scheme to calculate cloud-perturbed photolysis rates in a one-dimensional photochemical transport model. In the unpolluted troposphere, where stratospheric inputs of odd nitrogen appear to represent the photochemical source of O3, strong cloud reflectance increases the concentration of NO in the upper troposphere, leading to greatly enhanced rates of ozone formation. Although the rate of these processes is too slow to verify by observation, the calculation is useful in distinguishing some features of the chemistry of regions of differing mean cloudiness.
Niu, Ben; Zhang, Hao; Giblin, Daryl; Rempel, Don L; Gross, Michael L
2015-05-01
Fast photochemical oxidation of proteins (FPOP) employs laser photolysis of hydrogen peroxide to give OH radicals that label amino acid side-chains of proteins on the microsecond time scale. A method for quantitation of hydroxyl radicals after laser photolysis is of importance to FPOP because it establishes a means to adjust the yield of •OH, offers the opportunity of tunable modifications, and provides a basis for kinetic measurements. The initial concentration of OH radicals has yet to be measured experimentally. We report here an approach using isotope dilution gas chromatography/mass spectrometry (GC/MS) to determine quantitatively the initial •OH concentration (we found ~0.95 mM from 15 mM H2O2) from laser photolysis and to investigate the quenching efficiencies for various •OH scavengers.
Rodríguez-Torres, Maria del Pilar; Díaz-Torres, Luis Armando; Romero-Servin, Sergio
2014-01-01
Reactive and pharmaceutical-grade heparins were used as biologically compatible reducing and stabilizing agents to photochemically synthesize colloidal gold nanoparticles. Aggregates and anisotropic shapes were obtained photochemically under UV black-light lamp irradiation (λ = 366 nm). Heparin-functionalized gold nanoparticles were characterized by Scanning Electron Microscopy and UV-Vis spectroscopy. The negatively charged colloids were used for the Surface Enhanced Raman Spectroscopy (SERS) analysis of differently charged analytes (dyes). Measurements of pH were taken to inspect how the acidity of the medium affects the colloid-analyte interaction. SERS spectra were taken by mixing the dyes and the colloidal solutions without further functionalization or addition of any aggregating agent. PMID:25342319
Jurczyk, Barbara; Pociecha, Ewa; Janowiak, Franciszek; Kabała, Dawid; Rapacz, Marcin
2016-12-01
According to predicted changes in climate, waterlogging events may occur more frequently in the future during autumn and winter at high latitudes of the Northern Hemisphere. If excess soil water coincides with the process of cold acclimation for plants, winter survival may potentially be affected. The effects of waterlogging during cold acclimation on stomatal aperture, relative water content, photochemical activity of photosystem II, freezing tolerance and plant regrowth after freezing were compared for two prehardened overwintering forage grasses, Lolium perenne and Festuca pratensis. The experiment was performed to test the hypothesis that changes in photochemical activity initiated by waterlogging-triggered modifications in the stomatal aperture contribute to changes in freezing tolerance. Principal component analysis showed that waterlogging activated different adaptive strategies in the two species studied. The increased freezing tolerance of F. pratensis was associated with increased photochemical activity connected with stomatal opening, whereas freezing tolerance of L. perenne was associated with a decrease in stomatal aperture. In conclusion, waterlogging-triggered stomatal behavior contributed to the efficiency of the cold acclimation process in L. perenne and F. pratensis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Pobeguts, O V; Smolova, T N; Klimov, V V
2012-02-01
It has been shown that thermoinactivation of the isolated D1/D2/cytochrome b(559) complex (RC) of photosystem 2 (PS-2) from pea under anaerobic conditions at 35°C in 20 mM Tris-HCl buffer (pH 7.2) depleted of HCO(3)(-), with 35 mM NaCl and 0.05% n-dodecyl-β-maltoside, results in a decrease in photochemical activity measured by photoreduction of the PS-2 primary electron acceptor, pheophytin (by 50% after 3 min of heating), which is accompanied by aggregation of the D1 and D2 proteins. Bicarbonate, formate, and acetate anions added to the sample under these conditions differently influence the maintenance of photochemical activity: a 50% loss of photochemical activity occurs in 11.5 min of heating in the presence of bicarbonate and in 4 and 4.6 min in the presence of formate and acetate, respectively. The addition of bicarbonate completely prevents aggregation of the D1 and D2 proteins as opposed to formate and acetate (their presence has no effect on the aggregation during thermoinactivation). Since the isolated RCs have neither inorganic Mn/Ca-containing core of the water-oxidizing complex nor nonheme Fe(2+), it is supposed that bicarbonate specifically interacts with the hydrophilic domains of the D1 and D2 proteins, which prevents their structural modification that is a signal for aggregation of these proteins and the loss of photochemical activity.
Otalvaro, Julián Ortiz; Brigante, Maximiliano
2018-03-01
Interactions between pesticides (paraquat, glyphosate, 2,4-D, atrazine, and metsulfuron methyl) and soil organic and inorganic components have been studied in batch experiments by performing adsorption, dissolution, and chemical and photochemical degradation under different conditions. The obtained results confirm that the affinity of a pesticide to the solid surface depends on the nature of both and shows that each reactant strongly affects the mobility of the other one, e.g., anionic pesticides promote the dissolution of the solid humic acid but if this last is retained into the inorganic matrix enhances the adsorption of a cationic pesticide. Adsorption also seems to protect the bonded specie to be chemical degraded, such as shown in two pesticide/clay systems at constant pH. The use of mesoporous silicas could result in a good alternative for pesticide remediation. In fact, the solid shows high adsorption capacity towards paraquat and its modification with TiO 2 nanoparticles increases not only the pesticide adsorption but also seems to catalyze its degradation under UV light to less-toxic metabolites. UV-VIS spectroscopy was relevant and novel in such sense. Electrostatic interactions, hydrogen and coordinative bonds formations, surface complexations and hydrophobic associations play a key role in the fate of mentioned pesticides on soil and ground/surface water environments.
Improving Joint Function Using Photochemical Hydrogels for Articular Surface Repair
2012-10-01
with thrombin previously has been reported as a favorable scaffold for cartilage formation by encapsulated chondrocytes [10]. Studies over the past...during the photochemical crosslinking process. A full scale study is planned for the first quarter of year 3 to evaluate the fully formed cartilage ...Perform initial study of collagen and PEG gels with stem cells implanted in mice Bone marrow MSCs were harvested from donor swine and grown in culture
Pretreatment of lubricated surfaces with sputtered cadmium oxide
NASA Technical Reports Server (NTRS)
Fusaro, Robert L. (Inventor)
1991-01-01
Cadmium oxide is used with a dry solid lubricant on a surface to improve wear resistance. The surface topography is first altered by photochemical etching to a predetermined pattern. The cadmium oxide is then sputtered onto the altered surface to form an intermediate layer to more tightly hold the dry lubricant, such as graphite.
Surface retention and photochemical reactivity of the diphenylether herbicide oxyfluorfen.
Scrano, Laura; Bufo, Sabino A; Cataldi, Tommaso R I; Albanis, Triantafyllos A
2004-01-01
The photochemical behavior of oxyfluorfen [2-chloro-1-(3-etoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene] on two Greek soils was investigated. Soils were sampled from Nea Malgara and Preveza regions, characterized by a different organic matter content. Soils were spiked with the diphenyl-ether herbicide and irradiation experiments were performed either in the laboratory with a solar simulator (xenon lamp) or outside, under natural sunlight irradiation; other soil samples were kept in the dark to control the retention reaction. Kinetic parameters of both retention and photochemical reactions were calculated using zero-, first- and second- (Langmuir-Hinshelwood) order equations, and best fit was checked through statistical analysis. The soil behaviors were qualitatively similar but quantitatively different, with the soil sampled from the Nea Malgara region much more sorbent as compared with Preveza soil. All studied reactions followed second-order kinetics and photochemical reactions were influenced by retaining capability of the soils. The contributions of the photochemical processes to the global dissipation rates were also calculated. Two main metabolites were identified as 2-chloro-1-(3-ethoxy-4-hydroxyphenoxy)-4-(trifluoromethyl)benzene and 2-chloro-1- (3-hydroxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene.
Photocatalytic oxidation of tabun simulant-diethyl cyanophosphate: FTIR in situ investigation.
Kolinko, P A; Kozlov, D V
2008-06-15
Gas phase photocatalytic oxidation of diethyl cyanophosphate vapor in a static reactor using TiO2 and modified TiO2 as the photocatalyst was studied with the FTIR in situ method. The transition metals Pt, Au, and Ag were used for TiO2 modification by the chemical and photochemical deposition methods as well as the mechanical mixture of TiO2 with manganese oxide to improve its adsorption and catalytic activity. Photocatalytic oxidation of diethyl cyanophosphate in a static reactor results in its complete mineralization with carbon dioxide, phosphoric and nitric acids, and water as the major final products. HCN was demonstrated to be the only toxic gaseous intermediate of diethyl cyanophosphate photocatalytic oxidation, formed as a result of diethyl cyanophosphate hydrolysis. Diethylphosphate and acetic and formic acids were registered as the surface intermediates. It was found that cyanhydric acid is oxidized slowly with the use of unmodified TiO2. The formation of surface cyanide complexes with Ag and Au ions could be responsible for the fast removal of HCN from the gas phase and its further photooxidation in the case of using TiO2 with deposited Au and Ag.
Small molecule alteration of RNA sequence in cells and animals.
Guan, Lirui; Luo, Yiling; Ja, William W; Disney, Matthew D
2017-10-18
RNA regulation and maintenance are critical for proper cell function. Small molecules that specifically alter RNA sequence would be exceptionally useful as probes of RNA structure and function or as potential therapeutics. Here, we demonstrate a photochemical approach for altering the trinucleotide expanded repeat causative of myotonic muscular dystrophy type 1 (DM1), r(CUG) exp . The small molecule, 2H-4-Ru, binds to r(CUG) exp and converts guanosine residues to 8-oxo-7,8-dihydroguanosine upon photochemical irradiation. We demonstrate targeted modification upon irradiation in cell culture and in Drosophila larvae provided a diet containing 2H-4-Ru. Our results highlight a general chemical biology approach for altering RNA sequence in vivo by using small molecules and photochemistry. Furthermore, these studies show that addition of 8-oxo-G lesions into RNA 3' untranslated regions does not affect its steady state levels. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hudson, E. D.; Ariya, P. A.
2005-12-01
The photochemical degradation of dissolved organic matter (DOM) in surface ocean waters is thought to be a source of volatile organic compounds (VOC) (including non-methane hydrocarbons and low MW carbonyl compounds) to the remote marine troposphere. We report on the characterization of DOM sampled at over 30 sites in the far North Atlantic (Greenland and Norwegian seas, Fram strait) during the summer of 2004, and on experiments to identify factors responsible for the photochemical generation of VOCs in these samples. The results will be discussed in the context of VOC profiles of whole air samples taken to match the seawater samples in time and space.
Rühe, J
2017-09-26
In photolithographic processes, the light inducing the photochemical reactions is confined to a small volume, which enables direct writing of micro- and nanoscale features onto solid surfaces without the need of a predefined photomask. The direct writing process can be used to generate topographic patterns through photopolymerization or photo-cross-linking or can be employed to use light to generate chemical patterns on the surface with high spatial control, which would make such processes attractive for bioapplications. The prospects of maskless photolithography technologies with a focus on two-photon lithography and scanning-probe-based photochemical processes based on scanning near-field optical microscopy or beam pen lithography are discussed.
The chitosan - Porphyrazine hybrid materials and their photochemical properties.
Chełminiak-Dudkiewicz, Dorota; Ziegler-Borowska, Marta; Stolarska, Magdalena; Sobotta, Lukasz; Falkowski, Michal; Mielcarek, Jadwiga; Goslinski, Tomasz; Kowalonek, Jolanta; Węgrzynowska-Drzymalska, Katarzyna; Kaczmarek, Halina
2018-04-01
Three magnesium sulfanyl porphyrazines differing in the size of peripheral substituents (3,5-dimethoxybenzylsulfanyl, (3,5-dimethoxybenzyloxy)benzylsulfanyl, 3,5-bis[(3,5-bis[(3,5-dimethoxybenzyloxy)benzyloxy]benzylsulfanyl) were exposed to visible and ultraviolet radiation (UV A + B + C) in order to determine their photochemical properties. The course of photochemical reactions in dimethylformamide solutions and the ability of the systems to generate singlet oxygen were studied by UV-Vis spectroscopy, which additionally gave information on aggregation processes. The porphyrazines were found to be stable upon visible light irradiation conditions, but when exposed to high energy UV radiation, the efficient photodegradation of these macrocycles was observed. Therefore, these three magnesium sulfanyl porphyrazines were incorporated into chitosan matrix. The obtained thin films of chitosan doped with porphyrazines were subjected to polychromatic UV-radiation and studied by spectroscopic methods (UV-Vis, FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Application of chitosan as a polymer matrix for porphyrazines was found to be successful method that effectively stopped the unwelcome degradation of macrocycles, thus worth considering for their photoprotection. In addition, the surface properties of the hybrid material were determined by contact angle measurements and calculation of surface free energy. Intermolecular interactions between these novel porphyrazines and chitosan were detected. The mechanism of photochemical reactions occurring in studied systems has been discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Miyashita, H; Iwasaki, S; Hoshino, T
1998-05-15
Photochemically induced focal lesions in guinea pig cochleas were studied by light microscopy and transmission electron microscopy. The lesions were induced in the second cochlear turns of 35 adult guinea pigs by illumination for 10 minutes with a focused green light immediately after a rose bengal solution was injected into the jugular vein. The cochlear lateral wall and organ of Corti were examined 5, 10, 20, 30, and 90 minutes, 12 and 24 hours, and 3, 7, and 30 days after the procedure. Aggregations of platelets and red blood cells were found in strial capillaries at 5 minutes after illumination. After 30 minutes, marginal cell surfaces protruded into the endolymphatic space; surface membranes were ruptured and the cytoplasm was expelled into the space. In outer hair cells, disruption of the cellular membrane was found near the cuticular plate 12 hours after the procedure. All cellular elements of the lateral wall and organ of Corti were markedly degenerated in the 30-day specimens. Histological changes found in the stria vascularis were consistent with cell damage caused by active oxygen species. It is likely that the stria vascularis is more sensitive to the photochemical reaction than other parts of the cochlea. Cell damage in other parts of the cochlea seemed to have been caused by local microvascular ischemia in addition to the action of active oxygen species induced by the photochemical reaction.
Modelling the photochemical attenuation pathways of the fibrate drug gemfibrozil in surface waters.
Fabbri, Debora; Maurino, Valter; Minella, Marco; Minero, Claudio; Vione, Davide
2017-03-01
Gemfibrozil (GFZ) is a relatively persistent pollutant in surface-water environments and it is rather recalcitrant to biological degradation. The GFZ photochemical lifetimes are relatively short in shallow waters with low levels of dissolved organic carbon (DOC), but they can reach the month-year range in deep and high-DOC waters. The main reason is that GFZ undergoes negligible reaction with singlet oxygen or degradation sensitised by the triplet states of chromophoric dissolved organic matter, which are the usually prevalent photochemical pathways in deep and high-DOC sunlit waters. Nitrate and nitrite scarcely affect the overall GFZ lifetimes, but they can shift photodegradation from direct photolysis to the OH process. These two pathways are the main GFZ phototransformation routes, with the direct photolysis prevailing in shallow environments during summer. Under these conditions the GFZ photochemical lifetimes are also shorter and the environmental significance of photodegradation correspondingly higher. The direct photolysis of GFZ under UVB irradiation yielded several transformation intermediates deriving from oxidation or cleavage of the aliphatic lateral chain. A quinone derivative (2,5-dimethyl-1,4-benzoquinone), a likely oxidation product of the transformation intermediate 2,5-dimethylphenol, is expected to be the most acutely and chronically toxic compound arising from GFZ direct photolysis. Interestingly, literature evidence suggests that the same toxic intermediate would be formed upon OH reaction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Minella, Marco; Rogora, Michela; Vione, Davide; Maurino, Valter; Minero, Claudio
2011-08-15
A model-based approach is here developed and applied to predict the long-term trends of indirect photochemical processes in the surface layer (5m water depth) of Lake Maggiore, NW Italy. For this lake, time series of the main parameters of photochemical importance that cover almost two decades are available. As a way to assess the relevant photochemical reactions, the modelled steady-state concentrations of important photogenerated transients ((•)OH, ³CDOM* and CO₃(-•)) were taken into account. A multivariate analysis approach was adopted to have an overview of the system, to emphasise relationships among chemical, photochemical and seasonal variables, and to highlight annual and long-term trends. Over the considered time period, because of the decrease of the dissolved organic carbon (DOC) content of water and of the increase of alkalinity, a significant increase is predicted for the steady-state concentrations of the radicals (•)OH and CO₃(-•). Therefore, the photochemical degradation processes that involve the two radical species would be enhanced. Another issue of potential photochemical importance is related to the winter maxima of nitrate (a photochemical (•)OH source) and the summer maxima of DOC ((•)OH sink and ³CDOM* source) in the lake water under consideration. From the combination of sunlight irradiance and chemical composition data, one predicts that the processes involving (•)OH and CO₃(-•) would be most important in spring, while the reactions involving ³CDOM* would be most important in summer. Copyright © 2011 Elsevier B.V. All rights reserved.
Raising the shields: PCR in the presence of metallic surfaces protected by tailor-made coatings.
Scherag, Frank D; Brandstetter, Thomas; Rühe, Jürgen
2014-10-01
The implementation of PCR reactions in the presence of metallic surfaces is interesting for the generation of novel bioanalytical devices, because metals exhibit high mechanical stability, good thermal conductivity, and flexibility during deformation. However, metallic substrates are usually non-compatible with enzymatic reactions such as PCR due to poisoning of the active center of the enzyme or nonspecific adsorption of the enzymeto the metal surface, which could result in protein denaturation. We present a method for the generation of polymer coatings on metallic surfaces which are designed to minimize protein adsorption and also prevent the release of metal ions. These coatings consist of three layers covalently linked to each other; a self-assembled monolayer to promote adhesion, a photochemically generated barrier layer and a photochemically generated hydrogel. The coatings can be deposited onto aluminum, stainless steel, gold and copper surfaces. We compare PCR efficiencies in the presence of bare metallic surfaces with those of surfaces treated with the novel coating system. Copyright © 2014 Elsevier B.V. All rights reserved.
Wetting in Color: Designing a colorometric indicator for wettability
NASA Astrophysics Data System (ADS)
Raymond, Kevin; Burgess, Ian B.; Koay, Natalie; Kolle, Mathias; Loncar, Marko; Aizenberg, Joanna
2012-02-01
Colorimetric litmus tests such as pH paper have enjoyed wide commercial success due to their inexpensive production and exceptional ease of use. While such indicators commonly rely on a specific photochemical response to an analyte, we exploit structural color, derived from coherent scattering from wavelength-scale porosity rather than molecular absorption or luminescence, to create a Wetting-in-Color-Kit (WICK). This inexpensive and highly selective colorimetric indicator for organic liquids employs chemically encoded inverse-opal photonic crystals to translate minute differences in liquids' wettability to macroscopically distinct, easy-to-visualize color patterns. The highly symmetric re-entrant inter-pore geometry imparts a highly specific wetting threshold for liquids. We developed surface modification techniques to generate built-in chemistry gradients within the porous network. These let us tailor the wettability threshold to specific liquids across a continuous range. As wetting is a generic fluidic phenomenon, we envision that WICK could be suitable for applications in authentication or identification of unknown liquids across a broad range of industries.
Herman, Krisztian; Szabó, László; Leopold, Loredana F; Chiş, Vasile; Leopold, Nicolae
2011-05-01
A new, simple, and effective approach for multianalyte sequential surface-enhanced Raman scattering (SERS) detection in a flow cell is reported. The silver substrate was prepared in situ by laser-induced photochemical synthesis. By focusing the laser on the 320 μm inner diameter glass capillary at 0.5 ml/min continuous flow of 1 mM silver nitrate and 10 mM sodium citrate mixture, a SERS active silver spot on the inner wall of the glass capillary was prepared in a few seconds. The test analytes, dacarbazine, 4-(2-pyridylazo)resorcinol (PAR) complex with Cu(II), and amoxicillin, were sequentially injected into the flow cell. Each analyte was adsorbed to the silver surface, enabling the recording of high intensity SERS spectra even at 2 s integration times, followed by desorption from the silver surface and being washed away from the capillary. Before and after each analyte passed the detection window, citrate background spectra were recorded, and thus, no "memory effects" perturbed the SERS detection. A good reproducibility of the SERS spectra obtained under flow conditions was observed. The laser-induced photochemically synthesized silver substrate enables high Raman enhancement, is characterized by fast preparation with a high success rate, and represents a valuable alternative for silver colloids as SERS substrate in flow approaches.
Hossen, Md Mir; Bendickson, Lee; Palo, Pierre E; Yao, Zhiqi; Nilsen-Hamilton, Marit; Hillier, Andrew C
2018-08-31
DNA origami can be used to create a variety of complex and geometrically unique nanostructures that can be further modified to produce building blocks for applications such as in optical metamaterials. We describe a method for creating metal-coated nanostructures using DNA origami templates and a photochemical metallization technique. Triangular DNA origami forms were fabricated and coated with a thin metal layer by photochemical silver reduction while in solution or supported on a surface. The DNA origami template serves as a localized photosensitizer to facilitate reduction of silver ions directly from solution onto the DNA surface. The metallizing process is shown to result in a conformal metal coating, which grows in height to a self-limiting value with increasing photoreduction steps. Although this coating process results in a slight decrease in the triangle dimensions, the overall template shape is retained. Notably, this coating method exhibits characteristics of self-limiting and defect-filling growth, which results in a metal nanostructure that maps the shape of the original DNA template with a continuous and uniform metal layer and stops growing once all available DNA sites are exhausted.
Ozone budgets from the Dynamics and Chemistry of Marine Stratocumulus experiment
NASA Technical Reports Server (NTRS)
Kawa, S. R.; Pearson, R., Jr.
1989-01-01
Measurements from the Dynamics and Chemistry of marine Stratocumulus experiment have been used to study components of the regional ozone budget. The surface destruction rate is determined by eddy correlation of ozone and vertical velocity measured by a low-flying aircraft. Significant variability is found in the measured surface resistance; it is partially correlated with friction velocity but appears to have other controlling influences as well. The mean resistance is 4190 s/m which is higher (slower destruction) than most previous estimates for seawater. Flux and mean measurements throughout the marine boundary layer are used to estimate the net rate of in situ photochemical production/destruction of ozone. Averaged over the flights, ozone concentration is found to be near steady state, and a net of photochemical destruction of 0.02-0.07 ng/cu m per sec is diagnosed. This is an important confirmation of photochemical model results for the remote marine boundary layer. Ozone vertical distributions above the boundary layer show a strongly layered structure with very sharp gradients. These distributions are possibly related to the stratospheric ozone source.
Luo, Hong-Wei; Yin, Xiangping; Jubb, Aaron M.; ...
2016-11-09
Atmospheric deposition of mercury (Hg) to surface water is one of the dominant sources of Hg in aquatic environments and ultimately drives methylmercury (MeHg) toxin accumulation in fish. It is known that freshly deposited Hg is more readily methylated by microorganisms than aged or preexisting Hg; however the underlying mechanism of this process is unclear. Here we report that Hg bioavailability is decreased by photochemical reactions between Hg and dissolved organic matter (DOM) in water. Photo-irradiation of Hg-DOM complexes results in loss of Sn(II)-reducible (i.e. reactive) Hg and up to an 80% decrease in MeHg production by the methylating bacteriummore » Geobacter sulfurreducens PCA. Loss of reactive Hg proceeded at a faster rate with a decrease in the Hg to DOM ratio and is attributed to the possible formation of mercury sulfide (HgS). Lastly, these results suggest a new pathway of abiotic photochemical formation of HgS in surface water and provide a mechanism whereby freshly deposited Hg is readily methylated but, over time, progressively becomes less available for microbial uptake and methylation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Hong-Wei; Yin, Xiangping; Jubb, Aaron M.
Atmospheric deposition of mercury (Hg) to surface water is one of the dominant sources of Hg in aquatic environments and ultimately drives methylmercury (MeHg) toxin accumulation in fish. It is known that freshly deposited Hg is more readily methylated by microorganisms than aged or preexisting Hg; however the underlying mechanism of this process is unclear. Here we report that Hg bioavailability is decreased by photochemical reactions between Hg and dissolved organic matter (DOM) in water. Photo-irradiation of Hg-DOM complexes results in loss of Sn(II)-reducible (i.e. reactive) Hg and up to an 80% decrease in MeHg production by the methylating bacteriummore » Geobacter sulfurreducens PCA. Loss of reactive Hg proceeded at a faster rate with a decrease in the Hg to DOM ratio and is attributed to the possible formation of mercury sulfide (HgS). Lastly, these results suggest a new pathway of abiotic photochemical formation of HgS in surface water and provide a mechanism whereby freshly deposited Hg is readily methylated but, over time, progressively becomes less available for microbial uptake and methylation.« less
Dual-Templated Cobalt Oxide for Photochemical Water Oxidation.
Deng, Xiaohui; Bongard, Hans-Josef; Chan, Candace K; Tüysüz, Harun
2016-02-19
Mesoporous Co3 O4 was prepared using a dual templating approach whereby mesopores inside SiO2 nanospheres, as well as the void spaces between the nanospheres, were used as templates. The effect of calcination temperature on the crystallinity, morphology, and textural parameters of the Co3 O4 replica was investigated. The catalytic activity of Co3 O4 for photochemical water oxidation in a [Ru(bpy)3 ](2+) [S2 O8 ](2-) system was evaluated. The Co3 O4 replica calcined at the lowest temperature (150 °C) exhibited the best performance as a result of the unique nanostructure and high surface area arising from the dual templating. The performance of Co3 O4 with highest surface area was further examined in electrochemical water oxidation. Superior activity over high temperature counterpart and decent stability was observed. Furthermore, CoO with identical morphology was prepared from Co3 O4 using an ethanol reduction method and a higher turnover-frequency number for photochemical water oxidation was obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Galgani, L.; Engel, A.
2015-12-01
The coastal upwelling system off Peru is characterized by high biological activity and a pronounced subsurface oxygen minimum zone, as well as associated emissions of atmospheric trace gases such as N2O, CH4 and CO2. During the Meteor (M91) cruise to the Peruvian upwelling system in 2012, we investigated the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like Chromophoric Dissolved Organic Matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. In order to understand organic matter cycling in surface films, we analyzed SML and underlying water samples at 38 stations determining DOC concentration, amino acid composition, marine gels, CDOM and bacterial and phytoplankton abundance as indicators of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slope (S) values and Excitation-Emission Matrix fluorescence (EEMs), which allow to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources and sinks. We identified five fluorescent components of the CDOM pool, of which two had excitation/emission characteristics of protein-like fluorophores and were highly enriched in the SML. CDOM composition and changes in spectral slope properties suggested a local microbial release of HMW DOM directly in the SML as a response to light exposure in this extreme environment. Our results suggest that microbial and photochemical processes play an important role for the production, alteration and loss of optically active substances in the SML.
NASA Astrophysics Data System (ADS)
Galgani, Luisa; Engel, Anja
2016-04-01
The coastal upwelling system off the coast of Peru is characterized by high biological activity and a pronounced subsurface oxygen minimum zone, as well as associated emissions of atmospheric trace gases such as N2O, CH4 and CO2. From 3 to 23 December 2012, R/V Meteor (M91) cruise took place in the Peruvian upwelling system between 4.59 and 15.4° S, and 82.0 to 77.5° W. During M91 we investigated the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like chromophoric dissolved organic matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. We analyzed SML and underlying water (ULW) samples at 38 stations focusing on CDOM spectral characteristics as indicator of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slope (S) values and excitation-emission matrix fluorescence (EEMs), which allow us to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources and sinks. Spectral slope S varied between 0.012 to 0.043 nm-1 and was quite similar between SML and ULW, with no significant differences between the two compartments. Higher S values were observed in the ULW of the southern stations below 15° S. By EEMs, we identified five fluorescent components (F1-5) of the CDOM pool, of which two had excitation/emission characteristics of amino-acid-like fluorophores (F1, F4) and were highly enriched in the SML, with a median ratio SML : ULW of 1.5 for both fluorophores. In the study region, values for CDOM absorption ranged from 0.07 to 1.47 m-1. CDOM was generally highly concentrated in the SML, with a median enrichment with respect to the ULW of 1.2. CDOM composition and changes in spectral slope properties suggested a local microbial release of DOM directly in the SML as a response to light exposure in this extreme environment. In a conceptual model of the sources and modifications of optically active DOM in the SML and underlying seawater (ULW), we describe processes we think may take place (Fig. 1); the production of CDOM of higher MW by microbial release through growth, exudation and lysis in the euphotic zone, includes the identified fluorophores (F1, F2, F3, F4, F5). Specific amino-acid-like fluorophores (F1, F4) accumulate in the SML with respect to the ULW, as photochemistry may enhance microbial CDOM release by (a) photoprotection mechanisms and (b) cell-lysis processes. Microbial and photochemical degradation are potential sinks of the amino-acid-like fluorophores (F1, F4), and potential sources of reworked and more refractory humic-like components (F2, F3, F5). In the highly productive upwelling region along the Peruvian coast, the interplay of microbial and photochemical processes controls the enrichment of amino-acid-like CDOM in the SML. We discuss potential implications for air-sea gas exchange in this area.
NASA Technical Reports Server (NTRS)
Gupta, A.; Coulbert, C.
1978-01-01
An actinometer has been developed to measure outdoor irradiance in the range 295-400 nm. Actinometric measurements of radiation are based on determination of photochemical reaction rates for reactions of known quantum efficiency. Actinometers have the advantage of providing irradiance data over surfaces of difficult accessibility; in addition, actinometrically determined irradiance data are wavelength weighted and therefore provide a useful means of assessing the degradation rates of polymers employed in solar energy systems.
The composition dependence of the photochemical reactivity of strontium barium titanate
NASA Astrophysics Data System (ADS)
Bhardwaj, Abhilasha
The efficiency of particulate water photolysis catalysts is impractically low due to the recombination of intermediate species and charge carriers. The back reaction can occur easily if the oxidation and reduction sites on the surface of the catalyst are not far enough apart. It is hypothesized that it will be possible to increase the separation of the sites of the two half reactions and reduce the recombination of photogenerated charge carriers by using a ferroelectric material with permanent internal dipolar fields. This separation of the reaction sites may significantly increase the efficiency of the process. The present work compares the photochemical reactivities of ferroelectric and nonferroelectric materials (SrxBa1-xTiO 3, 0.0≤ x ≤1.0) with similar composition and structure. The reactivities are compared by measuring the color change of methylene blue dye after the aqueous dye solution reacts on the surface of ceramic sample pellets as a result of exposure to UV light. The reactivities are also compared by measuring the amount of silver that is formed when an aqueous AgNO3 solution photochemically reacts on the surface. The change in the color of the dye is measured by diffuse reflectance spectroscopy and absorbance measurements. The amount of silver is measured by atomic force microscopy. The photochemical reactivity of SrxBa1-xTiO3 shows a local maximum at the composition of the ferroelectric to non-ferroelectric transition. Also, the reactivities decrease as BaTiO3 and SrTiO3 become less pure. The dominant factors causing this trend in reactivities of SrxBa1-xTiO3 are the dielectric constant and alloy scattering. It is found that higher values of the dielectric constant increase the photochemical reactivity by enlarging the space charge region. The increase in alloy scattering in SrxBa1-xTiO 3 solid solutions as x increases from zero or decreases from 1, has adverse effect on reactivity. There are other factors such as ferroelectric polarization, relative band edge positions and pH of the solution that can influence the reactivity. However, these factors are not significant in determining the composition dependence of the photochemical reactivity of SrxBa 1-xTiO3. The comparison of the surfaces of SrxBa 1-xTiO3 samples imaged by AFM after reaction (with silver nitrate) also showed that the mode of reaction gradually changes from spatially selective reactivity for BaTiO3 to spatially uniform reactivity for SrTiO3. The spatially selective reactivity disappears completely when x in SrxBa1-xTiO3 is greater than or equal to 0.28. The mechanism of the photochemical reaction of methylene blue dye on SrxBa1-xTiO3 was also studied. It is found that the dye reacts by a mechanism similar to that of silver. The methylene blue dye and silver reduce on the surfaces of positively charged domains and the reduced reaction products remain at the reduction reaction site. Extensions of this research would be to experimentally determine the band edges and defect concentrations in SrxBa1-xTiO 3 to get a better understanding of their influence on photochemical reactivity. Since the long term goal of this research is to find a efficient particulate catalyst for photocatalysis of water, the next step in this research is to carry out the photocatalysis of water using SrxBa1-x TiO3 powders. The effect of catalyst particle size should also be analyzed.
2018-01-01
The design of a multicomponent system that aims at the direct visualization of a synthetic rotary motor at the single molecule level on surfaces is presented. The synthesis of two functional motors enabling photochemical rotation and fluorescent detection is described. The light-driven molecular motor is found to operate in the presence of a fluorescent tag if a rigid long rod (32 Å) is installed between both photoactive moieties. The photochemical isomerization and subsequent thermal helix inversion steps are confirmed by 1H NMR and UV–vis absorption spectroscopies. In addition, the tetra-acid functioned motor can be successfully grafted onto amine-coated quartz and it is shown that the light responsive rotary motion on surfaces is preserved. PMID:29741383
Photochemical Haze Formation in the Atmospheres of Super-Earths and Mini-Neptunes
NASA Technical Reports Server (NTRS)
He, Chao; Hoerst, Sarah M.; Lewis, Nikole K.; Yu, Xinting; Moses, Julianne I.; Kempton, Eliza M.- R.; Marley, Mark S.; McGuiggan, Patricia; Morley, Caroline V.; Valenti, Jeff A.;
2018-01-01
UV (ultraviolet) radiation can induce photochemical processes in the atmospheres of exoplanet and produce haze particles. Recent transmission spectra of super-Earths and mini-Neptunes have demonstrated the possibility that exoplanets have haze/cloud layers at high altitudes in their atmospheres. Haze particles play an important role in planetary atmospheres because they affect the chemistry, dynamics, and radiation flux in planetary atmospheres, and may provide a source of organic material to the surface which may impact the origin or evolution of life. However, very little information is known about photochemical processes in cool, high-metallicity exoplanetary atmospheres. We present here photochemical haze formation in laboratory simulation experiments with UV radiation; we explored temperatures ranging from 300 to 600 degrees Kelvin and a range of atmospheric metallicities (100 times, 1000 times, and 10000 times solar metallicity). We find that photochemical hazes are generated in all simulated atmospheres, but the haze production rates appear to be temperature dependent: the particles produced in each metallicity group decrease as the temperature increases. The images taken with an atomic force microscope (AFM) show that the particle size (15 nanometers to 190 nanometers) varies with temperature and metallicity. Our results provide useful laboratory data on the photochemical haze formation and particle properties, which can serve as critical inputs for exoplanet atmosphere modeling, and guide future observations of exoplanets with the Transiting Exoplanet Survey Satellite (TESS), the James Webb Space Telescope (JWST), and the Wide-Field Infrared Survey Telescope (WFIRST).
NASA Astrophysics Data System (ADS)
Chan, Barbara P.
2005-04-01
Collagen gel is a natural biomaterial commonly used in tissue engineering because of its close resemblance to nature, negligible immunogenecity and excellent biocompatibility. However, unprocessed collagen gel is mechanically weak, highly water binding and vulnerable to chemical and enzymatic attacks that limits its use in tissue engineering in particular tissues for weight-bearing purposes. The current project aimed to strengthen and stabilize collagen scaffolds using a photochemical crosslinking technique. Photochemical crosslinking is rapid, efficient, non-thermal and does not involve toxic chemicals, comparing with other crosslinking methods such as glutaraldehyde and gamma irradiation. Collagen scaffolds were fabricated using rat-tail tendon collagen. An argon laser was used to process the collagen gel after equilibrating with a photosensitizing reagent. Scanning electronic microscope was used to characterize the surface and cross-sectional morphology of the membranes. Physico-chemical properties of the collagen scaffolds such as water-binding capacity, mechanical properties and thermostability were studied. Photochemical crosslinking significantly reduced the water-binding capacity, a parameter inversely proportional to the extent of crosslinking, of collagen scaffolds. Photochemical crosslinking also significantly increased the ultimate stress and tangent modulus at 90% of the rupture strain of the collagen scaffolds. Differential scanning calorimetry analysis showed a significantly higher shrinkage temperature and absence of the denaturation peak during the thermoscan comparing with the controls. This means greater thermostability in the photochemically crosslinked collagen scaffolds. This study demonstrates that the photochemical crosslinking technology is able to enhance the physicochemical propterties of collagen scaffolds by strengthening, stabilizing and controlling the swelling ratio of the collagen scaffolds so as to enable their use for tissue engineering.
Additive and Photochemical Manufacturing of Copper
Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-01-01
In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics. PMID:28000733
Additive and Photochemical Manufacturing of Copper
NASA Astrophysics Data System (ADS)
Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-12-01
In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics.
PHOTOREACTIONS IN SURFACE WATERS AND THEIR ROLE IN BIOGEOCHEMICAL CYCLES
During the past decade significant interest has developed in the influence of photochemical reactions on biogeochemical cycles in surface waters of lakes and the sea. A major portion of recent research on these photoreactions has focused on the colored component of dissolved org...
DISCOVER-AQ SJV Surface Measurements and Initial Comparisons with Photochemical Model Simulations
NASA’s DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaign studied the air quality throughout California’s San Joaquin Valley (SJV) during January and February of 2013. The SJV is a...
Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarado, Samuel R.; Guo, Yijun; Ruberu, T. Purnima A.
2014-03-15
The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describemore » our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).« less
Photochemical Water Oxidation Using {PMo12O40@Mo72Fe30}n Based Soft Oxometalate
NASA Astrophysics Data System (ADS)
Das, Santu; Roy, Soumyajit
Finding an alternative energy resource which can produce clean energy at a low cost is one of the major concerns of our times. The conversion of light energy into chemical energy is one key step forward in the direction. With that end in view photochemical water oxidation to produce oxygen plays a crucial role. In the present paper we have synthesized a soft oxometalate {PMo12O40@Mo72Fe30}n(1) from its well-known precursor polyoxometalate constituent [Muller et al., Chem. Commun. 1, 657 (2001)]. It is known that in the matter of catalysis, high surface area, possibility of heterogenization, recoverability makes soft oxometalates (SOMs) attractive as catalytic materials. Here we exploit such advantages of SOMs. The SOM based material acts as an active catalyst for photochemical water oxidation reaction with a maximum turnover number of 20256 and turnover frequency of 24.11min-1. The catalyst material is stable under photochemical reaction conditions and therefore can be reused for multiple photo catalytic water oxidation reaction cycles.
Microplates with adaptive surfaces.
Akbulut, Meshude; Lakshmi, Dhana; Whitcombe, Michael J; Piletska, Elena V; Chianella, Iva; Güven, Olgun; Piletsky, Sergey A
2011-11-14
Here we present a new and versatile method for the modification of the well surfaces of polystyrene microtiter plates (microplates) with poly(N-phenylethylene diamine methacrylamide), (poly-NPEDMA). The chemical grafting of poly-NPEDMA to the surface of microplates resulted in the formation of thin layers of a polyaniline derivative bearing pendant methacrylamide double bonds. These were used as the attachment point for various functional polymers through photochemical grafting of various, for example, acrylate and methacrylate, polymers with different functionalities. In a model experiment, we have modified poly-NPEDMA-coated microplates with a small library of polymers containing different functional groups using a two-step approach. In the first step, double bonds were activated by UV irradiation in the presence of N,N-diethyldithiocarbamic acid benzyl ester (iniferter). This enabled grafting of the polymer library in the second step by UV irradiation of solutions of the corresponding monomers in the microplate wells. The uniformity of coatings was confirmed spectrophotometrically, by microscopic imaging and by contact angle measurements (CA). The feasibility of the current technology has been shown by the generation of a small library of polymers grafted to the microplate well surfaces and screening of their affinity to small molecules, such as atrazine, a trio of organic dyes, and a model protein, bovine serum albumin (BSA). The stability of the polymers, reproducibility of measurement, ease of preparation, and cost-effectiveness make this approach suitable for applications in high-throughput screening in the area of materials research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.; Lyubinetsky, Igor
The field of heterogeneous photocatalysis has grown considerably in the decades since Fujishima and Honda's ground-breaking publications of photoelectrochemistry on TiO2. Numerous review articles continue to point to both progress made in the use of heterogeneous materials (such as TiO2) to perform photoconversion processes, and the many opportunities and challenges in heterogeneous photocatalysis research such as solar energy conversion and environmental remediation. The past decade has also seen an increase in the use of molecular-level approaches applied to model single crystal surfaces in an effort to obtain new insights into photocatalytic phenomena. In particular, scanning probe techniques (SPM) have enabledmore » researchers to take a ‘nanoscale’ approach to photocatalysis that includes interrogation of the reactivities of specific sites and adsorbates on a model photocatalyst surface. The rutile TiO2(110) surface has become the prototypical oxide single crystal surface for fundamental studies of many interfacial phenomena. In particular, TiO2(110) has become an excellent model surface for probing photochemical and photocatalytic reactions at the molecular level. A variety of experimental approaches have emerged as being ideally suited for studying photochemical reactions on TiO2(110), including desorption-oriented approaches and electronic spectroscopies, but perhaps the most promising techniques for evaluating site-specific properties are those of SPM. In this review, we highlight the growing use of SPM techniques in providing molecular-level insights into surface photochemistry on the model photocatalyst surface of rutile TiO2(110). Our objective is to both illustrate the unique knowledge that scanning probe techniques have already provided the field of photocatalysis, and also to motivate a new generation of effort into the use of such approaches to obtain new insights into the molecular level details of photochemical events occurring at interfaces. Discussion will start with an examination of how scanning probe techniques are being used to characterize the TiO2(110) surface in ways that are relevant to photocatalysis. We will then discuss specific classes of photochemical reaction on TiO2(110) for which SPM has proven indispensible in providing unique molecular-level insights, and conclude with discussion of future areas in which SPM studies may prove valuable to photocatalysis on TiO2. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. I.L. was partially supported by a Pacific Northwest National Laboratory (PNNL) Chemical Imaging Initiative project. PNNL is a multiprogram national laboratory operated for DOE by Battelle.« less
Photochemical mechanisms of light-triggered release from nanocarriers
Fomina, Nadezda; Sankaranarayanan, Jagadis; Almutairi, Adah
2012-01-01
Over the last three decades, a handful of photochemical mechanisms have been applied to a large number of nanoscale assemblies that encapsulate a payload to afford spatio-temporal and remote control over activity of the encapsulated payload. Many of these systems are designed with an eye towards biomedical applications, as spatio-temporal and remote control of bioactivity would advance research and clinical practice. This review covers five underlying photochemical mechanisms that govern the activity of the majority of photoresponsive nanocarriers: 1. photo driven isomerization and oxidation, 2. surface plasmon absorption and photothermal effects, 3. photo driven hydrophobicity changes, 4. photo driven polymer backbone fragmentation and 5. photo driven de-crosslinking. The ways in which these mechanisms have been incorporated into nanocarriers and how they affect release is detailed, as well as the advantages and disadvantages of each system. PMID:22386560
Zhan, Wen-Wen; Zhu, Qi-Long; Dang, Song; Liu, Zheng; Kitta, Mitsunori; Suenaga, Kazutomo; Zheng, Lan-Sun; Xu, Qiang
2017-04-01
Sub-nanometer Pt@Rh nanoparticles highly dispersed on MIL-125-derived porous TiO 2 nanoplates are successfully prepared for the first time by a photochemical route, where the porous TiO 2 nanoplates with a relatively high specific surface area play a dual role as both effective photoreductant and catalyst support. The resulting Pt@Rh/p-TiO 2 can be utilized as a highly active catalyst. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1990-11-01
output at -355 nm) until significant conversion of the tricarbonyl to the dicarbonyl phosphine was achieved, as determined by IR. The disubstitited product...forms rapidly once the dicarbonyl phosphine is present in solution so care was taken to stop the irradiation prior to extensive formation of...photochemical behavior and yields photoproducts analogous to those formed upon irradiation of (T5 -C 5 H4 )Mn(CO) 3 in the presence of phosphines . 7 UV
Role of nitrite in the photochemical formation of radicals in the snow.
Jacobi, Hans-Werner; Kleffmann, Jörg; Villena, Guillermo; Wiesen, Peter; King, Martin; France, James; Anastasio, Cort; Staebler, Ralf
2014-01-01
Photochemical reactions in snow can have an important impact on the composition of the atmosphere over snow-covered areas as well as on the composition of the snow itself. One of the major photochemical processes is the photolysis of nitrate leading to the formation of volatile nitrogen compounds. We report nitrite concentrations determined together with nitrate and hydrogen peroxide in surface snow collected at the coastal site of Barrow, Alaska. The results demonstrate that nitrite likely plays a significant role as a precursor for reactive hydroxyl radicals as well as volatile nitrogen oxides in the snow. Pollution events leading to high concentrations of nitrous acid in the atmosphere contributed to an observed increase in nitrite in the surface snow layer during nighttime. Observed daytime nitrite concentrations are much higher than values predicted from steady-state concentrations based on photolysis of nitrate and nitrite indicating that we do not fully understand the production of nitrite and nitrous acid in snow. The discrepancy between observed and expected nitrite concentrations is probably due to a combination of factors, including an incomplete understanding of the reactive environment and chemical processes in snow, and a lack of consideration of the vertical structure of snow.
Recent studies of laser science in paintings conservation and research.
Pouli, Paraskevi; Selimis, Alexandros; Georgiou, Savas; Fotakis, Costas
2010-06-15
The removal of aged and deteriorated molecular overlayers from the surface of paintings is a delicate and critical intervention in Cultural Heritage (CH) conservation. This irreversible action gets particularly complicated given the multitude of materials that may be present within a painted work of art (often in ultrathin layers or traces), as well as the exceptional sensitivity of the original surfaces to environmental conditions such as heat, light, and so on. Lasers hold an important role among the available cleaning methodologies, as they enable high control and accuracy, material selectivity, and immediate feedback. Still, prior to their implementation, it is imperative to optimize the cleaning parameters, so to ensure that any potential implications to the remaining materials are minimal and well understood. Toward this aim, research at IESL-FORTH is focused on both refining and continuously updating the laser-cleaning protocols (by introducing novel laser technologies into the field, i.e., ultrashort laser pulses), as well as on investigating and studying the nature and extent of laser-induced physicochemical alterations to the involved materials. In this Account, extended work for the understanding of ultraviolet (UV) laser ablation of polymers is presented. Emphasis is placed on the use of model systems (polymers doped with chromophores of known photochemistry) to examine the in-depth laser-induced modifications at the processed surfaces and thus to illustrate the dependence of their nature and extent on laser parameters and material properties. Furthermore, studies for the potential use of femtosecond UV pulses to overcome certain limitations involved with the nanosecond ablation of molecular overlayers from CH surfaces are highlighted. In particular, it is demonstrated that in the femtosecond regime any chemical modifications are, qualitatively and quantitatively, highly defined, limited and nearly independent of the material properties, such as the absorptivity and the degree of polymerization/molecular weight. Thus, they can be highly potent in the treatment of molecular substrates, enabling new material processing schemes that have not been possible with nanosecond laser technology, as for example, processing of ultrathin varnish layers. Finally, a sensitive indicator is introduced to elucidate the extent of any photochemical or structural modification induced at the substrate on the process of the laser-assisted removal of overpaints. A realistic scenario of an overlayered modern painting is simulated by a sensitive polymer film covered with acrylic paint. The indicator is doped with photosensitizers of known photochemistry and strong fluorescence emission, which allow the employment of laser induced fluorescence (LIF) for the detection of any chemical modifications generated into the substrate during laser cleaning. In addition, nonlinear microscopy techniques are successfully employed to examine the extent of these modifications. The suggested methodology is proven to reliably and accurately detect potential changes, and thus, it can serve as a monitoring tool to fine-tune the cleaning protocol and safeguard the original painting.
40 CFR 52.253 - Metal surface coating thinner and reducer.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.253 Metal surface... conform to paragraph (k) of § 52.254 so as to be defined as a nonphotochemically reactive solvent. (d...-photochemically reactive solvent. (e) If there is an inadequate supply of necessary solvent ingredients needed in...
The ability of different nano-sized materials (NSM) to effectively act as active photo-catalytic surfaces has been described for the mineralization/inactivation of many different aqueous pollutants. The reason for their enhanced ability over larger catalytic surfaces owes muc...
Singlet oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter.
Cory, Rose M; McNeill, Kristopher; Cotner, James P; Amado, Andre; Purcell, Jeremiah M; Marshall, Alan G
2010-05-15
Dissolved organic matter (DOM) is a significant (>700 Pg) global C pool. Transport of terrestrial DOM to the inland waters and coastal zones represents the largest flux of reduced C from land to water (215 Tg yr(-1)) (Meybeck, M. Am. J. Sci. 1983, 282, 401-450). Oxidation of DOM by interdependent photochemical and biochemical processes largely controls the fate of DOM entering surface waters. Reactive oxygen species (ROS) have been hypothesized to play a significant role in the photooxidation of DOM, because they may oxidize the fraction of DOM that is inaccessible to direct photochemical degradation by sunlight. We followed the effects of photochemically produced singlet oxygen ((1)O(2)) on DOM by mass spectrometry with (18)O-labeled oxygen, to understand how (1)O(2)-mediated transformations of DOM may lead to altered DOM bioavailability. The photochemical oxygen uptake by DOM attributed to (1)O(2) increased with DOM concentration, yet it remained a minority contributor to photochemical oxygen uptake even at very high DOM concentrations. When DOM samples were exposed to (1)O(2)-generating conditions (Rose Bengal and visible light), increases were observed in DOM constituents with higher oxygen content and release of H(2)O(2) was detected. Differential effects of H(2)O(2) and (1)O(2)-treated DOM showed that (1)O(2)-treated DOM led to slower bacterial growth rates relative to unmodified DOM. Results of this study suggested that the net effect of the reactions between singlet oxygen and DOM may be production of partially oxidized substrates with correspondingly lower potential biological energy yield.
Surface smoothing of indium tin oxide film by laser-induced photochemical etching
NASA Astrophysics Data System (ADS)
Kang, JoonHyun; Kim, Young-Hwan; Kwon, Seok Joon; Park, Joon-Suh; Park, Kyoung Wan; Park, Jae-Gwan; Han, Il Ki
2017-12-01
Surface smoothing of indium tin oxide (ITO) film by laser irradiation was demonstrated. The ITO surface was etched by choline radicals, which were activated by laser irradiation at a wavelength of 532 nm. The RMS surface roughness was improved from 5.6 to 4.6 nm after 10 min of laser irradiation. We also showed the changes in the surface morphology of the ITO film with various irradiation powers and times.
NASA Astrophysics Data System (ADS)
Pochanart, Pakpong; Hirokawa, Jun; Kajii, Yoshizumi; Akimoto, Hajime; Nakao, Makoto
1999-02-01
Surface O3 and CO measurements were carried out at Oki, Japan during March 1994 to February 1996 in order to elucidate the processes determining temporal variations of O3 and CO in the northeast Asian Pacific rim region. The isentropic trajectory analysis was applied to sort out the influences of the air mass exchange under the Asian monsoon system and the regional-scale photochemical buildup of O3. The trajectories were categorized into five groups which cover background and regionally polluted air masses. The seasonal cycles of O3 and CO in the background continental air mass revealed spring maximum-summer minimum with averaged concentrations ranging from 32 and 120 ppb to 45 and 208 ppb, respectively. In contrast, O3 concentrations in the regionally polluted continental air mass ranged from 44 to 57 ppb and showed a winter minimum and a spring-summer-autumn broad maximum, which was characterized by photochemical O3 production due to anthropogenic activities in northeast Asia. CO concentrations in the same air mass showed a spring maximum of 271 ppb and a summer-autumn minimum of 180 ppb. The photochemical buildup of O3 resulting from anthropogenic activities in this region was estimated to be 21 ppb in summer, while its production was insignificant, an average 3 ppb, in winter. A comparison between data in northeast Asia and in Europe shows many similarities, supporting the contention that photochemical buildup of O3 from large-scale precursor emissions in both regions is very significant.
Air Quality Criteria for Ozone and Related Photochemical ...
In February 2006, EPA released the final document, Air Quality Criteria for Ozone and Other Photochemical Oxidants. Tropospheric or surface-level ozone (O3) is one of six major air pollutants regulated by National Ambient Air Quality Standards (NAAQS) under the U.S. Clean Air Act. As mandated by the Clean Air Act, the U.S. Environmental Protection Agency (EPA) must periodically review the scientific bases (or criteria) for the various NAAQS by assessing newly available scientific information on a given criteria air pollutant. This document, Air Quality Criteria for Ozone and Other Photochemical Oxidants, is an updated revision of the 1996 Ozone Air Quality Criteria Document (O3 AQCD) that provided scientific bases for the current O3 NAAQS set in 1997. The Clean Air Act mandates periodic review of the National Ambient Air Quality Standards (NAAQS) for six common air pollutants, also referred to as criteria pollutants, including ozone.
Radiative-photochemical response of the mesosphere to dynamical forcing
NASA Technical Reports Server (NTRS)
Frederick, J. E.
1981-01-01
Combination of the chemical continuity equation for odd oxygen with the second law of thermodynamics yields analytic solutions which describe the coupled behavior of temperature and ozone perturbations in response to an externally specified forcing. The results appear in a form which allows easy physical interpretation of the coupling between radiative and photochemical processes. When the forcing is chosen to mimic a planetary scale wave, the theory shows that photochemical acceleration of radiative damping reduces the amplitude of the temperature perturbation by an amount which increases with the wave period. Although ozone fluctuations are anti-correlated with those in temperature, minima in ozone do not coincide exactly in longitude with temperature maxima. The percentage variation in ozone increases upward and is always larger than that in temperature at the same pressure. This demonstrates that variations in ozone on constant pressure surfaces may serve as a sensitive indicator of wave activity in the mesosphere.
Tan, Guanghui; Li, Wenting; Cheng, Jianjun; Wang, Zhiqiang; Wei, Shuquan; Jin, Yingxue; Guo, Changhong; Qu, Fengyu
2016-11-30
Magnetic iron oxide modified pyropheophorbide-a fluorescence nanoparticles, Fe 3 O 4 @SiO 2 @APTES@PPa (FSAP), were designed as magnetically targeted photodynamic antineoplastic agents and prepared through continuous covalent chemical modification on the surface of Fe 3 O 4 nanoparticles. The properties of the intermediates and the final product were comprehensively characterized by transmission electron microscopy, powder X-ray diffraction analysis, Fourier transform infrared spectroscopy, vibrating sample magnetometry, zeta potential measurement, ultraviolet-visible absorption spectroscopy, fluorescence emission spectroscopy, and thermogravimetric analysis. In this work, we demonstrated the in vitro photodynamic therapy (PDT) of FSAP against ovarian cancer (SKOV-3) cells, which indicated that FSAP could be taken up successfully and showed low dark toxicity without irradiation, but remarkable phototoxicity after irradiation. Meanwhile, FSAP had showed good biocompatibility and low dark toxicity against normal cells in the biological experiments on mouse normal fibroblast cell lines (L929 cells). In addition, in the photochemical process of FSAP mediated photodynamic therapy, the Type-II photo-oxygenation process (generated singlet oxygen) played an important role in the induction of cell damage.
Optofluidic control of axonal guidance
NASA Astrophysics Data System (ADS)
Gu, Ling; Ordonez, Simon; Black, Bryan; Mohanty, Samarendra K.
2013-03-01
Significant efforts are being made for control on axonal guidance due to its importance in nerve regeneration and in the formation of functional neuronal circuitry in-vitro. These include several physical (topographic modification, optical force, and electric field), chemical (surface functionalization cues) and hybrid (electro-chemical, photochemical etc) methods. Here, we report comparison of the effect of linear flow versus microfluidic flow produced by an opticallydriven micromotor in guiding retinal ganglion axons. A circularly polarized laser tweezers was used to hold, position and spin birefringent calcite particle near growth cone, which in turn resulted in microfluidic flow. The flow rate and resulting shear-force on axons could be controlled by a varying the power of the laser tweezers beam. The calcite particles were placed separately in one chamber and single particle was transported through microfluidic channel to another chamber containing the retina explant. In presence of flow, the turning of axons was found to strongly correlate with the direction of flow. Turning angle as high as 90° was achieved. Optofluidic-manipulation can be applied to other types of mammalian neurons and also can be extended to stimulate mechano-sensing neurons.
A model of stratospheric chemistry and transport on an isentropic surface
NASA Technical Reports Server (NTRS)
Austin, John; Holton, James R.
1990-01-01
This paper presents a new photochemical transport model designed to simulate the behavior of stratospheric trace species in the middle stratosphere. The model has an Eulerian grid with the latitude and longitude coordinates on a single isentropic surface (hemispheric or global), in which both the dynamical and the photochemical processes can be accurately represented. The model is intgegrated for 12 days with winds and temperatures supplied by three-dimensional integration of an idealized wavenumber-one disturbance. The results for the long-lived tracers such as N2O showed excellent correlation with the potential vorticity distribution, validating the transport scheme. Calculations with zonally averaged wind and temperature fields showed that discrepancies in the calculation of the zonal mean were less than 10 percent for O3 and HNO3, compared with the zonal mean of the previous results.
Photochemical Water Splitting by Bismuth Chalcogenide Topological Insulators.
Rajamathi, Catherine R; Gupta, Uttam; Pal, Koushik; Kumar, Nitesh; Yang, Hao; Sun, Yan; Shekhar, Chandra; Yan, Binghai; Parkin, Stuart; Waghmare, Umesh V; Felser, Claudia; Rao, C N R
2017-09-06
As one of the major areas of interest in catalysis revolves around 2D materials based on molybdenum sulfide, we have examined the catalytic properties of bismuth selenides and tellurides, which are among the first chalcogenides to be proven as topological insulators (TIs). We find significant photochemical H 2 evolution activity with these TIs as catalysts. H 2 evolution increases drastically in nanosheets of Bi 2 Te 3 compared to single crystals. First-principles calculations show that due to the topology, surface states participate and promote the hydrogen evolution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tinel, Liselotte; Rossignol, Stéphanie; Ciuraru, Raluca; George, Christian
2015-04-01
Investigating the pathway for the photochemical formation of VOCs in presence of an organic monolayer at the air/water interface. Liselotte Tinel, Stéphanie Rossignol, Raluca Ciuraru and Christian George Université de Lyon, Université Lyon 1, CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, F-69626, France Recently the surface microlayer (SML) has received growing attention for its role in the deposition and emission of trace gases. This SML is presumably a highly efficient environment for photochemical reactions thanks to its physical and chemical properties, showing enrichment in chromophores [1]. Still, little is known about the possible photochemical processes that could influence the emission and deposition of volatile organic compounds (VOCs) in the SML. A recent study underlines the particularity of the presence of an organic microlayer, showing enhanced formation of peptide bonds at the air-water interface, although this reaction is thermodynamically disfavoured in bulk water [2]. Also, emissions of small gas phase carbonyl compounds formed photochemically by dissolved organic matter have been measured above natural water and glyoxal, for example, measured above the open ocean is thought to be photochemically produced [3, 4]. This study presents the results of a set of laboratory studies set up in order to better understand the role of the SML in the photochemical production of VOCs. Recently, our group has shown the formation of VOCs by light driven reactions in a small quartz reactor (14mL) containing aqueous solutions of humic acids (HA) in the presence of an organic (artificial or natural) microlayer [5]. The main VOCs produced were oxidized species, such as aldehydes, ketones and alcohols, as classically can be expected by the oxidation of the organics present at the interface initiated by triplet excited chromophores present in the HA. But also alkenes, dienes, including isoprene and unsaturated aldehydes were detected and a reaction pathway, initiated by a H-abstraction of the surfactant by the excited HA*, has been proposed. This mechanism infers that the presence of the surface microlayer will enhance protonation and self-reactions, leading to the formation of dimers as suggested in [6]. These products could explain the formation of the unsaturated products observed. To confirm the hypothesis of an initiative step of H-abstraction, the system was simplified using OH radicals, generated by the photolysis of H2O2, in presence of an artificial organic layer of nonanoic acid. The VOCs produced, monitored by PTR/SRI-TOF-MS in NO+ and H3O+ ionization mode, were less abundant compared to the system with HA, but the same classes of products could be observed, including oxidation products such as aldehydes but also unsatured products like dienes. The underlying water was sampled before and after the experiment and analysed by HR-ESI-MS, showing mostly enrichment of oxidative products, such as hydroxy- and keto-acids immediately derived from the photochemical oxidation of the nonanoic acid layer. These products, showing lower volatility and higher polarity, partition preferentially to the bulk water. The results of this simplified system confirm the reaction mechanism proposed and the role an organic layer can play in the photochemical formation of VOCs, which could influence the marine boundary layer chemistry. 1. Peter S. Liss, R.A.D., ed. Sea Surface and Global Change. 1997, Cambridge University Press: Cambridge. 509. 2. Griffith, E.C. and V. Vaida, In situ observation of peptide bond formation at the water-air interface. Proceedings of the National Academy of Sciences, 2012. 109(39): p. 15697-15701. 3. Sinreich, R., et al., Ship-based detection of glyoxal over the remote tropical Pacific Ocean. Atmospheric Chemistry and Physics, 2010. 10(23): p. 11359-11371. 4. Kieber, R.J., X.L. Zhou, and K. Mopper, Formation of carbonyl-compounds from uv-induced photodegradation of humic substances in natural-waters - fate of riverine carbon in the sea. Limnology and Oceanography, 1990. 35(7): p. 1503-1515. 5. R. Ciuraru, L. Fine, M. van Pinxteren, B. D'Anna, H. Herrmann, C. George, Unravelling new processes at interfaces: chemical isoprene production at the sea surface. submitted. 6. Griffith, E.C., et al., Photoinitiated Synthesis of Self-Assembled Vesicles. Journal of the American Chemical Society, 2014. 136(10): p. 3784-3787.
NASA Astrophysics Data System (ADS)
Summers, David P.; Noveron, Juan; Basa, Ranor C. B.
2009-04-01
Amphiphilic bilayer membrane structures (vesicles) have been postulated to have been abiotically formed and spontaneously assemble on the prebiotic Earth, providing compartmentalization for the origin of life. These vesicles are similar to modern cellular membranes and can serve to contain water-soluble species, concentrate species, and have the potential to catalyze reactions. The origin of the use of photochemical energy in metabolism (i.e. energy transduction) is one of the central issues in the origin of life. This includes such questions as how energy transduction may have occurred before complex enzymatic systems, such as required by contemporary photosynthesis, had developed and how simple a photochemical system is possible. It has been postulated that vesicle structures developed the ability to capture and transduce light, providing energy for reactions. It has also been shown that pH gradients across the membrane surface can be photochemically created, but coupling these to drive chemical reactions has been difficult. Colloidal semiconducting mineral particles are known to photochemically drive redox chemistry. We propose that encapsulation of these particles has the potential to provide a source of energy transduction inside vesicles, and thereby drive protocellular chemistry, and represents a model system for early photosynthesis. In our experiments we show that TiO2 particles, in the ~20 nm size range, can be incorporated into vesicles and retain their photoactivity through the dehydration/rehydration cycles that have been shown to concentrate species inside a vesicle.
Summers, David P; Noveron, Juan; Basa, Ranor C B
2009-04-01
Amphiphilic bilayer membrane structures (vesicles) have been postulated to have been abiotically formed and spontaneously assemble on the prebiotic Earth, providing compartmentalization for the origin of life. These vesicles are similar to modern cellular membranes and can serve to contain water-soluble species, concentrate species, and have the potential to catalyze reactions. The origin of the use of photochemical energy in metabolism (i.e. energy transduction) is one of the central issues in the origin of life. This includes such questions as how energy transduction may have occurred before complex enzymatic systems, such as required by contemporary photosynthesis, had developed and how simple a photochemical system is possible. It has been postulated that vesicle structures developed the ability to capture and transduce light, providing energy for reactions. It has also been shown that pH gradients across the membrane surface can be photochemically created, but coupling these to drive chemical reactions has been difficult. Colloidal semiconducting mineral particles are known to photochemically drive redox chemistry. We propose that encapsulation of these particles has the potential to provide a source of energy transduction inside vesicles, and thereby drive protocellular chemistry, and represents a model system for early photosynthesis. In our experiments we show that TiO2 particles, in the approximately 20 nm size range, can be incorporated into vesicles and retain their photoactivity through the dehydration/rehydration cycles that have been shown to concentrate species inside a vesicle.
Impact of downward-mixing ozone on surface ozone accumulation in southern Taiwan.
Lin, Ching-Ho
2008-04-01
The ozone that initially presents in the previous day's afternoon mixing layer can remain in the nighttime atmosphere and then be carried over to the next morning. Finally, this ozone can be brought to the ground by downward mixing as mixing depth increases during the daytime, thereby increasing surface ozone concentrations. Variation of ozone concentration during each of these periods is investigated in this work. First, ozone concentrations existing in the daily early morning atmosphere at the altitude range of the daily maximum mixing depth (residual ozone concentrations) were measured using tethered ozonesondes on 52 experimental days during 2004-2005 in southern Taiwan. Daily downward-mixing ozone concentrations were calculated by a box model coupling the measured daily residual ozone concentrations and daily mixing depth variations. The ozone concentrations upwind in the previous day's afternoon mixing layer were estimated by the combination of back air trajectory analysis and known previous day's surface ozone distributions. Additionally, the relationship between daily downward-mixing ozone concentration and daily photochemically produced ozone concentration was examined. The latter was calculated by removing the former from daily surface maximum ozone concentration. The measured daily residual ozone concentrations distributed at 12-74 parts per billion (ppb) with an average of 42 +/- 17 ppb are well correlated with the previous upwind ozone concentration (R2 = 0.54-0.65). Approximately 60% of the previous upwind ozone was estimated to be carried over to the next morning and became the observed residual ozone. The daily downward-mixing ozone contributes 48 +/- 18% of the daily surface maximum ozone concentration, indicating that the downward-mixing ozone is as important as daily photochemically produced ozone to daily surface maximum ozone accumulation. The daily downward-mixing ozone is poorly correlated with the daily photochemically produced ozone and contributes significantly to the daily variation of surface maximum ozone concentrations (R2 = 0.19). However, the contribution of downward-mixing ozone to daily ozone variation is not included in most existing statistical models developed for predicting daily ozone variation. Finally, daily surface maximum ozone concentration is positively correlated with daily afternoon mixing depth, attributable to the downward-mixing ozone.
Method for providing adhesion to a metal surface
Harrah, L.A.; Allred, R.E.; Wilson, K.V. Jr.
1992-02-18
A process for treating metal surfaces to obtain improved susceptibility to bonding with adhesive compositions is disclosed. A metal surface is oxidized with a halogen to form a monolayer of halide ions on the surface. The halide ions are then exchanged with azide ions to form an azide monolayer on the metal surface. Upon contact of the treated surface with an adhesive composition, the azide layer may be thermally or photochemically decomposed to form active nitrene species, which react to bond the adhesive composition to the metal surface.
Method for providing adhesion to a metal surface
Harrah, Larry A.; Allred, Ronald E.; Wilson, Jr., Kennard V.
1992-01-01
A process for treating metal surfaces to obtain improved susceptibility to bonding with adhesive compositions is disclosed. A metal surface is oxidized with a halogen to form a monolayer of halide ions on the surface. The halide ions are then exchanged with azide ions to form an azide monolayer on the metal surface. Upon contact of the treated surface with an adhesive composition, the azide layer may be thermally or photochemically decomposed to form active nitrene species, which react to bond the adhesive composition to the metal surface.
Photochemical versus biological production of methyl iodide during Meteor 55
NASA Astrophysics Data System (ADS)
Richter, U.; Wallace, D.
2003-04-01
The flux of methyl iodide from sea to air represents the largest flux of iodine from the ocean to the atmosphere. Surface water concentrations and hence fluxes are particularly high in tropical regions. This flux may be responsible for the enrichment of iodine in the marine aerosol and may contribute to important processes in the marine boundary layer, including particle formation. Methyl iodide is commonly referred to as a biogenic gas, with both macroalgae and phytoplankton identified as important sources. On the other hand experimental and field data have shown the importance of photochemical production that is not necessarily associated directly with biological activity. During the Meteor cruise 55 along 11°N in the tropical Atlantic Ocean, a series of experiments were conducted to examine the biological vs. photochemical production of methyl iodide. A total of eight separate experiments were conducted. Production of CH3I in quartz glass flasks during 24 hour incubations (dark and natural sunlight) was measured under three experimental treatments: untreated seawater, filtered seawater (0.1 um pore size filter to exclude most phytoplankton and bacteria), and seawater that was poisoned with mercuric chloride. There were two clear findings from these experiments: (1) methyl iodide production was significantly higher in all the incubations that were exposed to the light than in the dark incubations; (2) there was no significant difference between CH3I production under the three experimental treatments. These results argue very strongly for the primary importance of photochemical production of CH3I as opposed to biogenic production at least for the tropical open ocean surface waters. Further experiments are required to investigate the reactants involved, their sources, the wavelength and depth dependence of production, etc. as well as (possibly related) sink processes.
Sunlight Controls Water Column Processing of Carbon in Arctic Freshwaters
NASA Astrophysics Data System (ADS)
Cory, R. M.; Ward, C. P.; Crump, B. C.; Kling, G. W.
2014-12-01
Carbon (C) in thawing permafrost soils may have global impacts on climate change, yet controls on its processing and fate are poorly understood. The dominant fate of dissolved organic C (DOC) released from soils to inland waters is either complete oxidation to CO2 or partial oxidation and river export to oceans. Both processes are most often attributed to bacterial respiration, but we recently showed that photochemical oxidation exceeds rates of respiration and accounts for 70-95% of total DOC processed in the water column of arctic lakes and rivers. While the overall dominance of photochemical processing in streams and lakes remained, the fate of DOC varied consistently by water type. In small streams DOC was mainly mineralized by sunlight to CO2, while in lakes the main fate of DOC was partial photo-oxidation. Large rivers were intermediate between these end members, and photo-mineralization to CO2 was about equal to or less than partial photo-oxidation. We suggest this pattern is a result of light-exposure history, where DOC leached from soils into headwater streams has little prior light exposure and is labile to complete photo-oxidation, but as light exposure increases moving downstream and into lakes with longer residence times the DOC photo-lability declines. Thus as easily photo-mineralized moieties are removed, DOC fate shifts toward partial photo-oxidation and downstream export in rivers and lakes. At the basin scale, photochemical processing of DOC is about one third of the total CO2 released from surface waters, and is thus an important, newly measured component of the Arctic C budget. We also suggest that these photochemical transformations of DOC will occur in any shallow surface water, and could be important for better understanding inland water carbon cycling.
Wintertime ozone fluxes and profiles above a subalpine spruce-fir forest
Karl Zeller
2000-01-01
High rural concentrations of ozone (O3) are thought to be stratospheric in origin, advected from upwind urban sources, or photochemically generated locally by natural trace gas emissions. Ozone is known to be transported vertically downward from the above-canopy atmospheric surface layer and destroyed within stomata or on other biological and mineral surfaces. However...
Wilker, Molly B.; Utterback, James K.; Greene, Sophie; ...
2017-12-08
Complexes of CdS nanorods and [FeFe] hydrogenase from Clostridium acetobutylicum have been shown to photochemically produce H 2. This study examines the role of the ligands that passivate the nanocrystal surfaces in the electron transfer from photoexcited CdS to hydrogenase and the H 2 generation that follows. We functionalized CdS nanorods with a series of mercaptocarboxylate surface-capping ligands of varying lengths and measured their photoexcited electron relaxation by transient absorption (TA) spectroscopy before and after hydrogenase adsorption. Rate constants for electron transfer from the nanocrystals to the enzyme, extracted by modeling of TA kinetics, decrease exponentially with ligand length, suggestingmore » that the ligand layer acts as a barrier to charge transfer and controls the degree of electronic coupling. Relative light-driven H 2 production efficiencies follow the relative quantum efficiencies of electron transfer, revealing the critical role of surface-capping ligands in determining the photochemical activity of these nanocrystal-enzyme complexes. Our results suggest that the H 2 production in this system could be maximized with a choice of a surface-capping ligand that decreases the distance between the nanocrystal surface and the electron injection site of the enzyme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilker, Molly B.; Utterback, James K.; Greene, Sophie
Complexes of CdS nanorods and [FeFe] hydrogenase from Clostridium acetobutylicum have been shown to photochemically produce H 2. This study examines the role of the ligands that passivate the nanocrystal surfaces in the electron transfer from photoexcited CdS to hydrogenase and the H 2 generation that follows. We functionalized CdS nanorods with a series of mercaptocarboxylate surface-capping ligands of varying lengths and measured their photoexcited electron relaxation by transient absorption (TA) spectroscopy before and after hydrogenase adsorption. Rate constants for electron transfer from the nanocrystals to the enzyme, extracted by modeling of TA kinetics, decrease exponentially with ligand length, suggestingmore » that the ligand layer acts as a barrier to charge transfer and controls the degree of electronic coupling. Relative light-driven H 2 production efficiencies follow the relative quantum efficiencies of electron transfer, revealing the critical role of surface-capping ligands in determining the photochemical activity of these nanocrystal-enzyme complexes. Our results suggest that the H 2 production in this system could be maximized with a choice of a surface-capping ligand that decreases the distance between the nanocrystal surface and the electron injection site of the enzyme.« less
Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes
Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; McDowell, Matthew T.; Yu, Jie; Larson, David M.; Borys, Nicholas J.; Abelyan, Christine; Beeman, Jeffrey W.; Yu, Kin Man; Yang, Jinhui; Chen, Le; Shaner, Matthew R.; Spurgeon, Joshua; Houle, Frances A.; Persson, Kristin A.; Sharp, Ian D.
2016-01-01
Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates that photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability. PMID:27377305
NASA Technical Reports Server (NTRS)
Zhang, Yang; Sunwoo, Young; Kotamarthi, Veerabhadra; Carmichael, Gregory R.
1994-01-01
The influence of dust on the tropospheric photochemical oxidant cycle is studied through the use of a detailed coupled aerosol and gas-phase chemistry model. Dust is a significant component of the troposphere throughout Asia and provides a surface for a variety of heterogeneous reactions. Dust is found to be an important surface for particulate nitrate formation. For dust loading and ambient concentrations representative of conditions in East Asia, particulate nitrate levels of 1.5-11.5 micrograms/cubic meter are predicted, consistent with measured levels in this region. Dust is also found to reduce NO(x) levels by up to 50%, HO2 concentrations by 20%-80%, and ozone production rates by up to 25%. The magnitude of the influence of dust is sensitive to mass concentration of the aerosol, relative humidity, and the value of the accommodation coefficient.
Enhanced light-harvesting by plasmonic hollow gold nanospheres for photovoltaic performance
Lv, Jindian; Wu, Huaping; Chai, Guozhong; Liu, Aiping
2018-01-01
A ‘sandwich'-structured TiO2NR/HGN/CdS photoanode was successfully fabricated by the electrophoretic deposition of hollow gold nanospheres (HGNs) on the surface of TiO2 nanorods (NRs). The HGNs presented a wide surface plasmon resonance character in the visible region from 540 to 630 nm, and further acted as the scatter elements and light energy ‘antennas' to trap the local-field light near the TiO2NR/CdS layer, resulting in the increase of the light harvesting. An outstanding enhancement in the photochemical behaviour of TiO2NR/HGN/CdS photoanodes was attained by the contribution of HGNs in increasing the light absorption and the number of electron-hole pairs of photosensitive semiconductors. The optimized photochemical performance of TiO2NR/HGN/CdS photoanodes by using plasmonic HGNs demonstrated their potential application in energy conversion devices. PMID:29410838
Enhanced light-harvesting by plasmonic hollow gold nanospheres for photovoltaic performance.
Ding, Hao; Lv, Jindian; Wu, Huaping; Chai, Guozhong; Liu, Aiping
2018-01-01
A 'sandwich'-structured TiO 2 NR/HGN/CdS photoanode was successfully fabricated by the electrophoretic deposition of hollow gold nanospheres (HGNs) on the surface of TiO 2 nanorods (NRs). The HGNs presented a wide surface plasmon resonance character in the visible region from 540 to 630 nm, and further acted as the scatter elements and light energy 'antennas' to trap the local-field light near the TiO 2 NR/CdS layer, resulting in the increase of the light harvesting. An outstanding enhancement in the photochemical behaviour of TiO 2 NR/HGN/CdS photoanodes was attained by the contribution of HGNs in increasing the light absorption and the number of electron-hole pairs of photosensitive semiconductors. The optimized photochemical performance of TiO 2 NR/HGN/CdS photoanodes by using plasmonic HGNs demonstrated their potential application in energy conversion devices.
NASA Technical Reports Server (NTRS)
Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.
1979-01-01
Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.
Surface Modification of Intraocular Lenses
Huang, Qi; Cheng, George Pak-Man; Chiu, Kin; Wang, Gui-Qin
2016-01-01
Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO2, heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs. PMID:26830993
Photochemical Grafting of Organic Alkenes to Single-Crystal TiO2 Surfaces: A Mechanistic Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franking, Ryan A.; Kim, Heesuk; Chambers, Scott A.
2012-08-21
The UV-induced photochemical grafting of terminal alkenes has emerged as a versatile way to form molecular layers on semiconductor surfaces. Recent studies have shown that grafting reactions can be initiated by photoelectron emission into the reactant liquid as well as by excitation across the semiconductor bandgap, but the relative importance of these two processes is expected to depend on the nature of the semiconductor and the reactant alkene and the excitation wavelength. Here we report a study of the wavelength-dependent photochemical grafting of alkenes onto single-crystal TiO2 samples. Trifluoroacetamide-protected 10-aminododec-1-ene (TFAAD), 10-N-BOC-aminodec-1-ene (t-BOC) and 1-dodecene were used as model alkenes.more » On rutile(110), photons with energy above the bandgap but below the expected work function are not effective at inducing grafting, while photons with energy sufficient to induce electronic transitions from the TiO2 Fermi level to electronic acceptor states of the reactant molecules induce grafting. A comparison of rutile (110), rutile(001), anatase (001), and anatase(101) samples shows slightly enhanced grafting for rutile but no difference between crystal faces for a given crystal phase. Hydroxylation of the surface increases the reaction rate by lowering the work function and thereby facilitating photoelectron ejection into the adjacent alkene. These results demonstrate that photoelectron emission is the dominant mechanism responsible for grafting when using short-wavelength (~254 nm) light and suggest that photoemission events beginning on mid-gap states may play a crucial role.« less
Douša, Michal; Doubský, Jan; Srbek, Jan
2016-07-01
An analytical reversed-phase high-performance liquid chromatography (HPLC) method for the detection and quantitative determination of two genotoxic impurities at ppm level present in the vortioxetine manufacturing process is described. Applying the concept of threshold of toxicological concern, a limit of 75 ppm each for both genotoxic impurities was calculated based on the maximum daily dose of active pharmaceutical ingredients. The novel reversed-phase HPLC method with photochemically induced fluorescence detection was developed on XSELECT Charged Surface Hybrid Phenyl-Hexyl column using the mobile phase consisted a mixture of 10 mM ammonium formate pH 3.0 and acetonitrile. The elution was performed using an isocratic composition of 48:52 (v/v) at a flow rate of 1.0 mL/min. The photochemically induced fluorescence detection is based on the use of UV irradiation at 254 nm through measuring the fluorescence intensity at 300 nm and an excitation wavelength of 272 nm to produce fluorescent derivatives of both genotoxic impurities. The online photochemical conversion and detection is easily accomplished for two expected genotoxic impurities and provides a sufficiently low limit detection and quantification for the target analysis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ward, Collin P; Nalven, Sarah G; Crump, Byron C; Kling, George W; Cory, Rose M
2017-10-03
In sunlit waters, photochemical alteration of dissolved organic carbon (DOC) impacts the microbial respiration of DOC to CO 2 . This coupled photochemical and biological degradation of DOC is especially critical for carbon budgets in the Arctic, where thawing permafrost soils increase opportunities for DOC oxidation to CO 2 in surface waters, thereby reinforcing global warming. Here we show how and why sunlight exposure impacts microbial respiration of DOC draining permafrost soils. Sunlight significantly increases or decreases microbial respiration of DOC depending on whether photo-alteration produces or removes molecules that native microbial communities used prior to light exposure. Using high-resolution chemical and microbial approaches, we show that rates of DOC processing by microbes are likely governed by a combination of the abundance and lability of DOC exported from land to water and produced by photochemical processes, and the capacity and timescale that microbial communities have to adapt to metabolize photo-altered DOC.The role of dissolved organic carbon (DOC) photo-alteration in the microbial respiration of DOC to CO 2 is unclear. Here, the authors show that the impact of this mechanism depends on whether photo-alteration of DOC produces or removes molecules used by native microbial communities prior to light exposure.
Flux measurements of volatile organic compounds from an urban landscape
NASA Astrophysics Data System (ADS)
Velasco, E.; Lamb, B.; Pressley, S.; Allwine, E.; Westberg, H.; Jobson, B. T.; Alexander, M.; Prazeller, P.; Molina, L.; Molina, M.
2005-10-01
Direct measurements of volatile organic compound (VOC) emissions that include all sources in urban areas are a missing requirement to evaluate emission inventories and constrain current photochemical modelling practices. Here we demonstrate the use of micrometeorological techniques coupled with fast-response sensors to measure urban VOC fluxes from a neighbourhood of Mexico City, where the spatial variability of surface cover and roughness is high. Fluxes of olefins, methanol, acetone, toluene and C2-benzenes were measured and compared with the local gridded emissions inventory. VOC fluxes exhibited a clear diurnal pattern with a strong relationship to vehicular traffic. Recent photochemical modelling results suggest that VOC emissions are significantly underestimated in Mexico City, but for the olefin class, toluene, C2-benzenes, and acetone fluxes measured in this work, the results show general agreement with the gridded emissions inventory. While these measurements do not address the full suite of VOC emissions, the comparison with the inventory suggests that other explanations may be needed to explain the photochemical modelling results.
Factors controlling the photochemical degradation of methylmercury in coastal and oceanic waters
DiMento, Brian P.; Mason, Robert P.
2018-01-01
Many studies have recognized abiotic photochemical degradation as an important sink of methylmercury (CH3Hg) in sunlit surface waters, but the rate-controlling factors remain poorly understood. The overall objective of this study was to improve our understanding of the relative importance of photochemical reactions in the degradation of CH3Hg in surface waters across a variety of marine ecosystems by extending the range of water types studied. Experiments were conducted using surface water collected from coastal sites in Delaware, New Jersey, Connecticut, and Maine, as well as offshore sites on the New England continental shelf break, the equatorial Pacific, and the Arctic Ocean. Filtered water amended with additional CH3Hg at environmentally relevant concentrations was allowed to equilibrate with natural ligands before being exposed to natural sunlight. Water quality parameters – salinity, dissolved organic carbon, and nitrate – were measured, and specific UV absorbance was calculated as a proxy for dissolved aromatic carbon content. Degradation rate constants (0.87–1.67 day−1) varied by a factor of two across all water types tested despite varying characteristics, and did not correlate with initial CH3Hg concentrations or other environmental parameters. The rate constants in terms of cumulative photon flux values were comparable to, but at the high end of, the range of values reported in other studies. Further experiments investigating the controlling parameters of the reaction observed little effect of nitrate and chloride, and potential for bromide involvement. The HydroLight radiative transfer model was used to compute solar irradiance with depth in three representative water bodies – coastal wetland, estuary, and open ocean – allowing for the determination of water column integrated rates. Methylmercury loss per year due to photodegradation was also modeled across a range of latitudes from the Arctic to the Equator in the three model water types, resulting in an estimated global demethylation rate of 25.3 Mmol yr−1. The loss of CH3Hg was greatest in the open ocean due to increased penetration of all wavelengths, especially the UV portion of the spectrum which has a greater ability to degrade CH3Hg. Overall, this study provides additional insights and information to better constrain the importance of photochemical degradation in the cycling of CH3Hg in marine surface waters and its transport from coastal waters to the open ocean. PMID:29515285
NASA Astrophysics Data System (ADS)
Zaier, Mohamed; Vidal, Loic; Hajjar-Garreau, Samar; Bubendorff, Jean-Luc; Balan, Lavinia
2017-03-01
This paper reports on a simple and environmentally friendly photochemical process capable of generating nano-layers (8-22 nm) of silver nanostructures directly onto glass surfaces. This approach opens the way to large-scale functionalized surfaces with plasmonic properties through a single light-induced processing. Thus, Ag nanostructures top-coated were obtained through photo-reduction, at room temperature, of a photosensitive formulation containing a metal precursor, free from extra toxic stabilizers or reducing agents. The reactive formulation was confined between two glass slides and exposed to a continuous near-UV source. In this way, stable silver nano-layers can be generated directly on the substrate with a very good control of the morphology of as-synthesized nanostructures that allows tailoring the optical properties of the coated layers. The position and width of the corresponding surface plasmon resonance bands can be adjusted over a broad spectral window. By extension, this low-cost and easy-to-apply process can also be used to coat ultra thin layers of metal nanostructures on a variety of substrates. The possibility of controlling of nanostructures shape should achieve valuable developments in many fields, as diverse as plasmonics, surface enhanced Raman scattering, nano-electronic circuitry, or medical devices.
Photochemical tuning of ultrathin TiO2/ p-Si p-n junction properties via UV-induced H doping
NASA Astrophysics Data System (ADS)
Lee, Sang Yeon; Kim, Jinseo; Ahn, Byungmin; Cho, In Sun; Yu, Hak Ki; Seo, Hyungtak
2017-03-01
We report a modified TiO2/ p-Si electronic structure that uses ultraviolet exposure for the incorporation of H. This structure was characterized using various photoelectron spectroscopic techniques. The ultraviolet (UV) exposure of the TiO2 surface allowed the Fermi energy level to be tuned by the insertion of H radicals, which induced changes in the heterojunction TiO2/ p-Si diode properties. The UV exposure of the TiO2 surface was performed in air. On UVexposure, a photochemical reaction involving the incorporation of UV-induced H radicals led to the creation of a surface Ti-O-OH group and caused interstitial H doping (Ti-H-O) in the bulk, which modified the electronic structures in different ways, depending on the location of the H. On the basis of the band alignment determined using a combined spectroscopic analysis, it is suggested that the UV-induced H incorporation into the TiO2 could be utilized for the systematic tuning of the heterojunction property for solar cells, photocatalytic applications, and capacitors.
Haze Production in Pluto's Atmosphere
NASA Astrophysics Data System (ADS)
Summers, M. E.; Gladstone, R.; Stern, A.; Ennico Smith, K.; Greathouse, T.; Hinson, D. P.; Kammer, J.; Linscott, I.; Olkin, C.; Parker, A. H.; Parker, J. W.; Retherford, K. D.; Schindhelm, E.; Singer, K. N.; Steffl, A.; Strobel, D. F.; Tsang, C.; Tyler, G. L.; Versteeg, M. H.; Weaver, H. A., Jr.; Wong, M. L.; Woods, W. W.; Yung, Y. L.; Young, L. A.; Lisse, C. M.; Lavvas, P.; Renaud, J.; Ewell, M.; Jacobs, A. D.
2015-12-01
One of the most visible manifestations of Pluto's atmosphere observed from the New Horizons spacecraft during the flyby in July 2015 was a global haze layer extending to an altitude ~150 km above Pluto's surface. The haze layer exhibits a significant hemispheric asymmetry and what appears to be layered and/or wave like features. Stellar observations since 1989 have suggested the existence of a haze layer in Pluto's lower atmosphere to explain features in occultation light curves. A haze layer is also expected from photochemical models of Pluto's methane atmosphere wherein hydrocarbons and are produced at altitudes above 100 km altitude, mix downwards, and condense at the low atmospheric temperatures near the surface. However, the observed haze layer(s) extends much higher where the atmospheric temperature is too high for condensation. In this paper we will discuss the production and condensation of photochemical products, and evaluate the possibility that nucleation begins in the ionosphere by a mechanism similar to that proposed for the atmosphere of Titan, where electron attachments initiates a sequence of ion-molecular reactions that ultimately produce aerosol "tholins" that settle downward and coat the surface.
Biofunctionalization of a “Clickable” Organic Layer Photochemically Grafted on Titanium Substrates
Li, Yan; Zhao, Meirong; Wang, Jun; Liu, Kai; Cai, Chengzhi
2011-01-01
We have developed a general method combining photochemical grafting and copper-catalyzed click chemistry for biofunctionalization of titanium substrates. The UV-activated grafting of an α,ω-alkenyne onto TiO2/Ti substrates provided a “clickable” thin film platform. The selective attachment of the vinyl end of the molecule to the surface was achieved by masking the alkynyl end with a trimethylgermanyl (TMG) protecting group. Subsequently, various oligo(ethylene glycol) (OEG) derivatives terminated with an azido group were attached to the TMG-alkynyl modified titanium surface via a one-pot deprotection/click reaction. The films were characterized by X-ray photoelectron spectroscopy (XPS), contact angle goniometry, ellipsometry, and atomic force microscopy (AFM). We showed that the titanium surface presenting click-immobilized OEG substantially suppressed the nonspecific attachment of protein and cells as compared to the unmodified titanium substrate. Furthermore, glycine-arginine-glycine-aspartate (GRGD), a cell adhesion peptide, was coimmobilized with OEG on the platform. We demonstrated that the resultant GRGD-presenting thin film on Ti substrates can promote the specific adhesion and spreading of AsPC-1 cells. PMID:21417429
NASA Astrophysics Data System (ADS)
Bennett, David A.; Cargnello, Matteo; Diroll, Benjamin T.; Murray, Christopher B.; Vohs, John M.
2016-12-01
Structure-activity relationships and the influence of particle size and shape on the partial- and photo-oxidation of methanol on nanocrystalline anatase TiO2 were investigated using temperature-programmed desorption. The study employed two distinct nanoparticle morphologies: truncated bipyramids exposing primarily {101} facets, and flatter platelets exposing primarily {001} surfaces, whose nominal sizes ranged from 10 to 25 nm. The platelets were found to be more active for thermally-driven reactions, such as coupling of methoxide groups to produce dimethyl ether, and deoxygenation to produce methane. A dependence of the reactivity of {001} facets for the coupling of methoxide groups to produce dimethyl ether on facet size was also observed. In contrast to the thermally-driven reactions, the bipyramidal nanoparticles were observed to be more active for a range of photochemical reactions, including oxidation and coupling to produce methyl formate, and photo-decomposition of surface methoxide species. This study also shows how well-defined nanocrystals can be used to help bridge the materials gap between studies of single crystal model catalysts and their high surface area industrial analogs.
Improving Joint Function Using Photochemical Hydrogels for Articular Surface Repair
2014-10-01
some researchers have used microparticles for controlled release presentation of growth factors to encapsulated chondrocytes.13 While this approach ... control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE October 2014 2. REPORT TYPE Annual 3. DATES COVERED 30 Sep 2013...surface repair. The scope of this research is to develop regenerative medicine approaches involving biocompatible hydrogel scaffolds seeded with
Surface modification effects on defect-related photoluminescence in colloidal CdS quantum dots.
Lee, TaeGi; Shimura, Kunio; Kim, DaeGwi
2018-05-03
We investigated the effects of surface modification on the defect-related photoluminescence (PL) band in colloidal CdS quantum dots (QDs). A size-selective photoetching process and a surface modification technique with a Cd(OH)2 layer enabled the preparation of size-controlled CdS QDs with high PL efficiency. The Stokes shift of the defect-related PL band before and after the surface modification was ∼1.0 eV and ∼0.63 eV, respectively. This difference in the Stokes shifts suggests that the origin of the defect-related PL band was changed by the surface modification. Analysis by X-ray photoelectron spectroscopy revealed that the surface of the CdS QDs before and after the surface modification was S rich and Cd rich, respectively. These results suggest that Cd-vacancy acceptors and S-vacancy donors affect PL processes in CdS QDs before and after the surface modification, respectively.
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Johnson, Natasha M.
2012-01-01
There are at least 3 separate photochemical self-shielding models with different degrees of commonality. All of these models rely on the selective absorption of (12))C(16)O dissociative photons as the radiation source penetrates through the gas allowing the production of reactive O-17 and O-18 atoms within a specific volume. Each model also assumes that the undissociated C(16)O is stable and does not participate in the chemistry of nebular dust grains. In what follows we will argue that this last, very important assumption is simply not true despite the very high energy of the CO molecular bond.
A Tractable Numerical Model for Exploring Nonadiabatic Quantum Dynamics
ERIC Educational Resources Information Center
Camrud, Evan; Turner, Daniel B.
2017-01-01
Numerous computational and spectroscopic studies have demonstrated the decisive role played by nonadiabatic coupling in photochemical reactions. Nonadiabatic coupling drives photochemistry when potential energy surfaces are nearly degenerate at avoided crossings or truly degenerate at unavoided crossings. The dynamics induced by nonadiabatic…
Characterization of Surface Modification of Polyethersulfone Membrane
USDA-ARS?s Scientific Manuscript database
Surface modification of polyethersulfone (PES) membrane surface using UV/ozone-treated grafting and interfacial polymerization on membrane surface was investigated in order to improve the resistance of membrane surface to protein adsorption. These methods of surface modification were compared in te...
NASA Astrophysics Data System (ADS)
Giocondi, Jennifer Lynn
Experiments have been conducted to determine the effects of dipolar fields, surface termination, and surface orientation on the photochemical reactivity of several transition metal oxides. These compounds include BaTiO3, SrTiO3, BaTi4O9, Sr2Nb2O 7, and Sr2Ta2O7 which were studied as polycrystalline ceramics, single crystals, micron-sized faceted particles, or some combination of these forms. The reduction of Ag+ from an aqueous AgNO3 solution (Ag0 product) and the oxidation of Pb2+ from an aqueous lead acetate solution (PbO 2 product) were selected as probe reactions because they leave insoluble products on the oxide surfaces. The reactivity of ferroelectric BaTiO3 was dominated by the effect of dipolar fields on the transport of photogenerated charge carriers. Silver was reduced on domains with a positive surface charge while lead was oxidized on domains with a negative surface charge. This reactivity implies that the dipolar field in individual domains drives photogenerated charge carriers to oppositely charged surfaces. This reaction mechanism results in a physical separation of the photogenerated charge carriers and the locations of the oxidation and reduction half reactions on the catalyst surface. Experiments performed on polycrystalline ceramics, single crystals, and micron-sized particles all showed this domain specific reactivity. SrTiO3 has the ideal cubic perovskite structure from which the tetragonally distorted ferroelectric BaTiO3 phase is derived. Polished and annealed surfaces of randomly oriented grain surfaces were bound by some combination of the following three planes: {110}, {111}, and a complex facet inclined approximately 24° from {100}. Surfaces with the complex {100} facet were found to be the most active for Ag reduction. Single crystal studies also showed that the nonpolar (100) surface is the most reactive and that the composition of the termination layer does not influence this reaction. However, the polar (111) and (110) surfaces had a non-uniform distribution of reaction products. For these orientations, the location of the reduction and oxidation reactions is determined by the chemical and charge terminations of the different terraces or facets. The reactivity for silver reduction on the faceted particles is ranked as (100) > (111) > (110) while the (100) surface was least reactive for lead oxidation. Overall, these results show that the photochemical reactivity of SrTiO3 is anisotropic and that on polar surfaces, dipolar fields arising from charged surface domains influence the transport of photogenerated charge carriers and promote spatially selective oxidation and reduction reactions. (Abstract shortened by UMI.)
Effect of TiO, nanoparticles on the interface in the PET-rubber composites.
Vladuta, Cristina; Andronic, Luminita; Duta, Anca
2010-04-01
Usually, ceramic powders (SiO2, ZnO) are used as fillers for enhancing rubber mechanical strength. Poly-ethylene terephthalate (PET)-rubber nanocomposites were prepared by compression molding using titanium oxide (TiO2) nanoparticles as low content fillers (<2% wt). The interface properties of PET-rubber nanocomposites were studied before and after keeping the samples under UV-radiation for a week. UV-radiation has interesting potential for the photochemical modification of polymers and TiO2. The influence of UV radiation on the properties of the interface polymer-TiO2 nanoparticles was evaluated. The impact of nanoparticle aggregates on the nanometer to micrometer organization of PET-rubber composites was studied with Atomic Force Microscopy (AFM). The interface properties were explained by measuring the contact angles and surface tensions. The interactions between components of nanocomposites were investigated with Fourier Transform-Infrared (FTIR) and the effects of TiO2 nanoparticle on the interfaces and composites crystalline structure were evaluated by X-ray diffraction (XRD). The results proved that the TiO2 nanoparticles, in different weight percentages, did not alter the nanocomposites crystallinity or the average crystallites size, but improve the interface properties.
NASA Technical Reports Server (NTRS)
Rossow, W. B.
1977-01-01
An approximate numerical technique is used to investigate the influence of coagulation, sedimentation and turbulent motions on the observed droplet size distribution in the upper layers of the Venus clouds. If the cloud mass mixing ratio is less than 0.000001 at 250 K or the eddy diffusivity throughout the cloud is greater than 1,000,000 sq cm per sec, then coagulation is unimportant. In this case, the observed droplet size distribution is the initial size distribution produced by the condensation of the droplets. It is found that all cloud models with droplet formation near the cloud top (e.g., a photochemical model) must produce the observed droplet size distribution by condensation without subsequent modification by coagulation. However, neither meteoritic or surface dust can supply sufficient nucleating particles to account for the observed droplet number density. If the cloud droplets are formed near the cloud bottom, the observed droplet size distribution can be produced solely by the interaction of coagulation and dynamics; all information about the initial size distribution is lost. If droplet formation occurs near the cloud bottom, the lower atmosphere of Venus is oxidizing rather than reducing.
Summertime tropospheric ozone distributions over central and eastern Canada
NASA Technical Reports Server (NTRS)
Anderson, B. E.; Gregory, G. L.; Barrick, J. D.; Collins, J. E., Jr.; Sachse, G. W.; Shipham, M. C.; Hudgins, C. H.
1994-01-01
Ozone measurements were obtained between the surface and the 6-km altitude on aircraft flights over central and eastern Canada during the summer 1990 NASA Global Tropospheric Experiment Arctic Boundary Layer Expedition (GTE/ABLE 3B). Tropospheric O3 budgets for these regions were observed to be highly variable and significantly impacted by long-range transport and regional scale air mass modification processes. For example, integrated O3 abundance below 5-km altitude averaged 40% and 30% greater in air masses influenced by anthropogenic sources and biomass burning, respectively, than in background (polar) air. Conversely, aged air transported from subtropical areas of the Pacific at times reduced O3 abundance in this height interval by up to 20%. Though intrusion of anthropogenic air was infrequent during the experiment period, the influence of biomass-burning emissions was particularly notable as two thirds of the flights sampled air influenced by plumes from fires burning in Alaska and western Canada. The impinging pollution, both natural and anthropogenic, not only elevated O3 levels directly but also was a source of reactive nitrogen (and nonmethane hydrocarbons) which generally increases the tropospheric lifetime of O3 via moderation of photochemical destruction rates.
NASA Astrophysics Data System (ADS)
Barrocas, B.; Nunes, C. D.; Carvalho, M. L.; Monteiro, O. C.
2016-11-01
In this work, titanate nanotubes were modified with silver nanoparticles to produce new nanocomposite materials with enhanced photocatalytic activity for phenol removal. The TNTs were produced using a hydrothermal approach and, after being submitted to an Ag+ exchange process, metallic Ag nanoparticles were obtained over the nanotubes surface. The prepared materials were structural, morphological and optical characterized by X-ray powder diffraction, micro X-ray fluorescence, transmission electron microscopy, diffused reflectance spectroscopy and X-ray photoelectron spectroscopy. The characterization results indicate that Ag+ was immobilized not only in the nanotubes external surface but mainly in the TiO6 interlayers space. The application of this new nanocomposite material on photocatalytic degradation of pollutants was investigated. First, the evaluation of hydroxyl radical formation, using the terephthalic acid as a probe was studied. The photocatalytic activity of the sensitized materials for phenol degradation was afterwards evaluated. The results show that the nanocomposite sample is the best catalyst, achieving 98.0% photodegradation efficiency of a 0.2 mM phenol solution within 20 min under UV-vis radiation. The reusability of the prepared samples as photocatalysts was evaluated in four successive degradation assays, using fresh phenol solutions. The sensitized sample demonstrated excellent catalytic reusability ability, without loss of photochemical stability. The structural and morphological characterization during these experiments revealed no modifications on the nanotubes morphology but a continuous increase on the Ag nanoparticles, in number and size, with the irradiation time. A mechanism for this continuous growth of the Ag nanoparticles, together with the phenol catalytic photodegradation, over the nanotubes surface, is proposed and discussed.
Ultrathin Polymer Films, Patterned Arrays, and Microwells
NASA Astrophysics Data System (ADS)
Yan, Mingdi
2002-05-01
The ability to control and tailor the surface and interface properties of materials is important in microelectronics, cell growth control, and lab-on-a-chip devices. Modification of material surfaces with ultrathin polymer films is attractive due to the availability of a variety of polymers either commercially or by synthesis. We have developed two approaches to the attachment of ultrathin polymer films on solid substrates. In the first method, a silane-functionalized perfluorophenyl azide (PFPA-silane) was synthesized and used to covalently immobilize polymer thin films on silicon wafers. Silanization of the wafer surface with the PFPA-silane introduced a monolayer of azido groups which in turn covalently attached the polymer film by way of photochemically initiated insertion reactions. The thickness of the film could be adjusted by the type and the molecular weight of the polymer. The method is versatile due to the general C-H and/or N-H insertion reactions of crosslinker; and therefore, no specific reactive functional groups on the polymers are required. Using this method, a new type of microwell array was fabricated from covalently immobilized polymer thin films on flat substrates. The arrays were characterized with AFM, XPS, and TOF-SIMS. The second method describes the attachment of polymer thin films on solid substrates via UV irradiation. The procedure consisted of spin-coating a polymer film and irradiating the film with UV light. Following solvent extraction, a thin film remained. The thickness of the film, from a few to over a hundred nanometers, was controlled by varying solution concentration and the molecular weight of the polymer.
NASA Astrophysics Data System (ADS)
Brandt, L. A.; Bohnet, C.; King, J. Y.
2009-06-01
We investigated the potential for abiotic mineralization to carbon dioxide (CO2) via photodegradation to account for carbon (C) loss from plant litter under conditions typical of arid ecosystems. We exposed five species of grass and oak litter collected from arid and mesic sites to a factorial design of ultraviolet (UV) radiation (UV pass, UV block), and sterilization under dry conditions in the laboratory. UV pass treatments produced 10 times the amount of CO2 produced in UV block treatments. CO2 production rates were unaffected by litter chemistry or sterilization. We also exposed litter to natural solar radiation outdoors on clear, sunny days close to the summer solstice at midlatitudes and found that UV radiation (280-400 nm) accounted for 55% of photochemically induced CO2 production, while shortwave visible radiation (400-500 nm) accounted for 45% of CO2 production. Rates of photochemically induced CO2 production on a per-unit-mass basis decreased with litter density, indicating that rates depend on litter surface area. We found no evidence for leaching, methane production, or facilitation of microbial decomposition as alternative mechanisms for significant photochemically induced C loss from litter. We conclude that abiotic mineralization to CO2 is the primary mechanism by which C is lost from litter during photodegradation. We estimate that CO2 production via photodegradation could be between 1 and 4 g C m-2 a-1 in arid ecosystems in the southwestern United States. Taken together with low levels of litter production in arid systems, photochemical mineralization to CO2 could account for a significant proportion of annual carbon loss from litter in arid ecosystems.
Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes
Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; ...
2016-07-05
Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates thatmore » photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability.« less
Oliveira Silva, Catarina; Petersen, Steffen B.; Pinto Reis, Catarina; Rijo, Patrícia; Molpeceres, Jesús; Vorum, Henrik; Neves-Petersen, Maria Teresa
2015-01-01
The presence of aromatic residues and their close spatial proximity to disulphide bridges makes hen egg white lysozyme labile to UV excitation. UVB induced photo-oxidation of tryptophan and tyrosine residues leads to photochemical products, such as, kynurenine, N–formylkynurenine and dityrosine and to the disruption of disulphide bridges in proteins. We here report that lysozyme UV induced photochemistry is modulated by temperature, excitation power, illumination time, excitation wavelength and by the presence of plasmonic quencher surfaces, such as gold, and by the presence of natural fluorescence quenchers, such as hyaluronic acid and oleic acid. We show evidence that the photo-oxidation effects triggered by 295 nm at 20°C are reversible and non-reversible at 10°C, 25°C and 30°C. This paper provides evidence that the 295 nm damage threshold of lysozyme lies between 0.1 μW and 0.3 μW. Protein conformational changes induced by temperature and UV light have been detected upon monitoring changes in the fluorescence emission spectra of lysozyme tryptophan residues and SYPRO® Orange. Lysozyme has been conjugated onto gold nanoparticles, coated with hyaluronic acid and oleic acid (HAOA). Steady state and time resolved fluorescence studies of free and conjugated lysozyme onto HAOA gold nanoparticles reveals that the presence of the polymer decreased the rate of the observed photochemical reactions and induced a preference for short fluorescence decay lifetimes. Size and surface charge of the HAOA gold nanoparticles have been determined by dynamic light scattering and zeta potential measurements. TEM analysis of the particles confirms the presence of a gold core surrounded by a HAOA matrix. We conclude that HAOA gold nanoparticles may efficiently protect lysozyme from the photochemical effects of UVB light and this nanocarrier could be potentially applied to other proteins with clinical relevance. In addition, this study confirms that the temperature plays a critical role in the photochemical pathways a protein enters upon UV excitation. PMID:26656259
Oliveira Silva, Catarina; Petersen, Steffen B; Pinto Reis, Catarina; Rijo, Patrícia; Molpeceres, Jesús; Vorum, Henrik; Neves-Petersen, Maria Teresa
2015-01-01
The presence of aromatic residues and their close spatial proximity to disulphide bridges makes hen egg white lysozyme labile to UV excitation. UVB induced photo-oxidation of tryptophan and tyrosine residues leads to photochemical products, such as, kynurenine, N-formylkynurenine and dityrosine and to the disruption of disulphide bridges in proteins. We here report that lysozyme UV induced photochemistry is modulated by temperature, excitation power, illumination time, excitation wavelength and by the presence of plasmonic quencher surfaces, such as gold, and by the presence of natural fluorescence quenchers, such as hyaluronic acid and oleic acid. We show evidence that the photo-oxidation effects triggered by 295 nm at 20°C are reversible and non-reversible at 10°C, 25°C and 30°C. This paper provides evidence that the 295 nm damage threshold of lysozyme lies between 0.1 μW and 0.3 μW. Protein conformational changes induced by temperature and UV light have been detected upon monitoring changes in the fluorescence emission spectra of lysozyme tryptophan residues and SYPRO® Orange. Lysozyme has been conjugated onto gold nanoparticles, coated with hyaluronic acid and oleic acid (HAOA). Steady state and time resolved fluorescence studies of free and conjugated lysozyme onto HAOA gold nanoparticles reveals that the presence of the polymer decreased the rate of the observed photochemical reactions and induced a preference for short fluorescence decay lifetimes. Size and surface charge of the HAOA gold nanoparticles have been determined by dynamic light scattering and zeta potential measurements. TEM analysis of the particles confirms the presence of a gold core surrounded by a HAOA matrix. We conclude that HAOA gold nanoparticles may efficiently protect lysozyme from the photochemical effects of UVB light and this nanocarrier could be potentially applied to other proteins with clinical relevance. In addition, this study confirms that the temperature plays a critical role in the photochemical pathways a protein enters upon UV excitation.
NASA Astrophysics Data System (ADS)
Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.
2014-05-01
The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You
1997-01-01
This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You
1994-01-01
This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, R.; Tan, W.; Shi, Z.Y.
1997-05-06
This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, R.; Tan, W.; Shi, Z.Y.
1994-11-01
This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.
Photochemistry, Ion Chemistry, and Haze Formation in Pluto’s Atmosphere
NASA Astrophysics Data System (ADS)
Summers, Michael E.; Stern, S. A.; Gladstone, G. Randal; Young, Leslie A.; Olkin, C. B.; Weaver, H. A.; Cheng, A. F.; Strobel, D. F.; Ennico, K. A.; Kammer, J. A.; Parker, A. H.; Retherford, K. D.; Schindhelm, E.; Singer, K. N.; Steffl, A. J.; Tsang, C. C.; Versteeg, M. H.; Greathouse, T. K.; Linscott, I. R.; Tyler, L. G.; Woods, W. W.; Hinson, D. P.; Parker, J. W.; Renaud, J. P.; Ewell, M.; Lisse, Cary M.
2015-11-01
The detection of ethylene (C2H4) and acetylene (C2H2) in Pluto’s atmosphere provides important ground-truth observations for validating photochemical models of Pluto’s atmosphere. Their detection also confirms the production of precursor chemical compounds involved in the formation of tholins, which are thought to give Pluto’s surface its reddish color. Photochemical models predict many other hydrocarbon and nitrile products, currently undetected, which may also be participants in tholin production on Pluto’s surface or on atmospheric haze particles. The observed atmospheric haze layer extending to altitudes of ~140 km above Pluto’s surface, suggests a global and very robust process of atmospheric particle nucleation, growth, and sedimentation onto Pluto’s surface. The high altitude extent of the haze layer suggests that the nucleation process begins above the expected altitude range where hydrocarbons become supersaturated (below ~30 km altitude). This situation may be analogous to that in Titan’s atmosphere, wherein nucleation and aerosol growth is directly related to large negative ion production. In the case of Pluto, this means that nucleation may occur at altitudes as high as 1200 km altitude where ionization in Pluto’s atmosphere peaks. In this paper we discuss these processes and their implications for haze formation in Pluto’s atmosphere and its deposition onto Pluto’s surface. This work was supported by NASA's New Horizons project.
INTERACTIONS OF SOLAR UV RADIATION AND DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS
Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet (UV) radiation that reaches the surface of aquatic environments. Recent studies have demonstrated that these UV increases cause changes in photochemical reactions that affect the...
PHOTOCHEMICAL EFFECTS ON NOX AND CO EMISSIONS IN A BRAZILIAN SAVANNA
Land clearing and burning in the tropics often results in increased solar irradiation of soil and surface organic matter. This increased light exposure may impact the emissions of nitrogen oxides (NOx) and carbon monoxide (CO), trace gases that play an important role in troposph...
Multifunctional optical security features based on bacteriorhodopsin
NASA Astrophysics Data System (ADS)
Hampp, Norbert A.; Neebe, Martin; Juchem, Thorsten; Wolperdinger, Markus; Geiger, Markus; Schmuck, Arno
2004-06-01
Bacteriorhodopsin (BR), a photochromic retinal protein, has been developed into a new materials platform for applications in anti-counterfeiting. The combination of three different properties of the material on its molecular level, a light-inducible color change, photochemical data storage and traceability of the protein due to molecular marker sequences make this protein a promising material for security applications. The crystalline structure of the biopigment combines these properties with high stability. As BR is a biological material specialized knowledge for modification, cost- effective production and suitable processing of the material is required. Photochromic BR-based inks have been developed for screen printing, pad printing and ink jet printing. These prints show a high photochromic sensitivity towards variation of illumination. For this reason it is not possible to reproduce the dynamic color by photocopying. In addition to such visual inspection the printed symbols offer the possibility for digital write-once-read-many (WORM) data storage. Photochemical recording is accomplished by a two-photon process. Recording densities in a range from 106 bit/cm2 to 108 bit/cm2 have been achieved. Data structures are stored in a polarization sensitive mode which allows an easy and efficient data encryption.
Surface Modification of Biomaterials: A Quest for Blood Compatibility
de Mel, Achala; Cousins, Brian G.; Seifalian, Alexander M.
2012-01-01
Cardiovascular implants must resist thrombosis and intimal hyperplasia to maintain patency. These implants when in contact with blood face a challenge to oppose the natural coagulation process that becomes activated. Surface protein adsorption and their relevant 3D confirmation greatly determine the degree of blood compatibility. A great deal of research efforts are attributed towards realising such a surface, which comprise of a range of methods on surface modification. Surface modification methods can be broadly categorized as physicochemical modifications and biological modifications. These modifications aim to modulate platelet responses directly through modulation of thrombogenic proteins or by inducing antithrombogenic biomolecules that can be biofunctionalised onto surfaces or through inducing an active endothelium. Nanotechnology is recognising a great role in such surface modification of cardiovascular implants through biofunctionalisation of polymers and peptides in nanocomposites and through nanofabrication of polymers which will pave the way for finding a closer blood match through haemostasis when developing cardiovascular implants with a greater degree of patency. PMID:22693509
Zhao, Xiaobin; Courtney, James M
2009-07-01
In this article, a novel approach for the surface modification of polymeric biomaterials by the utilization of supramolecules was studied. The supramolecules selected were cyclodextrin inclusion complexes (CICs). The biomaterial selected for surface modification was plasticized poly (vinyl chloride) (PVC-P). Results indicate that when the CICs were blended into PVC-P, they tend to migrate and "anchor" on the surface to achieve a remarkable protein-resistant surface, with improved blood compatibility. In comparison with a physical mixture of cyclodextrins and a "guest" molecule, such as poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO and PPO-PEO-PPO for PVC-P modification, CICs modified PVC-P are more consistent in processing and achieve reproducible surface characteristics. Based on this study, a novel "anchor modification" was proposed regarding CICs modified surface. This "anchor modification" is likely to reduce plasticizer extraction from PVC-P and also can be utilized for the modification of polymers other than PVC-P.
Atmospheric photochemistry at a fatty acid-coated air-water interface
NASA Astrophysics Data System (ADS)
Rossignol, Stéphanie; Tinel, Liselotte; Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Donaldson, D. James; George, Christian
2016-08-01
Although fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over a monolayer of NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase, and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet-state NA molecules excited by direct absorption of actinic light at the water surface. Because fatty acids-covered interfaces are ubiquitous in the environment, such photochemical processing will have a substantial impact on local ozone and particle formation.
USDA-ARS?s Scientific Manuscript database
Protein membrane separation is prone to fouling on the membrane surface resulting from protein adsorption onto the surface. Surface modification of synthetic membranes is one way to reduce fouling. We investigated surface modification of polyethersulfone (PES) as a way of improving hydrophilicity ...
Photooxidative degradation of clear ultraviolet absorbing acrylic copolymer surfaces
NASA Technical Reports Server (NTRS)
Gupta, A.; Liang, R. H.; Vogl, O.; Pradellok, W.; Huston, A. L.; Scott, G. W.
1983-01-01
Photodegradation of copolymer of methyl methacrylate and 2(2'-hydroxy 5'vinyl-phenyl) 2H-benzotriazole has been investigated in order to determine the changes in the chemical composition of the surface of the copolymer on photooxidation. An electronic energy transfer mechanism has been postulated in order to interpret the observed photochemical changes in the polymer. Preliminary examination of the photophysical properties of the chromophore provides support for such a mechanism.
NASA Astrophysics Data System (ADS)
Farooqui, Mohmmed Zuber
Tropospheric ozone is one of the major air pollution problems affecting urban areas of United States as well as other countries in the world. Analysis of surface observed ozone levels in south and central Texas revealed several days exceeding 8-hour average ozone National Ambient of Air Quality Standards (NAAQS) over the past decade. Two major high ozone episodes were identified during September of 1999 and 2002. A photochemical modeling framework for the high ozone episodes in 1999 and 2002 were developed for the Corpus Christi urban airshed. The photochemical model was evaluated as per U.S. Environmental Protection Agency (EPA) recommended statistical methods and the models performed within the limits set by EPA. An emission impact assessment of various sources within the urban airshed was conducted using the modeling framework. It was noted that by nudging MM5 with surface observed meteorological parameters and sea-surface temperature, the coastal meteorological predictions improved. Consequently, refined meteorology helped the photochemical model to better predict peak ozone levels in urban airsheds along the coastal margins of Texas including in Corpus Christi. The emissions assessment analysis revealed that Austin and San Antonio areas were significantly affected by on-road mobile emissions from light-duty gasoline and heavy-duty diesel vehicles. The urban areas of San Antonio, Austin, and Victoria areas were estimated to be NOx sensitive. Victoria was heavily influenced by point sources in the region while Corpus Christi was influenced by both point and non-road mobile sources and was identified to be sensitive to VOC emissions. A rise in atmospheric temperature due to climate change potentially increase ozone exceedances and the peak ozone levels within the study region and this will be a major concern for air quality planners. This study noted that any future increase in ambient temperature would result in a significant increase in the urban and regional ozone levels within the modeling domain and it would also enhance the transported levels of ozone across the region. Overall, the photochemical modeling framework helped in evaluating the impact of various parameters affecting ozone air quality; and, it has the potential to be a tool for policy-makers to develop effective emissions control strategies under various regulatory and climate conditions.
Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet (UV) radiation that reaches the surface of aquatic environments. Recent studies have demonstrated that these UV increases cause changes in photochemical reactions that affect the...
NASA Astrophysics Data System (ADS)
Lu, Xiaoyan; Ji, Cai; Jin, Tingting; Fan, Xiaohui
2015-05-01
Engineered nanoparticles, with unconventional properties, are promising platforms for biomedical applications. Since they may interact with a wide variety of biomolecules, it is critical to understand the impact of the physicochemical properties of engineered nanoparticles on biological systems. In this study, the effects of particle size and surface modification alone or in combination of amorphous silica particles (SPs) on biological responses were determined using a suite of general toxicological assessments and metabonomics analysis in mice model. Our results suggested that amino or carboxyl surface modification mitigated the liver toxicity of plain-surface SPs. 30 nm SPs with amino surface modification were found to be the most toxic SPs among all the surface-modified SP treatments at the same dosage. When treatment dose was increased, submicro-sized SPs with amino or carboxyl surface modification also induced liver toxicity. Biodistribution studies suggested that 70 nm SPs were mainly accumulated in liver and spleen regardless of surface modifications. Interestingly, these two organs exhibited different uptake trends. Furthermore, metabonomics studies indicated that surface modification plays a more dominant role to affect the liver metabolism than particle size.
N-Heterocyclic carbene metal complexes: photoluminescence and applications.
Visbal, Renso; Gimeno, M Concepción
2014-05-21
This review covers the advances made in the synthesis of luminescent transition metal complexes containing N-heterocyclic carbene (NHC) ligands. The presence of a high field strength ligand such as an NHC in the complexes gives rise to high energy emissions, and consequently, to the desired blue colour needed for OLED applications. Furthermore, the great versatility of NHC ligands for structural modifications, together with the use of other ancillary ligands in the complex, provides numerous possibilities for the synthesis of phosphorescent materials, with emission colours over the entire visible spectra and potential future applications in fields such as photochemical water-splitting, chemosensors, dye-sensitised solar cells, oxygen sensors, and medicine.
NASA Astrophysics Data System (ADS)
Sebree, Joshua A.; Stern, Jennifer C.; Mandt, Kathleen E.; Domagal-Goldman, Shawn D.; Trainer, Melissa G.
2016-05-01
The ratios of the stable isotopes that comprise each chemical species in Titan's atmosphere provide critical information towards understanding the processes taking place within its modern and ancient atmosphere. Several stable isotope pairs, including 12C/13C and 14N/15N, have been measured in situ or probed spectroscopically by Cassini-borne instruments, space telescopes, or through ground-based observations. Current attempts to model the observed isotope ratios incorporate fractionation resulting from atmospheric diffusion, hydrodynamic escape, and primary photochemical processes. However, the effect of a potentially critical pathway for isotopic fractionation - organic aerosol formation and subsequent deposition onto the surface of Titan - has not been considered due to insufficient data regarding fractionation during aerosol formation. To better understand the nature of this process, we have conducted a laboratory study to measure the isotopic fractionation associated with the formation of Titan aerosol analogs, commonly referred to as 'tholins', via far-UV irradiation of several methane (CH4) and dinitrogen (N2) mixtures. Analysis of the δ13C and δ15N isotopic signatures of the photochemical aerosol products using an isotope ratio mass spectrometer (IRMS) show that fractionation direction and magnitude are dependent on the initial bulk composition of the gas mixture. In general, the aerosols showed enrichment in 13C and 14N, and the observed fractionation trends can provide insight into the chemical mechanisms controlling photochemical aerosol formation.
Thermal and Photochemical Reactions of NO2 on a Chromium (III) Oxide Surface
NASA Astrophysics Data System (ADS)
Nishino, N.; Finlayson-Pitts, B. J.
2011-12-01
Chromium oxide (Cr2O3) is a major component of the oxide layer on stainless steel surfaces. It is also widely used as pigment in paints and roofs and as a protective coating on various surfaces. While many studies have focused on the catalytic activity of Cr2O3 surfaces for selective catalytic reduction (SCR), less attention has been paid to its surface chemistry involving atmospherically important species such as NO2 under atmospheric conditions. In this study, we have investigated thermal and photochemical reactions of NO2 in the presence and the absence of water vapor, using a thin layer of Cr2O3 as a model for the surface of stainless steel as well as other similarly coated surfaces in the boundary layer. A 30 nm thick Cr2O3 film was deposited on a germanium attenuated total reflectance (ATR) crystal, and the changes in the surface species were monitored by Fourier Transform Infrared (FTIR) spectroscopy. Upon NO2 adsorption, nitrate (NO3-) ions appeared likely coordinated to Cr3+ ion(s). The NO3- peaks reversibly shifted when water vapor was added, suggesting that NO3- become solvated. Irradiation at 311 nm led to a decrease in NO3- ions under both dry and humid conditions. The major gas-phase species formed by the irradiation was NO under dry conditions, while NO2 was mainly formed in the presence of H2O. Possible mechanisms and the implications for heterogeneous NO2 chemistry in the boundary layer will be discussed. The results will also be compared to similar chemistry on other surfaces.
The susceptibility of the retina to photochemical damage from visible light
Hunter, Jennifer J; Morgan, Jessica I W; Merigan, William H; Sliney, David H; Sparrow, Janet R; Williams, David R
2011-01-01
The photoreceptor/RPE complex must maintain a delicate balance between maximizing the absorption of photons for vision and retinal image quality while simultaneously minimizing the risk of photodamage when exposed to bright light. We review the recent discovery of two new effects of light exposure on the photoreceptor/RPE complex in the context of current thinking about the causes of retinal phototoxicity. These effects are autofluorescence photobleaching in which exposure to bright light reduces lipofuscin autofluorescence and, at higher light levels, RPE disruption in which the pattern of autofluorescence is permanently altered following light exposure. Both effects occur following exposure to visible light at irradiances that were previously thought to be safe. Photopigment, retinoids involved in the visual cycle, and bisretinoids in lipofuscin have been implicated as possible photosensitizers for photochemical damage. The mechanism of RPE disruption may follow either of these paths. On the other hand, autofluorescence photobleaching is likely an indicator of photooxidation of lipofuscin. The permanent changes inherent in RPE disruption might require modification of the light safety standards. AF photobleaching recovers after several hours although the mechanisms by which this occurs are not yet clear. Understanding the mechanisms of phototoxicity is all the more important given the potential for increased susceptibility in the presence of ocular diseases that affect either the visual cycle and/or lipofuscin accumulation. In addition, knowledge of photochemical mechanisms can improve our understanding of some disease processes that may be influenced by light exposure, such as some forms of Leber’s congenital amaurosis, and aid in the development of new therapies. Such treatment prior to intentional light exposures, as in ophthalmic examinations or surgeries, could provide an effective preventative strategy. PMID:22085795
Photomodulating Gene Expression by Using Caged siRNAs with Single-Aptamer Modification.
Zhang, Liangliang; Chen, Changmai; Fan, Xinli; Tang, Xinjing
2018-06-18
Caged siRNAs incorporating terminal modification were rationally designed for photochemical regulation of gene silencing induced by RNA interference (RNAi). Through the conjugation of a single oligonucleotide aptamer at the 5' terminus of the antisense RNA strand, enhancement of the blocking effect for RNA-induced silencing complex (RISC) formation/processing was expected, due both/either to the aptamers themselves and/or to their interaction with large binding proteins. Two oligonucleotide aptamers (AS1411 and MUC-1) were chosen for aptamer-siRNA conjugation through a photolabile linker. This caging strategy was successfully used to photoregulate gene expression both of firefly luciferase and of green fluorescent protein (GFP) in cells. Further patterning experiments revealed that spatial regulation of GFP expression was successfully achieved by using the aptamer-modified caged siRNA and light activation. We expect that further optimized caged siRNAs featuring aptamer conjugation will be promising for practical applications to spatiotemporal photoregulation of gene expression in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
PHOTOCHEMICAL MODELING APPLIED TO NATURAL WATERS
The study examines the application of modeling photochemical processes in natural water systems. For many photochemical reactions occurring in natural waters, a simple photochemical model describing reaction rate as a function of intensity, radiation attenuation, reactant absorpt...
Harrold, John W; Woronowicz, Kamil; Lamptey, Joana L; Awong, John; Baird, James; Moshar, Amir; Vittadello, Michele; Falkowski, Paul G; Niederman, Robert A
2013-09-26
Owing to the considerable current interest in replacing fossil fuels with solar radiation as a clean, renewable, and secure energy source, light-driven electron transport in natural photosynthetic systems offers a valuable blueprint for conversion of sunlight to useful energy forms. In particular, intracytoplasmic membrane vesicles (chromatophores) from the purple bacterium Rhodospirillum rubrum provide a fully functional and robust photosynthetic apparatus, ideal for biophysical investigations of energy transduction and incorporation into biohybrid photoelectrochemical devices. These vesicular organelles, which arise by invagination of the cytoplasmic membrane, are the sites of the photochemical reaction centers and the light harvesting 1 (LH1) complex. The LH1 protein is responsible for collecting visible and near-IR radiant energy and funneling these excitations to the reaction center for conversion into a transmembrane charge separation. Here, we have investigated the morphology, fluorescence kinetics and photocurrent generation of chromatophores from Rsp. rubrum deposited directly onto gold surfaces in the absence of chemical surface modifications. Atomic force microscopy showed a significant coverage of the gold electrode surface by Rsp. rubrum chromatophores. By in situ fluorescence induction/relaxation measurements, a high retention of the quantum yield of photochemistry was demonstrated in the photoactive films. Chronoamperometric measurements showed that the assembled bioelectrodes were capable of generating sustained photocurrent under white light illumination at 220 mW/cm(2) with a maximum current of 1.5 μA/cm(2), which slowly declines in about 1 week. This study demonstrates the possibility of photoelectrochemical control of robust chromatophore preparations from Rsp. rubrum that paves the way for future incorporation into functional solar cells.
Characterization of Lignin in Situ by Photoacoustic Spectroscopy
Gould, J. Michael
1982-01-01
Photoacoustic spectroscopy is a recently developed nondestructive analytical technique that provides ultraviolet, visible, and infrared absorption spectra from intensely light scattering, solid, and/or optically opaque materials not suitable for conventional spectrophotometric analysis. In wood and other lignocellulosics, the principal ultraviolet absorption bands, in the absence of photosynthetic pigments, arise from the aromatic lignin component of the cell walls. Photoacoustic spectra of extracted lignin fragments (milled wood lignin) and synthetic lignin-like polymers contain a single major absorption band at 280 nanometers with an absorption tail extending beyond 400 nanometers. Photoacoustic spectra of pine, maple, and oak lignin in situ contain a broad primary absorption band at 300 nanometers and a longer wavelength shoulder around 370 nanometers. Wheat lignin in situ, on the other hand, exhibits two principle absorption peaks, at 280 nanometers and 320 nanometers. The presence of absorption bands at wavelengths greater than 300 nanometers in intact lignin could result from (a) interacting, nonconjugated chromophores, or (b) the presence of more highly conjugated structural components formed as the result of oxidation of the polymer. Evidence for the latter comes from the observation that, on the outer surface of senescent, field-dried wheat culms (stems), new absorption bands in the 350 to 400 nanometer region predominate. These new bands are less apparent on the outer surface of presenescent wheat culms and are virtually absent on the inner surface of either senescent or presenescent culms, suggesting that the appearance of longer wavelength absorption bands in senescent wheat is the result of accumulated photochemical modifications of the ligin polymer. These studies also demonstrate photoacoustic spectroscopy to be an important new tool for the investigation of insoluble plant components. PMID:16662709
Fabrication of gallium nitride nanowires by metal-assisted photochemical etching
NASA Astrophysics Data System (ADS)
Zhang, Miao-Rong; Jiang, Qing-Mei; Zhang, Shao-Hui; Wang, Zu-Gang; Hou, Fei; Pan, Ge-Bo
2017-11-01
Gallium nitride (GaN) nanowires (NWs) were fabricated by metal-assisted photochemical etching (MaPEtch). Gold nanoparticles (AuNPs) as metal catalyst were electrodeposited on the GaN substrate. SEM and HRTEM images show the surface of GaN NWs is smooth and clean without any impurity. SAED and FFT patterns demonstrate GaN NWs have single crystal structure, and the crystallographic orientation of GaN NWs is (0002) face. On the basis of the assumption of localized galvanic cells, combined with the energy levels and electrochemical potentials of reactants in this etching system, the generation, transfer and consumption of electron-hole pairs reveal the whole MaPEtch reaction process. Such easily fabricated GaN NWs have great potential for the assembly of GaN-based single-nanowire nanodevices.
Minella, Marco; De Laurentiis, Elisa; Buhvestova, Olga; Haldna, Marina; Kangur, Külli; Maurino, Valter; Minero, Claudio; Vione, Davide
2013-03-01
Over the last 3-4 decades, Lake Peipsi water (sampling site A, middle part of the lake, and site B, northern part) has experienced a statistically significant increase of bicarbonate, pH, chemical oxygen demand, nitrate (and nitrite in site B), due to combination of climate change and eutrophication. By photochemical modelling, we predicted a statistically significant decrease of radicals ·OH and CO3(-·) (site A, by 45% and 35%, respectively) and an increase of triplet states of chromophoric dissolved organic matter ((3)CDOM(∗); site B, by ∼25%). These species are involved in pollutant degradation, but formation of harmful by-products is more likely with (3)CDOM(∗) than with ·OH. Therefore, the photochemical self-cleansing ability of Lake Peipsi probably decreased with time, due to combined effects of climate change and eutrophication. In different environments (e.g. Lake Maggiore, NW Italy), ecosystem restoration policies had the additional advantage of enhancing sunlight-driven detoxification, suggesting that photochemical self-cleansing would be positively correlated with lake water quality. Copyright © 2012 Elsevier Ltd. All rights reserved.
Organic light emitting diode with surface modification layer
Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.
2017-09-12
An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).
The operational use of ceilometers across the United States has been limited to detection of cloud-base heights across the Automatic Surface Observing Systems (ASOS) primarily operated by the National Weather Service and the Federal Aviation Administration. Continued improvements...
Photochemical aerosol formation in planetary atmospheres: A comparison between Pluto and Titan
NASA Astrophysics Data System (ADS)
Lavvas, Panayotis; Strobel, Darrell F.; Lellouch, Emmanuel; Gurwell, Mark A.; Cheng, Andrew F.; Summers, Michael; Gladstone, Randy
2016-10-01
The New Horizons mission observations have revealed us that Pluto's atmosphere is rich in photochemical hazes that extend to high altitudes above its surface [1], apparently similar to those observed in Titan's atmosphere [2].We use detailed models combining photochemistry and microphysics in order to simulate the aerosol formation and growth in Pluto's atmosphere, as performed for Titan's atmosphere [3]. Here we discuss the possible mechanisms leading to the formation of haze particles in Pluto's atmosphere, and we evaluate the contribution of different growth processes (e.g. coagulation vs. condensation) to the resulting particle properties.Moreover we investigate the role of these particles in the radiative balance of Pluto's atmosphere and we compare the resulting particle properties, with those retrieved for Titan's upper atmosphere based on Cassini observations [4]. We discuss the similarities and difference between Pluto's and Titan's aerosols.[1] Gladstone et al., 2016, Science, 351, 6271[2] West et al., 2015, Titan's Haze, in Titan, Interior, Surface, Atmosphere and Space environment, Cambridge University Press[3] Lavvas et al., 2013, PNAS, pnas.1217059110[4] Lavvas et al., 2015, DPS47, id.205.08
Effects of multiple scattering and surface albedo on the photochemistry of the troposphere
NASA Technical Reports Server (NTRS)
Augustsson, T. R.; Tiwari, S. N.
1981-01-01
The effect of treatment of incoming solar radiation on the photochemistry of the troposphere is discussed. A one dimensional photochemical model of the troposphere containing the species of the nitrogen, oxygen, carbon, hydrogen, and sulfur families was developed. The vertical flux is simulated by use of the parameterized eddy diffusion coefficients. The photochemical model is coupled to a radiative transfer model that calculates the radiation field due to the incoming solar radiation which initiates much of the photochemistry of the troposphere. Vertical profiles of tropospheric species were compared with the Leighton approximation, radiative transfer, matrix inversion model. The radiative transfer code includes the effects of multiple scattering due to molecules and aerosols, pure absorption, and surface albedo on the transfer of incoming solar radiation. It is indicated that significant differences exist for several key photolysis frequencies and species number density profiles between the Leighton approximation and the profiles generated with, radiative transfer, matrix inversion technique. Most species show enhanced vertical profiles when the more realistic treatment of the incoming solar radiation field is included
NASA Astrophysics Data System (ADS)
Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep
2016-07-01
For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhitao; Henderson, Michael A.; Lyubinetsky, Igor
2015-09-30
The influence of reactant coverage on photochemical activity was explored using scanning tunneling microscopy (STM) and ultraviolet photoelectron spectroscopy (UPS). We observed diminished reactivity of carboxylate species (trimethyl acetate, TMA) on TiO2(110) as a function of increasing coverage. This effect was not linked to intermolecular interactions of TMA but to the accumulation of the coadsorbed bridging hydroxyls (HOb) deposited during (thermal) dissociative adsorption of the parent, trimethylacetic acid (TMAA). Confirmation of the hindering influence of HOb groups was obtained by the observation that HOb species originated from H2O dissociation at O-vacancy sites have a similar hindering effect on TMA photochemistry.more » Though HOb’s are photoinactive on TiO2(110) under ultrahigh vacuum conditions, UPS results show that these sites trap photoexcited electrons, which in turn likely (electrostatically) attract and neutralize photoexcited holes, thus suppressing the hole-mediated photoreactivity of TMA. This negative influence of surface hydroxyls on hole-mediated photochemistry is likely a major factor in other anaerobic photochemical processes on reducible oxide surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustsson, T.R.; Tiwari, S.N.
The effect of treatment of incoming solar radiation on the photochemistry of the troposphere is discussed. A one dimensional photochemical model of the troposphere containing the species of the nitrogen, oxygen, carbon, hydrogen, and sulfur families was developed. The vertical flux is simulated by use of the parameterized eddy diffusion coefficients. The photochemical model is coupled to a radiative transfer model that calculates the radiation field due to the incoming solar radiation which initiates much of the photochemistry of the troposphere. Vertical profiles of tropospheric species were compared with the Leighton approximation, radiative transfer, matrix inversion model. The radiative transfermore » code includes the effects of multiple scattering due to molecules and aerosols, pure absorption, and surface albedo on the transfer of incoming solar radiation. It is indicated that significant differences exist for several key photolysis frequencies and species number density profiles between the Leighton approximation and the profiles generated with, radiative transfer, matrix inversion technique. Most species show enhanced vertical profiles when the more realistic treatment of the incoming solar radiation field is included« less
EFFECTS OF PHOTOCHEMICAL OXIDANTS ON PLANTS
Photochemical oxidants are found in 'photochemical smog' which is a complex mixture of primary and secondary air pollutants. The photochemical oxidants are secondary air pollutants formed by the action of sunlight on nitrogen oxides and reactive hydrocarbons, their precursors. Th...
Hill, R; Larkum, A W D; Frankart, C; Kühl, M; Ralph, P J
2004-01-01
Mass coral bleaching is linked to elevated sea surface temperatures, 1-2 degrees C above average, during periods of intense light. These conditions induce the expulsion of zooxanthellae from the coral host in response to photosynthetic damage in the algal symbionts. The mechanism that triggers this release has not been clearly established and to further our knowledge of this process, fluorescence rise kinetics have been studied for the first time. Corals that were exposed to elevated temperature (33 degrees C) and light (280 mumol photons m(-2) s(-1)), showed distinct changes in the fast polyphasic induction of chlorophyll-a fluorescence, indicating biophysical changes in the photochemical processes. The fluorescence rise over the first 2000ms was monitored in three species of corals for up to 8 h, with a PEA fluorometer and an imaging-PAM. Pocillopora damicornis showed the least impact on photosynthetic apparatus, while Acropora nobilis was the most sensitive, with Cyphastrea serailia intermediate between the other two species. A. nobilis showed a remarkable capacity for recovery from bleaching conditions. For all three species, a steady decline in the slope of the initial rise and the height of the J-transient was observed, indicating the loss of functional Photosystem II (PS II) centres under elevated-temperature conditions. A significant loss of PS II centres was confirmed by a decline in photochemical quenching when exposed to bleaching stress. Non-photochemical quenching was identified as a significant mechanism for dissipating excess energy as heat under the bleaching conditions. Photophosphorylation could explain this decline in PS II activity. State transitions, a component of non-photochemical quenching, was a probable cause of the high non-photochemical quenching during bleaching and this mechanism is associated with the phosphorylation-induced dissociation of the light harvesting complexes from the PS II reaction centres. This reversible process may account for the coral recovery, particularly in A. nobilis.
NASA Astrophysics Data System (ADS)
Dien To, Thien; Nguyen, Anh Tuan; Nhat Thanh Phan, Khoa; Thu Thi Truong, An; Doan, Tin Chanh Duc; Mau Dang, Chien
2015-12-01
Chemical modification of silicon nitride (SiN) surfaces by silanization has been widely studied especially with 3-(aminopropyl)triethoxysilane (APTES) and 3-(glycidyloxypropyl) dimethylethoxysilane (GOPES). However few reports performed the experimental and computational studies together. In this study, surface modification of SiN surfaces with GOPES and APTES covalently bound with glutaraldehyde (GTA) was investigated for antibody immobilization. The monoclonal anti-cytokeratin-FITC (MACF) antibody was immobilized on the modified SiN surfaces. The modified surfaces were characterized by water contact angle measurements, atomic force microscopy and fluorescence microscopy. The FITC-fluorescent label indicated the existence of MACF antibody on the SiN surfaces and the efficiency of the silanization reaction. Absorption of APTES and GOPES on the oxidized SiN surfaces was computationally modeled and calculated by Materials Studio software. The computational and experimental results showed that modification of the SiN surfaces with APTES and GTA was more effective than the modification with GOPES.
NASA Technical Reports Server (NTRS)
Levine, Joel S.; Summers, Michael E.
2008-01-01
In the early history of Mars, volcanic activity associated with the formation of the Tharsis ridge produced a very large amount of atmospheric SO2--on the order of a bar of atmospheric SO2. In the present-day atmosphere of Mars, the lifetime of SO2 is relatively short with a lifetime of less than a day. The short lifetime of SO2 in the present Mars atmosphere makes the production of significant levels of H2SO4 very difficult since the SO2 may be destroyed by various chemical and photochemical processes before the SO2 can be converted to H2SO4. However, photochemical calculations performed and described here, indicate that enhanced atmospheric levels of CO2 in the early atmosphere of Mars resulted in a significantly enhanced atmospheric lifetime for SO2 up to several years. With a significantly enhanced atmospheric lifetime, SO2 could readily form large amounts of H2SO4, which precipitated out of the atmosphere in the form of droplets. The precipitated H2SO4 then reacted with potential surface carbonates, destroying the carbonates and resulting in the abundant and widespread distribution of sulfates on the surface of Mars as detected by recent Mars missions.
Atmospheric photochemistry at a fatty acid coated air/water interface
NASA Astrophysics Data System (ADS)
George, Christian; Rossignol, Stéphanie; Passananti, Monica; Tinel, Liselotte; Perrier, Sebastien; Kong, Lingdong; Brigante, Marcello; Bianco, Angelica; Chen, Jianmin; Donaldson, James
2017-04-01
Over the past 20 years, interfacial processes have become increasingly of interest in the field of atmospheric chemistry, with many studies showing that environmental surfaces display specific chemistry and photochemistry, enhancing certain reactions and acting as reactive sinks or sources for various atmospherically relevant species. Many molecules display a free energy minimum at the air-water interface, making it a favored venue for compound accumulation and reaction. Indeed, surface active molecules have been shown to undergo specific photochemistry at the air-water interface. This presentation will address some recent surprises. Indeed, while fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds (VOCs) are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over monolayer NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet state NA molecules excited by direct absorption of actinic light at the water surface. As fatty acids covered interfaces are ubiquitous in the environment, such photochemical processing will have a significant impact on local ozone and particle formation. In addition, it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds photochemically on various unsaturated fatty acids compounds, and may therefore have a general environmental impact. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could be in excess of 5%.
NASA Technical Reports Server (NTRS)
Rodriguez, Jose M.; Sze, Nien-Dak; Ko, Malcolm K. W.
1988-01-01
The rapid decrease in O3 column densities observed during Antarctic spring has been attributed to several chemical mechanisms involving nitrogen, bromine, or chlorine species, to dynamical mechanisms, or to a combination of the above. Chlorine-related theories, in particular, predict greatly elevated concentrations of ClO and OClO and suppressed abundances of NO2 below 22 km. The heterogeneous reactions and phase transitions proposed by these theories could also impact the concentrations of HCl, ClNO3 and HNO3 in this region. Observations of the above species have been carried out from the ground by the National Ozone Expedition (NOZE-I, 1986, and NOZE-II, 1987), and from aircrafts by the Airborne Antarctic Ozone Experiment (AAOE) during the austral spring of 1987. Observations of aerosol concentrations, size distribution and backscattering ratio from AAOE, and of aerosol extinction coefficients from the SAM-II satellite can also be used to deduce the altitude and temporal behavior of surfaces which catalyze heterogeneous mechanisms. All these observations provide important constraints on the photochemical processes suggested for the spring Antarctic stratosphere. Results are presented for the concentrations and time development of key trace gases in the Antarctic stratosphere, utilizing the AER photochemical model. This model includes complete gas-phase photochemistry, as well as heterogeneous reactions. Heterogeneous chemistry is parameterized in terms of surface concentrations of aerosols, collision frequencies between gas molecules and aerosol surfaces, concentrations of HCl/H2O in the frozen particles, and probability of reaction per collision (gamma). Values of gamma are taken from the latest laboratory measurements. The heterogeneous chemistry and phase transitions are assumed to occur between 12 and 22 km. The behavior of trace species at higher altitudes is calculated by the AER 2-D model without heterogeneous chemistry. Calculations are performed for solar illumination conditions typical of 60, 70, and 80 S, from July 15 to October 31.
NASA Astrophysics Data System (ADS)
Kamiya, Hidehiro; Iijima, Motoyuki
2010-08-01
Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM). Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids.
Surface modification to prevent oxide scale spallation
Stephens, Elizabeth V; Sun, Xin; Liu, Wenning; Stevenson, Jeffry W; Surdoval, Wayne; Khaleel, Mohammad A
2013-07-16
A surface modification to prevent oxide scale spallation is disclosed. The surface modification includes a ferritic stainless steel substrate having a modified surface. A cross-section of the modified surface exhibits a periodic morphology. The periodic morphology does not exceed a critical buckling length, which is equivalent to the length of a wave attribute observed in the cross section periodic morphology. The modified surface can be created using at least one of the following processes: shot peening, surface blasting and surface grinding. A coating can be applied to the modified surface.
Hydroxylation of organic polymer surface: method and application.
Yang, Peng; Yang, Wantai
2014-03-26
It may be hardly believable that inert C-H bonds on a polymeric material surface could be quickly and efficiently transformed into C-OH by a simple and mild way. Thanks to the approaches developed recently, it is now possible to transform surface H atoms of a polymeric substrate into monolayer OH groups by a simple/mild photochemical reaction. Herein the method and application of this small-molecular interfacial chemistry is highlighted. The existence of hydroxyl groups on material surfaces not only determines the physical and chemical properties of materials but also provides effective reaction sites for postsynthetic sequential modification to fulfill the requirements of various applications. However, organic synthetic materials based on petroleum, especially polyolefins comprise mainly C and H atoms and thus present serious surface problems due to low surface energy and inertness in reactivity. These limitations make it challenging to perform postsynthetic surface sequential chemical derivatization toward enhanced functionalities and properties and also cause serious interfacial problems when bonding or integrating polymer substrates with natural or inorganic materials. Polymer surface hydroxylation based on direct conversion of C-H bonds on polymer surfaces is thus of significant importance for academic and practical industrial applications. Although highly active research results have reported on small-molecular C-H bond activation in solution (thus homogeneous), most of them, featuring the use of a variety of transition metals as catalysts, present a slow reaction rate, a low atom economy and an obvious environmental pollution. In sharp contrast to these conventional C-H activation strategies, the present Spotlight describes a universal confined photocatalytic oxidation (CPO) system that is able to directly convert polymer surface C-H bonds to C-OSO3(-) and, subsequently, to C-OH through a simple hydrolysis. Generally speaking, these newly implanted hydroxyl groups preserve their own reactivity toward other complementary compounds, thus creating a novel base with distinct surface properties. Thanks to this functionalized platform, a wide range of organic, inorganic and metal materials have been attached to conventional organic polymer substrates through the rational engineering of surface molecular templates from small functional groups to macromolecules. It is expected that the proposed novel CPO method and its versatile usages in advanced material applications will offer new opportunities for a variety of scientific communities, especially for those working on surface/interface modulation.
Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response
NASA Astrophysics Data System (ADS)
Ortiz, Rocío; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon
2011-11-01
The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.
Key role of organic carbon in the sunlight-enhanced atmospheric aging of soot by O2
Han, Chong; Liu, Yongchun; Ma, Jinzhu; He, Hong
2012-01-01
Soot particles are ubiquitous in the atmosphere and have important climatic and health effects. The aging processes of soot during long-range transport result in variability in its morphology, microstructure, and hygroscopic and optical properties, subsequently leading to the modification of soot’s climatic and health effects. In the present study the aging process of soot by molecular O2 under simulated sunlight irradiation is investigated. Organic carbon components on the surface of soot are found to play a key role in soot aging and are transformed into oxygen-containing organic species including quinones, ketones, aldehydes, lactones, and anhydrides. These oxygen-containing species may become adsorption centers of water and thus enhance the cloud condensation nuclei and ice nuclei activities of soot. Under irradiation of 25 mW·cm−2, the apparent rate constants (k1,obs) for loss or formation of species on soot aged by 20% O2 were larger by factors of 1.5–3.5 than those on soot aged by 100 ppb O3. Considering the abundance of O2 in the troposphere and its higher photoreactivity rate, the photochemical oxidation by O2 under sunlight irradiation should be a very important aging process for soot. PMID:23236134
Degradation of bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation.
Xie, Yi-Bing; Li, Xiang-Zhong
2006-12-01
A series of titanium dioxide (TiO(2)/Ti) film electrodes were prepared from titanium (Ti) metal mesh by an improved anodic oxidation process and were further modified by photochemically depositing gold (Au) on the TiO(2) film surface as Au-TiO(2)/Ti film electrodes. The morphological characteristics, crystal structure and photoelectroreactivity of both the TiO(2)/Ti and Au-TiO(2)/Ti electrodes were studied. The experiments confirmed that the gold modification of TiO(2) film could enhance the efficiency of e(-)/h(+) separation on the TiO(2) conduction band and resulted in the higher photocatalytic (PC) and photoelectrocatalytic (PEC) activity under UV or visible illumination. To further enhance the TiO(2) PEC reaction, a reticulated vitreous carbon (RVC) electrode was applied in the same reaction system as the cathode to electrically generate H(2)O(2) in the aqueous solution. The experiments demonstrated that such a H(2)O(2)-assisted TiO(2) PEC reaction system could achieve a much better performance of BPA degradation in aqueous solution due to an interactive effect among TiO(2), Au, and H(2)O(2). It may have good potential for application in water and wastewater treatment in the future.
Thermal functionalization of GaN surfaces with 1-alkenes.
Schwarz, Stefan U; Cimalla, Volker; Eichapfel, Georg; Himmerlich, Marcel; Krischok, Stefan; Ambacher, Oliver
2013-05-28
A thermally induced functionalization process for gallium nitride surfaces with 1-alkenes is introduced. The resulting functionalization layers are characterized with atomic force microscopy and X-ray photoelectron spectroscopy and compared to reference samples without and with a photochemically generated functionalization layer. The resulting layers show very promising characteristics as functionalization for GaN based biosensors. On the basis of the experimental results, important characteristics of the functionalization layers are estimated and a possible chemical reaction scheme is proposed.
1981-06-08
a r~ 2,2 3 ai ey, -. ar.ger, S.. :.hem. Rev., , 2, ¢9 5 Hartley, F.R.; Vezey, P.. Aav . Organo’et. , em., 1977, 7, 139. 6. Grusnka, E.; Kikta, E.J...sooctane- 1.2- hSC (C)zSIt 996 1.0 - 1991 sh 75min hzu wL 30min hzu ~0.8- 0 0.6- < 2027 0.475 11lmin hu 30 0.2- 0.0 2050 2000 1950 1900 WAVENUMBERS (cm) Q
Characterization of Near Wall Surface Chemistry and Fluid Interaction in Hypersonic Boundary Layers
2009-03-01
Vol. 41, No. 4, 2004, pp. 576-581. l8Marschall, J., Copeland, R.A., Hwang, H.H., and Wright, M.J., "Surface Catalysis Experiments on Metal ...measured separately allow us to assign the observed l4Nl60 transitions unambiguously and, by exclusion, those transitions that belong to neither...Finlayson-Pitts, B.J., Huie, R.E., and Orkin, V.L., "Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 15," JPL
Liebers, Nora; Holland-Letz, Tim; Welschof, Mona; Høgset, Anders; Jäger, Dirk; Arndt, Michaela A E; Krauss, Jürgen
2017-11-01
Photochemical Internalization is a novel drug delivery technology for cancer treatment based on the principle of Photodynamic Treatment. Using a photosensitizer that locates in endocytic vesicles membranes of tumor cells, Photochemical internalization enables cytosolic release of endocytosed antitumor agents in a site-specific manner. The purpose of the present in-vitro study was to explore whether Photochemical Internalization is able to enhance the efficacy of Ranpirnase, a cytotoxic amphibian ribonuclease, for eradication of squamous cell carcinoma of the head and neck. Cell viability was measured in 8 primary human cell lines of squamous cell carcinoma of the head and neck after treatment with Ranpirnase and Photochemical Internalization. For Photochemical Internalization the photosensitizer disulfonated tetraphenyl porphine was incubated with tumor cells followed by exposure to blue light (435 nm). Our study demonstrates significant enhancement of antitumor activity of Ranpirnase by Photochemical Internalization. Treatment responses were heterogeneous between the primary cancer cell lines. Combining Photochemical Internalization with Ranpirnase resulted in 4.6 to 1,940-fold increased cytotoxicity when compared with the ribonuclease alone (P < 0.05). Cytotoxicity of Ranpirnase can be markedly enhanced by Photochemical Internalization in squamous cell carcinoma of the head and neck.
Photo-induced free radicals on a simulated Martian surface
NASA Technical Reports Server (NTRS)
Tseng, S.-S.; Chang, S.
1974-01-01
Results of an electron spin resonance study of free radicals in the ultraviolet irradiation of a simulated Martian surface suggest that the ultraviolet photolysis of CO or CO2, or a mixture of both, adsorbed on silica gel at minus 170 C involves the formation of OH radicals and possibly of H atoms as the primary process, followed by the formation of CO2H radicals. It is concluded that the photochemical synthesis of organic compounds could occur on Mars if the siliceous surface dust contains enough silanol groups and/or adsorbed H2O in the form of bound water.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: Photochemical oxidants (hydrocarbons) and carbon monoxide. 52.269 Section 52.269 Protection of Environment... PLANS California § 52.269 Control strategy and regulations: Photochemical oxidants (hydrocarbons) and... provide for attainment and maintenance of the national standards for photochemical oxidants (hydrocarbons...
Code of Federal Regulations, 2010 CFR
2010-07-01
...: Photochemical oxidants (hydrocarbons) and carbon monoxide. 52.269 Section 52.269 Protection of Environment... PLANS California § 52.269 Control strategy and regulations: Photochemical oxidants (hydrocarbons) and... provide for attainment and maintenance of the national standards for photochemical oxidants (hydrocarbons...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakudo, N.; Ikenaga, N.; Ikeda, F.
2011-01-07
Dry sterilization of polymeric material is developed. The technique utilizes the plasma-based ion implantation which is same as for surface modification of polymers. Experimental data for sterilization are obtained by using spores of Bacillus subtilis as samples. On the other hand we previously showed that the surface modification enhanced the gas barrier characteristics of plastic bottles. Comparing the implantation conditions for the sterilization experiment with those for the surface modification, we find that both sterilization and surface modification are simultaneously performed in a certain range of implantation conditions. This implies that the present bottling system for plastic vessels will bemore » simplified and streamlined by excluding the toxic peroxide water that has been used in the traditional sterilization processes.« less
NASA Astrophysics Data System (ADS)
Reza, M. S.; Aqida, S. N.; Ismail, I.
2018-03-01
This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.
Self-assembly of nanosize coordination cages on si(100) surfaces.
Busi, Marco; Laurenti, Marco; Condorelli, Guglielmo G; Motta, Alessandro; Favazza, Maria; Fragalà, Ignazio L; Montalti, Marco; Prodi, Luca; Dalcanale, Enrico
2007-01-01
Bottom-up fabrication of 3D organic nanostructures on Si(100) surfaces has been achieved by a two-step procedure. Tetradentate cavitand 1 was grafted on the Si surface together with 1-octene (Oct) as a spatial spectator by photochemical hydrosilylation. Ligand exchange between grafted cavitand 1 and self-assembled homocage 2, derived from cavitand 5 bearing a fluorescence marker, led to the formation of coordination cages on Si(100). Formation, quantification, and distribution of the nanoscale molecular containers on a silicon surface was assessed by using three complementary analytical techniques (AFM, XPS, and fluorescence) and validated by control experiments on cavitand-free silicon surfaces. Interestingly, the fluorescence of pyrene at approximately 4 nm above the Si(100) surface can be clearly observed.
Decamethyl cyclopentasiloxane (D5) and decamethyl tetrasiloxane (MD2M) were injected into a smog chamber containing fine Arizona road dust particles (95% surface area <2.6 Iodide-induced organothiol desorption and photochemical reaction, gold nanoparticle (AuNP) fusion, and SERS signal reduction in organothiol-containing AuNP aggregates
USDA-ARS?s Scientific Manuscript database
Gold nanoparticles (AuNPs) have been used extensively as surface-enhanced Raman spectroscopic (SERS) substrates for their large SERS enhancements and widely believed chemical stability. Presented is the finding that iodide can rapidly reduce the SERS intensity of the ligands, including organothiols ...
Silver Eco-Solvent Ink for Reactive Printing of Polychromatic SERS and SPR Substrates
Dustov, Mavlavi; Goldt, Anastasia E.; Sukhorukova, Irina V.; Grünert, Wolfgang; Grigorieva, Anastasia V.
2018-01-01
A new reactive ink based on a silver citrate complex is proposed for a photochemical route to surface-enhanced Raman spectroscopy active substrates with controllable extinction spectra. The drop-cast test of the ink reveals homogeneous nucleation of silver and colloid particle growth originating directly from photochemical in situ reduction in droplets, while the following evaporation of the deposited ink produces small nano- and micron-size particles. The prepared nanostructures and substrates were accurately characterized by electron microscopy methods and optical extinction spectroscopy. Varying the duration of UV irradiation allows tuning the morphology of individual silver nanoparticles forming hierarchical ring structures with numerous “hot spots” for most efficient Raman enhancement. Raman measurements of probe molecules of rhodamine 6G and methylene blue reached the largest signal enhancement of 106 by the resonance effects. PMID:29425119
Silver Eco-Solvent Ink for Reactive Printing of Polychromatic SERS and SPR Substrates.
Dustov, Mavlavi; Golovina, Diana I; Polyakov, Alexander Yu; Goldt, Anastasia E; Eliseev, Andrei A; Kolesnikov, Efim A; Sukhorukova, Irina V; Shtansky, Dmitry V; Grünert, Wolfgang; Grigorieva, Anastasia V
2018-02-09
A new reactive ink based on a silver citrate complex is proposed for a photochemical route to surface-enhanced Raman spectroscopy active substrates with controllable extinction spectra. The drop-cast test of the ink reveals homogeneous nucleation of silver and colloid particle growth originating directly from photochemical in situ reduction in droplets, while the following evaporation of the deposited ink produces small nano- and micron-size particles. The prepared nanostructures and substrates were accurately characterized by electron microscopy methods and optical extinction spectroscopy. Varying the duration of UV irradiation allows tuning the morphology of individual silver nanoparticles forming hierarchical ring structures with numerous "hot spots" for most efficient Raman enhancement. Raman measurements of probe molecules of rhodamine 6G and methylene blue reached the largest signal enhancement of 10⁶ by the resonance effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zonghai; Amine, Khalil; Belharouak, Ilias
An active material for an electrochemical device wherein a surface of the active material is modified by a surface modification agent, wherein the surface modification agent is an organometallic compound.
Surface modification of porous titanium with rice husk as space holder
NASA Astrophysics Data System (ADS)
Wang, Xinsheng; Hou, Junjian; Liu, Yanpei
2018-06-01
Porous titanium was characterized after its surface modification by acid and alkali solution immersion. The results show that the acid surface treatment caused the emergence of flocculent sodium titanate and induced apatite formation. The surface modification of porous titanium promotes biological activation, and the application of porous titanium is also improved as an implant material because of the existence of C and Si.
On the in vivo photochemical rate parameters for PDT reactive oxygen species modeling
NASA Astrophysics Data System (ADS)
Kim, Michele M.; Ghogare, Ashwini A.; Greer, Alexander; Zhu, Timothy C.
2017-03-01
Photosensitizer photochemical parameters are crucial data in accurate dosimetry for photodynamic therapy (PDT) based on photochemical modeling. Progress has been made in the last few decades in determining the photochemical properties of commonly used photosensitizers (PS), but mostly in solution or in vitro. Recent developments allow for the estimation of some of these photochemical parameters in vivo. This review will cover the currently available in vivo photochemical properties of photosensitizers as well as the techniques for measuring those parameters. Furthermore, photochemical parameters that are independent of environmental factors or are universal for different photosensitizers will be examined. Most photosensitizers discussed in this review are of the type II (singlet oxygen) photooxidation category, although type I photosensitizers that involve other reactive oxygen species (ROS) will be discussed as well. The compilation of these parameters will be essential for ROS modeling of PDT.
On the in-vivo photochemical rate parameters for PDT reactive oxygen species modeling
Kim, Michele M.; Ghogare, Ashwini A.; Greer, Alexander; Zhu, Timothy C.
2017-01-01
Photosensitizer photochemical parameters are crucial data in accurate dosimetry for photodynamic therapy (PDT) based on photochemical modeling. Progress has been made in the last few decades in determining the photochemical properties of commonly used photosensitizers (PS), but mostly in solution or in-vitro. Recent developments allow for the estimation of some of these photochemical parameters in-vivo. This review will cover the currently available in-vivo photochemical properties of photosensitizers as well as the techniques for measuring those parameters. Furthermore, photochemical parameters that are independent of environmental factors or are universal for different photosensitizers will be examined. Most photosensitizers discussed in this review are of the type II (singlet oxygen) photooxidation category, although type I photosensitizers that involve other reactive oxygen species (ROS) will be discussed as well. The compilation of these parameters will be essential for ROS modeling of PDT. PMID:28166056
Faustino, Leandro A; Hora Machado, Antonio Eduardo; Patrocinio, Antonio Otavio T
2018-03-05
In this work, a novel complex fac-[Re(CO) 3 (dcbH 2 )( trans-stpy)] + , (dcbH 2 = 4,4'-dicarboxylic acid-2,2'-bipyridine; trans-stpy = trans-4-styrylpyridine) was synthesized and characterized toward its spectroscopic, photochemical, and photophysical properties. The experimental data provide new insights on the mechanism of photochemical trans-to- cis isomerization of the stilbene-like ligand coordinated to Re(I) polypyridyl complexes. The new complex exhibits an unusual and strong dependence of the isomerization quantum yield (Φ t →c ) on the irradiation wavelength. Φ t →c was 0.81 ± 0.08 for irradiation at 365 nm and continuously decreased as the irradiation wavelength is shifted to the visible. At 405 nm irradiation Φ t →c is almost 2 orders of magnitude lower (0.010 ± 0.005) than that observed at 365 nm excitation. This behavior can be explained by the low-lying triplet metal-to-ligand charge-transfer excited state ( 3 MLCT) that hinders the triplet photoreaction mechanism under visible light absorption. Under UV irradiation, direct population of styrylpyridine-centered excited state ( 1 IL) leads to the occurrence of the photoisomerization via a singlet mechanism. Further experiments were performed with the complex immobilized on the surface of TiO 2 and Al 2 O 3 films. The nonoccurrence of isomerization at the oxide surfaces even under UV excitation evidences the role of energy gap between the 1 IL/ 1 MLCT states on the photochemical/photophysical processes. The results establish important relationships between the molecular structure and the photoelectrochemical behavior, which can further contribute to the development of solid-state molecular switches based on Re(I) polypyridyl complexes.
NASA Astrophysics Data System (ADS)
Urbaniak, Daniel J.
2004-11-01
In the research reported here, the surface modification of medical grade poly(dimethyl siloxane), polyetherurethane, and stainless steel through gamma-radiation grafting of hydrophilic polymers was investigated. Emphasis was placed on developing improved and simplified surface modification methods that produce more stable and more bioacceptible hydrophilic graft surfaces. As a result of this research, new surface modification techniques were developed that yield significantly improved surface stability unachievable using previous surface modification techniques. The surface modification of poly(dimethyl siloxane) with hydrophilic polymers was carried out using gamma radiation initiated graft polymerization. The addition of alkali metal hydroxides afforded a unique way to enhance the grafting of N-vinyl-2 pyrrolidone, dimethylacryamide, 2-methacryloyloxyethyl phosphoryl choline, N,N-dimethyl-N-(methacryloyloxyethyl)-N-(3-sulfopropyl)-ammonium-betaine, N,N-dimethyl-N-(methacrylamidopropyl)-N-(3-sulfopropyl)-ammonium-betaine, and copolymers thereof to silicones. Ethanolamine was found to further enhance the grafting of some hydrophilic polymers to silicone. The resulting hydrophilic surface grafts were resistant to hydrophobic surface rearrangement. This process overcomes previous problems inherent in silicone surface modification. The technique was also found to moderately enhance the grafting of hydrophilic monomers to polyetherurethane and to 316-L stainless steel. The surface modification of 316-L stainless steel was further enhanced by treating the substrates with a chromium III methacrylate bonding agent prior to irradiation. The coatings were evaluated for their potential use as depots for delivering therapeutic agents. The release of ofloxacin from surface-modified poly(dimethyl siloxane) and dexamethasone from surface-modified 316-L stainless steel was evaluated by in-vitro experiments. Therapeutic levels of drugs were released from surface-modified specimens via a burst effect. Improved surface characterization methods were another aspect of this research. New nanomechanical testing techniques were developed and used to evaluate the viscoelastic surface mechanical properties of low modulus surface-modified specimens. Dynamic nanoindentation characterization techniques were designed to measure the storage modulus and loss modulus of compliant viscoelastic substrate surfaces. The results of these experiments were compared with modulus data obtained by conventional dynamic mechanical spectroscopy. Nanoscratch testing methods were also developed that qualitatively compared the abrasion resistance of surface-modified substrates. (Abstract shortened by UMI.)
Solvent mimicry with methylene carbene to probe protein topography.
Gómez, Gabriela Elena; Monti, José Luis E; Mundo, Mariana Rocío; Delfino, José María
2015-10-06
The solvent accessible surface area (SASA) of the polypeptide chain plays a key role in protein folding, conformational change, and interaction. This fundamental biophysical parameter is elusive in experimental measurement. Our approach to this problem relies on the reaction of the minimal photochemical reagent diazirine (DZN) with polypeptides. This reagent (i) exerts solvent mimicry because its size is comparable to water and (ii) shows scant chemical selectivity because it generates extremely reactive methylene carbene. Methylation gives rise to the EM (extent of modification) signal, which is useful for scrutinizing the conformational change triggered by Ca(2+) binding to calmodulin (CaM). The increased EM observed for the full protein is dominated by the enhanced exposure of hydrophobic area in Ca(2+)-CaM. Fragmentation allowed us to quantify the methylene incorporation at specific sites. Peptide 91-106 reveals a major reorganization around the calcium 151 binding site, resulting in local ordering and a greater exposure of the hydrophobic surface. Additionally, this technique shows a high sensitivity to probe recognition between CaM and melittin (Mel). The large decrease in EM indicates the occlusion of a significant hydrophobic area upon complexation. Protection from labeling reveals a larger involvement of the N-terminal and central regions of CaM in this interaction. Despite its smaller size, Mel's differential exposure can also be quantified. Moreover, MS/MS fragmentation realizes the goal of extending the resolution of labeled sites at the amino acid level. Overall, DZN labeling emerges as a useful footprinting method capable of shedding light on physiological conformational changes and interactions.
Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.
Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal
2014-04-01
This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.
Advances in the surface modification techniques of bone-related implants for last 10 years
Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop
2014-01-01
At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626
Kersten, B; Zhang, J; Brendler-Schwaab, S Y; Kasper, P; Müller, L
1999-09-15
Recent reports on the photochemical carcinogenicity and photochemical genotoxicity of fluoroquinolone antibacterials led to an increasing awareness for the need of a standard approach to test for photochemical genotoxicity. In this study the micronucleus test using V79 cells was adapted to photogenotoxicity testing. Results of using different UVA/UVB relationships enabled us to identify a suitable irradiation regimen for the activation of different kinds of photosensitizers. Using this regimen, 8-methoxypsoralen and the fluoroquinolones lomefloxacin, grepafloxacin and Bay Y 3118 were identified to cause micronuclei and toxicity upon photochemical activation. Among the phenothiazines tested, chlorpromazine and 2-chlorophenothiazine, were positive for both endpoints, whereas triflupromazine was only slightly photoclastogenic in the presence of strong phototoxicity. Among the other potential human photosensitizers tested (oxytetracycline, doxycycline, metronidazole, emodin, hypericin, griseofulvin), only hypericin was slightly photogenotoxic. Photochemical toxicity in the absence of photochemical genotoxicity was noted for doxycycline and emodin. With the assay system described, it is possible to determine photochemical toxicity and photochemical genotoxicity concomitantly with sufficient reliability.
Enhanced Heterogeneous Nitrates Photolysis on Ice and Potential Impacts on NOx Emissions
NASA Astrophysics Data System (ADS)
Ayotte, P.; Marcotte, G.; Pronovost, S.; Marchand, P.; Laffon, C.; Parent, P.
2015-12-01
Nitrates photolysis plays a key role in the chemistry of the polar boundary layer and of the lower troposphere over snow-covered areas (1). Using a combination of vibrational (2) and photo-absorption spectroscopies (3), we show that nitric acid is mostly dissociated upon its adsorption onto, and its dissolution within ice at temperatures as low 20K. Using amorphous solid water as a model substrate for the disordered surface layer at the interstitial air-ice interface, UV irradiation in the environmentally relevant n-π* transition uncovers the fact that the photolysis rates are significantly higher for surface-bound nitrates compared to those dissolved within the bulk. The complex coupled interfacial transport and reaction kinetics result in the formation of a thin photochemically active layer at the surface of ice which may magnify the impact of surface-enhanced nitrates photolysis rates on ice thereby providing a significant contribution to the intense photochemical NOxfluxes observed to emanate from the sunlit snowpack upon polar sunrise.(4) (1) F. Dominé, P.B. Shepson, Science, 297, 1506-1510 (2002).(2) P. Marchand, G. Marcotte, and P. Ayotte, Spectroscopic Study of HNO3 Dissociation on Ice, J. Phys. Chem. A 116, 12112-12122 (2012).(3) G. Marcotte, P. Ayotte, A. Bendounan, F. Sirotti, C. Laffon and P. Parent, J. Phys. Chem. Lett. 4, 2643-2648 (2013).(4) G. Marcotte, P. Marchand, S. Pronovost, P. Ayotte, C. Laffon and P. Parent, J. Phys. Chem. A 119, 1996-2005 (2015).
Creating biomimetic polymeric surfaces by photochemical attachment and patterning of dextran
Ferrer, M. Carme Coll; Yang, Shu; Eckmann, David M.; Composto, Russell J.
2010-01-01
In this work, we report the preparation of photoactive dextran and demonstrate its utility by photochemically attaching it onto various polymeric substrates. The attachment of homogeneous and patterned dextran films was performed on polyurethane and polystyrene, with detailed analysis of surface morphology, swelling behavior, and the protein resistance of these substrates. The described photoactive dextran and attachment procedure is applicable to a wide variety of substrates while accommodating surfaces with complex surface and geometries. Dextran with azide content between 22 to 0.3 wt% was produced by esterification with p-azidobenzoic acid. Dextran (1.2 wt% azide) was photografted onto plasma oxidized polyurethane and polystyrene and displayed thicknesses of 5 ± 3 nm and 7 ± 3 nm, respectively. The patterned dextran on oxidized polyurethane was patchy with a nominal height difference between dextranized and non-dextranized regions. The azidated dextran on oxidized polystyrene exhibited a distinct step in height. In the presence of PBS buffer, the dextranized regions became smoother and more uniform without affecting the height difference at the oxidized polyurethane boundary. However, the dextranized regions on oxidized polyurethane were observed to swell by a factor of 3 relative to the dried thickness. These dissimilarities were attributed to hydrogen bonding between the dextran and oxidized polyurethane and were confirmed by the photoimmobiliization in the presence of LiCl. The resulting surface was the smoothest of all the azidated dextran samples (RRMS = 1 ± 0.3 nm) and swelled up to 2 times its dried thickness in PBS buffer. The antifouling properties of dextran functionalized surfaces were verified by the selective adsorption of FITC-labeled human albumin only on the non-dextranized regions of the patterned polyurethane and polystyrene substrates. PMID:20712352
Smith, Joseph V.
1998-01-01
Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars. PMID:9520372
Smith, J V
1998-03-31
Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars.
on the growth and photochemical efficiency of Acropora cervicornis
NASA Astrophysics Data System (ADS)
Enochs, I. C.; Manzello, D. P.; Carlton, R.; Schopmeyer, S.; van Hooidonk, R.; Lirman, D.
2014-06-01
The effects of light and elevated pCO2 on the growth and photochemical efficiency of the critically endangered staghorn coral, Acropora cervicornis, were examined experimentally. Corals were subjected to high and low treatments of CO2 and light in a fully crossed design and monitored using 3D scanning and buoyant weight methodologies. Calcification rates, linear extension, as well as colony surface area and volume of A. cervicornis were highly dependent on light intensity. At pCO2 levels projected to occur by the end of the century from ocean acidification (OA), A. cervicornis exhibited depressed calcification, but no change in linear extension. Photochemical efficiency ( F v / F m ) was higher at low light, but unaffected by CO2. Amelioration of OA-depressed calcification under high-light treatments was not observed, and we suggest that the high-light intensity necessary to reach saturation of photosynthesis and calcification in A. cervicornis may limit the effectiveness of this potentially protective mechanism in this species. High CO2 causes depressed skeletal density, but not linear extension, illustrating that the measurement of extension by itself is inadequate to detect CO2 impacts. The skeletal integrity of A. cervicornis will be impaired by OA, which may further reduce the resilience of the already diminished populations of this endangered species.
Microscale surface modifications for heat transfer enhancement.
Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C
2013-10-09
In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.
Plasma assisted surface coating/modification processes - An emerging technology
NASA Technical Reports Server (NTRS)
Spalvins, T.
1987-01-01
A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.
Plasma assisted surface coating/modification processes: An emerging technology
NASA Technical Reports Server (NTRS)
Spalvins, T.
1986-01-01
A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.
Impacts of stratospheric sulfate geoengineering on tropospheric ozone
NASA Astrophysics Data System (ADS)
Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan
2017-10-01
A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion, surface ozone and tropospheric chemistry would likely be affected by SRM, but the overall effect is strongly dependent on the SRM scheme. Due to the health and economic impacts of surface ozone, all these impacts should be taken into account in evaluations of possible consequences of SRM.
Surface ozone variability at Kislovodsk Observatory
NASA Technical Reports Server (NTRS)
Elansky, Nikolay F.; Makarov, Oleg V.; Senik, Irina A.
1994-01-01
The results of the surface ozone observations at the Observatory 'Kislovodsk', situated in the North Caucasus at the altitude 2070 m a.s.l., are given. The observatory is in the background conditions and the variations of the surface ozone are determined by the natural dynamic and photochemical processes. The mean value of the concentration and its seasonal variations are very near to those obtained at the high-mountain stations in Alps. The daily variations have the features, which remain stable during all warm period of the year (April-October). These features, including the minimum of the surface ozone at noon, are formed by the mountain-valley circulation. The significant variations of the surface ozone are connected with the unstationary lee waves.
Measurements of upward turbulent ozone fluxes above a subalpine spruce-fir forest
Karl Zeller; Ted Hehn
1996-01-01
High rural concentrations of ozone (O3) are thought to be either stratospheric in origin, advected from upwind urban sources, or photochemically generated locally as a result of natural trace gas emissions. Ozone is known to be transported vertically downward from the above-canopy atmospheric surface layer and destroyed within stomata or on other biological and mineral...
Tracking Oxidation During Transport of Trace Gases in Air from the Northern to Southern Hemisphere
NASA Astrophysics Data System (ADS)
Montzka, S. A.; Moore, F. L.; Atlas, E. L.; Parrish, D. D.; Miller, B. R.; Sweeney, C.; McKain, K.; Hall, B. D.; Siso, C.; Crotwell, M.; Hintsa, E. J.; Elkins, J. W.; Blake, D. R.; Barletta, B.; Meinardi, S.; Claxton, T.; Hossaini, R.
2017-12-01
Trace gas mole fractions contain the imprint of recent influences on an air mass such as sources, transport, and oxidation. Covariations among the many gases measured from flasks during ATom and HIPPO, and from the ongoing NOAA cooperative air sampling program enable recent influences to be identified from a wide range of sources including industrial activity, biomass burning, emissions from wetlands, and uptake by terrestrial ecosystems. In this work we explore the evolution of trace gas concentrations owing to atmospheric oxidation as air masses pass through the tropics, the atmospheric region with the highest concentrations of the hydroxyl radical. Variations in C2-C5 hydrocarbon concentrations downwind of source regions provide a measure of photochemical ageing in an air mass since emission, but they become less useful when tracking photochemical ageing as air is transported from the NH into the SH owing to their low mixing ratios, lifetimes that are very short relative to transport times, non-industrial sources in the tropics (e.g., biomass burning), and southern hemispheric sources. Instead, we consider a range of trace gases and trace gas pairs that provide a measure of photochemical processing as air transits the tropics. To be useful in this analysis, these trace gases would have lifetimes comparable to interhemispheric transport times, emissions arising from only the NH at constant relative magnitudes, and concentrations sufficient to allow precise and accurate measurements in both hemispheres. Some anthropogenically-emitted chlorinated hydrocarbons meet these requirements and have been measured during ATom, HIPPO, and from NOAA's ongoing surface sampling efforts. Consideration of these results and their implications for tracking photochemical processing in air as it is transported across the tropics will be presented.
Eddy mixing coefficient upper limit derived from the photochemical balance of O2
NASA Technical Reports Server (NTRS)
Rosenqvist, J.; Chassefiere, E.
1993-01-01
This work is based on the study of the photochemical balance of molecular oxygen in the martian atmosphere by using a one-dimensional model of photochemical reactions involving species derived from CO2 and H2O. The model is basically similar to one used previously for the study of the regulation of CO on a global scale, but the chemical rates are taken from another source. In the present scheme, the regulation of molecular oxygen is studied over timescales of the order of its photochemical lifetime (approximately equals 30 yr), which is much shorter than typical escape timescales. Thus, the escape fluxes are fixed to the values given by 3 and 4. We examine the calculated equilibrium abundances of O2 for given thermal, eddy diffusion coefficients and H2O profiles. The thermal profile is taken from in the lower atmosphere. At higher levels, in order to include the diurnal and seasonal thermal profile variability, we have also used the IRTM data. In order to study the influence of both temperature and pressure profiles on the O2 mixing ratio, we have made several tests corresponding to different martian seasons. The results show that the influence of pressure and temperature is quantitatively weak compared to the one of K and of the water vapor density (H2O). Thus, in the following we have fixed the pressure at the surface to a value of 7 mbar and we have used unique standard thermal profile corresponding to a profile roughly averaged over the year, the season, and the day: T equal 205 K at 0 km altitude, 175 K at 25 km, and 145 K at 50 km.
NASA Astrophysics Data System (ADS)
Xue, Bing; Zou, Yingquan
2018-05-01
Herein, a ZnO-graphene nanocomposite photocatalyst was obtained by a facile one-step photochemical method. Both the reduction of graphene oxide (GO) and uniform loading of ZnO nanoparticles (NPs) on the surface of graphene were achieved during the photochemical reaction process using GO as the precursor of graphene and zinc chloride (ZnCl2) as the single source of ZnO. The products were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and ultraviolet-visible spectroscopy. The photocatalytic activity of ZnO/rGO composites was studied by the photodegradation of methylene blue (MB) dye. The as-prepared ZnO/rGO photocatalyst possesses great adsorptivity of dyes (e.g., MB) and high charge separation properties. After receiving the photoelectrons from ZnO, graphene plane can effectively transfer the photoelectrons, thereby showing highly efficient photocatalytic degradation towards pollutants. The effective introduction of rGO significantly improved the photocatalysis and sensing properties of ZnO, and we believe that the as-prepared ZnO/rGO nanocomposite would be promising for practical applications in future nanotechnology.
Fabbri, Debora; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide
2015-09-01
The direct and indirect photodegradation of six cephalosporins was predicted using a photochemical model, on the basis of literature values of photochemical reactivity. Environmental photodegradation would be important in surface water bodies with depth ⩽ 2-3m, and/or in deeper waters with low values of the dissolved organic carbon (DOC ⩽ 1 mg C L(-1)). The half-life times would range from a few days to a couple of weeks in summertime. In deeper and higher-DOC waters and/or in different seasons, hydrolysis could prevail over photodegradation. The direct photolysis of cephalosporins is environmentally concerning because it is known to produce toxic intermediates. It would be a major pathway for cefazolin, an important one for amoxicillin and cefotaxime and, at pH<6.5, for cefapirin as well. In contrast, direct photolysis would be negligible for cefradine and cefalexin. The DOC values would influence the fraction of photodegradation accounted for by direct photolysis in shallow water, to a different extent depending on the role of sensitisation by the triplet states of chromophoric dissolved organic matter. Copyright © 2015 Elsevier Ltd. All rights reserved.
Synthesis of Monodispersed Ag-Doped Bioactive Glass Nanoparticles via Surface Modification
Kozon, Dominika; Zheng, Kai; Boccardi, Elena; Liu, Yufang; Liverani, Liliana; Boccaccini, Aldo R.
2016-01-01
Monodispersed spherical Ag-doped bioactive glass nanoparticles (Ag-BGNs) were synthesized by a modified Stöber method combined with surface modification. The surface modification was carried out at 25, 60, and 80 °C, respectively, to investigate the influence of processing temperature on particle properties. Energy-dispersive X-ray spectroscopy (EDS) results indicated that higher temperatures facilitate the incorporation of Ag. Hydroxyapatite (HA) formation on Ag-BGNs was detected upon immersion of the particles in simulated body fluid for 7 days, which indicated that Ag-BGNs maintained high bioactivity after surface modification. The conducted antibacterial assay confirmed that Ag-BGNs had an antibacterial effect on E. coli. The above results thereby suggest that surface modification is an effective way to incorporate Ag into BGNs and that the modified BGNs can remain monodispersed as well as exhibit bioactivity and antibacterial capability for biomedical applications. PMID:28773349
Covalent Surface Modifications of Carbon Nanotubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavia Sanders, Adriana; O'Bryan, Greg
A report meant to document the chemistries investigated by the author for covalent surface modification of CNTs. Oxidation, cycloaddition, and radical reactions were explored to determine their success at covalently altering the CNT surface. Characterization through infrared spectroscopy, Raman spectroscopy, and thermo gravimetric analysis was performed in order to determine the success of the chemistries employed. This report is not exhaustive and was performed for CNT surface modification exploration as it pertains to the "Next Gen" project.
Du, Likai; Lan, Zhenggang
2015-04-14
Nonadiabatic dynamics simulations have rapidly become an indispensable tool for understanding ultrafast photochemical processes in complex systems. Here, we present our recently developed on-the-fly nonadiabatic dynamics package, JADE, which allows researchers to perform nonadiabatic excited-state dynamics simulations of polyatomic systems at an all-atomic level. The nonadiabatic dynamics is based on Tully's surface-hopping approach. Currently, several electronic structure methods (CIS, TDHF, TDDFT(RPA/TDA), and ADC(2)) are supported, especially TDDFT, aiming at performing nonadiabatic dynamics on medium- to large-sized molecules. The JADE package has been interfaced with several quantum chemistry codes, including Turbomole, Gaussian, and Gamess (US). To consider environmental effects, the Langevin dynamics was introduced as an easy-to-use scheme into the standard surface-hopping dynamics. The JADE package is mainly written in Fortran for greater numerical performance and Python for flexible interface construction, with the intent of providing open-source, easy-to-use, well-modularized, and intuitive software in the field of simulations of photochemical and photophysical processes. To illustrate the possible applications of the JADE package, we present a few applications of excited-state dynamics for various polyatomic systems, such as the methaniminium cation, fullerene (C20), p-dimethylaminobenzonitrile (DMABN) and its primary amino derivative aminobenzonitrile (ABN), and 10-hydroxybenzo[h]quinoline (10-HBQ).
Photochemical effects in the lens from near infrared radiation?
NASA Astrophysics Data System (ADS)
Söderberg, Per G.; Al-Saqry, Riyadh; Schulmeister, Karl; Gallichanin, Konstantin; Kronschläger, Martin; Yu, Zhaohua
2009-02-01
Conclusion: The current data are consistent with a potential photochemical effect of in vivo exposure of the crystalline lens to near infrared radiation since the onset of cataract after in just above threshold dose was at least 18 hrs delayed after the exposure. Materials and methods: The eyes of 6 weeks old Sprague-Dawley rats were exposed unilaterally in vivo to 1090 nm, 6.2 W quasi-top hat spatial distribution with a 3 mm spot on the anterior lens surface within the dilated pupil. First, four exposure time groups of rats were exposed to increasing exposure times. At 24 hrs after exposure, the difference of light scattering between the lenses from the same animal was measured. Then, based on the first experiment, four post-exposure time groups were exposed unilaterally in vivo to 8 s of 1090 nm, 6.2 W quasi-top hat spatial distribution with a 3 mm spot on the anterior lens surface within the dilated pupil. After, the intended post-exposure time, the difference of light scattering between the lenses from the same animal was measured. Results: A 3 mm spot of 6.2 W induces light scattering in the lens with exposures of at least 8 s. Further, after 8 s of 6.2 W within a 3 mm spot on the lens surface, the light scattering increase in the lens was delayed at least 18 hrs after the exposure.
Yuan, Yanan; Wang, Yajie; Ding, Wei; Li, Jinjun; Wu, Feng
2016-01-01
Transformation of inorganic arsenic species has drawn great concern in recent decades because of worldwide and speciation-dependent pollution and the hazards that they pose to the environment and to human health. As(III) photooxidation in aquatic systems has received much attention, but little is known about photochemical transformation of arsenic species on top soil. As(III) photooxidation on natural montmorillonite under UV-A radiation was investigated by using a moisture- and temperature-controlled photochemical chamber with two black-light lamps. Initial As(III) concentration, pH, layer thickness, humic acid (HA) concentration, the presence of additional iron ions, and the contribution of reactive oxygen species (ROS) were examined. The results show that pH values of the clay layers greatly influenced As(III) photooxidation on montmorillonite. As(III) photooxidation followed the Langmuir-Hinshelwood model. HA and additional iron ions greatly promoted photooxidation, but excess Fe(II) competed with As(III) for oxidation by ROS. Scavenging experiments revealed that natural montmorillonite induced the conversion of As(III) to As(V) by generating ROS (mainly HO(•) and HO2(•)/O2(•-)) and that HO(•) radical was the predominant oxidant in this system. Our work demonstrates that photooxidation on the surface of natural clay minerals in top soil can be important to As(III) transformation. This allows understanding and predicting the speciation and behavior of arsenic on the soil surface.
Laser modification of macroscopic properties of metal surface layer
NASA Astrophysics Data System (ADS)
Kostrubiec, Franciszek
1995-03-01
Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.
Methods for the photochemical utilization of solar energy
NASA Technical Reports Server (NTRS)
Schwerzel, R. E.
1978-01-01
The paper considers the 'ground rules' which govern the efficiency of photochemical solar energy conversion and then summarizes the most promising approaches in each of three categories: photochemically assisted thermal systems for the heating and/or cooling of structures; photogalvanic systems for the production of electrical power in applications, such as photorechargeable batteries or inexpensive 'solar cells'; and photochemical formation of fuels for combustion and for use as chemical feedstocks or foods. Three concepts for the photochemical utilization of solar energy in space are found to be particularly promising: (1) photochemical trans-cis isomerization of indigold dyes for photoassisted heating or cooling, (2) the redox stabilized photoelectrolysis cell for the production of hydrogen (and/or oxygen or other useful chemicals), and (3) the liquid-junction photovoltaic cell for the production of electrical power.
Rapid Covalent Immobilization of Proteins by Phenol-Based Photochemical Cross-Linking.
Ren, Jun; Tian, Kaikai; Jia, Lingyun; Han, Xiuyou; Zhao, Mingshan
2016-10-19
A strategy for photoinduced covalent immobilization of proteins on phenol-functionalized surfaces is described. Under visible light irradiation, the reaction can be completed within seconds at ambient temperature, with high yields in aqueous solution of physiological conditions. Protein immobilization is based on a ruthenium-catalyzed radical cross-linking reaction between proteins and phenol-modified surfaces, and the process has proven mild enough for lipase, Staphylococcus aureus protein A, and streptavidin to preserve their bioactivity. This strategy was successfully applied to antibody immobilization on different material platforms, including agarose beads, cellulose membranes, and glass wafers, thus providing a generic procedure for rapid biomodification of surfaces.
Yang, Kisuk; Lee, Jung Seung; Kim, Jin; Lee, Yu Bin; Shin, Heungsoo; Um, Soong Ho; Kim, Jeong Beom; Park, Kook In; Lee, Haeshin; Cho, Seung-Woo
2012-10-01
Surface modification of tissue engineering scaffolds and substrates is required for improving the efficacy of stem cell therapy by generating physicochemical stimulation promoting proliferation and differentiation of stem cells. However, typical surface modification methods including chemical conjugation or physical absorption have several limitations such as multistep, complicated procedures, surface denaturation, batch-to-batch inconsistencies, and low surface conjugation efficiency. In this study, we report a mussel-inspired, biomimetic approach to surface modification for efficient and reliable manipulation of human neural stem cell (NSC) differentiation and proliferation. Our study demonstrates that polydopamine coating facilitates highly efficient, simple immobilization of neurotrophic growth factors and adhesion peptides onto polymer substrates. The growth factor or peptide-immobilized substrates greatly enhance differentiation and proliferation of human NSCs (human fetal brain-derived NSCs and human induced pluripotent stem cell-derived NSCs) at a level comparable or greater than currently available animal-derived coating materials (Matrigel) with safety issues. Therefore, polydopamine-mediated surface modification can provide a versatile platform technology for developing chemically defined, safe, functional substrates and scaffolds for therapeutic applications of human NSCs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Calza, Paola; Vione, Davide; Fabbri, Debora; Aigotti, Riccardo; Medana, Claudio
2015-09-15
The photoinduced transformation of two ionic liquids, 1-methylimidazolium hydrogensulfate (HMIM) and 1-ethyl-3-methylimidazolium hydrogensulfate (EMIM), was investigated under photocatalytic conditions in the presence of irradiated TiO2. We monitored substrate disappearance, transformation products (TPs), degree of mineralization, and toxicity of the irradiated systems. Acute toxicity measures suggested in both cases the occurrence of more toxic TPs than the parent molecules. A total of five TPs were detected by HPLC-HRMS from HMIM and nine from EMIM. Complete mineralization and stoichiometric release of nitrogen was achieved for both compounds within 4 h of irradiation. The photochemical transformation kinetics and pathways in surface waters (direct photolysis and indirect photoreactions) were studied for EMIM, to assess its persistence in sunlit water bodies such as rivers or lakes. Environmental phototransformation would be dominated by direct photolysis, with half-life times of up to one month under fine-weather conditions.
Chemistry and evolution of Titan's atmosphere
NASA Technical Reports Server (NTRS)
Strobel, D. F.
1982-01-01
The chemistry and evolution of Titan's atmosphere are reviewed, in light of the scientific findings from the Voyager mission. It is argued that the present N2 atmosphere may be Titan's initial atmosphere, rather than one photochemically derived from an original NH3 atmosphere. The escape rate of hydrogen from Titan is controlled by photochemical production from hydrocarbons. CH4 is irreversibly converted to less hydrogen-rich hydrocarbons, which over geologic time accumulate on the surface to a layer thickness of about 0.5 km. Magnetospheric electrons interacting with Titan's exosphere may dissociate enough N2 into hot, escaping N atoms to remove about 0.2 of Titan's present atmosphere over geologic time. The energy dissipation of magnetospheric electrons exceeds solar EUV energy deposition in Titan's atmosphere by an order of magnitude, and is the principal driver of nitrogen photochemistry. The environmental conditions in Titan's upper atmosphere are favorable to building up complex molecules, particularly in the north polar cap region.
Fabrication and surface-modification of implantable microprobes for neuroscience studies
NASA Astrophysics Data System (ADS)
Cao, H.; Nguyen, C. M.; Chiao, J. C.
2012-06-01
In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor-liquid-solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H2O2, electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors.
Root Surface Bio-modification with Erbium Lasers- A Myth or a Reality??
Lavu, Vamsi; Sundaram, Subramoniam; Sabarish, Ram; Rao, Suresh Ranga
2015-01-01
The objective of this literature review was to critically review the evidence available in the literature regarding the expediency of erbium family of lasers for root bio modification as a part of periodontal therapy. The literature search was performed on the Pubmed using MeSH words such as "lasers/therapeutic use, scaling, dental calculus, tooth root/anatomy and histology, ultrasonic therapy". The studies were screened and were grouped as follows: those evaluating a) efficacy for calculus removal with the Erbium family of laser b) root surface changes following Er YAG and Er Cr YSGG application c) comparative studies of the Er YAG, Er Cr YSGG lasers versus conventional methods of root surface modification d) Bio compatibility of root surface following Erbium laser treatment e) Studies on the combined efficacy of laser root modification with conventional methods towards root surface bio-modification f) Studies on effectiveness of root surface bio-modification prior to root coverage procedures. In conclusion, the erbium family has a proven anti-bacterial action, predictable calculus removal, minimal root substance removal, and appears to favor cell attachment. The Erbium family of lasers appears to be a useful adjunct for the management of periodontal disease. PMID:25713635
NASA Astrophysics Data System (ADS)
Zhang, Y.; Xie, H.
2015-08-01
Rates and apparent quantum yields of photomineralization (AQYDOC) and photomethanification (AQYCH4) of chromophoric dissolved organic matter (CDOM) in Saguenay River surface water were determined at three widely differing dissolved oxygen concentrations ([O2]) (suboxic, air-saturation, and oxygenated) using simulated-solar radiation. Photomineralization increased linearly with CDOM absorbance photobleaching for all three O2 treatments. Whereas the rate of photochemical dissolved organic carbon (DOC) loss increased with increasing [O2], the ratio of fractional DOC loss to fractional absorbance loss showed an inverse trend. CDOM photodegradation led to a nearly complete mineralization under suboxic conditions but to only a partial mineralization under oxic conditions. AQYDOC determined under oxygenated, suboxic, and air-saturated conditions increased, decreased, and remained largely constant with photobleaching, respectively; AQYDOC obtained under air-saturation with short-term irradiations could thus be applied to longer exposures. AQYDOC decreased successively from ultraviolet B (UVB) to ultraviolet A (UVA) to visible (VIS), which, alongside the solar irradiance spectrum, points to VIS and UVA being the primary drivers for photomineralization in the water column. The photomineralization rate in the Saguenay River was estimated to be 2.31 × 108 mol C yr-1, accounting for only 1 % of the annual DOC input into this system. Photoproduction of CH4 occurred under both suboxic and oxic conditions and increased with decreasing [O2], with the rate under suboxic conditions ~ 7-8 times that under oxic conditions. Photoproduction of CH4 under oxic conditions increased linearly with photomineralization and photobleaching. Under air-saturation, 0.00057 % of the photochemical DOC loss was diverted to CH4, giving a photochemical CH4 production rate of 4.36 × 10-6 mol m
NASA Astrophysics Data System (ADS)
Zhang, Y.; Xie, H.
2015-11-01
Rates and apparent quantum yields of photomineralization (AQYDOC) and photomethanification (AQYCH4) of chromophoric dissolved organic matter (CDOM) in Saguenay River surface water were determined at three widely differing dissolved oxygen concentrations ([O2]) (suboxic, air saturation, and oxygenated) using simulated-solar radiation. Photomineralization increased linearly with CDOM absorbance photobleaching for all three O2 treatments. Whereas the rate of photochemical dissolved organic carbon (DOC) loss increased with increasing [O2], the ratio of fractional DOC loss to fractional absorbance loss showed an inverse trend. CDOM photodegradation led to a higher degree of mineralization under suboxic conditions than under oxic conditions. AQYDOC determined under oxygenated, suboxic, and air-saturated conditions increased, decreased, and remained largely constant with photobleaching, respectively; AQYDOC obtained under air saturation with short-term irradiations could thus be applied to longer exposures. AQYDOC decreased successively from ultraviolet B (UVB) to ultraviolet A (UVA) to visible (VIS), which, alongside the solar irradiance spectrum, points to VIS and UVA being the primary drivers for photomineralization in the water column. The photomineralization rate in the Saguenay River was estimated to be 2.31 × 108 mol C yr-1, accounting for only 1 % of the annual DOC input into this system. Photoproduction of CH4 occurred under both suboxic and oxic conditions and increased with decreasing [O2], with the rate under suboxic conditions ~ 7-8 times that under oxic conditions. Photoproduction of CH4 under oxic conditions increased linearly with photomineralization and photobleaching. Under air saturation, 0.00057 % of the photochemical DOC loss was diverted to CH4, giving a photochemical CH4 production rate of 4.36 × 10-6 mol m-2 yr-1 in the Saguenay River and, by extrapolation, of (1.9-8.1) × 108 mol yr-1 in the global ocean. AQYCH4 changed little with photobleaching under air saturation but increased exponentially under suboxic conditions. Spectrally, AQYCH4 decreased sequentially from UVB to UVA to VIS, with UVB being more efficient under suboxic conditions than under oxic conditions. On a depth-integrated basis, VIS prevailed over UVB in controlling CH4 photoproduction under air saturation while the opposite held true under O2-deficiency. An addition of micromolar levels of dissolved dimethyl sulfide (DMS) substantially increased CH4 photoproduction, particularly under O2-deficiency; DMS at nanomolar ambient concentrations in surface oceans is, however, unlikely a significant CH4 precursor. Results from this study suggest that CDOM-based CH4 photoproduction only marginally contributes to the CH4 supersaturation in modern surface oceans and to both the modern and Archean atmospheric CH4 budgets, but that the photochemical term can be comparable to microbial CH4 oxidation in modern oxic oceans. Our results also suggest that anoxic microniches in particulate organic matter and phytoplankton cells containing elevated concentrations of precursors of the methyl radical such as DMS may provide potential hotspots for CH4 photoproduction.
Photoluminescence of CuInS2 nanocrystals: effect of surface modification
NASA Astrophysics Data System (ADS)
Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin
2011-09-01
We have synthesized highly luminescent Cu-In-S(CIS) nanocrystals (NCs) by heating the mixture of metal carboxylates and alkylthiol under inert atmosphere. We modified the surface of CIS NCs with zinc carboxylate and subsequent injection of alkylthiol. As a result of the surface modification, highly luminescent CIS@ZnS core/shell nanocrystals were synthesized. The luminescence quantum yield (QY) of best CIS@ZnS NCs was above 50%, which is 10 times higher than the initial QY of CIS NCs before surface modification (QY=3%). Detailed study on the luminescence mechanism implies that etching of the surface of NCs by dissociated carboxylate group (CH3COO-) and formation of epitaxial shell by Zn with sulfur from alkylthiol efficiently removed the surface defects which are known to be major non-radiative recombination sites in semiconductor nanocrystals. In this study, we developed a novel surface modification route for monodispersed highly luminescent Cu-In-S NCs with less toxic and highly stable precursors. Investigation with the timeand the temperature-dependent photoluminescence showed that the trap related emission was minimized by surface modification and the donor-acceptor pair recombination was enhanced by controlling copper stoichiometry.xb
Yang, Zhenyu; Gonzalez, Christina M; Purkait, Tapas K; Iqbal, Muhammad; Meldrum, Al; Veinot, Jonathan G C
2015-09-29
Hydrosilylation is among the most common methods used for modifying silicon surface chemistry. It provides a wide range of surface functionalities and effective passivation of surface sites. Herein, we report a systematic study of radical initiated hydrosilylation of silicon nanocrystal (SiNC) surfaces using two common radical initiators (i.e., 2,2'-azobis(2-methylpropionitrile) and benzoyl peroxide). Compared to other widely applied hydrosilylation methods (e.g., thermal, photochemical, and catalytic), the radical initiator based approach is particle size independent, requires comparatively low reaction temperatures, and yields monolayer surface passivation after short reaction times. The effects of differing functional groups (i.e., alkene, alkyne, carboxylic acid, and ester) on the radical initiated hydrosilylation are also explored. The results indicate functionalization occurs and results in the formation of monolayer passivated surfaces.
NASA Astrophysics Data System (ADS)
Lan, Xiwei; Xin, Yue; Wang, Libin; Hu, Xianluo
2018-03-01
Li-rich layered oxides (LLOs) have been developed as a high-capacity cathode material for Li-ion batteries, but the structural complexity and unique initial charging behavior lead to several problems including large initial capacity loss, capacity and voltage fading, poor cyclability, and inferior rate capability. Since the surface conditions are critical to electrochemical performance and the drawbacks, nanoscale surface modification for improving LLO's properties is a general strategy. This review mainly summarizes the surface modification of LLOs and classifies them into three types of surface pre-treatment, surface gradient doping, and surface coating. Surface pre-treatment usually introduces removal of Li2O for lower irreversible capacity while surface doping is aimed to stabilize the structure during electrochemical cycling. Surface coating layers with different properties, protective layers to suppress the interface side reaction, coating layers related to structural transformation, and electronic/ionic conductive layers for better rate capability, can avoid the shortcomings of LLOs. In addition to surface modification for performance enhancement, other strategies can also be investigated to achieve high-performance LLO-based cathode materials.
Catalysis of Photochemical Reactions.
ERIC Educational Resources Information Center
Albini, A.
1986-01-01
Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)
Photochemical mechanisms of ocular photic injury (Abstract Only)
NASA Astrophysics Data System (ADS)
Stuck, Bruce E.; Lund, David J.; Zuclich, Joseph A.
2000-03-01
Mechanisms of photic injury to the eye can be categorized as photochemical, photothermal or photodistruptive. Exposure wavelength, exposure duration, ocular tissue characteristics and response criteria are key factors in the delineation of the ocular injury mechanisms. Depending on the exposure condition, one or all of the laser-tissue interaction mechanisms can be involved. Although photic injury to the eye was initially assumed to involve thermal mechanisms, more recent research has demonstrated that ocular effects can be produced by light exposure without a significant retinal temperature rise. Photochemical mechanisms are also implicated in UV photic injury to the cornea and lens. Exposure of the retina to short visible wavelengths for prolonged durations results in photochemical retinal damage with negligible localized retinal temperature elevation. For exposure conditions where photochemical mechanisms are dominate, the reciprocity of irradiance and exposure duration is apparent. The latency until observation of a photochemical lesion is often 24-48 hours whereas a thermal lesion is observed immediately or within a few hours after the exposure. Action spectra for photochemical injury to the eye are discussed in the context of ocular injury thresholds and current permissible exposure limits.
Studies in organic and physical photochemistry - an interdisciplinary approach.
Oelgemöller, Michael; Hoffmann, Norbert
2016-08-21
Traditionally, organic photochemistry when applied to synthesis strongly interacts with physical chemistry. The aim of this review is to illustrate this very fruitful interdisciplinary approach and cooperation. A profound understanding of the photochemical reactivity and reaction mechanisms is particularly helpful for optimization and application of these reactions. Some typical reactions and particular aspects are reported such as the Norrish-Type II reaction and the Yang cyclization and related transformations, the [2 + 2] photocycloadditions, particularly the Paternò-Büchi reaction, photochemical electron transfer induced transformations, different kinds of catalytic reactions such as photoredox catalysis for organic synthesis and photooxygenation are discussed. Particular aspects such as the structure and reactivity of aryl cations, photochemical reactions in the crystalline state, chiral memory, different mechanisms of hydrogen transfer in photochemical reactions or fundamental aspects of stereoselectivity are discussed. Photochemical reactions are also investigated in the context of chemical engineering. Particularly, continuous flow reactors are of interest. Novel reactor systems are developed and modeling of photochemical transformations and different reactors play a key role in such studies. This research domain builds a bridge between fundamental studies of organic photochemical reactions and their industrial application.
Solar photochemical and thermochemical splitting of water.
Rao, C N R; Lingampalli, S R; Dey, Sunita; Roy, Anand
2016-02-28
Artificial photosynthesis to carry out both the oxidation and the reduction of water has emerged to be an exciting area of research. It has been possible to photochemically generate oxygen by using a scheme similar to the Z-scheme, by using suitable catalysts in place of water-oxidation catalyst in the Z-scheme in natural photosynthesis. The best oxidation catalysts are found to be Co and Mn oxides with the e(1) g configuration. The more important aspects investigated pertain to the visible-light-induced generation of hydrogen by using semiconductor heterostructures of the type ZnO/Pt/Cd1-xZnxS and dye-sensitized semiconductors. In the case of heterostructures, good yields of H2 have been obtained. Modifications of the heterostructures, wherein Pt is replaced by NiO, and the oxide is substituted with different anions are discussed. MoS2 and MoSe2 in the 1T form yield high quantities of H2 when sensitized by Eosin Y. Two-step thermochemical splitting of H2O using metal oxide redox pairs provides a strategy to produce H2 and CO. Performance of the Ln0.5A0.5MnO3 (Ln = rare earth ion, A = Ca, Sr) family of perovskites is found to be promising in this context. The best results to date are found with Y0.5Sr0.5MnO3. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Zhang, Ying; Wecksler, Aaron T.; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.
2017-05-01
We previously analyzed the Fab-1:VEGF (vascular endothelial growth factor) system described in this work, with both native top-down mass spectrometry and bottom-up mass spectrometry (carboxyl-group or GEE footprinting) techniques. This work continues bottom-up mass spectrometry analysis using a fast photochemical oxidation of proteins (FPOP) platform to map the solution binding interface of VEGF and a fragment antigen binding region of an antibody (Fab-1). In this study, we use FPOP to compare the changes in solvent accessibility by quantitating the extent of oxidative modification in the unbound versus bound states. Determining the changes in solvent accessibility enables the inference of the protein binding sites (epitope and paratopes) and a comparison to the previously published Fab-1:VEGF crystal structure, adding to the top-down and bottom-up data. Using this method, we investigated peptide-level and residue-level changes in solvent accessibility between the unbound proteins and bound complex. Mapping these data onto the Fab-1:VEGF crystal structure enabled successful characterization of both the binding region and regions of remote conformation changes. These data, coupled with our previous higher order structure (HOS) studies, demonstrate the value of a comprehensive toolbox of methods for identifying the putative epitopes and paratopes for biotherapeutic antibodies.
Barakat, Hala; Saunier, Johanna; Aymes Chodur, Caroline; Aubert, Pascal; Vigneron, Jackie; Etcheberry, Arnaud; Yagoubi, Najet
2013-11-01
A cyclo-olefin copolymer was subjected to an e-beam ionizing treatment. Two doses were studied: one corresponding to the recommended dose for the sterilization of pharmaceutical packaging (25 kGy), and a greater one to enhance the modifications caused by the treatment (150 kGy). The surface modifications were studied by X-ray photoelectron spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM). The roughness and the wettability of the surface were enhanced by the treatment. The consequences of the surface modifications on the drug interaction with the polymer were studied. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Gupta, A.; Scott, G. W.; Kliger, D.; Vogl, O.
1983-01-01
The mechanism of photodegradation of certain hydroxyphenyl benzotriazole based ultraviolet absorbers has been investigated and a new polymerizable ultraviolet absorber in this group has been synthesized. The photoreactivity is entirely confined at the surface of polymethylmethacrylate films containing the ultraviolet absorbers as pendant groups. A mechanism involving sensitized photooxidation has been proposed to interpret the data.
Jerome D. Fast; Rahul A. Zaveri; Xindi Bian; Elaine G. Chapman; Richard C. Easter
2002-01-01
A new meteorological-chemical model is used to determine the relative contribution of regional-scale transport and local photochemical production on air quality over Philadelphia. The model performance is evaluated using surface and airborne meteorological and chemical measurements made during a 30-day period in July and August of 1999 as part of the Northeast Oxidant...
NASA Astrophysics Data System (ADS)
Baker, K. R.
2017-12-01
Highly instrumented field studies provide a unique opportunity to evaluate multiple aspects of photochemical grid model representation of fire emissions, dispersion, and chemical evolution. Fuel information and burn area for a specific fire coupled with near-fire and downwind chemical measurements provides information needed to constrain model predicted fire plume transport and chemical evolution of important pollutants such as ozone and particulate matter (PM2.5) that have deleterious health effects. Most local to regional scale field campaigns to date have made relatively few transects through plumes from fires with well characterized fuel type and consumption. While more comprehensive field studies are being planned for 2018 and beyond (WE-CAN, FIREX, FIRE-CHEM, and FASMEE), existing measurement data from multiple field campaigns including 2013 SEAC4RS, satellite data, and routine surface networks are used to assess how a regulatory modeling system captures fire impacts on local to regional scale ozone and PM2.5. Key aspects of the regulatory modeling system include fire location and burn area from SMARTFIRE2, emissions from BlueSky framework, and predictions of ambient O3 and PM2.5 from the Community Multiscale Air Quality (CMAQ) photochemical transport model. A comparison of model estimated O3 from specific fires with routine surface measurements at rural locations in proximity to the 2013 Rim fire, 2011 Wallow fire, and 2011 Flint Hills fires suggest the modeling system over-estimates smoke impacts on hourly ozone. Sensitivity simulations where solar radiation and photolysis rates are more aggressively attenuated by smoke reduced O3 predictions but did not ameliorate the over prediction bias. PM2.5 organic carbon tends to be overpredicted at rural surface sites downwind from the 2011 Flint Hills prescribed fires while results were mixed at rural sites downwind of the 2013 Rim fire and 2011 Wallow fire suggesting differences in fuel characterization (e.g., emission factors, emissions speciation, burn period, etc.) between these areas may contribute to differences in model prediction. Aircraft plume transects made downwind of the 2013 Rim fire and satellite information suggest the model does well at regional scale plume transport.
Photochemical degradation of PCBs in snow.
Matykiewiczová, Nina; Klánová, Jana; Klán, Petr
2007-12-15
This work represents the first laboratory study known to the authors describing photochemical behavior of persistent organic pollutants in snow at environmentally relevant concentrations. The snow samples were prepared by shock freezing of the corresponding aqueous solutions in liquid nitrogen and were UV-irradiated in a photochemical cold chamber reactor at -25 degrees C, in which simultaneous monitoring of snow-air exchange processeswas also possible. The main photodegradation pathway of two model snow contaminants, PCB-7 and PCB-153 (c approximately 100 ng kg(-1)), was found to be reductive dehalogenation. Possible involvement of the water molecules of snow in this reaction has been excluded by performing the photolyses in D2O snow. Instead, trace amounts of volatile organic compounds have been proposed to be the major source of hydrogen atom in the reduction, and this hypothesis was confirmed by the experiments with deuterated organic cocontaminants, such as d6-ethanol or d8-tetrahydrofuran. It is argued that bimolecular photoreduction of PCBs was more efficient or feasible than any other phototransformations under the experimental conditions used, including the coupling reactions. The photodegradation of PCBs, however, competed with a desorption process responsible for the pollutant loss from the snow samples, especially in case of lower molecular-mass congeners. Organic compounds, apparently largely located or photoproduced on the surface of snow crystals, had a predisposition to be released to the air but, at the same time, to react with other species in the gas phase. It is concluded that physicochemical properties of the contaminants and trace co-contaminants, their location and local concentrations in the matrix, and the wavelength and intensity of radiation are the most important factors in the evaluation of organic contaminants' lifetime in snow. Based on the results, it has been estimated that the average lifetime of PCBs in surface snow, connected exclusively to the photoreductive dechlorination process, is 1-2 orders of magnitude longer than that in surface waters when subjected to the equivalent solar radiation. However, in case that the concentration of the hydrogen peroxide in natural snow is sufficient, the photoinduced oxidation process could succeed the photoreductive dechlorination and evaporative fluxes as the major sink.
Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics
NASA Astrophysics Data System (ADS)
Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru
2018-05-01
Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.
A Simple Parallel Photochemical Reactor for Photodecomposition Studies
ERIC Educational Resources Information Center
Xiaobo Chen; Halasz, Sarah M.; Giles, Eric C.; Mankus, Jessica V.; Johnson, Joseph C.; Burda, Clemens
2006-01-01
A simple and useful parallel photochemical reactor intended to study the photodecomposition of dyes using semiconductor photocatalysis is presented. The photochemical reactions are followed through time-dependent changes in the ground-state absorption spectra of the dyes.
EMERGING TECHNOLOGY PROJECT BULLETIN: LASER INDUCED PHOTOCHEMICAL OXIDATIVE DESTRUCTION
The process developed by Energy and Environmental Engineering, Incorporated, is designed to photochemically oxidize organic compounds in wastewater by applying ultraviolet radiation using an Excimer laser. The photochemical reactor can destroy low to moderate concentrations...
PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes.
Nady, Norhan
2016-04-18
A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled "green surface modification". This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers-ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)-is presented.
Sustainable environmental nanotechnology using nanoparticle surface modification.
Reactive nanomaterials used for environmental remediation require surface modification to make them mobile in the subsurface. Nanomaterials released into the environment inadvertently without an engineered surface coating will acquire one (e.g. adsorption of natural organic matt...
Rao, Prashanth J; Pelletier, Matthew H; Walsh, William R; Mobbs, Ralph J
2014-05-01
The clinical outcome of lumbar spinal fusion is correlated with achievement of bony fusion. Improving interbody implant bone on-growth and in-growth may enhance fusion, limiting pseudoarthrosis, stress shielding, subsidence and implant failure. Polyetheretherketone (PEEK) and titanium (Ti) are commonly selected for interbody spacer construction. Although these materials have desirable biocompatibility and mechanical properties, they require further modification to support osseointegration. Reports of extensive research on this topic are available in biomaterial-centric published reports; however, there are few clinical studies concerning surface modification of interbody spinal implants. The current article focuses on surface modifications aimed at fostering osseointegration from a clinician's point of view. Surface modification of Ti by creating rougher surfaces, modifying its surface topography (macro and nano), physical and chemical treatment and creating a porous material with high interconnectivity can improve its osseointegrative potential and bioactivity. Coating the surface with osteoconductive materials like hydroxyapatite (HA) can improve osseointegration. Because PEEK spacers are relatively inert, creating a composite by adding Ti or osteoconductive materials like HA can improve osseointegration. In addition, PEEK may be coated with Ti, effectively bio-activating the coating. © 2014 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.
Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.
Nordquist, Kyle A; Schaab, Kevin M; Sha, Jierui; Bond, Andrew H
2017-08-02
Systematic surface energy modifications to glass substrates can induce nucleation and improve crystallization outcomes for small molecule active pharmaceutical ingredients (APIs) and proteins. A comparatively broad probe for function is presented in which various APIs, proteins, organic solvents, aqueous media, surface energy motifs, crystallization methods, form factors, and flat and convex surface energy modifications were examined. Replicate studies ( n ≥ 6) have demonstrated an average reduction in crystallization onset times of 52(4)% (alternatively 52 ± 4%) for acetylsalicylic acid from 91% isopropyl alcohol using two very different techniques: bulk cooling to 0 °C using flat surface energy modifications or microdomain cooling to 4 °C from the interior of a glass capillary having convex surface energy modifications that were immersed in the solution. For thaumatin and bovine pancreatic trypsin, a 32(2)% reduction in crystallization onset times was demonstrated in vapor diffusion experiments ( n ≥ 15). Nucleation site arrays have been engineered onto form factors frequently used in crystallization screening, including microscope slides, vials, and 96- and 384-well high-throughput screening plates. Nucleation using surface energy modifications on the vessels that contain the solutes to be crystallized adds a layer of useful variables to crystallization studies without requiring significant changes to workflows or instrumentation.
Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation.
Inam Ul Ahad; Bartnik, Andrzej; Fiedorowicz, Henryk; Kostecki, Jerzy; Korczyc, Barbara; Ciach, Tomasz; Brabazon, Dermot
2014-09-01
Polymeric biomaterials are being widely used for the treatment of various traumata, diseases and defects in human beings due to ease in their synthesis. As biomaterials have direct interaction with the extracellular environment in the biological world, biocompatibility is a topic of great significance. The introduction or enhancement of biocompatibility in certain polymers is still a challenge to overcome. Polymer biocompatibility can be controlled by surface modification. Various physical and chemical methods (e.g., chemical and plasma treatment, ion implantation, and ultraviolet irradiation etc.) are in use or being developed for the modification of polymer surfaces. However an important limitation in their employment is the alteration of bulk material. Different surface and bulk properties of biomaterials are often desirable for biomedical applications. Because extreme ultraviolet (EUV) radiation penetration is quite limited even in low density mediums, it could be possible to use it for surface modification without influencing the bulk material. This article reviews the degree of biocompatibility of different polymeric biomaterials being currently employed in various biomedical applications, the surface properties required to be modified for biocompatibility control, plasma and laser ablation based surface modification techniques, and research studies indicating possible use of EUV for enhancing biocompatibility. © 2013 Wiley Periodicals, Inc.
Surface modifications with Lissajous trajectories using atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Wei; Yao, Nan, E-mail: nyao@princeton.edu
2015-09-14
In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication.
Surface modification of cellulose fibers: towards wood composites by biomimetics.
Gradwell, Sheila E; Renneckar, Scott; Esker, Alan R; Heinze, Thomas; Gatenholm, Paul; Vaca-Garcia, Carlos; Glasser, Wolfgang
2004-01-01
A biomimetic approach was taken for studying the adsorption of a model copolymer (pullulan abietate, DS 0.027), representing the lignin-carbohydrate complex, to a model surface for cellulose fibers (Langmuir-Blodgett thin films of regenerated cellulose). Adsorption results were assayed using surface plasmon resonance spectroscopy (SPR) and atomic force microscopy (AFM). Rapid, spontaneous, and desorption-resistant surface modification resulted. This effort is viewed as a critical first step towards the permanent surface modification of cellulose fibers with a layer of molecules amenable to either enzymatic crosslinking for improved wood composites or thermoplastic consolidation.
Seasonal Photochemical Transformations of Nitrogen Species in a Forest Stream and Lake
Porcal, Petr; Kopáček, Jiří; Tomková, Iva
2014-01-01
The photochemical release of inorganic nitrogen from dissolved organic matter is an important source of bio-available nitrogen (N) in N-limited aquatic ecosystems. We conducted photochemical experiments and used mathematical models based on pseudo-first-order reaction kinetics to quantify the photochemical transformations of individual N species and their seasonal effects on N cycling in a mountain forest stream and lake (Plešné Lake, Czech Republic). Results from laboratory experiments on photochemical changes in N speciation were compared to measured lake N budgets. Concentrations of organic nitrogen (Norg; 40–58 µmol L−1) decreased from 3 to 26% during 48-hour laboratory irradiation (an equivalent of 4–5 days of natural solar insolation) due to photochemical mineralization to ammonium (NH4 +) and other N forms (Nx; possibly N oxides and N2). In addition to Norg mineralization, Nx also originated from photochemical nitrate (NO3 −) reduction. Laboratory exposure of a first-order forest stream water samples showed a high amount of seasonality, with the maximum rates of Norg mineralization and NH4 + production in winter and spring, and the maximum NO3 − reduction occurring in summer. These photochemical changes could have an ecologically significant effect on NH4 + concentrations in streams (doubling their terrestrial fluxes from soils) and on concentrations of dissolved Norg in the lake. In contrast, photochemical reactions reduced NO3 − fluxes by a negligible (<1%) amount and had a negligible effect on the aquatic cycle of this N form. PMID:25551441
Potential Impacts from Using Photoactive Roads as AN Air Quality Mitigation Strategy
NASA Astrophysics Data System (ADS)
Toro, C.; Jobson, B. T.; Shen, S.; Chung, S. H.; Haselbach, L.
2013-12-01
Mobile sources are major contributors to photochemical air pollution in urban areas. It has been proposed that the use of TiO2 coated roadways ('photoactive roads') could be an effective approach to reduce mobile source emissions by oxidizing NOx and VOC emissions at the roadway surface. However, studies have shown that formation of HONO and aldehydes can occur from some TiO2 treated surfaces during the photocatalytic oxidation of NOx and VOC, respectively. By changing the NOx-to-VOC ratio and generating photolabile HOx radical precursors, photoactive roads may enhance ozone formation rates in urban areas. In this work we present results that quantify NOx and VOC loss rates onto TiO2 treated asphalt and concrete samples, as well as HONO and aldehydes yields that result from the photocatalytic process. The treatment used a commercially available product. These objectives are relevant considering that the quantification of pollutant loss rates and yields of byproducts have not been determined for asphalt and that in the US more than 90% of the roadway surface is made of this material. Surface reaction probabilities (γ) and byproduct yields were determined using a CSTR photochemical chamber under varying conditions of water vapor and UV-A light intensity. Our results indicate that asphalt surfaces have a significantly higher molar yield of HONO compared to concrete surfaces with similar TiO2 loading. Concrete surfaces have reaction probabilities with NO one order of magnitude higher than asphalt samples. Fresh asphalt samples showed negligible photocatalytic activity, presumably due to absorption of TiO2 into the bitumen substrate. Laboratory-prepared asphalt samples with a higher degree of exposed aggregates showed increased HONO molar yields when compared to real-road asphalt samples, whose HONO molar yield was ~1%. Preliminary results for aldehydes formation showed similar molar yields between aged asphalt and concrete, even though aged asphalt samples had twice the TiO2 loading than concrete samples.
40 CFR 52.1877 - Control strategy: Photochemical oxidants (hydrocarbons).
Code of Federal Regulations, 2011 CFR
2011-07-01
... oxidants (hydrocarbons). 52.1877 Section 52.1877 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....1877 Control strategy: Photochemical oxidants (hydrocarbons). (a) The requirements of Subpart G of this... national standard for photochemical oxidants (hydrocarbons) in the Metropolitan Cincinnati interstate...
40 CFR 52.1877 - Control strategy: Photochemical oxidants (hydrocarbons).
Code of Federal Regulations, 2010 CFR
2010-07-01
... oxidants (hydrocarbons). 52.1877 Section 52.1877 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....1877 Control strategy: Photochemical oxidants (hydrocarbons). (a) The requirements of Subpart G of this... national standard for photochemical oxidants (hydrocarbons) in the Metropolitan Cincinnati interstate...
Investigation of surface halide modification of nitrile butadiene rubber
NASA Astrophysics Data System (ADS)
Sukhareva, K. V.; Mikhailov, I. A.; Andriasyan, Yu O.; Mastalygina, E. E.; Popov, A. A.
2017-12-01
The investigation is devoted to the novel technology of surface halide modification of rubber samples based on nitrile butadiene rubber (NBR). 1,1,2-trifluoro-1,2,2-trichlorethane was used as halide modifier. The developed technology is characterized by production stages reduction to one by means of treating the rubber compound with a halide modifier. The surface halide modification of compounds based on nitrile butadiene rubber (NBR) was determined to result in increase of resistance to thermal oxidation and aggressive media. The conducted research revealed the influence of modification time on chemical resistance and physical-mechanical properties of rubbers under investigation.
NASA Astrophysics Data System (ADS)
Heya, Akira; Matsuo, Naoto
2008-01-01
The surface of a poly(ethylene naphthalate) (PEN) substrate was modified by atomic hydrogen annealing (AHA). In this method, a PEN substrate was exposed to atomic hydrogen generated by cracking hydrogen molecules on heated tungsten wire. The properties of the surface-modification layer by AHA were evaluated by spectroscopic ellipsometry. It is found that the thickness of the modified layer was 5 nm and that the modification layer has a low refractive index compared with the PEN substrate. The modification layer relates to the reduction reaction of the PEN substrate by AHA.
Texture Modification of the Shuttle Landing Facility Runway at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Yager, Thomas J.
1997-01-01
This paper describes the test procedures and the criteria used in selecting an effective runway-surface-texture modification at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) to reduce Orbiter tire wear. The new runway surface may ultimately result in an increase of allowable crosswinds for launch and landing operations. The modification allows launch and landing operations in 20-knot crosswinds, if desired. This 5-knot increase over the previous 15-knot limit drastically increases landing safety and the ability to make on-time launches to support missions in which Space Station rendezvous are planned. The paper presents the results of an initial (1988) texture modification to reduce tire spin-up wear and then describes a series of tests that use an instrumented ground-test vehicle to compare tire friction and wear characteristics, at small scale, of proposed texture modifications placed into the SLF runway surface itself. Based on these tests, three candidate surfaces were chosen to be tested at full-scale by using a highly modified and instrumented transport aircraft capable of duplicating full Orbiter landing profiles. The full-scale Orbiter tire testing revealed that tire wear could be reduced approximately by half with either of two candidates. The texture-modification technique using a Humble Equipment Company Skidabrader(trademark) shotpeening machine proved to be highly effective, and the entire SLF runway surface was modified in September 1994. The extensive testing and evaluation effort that preceded the selection of this particular surface-texture-modification technique is described herein.
[Effects of synoptic type on surface ozone pollution in Beijing].
Tang, Gui-qian; Li, Xin; Wang, Xiao-ke; Xin, Jin-yuan; Hu, Bo; Wang, Li-li; Ren, Yu-fen; Wang, Yue-Si
2010-03-01
Ozone (O), influenced by meteorological factors, is a primary gaseous photochemical pollutant during summer to fall in Beijing' s urban ambient. Continuous monitoring during July to September in 2008 was carried out at four sites in Beijing. Analyzed with synoptic type, the results show that the ratios of pre-low cylonic (mainly Mongolia cyclone) and pre-high anticylonic to total weather conditions are about 42% and 20%, illustrating the high-and low-ozone episodes, respectively. At the pre-low cylonic conditions, high temperature, low humidity, mountain and valley winds caused by local circulation induce average hourly maximum ozone concentration (volume fraction) up to 102.2 x 10(-9), negative correlated with atmospheric pressure with a slope of -3.4 x 10(-9) Pa(-1). The time of mountain wind changed to valley wind dominates the diurnal time of maximum ozone, generally around 14:00. At the pre-high anticylonic conditions, low temperature, high humidity and systematic north wind induce average hourly maximum ozone concentration (volume fraction) only 49.3 x 10(-9), the diurnal time of maximum ozone is deferred by continuous north wind till about 16:00. The consistency of photochemical pollution in Beijing region shows that good correlation exists between synoptic type and ozone concentration. Therefore, getting an eye on the structure and evolution of synoptic type is of great significances for forecasting the photochemical pollution.
NASA Technical Reports Server (NTRS)
Ferris, J. P.; Guillemin, J. C.
1991-01-01
Titan has an atmosphere which is subject to dramatic chemical evolution due mainly to the dramatic effect of the UV flux from the Sun. The energetic solar photons and other particles are converting the methane-nitrogen atmosphere into the unsaturated carbon compounds observed by the Voyager probes. These same solar photons are also converting some of these unsaturated reaction products into the aerosols observed in the atmosphere which obscure the view of the surface of Titan. In particular, the photochemical reactions of cyanoacetylene, dicyanoacetylene, acetylene and ethylene may result in the formation of the higher hydrocarbons and polymers which result in the aerosols observed in Titan's atmosphere. Polymers are the principal reaction products formed by irradiation of cyanoacetylene and dicyanoacetylene. Irradiation of cyanoacetylene with 185 nm of light also yields 1,3,5-tricyanobenzene while irradiation at 254 nm yields 1,2,4-tricyanobenzene and tetracyano cyclooctatetraenes. Photolyses of mixtures of cyanoacetylene and acetylene yields mono- and di- cyanobenzenes. The 1-Cyanocyclobutene is formed from the photochemical addition of cyanoacetylene with ethylene. The photolysis of dicyanoacetylene with acetylene yields 2,3-dicyano-1,3-butadiene and 1,2-dicyanobenzene. Tetracyano cyclooctatetraene products were also observed in the photolysis of mixtures of dicyanoacetylene and acetylene with 254 nm light. The 1,2-Dicyano cyclobutene is obtained from the photolysis dicyanoacetylene and ethylene. Reaction mechanisms will be proposed to explain the observed photoproducts.
Bharath, G; Anwer, Shoaib; Mangalaraja, R V; Alhseinat, Emad; Banat, Fawzi; Ponpandian, N
2018-04-09
In this present study, we report the synthesis of Au nanodots on α-Fe 2 O 3 @reduced graphene oxide (RGO) based hetero-photocatalytic nanohybrids through a chlorophyll mediated photochemical synthesis. In this process, chlorophyll induces a rapid reduction (30 min) of Au 3+ ions to Au° metallic nanodots on α-Fe 2 O 3 @RGO surface under sunlight irradiation. The nucleation growth process, photo-induced electron-transfer mechanism and physico-chemical properties of the Au@α-Fe 2 O 3 @RGO ternary nanocomposites were systematically studied with various analytical techniques. This novel photochemical synthesis process is a cost-effective, convenient, surfactant-less, and scalable method. Moreover, the prepared ternary nanocomposites enhanced catalytic activity as compared to pure α-Fe 2 O 3 and α-Fe 2 O 3 @RGO. The advantages and synergistic effect of Au@α-Fe 2 O 3 @RGO exhibit, (i) a broader range of visible-light absorption due to visible light band gap of α-Fe 2 O 3 , (ii) lower recombination possibility of photo-generated electrons and holes due to effect of Au and (iii) faster electron transfer due to higher conductivity of RGO. Therefore, the prepared Au@α-Fe 2 O 3 @RGO hetero-photocatalytic nanohybrids exhibited a remarkable photocatalytic activity, thus enabling potential active hetero-photocatalyst for industrial and environmental applications.
Enhanced luminescence of Cu-In-S nanocrystals by surface modification.
Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin; Shin, Pyung-Woo
2012-04-01
We have synthesized highly luminescent Cu-In-S nanocrystals by heating the mixture of metal carboxylates and alkylthiol under inert atmosphere. We modified the surface of CIS nanocrystals with zinc carboxylate and subsequent injection of alkylthiol. As a result of the surface modification, highly luminescent CIS@ZnS core/shell nanocrystals were synthesized. The luminescence quantum yield (QY) of best CIS@ZnS nanocrystals was above 50%, which is more than 10 times higher than the initial QY of CIS nanocrystals before surface modification (QY = 3%). Detailed study on the luminescence mechanism implies that etching of the surface of nanocrystals by dissociated carboxylate group (CH3COO-) and formation of epitaxial shell by Zn with sulfur from alkylthiol efficiently removed the surface defects which are major non-radiative recombination sites in semiconductor nanocrystals. In this study, we developed a novel surface modification route for monodispersed highly luminescent Cu-In-S nanocrystals with less toxic and highly stable precursors.
Nanoscale Surface Modifications of Orthopaedic Implants: State of the Art and Perspectives
Staruch, RMT; Griffin, MF; Butler, PEM
2016-01-01
Background: Orthopaedic implants such as the total hip or total knee replacement are examples of surgical interventions with postoperative success rates of over 90% at 10 years. Implant failure is associated with wear particles and pain that requires surgical revision. Improving the implant - bone surface interface is a key area for biomaterial research for future clinical applications. Current implants utilise mechanical, chemical or physical methods for surface modification. Methods: A review of all literature concerning the nanoscale surface modification of orthopaedic implant technology was conducted. Results: The techniques and fabrication methods of nanoscale surface modifications are discussed in detail, including benefits and potential pitfalls. Future directions for nanoscale surface technology are explored. Conclusion: Future understanding of the role of mechanical cues and protein adsorption will enable greater flexibility in surface control. The aim of this review is to investigate and summarise the current concepts and future directions for controlling the implant nanosurface to improve interactions. PMID:28217214
A general strategy for the ultrafast surface modification of metals.
Shen, Mingli; Zhu, Shenglong; Wang, Fuhui
2016-12-07
Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments.
Sustainable steric stabilization of colloidal titania nanoparticles
NASA Astrophysics Data System (ADS)
Elbasuney, Sherif
2017-07-01
A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This manuscript revealed the state of the art for the real development of stable colloidal mono-dispersed particles with controlled surface properties.
1989-01-01
FEB 2 2 1990 Stephen Walter Andrews, D.M.D. The University of North Carolina at Chapel Hill Department of Orthodontics School of Dentistry 1989 Robert...PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) (UNCLASSIFIED) SURFACE MODIFICATION OF ORTHODONTIC ...Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE AFIT/CI "OVERPRINT" SURFACE MODIFICATION OF ORTHODONTIC BRACKET MODELS VIA ION
NASA Technical Reports Server (NTRS)
Otterman, J.
1975-01-01
Anthropogenic modification of the earth's surface is discussed in two problem areas: (1) land use changes and overgrazing, and how it affects albedo and land surface-atmosphere interactions, and (2) water and land surface pollution, especially oil slicks. A literature survey evidences the importance of these problems. The need for monitoring is stressed, and it is suggested that with some modifications to the sensors, ERTS (Landsat) series satellites can provide approximate monitoring information. The European Landsat receiving station in Italy will facilitate data collection for the tasks described.
Surface modification of ethylene-co-tetrafluoroethylene copolymer (ETFE) by plasma
NASA Astrophysics Data System (ADS)
Inagaki, N.
2003-08-01
Surface modification of ETFE surfaces by remote H 2, O 2 and Ar plasmas were investigated from the viewpoint of selective modification of CH 2-CH 2 or CF 2-CF 2 component. The remote H 2 and Ar plasmas modified effectively ETFE surfaces into hydrophilic, but the remote O 2 plasma did not. The remote H 2 plasma interacted with CF 2 component rather than CH 2 component in ETFE. The remote O 2 plasma interacted with CH 2 component as well as CF 2 component in ETFE chains.
Poly(dimethyl siloxane) surface modification with biosurfactants isolated from probiotic strains.
Pinto, S; Alves, P; Santos, A C; Matos, C M; Oliveiros, B; Gonçalves, S; Gudiña, E; Rodrigues, L R; Teixeira, J A; Gil, M H
2011-09-15
Depending on the final application envisaged for a given biomaterial, many surfaces must be modified before use. The material performance in a biological environment is mainly mediated by its surface properties that can be improved using suitable modification methods. The aim of this work was to coat poly(dimethyl siloxane) (PDMS) surfaces with biosurfactants (BSs) and to evaluate how these compounds affect the PDMS surface properties. BSs isolated from four probiotic strains (Lactococcus lactis, Lactobacillus paracasei, Streptococcus thermophilus A, and Streptococcus thermophilus B) were used. Bare PDMS and PDMS coated with BSs were characterized by contact angle measurements, infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The influence of the surface modifications on the materials blood compatibility was studied through thrombosis and hemolysis assays. The cytotoxicity of these materials was tested against rat peritoneal macrophages. AFM results demonstrated the successful coating of the surfaces. Also, by contact angle measurements, an increase of the coated surfaces hydrophilicity was seen. Furthermore, XPS analysis indicated a decrease of the silicon content at the surface, and ATR-FTIR results showed the presence of BS characteristic groups as a consequence of the modification. All the studied materials revealed no toxicity and were found to be nonhemolytic. The proposed approach for the modification of PDMS surfaces was found to be effective and opens new possibilities for the application of these surfaces in the biomedical field. Copyright © 2011 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Callis, L. B.; Boughner, R. E.; Natarajan, M.
1983-01-01
The coupling that exists between infrared opacity changes and tropospheric (and to a lesser extent stratospheric) chemistry is explored in considerable detail, and the effects arising from various perturbations are examined. The studies are carried out with a fully coupled one-dimensional radiative-convective-photochemical model (RCP) that extends from the surface to 53.5 km and has the capability of calculating surface temperature changes due to both chemical and radiative perturbations. The model encompasses contemporary atmospheric chemistry and photochemistry involving the O(x), HO(x), NO(x), and Cl(x) species.
Titan's Elusive Lakes? Properties and Context of Dark Spots in Cassini TA Radar Data
NASA Technical Reports Server (NTRS)
Lorenz, R. D.; Elachi, C.; Stiles, B.; West, R.; Janssen, M.; Lopes, R.; Stofan, E.; Paganelli, F.; Wood, C.; Kirk, R.
2005-01-01
Titan's atmospheric methane abundance suggests the likelihood of a surface reservoir of methane and a surface sink for its photochemical products, which might also be predominantly liquid. Although large expanses of obvious hydrocarbon seas have not been unambiguously observed, a number of rather radar-dark spots up to approximately 30 km across are observed in the Synthetic Aperture Radar (SAR) data acquired during the Cassini TA encounter on October 26th 2004. Here we review the properties and setting of these dark spots to explore whether these may be hydrocarbon lakes.
Modification of Ti6Al4V surface by diazonium compounds
NASA Astrophysics Data System (ADS)
Sandomierski, Mariusz; Buchwald, Tomasz; Strzemiecka, Beata; Voelkel, Adam
2018-02-01
Ti6Al4V alloy is the most commonly used in orthopedic industry as an endoprosthesis. Ti6Al4V exhibits good mechanical properties, except the abrasion resistance. Surface modification of Ti6Al4V in order to obtain organic layer, and then the attachment of the polymer, can allow for overcoming this problem. The aim of the work was the modification of Ti6Al4V surface by diazonium compounds: salt or cation generated in situ and examine the influence of the reducing agent - ascorbic acid, and the temperature of reaction on modification process. Moreover, the simulated body fluid was used for the assessment of the organic layer stability on Ti6Al4V surface. The evaluation of the modification was carried out using the following methods: Raman microspectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Higher temperature of modification by 4-hydroxymethylbenzenediazonium cation, provides the largest amount of organic layer on the Ti6Al4V alloy. In the case of the Ti6Al4V modified by Variamine Blue B salt, the amount of organic layer is not dependent on the reaction condition. Moreover, the ascorbic acid and the presence of TiO2 does not effect on the modification. The modified surface is completely coated with the organic layer which is stable in simulated body fluid.
1985-12-11
RD-R162 462 PHOTOCHEMICAL REACTIONS OF(N(S)-P NTANETNYLCVCLPENTADIENYL)-DICARRONVLIR.. (U) MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF CHEMISTRY...34 Photochemical Reactions of (n5-Pentamethylcyclpentadienyl)- Dicarbonyliron-Alkyl and -Silyl Complexes: Reversible Ethylene Insertion into an Iron-Silicon Bond...Chemical Society) PHOTOCHEMICAL REACTIONS OF (n5-PENTAMETHYLCYCLOPENTADIENYL)- DICARBONYLIRON-ALKYL AND -SILYL COMPLEXES: REVERSIBLE ETHYLENE INSERTION INTO
Theoretical investigation of the photochemical C2-C6 cyclisation of enyne-heteroallenes.
Spöler, Carsten; Engels, Bernd
2003-10-06
Herein we discuss computations that explain experimental results regarding a highly efficient triplet analogue of the C(2)-C(6) cyclisation of enyne-heteroallenes recently discovered by Schmittel and co-workers.1 To shed some light on the reasons for the differences found between enyne-carbodiimides, enyne-ketenimines and enyne-allenes, we have computed the reaction profiles of the C(2)-C(6) and of the C(2)-C(7) cyclisations for various model compounds, assuming that the reactions take place on the lowest-lying triplet surfaces. Our results nicely explain the differences and the unexpected high efficiency found for the enyne-carbodiimides. The differences between enyne-carbodiimides and enyne-ketenimines prove to be due to differences in the shapes of the corresponding triplet surfaces. In contrast to the enyne-carbodiimides, for which our calculations predict that a direct cyclisation to the biradical intermediates should occur after the vertical excitation, the enyne-ketenimines relax into a local minimum on the triplet surface. As a consequence, further reaction channels are opened. Our computations indicate that enyne-allene compounds do not react because the necessary excitation energy lies outside the range of the employed triplet photosensitizer. Finally, the close agreement between our results and the experimental findings indicates that the underlying reasons for the differences in the photochemical behaviour of enyne-carbodiimides, enyne-ketenimines and enyne-allenes are related to differences in the electronic structures of the parent systems, while substituent effects are less important.
Surface modification for interaction study with bacteria and preosteoblast cells
NASA Astrophysics Data System (ADS)
Song, Qing
Surface modification plays a pivotal role in bioengineering. Polymer coatings can provide biocompatibility and biofunctionalities to biomaterials through surface modification. In this dissertation, initiated chemical vapor deposition (iCVD) was utilized to coat two-dimensional (2D) and three-dimensional (3D) substrates with differently charged polyelectrolytes in order to generate antimicrobial and osteocompatible biomaterials. ICVD is a modified CVD technique that enables surface modification in an all-dry condition without substrate damage and solvent contamination. The free-radical polymerization allows the vinyl polymers to conformally coat on various micro- and nano-structured substrates and maintains the delicate structure of the functional groups. The vapor deposition of polycations provided antimicrobial activity to planar and porous substrates through destroying the negatively charged bacterial membrane and brought about high contact-killing efficiency (99.99%) against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Additionally, the polyampholytes synthesized by iCVD exhibited excellent antifouling performance against the adhesion of Gram-positive Listeria innocua and Gram-negative E. coli in phosphate buffered saline (PBS). Their antifouling activities were attributed to the electrostatic interaction and hydration layers that served as physical and energetic barriers to prevent bacterial adhesion. The contact-killing and antifouling polymers synthesized by iCVD can be applied to surface modification of food processing equipment and medical devices with the aim of reducing foodborne diseases and medical infections. Moreover, the charged polyelectrolyte modified 2D polystyrene surfaces displayed good osteocompatibility and enhanced osteogenesis of preosteoblast cells than the un-modified polystyrene surface. In order to promote osteoinduction of hydroxyapatite (HA) scaffolds, bioinspired polymer-controlled mineralization was conducted on the polyelectrolyte modified HA scaffolds. The mineralized scaffolds stimulated osteogenesis of preosteoblast cells compared with the control HA scaffolds. Therefore, the surface modification through vapor deposition of polyelectrolytes and polymer-controlled mineralization can improve osteoinduction of bone materials. In summary, the iCVD-mediated surface modification is a simple and promising approach to biofunctionalizing various structured substrates and generating antimicrobial and biocompatible biomaterials.
Reaction of Photochemically Generated Organic Cations with Colloidal Clays.
1983-05-01
University of Notre Dame. IS. KEY WORDS (Continue on reverse aide if neceary end identify by block number) Chemistry of colloidal montmorillonite Absorption...Centlws m ftves n N mee.iy mi Identify by block number) Qi Organic radical cations will dimerize when adsorbed to the surface D of montmorillonite in...1 The Nature and Chemistry of Micelles .... 2 The Nature and Chemistry of Clay Minerals 5 Montmorillonite Catalyzed Color
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ediger, M.N.
The laser-induced fluorescence spectrum of rabbit cornea irradiated at ablative intensities was measured. This system directly measured the radiant exposure of fluorescence transmitted through the cornea when the anterior surface of the cornea was irradiated by an ArF excimer laser. Evidence of changing spectral characteristics as a function of total laser dose suggests photochemical changes in the cornea may be occurring. Results are compared with previous data of laser-induced fluorescence in other models and detection schemes.
Hybrid isotope separation scheme
Maya, Jakob
1991-01-01
A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.
Zhu, Jun; Hiltz, Jonathan; Tefashe, Ushula M; Mauzeroll, Janine; Lennox, R Bruce
2018-06-21
The chemical modification of an sp 2 hybridized carbon surface in a controllable manner is very challenging but also crucial for many applications. An inverse electron demand Diels-Alder (IEDDA) reaction using microcontact printing technique is introduced to spatially control the modification of a highly ordered pyrolytic graphite (HOPG) surface under ambient conditions. The covalent modification was characterized by Raman spectroscopy, XPS, and SECM. Tetrazine derivatives can effectively react with an HOPG surface and with microcontact printing methods resulting in spatially patterned surfaces being produced with micrometer-scale resolution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photoinduced degradation of carbaryl in a wetland surface water.
Miller, Penney L; Chin, Yu-Ping
2002-11-06
The photoinduced degradation of carbaryl (1-naphthyl-N-methyl carbamate) was studied in a wetland's surface water to examine the photochemical processes influencing its transformation. For this particular wetland water, at high pH, it was difficult to delineate the photolytic contribution to the overall degradation of carbaryl. At lower pH values, the extent of the degradation attributable to indirect pathways, that is, in the presence of naturally occurring photosensitizers, increased significantly. Moreover, the photoenhanced degradation at the lower pH values was found to be seasonally and spatially dependent. Analysis of water samples revealed two primary constituents responsible for the observed indirect photolytic processes: nitrate and dissolved natural organic matter (NOM). Nitrate in the wetland appears at high concentrations (> or =1 mM) seasonally after the application of fertilizers in the watershed and promotes contaminant destruction through the photochemical production of the hydroxyl radical (HO*). The extent of the observed indirect photolysis pathway appears to be dependent upon the concentration of nitrates and the presence of HO* scavengers such as dissolved NOM and carbonate alkalinity. Paradoxically, during low-nitrate events (<50 microM), NOM becomes the principal photosensitizer through either the production of HO*, direct energy transfer from the excited triplet state, and/or production of an unidentified transient species.
NASA Astrophysics Data System (ADS)
Zhao, Li; Liu, Jian-Yong; Zhou, Pan-Wang
2017-11-01
A detailed theoretical investigation based on the ab initio on-the-fly surface hopping dynamics simulations and potential energy surfaces calculations has been performed to unveil the mechanism of the photoinduced non-adiabatic relaxation process of the isolated blue fluorescent protein (BFP) chromophore in gas phase. The data analysis presents that the dominant reaction coordinate of the BFP chromophore is driven by a rotation motion around the CC double bridging bond, which is in remarkable difference with a previous result which supports a Hula-Twist rotation pattern. Such behavior is consistent with the double bond rotation pattern of the GFP neutral chromophore. In addition, the dynamics simulations give an estimated decay time of 1.1 ps for the S1 state, which is agrees well with the experimental values measured in proteins. The present work offers a straightforward understanding for the decay mechanism of the BFP chromophore and suggestions of the photochemical properties of analogous protein chromophores. We hope the current work would be helpful for further exploration of the BFP photochemical and photophysical properties in various environments, and can provide guidance and prediction for rational design of the fluorescent proteins catering for different demands.
Paramasivam, Gokul; Kayambu, Namitharan; Rabel, Arul Maximus; Sundramoorthy, Ashok K; Sundaramurthy, Anandhakumar
2017-02-01
Anisotropic nanoparticles have fascinated scientists and engineering communities for over a century because of their unique physical and chemical properties. In recent years, continuous advances in design and fabrication of anisotropic nanoparticles have opened new avenues for application in various areas of biology, chemistry and physics. Anisotropic nanoparticles have the plasmon absorption in the visible as well as near-infrared (NIR) region, which enables them to be used for crucial applications such as biological imaging, medical diagnostics and therapy ("theranostics"). Here, we describe the progress in anisotropic nanoparticles achieved since the millennium in the area of preparation including various shapes and modification of the particle surface, and in areas of application by providing examples of applications in biosensing, bio-imaging, drug delivery and theranostics. Furthermore, we also explain various mechanisms involved in cellular uptake of anisotropic nanoparticles, and conclude with our opinion on various obstacles that limit their applications in biomedical field. Anisotropy at the molecular level has always fascinated scientists and engineering communities for over a century, however, the research on novel methods through which shape and size of nanoparticles can be precisely controlled has opened new avenues for anisotropic nanoparticles in various areas of biology, chemistry and physics. In this manuscript, we describe progress achieved since the millennium in the areas of preparation of various shapes of anisotropic nanoparticles, investigate various methods involved in modifying the surface of these NPs, and provide examples of applications in biosensing and bio-imaging, drug delivery and theranostics. We also present mechanisms involved in cellular uptake of nanoparticles, describe different methods of preparation of anisotropic nanoparticles including biomimetic and photochemical synthesis, and conclude with our opinion on various obstacles that limit their applications in biomedical field. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Surface and interface modification science and technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.-H.
1999-07-19
Surface modification of solids is of scientific and technological interest due to its significant benefits in a wide variety of applications. Various coatings applications such as corrosion protection and electrical insulators and conductors are required for proper engineering design based on geometrical relationships between interfaces and on thermodynamic/kinetic considerations for the development of surface modifications. This paper will explore three basic examples: the proton conductor BaCeO{sub 3}, high-temperature protective coatings, and epitaxial relationships between interfaces.
Improvement of β-TCP/PLLA biodegradable material by surface modification with stearic acid.
Ma, Fengcang; Chen, Sai; Liu, Ping; Geng, Fang; Li, Wei; Liu, Xinkuan; He, Daihua; Pan, Deng
2016-05-01
Poly-L-lactide (PLLA) is a biodegradable polymer and used widely. Incorporation of beta tricalcium phosphate (β-TCP) into PLLA can enhance its osteoinductive properties. But the interfacial layer between β-TCP particles with PLLA matrix is easy to be destroyed due to inferior interfacial compatibility of the organic/inorganic material. In this work, a method of β-TCP surface modification with stearic acid was investigated to improve the β-TCP/PLLA biomaterial. The effects of surface modification on the β-TCP were investigated by FTIR, XPS, TGA and CA. It was found that the stearic acid reacted with β-TCP and oxhydryl was formed during the surface modification. Hydrophilicity of untreated or modified β-TCP/PLLA composite was increased by the addition of 10 wt.% β-TCP, but it decreased as the addition amount increased from 10 wt.% to 20 wt.%. Two models were suggested to describe the effect of β-TCP concentration on CA of the composites. Mechanical properties of β-TCP/PLLA composites were tested by bending and tensile tests. Fractures of the composites after mechanical test were observed by SEM. It was found that surface modification with stearic acid improved bending and tensile strengths of the β-TCP/PLLA composites obviously. The SEM results indicated that surface modification decreased the probability of interface debonding between fillers and matrix under load. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Yanfei; Wang, Zhenqing; Li, Hao; Sun, Min; Wang, Fangxin; Chen, Bingjie
2018-01-01
In this paper, a new shape memory alloy (SMA) hybrid basalt fibre reinforced polymer (BFRP) composite laminate was fabricated and a new surface modification method with both silane coupling agent KH550 and Al2O3 nanoparticles was conducted to enhance the interface performance. The mechanical performance of BFRP composite laminates with and without SMA fibres and the influence of SMA surface modification were studied in this paper. Different SMA fibre surface treatment methods, including etching with both H2SO4 and NaOH, modification with the silane coupling agent KH550 and new modification method with both KH550 and Al2O3 nanoparticles, were conducted to enhance the bonding between the SMA fibres and polymer matrix. Scanning electron microscopy (SEM) was used to observe the micromorphology of the SMA fibre surfaces exposed to different treatments and the damage morphology of composite laminates. The mechanical performance of the composites was investigated with tensile, three-point bending and low-velocity impact tests to study the influence of embedded SMA fibres and the different surface modifications of the SMA fibres. The results demonstrated that the embedded Ni-Ti SMA fibres can significantly enhance the mechanical performance of BFRP composite laminates. SMA fibres modified with both the silane coupling agent KH550 and Al2O3 nanoparticles illustrate the best mechanical performance among all samples. PMID:29300321
A general strategy for the ultrafast surface modification of metals
Shen, Mingli; Zhu, Shenglong; Wang, Fuhui
2016-01-01
Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments. PMID:27924909
Sapra, Mahak; Pawar, Amol Ashok; Venkataraman, Chandra
2016-02-15
Surface modification of nanoparticles during aerosol or gas-phase synthesis, followed by direct transfer into liquid media can be used to produce stable water-dispersed nanoparticle suspensions. This work investigates a single-step, aerosol process for in-situ surface-modification of nanoparticles. Previous studies have used a two-step sublimation-condensation mechanism following droplet drying, for surface modification, while the present process uses a liquid precursor containing two solutes, a matrix lipid and a surface modifying agent. A precursor solution in chloroform, of stearic acid lipid, with 4 %w/w of surface-active, physiological molecules [1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol)-sodium salt (DPPG) or 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol) 2000]-ammonium salt (DPPE-PEG)] was processed in an aerosol reactor at a low gas temperatures. The surface modified nanoparticles were characterized for morphology, surface composition and suspension properties. Spherical, surface-modified lipid nanoparticles with median mobility diameters in the range of 105-150nm and unimodal size distributions were obtained. Fourier transform infra-red spectroscopy (FTIR) measurements confirmed the presence of surface-active molecules on external surfaces of modified lipid nanoparticles. Surface modified nanoparticles exhibited improved suspension stability, compared to that of pure lipid nanoparticles for a period of 30days. Lowest aggregation was observed in DPPE-PEG modified nanoparticles from combined electrostatic and steric effects. The study provides a single-step aerosol method for in-situ surface modification of nanoparticles, using minimal amounts of surface active agents, to make stable, aqueous nanoparticle suspensions. Copyright © 2015 Elsevier Inc. All rights reserved.
Solar Irradiation of Bilirubin: An Experiment in Photochemical Oxidation
ERIC Educational Resources Information Center
Pillay A. E.; Salih, F. M.
2006-01-01
An experiment in photochemical oxidation, which deals with bilirubin, a well-known light-sensitive biological compound that is pedagogically ideal for photochemical experiments at tertiary institutes, is presented. The experiment would benefit students in chemistry who eventually branch out into the health sciences or biochemistry.
Potential biosignatures in super-Earth atmospheres II. Photochemical responses.
Grenfell, J L; Gebauer, S; Godolt, M; Palczynski, K; Rauer, H; Stock, J; von Paris, P; Lehmann, R; Selsis, F
2013-05-01
Spectral characterization of super-Earth atmospheres for planets orbiting in the habitable zone of M dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of 1 bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by in an earlier work by Rauer and colleagues. The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex life. An important result of our analysis is a shift in the ozone photochemistry from mainly Chapman production (which dominates in Earth's stratosphere) to smog-dominated ozone production for planets in the habitable zone of cooler (M5-M7)-class dwarf stars. This result is associated with a lower energy flux in the UVB wavelength range from the central star, hence slower planetary atmospheric photolysis of molecular oxygen, which slows the Chapman ozone production. This is important for future atmospheric characterization missions because it provides an indication of different chemical environments that can lead to very different responses of ozone, for example, cosmic rays. Nitrous oxide, a biosignature for simple bacterial life, is favored for low stratospheric UV conditions, that is, on planets orbiting cooler stars. Transport of this species from its surface source to the stratosphere where it is destroyed can also be a key process. Comparing 1g with 3g scenarios, our analysis suggests it is important to include the effects of interactive chemistry.
Reaction Gradients Viewed Inside Single Photoactive Particles
NASA Astrophysics Data System (ADS)
Alpert, P.; Corral Arroyo, P.; Dou, J.; Kreiger, U.; Luo, B.; Peter, T.; Ammann, M.
2017-12-01
In terms of chemical selectivity and spatial resolution, a technique known as scanning transmission X-ray microscopy coupled to near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) is unmatched and will remain so for years into the future. We present a recent development coupling STXM/NEXAFS to a custom-built photochemical environmental reactor in which aerosol particles reside allowing for in situ chemical imaging. A laboratory investigation of metal-organic complex photochemistry was conducted. Transition metals are of great importance to atmospheric chemistry and aerosol photochemical aging due to their ability to catalyze oxidation reactions. Aerosol particles composed of mixtures of citric acid and iron citrate were probed for their organic carbon composition and iron oxidation state under atmospherically relevant conditions. At 40% relative humidity, oxygen diffusion and reaction was severely limited. Fe was reoxidized in the first 200 nm of the particle surface leaving reduced iron in the core. Similar gradients were observed at 60% RH, however waiting approximately 2 hours in the dark resulted in a recovery of the initial Fe(III) concentration. We draw two main conclusions from our findings. Frist, the oxidation gradients must have been the result of anoxic conditions at the interior of aerosol particles. This was predicted using a newly developed model for molecular diffusion through multiple layers with a reaction framework describing the photochemical processing of the metal organic matrix. Second, the lifetime of organic radicals in an anoxic diffusion limited organic matrix must be considerably long ( hours) to completely reoxidize iron as they wait for molecular oxygen. Long radical lifetimes in viscous organic aerosol in turn, could create high radical concentrations or favor radical-radical reactions in particles typically not considered when oxygen is plentiful. Our results impact predictions of aerosol physiochemical properties, e.g. aerosol toxicity, hygroscopicity, lifetime and light scattering properties over time which may be limited and evolve at different rates at the surface or core of particles.
Constraints on the microphysics of Pluto's photochemical haze from New Horizons observations
NASA Astrophysics Data System (ADS)
Gao, Peter; Fan, Siteng; Wong, Michael L.; Liang, Mao-Chang; Shia, Run-Lie; Kammer, Joshua A.; Yung, Yuk L.; Summers, Michael E.; Gladstone, G. Randall; Young, Leslie A.; Olkin, Catherine B.; Ennico, Kimberly; Weaver, Harold A.; Stern, S. Alan; New Horizons Science Team
2017-05-01
The New Horizons flyby of Pluto confirmed the existence of hazes in its atmosphere. Observations of a large high- to low- phase brightness ratio, combined with the blue color of the haze (indicative of Rayleigh scattering), suggest that the haze particles are fractal aggregates, perhaps analogous to the photochemical hazes on Titan. Therefore, studying the Pluto hazes can shed light on the similarities and differences between the Pluto and Titan atmospheres. We model the haze distribution using the Community Aerosol and Radiation Model for Atmospheres assuming that the distribution is shaped by downward transport and coagulation of particles originating from photochemistry. Hazes composed of both purely spherical and purely fractal aggregate particles are considered. General agreement between model results and solar occultation observations is obtained with aggregate particles when the downward mass flux of photochemical products is equal to the column-integrated methane destruction rate ∼1.2 × 10-14 g cm-2 s-1, while for spherical particles the mass flux must be 2-3 times greater. This flux is nearly identical to the haze production flux of Titan previously obtained by comparing microphysical model results to Cassini observations. The aggregate particle radius is sensitive to particle charging effects, and a particle charge to radius ratio of 30 e-/μm is necessary to produce ∼0.1-0.2 μm aggregates near Pluto's surface, in accordance with forward scattering measurements. Such a particle charge to radius ratio is 2-4 times higher than those previously obtained for Titan. Hazes composed of spheres with the same particle charge to radius ratio have particles that are 4 times smaller at Pluto's surface. These results further suggest that the haze particles are fractal aggregates. We also consider the effect of condensation of HCN, C2H2, C2H4, and C2H6 on the haze particles, which may play an important role in shaping their altitude and size distributions.
Factors dominating 3-dimensional ozone distribution during high tropospheric ozone period.
Chen, Xiaoyang; Liu, Yiming; Lai, Anqi; Han, Shuangshuang; Fan, Qi; Wang, Xuemei; Ling, Zhenhao; Huang, Fuxiang; Fan, Shaojia
2018-01-01
Data from an in situ monitoring network and five ozone sondes are analysed during August of 2012, and a high tropospheric ozone episode is observed around the 8th of AUG. The Community Multi-scale Air Quality (CMAQ) model and its process analysis tool were used to study factors and mechanisms for high ozone mixing ratio at different levels of ozone vertical profiles. A sensitive scenario without chemical initial and boundary conditions (ICBCs) from MOZART4-GEOS5 was applied to study the impact of stratosphere-troposphere exchange (STE) on vertical ozone. The simulation results indicated that the first high ozone peak near the tropopause was dominated by STE. Results from process analysis showed that: in the urban area, the second peak at approximately 2 km above ground height was mainly caused by local photochemical production. The third peak (near surface) was mainly caused by the upwind transportation from the suburban/rural areas; in the suburban/rural areas, local photochemical production of ozone dominated the high ozone mixing ratio from the surface to approximately 3 km height. Furthermore, the capability of indicators to distinguish O 3 -precursor sensitivity along the vertical O 3 profiles was investigated. Two sensitive scenarios, which had cut 30% anthropogenic NO X or VOC emissions, showed that O 3 -precursor indicators, specifically the ratios of O 3 /NOy, H 2 O 2 /HNO 3 or H 2 O 2 /NO Z , could partly distinguish the O 3 -precursor sensitivity between VOCs-sensitive and NOx-sensitive along the vertical profiles. In urban area, the O 3 -precursor relationship transferred from VOCs-sensitive within the boundary layer to NOx-sensitive at approximately 1-3 km above ground height, further confirming the dominant roles of transportation and photochemical production in high O 3 peaks at the near-ground layer and 2 km above ground height, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Damage-free polymer surface modification employing inward-type plasma
NASA Astrophysics Data System (ADS)
Kanou, Ryo; Suga, Hiroshi; Utsumi, Hideyuki; Takahashi, Satoshi; Shirayama, Yuya; Watanabe, Norimichi; Petit, Stèphane; Shimizu, Tetsuo
2017-08-01
Inward-type plasmas, which spread upstream against the gas flow in the capillary tube where the gas is discharged, can react with samples placed near the entrance of such a capillary tube. In this study, surface modification of polymer surfaces is conducted using inward plasma. The modification is also done by conventional microplasma jet, and the modified surfaces with two plasma techniques are characterized by contact angle measurement, X-ray photoemission spectroscopy (XPS), and atomic force microscopy (AFM). Although inward-plasma-treated surfaces are less hydrophilic than conventional plasma-treated ones, they are still sufficiently hydrophilic for surface coatings. In addition, it turns out that the polymer surfaces irradiated with the inward plasma yield much smoother surfaces than those treated with the conventional plasma jet. Thus, the inward plasma treatment is a viable technique when the surface flatness is crucial, such as for the surface coating of plastic lenses.
Photochemically modified diamond-like carbon surfaces for neural interfaces.
Hopper, A P; Dugan, J M; Gill, A A; Regan, E M; Haycock, J W; Kelly, S; May, P W; Claeyssens, F
2016-01-01
Diamond-like carbon (DLC) was modified using a UV functionalization method to introduce surface-bound amine and aldehyde groups. The functionalization process rendered the DLC more hydrophilic and significantly increased the viability of neurons seeded to the surface. The amine functionalized DLC promoted adhesion of neurons and fostered neurite outgrowth to a degree indistinguishable from positive control substrates (glass coated with poly-L-lysine). The aldehyde-functionalized surfaces performed comparably to the amine functionalized surfaces and both additionally supported the adhesion and growth of primary rat Schwann cells. DLC has many properties that are desirable in biomaterials. With the UV functionalization method demonstrated here it may be possible to harness these properties for the development of implantable devices to interface with the nervous system. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Roevens, Annelore; Van Dijck, Jeroen G.; Geldof, Davy; Blockhuys, Frank; Prelot, Benedicte; Zajac, Jerzy; Meynen, Vera
2017-09-01
To alter the versatility of interactions at its surface, TiO2 is modified with organophosphonic acids (PA). A thorough understanding of the role of all synthesis conditions is necessary to achieve controlled functionalization. This study reports on the effect of using water, toluene and their mixtures when performing the modification of TiO2 with PA. Sorption and calorimetry measurements of surface interactions with various probing species clearly indicate that, by grafting PA in water, clear differences appear in the distribution of organic groups on the surface. Also the functional group of the PA determines the impact of using water as solvent. Modification in toluene results in a higher modification degree for propylphosphonic acid (3PA), as the solvent-solute interaction may hinder the grafting with phenylphosphonic acid (PhPA) in toluene. Water is preferred as solvent for PhPA modification as stabilizing π-OH interactions enhance surface grafting overcoming the competitive interaction of water at the surface as observed with 3PA. By using water in toluene mixtures for the functionalization of TiO2 with 3PA, the degree of functionalization is higher than when only water or toluene is used. Furthermore, adding small amounts of water leads to the formation of titanium propylphosphonates, next to surface grafting.
Fundamental insights into interfacial catalysis.
Gong, Jinlong; Bao, Xinhe
2017-04-03
Surface and interfacial catalysis plays a vital role in chemical industries, electrochemistry and photochemical reactions. The challenges of modern chemistry are to optimize the chemical reaction processes and understand the detailed mechanism of chemical reactions. Since the early 1960s, the foundation of surface science systems has allowed the study of surface and interfacial phenomena on atomic/molecular level, and thus brought a number of significant developments to fundamental and technological processes, such as catalysis, material science and biochemistry, just to name a few. This themed issue describes the recent advances and developments in the fundamental understanding of surface and interfacial catalysis, encompassing areas of knowledge from metal to metal oxide, carbide, graphene, hexagonal boron nitride, and transition metal dichalcogenides under ultrahigh vacuum conditions, as well as under realistic reaction conditions.
Impact of Dental Implant Surface Modifications on Osseointegration
Smeets, Ralf; Stadlinger, Bernd; Schwarz, Frank; Beck-Broichsitter, Benedicta; Jung, Ole; Precht, Clarissa; Kloss, Frank; Gröbe, Alexander; Heiland, Max
2016-01-01
Objective. The aim of this paper is to review different surface modifications of dental implants and their effect on osseointegration. Common marketed as well as experimental surface modifications are discussed. Discussion. The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require advances in implant surface design. The elucidation of bone healing physiology has driven investigators to engineer implant surfaces that closely mimic natural bone characteristics. This paper provides a comprehensive overview of surface modifications that beneficially alter the topography, hydrophilicity, and outer coating of dental implants in order to enhance osseointegration in healthy as well as in compromised bone. In the first part, this paper discusses dental implants that have been successfully used for a number of years focusing on sandblasting, acid-etching, and hydrophilic surface textures. Hereafter, new techniques like Discrete Crystalline Deposition, laser ablation, and surface coatings with proteins, drugs, or growth factors are presented. Conclusion. Major advancements have been made in developing novel surfaces of dental implants. These innovations set the stage for rehabilitating patients with high success and predictable survival rates even in challenging conditions. PMID:27478833
Antibacterial Drug Releasing Materials by Post-Polymerization Surface Modification
NASA Astrophysics Data System (ADS)
Chng, Shuyun; Moloney, Mark G.; Wu, Linda Y. L.
Functional materials are available by the post-polymerization surface modification of diverse polymers in a three-step process mediated, firstly, by carbene insertion chemistry, secondly, by diazonium coupling, and thirdly by modification with a remotely tethered spiropyran unit, and these materials may be used for the reversible binding and release of Penicillin V. Surface loading densities of up to 0.19mmol/g polymer are achievable, leading to materials with higher loading densities and release behavior relative to unmodified controls, and observable antibacterial biocidal activity.
Surface Modification of Nonwoven fabrics by Atmospheric Brush Plasma
NASA Astrophysics Data System (ADS)
Oksuz, Lutfi; Uygun, Emre; Bozduman, Ferhat; Yurdabak Karaca, Gozde; Asan, Orkun Nuri; Uygun Oksuz, Aysegul
2017-10-01
Polypropylene nonwoven fabrics (PPNF) are used in disposable absorbent articles, such as diapers, feminine care products, wipes. PPNF need to be wettable by water or aqueous-based liquid. Plasma surface treatment/modification has turned out to be a well-accepted method since it offers superior surface property enhancement than other chemical methods. The cold plasma brush can most efficiently use the discharge power as well as the plasma gas for material and surface treatment. The very low power consumption of such an atmospheric argon plasma brush provides many unique advantages in practical application. The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of two different nonwoven surfaces.
76 FR 72919 - Draft Integrated Science Assessment for Ozone and Related Photochemical Oxidants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-28
... Science Assessment for Ozone and Related Photochemical Oxidants AGENCY: Environmental Protection Agency... Draft Integrated Science Assessment for Ozone and Related Photochemical Oxidants'' (EPA/600/R-10/076B... national ambient air quality standards (NAAQS) for ozone. DATES: The public comment period began on...
76 FR 60820 - Draft Integrated Science Assessment for Ozone and Related Photochemical Oxidants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... Science Assessment for Ozone and Related Photochemical Oxidants AGENCY: Environmental Protection Agency... Review Draft Integrated Science Assessment for Ozone and Related Photochemical Oxidants'' (EPA/600/R-10... standards (NAAQS) for ozone. EPA is releasing this draft document to seek review by the Clean Air Scientific...
76 FR 17121 - Draft Integrated Science Assessment for Ozone and Related Photochemical Oxidants
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-28
... Science Assessment for Ozone and Related Photochemical Oxidants AGENCY: Environmental Protection Agency... Draft Integrated Science Assessment for Ozone and Related Photochemical Oxidants'' (EPA/600/R-10/076A... ambient air quality standards (NAAQS) for ozone. DATES: The public comment period began on February 28...
ERIC Educational Resources Information Center
Rao, G. Nageswara; Janardhana, Chelli; Ramanathan, V.; Rajesh, T.; Kumar, P. Harish
2006-01-01
Chemical reactions induced by light have been utilized for synthesizing highly strained, thermodynamically unstable compounds, which are inaccessible through non-photochemical methods. Photochemical cycloaddition reactions, especially those leading to the formation of four-membered rings, constitute a convenient route to compounds that are…
This review of the effects of photochemical oxidants on vegetation and the responses of vegetation to photochemical oxidants first discusses the general methodologies used in studies of air pollution effects to provide a basis for understanding the methods, approaches, and experi...
Photochemical Effects of Sunlight
Daniels, Farrington
1972-01-01
The importance of sunlight in bringing about not only photosynthesis in plants, but also other photochemical effects, is reviewed. More effort should be devoted to photochemical storage of the sun's energy without the living plant. There is no theoretical reason to believe that such reactions are impossible. Ground rules for searching for suitable solar photochemical reactions are given, and a few attempts are described, but nothing successful has yet been found. Future possibilities are suggested. Photogalvanic cells which convert sunlight into electricity deserve further research. Eugene Rabinowitch has been an active pioneer in these fields. PMID:5037333
Photochemical effects of sunlight.
Daniels, F
1972-07-01
The importance of sunlight in bringing about not only photosynthesis in plants, but also other photochemical effects, is reviewed. More effort should be devoted to photochemical storage of the sun's energy without the living plant. There is no theoretical reason to believe that such reactions are impossible. Ground rules for searching for suitable solar photochemical reactions are given, and a few attempts are described, but nothing successful has yet been found. Future possibilities are suggested. Photogalvanic cells which convert sunlight into electricity deserve further research. Eugene Rabinowitch has been an active pioneer in these fields.
Axi-symmetrical flow reactor for .sup.196 Hg photochemical enrichment
Grossman, Mark W.
1991-01-01
The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, .sup.196 Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired .sup.196 Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith.
Photochemical reactions of aromatic compounds and the concept of the photon as a traceless reagent.
Hoffmann, Norbert
2012-11-01
Electronic excitation significantly changes the reactivity of chemical compounds. Compared to ground state reactions, photochemical reactions considerably enlarge the application spectrum of a particular functional group in organic synthesis. Multistep syntheses may be simplified and perspectives for target oriented synthesis (TOS) and diversity oriented synthesis (DOS) are developed. New compound families become available or may be obtained more easily. In contrast to common chemical reagents, photons don't generate side products resulting from the transformation of a chemical reagent. Therefore, they are considered as a traceless reagent. Consequently, photochemical reactions play a central role in the methodology of sustainable chemistry. This aspect has been recognized since the beginning of the 20th century. As with many other photochemical transformations, photochemical reactions of aromatic, benzene-like compounds illustrate well the advantages in this context. Photochemical cycloadditions of aromatic compounds have been investigated for a long time. Currently, they are applied in various fields of organic synthesis. They are also studied in supramolecular structures. The phenomena of reactivity and stereoselectivity are investigated. During recent years, photochemical electron transfer mediated reactions are particularly focused. Such transformations have likewise been performed with aromatic compounds. Reactivity and selectivity as well as application to organic synthesis are studied.
Fundamental molecules of life are pigments which arose and evolved to dissipate the solar spectrum
NASA Astrophysics Data System (ADS)
Michaelian, K.; Simeonov, A.
2015-02-01
The driving force behind the origin and evolution of life has been the thermodynamic imperative of increasing the entropy production of the biosphere through increasing the global solar photon dissipation rate. In the upper atmosphere of today, oxygen and ozone derived from life processes are performing the short wavelength UVC and UVB dissipation. On Earth's surface, water and organic pigments in water facilitate the near UV and visible photon dissipation. The first organic pigments probably formed, absorbed, and dissipated at those photochemically active wavelengths in the UVC that could have reached Earth's surface during the Archean. Proliferation of these pigments can be understood as an autocatalytic photochemical process obeying non-equilibrium thermodynamic directives related to increasing solar photon dissipation rate. Under these directives, organic pigments would have evolved over time to increase the global photon dissipation rate by; (1) increasing the ratio of their effective photon cross sections to their physical size, (2) decreasing their electronic excited state life times, (3) quenching radiative de-excitation channels (e.g. fluorescence), (4) covering ever more completely the prevailing solar spectrum, and (5) proliferating and dispersing to cover an ever greater surface area of Earth. From knowledge of the evolution of the spectrum of G-type stars, and considering the most probable history of the transparency of Earth's atmosphere, we construct the most probable Earth surface solar spectrum as a function of time and compare this with the history of molecular absorption maxima obtained from the available data in the literature. This comparison supports the conjecture that many fundamental molecules of life are pigments which arose and evolved to dissipate the solar spectrum, supports the thermodynamic dissipation theory for the origin of life, constrains models for Earth's early atmosphere, and sheds some new light on the origin of photosynthesis.
Protein-protein binding before and after photo-modification of albumin
NASA Astrophysics Data System (ADS)
Rozinek, Sarah C.; Glickman, Randolph D.; Thomas, Robert J.; Brancaleon, Lorenzo
2016-03-01
Bioeffects of directed-optical-energy encompass a wide range of applications. One aspect of photochemical interactions involves irradiating a photosensitizer with visible light in order to induce protein unfolding and consequent changes in function. In the past, irradiation of several dye-protein combinations has revealed effects on protein structure. Beta lactoglobulin, human serum albumin (HSA) and tubulin have all been photo-modified with meso-tetrakis(4- sulfonatophenyl)porphyrin (TSPP) bound, but only in the case of tubulin has binding caused a verified loss of biological function (loss of ability to form microtubules) as a result of this light-induced structural change. The current work questions if the photo-induced structural changes that occur to HSA, are sufficient to disable its biological function of binding to osteonectin. The albumin-binding protein, osteonectin, is about half the molecular weight of HSA, so the two proteins and their bound product can be separated and quantified by size exclusion high performance liquid chromatography. TSPP was first bound to HSA and irradiated, photo-modifying the structure of HSA. Then native HSA or photo-modified HSA (both with TSPP bound) were compared, to assess loss in HSA's innate binding ability as a result of light-induced structure modification.
Sono-photocatalytic production of hydrogen by interface modified metal oxide insulators.
Senevirathne, Rushdi D; Abeykoon, Lahiru K; De Silva, Nuwan L; Yan, Chang-Feng; Bandara, Jayasundera
2018-07-01
Dielectric oxide materials are well-known insulators that have many applications in catalysis as well as in device manufacturing industries. However, these dielectric materials cannot be employed directly in photochemical reactions that are initiated by the absorption of UV-Vis photons. Despite their insensitivity to solar energy, dielectric materials can be made sono-photoactive even for low energy IR photons by modifications of the interfacial properties of dielectric materials by noble metals and metal oxides. In this investigation, by way of interface modification of dielectric MgO nanoparticles by Ag metal and Ag 2 O nanoparticles, IR photon initiated sono-photocatalytic activity of MgO is reported. The observed photocatalytic activity is found to be the synergic action of both IR light and sonication effect and sonication assisted a multi-step, sub-bandgap excitation of electrons in the MgO is proposed for the observed catalytic activity of Ag/Ag 2 O coated MgO nanoparticles. Our investigation reveals that other dielectric materials such as silver coated SiO 2 and Al 2 O 3 also exhibit IR active sono-photocatalytic activity. Copyright © 2018 Elsevier B.V. All rights reserved.
Massive isotopic effect in vacuum UV photodissociation of N2 and implications for meteorite data
Chakraborty, Subrata; Muskatel, B. H.; Jackson, Teresa L.; Ahmed, Musahid; Levine, R. D.; Thiemens, Mark H.
2014-01-01
Nitrogen isotopic distributions in the solar system extend across an enormous range, from −400‰, in the solar wind and Jovian atmosphere, to about 5,000‰ in organic matter in carbonaceous chondrites. Distributions such as these require complex processing of nitrogen reservoirs and extraordinary isotope effects. While theoretical models invoke ion-neutral exchange reactions outside the protoplanetary disk and photochemical self-shielding on the disk surface to explain the variations, there are no experiments to substantiate these models. Experimental results of N2 photolysis at vacuum UV wavelengths in the presence of hydrogen are presented here, which show a wide range of enriched δ15N values from 648‰ to 13,412‰ in product NH3, depending upon photodissociation wavelength. The measured enrichment range in photodissociation of N2, plausibly explains the range of δ15N in extraterrestrial materials. This study suggests the importance of photochemical processing of the nitrogen reservoirs within the solar nebula. PMID:25267643
NASA Technical Reports Server (NTRS)
Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.
1978-01-01
Observations of nonequilibrium phenomena on the Saturn satellite Titan indicate the occurrence of organic chemical evolution. Greenhouse and thermal inversion models of Titan's atmosphere provide environmental constraints within which various pathways for organic chemical synthesis are assessed. Experimental results and theoretical modeling studies suggest that the organic chemistry of the satellite may be dominated by two atmospheric processes: energetic-particle bombardment and photochemistry. Reactions initiated in various levels of the atmosphere by cosmic ray, Saturn wind, and solar wind particle bombardment of a CH4 - N2 atmospheric mixture can account for the C2-hydrocarbons, the UV-visible-absorbing stratospheric haze, and the reddish color of the satellite. Photochemical reactions of CH4 can also account for the presence of C2-hydrocarbons. In the lower Titan atmosphere, photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. Hot H-atom reactions initiated by photo-dissociation of NH3 can couple the chemical reactions of NH3 and CH4 and produce organic matter.
Photochemical reactions in interstellar grains photolysis of CO, NH3, and H2O
NASA Technical Reports Server (NTRS)
Agarwal, V. K.; Ferris, J. P.; Schutte, W.; Greenberg, J. M.; Briggs, R.
1985-01-01
The interstellar grains are currently considered to be the basic building blocks of comets and, possibly, meteorites. To test this theory, a simulation of the organic layer accreted onto interstellar dust particles was prepared by slow deposition of a CO:NH3:H2O gas mixture on an Al block at 10 K, with concomitant irradiation with vacuum UV. The results of the HPLC and IR analyses of the nonvolatile residue formed by photolysis at 10 K are compared with those observed at 77 K and 298 K. Some of the compounds that may be present on the surfaces of interstellar dust particles have been identified, and some specific predictions concerning the types of molecular species present in comets could be drawn. The results also suggest that photochemical reactions may have been important for the formation of meteorite components. The implication of the findings to the questions of the source of organic matter on earth and the origin of life are discussed.
NASA Astrophysics Data System (ADS)
Hennigan, Christopher J.; Westervelt, Daniel M.; Riipinen, Ilona; Engelhart, Gabriella J.; Lee, Taehyoung; Collett, Jeffrey L., Jr.; Pandis, Spyros N.; Adams, Peter J.; Robinson, Allen L.
2012-05-01
Experiments were performed in an environmental chamber to characterize the effects of photo-chemical aging on biomass burning emissions. Photo-oxidation of dilute exhaust from combustion of 12 different North American fuels induced significant new particle formation that increased the particle number concentration by a factor of four (median value). The production of secondary organic aerosol caused these new particles to grow rapidly, significantly enhancing cloud condensation nuclei (CCN) concentrations. Using inputs derived from these new data, global model simulations predict that nucleation in photo-chemically aging fire plumes produces dramatically higher CCN concentrations over widespread areas of the southern hemisphere during the dry, burning season (Sept.-Oct.), improving model predictions of surface CCN concentrations. The annual indirect forcing from CCN resulting from nucleation and growth in biomass burning plumes is predicted to be -0.2 W m-2, demonstrating that this effect has a significant impact on climate that has not been previously considered.
Project Fog Drops. Part 2: Laboratory investigations
NASA Technical Reports Server (NTRS)
Kocmond, W. C.; Mack, E. J.; Katz, U.; Pilie, R. J.
1972-01-01
Measurements of the total nucleus concentration and cloud condensation nuclei (CCN) were acquired for several conditions representing both high normal and severe pollution levels for the Los Angeles Basin as well as clean filtered air. The data show that in filtered air there is a large photochemically induced increase in the total particle content within a few minutes after starting the lamp. The concentration of CCN remains near zero, until sufficient coagulation and condensation occurs on the smaller Aitken particles. The addition of gaseous pollutants to filtered air results in large increases in the photochemical production of both the cloud and Aitken nucleus concentration. Fogs were also generated under controlled, reproducible conditions in the cloud chamber and seeded with aerosols of various compounds which form monomolecular surface films at air-water interfaces. Visibility characteristics and droplet data were obtained. The data suggest that droplet growth on treated nuclei can be retarded but fog formation was not significantly altered by the chemical seeding.
Photochemical oxidants: state of the science.
Kley, D; Kleinmann, M; Sanderman, H; Krupa, S
1999-01-01
Atmospheric photochemical processes resulting in the production of tropospheric ozone (O(3)) and other oxidants are described. The spatial and temporal variabilities in the occurrence of surface level oxidants and their relationships to air pollution meteorology are discussed. Models of photooxidant formation are reviewed in the context of control strategies and comparisons are provided of the air concentrations of O(3) at select geographic locations around the world. This overall oxidant (O(3)) climatology is coupled to human health and ecological effects. The discussion of the effects includes both acute and chronic responses, mechanisms of action, human epidemiological and plant population studies and briefly, efforts to establish cause-effect relationships through numerical modeling. A short synopsis is provided of the interactive effects of O(3) with other abiotic and biotic factors. The overall emphasis of the paper is on identifying the current uncertainties and gaps in our understanding of the state of the science and some suggestions as to how they may be addressed.
NASA Technical Reports Server (NTRS)
Whitten, G. Z.; Hogo, H.
1976-01-01
Jet aircraft emissions data from the literature were used as initial conditions for a series of computer simulations of photochemical smog formation in static air. The chemical kinetics mechanism used in these simulations was an updated version which contains certain parameters designed to account for hydrocarbon reactivity. These parameters were varied to simulate the reaction rate constants and average carbon numbers associated with the jet emissions. The roles of surface effects, variable light sources, NO/NO2 ratio, continuous emissions, and untested mechanistic parameters were also assessed. The results of these calculations indicate that the present jet emissions are capable of producing oxidant by themselves. The hydrocarbon/nitrous oxides ratio of present jet aircraft emissions is much higher than that of automobiles. These two ratios appear to bracket the hydrocarbon/nitrous oxides ratio that maximizes ozone production. Hence an enhanced effect is seen in the simulation when jet exhaust emissions are mixed with automobile emissions.
NASA Astrophysics Data System (ADS)
Chen, K. S.; Ho, Y. T.; Lai, C. H.; Chou, Youn-Min
The events of high ozone concentrations and meteorological conditions covering the Kaohsiung metropolitan area were investigated based on data analysis and model simulation. A photochemical grid model was employed to analyze two ozone episodes in autumn (2000) and winter (2001) seasons, each covering three consecutive days (or 72 h) in the Kaohsiung City. The potential influence of the initial and boundary conditions on model performance was assessed. Model performance can be improved by separately considering the daytime and nighttime ozone concentrations on the lateral boundary conditions of the model domain. The sensitivity analyses of ozone concentrations to the emission reductions in volatile organic compounds (VOC) and nitrogen oxides (NO x) show a VOC-sensitive regime for emission reductions to lower than 30-40% VOC and 30-50% NO x and a NO x-sensitive regime for larger percentage reductions. Meteorological parameters show that warm temperature, sufficient sunlight, low wind, and high surface pressure are distinct parameters that tend to trigger ozone episodes in polluted urban areas, like Kaohsiung.
Modification of Ti6Al4V surface by diazonium compounds.
Sandomierski, Mariusz; Buchwald, Tomasz; Strzemiecka, Beata; Voelkel, Adam
2018-02-15
Ti6Al4V alloy is the most commonly used in orthopedic industry as an endoprosthesis. Ti6Al4V exhibits good mechanical properties, except the abrasion resistance. Surface modification of Ti6Al4V in order to obtain organic layer, and then the attachment of the polymer, can allow for overcoming this problem. The aim of the work was the modification of Ti6Al4V surface by diazonium compounds: salt or cation generated in situ and examine the influence of the reducing agent - ascorbic acid, and the temperature of reaction on modification process. Moreover, the simulated body fluid was used for the assessment of the organic layer stability on Ti6Al4V surface. The evaluation of the modification was carried out using the following methods: Raman microspectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Higher temperature of modification by 4-hydroxymethylbenzenediazonium cation, provides the largest amount of organic layer on the Ti6Al4V alloy. In the case of the Ti6Al4V modified by Variamine Blue B salt, the amount of organic layer is not dependent on the reaction condition. Moreover, the ascorbic acid and the presence of TiO 2 does not effect on the modification. The modified surface is completely coated with the organic layer which is stable in simulated body fluid. Copyright © 2017 Elsevier B.V. All rights reserved.
Surface Modification of Melamine-Formaldehyde (MF-R) Macroparticles in Complex Plasma
NASA Astrophysics Data System (ADS)
Semenov, A. V.; Pergament, A. L.; Scherbina, A. I.; Pikalev, A. A.
2018-04-01
The surface modification of melamine-formaldehyde (MF-R) macroparticles (4.12 ± 0.09 μm in diameter) in dc glow discharges in neon, argon, and an argon-oxygen mixture (90% Ar, 10% O2) was studied experimentally. The macroparticles were treated in the discharge plasma for 10, 20, 40, and 60 min. The macroparticles were placed in ordered plasma-dust structures and then extracted from them. The results of atomic force microscopy of the surface profile are presented. Quantitative data on destruction of the surface layer and aspects of its modification are discussed. The amount of substance removed from the particle surface for the exposure time was calculated using the fractal analysis method.
NASA Astrophysics Data System (ADS)
Hong, Peng; Sekine, Yasuhito; Sasamori, Tsutoni; Sugita, Seiji
2018-06-01
Formation of organic aerosols driven by photochemical reactions has been observed and suggested in CH4-containing atmospheres, including Titan and early Earth. However, the detailed production and growth mechanisms of organic aerosols driven by solar far ultraviolet (FUV) light remain poorly constrained. We conducted laboratory experiments simulating photochemical reactions in a CH4sbnd CO2 atmosphere driven by the FUV radiations dominated by the Lyman-α line. In the experiments, we analyzed time variations in thickness and infrared spectra of solid organic film formed on an optical window in a reaction cell. Gas species formed by FUV irradiation were also analyzed and compared with photochemical model calculations. Our experimental results show that the growth rate of the organic film decreases as the CH4/CO2 ratio of reactant gas mixture decreases, and that the decrease becomes very steep for CH4/CO2 < 1. Comparison with photochemical model calculations suggests that polymerizations of gas-phase hydrocarbons, such as polyynes and aromatics, cannot account for the growth rate of the organic film but that the addition reaction of CH3 radicals onto the organic film with the reaction probability around 10-2 can explain the growth rate. At CH4/CO2 < 1, etching by O atom formed by CO2 photolysis would reduce or inhibit the growth of the organic film. Our results suggest that organic aerosols would grow through CH3 addition onto the surface during the precipitation of aerosol particles in the middle atmosphere of Titan and early Earth. On Titan, effective CH3 addition would reduce C2H6 production in the atmosphere. On early Earth, growth of aerosol particles would be less efficient than those on Titan, possibly resulting in small-sized monomers and influencing UV shielding.
Haze production rates in super-Earth and mini-Neptune atmosphere experiments
NASA Astrophysics Data System (ADS)
Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique
2018-04-01
Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (<800 K), smaller (<0.3× Jupiter's mass) exoplanets. It remains unclear whether the aerosols muting the spectroscopic features of exoplanet atmospheres are condensate clouds or photochemical hazes1-3, which is difficult to predict from theory alone4. Here, we present laboratory haze simulation experiments that probe a broad range of atmospheric parameters relevant to super-Earth- and mini-Neptune-type planets5, the most frequently occurring type of planet in our galaxy6. It is expected that photochemical haze will play a much greater role in the atmospheres of planets with average temperatures below 1,000 K (ref. 7), especially those planets that may have enhanced atmospheric metallicity and/or enhanced C/O ratios, such as super-Earths and Neptune-mass planets8-12. We explored temperatures from 300 to 600 K and a range of atmospheric metallicities (100×, 1,000× and 10,000× solar). All simulated atmospheres produced particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.
Haze production rates in super-Earth and mini-Neptune atmosphere experiments
NASA Astrophysics Data System (ADS)
Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique
2018-03-01
Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (<800 K), smaller (<0.3× Jupiter's mass) exoplanets. It remains unclear whether the aerosols muting the spectroscopic features of exoplanet atmospheres are condensate clouds or photochemical hazes1-3, which is difficult to predict from theory alone4. Here, we present laboratory haze simulation experiments that probe a broad range of atmospheric parameters relevant to super-Earth- and mini-Neptune-type planets5, the most frequently occurring type of planet in our galaxy6. It is expected that photochemical haze will play a much greater role in the atmospheres of planets with average temperatures below 1,000 K (ref. 7), especially those planets that may have enhanced atmospheric metallicity and/or enhanced C/O ratios, such as super-Earths and Neptune-mass planets8-12. We explored temperatures from 300 to 600 K and a range of atmospheric metallicities (100×, 1,000× and 10,000× solar). All simulated atmospheres produced particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.
Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives.
Tanaka, Mutsuo; Sawaguchi, Takahiro; Sato, Yukari; Yoshioka, Kyoko; Niwa, Osamu
2011-01-04
Surface modification of glassy carbon (GC) and highly oriented pyrolytic graphite (HOPG) was carried out with diazonium, amine, azide, and olefin derivatives bearing ferrocene as an electroactive moiety. Features of the modified surfaces were evaluated by surface concentrations of immobilized molecule, blocking effect of the modified surface against redox reaction, and surface observation using cyclic voltammetry and electrochemical scanning tunneling microscope (EC-STM). The measurement of surface concentrations of immobilized molecule revealed the following three aspects: (i) Diazonium and olefin derivatives could modify substrates with the dense-monolayer concentration. (ii) The surface concentration of immobilized amine derivative did not reach to the dense-monolayer concentration reflecting their low reactivity. (iii) The surface modification with the dense-monolayer concentration was also possible with azide derivative, but the modified surface contained some oligomers produced by the photoreaction of azides. Besides, the blocking effect against redox reaction was observed for GC modified with diazonium derivative and for HOPG modified with diazonium and azide derivatives, suggesting fabrication of a densely modified surface. Finally, the surface observation for HOPG modified with diazonium derivative by EC-STM showed a typical monolayer structure, in which the ferrocene moieties were packed densely at random. On the basis of those results, it was demonstrated that surface modification of carbon substrates with diazonium could afford a dense monolayer similar to the self-assembled monolayer (SAM) formation.
Study of Perfluorophosphonic Acid Surface Modifications on Zinc Oxide Nanoparticles.
Quiñones, Rosalynn; Shoup, Deben; Behnke, Grayce; Peck, Cynthia; Agarwal, Sushant; Gupta, Rakesh K; Fagan, Jonathan W; Mueller, Karl T; Iuliucci, Robbie J; Wang, Qiang
2017-11-28
In this study, perfluorinated phosphonic acid modifications were utilized to modify zinc oxide (ZnO) nanoparticles because they create a more stable surface due to the electronegativity of the perfluoro head group. Specifically, 12-pentafluorophenoxydodecylphosphonic acid, 2,3,4,5,6-pentafluorobenzylphosphonic acid, and (1H,1H,2H,2H-perfluorododecyl)phosphonic acid have been used to form thin films on the nanoparticle surfaces. The modified nanoparticles were then characterized using infrared spectroscopy, X-ray photoelectron spectroscopy, and solid-state nuclear magnetic resonance spectroscopy. Dynamic light scattering and scanning electron microscopy-energy dispersive X-ray spectroscopy were utilized to determine the particle size of the nanoparticles before and after modification, and to analyze the film coverage on the ZnO surfaces, respectively. Zeta potential measurements were obtained to determine the stability of the ZnO nanoparticles. It was shown that the surface charge increased as the alkyl chain length increases. This study shows that modifying the ZnO nanoparticles with perfluorinated groups increases the stability of the phosphonic acids adsorbed on the surfaces. Thermogravimetric analysis was used to distinguish between chemically and physically bound films on the modified nanoparticles. The higher weight loss for 12-pentafluorophenoxydodecylphosphonic acid and (1H,1H,2H,2H-perfluorododecyl)phosphonic acid modifications corresponds to a higher surface concentration of the modifications, and, ideally, higher surface coverage. While previous studies have shown how phosphonic acids interact with the surfaces of ZnO, the aim of this study was to understand how the perfluorinated groups can tune the surface properties of the nanoparticles.
Coating Methods for Surface Modification of Ammonium Nitrate: A Mini-Review
Elzaki, Baha I.; Zhang, Yue Jun
2016-01-01
Using ammonium nitrate (AN) as a propellant oxidizer is limited due to its hygroscopicity. This review consolidated the available information of various issues pertaining to the coating methods of the surface modification of ammonium nitrate for reducing its hygroscopicity. Moreover this review summarizes the recent advances and issues involved in ammonium nitrate surface modification by physical, chemical and encapsulation coating methods to reduce the hygroscopicity. Furthermore, coating materials, process conditions, and the hygroscopicity test conditions are extensively discussed along, with summaries of the advantages and disadvantages of each coating method. Our findings indicated that the investigation and development of anti-hygroscopicity of AN, and the mechanisms of surface modification by coating urgently require further research in order to further reduce the hygroscopicity. Therefore, this review is useful to researchers concerned with the improvement of ammonium salts’ anti-hygroscopicity. PMID:28773625
Surface Raman Spectroscopy for Evaluation of Conformal Wafer Level Union Architectures
1990-05-01
require that it be returned. Final Report for Expert Science-Task-A-9-1911 Order #18 by J. Chaiken One goal was to produce ultrafine particles which could...that we have synthesized thin films of nonstoichiometric tungsten oxides by a unique photochemical/physical mechanism involving ultrafine particles /clusters...appropriate data base is underway. In this Final Report we first present a section dealing with the fabrication of the metal-metal oxide ultrafine
Improving Joint Function Using Photochemical Hydrogels for Articular Surface Repair
2017-02-01
dilution groups , tdeg increased with increasing concentration of EDC/NHS. Mechanical testing Values for storage modulus in spontaneous control gels (25.86...red) in 48-well nontreated tissue culture plates. As a positive control , a subset group of gels without tethered growth factor was exposed to 0.3 nM...in a cartilage ring and capped with fibrin and collagen gel. A control group consisted of chondrocytes encapsulated in fibrin gel. Constructs were
Hybrid isotope separation scheme
Maya, J.
1991-06-18
A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.
Surface Characterization Techniques: An Overview
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
2002-01-01
To understand the benefits that surface modifications provide, and ultimately to devise better ones, it is necessary to study the physical, mechanical, and chemical changes they cause. This chapter surveys classical and leading-edge developments in surface structure and property characterization methodologies. The primary emphases are on the use of these techniques as they relate to surface modifications, thin films and coatings, and tribological engineering surfaces and on the implications rather than the instrumentation.
Rezaei, Masoud; Tamjid, Elnaz; Dinari, Ali
2017-10-11
Besides the wide applications of titanium and its alloys for orthopedic and biomedical implants, the biocompatible nature of titanium has emerged various surface modification techniques to enhance its bioactivity and osteointegration with living tissues. In this work, we present a new procedure for nanoscale surface modification of titanium implants by integration of magnesium-rich islands combined with controlled formation of pores and refinement of the surface grain structure. Through severe plastic deformation of the titanium surface with fine magnesium hydride powder, Mg-rich islands with varying sizes ranging from 100 nm to 1000 nm can be integrated inside a thin surface layer (100-500 µm) of the implant. Selective etching of the surface forms a fine structure of surface pores which their average size varies in the range of 200-500 nm depending on the processing condition. In vitro biocompatibility and hemocompatibility assays show that the Mg-rich islands and the induced surface pores significantly enhance cell attachment and biocompatibility without an adverse effect on the cell viability. Therefore, severe plastic integration of Mg-rich islands on titanium surface accompanying with porosification is a new and promising procedure with high potential for nanoscale modification of biomedical implants.
NASA Astrophysics Data System (ADS)
Derstroff, Bettina; Hüser, Imke; Bourtsoukidis, Efstratios; Crowley, John N.; Fischer, Horst; Gromov, Sergey; Harder, Hartwig; Janssen, Ruud H. H.; Kesselmeier, Jürgen; Lelieveld, Jos; Mallik, Chinmay; Martinez, Monica; Novelli, Anna; Parchatka, Uwe; Phillips, Gavin J.; Sander, Rolf; Sauvage, Carina; Schuladen, Jan; Stönner, Christof; Tomsche, Laura; Williams, Jonathan
2017-08-01
During the summertime CYPHEX campaign (CYprus PHotochemical EXperiment 2014) in the eastern Mediterranean, multiple volatile organic compounds (VOCs) were measured from a 650 m hilltop site in western Cyprus (34° 57' N/32° 23' E). Periodic shifts in the northerly Etesian winds resulted in the site being alternately impacted by photochemically processed emissions from western (Spain, France, Italy) and eastern (Turkey, Greece) Europe. Furthermore, the site was situated within the residual layer/free troposphere during some nights which were characterized by high ozone and low relative humidity levels. In this study we examine the temporal variation of VOCs at the site. The sparse Mediterranean scrub vegetation generated diel cycles in the reactive biogenic hydrocarbon isoprene, from very low values at night to a diurnal median level of 80-100 pptv. In contrast, the oxygenated volatile organic compounds (OVOCs) methanol and acetone exhibited weak diel cycles and were approximately an order of magnitude higher in mixing ratio (ca. 2.5-3 ppbv median level by day, range: ca. 1-8 ppbv) than the locally emitted isoprene and aromatic compounds such as benzene and toluene. Acetic acid was present at mixing ratios between 0.05 and 4 ppbv with a median level of ca. 1.2 ppbv during the daytime. When data points directly affected by the residual layer/free troposphere were excluded, the acid followed a pronounced diel cycle, which was influenced by various local effects including photochemical production and loss, direct emission, dry deposition and scavenging from advecting air in fog banks. The Lagrangian model FLEXPART was used to determine transport patterns and photochemical processing times (between 12 h and several days) of air masses originating from eastern and western Europe. Ozone and many OVOC levels were ˜ 20 and ˜ 30-60 % higher, respectively, in air arriving from the east. Using the FLEXPART calculated transport time, the contribution of photochemical processing, sea surface contact and dilution was estimated. Methanol and acetone decreased with residence time in the marine boundary layer (MBL) with loss rate constants of 0.74 and 0.53 day-1 from eastern Europe and 0.70 and 0.34 day-1 from western Europe, respectively. Simulations using the EMAC model underestimate these loss rates. The missing sink in the calculation is most probably an oceanic uptake enhanced by microbial consumption of methanol and acetone, although the temporal and spatial variability in the source strength on the continents might play a role as well. Correlations between acetone and methanol were weaker in western air masses (r2 = 0.68), but were stronger in air masses measured after the shorter transport time from the east (r2 = 0.73).
Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong
2015-08-07
Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.
PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes
Nady, Norhan
2016-01-01
A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled “green surface modification”. This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers—ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)—is presented. PMID:27096873
Wang, Chongqing; Wang, Hui; Fu, Jiangang; Zhang, Lingling; Luo, Chengcheng; Liu, Younian
2015-11-01
Surface modification with potassium permanganate (KMnO4) solution was developed for separation of polyvinyl chloride (PVC) and polyethylene terephthalate (PET) waste plastics. The floatability of PVC decreases with increasing of KMnO4 concentration, treatment time, temperature and stirring rate, while that of PET is unaffected. Fourier transform infrared (FT-IR) analysis confirms that mechanism of surface modification may be due to oxidization reactions occurred on PVC surface. The optimum conditions are KMnO4 concentration 1.25 mM/L, treatment time 50 min, temperature 60°C, stirring rate 300 r/min, frother concentration 17.5 g/L and flotation time 1 min. PVC and PET with different particle sizes were separated efficiently through two-stage flotation. Additionally, after ultrasonic assisted surface modification, separation of PVC and PET with different mass ratios was obtained efficiently through one-stage flotation. The purity and the recovery of the obtained products after flotation separation are up to 99.30% and 99.73%, respectively. A flotation process was designed for flotation separation of PVC and PET plastics combined with surface modification. This study provides technical insights into physical separation of plastic wastes for recycling industry. Copyright © 2015 Elsevier Ltd. All rights reserved.
Temporal mapping of photochemical reactions and molecular excited states with carbon specificity
NASA Astrophysics Data System (ADS)
Wang, K.; Murahari, P.; Yokoyama, K.; Lord, J. S.; Pratt, F. L.; He, J.; Schulz, L.; Willis, M.; Anthony, J. E.; Morley, N. A.; Nuccio, L.; Misquitta, A.; Dunstan, D. J.; Shimomura, K.; Watanabe, I.; Zhang, S.; Heathcote, P.; Drew, A. J.
2017-04-01
Photochemical reactions are essential to a large number of important industrial and biological processes. A method for monitoring photochemical reaction kinetics and the dynamics of molecular excitations with spatial resolution within the active molecule would allow a rigorous exploration of the pathway and mechanism of photophysical and photochemical processes. Here we demonstrate that laser-excited muon pump-probe spin spectroscopy (photo-μSR) can temporally and spatially map these processes with a spatial resolution at the single-carbon level in a molecule with a pentacene backbone. The observed time-dependent light-induced changes of an avoided level crossing resonance demonstrate that the photochemical reactivity of a specific carbon atom is modified as a result of the presence of the excited state wavefunction. This demonstrates the sensitivity and potential of this technique in probing molecular excitations and photochemistry.
A renewable amine for photochemical reduction of CO(2).
Richardson, Robert D; Holland, Edward J; Carpenter, Barry K
2011-04-01
Photochemical reduction of CO₂ (to produce formic acid) can be seen both as a method to produce a transportable hydrogen-based fuel and also to reduce levels of CO₂ in the atmosphere. However, an often overlooked necessity for photochemical CO₂ reduction is the need for a sacrificial electron donor, usually a tertiary amine. Here, we describe a new strategy for coupling the photochemical reduction of CO₂ to photochemical water splitting, and illustrate this with a prototype example. Instead of seeking to eliminate the use of an external reducing agent altogether, our alternative strategy makes the reducing agent recyclable. This has two potential advantages over the direct coupling of CO₂ reduction and water oxidation. First, it allows the two redox reactions to be carried out with existing chemistry, and second, it permits these reactions to be conducted under mutually incompatible conditions.
Axi-symmetrical flow reactor for [sup 196]Hg photochemical enrichment
Grossman, M.W.
1991-04-30
The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, [sup 196]Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired [sup 196]Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith. 10 figures.
Thermal and photochemical reactions of NO2 on chromium(III) oxide surfaces at atmospheric pressure.
Nishino, Noriko; Finlayson-Pitts, Barbara J
2012-12-05
While many studies of heterogeneous chemistry on Cr(2)O(3) surfaces have focused on its catalytic activity, less is known about chemistry on this surface under atmospheric conditions. We report here studies of the thermal and photochemical reactions of NO(2) on Cr(2)O(3) at one atm in air. In order to follow surface species, the interaction of 16-120 ppm NO(2) with a 15 nm Cr(2)O(3) thin film deposited on a germanium crystal was monitored in a flow system using attenuated total reflectance (ATR) coupled to a Fourier transform infrared (FTIR) spectrometer. Gas phase products were monitored in the effluent of an ~285 ppm NO(2)-air mixture that had passed over Cr(2)O(3) powder in a flow system. A chemiluminescence NO(y) analyzer, a photometric O(3) analyzer and a long-path FTIR spectrometer were used to probe the gaseous products. In the absence of added water vapor, NO(2) formed nitrate (NO(3)(-)) ions coordinated to Cr(3+). These surface coordinated NO(3)(-) were reversibly solvated by water under humid conditions. In both dry and humid cases, nitrate ions decreased during irradiation of the surface at 302 nm, and NO and NO(2) were generated in the gas phase. Under dry conditions, NO was the major gaseous product while NO(2) was the dominant species in the presence of water vapor. Heating of the surface after exposure to NO(2) led to the generation of both NO(2) and NO under dry conditions, but only NO(2) in the presence of water vapor. Elemental chromium incorporated into metal alloys such as stainless steel is readily oxidized in contact with ambient air, forming a chromium-rich metal oxide surface layer. The results of these studies suggest that active photo- and thermal chemistry will occur when boundary layer materials containing chromium(III) or chromium oxide such as stainless steel, roofs, automobile bumpers etc. are exposed to NO(2) under tropospheric conditions.
NASA Astrophysics Data System (ADS)
Chandramouli, Bharadwaj; Kamens, Richard M.
Decamethyl cyclopentasiloxane (D 5) and decamethyl tetrasiloxane (MD 2M) were injected into a smog chamber containing fine Arizona road dust particles (95% surface area <2.6 μM) and an urban smog atmosphere in the daytime. A photochemical reaction - gas-particle partitioning reaction scheme, was implemented to simulate the formation and gas-particle partitioning of hydroxyl oxidation products of D 5 and MD 2M. This scheme incorporated the reactions of D 5 and MD 2M into an existing urban smog chemical mechanism carbon bond IV and partitioned the products between gas and particle phase by treating gas-particle partitioning as a kinetic process and specifying an uptake and off-gassing rate. A photochemical model PKSS was used to simulate this set of reactions. A Langmuirian partitioning model was used to convert the measured and estimated mass-based partitioning coefficients ( KP) to a molar or volume-based form. The model simulations indicated that >99% of all product silanol formed in the gas-phase partition immediately to particle phase and the experimental data agreed with model predictions. One product, D 4TOH was observed and confirmed for the D 5 reaction and this system was modeled successfully. Experimental data was inadequate for MD 2M reaction products and it is likely that more than one product formed. The model set up a framework into which more reaction and partitioning steps can be easily added.
Jin, Peng; Gao, Guang; Liu, Xin; Li, Futian; Tong, Shanying; Ding, Jiancheng; Zhong, Zhihai; Liu, Nana; Gao, Kunshan
2016-01-01
The growth of phytoplankton and thus marine primary productivity depend on photophysiological performance of phytoplankton cells that respond to changing environmental conditions. The South China Sea (SCS) is the largest marginal sea of the western Pacific and plays important roles in modulating regional climate and carbon budget. However, little has been documented on photophysiological characteristics of phytoplankton in the SCS. For the first time, we investigated photophysiological characteristics of phytoplankton assemblages in the northern South China Sea (NSCS) using a real-time in-situ active chlorophyll a fluorometry, covering 4.0 × 105 km2. The functional absorption cross section of photosystem II (PSII) in darkness (σPSII) or under ambient light (σPSII') (A2 quanta-1) increased from the surface to deeper waters at all the stations during the survey period (29 July to 23 August 2012). While the maximum (Fv/Fm, measured in darkness) or effective (Fq'/Fm', measured under ambient light) photochemical efficiency of PSII appeared to increase with increasing depth at most stations, it showed inverse relationship with depth in river plume areas. The functional absorption cross section of PSII changes could be attributed to light-adapted genotypic feature due to niche-partition and the alteration of photochemical efficiency of PSII could be attributed to photo-acclimation. The chlorophyll a fluorometry can be taken as an analog to estimate primary productivity, since areas of higher photochemical efficiency of PSII coincided with those of higher primary productivity reported previously in the NSCS.
Pérez-Mezcua, Dulce; Bretos, Iñigo; Jiménez, Ricardo; Ricote, Jesús; Jiménez-Rioboó, Rafael J.; da Silva, Cosmelina Gonçalves; Chateigner, Daniel; Fuentes-Cobas, Luis; Sirera, Rafael; Calzada, M. Lourdes
2016-01-01
The potential of UV-light for the photochemical synthesis and stabilization of non-equilibrium crystalline phases in thin films is demonstrated for the β-Bi2O3 polymorph. The pure β-Bi2O3 phase is thermodynamically stable at high temperature (450–667 °C), which limits its applications in devices. Here, a tailored UV-absorbing bismuth(III)-N-methyldiethanolamine complex is selected as an ideal precursor for this phase, in order to induce under UV-light the formation of a –Bi–O–Bi– continuous network in the deposited layers and the further conversion into the β-Bi2O3 polymorph at a temperature as low as 250 °C. The stabilization of the β-Bi2O3 films is confirmed by their conductivity behavior and a thorough characterization of their crystal structure. This is also supported by their remarkable photocatalytic activity. Besides, this processing method has allowed us for the first time the preparation of β-Bi2O3 films on flexible plastic substrates, which opens new opportunities for using these materials in potential applications not available until now (e.g., flexible photocatalytic reactors, self-cleaning surfaces or wearable antimicrobial fabrics). Therefore, photochemical solution deposition (PCSD) demonstrates to be not only an efficient approach for the low temperature processing of oxide films, but also an excellent alternative for the stabilization of metastable phases. PMID:27996042
UV-B Measurements in Mexico City: Comparison with Modeled UVB and Black Carbon
NASA Astrophysics Data System (ADS)
Marley, N. A.; Gaffney, J. S.; Frederick, J. E.
2004-12-01
Ultraviolet-B radiation (UV-B) represents a chemically important region of the sun's spectrum. At the earth's surface, UV-B can initiate a number of important photochemical reactions (e.g., ozone photolysis) that lead to the formation of OH radicals. Where levels of nitrogen oxides are high and reactive hydrocarbons are found, as in Mexico City and other megacities, UV-B can initiate photochemical smog formation. We used a broadband instrument to obtain UV-B measurements in Mexico City during the Mexico City Metropolitan Area 2003/Mexico City Megacity 2003 field study. We then used a simple radiation model for the Mexico City latitude, altitude, and time of year to construct UV-B contours for comparison with our results. Early morning discrepancies involve reductions in UV-B that are consistent with the presence of significant levels of BC in the Mexico City environment. During most afternoons, UV-B reductions were dominated by clouds. The results are discussed in terms of the potential impacts of BC on UV-B and downwind photochemical processes. The authors wish to thank the researchers at Centro Nacional de Investigación en Calidad Ambiental (CENICA), Mexico City. This work was supported by the U.S. Department of Energy, Atmospheric Science Program (Marley and Gaffney), and the U.S. Environmental Protection Agency (Frederick). We also wish to acknowledge Drs. Mario and Luisa Molina for their help in organizing and directing the Mexico City Metropolitan Area 2003 field study, during which these data were collected.
Research on dental implant and its industrialization stage
NASA Astrophysics Data System (ADS)
Dongjoon, Yang; Sukyoung, Kim
2017-02-01
Bone cell attachment to Ti implant surfaces is the most concerned issue in the clinical implant dentistry. Many attempts to achieve the fast and strong integration between bone and implant have been tried in many ways, such as selection of materials (for example, Ti, ZrO2), shape design of implant (for example, soft tissue level, bone level, taped or conical, etc), and surface modification of implants (for example, roughed. coated, hybrid), etc. Among them, a major consideration is the surface design of dental implants. The surface with proper structural characteristics promotes or induces the desirable responses of cells and tissues. To obtain such surface which has desirable cell and tissue response, a variety of surface modification techniques has been developed and employed for many years. In this review, the method and trend of surface modification will be introduced and explained in terms of the surface topography and chemistry of dental implants.
Santander, Sonia; Alcaine, Clara; Lyahyai, Jaber; Pérez, Maria Angeles; Rodellar, Clementina; Doblaré, Manuel; Ochoa, Ignacio
2012-01-01
Interaction between cells and implant surface is crucial for clinical success. This interaction and the associated surface treatment are essential for achieving a fast osseointegration process. Several studies of different topographical or chemical surface modifications have been proposed previously in literature. The Biomimetic Advanced Surface (BAS) topography is a combination of a shot blasting and anodizing procedure. Macroroughness, microporosity of titanium oxide and Calcium/Phosphate ion deposition is obtained. Human mesenchymal stem cells (hMCSs) response in vitro to this treatment has been evaluated. The results obtained show an improved adhesion capacity and a higher proliferation rate when hMSCs are cultured on treated surfaces. This biomimetic modification of the titanium surface induces the expression of osteblastic differentiation markers (RUNX2 and Osteopontin) in the absence of any externally provided differentiation factor. As a main conclusion, our biomimetic surface modification could lead to a substantial improvement in osteoinduction in titanium alloy implants.
NASA Astrophysics Data System (ADS)
Elder, Delwin L.; Johnson, Lewis E.; Tillack, Andreas F.; Robinson, Bruce H.; Haffner, Christian; Heni, Wolfgang; Hoessbacher, Claudia; Fedoryshyn, Yuriy; Salamin, Yannick; Baeuerle, Benedikt; Josten, Arne; Ayata, Masafumi; Koch, Ueli; Leuthold, Juerg; Dalton, Larry R.
2018-02-01
Multi-scale (correlated quantum and statistical mechanics) modeling methods have been advanced and employed to guide the improvement of organic electro-optic (OEO) materials, including by analyzing electric field poling induced electro-optic activity in nanoscopic plasmonic-organic hybrid (POH) waveguide devices. The analysis of in-device electro-optic activity emphasizes the importance of considering both the details of intermolecular interactions within organic electro-optic materials and interactions at interfaces between OEO materials and device architectures. Dramatic improvement in electro-optic device performance-including voltage-length performance, bandwidth, energy efficiency, and lower optical losses have been realized. These improvements are critical to applications in telecommunications, computing, sensor technology, and metrology. Multi-scale modeling methods illustrate the complexity of improving the electro-optic activity of organic materials, including the necessity of considering the trade-off between improving poling-induced acentric order through chromophore modification and the reduction of chromophore number density associated with such modification. Computational simulations also emphasize the importance of developing chromophore modifications that serve multiple purposes including matrix hardening for enhanced thermal and photochemical stability, control of matrix dimensionality, influence on material viscoelasticity, improvement of chromophore molecular hyperpolarizability, control of material dielectric permittivity and index of refraction properties, and control of material conductance. Consideration of new device architectures is critical to the implementation of chipscale integration of electronics and photonics and achieving the high bandwidths for applications such as next generation (e.g., 5G) telecommunications.
Performance and durability of high emittance heat receiver surfaces for solar dynamic power systems
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Roig, David M.; Burke, Christopher A.; Shah, Dilipkumar R.
1994-01-01
Haynes 188, a cobalt-based superalloy, will be used to make thermal energy storage (TES) containment canisters for a 2 kW solar dynamic ground test demonstrator (SD GTD). Haynes 188 containment canisters with a high thermal emittance (epsilon) are desired for radiating heat away from local hot spots, improving the heating distribution, which will in turn improve canister service life. In addition to needing a high emittance, the surface needs to be durable in an elevated temperature, high vacuum environment for an extended time period. Thirty-five Haynes 188 samples were exposed to 14 different types of surface modification techniques for emittance and vacuum heat treatment (VHT) durability enhancement evaluation. Optical properties were obtained for the modified surfaces. Emittance enhanced samples were exposed to VHT for up to 2692 hours at 827 C and less than or equal to 10(exp -6) torr with integral thermal cycling. Optical properties were taken intermittently during exposure, and after final VHT exposure. The various surface modification treatments increased the emittance of pristine Haynes 188 from 0.11 up to 0.86. Seven different surface modification techniques were found to provide surfaces which met the SD GTD receiver VHT durability requirement. Of the 7 surface treatments, 2 were found to display excellent VHT durability: an alumina based (AB) coating and a zirconia based coating. The alumina based coating was chosen for the epsilon enhancement surface modification technique for the SD GTD receiver. Details of the performance and vacuum heat treatment durability of this coating and other Haynes 188 emittance surface modification techniques are discussed. Technology from this program will lead to successful demonstration of solar dynamic power for space applications, and has potential for application in other systems requiring high emittance surfaces.
Evaluation of modified titanium surfaces physical and chemical characteristics
NASA Astrophysics Data System (ADS)
Lukaszewska-Kuska, Magdalena; Leda, Bartosz; Gajdus, Przemyslaw; Hedzelek, Wieslaw
2017-11-01
Development of dental implantology is focused, among other things, on devising active surface of the implant, conditioning acceleration of the implant's integration with the bone. Increased roughness, characteristic for group of implants with developed surface, altered topography and chemically modified implant's surface determines increased implants stability. In this study four different titanium surfaces modifications: turned (TS); aluminium oxide-blasted (Al2O3); resorbable material blasted (RBM); sandblast and then etched with a mixture of acids (SAE), were evaluated in terms of surfaces topography and chemical composition prior to in vivo analysis. Topography analysis revealed two groups: one with smooth, anisotropic, undeveloped TS surface and the second group with remaining surfaces presenting rough, isotropic, developed surfaces with added during blasting procedure aluminium for Al2O3 and calcium and phosphorus for RBM. Physical and chemical modifications of titanium surface change its microstructure (typical for SAE) and increase its roughness (highest for Al2O3-blasted and RBM surfaces). The introduced modifications develop titanium surface - 10 times for SAE surfaces, 16 times for Al2O3-blasted surfaces, and 20 times for RBM surfaces.
Koehler, Birgit; Barsotti, Francesco; Minella, Marco; Landelius, Tomas; Minero, Claudio; Tranvik, Lars J; Vione, Davide
2018-02-01
Lake water constituents, such as chromophoric dissolved organic matter (CDOM) and nitrate, absorb sunlight which induces an array of photochemical reactions. Although these reactions are a substantial driver of pollutant degradation in lakes they are insufficiently understood, in particular on large scales. Here, we provide for the first time comprehensive photochemical maps covering a large geographic region. Using photochemical kinetics modeling for 1048 lakes across Sweden we simulated the steady-state concentrations of four photoreactive transient species, which are continuously produced and consumed in sunlit lake waters. We then simulated the transient-induced photochemical transformation of organic pollutants, to gain insight into the relevance of the different photoreaction pathways. We found that boreal lakes were often unfavorable environments for photoreactions mediated by hydroxyl radicals (OH) and carbonate radical anions (CO 3 - ), while photoreactions mediated by CDOM triplet states ( 3 CDOM*) and, to a lesser extent, singlet oxygen ( 1 O 2 ) were the most prevalent. These conditions promote the photodegradation of phenols, which are used as plastic, medical drug and herbicide precursors. When CDOM concentrations increase, as is currently commonly the case in boreal areas such as Sweden, 3 CDOM* will also increase, promoting its importance in photochemical pathways even more. Copyright © 2017 Elsevier Ltd. All rights reserved.
Huang, H; Akustu, Y; Arai, M; Tamura, M
2001-07-01
In order to give an effective and rapid analysis of the photochemical pollution and information for emission control strategies, a photochemical box model (PBM) was applied to one moderate summer episode, 11 July 1996, and one typical winter episode, 3 December 1996, in the center of Tokyo, Japan. The box model gave a good prediction of the photochemical pollution with minimal investment. As expected, the peak ozone in summer is higher than in winter. The NOx concentrations in winter are higher than those in summer. In summer, NO and NO2 have one peak in the morning. In winter, NO and NO2 show two peaks during the day. Three model runs including no reactions, a zero ozone boundary condition and dark reactions were conducted to understand the photochemical processes. The effects of emission reduction on the formation of the photochemical pollution in the center of Tokyo have been studied. The results show that the reduction of NMHC emission can decrease the ozone, however, the reduction of NOx emission can increase the ozone. It can be concluded that if the NOx emission are reduced, the reduction of NMHC should be more emphasized in order to decrease the ozone concentration in the center of Tokyo, Japan, especially the reduction of the NMHC from stationary source emission.
Li, Fang; Cheng, Qianxun; Tian, Qing; Yang, Bo; Chen, Qianyuan
2016-07-01
Forward osmosis (FO) has received considerable interest for water and energy related applications in recent years. Biofouling behavior and performance of cellulose triacetate (CTA) forward osmosis membranes with bioinspired surface modification via polydopamine (PD) coating and poly (ethylene glycol) (PEG) grafting (PD-g-PEG) in a submerged osmotic membrane bioreactor (OMBR) were investigated in this work. The modified membranes exhibited lower flux decline than the pristine one in OMBR, confirming that the bioinspired surface modification improved the antifouling ability of the CTA FO membrane. The result showed that the decline of membrane flux related to the increase of the salinity and MLSS concentration of the mixed liquid. It was concluded that the antifouling ability of modified membranes ascribed to the change of surface morphology in addition to the improvement of membrane hydrophilicity. The bioinspired surface modifications might improve the anti-adhesion for the biopolymers and biocake. Copyright © 2016 Elsevier Ltd. All rights reserved.
Acetylene-based pathways for prebiotic evolution on Titan
NASA Astrophysics Data System (ADS)
Abbas, O.; Schulze-Makuch, D.
2002-11-01
Due to Titan's reducing atmosphere and lack of an ozone shield, ionizing radiation penetrates the atmosphere creating ions, radicals and electrons that are highly reactive producing versatile chemical species on Titan's surface. We propose that the catalytic hydrogenation of photochemically produced acetylene may be used as simple metabolic pathway by organisms at or near Titan's surface. While the acetylene may undergo this reaction, it can also undertake several other multi-step synthetic schemes that eventually lead to the production of amino acids or other biologically important molecules. Four model synthetic schemes will be described, and their relevance in relation to prebiotic evolution on Earth is discussed.
The purpose of this study is to evaluate the Urban Airshed Model (UAM), a three-dimensional photochemical urban air quality simulation model, using field observations from the Tokyo Metropolitan Area. mphasis was placed on the photochemical smog formation mechanism under stagnant...
Luo, Jianmei; Chi, Meiling; Wang, Hongyu; He, Huanhuan; Zhou, Minghua
2013-12-01
A convenient and promising alternative to surface modification of carbon mesh anode was fulfilled by electrochemical oxidation in the electrolyte of nitric acid or ammonium nitrate at ambient temperature. It was confirmed that such an anode modification method was low cost and effective not only in improving the efficiency of power generation in microbial fuel cells (MFCs) for synthetic wastewater treatment, but also helping to reduce the period for MFCs start-up. The MFCs with anode modification in electrolyte of nitric acid performed the best, achieving a Coulombic efficiency enhancement of 71 %. As characterized, the electrochemical modification resulted in the decrease of the anode potential and internal resistance but the increase of current response and nitrogen-containing and oxygen-containing functional groups on the carbon surface, which might contribute to the enhancement on the performances of MFCs.
Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum
NASA Astrophysics Data System (ADS)
Liu, Chengjun; Zhao, Qing; Wang, Yeguang; Shi, Peiyang; Jiang, Maofa
2016-01-01
In order to obtain hydrophobic whisker for preparing polymeric composite product, the calcium sulfate whisker (CSW) prepared from flue gas desulfurization (FGD) gypsum by hydrothermal synthesis was modified by various surfactants, and the effects of some modification conditions on the hydrophobic property of CSW were investigated in this study. Sodium stearate was considered to be a suitable surfactant and its reasonable dosage was 2% of ethanol solvent. Both physical and chemical absorptions were found in the surface modification process, and the later one was suggested to preferentially occur on the CSW surface. Moreover, modifying temperature, modifying duration, and agitation speed were experimentally found to have a remarkable influence on the modification behavior. Active ratio reached 0.845 when the modification process was conducted under reasonable conditions obtained in the current work. Finally, polypropylene sheet products were prepared from modified CSW showing an excellence mechanical property.
Effects of sterilization processes on NiTi alloy: surface characterization.
Thierry, B; Tabrizian, M; Savadogo, O; Yahia, L
2000-01-01
Sterilization is required for using any device in contact with the human body. Numerous authors have studied device properties after sterilization and reported on bulk and surface modifications of many materials after processing. These surface modifications may in turn influence device biocompatibility. Still, data are missing on the effect of sterilization procedures on new biomaterials such as nickel-titanium (NiTi). Herein we report on the effect of dry heat, steam autoclaving, ethylene oxide, peracetic acid, and plasma-based sterilization techniques on the surface properties of NiTi. After processing electropolished NiTi disks with these techniques, surface analyses were performed by Auger electron spectroscopy (AES), atomic force microscopy (AFM), and contact angle measurements. AES analyses revealed a higher Ni concentration (6-7 vs. 1%) and a slightly thicker oxide layer on the surface for heat and ethylene oxide processed materials. Studies of surface topography by AFM showed up to a threefold increase of the surface roughness when disks were dry heat sterilized. An increase of the surface energy of up to 100% was calculated for plasma treated surfaces. Our results point out that some surface modifications are induced by sterilization procedures. Further work is required to assess the effect of these modifications on biocompatibility, and to determine the most appropriate methods to sterilize NiTi. Copyright 2000 John Wiley & Sons, Inc.
Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the earth
NASA Technical Reports Server (NTRS)
Kuhn, W. R.; Atreya, S. K.
1979-01-01
Photochemical calculations indicate that in the prebiotic atmosphere of earth ammonia would have been irreversibly converted to N2 in less than 40 years if the ammonia surface mixing ratio were no more than 0.0001. However, if a continuous outgassing of ammonia were maintained, radiative-equilibrium calculations indicate that a surface mixing ratio of ammonia of 0.0001 or greater would provide a sufficient greenhouse effect to keep the surface temperature above freezing. With a 0.0001 mixing ratio of ammonia, 60% to 70% of the present-day solar luminosity would be adequate to maintain surface temperatures above freezing. A lower limit to the time constant for accumulation of an amount of nitrogen equivalent to the present day value is 10 my if the outgassing were such as to provide a continuous surface mixing ratio of ammonia of at least 0.00001.
NASA Astrophysics Data System (ADS)
Kawagucci, S.; Narita, T.; Obata, H.; Ogawa, H.; Gamo, T.
2009-12-01
Biological nitrogen fixation is a key metabolism controlling marine N-cycling and also known as a main H2 source. Recently, it was proposed that a monitoring of surface H2 concentration could be used quickly to figure out the spatial extent of biological nitrogen fixation activity without onboard incubation required for currently used methods for detecting the activity. However, H2 behavior in ocean water was still unresolved. This study carried out vertical observation of H2 and CO concentrations in south of Japan, western North Pacific. Because carbon monoxide, CO, in seawater has no relation with nitrogen fixation metabolism and is produced dominantly by the photochemical reaction, which is an altanative H2 source, simultaneous observation and comparison of H2 and CO concentration is helpful to investigate H2 behavior in ocean water. Reductive gases in seawater were observed during the R/V Tansei-maru KT-08-14 cruise by using a wired CTD-CMS (CTD-carousel multiple sampling) system to conduct vertical sampling (at most 200 m depth) and by using a plastic bucket for sampling surface seawater. The sample in the Niskin-X bottle was directed to the bottom of a 120 mL brown-colored glass vial allowed to overflow by 2 volumes before the tube was slowly withdrawn. After the addition of 0.5 mL HgCl2-saturated solution for poisoning, the PTFE-lined butyl-gum septum was used to cap the vials. Molecular hydrogen (H2) and carbon monoxide (CO) were analyzed at an onboard laboratory within 6 hours after subsampling. 20 mL of sample water was substituted by 20 mL of H2- and CO-free air using a gas-tight syringe; then the vial was put on an automatic shaker and shaken upside down for 6 minutes to achieve a complete equilibrium between the dissolved and head space gases in the vial. The equilibrated headspace was taken by another gas-tight syringe and then injected into a gas chromatograph equipped with a trace reduced gas detector. Vertical distribution of dissolved H2 and CO concentration were observed. Apparently different vertical distributions between H2 and CO concentration were revealed at all the observed stations. At a station where N-nutrient was depleted through surface mixed layer, H2 was supersaturated at the surface while CO concentration was constant through the depths. In contrast, at another station where some amount of terrestrial humic matter was introduced into the surface, H2 concentration was constantly undersaturated through the depth while vertical distribution of CO concentration showed the highest at the surface and exponentially decreased to deep. These facts suggest that H2 production involved with nitrogen fixation played an important role for H2 behavior in ocean water while photochemical H2 production would be a minor process. In addition to the surface, H2 supersaturation accoumpanied with little CO concentration rise were observed at depths just below the mixed layer in pycnocline with Chlorophyll maximum.
Porewater inputs drive Fe redox cycling in the water column of a temperate mangrove wetland
NASA Astrophysics Data System (ADS)
Holloway, Ceylena J.; Santos, Isaac R.; Rose, Andrew L.
2018-07-01
Iron is a vital micronutrient within coastal marine ecosystems, playing an integral role in the scale and dynamics of primary production and carbon cycling in the world's oceans. We investigated the relative importance of in situ Fe(II) production from photochemical, microbial and thermal Fe reduction in the surface water column as well as advective porewater inputs in a temperate saline wetland in Australia containing mangrove and saltmarsh vegetation. The diel average concentration of Fe(II) (0.63 ± 0.21 μM, accounting for >70% of the total dissolved Fe present in surface water) was much higher than commonly reported in oxygenated marine waters despite high dissolved oxygen concentrations (81-112% saturation), pH (7.7-7.8) and salinity (33-36) that favor Fe oxidation. In situ production of Fe(II) in the surface water column was primarily driven by microbial processes rather than photochemical and thermal reduction, with a maximum production rate of 4.9 × 10-3 nM s-1. Advective porewater Fe(II) inputs to the wetland averaged over a diel cycle (3.0 × 10-1 nM s-1) were an order of magnitude greater than the combined Fe(II) production rate from autochthonous water column processes (1.0 × 10-2 nM s-1). A bottom up model based on the estimated individual fluxes was used to explain the high Fe(II) concentrations measured during a 24 h time series experiment. Combined, different lines of evidence suggest that advective porewater exchange provides significant quantities of Fe(II) to the estuarine wetland.
NASA Astrophysics Data System (ADS)
Newchurch, M.; Al-Saadi, J. A.; Alvarez, R. J.; Burris, J.; Cantrell, W.; Chen, G.; De Young, R.; Hardesty, R.; Hoff, R. M.; Kaye, J. A.; kuang, S.; Langford, A. O.; LeBlanc, T.; McDermid, I. S.; McGee, T. J.; Pierce, R.; Senff, C. J.; Sullivan, J. T.; Szykman, J.; Tonnesen, G.; Wang, L.
2012-12-01
An interagency research initiative for ground-based ozone and aerosol lidar profiling recently funded by NASA has important applications to air-quality studies in addition to the goal of serving the GEO-CAPE and other air-quality missions. Ozone is a key trace-gas species, a greenhouse gas, and an important pollutant in the troposphere. High spatial and temporal variability of ozone affected by various physical and photochemical processes motivates the high spatio-temporal lidar profiling of tropospheric ozone for improving the simulation and forecasting capability of the photochemical/air-quality models, especially in the boundary layer where the resolution and precision of satellite retrievals are fundamentally limited. It is well known that there are large discrepancies between the surface and upper-air ozone due to titration, surface deposition, diurnal processes, free-tropospheric transport, and other processes. Near-ground ozone profiling has been technically challenging for lidars due to some engineering difficulties, such as near-range saturation, field-of-view overlap, and signal processing issues. This initiative provides an opportunity for us to solve those engineering issues and redesign the lidars aimed at long-term, routine ozone/aerosol observations from the near surface to the top of the troposphere at multiple stations (i.e., NASA/GSFC, NASA/LaRC, NASA/JPL, NOAA/ESRL, UAHuntsville) for addressing the needs of NASA, NOAA, EPA and State/local AQ agencies. We will present the details of the science investigations, current status of the instrumentation development, data access/protocol, and the future goals of this lidar network. Ozone lidar/RAQMS comparison of laminar structures.
Modeling polyvinyl chloride Plasma Modification by Neural Networks
NASA Astrophysics Data System (ADS)
Wang, Changquan
2018-03-01
Neural networks model were constructed to analyze the connection between dielectric barrier discharge parameters and surface properties of material. The experiment data were generated from polyvinyl chloride plasma modification by using uniform design. Discharge voltage, discharge gas gap and treatment time were as neural network input layer parameters. The measured values of contact angle were as the output layer parameters. A nonlinear mathematical model of the surface modification for polyvinyl chloride was developed based upon the neural networks. The optimum model parameters were obtained by the simulation evaluation and error analysis. The results of the optimal model show that the predicted value is very close to the actual test value. The prediction model obtained here are useful for discharge plasma surface modification analysis.
Volumetrical Characterization of Sheet Molding Compounds
Calvimontes, Alfredo; Grundke, Karina; Müller, Anett
2010-01-01
For a comprehensive study of Sheet Molding Compound (SMC) surfaces, topographical data obtained by chromatic confocal imaging were submitted systematically for the development of a profile model to understand the formation of cavities on the surface. In order to qualify SMC surfaces and to predict their coatability, a characterization of cavities is applied. To quantify the effect of surface modification treatments, a new parameter (Surface Relative Smooth) is presented, applied and probed. The parameter proposed can be used for any surface modification of any solid material. PMID:28883370
Photochemically Switching Diamidocarbene Spin States Leads to Reversible Büchner Ring Expansions.
Perera, Tharushi A; Reinheimer, Eric W; Hudnall, Todd W
2017-10-18
The discovery of thermal and photochemical control by Woodward and Hoffmann revolutionized how we understand chemical reactivity. Similarly, we now describe the first example of a carbene that exhibits differing thermal and photochemical reactivity. When a singlet ground-state N,N'-diamidocarbene 1 was photolyzed at 380 nm, excitation to a triplet state was observed. The triplet-state electronic structure was characteristic of the expected biradical σ 1 p π 1 spin configuration according to a combination of spectroscopic and computational methods. Surprisingly, the triplet state of 1 was found to engage a series of arenes in thermally reversible Büchner ring expansion reactions, marking the first examples where both cyclopropanation and ring expansion of arenes were rendered reversible. Not only are these photochemical reactions different from the known thermal chemistry of 1, but the reversibility enabled us to perform the first examples of photochemically induced arene exchange/expansion reactions at a single carbon center.
Karaköse, Hande; Jaiswal, Rakesh; Deshpande, Sagar; Kuhnert, Nikolai
2015-04-08
Mono- and diacyl chlorogenic acids undergo photochemical trans-cis isomerization under ultraviolet (UV) irradiation. The photochemical equilibrium composition was established for eight selected derivatives. In contrast to all other dicaffeoylquinic acid derivatives, cynarin (1,3-dicaffeoylquinic acid) undergoes a [2 + 2] photochemical cycloaddition reaction, constituting a first example of Schmidt's law in a natural product family. The relevance of photochemical isomerization in agricultural practice was investigated using 120 samples of Stevia rebaudiana leave samples grown under defined cultivation conditions. Ratios of cis to trans chlorogenic acids were determined in leaf samples and correlated with climatic and harvesting conditions. The data indicate a clear correlation between the formation of cis-caffeoyl derivatives and sunshine hours prior to harvesting and illustrate the relevance of UV exposure to plant material affecting its phytochemical composition.
NASA Astrophysics Data System (ADS)
Jia, Rongliang; Zhao, Yun; Gao, Yanhong; Hui, Rong; Yang, Haotian; Wang, Zenru; Li, Yixuan
2018-02-01
Biocrust moss is an essential soil surface bio-cover. It can represent the latest succession stage among the diverse range of surface-dwelling cryptogams (e.g., cyanobacteria, green algae, and lichen, which are also referred to as biocrusts), and it can make a major contribution to soil stability and fertility in many arid sandy desert ecosystems. The soil surface represents a very large ecological niche that is poikilohydric in nature. Biocrust moss is therefore highly susceptible to drought and sand burial, which are two ubiquitous stressors in arid sandy deserts. However, little information is available regarding the mechanism by which biocrust moss can survive and flourish in these habitats when stressed simultaneously by the two stressors. The combined effects of drought and sand burial were evaluated in a field experiment using the predominant biocrust moss, Bryum argenteum Hedw., in the Tengger Desert, China. Drought was simulated by applying distilled water in three artificial rainfall regimes at 8-day intervals in spring and autumn: 4 and 6 mm (average rainfall, control), 2 and 3 mm (double drought), and 1 and 1.5 mm (4-fold drought), respectively. The effect of sand burial was determined by applying six treatments, i.e., sand depths of 0 (control), 0.5, 1, 2, 4, and 10 mm. The four parameters of chlorophyll a content, PSII photochemical efficiency, regeneration potential, and shoot upgrowth were evaluated in the moss. It was found that the combined effects of drought and sand burial did not exacerbate the single negative effects of the four parameters tested. Drought significantly ameliorated the negative effects of deep-sand burial on the retention of chlorophyll a content, PSII photochemical efficiency, and the regeneration potential of B. argenteum. Sand burial diminished and even reversed the negative effects of drought on the maintenance of chlorophyll a content, PSII photochemical efficiency, and regeneration potential. Although drought and sand burial imposed an additive negative effect on shoot upgrowth, which suggested a trade-off between growth ability and stress tolerance, their mutually antagonistic effect on the physiological vigor of B. argenteum provided an opportunity for the biocrust moss to overcome the two co-occurring stressors. In addition to providing a strong stress tolerance, drought and sand burial may provide an important mechanism for the biodiversity maintenance of biocrust mosses in arid sandy ecosystems.
Modeling of meteorology, chemistry and aerosol for the 2017 Utah Winter Fine Particle Study
NASA Astrophysics Data System (ADS)
McKeen, S. A.; Angevine, W. M.; McDonald, B.; Ahmadov, R.; Franchin, A.; Middlebrook, A. M.; Fibiger, D. L.; McDuffie, E. E.; Womack, C.; Brown, S. S.; Moravek, A.; Murphy, J. G.; Trainer, M.
2017-12-01
The Utah Winter Fine Particle Study (UWFPS-17) field project took place during January and February of 2017 within the populated region of the Great Salt Lake, Utah. The study focused on understanding the meteorology and chemistry associated with high particulate matter (PM) levels often observed near Salt Lake City during stable wintertime conditions. Detailed composition and meteorological observations were taken from the NOAA Twin-Otter aircraft and several surface sites during the study period, and extremely high aerosol conditions were encountered for two cold-pool episodes occurring in the last 2 weeks of January. A clear understanding of the photochemical and aerosol processes leading to these high PM events is still lacking. Here we present high spatiotemporal resolution simulations of meteorology, PM and chemistry over Utah from January 13 to February 1, 2017 using the WRF/Chem photochemical model. Correctly characterizing the meteorology is difficult due to the complex terrain and shallow inversion layers. We discuss the approach and limitations of the simulated meteorology, and evaluate low-level pollutant mixing using vertical profiles from missed airport approaches by the NOAA Twin-Otter performed routinely during each flight. Full photochemical simulations are calculated using NOx, ammonia and VOC emissions from the U.S. EPA NEI-2011 emissions inventory. Comparisons of the observed vertical column amounts of NOx, ammonia, aerosol nitrate and ammonium with model results shows the inventory estimates for ammonia emissions are low by a factor of four and NOx emissions are low by nearly a factor of two. The partitioning of both nitrate and NH3 between gas and particle phase depends strongly on the NH3 and NOx emissions to the model and calculated NOx to nitrate conversion rates. These rates are underestimated by gas-phase chemistry alone, even though surface snow albedo increases photolysis rates by nearly a factor of two. Several additional conversion mechanisms are added and evaluated in the model, including: heterogeneous nitrate to aerosol formation, catalytic conversion of NO2 to HONO and HNO3 at the snow surface, and direct HONO emissions from vehicles. Each mechanism contributes to the model matching observed NOx and total nitrate levels within 25% for median statistics over the study period.
NASA Astrophysics Data System (ADS)
Hayes, Heather J.
1999-11-01
Three distinct heterogeneous polymer modification reactions are explored in this work. The first is a bulk reaction commonly conducted on polyolefins---the free radical addition of maleic anhydride. This reaction was run using supercritical carbon dioxide (SC CO2) as the solvent. The second was the chemical surface modification of an amorphous fluorocopolymer of tetrafluoroethylene and a perfluorodioxole monomer (Teflon AF). Several reactions were explored to reduce the surface of the fluorocopolymer for the enhancement of wettability. The last modification was also on Teflon AF and involved the physical modification of the surface through the transport polymerization of xylylene in order to synthesize a novel bilayer membrane. The bulk maleation of poly-4-methyl-1-pentene (PMP) was the focus of the first project. SC CO2 was utilized as both solvent and swelling agent to promote this heterogeneous reaction and led to successful grafting of anhydride groups on both PMP and linear low density polyethylene. Varying the reaction conditions and reagent concentrations allowed optimization of the reaction. The grafted anhydride units were found to exist as single maleic and succinic grafts, and the PMP became crosslinked upon maleation. The surface of a fluoropolymer can be difficult to alter. An examination of three reactions was made to determine the reactivity of Teflon AF: sodium naphthalenide treatment (Na-Nap), aluminum metal modification through deposition and dissolution, and mercury/ammonia photosensitization. The fluorocopolymer with the lower perfluorodioxole percentage was found to be more reactive towards modification with the Na-Nap treatment. The other modification reactions appeared to be nearly equally reactive toward both fluorocopolymers. The functionality of the Na-Nap-treated surface was examined in detail with the use of several derivatization reactions. In the final project, an asymmetric gas separation membrane was synthesized using Teflon AF as the highly permeable support layer and chemical vapor deposited poly(p-xylylene) (PPX) as the thin selective layer. This bilayer membrane has oxygen and nitrogen permeability values close to those predicted by the series resistance model. To enhance the weak adhesive bond between Teflon AF and PPX, Na-Nap reduction was used to modify the Teflon AF surface prior to the vapor deposition polymerization of di-p-xylylene monomer.
Rudolph, Andreas; Teske, Michael; Illner, Sabine; Kiefel, Volker; Sternberg, Katrin; Grabow, Niels; Wree, Andreas; Hovakimyan, Marina
2015-01-01
Purpose Drug-eluting stents (DES) based on permanent polymeric coating matrices have been introduced to overcome the in stent restenosis associated with bare metal stents (BMS). A further step was the development of DES with biodegradable polymeric coatings to address the risk of thrombosis associated with first-generation DES. In this study we evaluate the biocompatibility of biodegradable polymer materials for their potential use as coating matrices for DES or as materials for fully bioabsorbable vascular stents. Materials and Methods Five different polymers, poly(L-lactide) PLLA, poly(D,L-lactide) PDLLA, poly(L-lactide-co-glycolide) P(LLA-co-GA), poly(D,L-lactide-co-glycolide) P(DLLA-co-GA) and poly(L-lactide-co-ε-caprolactone), P(LLA-co-CL) were examined in vitro without and with surface modification. The surface modification of polymers was performed by means of wet-chemical (NaOH and ethylenediamine (EDA)) and plasma-chemical (O2 and NH3) processes. The biocompatibility studies were performed on three different cell types: immortalized mouse fibroblasts (cell line L929), human coronary artery endothelial cells (HCAEC) and human umbilical vein endothelial cells (HUVEC). The biocompatibility was examined quantitatively using in vitro cytotoxicity assay. Cells were investigated immunocytochemically for expression of specific markers, and morphology was visualized using confocal laser scanning (CLSM) and scanning electron (SEM) microscopy. Additionally, polymer surfaces were examined for their thrombogenicity using an established hemocompatibility test. Results Both endothelial cell types exhibited poor viability and adhesion on all five unmodified polymer surfaces. The biocompatibility of the polymers could be influenced positively by surface modifications. In particular, a reproducible effect was observed for NH3-plasma treatment, which enhanced the cell viability, adhesion and morphology on all five polymeric surfaces. Conclusion Surface modification of polymers can provide a useful approach to enhance their biocompatibility. For clinical application, attempts should be made to stabilize the plasma modification and use it for coupling of biomolecules to accelerate the re-endothelialization of stent surfaces in vivo. PMID:26641662
Machinability of Minor Wooden Species before and after Modification with Thermo-Vacuum Technology
Sandak, Jakub; Goli, Giacomo; Cetera, Paola; Sandak, Anna; Cavalli, Alberto; Todaro, Luigi
2017-01-01
The influence of the thermal modification process on wood machinability was investigated with four minor species of low economic importance. A set of representative experimental samples was machined to the form of disks with sharp and dull tools. The resulting surface quality was visually evaluated by a team of experts according to the American standard procedure ASTM D-1666-87. The objective quantification of the surface quality was also done by means of a three dimensions (3D) surface scanner for the whole range of grain orientations. Visual assessment and 3D surface analysis showed a good agreement in terms of conclusions. The best quality of the wood surface was obtained when machining thermally modified samples. The positive effect of the material modification was apparent when cutting deodar cedar, black pine and black poplar in unfavorable conditions (i.e., against the grain). The difference was much smaller for an easy-machinability specie such as Italian alder. The use of dull tools resulted in the worst surface quality. Thermal modification has shown a very positive effect when machining with dull tools, leading to a relevant increment of the final surface smoothness. PMID:28772480
Machinability of Minor Wooden Species before and after Modification with Thermo-Vacuum Technology.
Sandak, Jakub; Goli, Giacomo; Cetera, Paola; Sandak, Anna; Cavalli, Alberto; Todaro, Luigi
2017-01-28
The influence of the thermal modification process on wood machinability was investigated with four minor species of low economic importance. A set of representative experimental samples was machined to the form of disks with sharp and dull tools. The resulting surface quality was visually evaluated by a team of experts according to the American standard procedure ASTM D-1666-87. The objective quantification of the surface quality was also done by means of a three dimensions (3D) surface scanner for the whole range of grain orientations. Visual assessment and 3D surface analysis showed a good agreement in terms of conclusions. The best quality of the wood surface was obtained when machining thermally modified samples. The positive effect of the material modification was apparent when cutting deodar cedar, black pine and black poplar in unfavorable conditions (i.e., against the grain). The difference was much smaller for an easy-machinability specie such as Italian alder. The use of dull tools resulted in the worst surface quality. Thermal modification has shown a very positive effect when machining with dull tools, leading to a relevant increment of the final surface smoothness.
Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide
NASA Astrophysics Data System (ADS)
Bai, Liqiang; Zhu, Liangjun; Min, Sijia; Liu, Lin; Cai, Yurong; Yao, Juming
2008-03-01
The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B ( CB) antimicrobial peptide, (NH 2)-NGIVKAGPAIAVLGEAAL-CONH 2, using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC·HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI).
NASA Astrophysics Data System (ADS)
Paredes, Virginia; Salvagni, Emiliano; Rodríguez-Castellón, Enrique; Manero, José María
2017-08-01
Metals are widely employed for many biological artificial replacements, and it is known that the quality and the physical/chemical properties of the surface are crucial for the success of the implant. Therefore, control over surface implant materials and their elastic moduli may be crucial to avoid undesired effects. In this study, surface modification upon cleaning and activation of a low elastic modulus Ti alloy (Ti25Hf21Nb) was investigated. Two different methods, oxygen plasma (OP) cleaning and piranha (PI) solution, were studied and compared. Both surface treatments were effective for organic contaminant removal and to increase the Ti-oxide layer thickness rather than other metal-oxides present at the surface, which is beneficial for biocompatibility of the material. Furthermore, both techniques drastically increased hydrophilicity and introduced oxidation and hydroxylation (OH)-functional groups at the surface that may be beneficial for further chemical modifications. However, these treatments did not alter the surface roughness and bulk material properties. The surfaces were fully characterized in terms of surface roughness, wettability, oxide layer composition, and hydroxyl surface density through analytical techniques (interferometry, X-ray photoelectron spectroscopy (XPS), contact angle, and zinc complexation). These findings provide essential information when planning surface modifications for cleanliness, oxide layer thickness, and surface hydroxyl density, as control over these factors is essential for many applications, especially in biomaterials.
NASA Astrophysics Data System (ADS)
Cao, Jiliang; Wang, Chaoxia
2017-05-01
Multifunctional silk fabrics with electrical conductive, anti-ultraviolet and water repellent were successfully prepared by surface modification with graphene oxide (GO). The yellow-brown GO deposited on the surface of silk fabric was converted into graphitic black reduced graphene (RGO) by sodium hydrosulfite. The surface properties of silk fabrics were changed by repeatedly RGO coating process, which have been proved by SEM and XPS. The SEM results showed that the RGO sheets were successive form a continuously thin film on the surface of silk fabrics, and the deposition of GO or RGO also can be proved by XPS. The electrical conductivity was tested by electrical surface resistance value of the silk fabric, the surface resistance decreased with increasing of RGO surface modification times, and a low surface resistance value reached to 3.24 KΩ cm-1 after 9 times of modification, indicating the silk obtained excellent conductivity. The UPF value of one time GO modification silk fabric (silk-1RGO) was enhanced significantly to 24.45 in comparison to 10.40 of original silk. The contact angle of RGO coating silk samples was all above of 120°. The durability of RGO coated silk fabrics was tested by laundering. The electrical surface resistance of silk-4RGO (65.74 KΩ cm-1), silk-6RGO (15.54 KΩ cm-1) and silk-8RGO (3.86 KΩ cm-1) fabrics was up to 86.82, 22.30 and 6.57 KΩ cm-1 after 10 times of standard washing, respectively. The UPF value, contact angle and color differences of RGO modified silk fabric slightly changed before and after 10 times of standard washing. Therefore, the washing fastness of electric conduction, anti-ultraviolet and water repellent multifunctional silk fabrics was excellent.
Taylor, Alicia A.; Chowdhury, Indranil; Gong, Amy S.; Cwiertny, David M.; Walker, Sharon L.
2014-01-01
Dissolved organic matter in combination with iron oxides has been shown to facilitate photochemical disinfection through the production of reactive oxygen species (ROS) under UV and visible light. However, due to the extremely short lifetime of these radicals, the disinfection effciency is limited by the successful transport of ROS to bacterial surfaces. This study was designed to quantitatively investigate three collector surfaces with various potentials to produce ROS [bare quartz, hematite (α-Fe2O3) coated quartz, and Suwannee River humic acid (SRHA)] and the effects of extracellular polymeric substance (EPS) (full or partial coating) and solution chemistry (ionic strength, IS) on the interactions between bacteria and the ROS-producing substrates. With few exceptions, bacterial deposition studies in a parallel plate (PP) flow chamber have revealed increasing cell adhesion with IS. Furthermore, interactions between collector surfaces and cells can be explained by electrostatic forces, with negatively charged SRHA reducing and positively charged α-Fe2O3 enhancing bacterial deposition significantly. Increased deposition was also observed with full EPS content, indicating the ability of EPS to facilitate interaction between cells and surfaces in the aquatic environment. In complementary disinfection studies conducted with simulated light, viability loss was observed for cells fully coated with EPS when attached to α-Fe2O3 under all IS conditions. Based upon our prior study in which EPS was found to not inhibit hydroxyl radical activity toward bacteria, we proposed that EPS might therefore promote disinfection by facilitating cell attachment to ROS-producing surfaces where higher concentrations of ROS are expected at closer proximities to reactive substrates (e.g., SRHA and α-Fe2O3). Our findings on the mechanism and controlling factors of cell interactions with photoactive substrates provide insight as to the role of ionic strength in photochemical disinfection processes. PMID:24362649
Possible Niches for Extant Life on Titan in Light of Cassini/Huygens Results
NASA Astrophysics Data System (ADS)
Grinspoon, D. H.; Bullock, M. A.; Spencer, J. R.; Schulze-Makuch, D.
2005-08-01
Results from the first year of the Cassini mission show that Titan has an active surface with few impact craters and abundant hints of cryovolcanism, tectonism, aeolian and fluvial activity (Porco et al., 2005; Elachi et al., 2005). Methane clouds and surface characteristics strongly imply the presence of an active global methane cycle analogous to Earth's hydrological cycle. Astrobiological interest in Titan has previously focused on possible prebiological chemical evolution on a moon with a thick nitrogen atmosphere and rich organic chemistry (Raulin and Owen, 2002). Yet the emerging new picture of Titan has raised prospects for the possibility of extant life. Several key requirements for life appear to be present, including liquid reservoirs, organic molecules and ample energy sources. One promising location may be hot springs in contact with hydrocarbon reservoirs. Hydrogenation of photochemically produced acetylene could provide metabolic energy for near-surface organisms and also replenish atmospheric methane (Schulze-Makuch and Grinspoon, 2005). The energy released could be used by organisms to drive endothermic reactions, or go into heating their surroundings, helping to create their own liquid microenvironments. In environments which are energy-rich but liquid-poor, like the near-surface of Titan, natural selection may favor organisms that use their ``waste heat" to melt their own watering holes. Downward transport of high energy photochemical compounds could provide an energy supply for near-surface organisms which could be used, in part, to maintain the liquid environments conducive to life. We will present the results of thermal modeling designed to test the feasibility of biothermal melting on Titan. C. Porco and the Cassini Imaging Team (2005) Nature 434, 159-168; C. Elachi et al, Science, 308, 970-974; F. Raulin and T. Owen (2002) Space Sci. Rev. 104, 377 - 394.; D. Schulze-Makuch and D. H. Grinspoon (2005) Astrobiology, in press.
Baker, K R; Woody, M C; Valin, L; Szykman, J; Yates, E L; Iraci, L T; Choi, H D; Soja, A J; Koplitz, S N; Zhou, L; Campuzano-Jost, Pedro; Jimenez, Jose L; Hair, J W
2018-10-01
The Rim Fire was one of the largest wildfires in California history, burning over 250,000 acres during August and September 2013 affecting air quality locally and regionally in the western U.S. Routine surface monitors, remotely sensed data, and aircraft based measurements were used to assess how well the Community Multiscale Air Quality (CMAQ) photochemical grid model applied at 4 and 12 km resolution represented regional plume transport and chemical evolution during this extreme wildland fire episode. Impacts were generally similar at both grid resolutions although notable differences were seen in some secondary pollutants (e.g., formaldehyde and peroxyacyl nitrate) near the Rim fire. The modeling system does well at capturing near-fire to regional scale smoke plume transport compared to remotely sensed aerosol optical depth (AOD) and aircraft transect measurements. Plume rise for the Rim fire was well characterized as the modeled plume top was consistent with remotely sensed data and the altitude of aircraft measurements, which were typically made at the top edge of the plume. Aircraft-based lidar suggests O 3 downwind in the Rim fire plume was vertically stratified and tended to be higher at the plume top, while CMAQ estimated a more uniformly mixed column of O 3 . Predicted wildfire ozone (O 3 ) was overestimated both at the plume top and at nearby rural and urban surface monitors. Photolysis rates were well characterized by the model compared with aircraft measurements meaning aerosol attenuation was reasonably estimated and unlikely contributing to O 3 overestimates at the top of the plume. Organic carbon was underestimated close to the Rim fire compared to aircraft data, but was consistent with nearby surface measurements. Periods of elevated surface PM 2.5 at rural monitors near the Rim fire were not usually coincident with elevated O 3 . Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Singh, Babita K.; Parwate, Dilip V.; Das Sarma, Indrani B.; Shukla, Sudhir K.
2010-10-01
The effect of gamma radiation from 60Co source and 2 MeV e-beam was studied on two thermolabile cephalosporin antibiotics viz cefdinir and cefixime in solid state. The parameters studied to assess radiolytic degradation were loss of chemical and microbiological potency, change in optical rotation, electronic and vibrational absorption characteristics, thermal behavior and color modification. ESR spectroscopic study, HPLC related impurity profile, thermogram and Raman spectrum are applied in deducing the nature of radiolytic impurities and their formation hypotheses. Cefixime is radiation sensitive, whereas cefdinir has acceptable radiation resistance at 25 kGy dose. The nature of radiolytic related impurities and their concentrations indicates that the lactam ring is not highly susceptible to direct radiation attack, which otherwise is considered very sensitive to stress (thermal, chemical and photochemical).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Haesung; Chadha, Tandeep S.; Kim, Doyoon
This study introduces a new and previously unconsidered fast abiotic formation of Mn(IV) oxides. We report photochemically assisted fast abiotic oxidation of Mn 2+ (aq) to Mn(IV) (s) by superoxide radicals generated from nitrate photolysis. This photochemical pathway generates randomly stacked layered birnessite (δ-MnO 2) nanosheets.
Changes of Photochemical Properties of Dissolved Organic Matter During a Hydrological Year
NASA Astrophysics Data System (ADS)
Porcal, P.; Dillon, P. J.
2009-05-01
The fate of dissolved organic matter (DOM) in lakes and streams is significantly affected by photochemical transformation of DOM. A series of laboratory photochemical experiments has been conducted to describe long term changes in photochemical properties of DOM. The stream samples used in this study originated from three different watersheds in Dorset area (Ontario, Canada), the first watershed has predominantly coniferous cove, the second one is dominated by maple and birch, and a large wetland dominates to the third one. The first order kinetic constant rate was used as a suitable characteristic of photochemical properties of DOM. The higher rates were observed in samples from watershed dominated by coniferous forest while the lower rates were determined in deciduous forest. Kinetic rates from all three watersheds showed sinusoidal pattern during the hydrological year. The rates increased steadily during autumn and winter and decreased during spring and summer. The highest values were observed during the spring melt events when the fresh DOM was flushed out from terrestrial sources. The minimum rate constants were in summer when the discharge was lower. The photochemical properties of DOM changes during the hydrological year and correspond to the seasonal cycles of terrestrial organic matter.
Ban, Seok-Gyu; Kim, Kyung-Tae; Choi, Byung Doo; Jo, Jeong-Wan; Kim, Yong-Hoon; Facchetti, Antonio; Kim, Myung-Gil; Park, Sung Kyu
2017-08-09
Although transparent conducting oxides (TCOs) have played a key role in a wide range of solid-state electronics from conventional optoelectronics to emerging electronic systems, the processing temperature and conductivity of solution-processed materials seem to be far exceeding the thermal limitations of soft materials and insufficient for high-perfomance large-area systems, respectively. Here, we report a strategy to form highly conductive and scalable solution-processed oxide materials and their successful translation into large-area electronic applications, which is enabled by photoassisted postfunctionalization at low temperature. The low-temperature fabrication of indium-tin-oxide (ITO) thin films was achieved by using photoignited combustion synthesis combined with photoassisted reduction process under hydrogen atmosphere. It was noteworthy that the photochemically activated hydrogens on ITO surface could be triggered to facilitate highly crystalline oxygen deficient structure allowing significant increase of carrier concentration and mobility through film microstructure modifications. The low-temperature postfunctionalized ITO films demonstrated conductivity of >1607 S/cm and sheet resistance of <104 Ω/□ under the process temperature of less than 300 °C, which are comparable to those of vacuum-deposited and high-temperature annealed ITO films. Based on the photoassisted postfunctionalization route, all-solution-processed transparent metal-oxide thin-film-transistors and large-area integrated circuits with the ITO bus lines were demonstrated, showing field-effect mobilities of >6.5 cm 2 V -1 s -1 with relatively good operational stability and oscillation frequency of more than 1 MHz in 7-stage ring oscillators, respectively.
Improving Joint Function Using Photochemical Hydrogels for Articular Surface Repair
2015-10-01
formulations permitted new cartilage matrix formation. The control group where isolated chondrocytes were directly encapsulated in the hydrogel... control group was consistent with the histological results showing the least amount of total GAG among the groups (Figure 3a). The cells in this group ... control , a subset group of gels without tethered growth factor was exposed to 0.3 nM (7.5 ng/mL) soluble TGF-b1. Media was changed every 3 days. Samples
NASA Technical Reports Server (NTRS)
Coulbert, C. D.; Gupta, A.; Pitts, J.
1980-01-01
Cumulative UV radiation can be measured by low-cost polymer film that is unaffacted by visible light. Useful for virtually any surface, film can help paint and plastics manufacturers determine how well their products stand up against UV radiation. Actinometer film uses photochemically sensitive compound that changes its chemical composition in response to solar radiation. Extent of chemical conversion depends on length exposure and can be measured by examining film sample with spectrophotometer. Film can be exposed from several seconds up to month.
Molecular recognition on a cavitand-functionalized silicon surface.
Biavardi, Elisa; Favazza, Maria; Motta, Alessandro; Fragalà, Ignazio L; Massera, Chiara; Prodi, Luca; Montalti, Marco; Melegari, Monica; Condorelli, Guglielmo G; Dalcanale, Enrico
2009-06-03
A Si(100) surface featuring molecular recognition properties was obtained by covalent functionalization with a tetraphosphonate cavitand (Tiiii), able to complex positively charged species. Tiiii cavitand was grafted onto the Si by photochemical hydrosilylation together with 1-octene as a spatial spectator. The recognition properties of the Si-Tiiii surface were demonstrated through two independent analytical techniques, namely XPS and fluorescence spectroscopy, during the course of reversible complexation-guest exchange-decomplexation cycles with specifically designed ammonium and pyridinium salts. Control experiments employing a Si(100) surface functionalized with a structurally similar, but complexation inactive, tetrathiophosphonate cavitand (TSiiii) demonstrated no recognition events. This provides evidence for the complexation properties of the Si-Tiiii surface, ruling out the possibility of nonspecific interactions between the substrate and the guests. The residual Si-O(-) terminations on the surface replace the guests' original counterions, thus stabilizing the complex ion pairs. These results represent a further step toward the control of self-assembly of complex supramolecular architectures on surfaces.
Surface modification of ferritic steels using MEVVA and duoplasmatron ion sources
NASA Astrophysics Data System (ADS)
Kulevoy, Timur V.; Chalyhk, Boris B.; Fedin, Petr A.; Sitnikov, Alexey L.; Kozlov, Alexander V.; Kuibeda, Rostislav P.; Andrianov, Stanislav L.; Orlov, Nikolay N.; Kravchuk, Konstantin S.; Rogozhkin, Sergey V.; Useinov, Alexey S.; Oks, Efim M.; Bogachev, Alexey A.; Nikitin, Alexander A.; Iskandarov, Nasib A.; Golubev, Alexander A.
2016-02-01
Metal Vapor Vacuum Arc (MEVVA) ion source (IS) is a unique tool for production of high intensity metal ion beam that can be used for material surface modification. From the other hand, the duoplasmatron ion source provides the high intensity gas ion beams. The MEVVA and duoplasmatron IS developed in Institute for Theoretical and Experimental Physics were used for the reactor steel surface modification experiments. Response of ferritic-martensitic steel specimens on titanium and nitrogen ions implantation and consequent vacuum annealing was investigated. Increase in microhardness of near surface region of irradiated specimens was observed. Local chemical analysis shows atom mixing and redistribution in the implanted layer followed with formation of ultrafine precipitates after annealing.
Surface modification using low energy ground state ion beams
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)
1990-01-01
A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.
Surface modification of biodegradable magnesium and its alloys for biomedical applications
Tian, Peng; Liu, Xuanyong
2015-01-01
Magnesium and its alloys are being paid much attention recently as temporary implants, such as orthopedic implants and cardiovascular stents. However, the rapid degradation of them in physiological environment is a major obstacle preventing their wide applications to date, which will result in rapid mechanical integrity loss or even collapse of magnesium-based implants before injured tissues heal. Moreover, rapid degradation of the magnesium-based implants will also cause some adverse effects to their surrounding environment, such as local gas cavity around the implant, local alkalization and magnesium ion enrichment, which will reduce the integration between implant and tissue. So, in order to obtain better performance of magnesium-based implants in clinical trials, special alloy designs and surface modifications are prerequisite. Actually, when a magnesium-based implant is inserted in vivo, corrosion firstly happens at the implant-tissue interface and the biological response to implant is also determined by the interaction at this interface. So the surface properties, such as corrosion resistance, hemocompatibility and cytocompatibility of the implant, are critical for their in vivo performance. Compared with alloy designs, surface modification is less costly, flexible to construct multi-functional surface and can prevent addition of toxic alloying elements. In this review, we would like to summarize the current investigations of surface modifications of magnesium and its alloys for biomedical application. The advantages/disadvantages of different surface modification methods are also discussed as a suggestion for their utilization. PMID:26816637
Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok
2016-06-01
Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.
Surface modification of protein enhances encapsulation in chitosan nanoparticles
NASA Astrophysics Data System (ADS)
Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael
2018-04-01
Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.
Investigation of the antibiofilm capacity of peptide-modified stainless steel
Cao, Pan; Li, Wen-Wu; Morris, Andrew R.; Horrocks, Paul D.; Yuan, Cheng-Qing
2018-01-01
Biofilm formation on surfaces is an important research topic in ship tribology and medical implants. In this study, dopamine and two types of synthetic peptides were designed and attached to 304 stainless steel surfaces, aiming to inhibit the formation of biofilms. A combinatory surface modification procedure was applied in which dopamine was used as a coupling agent, allowing a strong binding ability with the two peptides. X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurement and surface roughness test were used to evaluate the efficiency of the peptide modification. An antibiofilm assay against Staphylococcus aureus was conducted to validate the antibiofilm capacity of the peptide-modified stainless steel samples. XPS analysis confirmed that the optimal dopamine concentration was 40 µg ml−1 in the coupling reaction. Element analysis showed that dopamine and the peptides had bound to the steel surfaces. The robustness assay of the modified surface demonstrated that most peptide molecules had bound on the surface of the stainless steel firmly. The contact angle of the modified surfaces was significantly changed. Modified steel samples exhibited improved antibiofilm properties in comparison to untreated and dopamine-only counterpart, with the peptide 1 modification displaying the best antibiofilm effect. The modified surfaces showed antibacterial capacity. The antibiofilm capacity of the modified surfaces was also surface topography sensitive. The steel sample surfaces polished with 600# sandpaper exhibited stronger antibiofilm capacity than those polished with other types of sandpapers after peptide modification. These findings present valuable information for future antifouling material research. PMID:29657809
Investigation of the antibiofilm capacity of peptide-modified stainless steel.
Cao, Pan; Li, Wen-Wu; Morris, Andrew R; Horrocks, Paul D; Yuan, Cheng-Qing; Yang, Ying
2018-03-01
Biofilm formation on surfaces is an important research topic in ship tribology and medical implants. In this study, dopamine and two types of synthetic peptides were designed and attached to 304 stainless steel surfaces, aiming to inhibit the formation of biofilms. A combinatory surface modification procedure was applied in which dopamine was used as a coupling agent, allowing a strong binding ability with the two peptides. X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurement and surface roughness test were used to evaluate the efficiency of the peptide modification. An antibiofilm assay against Staphylococcus aureus was conducted to validate the antibiofilm capacity of the peptide-modified stainless steel samples. XPS analysis confirmed that the optimal dopamine concentration was 40 µg ml -1 in the coupling reaction. Element analysis showed that dopamine and the peptides had bound to the steel surfaces. The robustness assay of the modified surface demonstrated that most peptide molecules had bound on the surface of the stainless steel firmly. The contact angle of the modified surfaces was significantly changed. Modified steel samples exhibited improved antibiofilm properties in comparison to untreated and dopamine-only counterpart, with the peptide 1 modification displaying the best antibiofilm effect. The modified surfaces showed antibacterial capacity. The antibiofilm capacity of the modified surfaces was also surface topography sensitive. The steel sample surfaces polished with 600# sandpaper exhibited stronger antibiofilm capacity than those polished with other types of sandpapers after peptide modification. These findings present valuable information for future antifouling material research.
Evaluation of different photosensitizers for use in photochemical gene transfection.
Prasmickaite, L; Høgset, A; Berg, K
2001-04-01
Many potentially therapeutic macromolecules, e.g. transgenes used in gene therapy, are taken into the cells by endocytosis, and have to be liberated from endocytic vesicles in order to express a therapeutic function. To achieve this we have developed a new technology, named photochemical internalization (PCI), based on photochemical reactions inducing rupture of endocytic vesicles. The aim of this study was to clarify which properties of photosensitizers are important for obtaining the PCI effect improving gene transfection. The photochemical effect on transfection of human melanoma THX cells has been studied employing photosensitizers with different physicochemical properties and using two gene delivery vectors: the cationic polypeptide polylysine and the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). Photochemical treatment by photosensitizers that do not localize in endocytic vesicles (tetra[3-hydroxyphenyl]porphyrin and 5-aminolevulinic acid-induced protoporphyrin IX) do not stimulate transfection, irrespective of the gene delivery vector. In contrast, photosensitizers localized in endocytic vesicles stimulate polylysine-mediated transfection, and amphiphilic photosensitizers (disulfonated aluminium phthalocyanine [AlPcS2a] and meso-tetraphenylporphynes) show the strongest positive effect, inducing approximately 10-fold increase in transfection efficiency. In contrast, DOTAP-mediated transfection is inhibited by all photochemical treatments irrespective of the photosensitizer used. Neither AlPcS2a nor Photofrin affects the uptake of the transfecting DNA over the plasma membrane, therefore photochemical permeabilization of endocytic vesicles seems to be the most likely mechanism responsible for the positive PCI effect on gene transfection.
NASA Astrophysics Data System (ADS)
Cho, Yong Ki; Park, Daewon; Kim, Hoonbae; Lee, Hyerim; Park, Heonyong; Kim, Hong Ja; Jung, Donggeun
2014-03-01
Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature-mimetic model systems, and to medical vascular grafts.
Diffusion pump modification promotes self-cleansing and high efficiency
NASA Technical Reports Server (NTRS)
Buggele, A. E.
1975-01-01
Modifications eliminate contaminant substances from pump fluid during operation, which are principal causes of torpidity on evaporative surface. Diffusion pump is also acting as still. Resulting 100 percent vigorous working surface provides much greater molecular throughput and greatly improved efficiency.
Bifunctional redox tagging of carbon nanoparticles
NASA Astrophysics Data System (ADS)
Poon, Jeffrey; Batchelor-McAuley, Christopher; Tschulik, Kristina; Palgrave, Robert G.; Compton, Richard G.
2015-01-01
Despite extensive work on the controlled surface modification of carbon with redox moieties, to date almost all available methodologies involve complex chemistry and are prone to the formation of polymerized multi-layer surface structures. Herein, the facile bifunctional redox tagging of carbon nanoparticles (diameter 27 nm) and its characterization is undertaken using the industrial dye Reactive Blue 2. The modification route is demonstrated to be via exceptionally strong physisorption. The modified carbon is found to exhibit both well-defined oxidative and reductive voltammetric redox features which are quantitatively interpreted. The method provides a generic approach to monolayer modifications of carbon and carbon nanoparticle surfaces.
Surface modification of titanium and titanium alloys by ion implantation.
Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han
2010-05-01
Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.
Preparation of Mach-Zehnder interferometric photonic biosensors by inkjet printing technology
NASA Astrophysics Data System (ADS)
Strasser, Florian; Melnik, Eva; Muellner, Paul; Jiménez-Meneses, Pilar; Nechvile, Magdalena; Koppitsch, Guenther; Lieberzeit, Peter; Laemmerhofer, Michael; Heer, Rudolf; Hainberger, Rainer
2017-05-01
Inkjet printing is a versatile method to apply surface modification procedures in a spatially controlled, cost-effective and mass-fabrication compatible manner. Utilizing this technology, we investigate two different approaches for functionalizing label-free optical waveguide based biosensors: a) surface modification with amine-based functional polymers (biotin-modified polyethylenimine (PEI-B)) employing active ester chemistry and b) modification with dextran based hydrogel thin films employing photoactive benzophenone crosslinker moieties. Whereas the modification with PEI-B ensures high receptor density at the surface, the hydrogel films can serve both as a voluminous matrix binding matrix and as a semipermeable separation layer between the sensor surface and the sample. We use the two surface modification strategies both individually and in combination for binding studies towards the detection of the protein inflammation biomarker, C-reactive protein (CRP). For the specific detection of CRP, we compare two kinds of capture molecules, namely biotinylated antibodies and biotinylated CRP-specific DNA based aptamers. Both kinds of capture molecules were immobilized on the PEI-B by means of streptavidin-biotin affinity binding. As transducer, we use an integrated four-channel silicon nitride (Si3N4) waveguide based Mach-Zehnder interferometric (MZI) photonic sensing platform operating at a wavelength of 850nm (TM-mode).
Land-atmosphere interactions over the continental United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Xubin
This paper briefly discusses four suggested modifications for land surface modeling in climate models. The impact of the modifications on climate simulations is analyzed with the Biosphere-Atmosphere Transfer Scheme (BATS) land surface model. It is found that the modifications can improve BATS simulations. In particular, the sensitivity of BATS to the prescribed value of physical root fraction which cannot be observed from satellite remote sensing or field experiments is improved. These modifications significantly reduce the excessive summer land surface temperature over the continental United States simulated by the National Center for Atmospheric Research Community Climate Model (CCM2) coupled with BATS.more » A land-atmosphere interaction mechanism involving energy and water cycles is proposed to explain the results. 9 refs., 1 fig.« less
NASA Technical Reports Server (NTRS)
Levine, S. R.; Grisaffe, S. J.
1972-01-01
Edge and surface modifications of niobium alloys were investigated prior to coating with Si-20Cr-20Fe and slurry composition modification for performance in a 1370 C ambient pressure slow cycle test. The best coating obtained was Si-20Cr-20Mn with an average life of 63 cycles, compared to 40 for Si-20Cr-20Fe on FS-85 (100 percent improvement in weight parity life). Edge beading extended the lives of Si-20Cr-20Fe-coated Cb-752 and FS-85 to 57 and 41 cycles respectively (50 and 20 percent improvements in weight parity life respectively). W, Al2O3 and ZrO2(CaO) surface modifications altered coating crack frequency and microstructure and increased life somewhat.
NASA Astrophysics Data System (ADS)
Wang, Suhuan; Liu, Jianguo; Lv, Ming; Zeng, Xiaoyan
2014-09-01
In this paper, a low-cost, high-efficiency and high-flexibility surface modification technology for polymer materials was achieved at high laser scanning speeds (600-1000 mm s-1) and using an all-solid state, Q-switched, high-average power, and nanosecond pulse ultraviolet (355 nm wavelength) laser. During the surface modification of a very important engineering plastic, i.e., black bisphenol A polycarbonate (BAPC) board, it was found that different laser parameters (e.g., laser fluence and pulse frequency) were able to result in different surface microstructures (e.g., many tiny protuberances or a porous microstructure with periodical V-type grooves). After the modification, although the total relative content of the oxygen-containing groups (e.g., Csbnd O and COO-) on the BAPC surface increased, however, the special microstructures played a deciding role in the surface properties (e.g., contact angle and surface energy) of the BAPC. The change trend of the water contact angle on the BAPC surface was with an obvious increase, that of the diiodomethane contact angle was with a most decrease, and that of the ethylene glycol contact angle was between the above two. It showed that the wetting properties of the three liquids on the modified BAPC surface were different. Basing on the measurements of the contact angles of the three liquids, and according to the Young equation and the Lifshitz van der Waals and Lewis acid-base theory, the BAPC surface energy after the modification was calculated. The results were that, in a broad range of laser fluences, pulse frequencies and scanning speeds, the surface energy had a significant increase (e.g., from the original of about 44 mJ m-2 to the maximum of about 70 mJ m-2), and the higher the laser pulse frequency, the more significant the increase. This would be very advantageous to fabricate the high-quality micro-devices and micro-systems on the modified surface.
Laser surface modification of AZ31B Mg alloy for bio-wettability.
Ho, Yee-Hsien; Vora, Hitesh D; Dahotre, Narendra B
2015-02-01
Magnesium alloys are the potential degradable materials for load-bearing implant application due to their comparable mechanical properties to human bone, excellent bioactivity, and in vivo non-toxicity. However, for a successful load-bearing implant, the surface of bio-implant must allow protein absorption and layer formation under physiological environment that can assist the cell/osteoblast growth. In this regard, surface wettability of bio-implant plays a key role to dictate the quantity of protein absorption. In light of this, the main objective of the present study was to produce favorable bio-wettability condition of AZ31B Mg alloy bio-implant surface via laser surface modification technique under various laser processing conditions. In the present efforts, the influence of laser surface modification on AZ31B Mg alloy surface on resultant bio-wettability was investigated via contact-angle measurements and the co-relationships among microstructure (grain size), surface roughness, surface energy, and surface chemical composition were established. In addition, the laser surface modification technique was simulated by computational (thermal) model to facilitate the prediction of temperature and its resultant cooling/solidification rates under various laser processing conditions for correlating with their corresponding composition and phase evolution. These predicted thermal properties were later used to correlate with the corresponding microstructure, chemical composition, and phase evolution via experimental analyses (X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy). © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
NASA Astrophysics Data System (ADS)
Chen, Xiuyong; He, Xiaoyan; Suo, Xinkun; Huang, Jing; Gong, Yongfeng; Liu, Yi; Li, Hua
2016-12-01
Biofouling is one of the major problems for the coatings used for protecting marine infrastructures during their long-term services. Regulation in surface structure and local chemistry is usually the key for adjusting antifouling performances of the coatings. In this study, flame sprayed multi-layered aluminum coatings with micropatterned surfaces were constructed and the effects of their surface structure and chemistry on the settlement of typical marine diatoms were investigated. Micropatterned topographical morphology of the coatings was constructed by employing steel mesh as a shielding plate during the coating deposition. A silicone elastomer layer for sealing and interconnection was further brush-coated on the micropatterned coatings. Additional surface modification was made using zwitterionic molecules via DOPA linkage. The surface-modified coatings resist effectively colonization of Cylindrotheca closterium. This is explained by the quantitative examination of a simplified conditioning layer that deteriorated adsorption of bovine calf serum proteins on the zwitterionic molecule-treated samples is revealed. The colonization behaviors of the marine diatoms are markedly influenced by the micropatterned topographical morphology. Either the surface micropatterning or the surface modification by zwitterionic molecules enhances antimicrobial ability of the coatings. However, the combined micropatterned structure and zwitterionic modification do not show synergistic effect. The results give insight into anti-corrosion/fouling applications of the modified aluminum coatings in the marine environment.
NASA Astrophysics Data System (ADS)
Mustafa, Mohammad Razif Bin; Dhahi, Th S.; Ehfaed, Nuri. A. K. H.; Adam, Tijjani; Hashim, U.; Azizah, N.; Mohammed, Mohammed; Noriman, N. Z.
2017-09-01
The nano structure based on silicon can be surface modified to be used as label-free biosensors that allow real-time measurements. The silicon nanowire surface was functionalized using 3-aminopropyltrimethoxysilane (APTES), which functions as a facilitator to immobilize biomolecules on the silicon nanowire surface. The process is simple, economical; this will pave the way for point-of-care applications. However, the surface modification and subsequent detection mechanism still not clear. Thus, study proposed step by step process of silicon nano surface modification and its possible in specific and selective target detection of Supra-genome 21 Mers Salmonella. The device captured the molecule with precisely; the approach took the advantages of strong binding chemistry created between APTES and biomolecule. The results indicated how modifications of the nanowires provide sensing capability with strong surface chemistries that can lead to specific and selective target detection.
NASA Astrophysics Data System (ADS)
Mishra, Sanjeev Kumar; Prasad, K. Durga
2018-07-01
Understanding surface modifications at landing site during spacecraft landing on planetary surfaces is important for planetary missions from scientific as well as engineering perspectives. An attempt has been made in this work to numerically investigate the disturbance caused to the lunar surface during soft landing. The variability of eject velocity of dust, eject mass flux rate, ejecta amount etc. has been studied. The effect of lander hovering time and hovering altitude on the extent of disturbance is also evaluated. The study thus carried out will help us in understanding the surface modifications during landing thereby making it easier to plan a descent trajectory that minimizes the extent of disturbance. The information about the extent of damage will also be helpful in interpreting the data obtained from experiments carried on the lunar surface in vicinity of the lander.
Surface Modified TiO2 Obscurants for Increased Safety and Performance
2012-11-01
based obscurant devices in performance. 15. SUBJECT TERMS Obscurant, visible, IR , smoke, TiO2, aerosol, particle, surface modification...hexamethyldimethoxysilane IR Infrared wavelength LabRAM Lab scale Resonant Acoustic Mixer from Resodyn Corporation LPM Liters Per Minute M106 Currently fielded (Army...trinitrophloroglucinol UV-Vis Ultraviolet-visible wavelengths KEYWORDS Obscurant, visible, IR , smoke, TiO2, aerosol, particle, surface modification
Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification
Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.
2016-01-01
Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670
Chen, Weimin; Xu, Yicheng; Shi, Shukai; Cao, Yizhong; Chen, Minzhi; Zhou, Xiaoyan
2018-02-02
The presence of non-poplar extracts, cutin, and wax layer in the wheat straw outer surface (WOS) greatly limit its application in bio-composite preparation. In this study, a dielectric-barrier-discharge plasma using water vapor as feeding gas was used to fast modify the WOS. The morphology, free radical concentrations, surface chemical components, and contact angles of WOS before and after plasma modification were investigated. Wheat straw was further prepared into wheat straw-based composites (WSC) and its bonding strength was evaluated by a paper tension meter. The results showed that water vapor plasma leads to the appearance of surface roughness, the generation of massive free radicals, and the introduction of oxygen-containing groups. In addition, both initial and equilibrium contact angle and the surface total free energy were significantly increased after plasma modification. These results synergistically facilitate the spread and permeation of adhesive onto the WOS and thus improve the bonding strength of all prepared WSCs. A good linear relationship between bonding strength and surface roughness parameters, contact angles, and total free energy were observed. In general, this study provided a time-saving and cost-effective modification method to realize WSC manufacture.
Nanoparticle-macrophage interactions: A balance between clearance and cell-specific targeting
Rattan, Rahul; Bhattacharjee, Somnath; Zong, Hong; Swain, Corban; Siddiqui, Muneeb A.; Visovatti, Scott H.; Kanthi, Yogendra; Desai, Sajani; Pinsky, David J.; Goonewardena, Sascha N.
2017-01-01
The surface properties of nanoparticles (NPs) are a major factor that influences how these nanomaterials interact with biological systems. Interactions between NPs and macrophages of the reticuloendothelial system (RES) can reduce the efficacy of NP diagnostics and therapeutics. Traditionally, to limit NP clearance by the RES system, the NP surface is neutralized with molecules like poly(ethylene glycol) (PEG) which are known to resist protein adsorption and RES clearance. Unfortunately, PEG modification is not without drawbacks including difficulties with the synthesis and associations with immune reactions. To overcome some of these obstacles, we neutralized the NP surface by acetylation and compared this modification to PEGylation for RES clearance and tumor-specific targeting. We found that acetylation was comparable to PEGylation in reducing RES clearance. Additionally, we found that dendrimer acetylation did not impact folic acid (FA)-mediated targeting of tumor cells whereas PEG surface modification reduced the targeting ability of the NP. These results clarify the impact of different NP surface modifications on RES clearance and cell-specific targeting and provide insights into the design of more effective NPs. PMID:28705434
Photochemical oxidation: A solution for the mixed waste dilemma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prellberg, J.W.; Thornton, L.M.; Cheuvront, D.A.
1995-12-31
Numerous technologies are available to remove organic contamination from water or wastewater. A variety of techniques also exist that are used to neutralize radioactive waste. However, few technologies can satisfactorily address the treatment of mixed organic/radioactive waste without creating unacceptable secondary waste products or resulting in extremely high treatment costs. An innovative solution to the mixed waste problem is on-site photochemical oxidation. Liquid-phase photochemical oxidation has a long- standing history of successful application to the destruction of organic compounds. By using photochemical oxidation, the organic contaminants are destroyed on-site leaving the water, with radionuclides, that can be reused or disposedmore » of as appropriate. This technology offers advantages that include zero air emissions, no solid or liquid waste formation, and relatively low treatment cost. Discussion of the photochemical process will be described, and several case histories from recent design testing, including cost analyses for the resulting full-scale installations, will be presented as examples.« less
Su, Yuanhai; Straathof, Natan J W; Hessel, Volker; Noël, Timothy
2014-08-18
Continuous-flow photochemistry is used increasingly by researchers in academia and industry to facilitate photochemical processes and their subsequent scale-up. However, without detailed knowledge concerning the engineering aspects of photochemistry, it can be quite challenging to develop a suitable photochemical microreactor for a given reaction. In this review, we provide an up-to-date overview of both technological and chemical aspects associated with photochemical processes in microreactors. Important design considerations, such as light sources, material selection, and solvent constraints are discussed. In addition, a detailed description of photon and mass-transfer phenomena in microreactors is made and fundamental principles are deduced for making a judicious choice for a suitable photomicroreactor. The advantages of microreactor technology for photochemistry are described for UV and visible-light driven photochemical processes and are compared with their batch counterparts. In addition, different scale-up strategies and limitations of continuous-flow microreactors are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surface modification of malachite with ethanediamine and its effect on sulfidization flotation
NASA Astrophysics Data System (ADS)
Feng, Qicheng; Zhao, Wenjuan; Wen, Shuming
2018-04-01
Ethanediamine was used to modify the mineral surface of malachite to improve its sulfidization and flotation behavior. The activation mechanism was investigated by adsorption experiments, X-ray photoelectron spectroscopy (XPS) analysis, and zeta potential measurements. Microflotation experiments showed that the flotation recovery of malachite was enhanced after the pretreatment of the mineral particles with ethanediamine prior to the addition of Na2S. Adsorption tests revealed that numerous sulfide ion species in the pulp solution were transferred onto the mineral surface through the formation of more copper sulfide species. This finding was confirmed by the results of the XPS measurements. Ethanediamine modification not only increased the contents of copper sulfide species on the malachite surface but also enhanced the reactivity of the sulfidization products. During sulfidization, Cu(II) species on the mineral surface were reduced into Cu(I) species, and the percentages of S22- and Sn2- relative to the total S increased after modification, resulting in increased surface hydrophobicity. The results of zeta potential measurements showed that the ethanediamine-modified mineral surface adsorbed with more sulfide ion species was advantageous to the attachment of xanthate species, thereby improving malachite floatability. The proposed ethanediamine modification followed by sulfidization xanthate flotation exhibits potential for industrial application.
NASA Astrophysics Data System (ADS)
Buchkremer, S.; Klocke, F.
2017-01-01
Performance and operational safety of many metal parts in engineering depend on their surface integrity. During metal cutting, large thermomechanical loads and high gradients of the loads concerning time and location act on the surfaces and may yield significant structural material modifications, which alter the surface integrity. In this work, the derivation and validation of a model of nanostructural surface modifications in metal cutting are presented. For the first time in process modeling, initiation and kinetics of these modifications are predicted using a thermodynamic potential, which considers the interdependent developments of plastic work, dissipation, heat conduction and interface energy as well as the associated productions and flows of entropy. The potential is expressed based on the free Helmholtz energy. The irreversible thermodynamic state changes in the workpiece surface are homogenized over the volume in order to bridge the gap between discrete phenomena involved with the initiation and kinetics of dynamic recrystallization and its macroscopic implications for surface integrity. The formulation of the thermodynamic potential is implemented into a finite element model of orthogonal cutting of steel AISI 4140. Close agreement is achieved between predicted nanostructures and those obtained in transmission electron microscopical investigations of specimen produced in cutting experiments.
Liu, S X; Chen, X; Chen, X Y; Liu, Z F; Wang, H L
2007-03-06
In the present work, activated carbon (AC) with excellent Cr(VI) adsorption performance especially at low concentrations was prepared by an acid-base surface modification method. Raw activated carbon (AC(0)) was first oxidized in boiling HNO(3) (AC(1)), then treated with a mixture of NaOH and NaCl (AC(2)). Batch equilibrium and continuous column adsorption were conducted to evaluate the adsorption performance. Boehm titration, elemental analysis, and N(2)/77K adsorption isotherm methods were used to characterize the surface properties and pore structure of modified ACs. The results revealed that the modified AC exhibited excellent Cr(VI) adsorption performance in terms of adsorption capacity and adsorption rate: AC(2)>AC(1)>AC(0). Modification caused S(BET) to decrease and the total number of surface oxygen acidic groups to increase. HNO(3) oxidization produced positive acid groups, and subsequently NaOH treatment replaced H(+) of surface acid groups by Na(+), and the acidity of AC decreased. The main cause of higher Cr(VI) adsorption capacity and rate for AC(2) was the presence of more oxygen surface acidic groups and suitable surface acidity. HNO(3)-NaOH modification shows potential for the preparation of high quality AC for the effective removal of low concentrations of Cr(VI).
NASA Astrophysics Data System (ADS)
Khodakov, Dmitriy A.; Thredgold, Leigh D.; Lenehan, Claire E.; Andersson, Gunther A.; Kobus, Hilton; Ellis, Amanda V.
2011-12-01
Poly(dimethylsiloxane) (PDMS) is an elastomeric material used for microfluidic devices and is especially suited to medical and forensic applications. This is due to its relatively low cost, ease of fabrication, excellent optical transmission characteristics and its ability to support electroosmotic flow, required during electrophoretic separations. These aspects combined with its large range of surface modification chemistries, make PDMS an attractive substrate in microfluidic devices for, in particular, DNA separation. Here, we report the successful wet chemical surface modification of PDMS microchannels using a simple three step method to produce an isothiocyanate-terminated surface. Initially, PDMS was oxygen plasma treated to produce a silanol-terminated surface, this was then reacted with 3-aminopropyltriethoxysilane with subsequent reaction of the now amine-terminated surface with p-phenylenediisothiocyanate. Water contact angle measurements both before and after modification showed a reduction in hydrophobicity from 101o for native PDMS to 94o for the isothiocyante-terminated PDMS. The isothiocyanate-terminated surface was then coupled with an amineterminated single-stranded DNA (ssDNA) oligonucleotide capture probe via a thiourea linkage. Confirmation of capture probe attachment was observed using fluorescent microscopy after hybridization of the capture probes with fluorescently labeled complimentary ssDNA oligonucleotides.
Pyun, Young Sik; Suh, Chang Min; Yamaguchi, Tokutaro; Im, Jong Soon; Kim, Jun Hyong; Amanov, Auezhan; Park, Jeong Hyeon
2012-07-01
Ultrasonic nanocrystal surface modification (UNSM) technology is a novel surface modification technology that can improve the mechanical and tribological properties of interacting surfaces in relative motion. UNSM treatment was utilized to improve the wear resistance fatigue strength of slim bearing rings made of SAE52100 bearing steel without damaging the raceway surfaces. In this study, wear and fatigue results that were subjected to different impact loads of the UNSM treatment were investigated and compared with those of the untreated specimen. The microhardness of the UNSM-treated specimens increased by about 20%, higher than that of the untreated specimens. The X-ray diffraction analysis showed that a compressive residual stress of more than 1,000 MPa was induced after the UNSM treatment. Also, electron backscatter diffraction analysis was used to study the surface structure and nanograin refinement. The results showed that the rolling contact fatigue life and the rotary bending fatigue strength of the UNSM-treated specimens increased by about 80% and 31%, respectively, compared to those of the untreated specimen. These results might be attributed to the increased microhardness, the induced compressive residual stress, and the nanocrystal structure modification after the UNSM treatment. In addition, the fracture surface analysis showed that the fish eye crack initiation phenomenon was observed after the UNSM treatment.
Photogenerated Lectin Sensors Produced by Thiol-Ene/Yne Photo-Click Chemistry in Aqueous Solution
Norberg, Oscar; Lee, Irene H.; Aastrup, Teodor; Yan, Mingdi; Ramström, Olof
2012-01-01
The photoinitiated radical reactions between thiols and alkenes/alkynes (thiol-ene and thiol-yne chemistry) have been applied to a functionalization methodology to produce carbohydrate-presenting surfaces for analyses of biomolecular interactions. Polymer-coated quartz surfaces were functionalized with alkenes or alkynes in a straightforward photochemical procedure utilizing perfluorophenylazide (PFPA) chemistry. The alkene/alkyne surfaces were subsequently allowed to react with carbohydrate thiols in water under UV-irradiation. The reaction can be carried out in a drop of water directly on the surface without photoinitiator and any disulfide side products were easily washed away after the functionalization process. The resulting carbohydrate-presenting surfaces were evaluated in real-time studies of protein-carbohydrate interactions using a quartz crystal microbalance flow-through system with recurring injections of selected lectins with intermediate regeneration steps using low pH buffer. The resulting methodology proved fast, efficient and scalable to high-throughput analysis formats, and the produced surfaces showed significant protein binding with expected selectivities of the lectins used in the study. PMID:22341757
Photochemical and thermal bergman cyclization of a pyrimidine enediynol and enediynone.
Choy, N; Blanco, B; Wen, J; Krishan, A; Russell, K C
2000-11-30
[reaction: see text] Novel 10-membered pyrimidine enediynes (3 and 4) were synthesized in seven and eight steps, respectively. These compounds were compared for their abilities to undergo Bergman cyclization both thermally and photochemically. Alcohol 3 readily cyclized both thermally and photochemically in (i)PrOH, while ketone 4 only showed efficient thermal cyclization. Both compounds were also shown to cleave dsDNA under the appropriate conditions.
Zhang, Heming; Wei, Xiaoxuan; Song, Xuedan; Shah, Shaheen; Chen, Jingwen; Liu, Jianhui; Hao, Ce; Chen, Zhongfang
2018-01-01
For organic pollutants, photodegradation, as a major abiotic elimination process and of great importance to the environmental fate and risk, involves rather complicated physical and chemical processes of excited molecules. Herein, we systematically studied the photophysical and photochemical processes of a widely used antibiotic, namely sulfapyridine. By means of density functional theory (DFT) computations, we examined the rate constants and the competition of both photophysical and photochemical processes, elucidated the photochemical reaction mechanism, calculated reaction quantum yield (Φ) based on both photophysical and photochemical processes, and subsequently estimated the photodegradation rate constant. We further conducted photolysis experiments to measure the photodegradation rate constant of sulfapyridine. Our computations showed that sulfapyridine at the lowest excited singlet state (S 1 ) mainly undergoes internal conversion to its ground state, and is difficult to transfer to the lowest excited triplet states (T 1 ) via intersystem crossing (ISC) and emit fluorescence. In T 1 state, compared with phosphorescence emission and ISC, chemical reaction is much easier to initiate. Encouragingly, the theoretically predicted photodegradation rate constant is close to the experimentally observed value, indicating that quantum chemistry computation is powerful enough to study photodegradation involving ultra-fast photophysical and photochemical processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Szubert, M; Adamska, K; Szybowicz, M; Jesionowski, T; Buchwald, T; Voelkel, A
2014-01-01
The aim of this study was the surface modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) grafting and characterization of modificates. The bioactivity examination was carried out by the determination to grow an apatite layer on modified materials during incubation in simulated body fluid at 37°C. The additional issue taken up in this paper was to investigate the influence of fluid replacement. The process of the surface modification of biomaterials was evaluated by means of infrared and Raman spectroscopy. Formation of the apatite layer was assessed by means of scanning electron microscopy and confirmed by energy dispersive, Raman and Fourier transformed infrared spectroscopy. During exposure in simulated body fluid, the variation of the zeta potential, pH measurement and relative weight was monitored. Examination of scanning electron microscopy micrographs suggests that modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) significantly increases apatite layer formation. Raman spectroscopy evaluation revealed that the formation of the apatite layer was more significant in the case of hydroxyapatite modificate, when compared to the β-tricalcium phosphate modificate. Both modificates were characterized by stable pH, close to the natural pH of human body fluids. Furthermore, we have shown that a weekly changed, simulated body fluid solution increases apatite layer formation. © 2013.
NASA Astrophysics Data System (ADS)
Derrien, Thibault J.-Y.; Bulgakova, Nadezhda M.
2017-05-01
During the last decades, femtosecond laser irradiation of materials has led to the emergence of various applications based on functionalization of surfaces at the nano- and microscale. Via inducing a periodic modification on material surfaces (band gap modification, nanostructure formation, crystallization or amorphization), optical and mechanical properties can be tailored, thus turning femtosecond laser to a key technology for development of nanophotonics, bionanoengineering, and nanomechanics. Although modification of semiconductor surfaces with femtosecond laser pulses has been studied for more than two decades, the dynamics of coupling of intense laser light with excited matter remains incompletely understood. In particular, swift formation of a transient overdense electron-hole plasma dynamically modifies optical properties in the material surface layer and induces large gradients of hot charge carriers, resulting in ultrafast charge-transport phenomena. In this work, the dynamics of ultrafast laser excitation of a semiconductor material is studied theoretically on the example of silicon. A special attention is paid to the electron-hole pair dynamics, taking into account ambipolar diffusion effects. The results are compared with previously developed simulation models, and a discussion of the role of charge-carrier dynamics in localization of material modification is provided.
On the Composition of Young, Directly Imaged Giant Planets
NASA Technical Reports Server (NTRS)
Moses, J. I.; Marley, M. S.; Zahnle, K.; Line, M. R.; Fortney, J. J.; Barman, T. S.; Visscher, C.; Lewis, N. K.; Wolff, M. J.
2016-01-01
The past decade has seen significant progress on the direct detection and characterization of young, self-luminous giant planets at wide orbital separations from their host stars. Some of these planets show evidence for disequilibrium processes like transport-induced quenching in their atmospheres; photochemistry may also be important, despite the typically large orbital distances. Disequilibrium chemical processes such as these can alter the expected composition, spectral behavior, thermal structure, and cooling history of the planets, and can potentially confuse determinations of bulk elemental ratios, which provide important insights into planet-formation mechanisms. Using a thermo/photochemical kinetics and transport model, we investigate the extent to which disequilibrium chemical processes affect the composition and spectra of directly imaged giant exoplanets. Results for specific "young Jupiters" such as HR 8799 b and c and 51 Eri b are presented, as are general trends as a function of planetary effective temperature, surface gravity, incident ultraviolet flux, and strength of deep atmospheric convection. We find that quenching is very important on young Jupiters, leading to CO/CH4 and N2/NH3 ratios much greater than; and H2O mixing ratios a factor of a few less than chemical equilibrium predictions. Photochemistry can also be important on such planets, with CO2 and HCN being key photochemical products. Carbon dioxide becomes a particularly major constituent when stratospheric temperatures are low and recycling of water following H2O photolysis becomes stifled. Young Jupiters with effective temperatures less than 700 degrees Kelvin are in a particularly interesting photochemical regime that differs from both transiting hot Jupiters and our own solar-system giant planets.
Current State of Modeling the Photochemistry of Titan's Mutually Dependent Atmosphere and Ionosphere
NASA Technical Reports Server (NTRS)
Wilson, Eric H.; Atreya, S. K.
2004-01-01
In the context of recent observations, microphysical models, and laboratory data, a photochemical model of Titan's atmosphere, including updated chemistry focusing on rate coefficients and cross sections measured under appropriate conditions, has been developed to increase understanding of these processes and improve upon previous Titan photochemical models. The model employs a two-stream discrete ordinates method to characterize the transfer of solar radiation, and the effects of electron-impact, cosmic-ray deposition, and aerosol opacities from fractal and Mie particles are analyzed. Sensitivity studies demonstrate that an eddy diffusion profile with a homopause level of 850 km and a methane stratospheric mole fraction of 2.2% provides the best fit of stratospheric and upper atmosphere observations and an improved fit over previous Titan photochemical models. Lack of fits for C3H8, HC3N, and possibly C2H3CN can be resolved with adjustments in aerosol opacity. The model presents a benzene profile consistent with its detection in Titan's stratosphere [Coustenis et al., 2003], which may play an important role in the formation of Titan hazes. An electron peak concentration of 4200 cm(exp -3) is calculated, which exceeds observations by 20%, considerably lower than previous ionosphere models. With adjustments in aerosol opacities and surface fluxes the model illustrates that reasonable fits to existing observations are possible with a single eddy diffusion profile, contrary to the conclusions of previous Titan models. These results will aid in the receipt and interpretation of data from Cassini-Huygens, which will arrive at Titan in 2004 and deploy a probe into Titan's atmosphere in January 2005.
NASA Astrophysics Data System (ADS)
Özen, İlhan; Şimşek, Süleyman; Okyay, Gamze
2015-03-01
In this study, a diatomite sample, which is a natural inorganic mineral with inherently high water and oil absorption capacity, was subjected to grinding before surface modification. Afterwards, the diatomite surface was modified via facile methods using a fluorocarbon (FC) chemical and stearic acid (SA) in addition to the sol-gel fluorosilanization (FS) process. The water and oil wettability, and oil absorbency properties of the unmodified and modified diatomites were investigated in addition to diatomite characterizations such as chemical content, surface area, particle size distribution, morphology, and modification efficiency. It was revealed that the wettability was changed completely depending on the surface modification agent and the media used, while the oil absorbency property surprisingly did not change. On the other hand, the oil absorbency was worsened by the grinding process, whereas the wettability was not affected.
Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces
NASA Astrophysics Data System (ADS)
Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo
2016-02-01
Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.
Nightglow emissions of OH/X 2 pi/ - Comparison of theory and measurements in the /9-3/ band
NASA Technical Reports Server (NTRS)
Frederick, J. E.; Rusch, D. W.; Liu, S. C.
1978-01-01
The visible airglow experiments on the Atmosphere Explorer C and E satellites have viewed the (9-3) band nightglow emission of the excited hydroxyl radical in the lower thermosphere at tropical latitudes. The surface brightnesses observed at similar local times vary by approximately a factor of 2. Comparison of the measurements with time-dependent photochemical calculations shows reasonable agreement and indicates that temporal changes in atmospheric transport processes are the most likely explanation of the nightglow variations.
Characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke.
Huawei, Zhang; Xiuli, Liu; Li, Wang; Peng, Liang
2014-01-01
In an attempt to produce effective and lower price gaseous Hg(0) adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mn (x+) , and O=C-OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg(0). Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously.
Characteristics and Stability of Mercury Vapor Adsorption over Two Kinds of Modified Semicoke
Huawei, Zhang; Xiuli, Liu; Li, Wang; Peng, Liang
2014-01-01
In an attempt to produce effective and lower price gaseous Hg0 adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mnx+, and O=C–OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg0. Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously. PMID:25309948
Specific modification of polysulfone with cluster bombardment with assistance of Ar ion irradiation
NASA Astrophysics Data System (ADS)
Xu, Guochun; Hibino, Y.; Awazu, K.; Tanihara, M.; Imanishi, Y.
2000-02-01
Objective: To develop a rapid method for the modification of polysulfone with ammonium sulfamate with the assistance of Ar ion irradiation with a multi-source cluster deposition apparatus. These surfaces mimicking the structure of heparin, a bioactive molecule, have a high anti-thrombosis property. Experimental Design: Polysulfone film, setting on a turning holder, was irradiated by Ar ions during bombardment with ammonium sulfamate clusters. The Ar ion source serves for the activation of a polymer surface and a cluster ion source supplies ammonium sulfamate molecules to react with the activated surface. After thorough washing with de-ionized sterile water, the modified surfaces were evaluated in terms of the contact angle of water, elemental composition, and binding state on electron spectroscopy for chemical analysis and platelet adhesion with platelet rich plasma. Results: The modification of polysulfone decreased the contact angle of water on surfaces from 82.6 ° down to 34.5 °. Ammonium, amine, sulfate, and thiophene combinations were formed on the modified surfaces. The adhesion numbers of the platelet were decreased to one tenth compared to the original surface. The same process was also applied to other polymers such as polyethylene, polypropylene, and polystyrene and similar outcomes were also observed. Conclusion: The primary studies showed successful modification of polysulfone with ammonium sulfamate with the assistance of Ar ion irradiation. Since the same concept can also be applied to other materials with various substrates, combined with the features of no solvent and no topographic changes, this method might be developed into a promising way for modification of polymeric materials.
Photoactivated methods for enabling cartilage-to-cartilage tissue fixation
NASA Astrophysics Data System (ADS)
Sitterle, Valerie B.; Roberts, David W.
2003-06-01
The present study investigates whether photoactivated attachment of cartilage can provide a viable method for more effective repair of damaged articular surfaces by providing an alternative to sutures, barbs, or fibrin glues for initial fixation. Unlike artificial materials, biological constructs do not possess the initial strength for press-fitting and are instead sutured or pinned in place, typically inducing even more tissue trauma. A possible alternative involves the application of a photosensitive material, which is then photoactivated with a laser source to attach the implant and host tissues together in either a photothermal or photochemical process. The photothermal version of this method shows potential, but has been almost entirely applied to vascularized tissues. Cartilage, however, exhibits several characteristics that produce appreciable differences between applying and refining these techniques when compared to previous efforts involving vascularized tissues. Preliminary investigations involving photochemical photosensitizers based on singlet oxygen and electron transfer mechanisms are discussed, and characterization of the photodynamic effects on bulk collagen gels as a simplified model system using FTIR is performed. Previous efforts using photothermal welding applied to cartilaginous tissues are reviewed.
Zhou, Chao; Zhang, H P; Tang, Jinyao; Wang, Wei
2018-03-13
Micromotors are an emerging class of micromachines that could find potential applications in biomedicine, environmental remediation, and microscale self-assembly. Understanding their propulsion mechanisms holds the key to their future development. This is especially true for a popular category of micromotors that are driven by asymmetric surface photochemical reactions. Many of these micromotors release ionic species and are propelled via a mechanism termed "ionic self-diffusiophoresis". However, exactly how it operates remains vague. To address this fundamental yet important issue, we have developed a dielectric-AgCl Janus micromotor that clearly moves away from the AgCl side when exposed to UV or strong visible light. Taking advantage of numerical simulations and acoustic levitation techniques, we have provided tentative explanations for its speed decay over time as well as its directionality. In addition, photoactive AgCl micromotors demonstrate interesting gravitactic behaviors that hint at three-dimensional transport or sensing applications. The current work presents a well-controlled and easily fabricated model system to understand chemically powered micromotors, highlighting the usefulness of acoustic levitation for studying active matter free from the effect of boundaries.
Xu, Jia-Quan; Duo, Huan-Huan; Zhang, Yu-Ge; Zhang, Xin-Wei; Fang, Wei; Liu, Yan-Ling; Shen, Ai-Guo; Hu, Ji-Ming; Huang, Wei-Hua
2016-04-05
Biosensors always suffer from passivation that prevents their reutilization. To address this issue, photocatalytically renewable sensors composed of semiconductor photocatalysts and sensing materials have emerged recently. In this work, we developed a robust and versatile method to construct different kinds of renewable biosensors consisting of ZnO nanorods and nanostructured Au. Via a facile and efficient photochemical reduction, various nanostructured Au was obtained successfully on ZnO nanorods. As-prepared sensors concurrently possess excellent sensing capability and desirable photocatalytic cleaning performance. Experimental results demonstrate that dendritic Au/ZnO composite has the strongest surface-enhanced Raman scattering (SERS) enhancement, and dense Au nanoparticles (NPs)/ZnO composite has the highest electrochemical activity, which was successfully used for electrochemical detection of NO release from cells. Furthermore, both of the SERS and electrochemical sensors can be regenerated efficiently for renewable applications via photodegrading adsorbed probe molecules and biomolecules. Our strategy provides an efficient and versatile method to construct various kinds of highly sensitive renewable sensors and might expand the application of the photocatalytically renewable sensor in the biosensing area.
Chen, Hao Ming; Chen, Chih Kai; Chen, Chih-Jung; Cheng, Liang-Chien; Wu, Pin Chieh; Cheng, Bo Han; Ho, You Zhe; Tseng, Ming Lun; Hsu, Ying-Ya; Chan, Ting-Shan; Lee, Jyh-Fu; Liu, Ru-Shi; Tsai, Din Ping
2012-08-28
Artificial photosynthesis using semiconductors has been investigated for more than three decades for the purpose of transferring solar energy into chemical fuels. Numerous studies have revealed that the introduction of plasmonic materials into photochemical reaction can substantially enhance the photo response to the solar splitting of water. Until recently, few systematic studies have provided clear evidence concerning how plasmon excitation and which factor dominates the solar splitting of water in photovoltaic devices. This work demonstrates the effects of plasmons upon an Au nanostructure-ZnO nanorods array as a photoanode. Several strategies have been successfully adopted to reveal the mutually independent contributions of various plasmonic effects under solar irradiation. These have clarified that the coupling of hot electrons that are formed by plasmons and the electromagnetic field can effectively increase the probability of a photochemical reaction in the splitting of water. These findings support a new approach to investigating localized plasmon-induced effects and charge separation in photoelectrochemical processes, and solar water splitting was used herein as platform to explore mechanisms of enhancement of surface plasmon resonance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feliz, M.; Ferraudi, G.
1992-04-02
Photochemical reactions of fac-ClRe(CO){sub 3}L{sub 2} (L=4-phenylpyridine or 4-cyanopyridine), were investigated by sequential biphotonic excitations: one laser flash was used for the preparation of the compounds in the lowest lying MLCT (Re{r_arrow}) state and another flash for the irradiation of the compounds in such excited states. These photolyses led to photodecompostions into CIRe(CO){sub 3}L{sup +} and L{sup .} in a charge transfer state placed 40 Kk above ground state. Quantum yields determined or various excitation energies show that not all the excited state populated in monophotonic excitations can be reached under the sequential biphotonic regime. Therefore, photogeneration of the biradicalmore » intermediate, ClRe(CO){sub 3}L{sup +} and L{sup .}, from ligand-centered states has not been detected in these experiments. Results from monophotonic and biphotonic excitations have been used for a semiquantitative mapping of the excited-state potential surfaces. 41 refs., 6 figs.« less
Light-induced switching of 1,3-diazabicyclo-[3.1.0]hex-3-enes on gold nanoparticles
NASA Astrophysics Data System (ADS)
Mahmoodi, Nosrat O.; Ahmadi, Narges Khatoon; Ghavidast, Atefeh
2018-05-01
The fabrication of hybrid nanoassemblies involving sulfure-modified photochromic derivatives (SMPDs) on the gold nanoparticles (AuNPs) was carried out to investigate the influence of AuNPs surface plasmons on the SMPDs photoisomerization. The size of the AuNPs obtained was <30 nm in average diameter. Upon irradiation by alternating UV and Vis light, a reversible photochemical isomerization along with bathochromic shift in the absorption band takes place on the surface of the AuNPs in analogy with free SMPDs in solutions. Furthermore, in some cases a significant quenching of photochromic reactivity was observed due to the excited energy transfer from the photochromic molecules to the AuNPs core.
Photographer : JPL Range : 12 million km. ( 7.56 million miles) P-23057C & BW This Voyager 1
NASA Technical Reports Server (NTRS)
1980-01-01
Photographer : JPL Range : 12 million km. ( 7.56 million miles) P-23057C & BW This Voyager 1 photograph of Titan, the largest of Saturn's 14 known satellites, shows little more than the upper layers of clouds covering the moon. The orange colored haze, is believed to be composed of photochemically produced hydrocarbons, hides Titan's solid surface from Voyager's camera. Some weak shadings in the clouds are becoming visible. However, note that the satellite's southern, lower, hemisphere is brighter than the northern. It is not known whether these subtle shadings are on the surface or are due to clouds below a high haze layer.
Mahjoubi, Hesameddin; Kinsella, Joseph M; Murshed, Monzur; Cerruti, Marta
2014-07-09
Scaffolds made with synthetic polymers such as polyesters are commonly used in bone tissue engineering. However, their hydrophobicity and the lack of specific functionalities make their surface not ideal for cell adhesion and growth. Surface modification of these materials is thus crucial to enhance the scaffold's integration in the body. Different surface modification techniques have been developed to improve scaffold biocompatibility. Here we show that diazonium chemistry can be used to modify the outer and inner surfaces of three-dimensional poly(D,L-lactic acid) (PDLLA) scaffolds with phosphonate groups, using a simple two-step method. By changing reaction time and impregnation procedure, we were able to tune the concentration of phosphonate groups present on the scaffolds, without degrading the PDLLA matrix. To test the effectiveness of this modification, we immersed the scaffolds in simulated body fluid, and characterized them with scanning electron microscopy, X-ray photoelectron spectroscopy, Raman, and infrared spectroscopy. Our results showed that a layer of hydroxyapatite particles was formed on all scaffolds after 2 and 4 weeks of immersion; however, the precipitation was faster and in larger amounts on the phosphonate-modified than on the bare PDLLA scaffolds. Both osteogenic MC3T3-E1 and chondrogenic ATDC5 cell lines showed increased cell viability/metabolic activity when grown on a phosphonated PDLLA surface in comparison to a control PDLLA surface. Also, more calcium-containing minerals were deposited by cultures grown on phosphonated PDLLA, thus showing the pro-mineralization properties of the proposed modification. This work introduces diazonium chemistry as a simple and biocompatible technique to modify scaffold surfaces, allowing to covalently and homogeneously bind a number of functional groups without degrading the scaffold's polymeric matrix.
Augmented liver targeting of exosomes by surface modification with cationized pullulan.
Tamura, Ryo; Uemoto, Shinji; Tabata, Yasuhiko
2017-07-15
Exosomes are membrane nanoparticles containing biological substances that are employed as therapeutics in experimental inflammatory models. Surface modification of exosomes for better tissue targetability and enhancement of their therapeutic ability was recently attempted mainly using gene transfection techniques. Here, we show for the first time that the surface modification of exosomes with cationized pullulan, which has the ability to target hepatocyte asialoglycoprotein receptors, can target injured liver and enhance the therapeutic effect of exosomes. Surface modification can be achieved by a simple mixing of original exosomes and cationized pullulan and through an electrostatic interaction of both substances. The exosomes modified with cationized pullulan were internalized into HepG2 cells in vitro to a significantly greater extent than unmodified ones and this internalization was induced through the asialoglycoprotein receptor that was specifically expressed on HepG2 cells and hepatocytes. When injected intravenously into mice with concanavalin A-induced liver injury, the modified exosomes accumulated in the liver tissue, resulting in an enhanced anti-inflammatory effect in vivo. It is concluded that the surface modification with cationized pullulan promoted accumulation of the exosomes in the liver and the subsequent biological function, resulting in a greater therapeutic effect on liver injury. Exosomes have shown potentials as therapeutics for various inflammatory disease models. This study is the first to show the specific accumulation of exosomes in the liver and enhanced anti-inflammatory effect via the surface modification of exosomes using pullulan, which is specifically recognized by the asialoglycoprotein receptor (AGPR) on HepG2 cells and hepatocytes. The pullulan was expressed on the surface of PKH-labeled exosomes, and it led increased accumulation of PKH into HepG2 cells, whereas the accumulation was canceled by AGPR inhibitor. In the mouse liver injury model, the modification of PKH-labeled exosomes with pullulan enabled increased accumulation of PKH specifically in the injured liver. Furthermore the greater therapeutic effects against the liver injury compared with unmodified original exosomes was observed. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Takayama, Yukiya; Kusamori, Kosuke; Hayashi, Mika; Tanabe, Noriko; Matsuura, Satoru; Tsujimura, Mari; Katsumi, Hidemasa; Sakane, Toshiyasu; Nishikawa, Makiya; Yamamoto, Akira
2017-12-05
Mesenchymal stem cells (MSCs) have various functions, making a significant contribution to tissue repair. On the other hand, the viability and function of MSCs are not lasting after an in vivo transplant, and the therapeutic effects of MSCs are limited. Although various chemical modification methods have been applied to MSCs to improve their viability and function, most of conventional drug modification methods are short-term and unstable and cause cytotoxicity. In this study, we developed a method for long-term drug modification to C3H10T1/2 cells, murine mesenchymal stem cells, without any damage, using the avidin-biotin complex method (ABC method). The modification of NanoLuc luciferase (Nluc), a reporter protein, to C3H10T1/2 cells by the ABC method lasted for at least 14 days in vitro without major effects on the cellular characteristics (cell viability, cell proliferation, migration ability, and differentiation ability). Moreover, in vivo, the surface Nluc modification to C3H10T1/2 cells by the ABC method lasted for at least 7 days. Therefore, these results indicate that the ABC method may be useful for long-term surface modification of drugs and for effective MSC-based therapy.
Coating Systems for Magnesium-Based Biomaterials — State of the Art
NASA Astrophysics Data System (ADS)
Waterman, J.; Staiger, M. P.
Magnesium and its alloys have the potential to be used for biodegradable orthopedic implants. However, the corrosion rate in physiological conditions is too high for most applications. For this reason, surface modification to slow the corrosion rate is of great interest. Such modifications must remain biologically compatible as well as protective in corrosive environments. What follows is a brief review of recent research in inorganic coatings and surface modifications to create coatings for magnesium-based biomaterials.
Fang, Yunnan; Hester, Jimmy G. D.; Su, Wenjing; Chow, Justin H.; Sitaraman, Suresh K.; Tentzeris, Manos M.
2016-01-01
A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius. PMID:28008987
Dwivedi, Neeraj; Yeo, Reuben J.; Satyanarayana, Nalam; Kundu, Shreya; Tripathy, S.; Bhatia, C. S.
2015-01-01
A novel scheme of pre-surface modification of media using mixed argon-nitrogen plasma is proposed to improve the protection performance of 1.5 nm carbon overcoats (COC) on media produced by a facile pulsed DC sputtering technique. We observe stable and lower friction, higher wear resistance, higher oxidation resistance, and lower surface polarity for the media sample modified in 70%Ar + 30%N2 plasma and possessing 1.5 nm COC as compared to samples prepared using gaseous compositions of 100%Ar and 50%Ar + 50%N2 with 1.5 nm COC. Raman and X-ray photoelectron spectroscopy results suggest that the surface modification process does not affect the microstructure of the grown COC. Instead, the improved tribological, corrosion-resistant and oxidation-resistant characteristics after 70%Ar + 30%N2 plasma-assisted modification can be attributed to, firstly, the enrichment in surface and interfacial bonding, leading to interfacial strength, and secondly, more effective removal of ambient oxygen from the media surface, leading to stronger adhesion of the COC with media, reduction of media corrosion and oxidation, and surface polarity. Moreover, the tribological, corrosion and surface properties of mixed Ar + N2 plasma treated media with 1.5 nm COCs are found to be comparable or better than ~2.7 nm thick conventional COC in commercial media. PMID:25586898
NASA Astrophysics Data System (ADS)
Fang, Yunnan; Hester, Jimmy G. D.; Su, Wenjing; Chow, Justin H.; Sitaraman, Suresh K.; Tentzeris, Manos M.
2016-12-01
A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.
Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy.
Kiel-Jamrozik, Marta; Szewczenko, Janusz; Basiaga, Marcin; Nowińska, Katarzyna
2015-01-01
The aim of the presented research was to find a combination of surface modification methods of implants made of the Ti-6Al-4V ELI alloy, that lead to formation of effective barrier for metallic ions that may infiltrate into solution. To this end, the following tests were carried out: roughness measurement, the voltamperometric tests (potentiodynamic and potentiostatic), and the ion infiltration test. The electropolishing process resulted in the lowering of surface roughness in comparison with mechanical treatment of the surface layer. The anodization process and steam sterilization increased corrosion resistance regardless of the mechanical treatment or electropolishing. The crevice corrosion tests revealed that independent of the modification method applied, the Ti-6Al-4V ELI alloy has excellent crevice corrosion resistance. The smallest quantity of ions infiltrated to the solution was observed for surface modification consisting in the mechanical treatment and anodization with the potential of 97 V. Electric parameters deter- mined during studies were the basis for effectiveness estimation of particular surface treatment methods. The research has shown that the anodization process significantly influences the pitting corrosion resistance of the Ti-6Al-4V ELI alloy independent of the previous surface treatment methods (mechanical and electrochemical). The surface layer after such modification is a protective barrier for metallic ions infiltrated to solution and protects titanium alloy against corrosive environment influence.
NASA Astrophysics Data System (ADS)
Wang, Chao; Fomovsky, Mikhail; Hall, Jamie R.; Paik, David C.; Trokel, Stephen L.; Vukelic, Sinisa
2017-02-01
A new paradigm for strengthening of corneal tissue as well as permanent correction of refractive errors has been proposed. Ultrafast laser irradiation is confined to the levels below optical breakdown such that tissue damage is avoided while creating an ionization field responsible for subsequent photochemical modification of the stroma. The concept was assed using newly developed platform for precise application of a near-IR femtosecond laser irradiation to the cornea in in-vitro experiments. Targeted irradiation with tightly focused ultrafast laser pulses allows spatially resolved crosslinking in the interior of the porcine cornea in the absence of photosensitizers. The formation of intra- or interstromal covalent bonds in collagen matrix locally increases lamellar density. Due to high resolution, treatment is spatially resolved and therefore can be tailored to either enhance structure of corneal stroma or adjust corneal curvature towards correcting refractive errors. As the induced modification is primarily driven by nonlinear absorption, the treatment is essentially wavelength independent, and as such potentially less harmful than current method of choice, joint application of UVA light irradiation in conjunction with riboflavin. Potential applicability of a near-IR femtosecond laser for biomechanical stabilization of cornea and non-invasive refractive eye corrections is discussed.
NASA Technical Reports Server (NTRS)
Bourke, M. C.
2003-01-01
MOC images indicate that aeolian ridges may mask and even obliterate primary depositional surfaces on Mars. This modification increases the difficulty in mapping the recent geological history of the planet. An analogue study in central Australia demonstrates how patterns in aeolian dunes, formed over abandoned fluvial surfaces, can be used to detect buried fluvial features.
NASA Technical Reports Server (NTRS)
Johnson, M. S.; Meskhidze, N.
2013-01-01
Mineral dust deposition is suggested to be a significant atmospheric supply pathway of bioavailable iron (Fe) to Fe-depleted surface oceans. In this study, mineral dust and dissolved Fe (Fed) deposition rates are predicted for March 2009 to February 2010 using the 3-D chemical transport model GEOS-Chem implemented with a comprehensive dust-Fe dissolution scheme. The model simulates Fed production during the atmospheric transport of mineral dust taking into account inorganic and organic (oxalate)-promoted Fe dissolution processes, photochemical redox cycling between ferric (Fe(III)) and ferrous (Fe(II)) forms of Fe, dissolution of three different Fe-containing minerals (hematite, goethite, and aluminosilicates), and detailed mineralogy of windblown dust from the major desert regions. Our calculations suggest that during the yearlong simulation is approximately 0.26 Tg (1 Tg = 1012 g) of Fed was deposited to global oceanic regions. Compared to simulations only taking into account proton-promoted Fe dissolution, the addition of oxalate to the dust-Fe mobilization scheme increased total annual model-predicted Fed deposition to global oceanic regions by approximately 75%. The implementation of Fe(II)/Fe(III) photochemical redox cycling in the model allows for the distinction between different oxidation states of deposited Fed. Our calculations suggest that during the daytime, large fractions of Fed deposited to the global oceans is likely to be in Fe(II) form, while nocturnal fluxes of Fed are largely in Fe(III) form. Model simulations also show that atmospheric fluxes of Fed can be strongly influenced by the mineralogy of Fe-containing compounds. This study shows that Fed deposition to the oceans is controlled by total dust-Fe mass concentrations, mineralogy, the surface area of dust particles, atmospheric chemical composition, cloud processing, and meteorological parameters and exhibits complex and spatiotemporally variable patterns. Our study suggests that the explicit model representation of individual processes leading to Fed production within mineral dust are needed to improve the understanding of the atmospheric Fe cycle, and quantify the effect of dust-Fe on ocean biological productivity, carbon cycle, and climate.
Potential Biosignatures in Super-Earth Atmospheres II. Photochemical Responses
Gebauer, S.; Godolt, M.; Palczynski, K.; Rauer, H.; Stock, J.; von Paris, P.; Lehmann, R.; Selsis, F.
2013-01-01
Abstract Spectral characterization of super-Earth atmospheres for planets orbiting in the habitable zone of M dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of 1 bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by in an earlier work by Rauer and colleagues. The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex life. An important result of our analysis is a shift in the ozone photochemistry from mainly Chapman production (which dominates in Earth's stratosphere) to smog-dominated ozone production for planets in the habitable zone of cooler (M5–M7)-class dwarf stars. This result is associated with a lower energy flux in the UVB wavelength range from the central star, hence slower planetary atmospheric photolysis of molecular oxygen, which slows the Chapman ozone production. This is important for future atmospheric characterization missions because it provides an indication of different chemical environments that can lead to very different responses of ozone, for example, cosmic rays. Nitrous oxide, a biosignature for simple bacterial life, is favored for low stratospheric UV conditions, that is, on planets orbiting cooler stars. Transport of this species from its surface source to the stratosphere where it is destroyed can also be a key process. Comparing 1g with 3g scenarios, our analysis suggests it is important to include the effects of interactive chemistry. Key Words: Exoplanets—Earth-like—M-dwarf—Photochemistry—Biosignatures. Astrobiology 13, 415–438. PMID:23683046
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, Steven C.; Artier, Juliana; Miller, Neil T.
Genetic engineering of photosynthetic organisms typically redirects native metabolism towards desirable products, which thereby represent new metabolic sinks. There is limited information on how these modifications impact the evolved mechanisms of photosynthetic energy metabolism and cellular growth. Two engineered strains of Synechocystis sp. PCC 6803 with altered carbon sink capacity were assayed for their photosynthetic and CO 2 concentrating mechanism properties in conditions of high and low inorganic carbon (Ci) availability. In the ΔglgC mutant, glycogen cannot be synthesized and a carbon sink pathway has been effectively removed. The JU547 strain has been engineered by integration of the Pseudomonas syringaemore » ethylene forming enzyme and provides a new sink. When cultured under high carbon conditions, ΔglgC displayed diminished photochemical efficiency, a more reduced NADPH pool, delayed initiation of the Calvin-Benson-Bassham cycle, and impairment of linear and cyclic electron flows. It also exhibited a large decrease in photochemical quenching indicative of the accumulation of Q A-, normally associated with a reduced PQ pool, but appears instead to be the result of an undefined dissipative mechanism to spill excess energy. In the case of carbon sink integration, JU547 displayed slightly more oxidized PQ and NADPH pools and increased rates of cyclic electron flow and an enhanced demand for inorganic carbon as suggested by increase in the expression of the bicarbonate transporter, SbtA. Overall, the results highlight the importance of the native regulatory network of autotrophic metabolism in governing photosynthetic performance and provide cogent examples of both predicable and difficult to predict phenotypic consequences upon installation of new pathways in autotrophs.« less
Advancing Sustainable Catalysis with Magnetite Surface Modification and Synthetic Applications
This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heteroge...
1985-01-01
suggested that the concerted reaction should be allowed photochemically and the conrotatory mode should be favored. The data were in accord with this...crossing), or (4) reaction to form products, e.g., isomers or fragments, directly from the excited state. Further radiative, non-radiative, and photochemical ...processes can occur from intermediate excited states. Typical photochemical reactions observed in simple ketones in the gas phase are: (1) Norrish
Composition and Photochemical Reactivity of Turbine Engine Exhaust
1984-09-01
ESL-TR-84-28 Composition and Photochemical Reactivity of Turbine Engine Exhaust In IL) C.W. SPICER. M.W. HOLDREN, T.F. LYON. and R.M. RIGGIN...NUMBER 2. GOVT ACCIESION NO RECIPIENT’S CATALOG NUMmE" 4. TITLE (aid Sub•ttlC) S. TYPE OF REPORT & PERIOD COvERE0 Composition and Photochemical...involved detailed exhaust organic composition studies with two -. full-scale turbine engines utilizing three fuels. Tiask 4 investigated the
An ultraviolet simulator for the incident Martian surface radiation and its applications
NASA Astrophysics Data System (ADS)
Kolb, C.; Abart, R.; Bérces, A.; Garry, J. R. C.; Hansen, A. A.; Hohenau, W.; Kargl, G.; Lammer, H.; Patel, M. R.; Rettberg, P.; Stan-Lotter, H.
2005-10-01
Ultraviolet (UV) radiation can act on putative organic/biological matter at the Martian surface in several ways. Only absorbed, but not transmitted or reflected, radiation energy can be photo-chemically effective. The most important biological UV effects are due to photochemical reactions in nucleic acids, DNA or RNA, which constitute the genetic material of all cellular organisms and viruses. Protein or lipid effects generally play a minor role, but they are also relevant in some cases. UV radiation can induce wavelengths-specific types of DNA damage. At the same time it can also induce the photo-reversion reaction of a UV induced DNA photoproduct of nucleic acid bases, the pyrimidine dimers. Intense UVB and UVC radiation, experienced on early Earth and present-day Mars, has been revealed to be harmful to all organisms, including extremophile bacteria and spores. Moreover, the formation of oxidants, catalytically produced in the Martian environment through UV irradiation, may be responsible for the destruction of organic matter on Mars. Following this, more laboratory simulations are vital in order to investigate and understand UV effects on organic matter in the case of Mars. We have designed a radiation apparatus that simulates the anticipated Martian UV surface spectrum between 200 and 400 nm (UVC UVA). The system comprises a UV enhanced xenon arc lamp, special filter-sets and mirrors to simulate the effects of the Martian atmospheric column and dust loading. We describe the technical setup and performance of the system and discuss its uses for different applications. The design is focused on portability, therefore, the Mars-UV simulator represents a device for several different Mars simulation facilities with specific emphasis on Mars research topics.
A carbon dioxide/methane greenhouse atmosphere on early Mars
NASA Technical Reports Server (NTRS)
Brown, L. L.; Kasting, J. F.
1993-01-01
One explanation for the formation of fluvial surface features on early Mars is that the global average surface temperature was maintained at or above the freezing point of water by the greenhouse warming of a dense CO2 atmosphere; however, Kasting has shown that CO2 alone is insufficient because the formation of CO2 clouds reduces the magnitude of the greenhouse effect. It is possible that other gases, such as NH3 and CH4, were present in the early atmosphere of Mars and contributed to the greenhouse effect. Kasting et al. investigated the effect of NH3 in a CO2 atmosphere and calculated that an NH3 mixing ratio of approximately 5 x 10 (exp -4) by volume, combined with a CO2 partial pressure of 4-5 bar, could generate a global average surface temperature of 273 K near 3.8 b.y. ago when the fluvial features are believed to have formed. Atmospheric NH3 is photochemically converted to N2 by ultraviolet radiation at wavelengths shortward of 230 nm; maintenance of sufficient NH3 concentrations would therefore require a source of NH3 to balance the photolytic destruction. We have used a one-dimensional photochemical model to estimate the magnitude of the NH3 source required to maintain a given NH3 concentration in a dense CO2 atmosphere. We calculate that an NH3 mixing ratio of 10(exp -4) requires a flux of NH3 on the order of 10(exp 12) molecules /cm-s. This figure is several orders of magnitude greater than estimates of the NH3 flux on early Mars; thus it appears that NH3 with CO2 is not enough to keep early Mars warm.
von Maltzahn, Nadine Freifrau; Holstermann, Jan; Kohorst, Philipp
2016-08-01
The adhesive connection between titanium base and zirconia coping of two-part abutments may be responsible for the failure rate. A high mechanical stability between both components is essential for the long-term success. The aim of the present in-vitro study was to evaluate the influence of different surface modification techniques and resin-based luting agents on the retention forces between titanium and zirconia components in two-part implant abutments. A total of 120 abutments with a titanium base bonded to a zirconia coping were investigated. Two different resin-based luting agents (Panavia F 2.0 and RelyX Unicem) and six different surface modifications were used to fix these components, resulting in 12 test groups (n = 10). The surface of the test specimens was mechanically pretreated with aluminium oxide blasting in combination with application of two surface activating primers (Alloy Primer, Clearfil Ceramic Primer) or a tribological conditioning (Rocatec), respectively. All specimens underwent 10,000 thermal cycles between 5°C and 55°C in a moist environment. A pull-off test was then conducted to determine retention forces between the titanium and zirconia components, and statistical analysis was performed (two-way anova). Finally, fracture surfaces were analyzed by light and scanning electron microscopy. No significant differences were found between Panavia F 2.0 and RelyX Unicem. However, the retention forces were significantly influenced by the surface modification technique used (p < 0.001). For both luting agents, the highest retention forces were found when adhesion surfaces of both the titanium bases and the zirconia copings were pretreated with aluminium oxide blasting, and with the application of Clearfil Ceramic Primer. Surface modification techniques crucially influence the retention forces between titanium and zirconia components in two-part implant abutments. All adhesion surfaces should be pretreated by sandblasting. Moreover, a phosphate-based primer serves to enhance long-term retention of the components. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Przybylak, Marcin; Maciejewski, Hieronim; Dutkiewicz, Agnieszka
2016-11-01
The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.
Progress in bacterial cellulose matrices for biotechnological applications.
Cacicedo, Maximiliano L; Castro, M Cristina; Servetas, Ioannis; Bosnea, Loulouda; Boura, Konstantina; Tsafrakidou, Panagiota; Dima, Agapi; Terpou, Antonia; Koutinas, Athanasios; Castro, Guillermo R
2016-08-01
Bacterial cellulose (BC) is an extracellular polymer produced by many microorganisms. The Komagataeibacter genus is the best producer using semi-synthetic media and agricultural wastes. The main advantages of BC are the nanoporous structure, high water content and free hydroxyl groups. Modification of BC can be made by two strategies: in-situ, during the BC production, and ex-situ after BC purification. In bioprocesses, multilayer BC nanocomposites can contain biocatalysts designed to be suitable for outside to inside cell activities. These nanocomposites biocatalysts can (i) increase productivity in bioreactors and bioprocessing, (ii) provide cell activities does not possess without DNA cloning and (iii) provide novel nano-carriers for cell inside activity and bioprocessing. In nanomedicine, BC matrices containing therapeutic molecules can be used for pathologies like skin burns, and implantable therapeutic devices. In nanoelectronics, semiconductors BC-based using salts and synthetic polymers brings novel films showing excellent optical and photochemical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Process for derivatizing carbon nanotubes with diazonium species and compositions thereof
NASA Technical Reports Server (NTRS)
Bahr, Jeffrey L. (Inventor); Tour, James M. (Inventor); Yang, Jiping (Inventor)
2011-01-01
Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taha, Haider; Hammer, Hillel; Akbari, Hashem
2002-04-30
The study described in this report is part of a project sponsored by the Toronto Atmospheric Fund, performed at the Lawrence Berkeley National Laboratory, to assess the potential role of surface property modifications on energy, meteorology, and air quality in the Greater Toronto Area (GTA), Canada. Numerical models were used to establish the possible meteorological and ozone air-quality impacts of increased urban albedo and vegetative fraction, i.e., ''cool-city'' strategies that can mitigate the urban heat island (UHI), significantly reduce urban energy consumption, and improve thermal comfort, particularly during periods of hot weather in summer. Mitigation is even more important duringmore » critical heat wave periods with possible increased heat-related hospitalization and mortality. The evidence suggests that on an annual basis cool-city strategies are beneficial, and the implementation of such measures is currently being investigated in the U.S. and Canada. We simulated possible scenari os for urban heat-island mitigation in the GTA and investigated consequent meteorological changes, and also performed limited air-quality analysis to assess related impacts. The study was based on a combination of mesoscale meteorological modeling, Lagrangian (trajectory), and photochemical trajectory modeling to assess the potential meteorological and ozone air-quality impacts of cool-city strategies. As available air-quality and emissions data are incompatible with models currently in use at LBNL, our air-quality analysis was based on photochemical trajectory modeling. Because of questions as to the accuracy and appropriateness of this approach, in our opinion this aspect of the study can be improved in the future, and the air-quality results discussed in this report should be viewed as relatively qualitative. The MM5 meteorological model predicts a UHI in the order of 2 to 3 degrees C in locations of maxima, and about 1 degree C as a typical value over most of the urban area. Our si mulations suggest that cool-city strategies can typically reduce local urban air temperature by 0.5-1 degrees C; as more sporadic events, larger decreases (1.5 degrees C, 2.5-2.7 degrees C and 4-6 degrees C) were also simulated. With regard to ozone mixing ratios along the simulated trajectories, the effects of cool-city strategies appear to be on the order of 2 ppb, a typical decrease. The photochemical trajectory model (CIT) also simulates larger decreases (e.g., 4 to 8 ppb), but these are not taken as representative of the potential impacts in this report. A comparison with other simulations suggest very crudely that a decrease of this magnitude corresponds to significant ''equivalent'' decreases in both NOx and VOCs emissions in the region. Our preliminary results suggest that significant UHI control can be achieved with cool-cities strategies in the GTA and is therefore worth further study. We recommend that better input data and more accurate modeling schemes be used to carry out f uture studies in the same direction.« less
Surface modification of titanium nitride film by a picosecond Nd:YAG laser
NASA Astrophysics Data System (ADS)
Gakovic, B.; Trtica, M.; Batani, D.; Desai, T.; Panjan, P.; Vasiljevic-Radovic, D.
2007-06-01
The interaction of a picosecond Nd:YAG laser (wavelength 532 nm, pulse duration 40 ps) with a polycrystalline titanium nitride (TiN) film was studied. The TiN thin film was deposited by physical vapour deposition on a silicon substrate. The titanium nitride/silicon system was modified with an energy fluence from 0.2 to 5.9 J cm-2. Multi-pulse irradiation was performed in air by a focused laser beam. Surface modifications were analysed after 1 100 successive laser pulses. Depending on the laser pulse energy and pulse count, the following phenomena were observed: (i) increased surface roughness, (ii) titanium nitride film cracking, (iii) silicon substrate modification, (iv) film exfoliation and (v) laser-induced periodical surface structures on nano- (NPSS) and micro-dimensions (MPSS).
Proceedings of the 10th international symposium on polymer surface modification
USDA-ARS?s Scientific Manuscript database
Contamination of meats, seafood, poultry, eggs, and fresh and fresh-cut fruits and vegetables is an ongoing concern. Although well-established in non-food applications for surface treatment and modification, cold plasma is a relatively new food safety intervention. As a nonthermal food processing te...
Modification of surface oxide layers of titanium targets for increasing lifetime of neutron tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakharov, A. M., E-mail: zam@plasma.mephi.ru; Dvoichenkova, O. A.; Evsin, A. E.
The peculiarities of interaction of hydrogen ions with a titanium target and its surface oxide layer were studied. Two ways of modification of the surface oxide layers of titanium targets for increasing the lifetime of neutron tubes were proposed: (1) deposition of an yttrium oxide barrier layer on the target surface; (2) implementation of neutron tube work regime in which the target is irradiated with ions with energies lower than 1000 eV between high-energy ion irradiation pulses.
Plasma technologies application for building materials surface modification
NASA Astrophysics Data System (ADS)
Volokitin, G. G.; Skripnikova, N. K.; Volokitin, O. G.; Shehovtzov, V. V.; Luchkin, A. G.; Kashapov, N. F.
2016-01-01
Low temperature arc plasma was used to process building surface materials, such as silicate brick, sand lime brick, concrete and wood. It was shown that building surface materials modification with low temperature plasma positively affects frost resistance, water permeability and chemical resistance with high adhesion strength. Short time plasma processing is rather economical than traditional processing thermic methods. Plasma processing makes wood surface uniquely waterproof and gives high operational properties, dimensional and geometrical stability. It also increases compression resistance and decreases inner tensions level in material.
Jin, Yuanhao; Li, Qunqing; Chen, Mo; Li, Guanhong; Zhao, Yudan; Xiao, Xiaoyang; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan
2015-09-02
The surface modification of LEDs based on GaAs is realized by super-aligned multiwalled carbon nanotube (SACNT) networks as etching masks. The surface morphology of SACNT networks is transferred to the GaAs. It is found that the light output power of LEDs based on GaAs with a nanostructured surface morphology is greatly enhanced with the electrical power unchanged. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Printing-assisted surface modifications of patterned ultrafiltration membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem
Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted inmore » all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.« less
Printing-assisted surface modifications of patterned ultrafiltration membranes
Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; ...
2016-10-17
Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted inmore » all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.« less
Tirupathi, Malavath; Subramanyam, Rajagopal
2012-01-01
Background Non photochemical reduction of PQ pool and mobilization of LHCII between PSII and PSI are found to be linked under abiotic stress conditions. The interaction of non photochemical reduction of PQ pool and state transitions associated physiological changes are critically important under anaerobic condition in higher plants. Methodology/Findings The present study focused on the effect of anaerobiosis on non-photochemical reduction of PQ pool which trigger state II transition in Arabidopsis thaliana. Upon exposure to dark-anaerobic condition the shape of the OJIP transient rise is completely altered where as in aerobic treated leaves the rise is unaltered. Rise in F o and F J was due to the loss of oxidized PQ pool as the PQ pool becomes more reduced. The increase in Fo′ was due to the non photochemical reduction of PQ pool which activated STN7 kinase and induced LHCII phosphorylation under anaerobic condition. Further, it was observed that the phosphorylated LHCII is migrated and associated with PSI supercomplex increasing its absorption cross-section. Furthermore, evidences from crr2-2 (NDH mutant) and pgr5 mutants (deficient in non NDH pathway of cyclic electron transport) have indicated that NDH is responsible for non photochemical reduction of the PQ pool. We propose that dark anaerobic condition accelerates production of reducing equivalents (such as NADPH by various metabolic pathways) which reduce PQ pool and is mediated by NDH leading to state II transition. Conclusions/Significance Anaerobic condition triggers non photochemical reduction of PQ pool mediated by NDH complex. The reduced PQ pool activates STN7 kinase leading to state II transition in A. thaliana. PMID:23185453