Science.gov

Sample records for photodiode array detectors

  1. Interference effects in reticon photodiode array detectors.

    PubMed

    Mount, G H; Sanders, R W; Brault, J W

    1992-03-01

    A detector system incorporating the Reticon RL1024S photodiode array has been constructed at the National Oceanic and Atmospheric Administration Aeronomy Laboratory as part of a double spectrograph to be used to study the Earth's atmosphere from ground-based and aircraft-based platforms. To determine accurately the abundances of atmospheric trace gases, this new system must be able to measure spectral absorptions as small as 0.02%. The detector, manufactured by EG&G Reticon, exhibits superior signal-to-noise characteristics at the light levels characteristic of scattered skylights, but interference in the passivating layer (a thin layer of SiO(2) that is deposited during the manufacture to protect the silicon active area from water vapor) causes major problems in achieving the required precision. The mechanism of the problems and the solution we have implemented are described in detail.

  2. Photon counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location. Previously announced in STAR as N82-19118

  3. Vacuum photodiode detector array for broadband UV detection in a tokamak plasma.

    PubMed

    Zweben, S J; Menyuk, C R; Taylor, R J

    1979-08-01

    An array of vacuum photodiode detectors has been used to monitor discharge equilibrium, stability, and cleanliness in the Macrotor tokamak. These detectors use the photoelectric effect on small tungsten plates to measure UV emission in the band lambda approximately 200-1200 angstroms, and so are sensitive mainly to impurity line radiation in Macrotor. The response of this system to controlled impurity contamination experiments and to disruptions is described. The design, construction, and background problems associated with these detectors are discussed in detail.

  4. A photon-counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location.

  5. A 16-channel avalanche photodiode detector array for visible and near-infrared flow cytometry

    NASA Astrophysics Data System (ADS)

    Lawrence, William G.; Stapels, Christopher; Farrell, Richard; Tario, Joseph D., Jr.; Podniesinski, Edward; Wallace, Paul K.; Christian, James F.

    2006-02-01

    We report on the development and application of a flow cytometer using a 16-channel avalanche photodiode (APD) linear detector array. The array is configured with a dispersive grating to simultaneously record emission over a broad wavelength range using the 16 APD channels of the linear APD array. The APD detector elements have a peak quantum efficiency of 80% near 900 nm and have at least 40% quantum efficiency over the 400-nm to 1000-nm wavelength range. The extended red sensitivity of the detector array facilitates the use of lower energy excitation sources and near IR emitting dyes which reduces the impact of autofluorescence in signal starved measurements. The wide wavelength sensitivity of the APD array permits the use of multiple excitation sources and many different fluorescent labels to maximize the number of independent parameters in a given experiment. We show the sensitivity and linearity measurements for a single APD detector. Initial results for the flow cytometer with the 16-element APD array and the 16-channel readout ASIC (application specific integrated circuit) are presented.

  6. Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET.

    PubMed

    Pichler, B J; Swann, B K; Rochelle, J; Nutt, R E; Cherry, S R; Siegel, S B

    2004-09-21

    Avalanche photodiodes (APDs) have proven to be useful as light detectors for high resolution positron emission tomography (PET). Their compactness makes these devices excellent candidates for replacing bulky photomultiplier tubes (PMTs) in PET systems where space limitations are an issue. The readout of densely packed, 10 x 10 lutetium oxyorthosilicate (LSO) block detectors (crystal size 2.0 x 2.0 x 12 mm3) with custom-built monolithic 3 x 3 APD arrays was investigated. The APDs had a 5 x 5 mm2 active surface and were arranged on a 6.25 mm pitch. The dead space on the edges of the array was 1.25 mm. The APDs were operated at a bias voltage of approximately 380 V for a gain of 100 and a dark current of 10 nA per APD. The standard deviation in gain between the APDs in the array ranged from 1.8 to 6.5% as the gain was varied from 50 to 108. A fast, low-noise, multi-channel charge sensitive preamplifier application-specific integrated circuit (ASIC) was developed for the APD readout. The amplifier had a rise time of 8 ns, a noise floor of 515 e- rms and a 9 e- pF(-1) noise slope. An acquired flood image showed that all 100 crystals from the block detector could be resolved. Timing measurements with single-channel LSO-APD detectors, as well as with the array, against a plastic scintillator and PMT assembly showed a time resolution of 1.2 ns and 2.5 ns, respectively. The energy resolution measured with a single 4.0 x 4.0 x 10 mm3 LSO crystal, wrapped in four-layer polytetrafluoroethylene (PTFE) tape and coupled with optical grease on a single APD of the array, yielded 15% (full width at half maximum, FWHM) at 511 keV. Stability tests over 9 months of operation showed that the APD arrays do not degrade appreciably. These results demonstrate the ability to decode densely packed LSO scintillation blocks with compact APD arrays. The good timing and energy resolution makes these detectors suitable for high resolution PET.

  7. A slot-scanned photodiode-array/CCD hybrid detector for digital mammography.

    PubMed

    Mainprize, James G; Ford, Nancy L; Yin, Shi; Tümer, Türmay; Yaffe, Martin J

    2002-02-01

    We have developed a novel direct conversion detector for use in a slot-scanning digital mammography system. The slot-scan concept allows for dose efficient scatter rejection and the ability to use small detectors to produce a large-area image. The detector is a hybrid design with a 1.0 mm thick silicon PIN photodiode array (the x-ray absorber) indium-bump bonded to a CCD readout that is operated in time-delay integration (TDI) mode. Because the charge capacity requirement for good image quality exceeds the capabilities of standard CCDs, a novel CCD was developed. This CCD consists of 24 independent sections, each acting as a miniature CCD with eight rows for TDI. The signal from each section is combined off-chip to produce a full signal image. The MTF and DQE for the device was measured at several exposures and compared to a linear systems model of signal and noise propagation. Because of the scanning nature of TDI imaging, both the MTF(f) and DQE(f) are reduced along the direction of the scanning motion. For a 26 kVp spectrum, the DQE(0) was measured to be 0.75+/-0.02 for an exposure of 1.29 x 10(-5) C/kg (50 mR).

  8. Nonlinearity and image persistence of P-20 phosphor-based intensified photodiode array detectors used in CARS spectroscopy.

    PubMed

    Snelling, D R; Smallwood, G J; Sawchuk, R A

    1989-08-01

    Several self-scanning photodiode arrays (IPDA) used for CARS spectroscopy are shown to exhibit a greater image persistence than has generally been realized, and to exhibit a falloff in sensitivity that is logarithmic with decreasing output signal. These effects are attributed to the P-20 phosphor based intensifiers used in the IPDAs and are probably generic to all such detectors. A strategy for minimizing the image persistence in CARS spectroscopy is presented. A prototype detector incorporating a much faster rare earth phosphor is evaluated and shown to be more suited to single pulse CARS measurements in turbulent combustion than the IPDAs incorporating P-20 phosphors.

  9. Integrated avalanche photodiode arrays

    DOEpatents

    Harmon, Eric S.

    2015-07-07

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  10. 16-element photodiode array for the angular microdeflection detector and for stabilization of a laser radiation direction

    NASA Astrophysics Data System (ADS)

    Wegrzecki, Maciej; Piotrowski, Tadeusz; Bar, Jan; Dobrowolski, Rafał; Klimov, Andrii; Klos, Helena; Marchewka, Michał; Nieprzecki, Marek; Panas, Andrzej; Prokaryn, Piotr; Seredyński, Bartłomiej; Sierakowski, Andrzej; Słysz, Wojciech; Szmigiel, Dariusz; Zaborowski, Michal

    2016-12-01

    In this paper, the design and technology of two types of 16-element photodiode arrays is described. The arrays were developed by the ITE and are to be used in detection of microdeflection of laser radiation at the Institute of Metrology and Biomedical Engineering in the Faculty of Mechatronics of Warsaw University of Technology. The electrical and photoelectrical parameters of the arrays are presented.

  11. Linear terrestrial laser scanning using array avalanche photodiodes as detectors for rapid three-dimensional imaging.

    PubMed

    Cai, Yinqiao; Tong, Xiaohua; Tong, Peng; Bu, Hongyi; Shu, Rong

    2010-12-01

    As an active remote sensor technology, the terrestrial laser scanner is widely used for direct generation of a three-dimensional (3D) image of an object in the fields of geodesy, surveying, and photogrammetry. In this article, a new laser scanner using array avalanche photodiodes, as designed by the Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, is introduced for rapid collection of 3D data. The system structure of the new laser scanner is first presented, and a mathematical model is further derived to transform the original data to the 3D coordinates of the object in a user-defined coordinate system. The performance of the new laser scanner is tested through a comprehensive experiment. The result shows that the new laser scanner can scan a scene with a field view of 30° × 30° in 0.2 s and that, with respect to the point clouds obtained on the wall and ground floor surfaces, the root mean square errors for fitting the two planes are 0.21 and 0.01 cm, respectively. The primary advantages of the developed laser scanner include: (i) with a line scanning mode, the new scanner achieves simultaneously the 3D coordinates of 24 points per single laser pulse, which enables it to scan faster than traditional scanners with a point scanning mode and (ii) the new scanner makes use of two galvanometric mirrors to deflect the laser beam in both the horizontal and the vertical directions. This capability makes the instrument smaller and lighter, which is more acceptable for users.

  12. Quantitative analysis and chromatographic fingerprinting for the quality evaluation of Forsythia suspensa extract by HPLC coupled with photodiode array detector.

    PubMed

    Xia, Yonggang; Yang, Bingyou; Wang, Qiuhong; Liang, Jun; Wei, Youhe; Yu, Hedan; Zhang, Qingbo; Kuang, Haixue

    2009-12-01

    A simple and reproducible HPLC-photodiode array detector method has been described for evaluating and controlling quality of Forsythia suspensa extract (FSE). First, by analysis of chromatographic fingerprints, the similarities of chromatograms of FSE samples from the same pharmaceutical company exceeded 0.999, 0.997 and 0.960, respectively, although they were much lower from different pharmaceutical companies. Second, by further comparing many batches of extract chromatograph charts with the corresponding reference herb materials, the "common peaks" 3, 5, 7 and 10 were defined as "marker peaks", which were identified as (+)-pinoresinol-beta-D-glucoside, forsythiaside, phillyrin and phillygenin, respectively. Third, four "marker peaks" were simultaneously determined based on fingerprint chromatogram for further controlling the quality of FSE quantitatively. Namely, the newly developed method was successfully applied to analyze 38 batches of FSE samples supplied by three pharmaceutical factories, which showed acceptable linearity, intra-day precision (RSD<2.76%), inter-day precision (RSD<3.43%) and the average recovery rates in the range of (95.38+/-2.96)% to (101.60+/-3.08)%. At last, hierarchical clustering analysis and Bayes discriminant analysis statistical methods were used to classify and differentiate the 38 FSE samples to provide the basis for guiding reasonable use of FSE and controlling its quality better.

  13. Fingerprint Analysis of Desmodium Triquetrum L. Based on Ultra Performance Liquid Chromatography with Photodiode Array Detector Combined with Chemometrics Methods.

    PubMed

    Zhang, Meiling; Zhao, Cui; Liang, Xianrui; Ying, Yin; Han, Bing; Yang, Bo; Jiang, Cheng

    2016-01-01

    A fingerprinting approach was developed by means of ultra high-performance liquid chromatography with photodiode array detector for the quality control of Desmodium triquetrum L., an herbal medicine widely used for clinical purposes. Ten batches of raw material samples of D. triquetrum were collected from different regions of China. All UPLC analyses were carried out on a Waters ACQUITY UPLC BEH shield RP18 column (2.1 × 50 mm, 1.7 µm particle size) at 60°C, with a gradient mobile phase composed of 0.1% aqueous formic acid and acetonitrile at a flow rate of 0.45 mL/min. The method validation results demonstrated the developed method possessing desirable reproducibility, efficiency, and allowing fingerprint analysis in one chromatographic run within 13 min. The quality assessment was achieved by using chemometrics methods including similarity analysis, hierarchical clustering analysis and principal component analysis. The developed method can be used for further quality control of D. triquetrum.

  14. Avalanche Photodiode Arrays for Optical Communications Receivers

    NASA Technical Reports Server (NTRS)

    Srinivasan, M.; Vilnrotter, V.

    2001-01-01

    An avalanche photodiode (APD) array for ground-based optical communications receivers is investigated for the reception of optical signals through the turbulent atmosphere. Kolmogorov phase screen simulations are used to generate realistic spatial distributions of the received optical field. It is shown that use of an APD array for pulse-position modulation detection can improve performance by up to 4 dB over single APD detection in the presence of turbulence, but that photon-counting detector arrays yield even greater gains.

  15. Instrumentation: Photodiode Array Detectors in UV-VIS Spectroscopy. Part II.

    ERIC Educational Resources Information Center

    Jones, Dianna G.

    1985-01-01

    A previous part (Analytical Chemistry; v57 n9 p1057A) discussed the theoretical aspects of diode ultraviolet-visual (UV-VIS) spectroscopy. This part describes the applications of diode arrays in analytical chemistry, also considering spectroelectrochemistry, high performance liquid chromatography (HPLC), HPLC data processing, stopped flow, and…

  16. Avalanche photodiodes for anticoincidence detectors

    NASA Astrophysics Data System (ADS)

    Cirignano, Leonard J.; Farrell, Richard; Redus, Robert H.; Squillante, Michael R.; Hunter, Stanley D.; Cuddapah, Rajani; Mukherjee, Reshmi

    1996-10-01

    Anticoincidence detectors are required for a variety of satellite instruments, including high energy gamma-ray telescopes, in order to differentiate ambient background radiation from signals of interest. Presently, most anticoincidence systems use scintillators coupled to photomultiplier tubes. We have demonstrated that it is now possible to use very high gain solid state avalanche photodiodes (APDs) as photodetectors for this application. A single APD coupled to a 30 cm multiplied by 30 cm multiplied by 0.95 cm plastic scintillator tile demonstrated 100% detection efficiency for minimum ionizing particles, with a low false positive rate. Multiple APDs enhance the signal to noise ratio in addition to providing redundancy. Relative to PMTs, APDs are compact, low power, and mechanically robust devices. Ground test data of APDs for anticoincidence shields is presented.

  17. Nuclear resonant scattering measurements on {sup 57}Fe by multichannel scaling with a 64-pixel silicon avalanche photodiode linear-array detector

    SciTech Connect

    Kishimoto, S. Haruki, R.; Mitsui, T.; Yoda, Y.; Taniguchi, T.; Shimazaki, S.; Ikeno, M.; Saito, M.; Tanaka, M.

    2014-11-15

    We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm{sup 2}) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10{sup 7} cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrum of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on {sup 57}Fe.

  18. Conversion of a sequential inductively coupled plasma emission spectrometer into a multichannel simultaneous system using a photodiode array detector

    PubMed Central

    Araújo, Mário César Ugulino; Neto, Benício de Barros; Pasquini, Célio

    1998-01-01

    A monochannel plasma emission spectrometer was converted to a multichannel instrument by the introduction of a detection system based on an array of 1024 photodiodes and a low-resolution dispersion device. The new, relatively inexpensive equipment, features both the high speed typical of simultaneous instruments and the versatility of scanning systems. This paper reports on an evaluation of the modified equipment for quantitative analysis with the simultaneous determination of Al, Mn, Mg, Ca, Fe and Cu in a natural water matrix. An average relative prediction error of 2.4% was found which is the same as the error obtained with the conventional analytical method. Data acquisition with the modified instrument is up to 40 times faster. PMID:18924819

  19. A Comparison of DEF X-Ray Film and a Photodiode Array (Reticon) as Detectors for an X-Ray Crystal Spectrometer.

    PubMed

    Goodman, D A; Eason, R W; Shiwai, B; Allinson, N; Magorrian, B; Grande, M; Ridgley, A

    1989-01-01

    A crystal spectrometer with a photodiode array (PDA) detector was tested for a range of x-ray energies between 1 and 2 keV. A laser-produced plasma has been used as an x-ray source and was generated by the high-power (Vulcan) glass laser system at the SERC Rutherford Appleton Laboratory, UK. The performance of the array was directly compared with the response of Kodak DEF x-ray film. In order to compare quantitatively the performances of the PDA and the film, detective quantum efficiency (DQE) considerations are presented for both devices. It is demonstrated that the PDA has a useful dynamic range which is approximately seven times greater than that of film, a peak DQE of approximately six times that of film, and a greatly superior low-signal performance. The operational characteristics of the PDA are discussed.

  20. Quantitative and chemical fingerprint analysis for the quality evaluation of Isatis indigotica based on ultra-performance liquid chromatography with photodiode array detector combined with chemometric methods.

    PubMed

    Shi, Yan-Hong; Xie, Zhi-Yong; Wang, Rui; Huang, Shan-Jun; Li, Yi-Ming; Wang, Zheng-Tao

    2012-01-01

    A simple and reliable method of ultra-performance liquid chromatography with photodiode array detector (UPLC-PDA) was developed to control the quality of Radix Isatidis (dried root of Isatis indigotica) for chemical fingerprint analysis and quantitative analysis of eight bioactive constituents, including R,S-goitrin, progoitrin, epiprogoitrin, gluconapin, adenosine, uridine, guanosine, and hypoxanthine. In quantitative analysis, the eight components showed good regression (R > 0.9997) within test ranges, and the recovery method ranged from 99.5% to 103.0%. The UPLC fingerprints of the Radix Isatidis samples were compared by performing chemometric procedures, including similarity analysis, hierarchical clustering analysis, and principal component analysis. The chemometric procedures classified Radix Isatidis and its finished products such that all samples could be successfully grouped according to crude herbs, prepared slices, and adulterant Baphicacanthis cusiae Rhizoma et Radix. The combination of quantitative and chromatographic fingerprint analysis can be used for the quality assessment of Radix Isatidis and its finished products.

  1. Photodiode array to charged aerosol detector response ratio enables comprehensive quantitative monitoring of basic drugs in blood by ultra-high performance liquid chromatography.

    PubMed

    Viinamäki, Jenni; Ojanperä, Ilkka

    2015-03-20

    Quantitative screening for a broad range of drugs in blood is regularly required to assess drug abuse and poisoning within analytical toxicology. Mass spectrometry-based procedures suffer from the large amount of work required to maintain quantitative calibration in extensive multi-compound methods. In this study, a quantitative drug screening method for blood samples was developed based on ultra-high performance liquid chromatography with two consecutive detectors: a photodiode array detector and a corona charged aerosol detector (UHPLC-DAD-CAD). The 2.1 mm × 150 mm UHPLC column contained a high-strength silica C18 bonded phase material with a particle size of 1.8 μm, and the mobile phase consisted of methanol/0.1% trifluoroacetic acid in gradient mode. Identification was based on retention time, UV spectrum and the response ratio from the two detectors. Using historic calibration over a one-month period, the median precision (RSD) of retention times was 0.04% and the median accuracy (bias) of quantification 6.75%. The median precision of the detector response ratio over two orders of magnitude was 12%. The applicable linear ranges were generally 0.05-5 mg L(-1). The method was validated for 161 compounds, including antipsychotics, antidepressants, antihistamines, opioid analgesics, and adrenergic beta blocking drugs, among others. The main novelty of the method was the proven utility of the response ratio of DAD to CAD, which provided the additional identification efficiency required. Unlike with mass spectrometry, the high stability of identification and quantification allowed the use of facile historic calibration.

  2. High-power flip-chip mounted photodiode array.

    PubMed

    Cross, Allen S; Zhou, Qiugui; Beling, Andreas; Fu, Yang; Campbell, Joe C

    2013-04-22

    Four-element modified uni-traveling-carrier (MUTC) photodiode arrays (PDA) flip-chip bonded onto transmission lines on AlN substrates are demonstrated. High RF output powers of 26.2 dBm and 21.0 dBm are achieved at 35 GHz and 48 GHz, respectively, using a PDA with 28-μm diameter photodiodes. A systematic comparison between a PDA with four 20 μm-diameter elements and a discrete detector with the same active area (40-μm diameter) is presented. The PDA achieved higher output power and thermal dissipation compared to its discrete counterpart.

  3. Optical Demonstrations with a Scanning Photodiode Array.

    ERIC Educational Resources Information Center

    Turman, Bobby N.

    1980-01-01

    Describes the photodiode array and the electrical connections necessary for it. Also shows a few of the optical demonstration possibilities-shadowgraphs for measuring small objects, interference and diffraction effects, angular resolution of an optical system, and a simple spectrometer. (Author/DS)

  4. Design of Low Power CMOS Read-Out with TDI Function for Infrared Linear Photodiode Array Detectors

    NASA Technical Reports Server (NTRS)

    Vizcaino, Paul; Ramirez-Angulo, Jaime; Patel, Umesh D.

    2007-01-01

    A new low voltage CMOS infrared readout circuit using the buffer-direct injection method is presented. It uses a single supply voltage of 1.8 volts and a bias current of 1uA. The time-delay integration technique is used to increase the signal to noise ratio. A current memory circuit with faulty diode detection is used to remove dark current for background compensation and to disable a photodiode in a cell if detected as faulty. Simulations are shown that verify the circuit that is currently in fabrication in 0.5ym CMOS technology.

  5. Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector.

    PubMed

    Zuo, Yuegang; Chen, Hao; Deng, Yiwei

    2002-05-16

    A simple and fast HPLC method using a photodiode array detector was developed for simultaneous determination of four major catechins, gallic acid and caffeine. After multiple extractions with aqueous methanol and acidic methanol solutions, tea extract was separated within 20 min using a methanol-acetate-water buffer gradient elution system on a C(18) column. The sample extraction data demonstrated that the single extraction used in the previous studies with aqueous acetonitrile or methanol is not sufficient; the multiple extraction procedure is essential for the quantitative analysis of catechins, phenolic acids and caffeine in teas. Several green, Oolong, black and pu-erh teas were successfully analyzed by this method. The analytical results obtained indicated that green teas contain higher content of catechins [(-)-epigallocatechin gallate, (-)-epigallocatechin, (-)-epicatechin gallate, and (-)-epicatechin] than both Oolong, pu-erh and black teas because fermentation process during the tea manufacturing reduced the levels of catechins significantly. The fermentation process also remarkably elevated the levels of gallic acid in full-fermented pu-erh and black teas. Another interesting finding is the low level of caffeine in Oolong teas, especially in Fujian Oolong tea.

  6. Identification and chemical profiling of monacolins in red yeast rice using high-performance liquid chromatography with photodiode array detector and mass spectrometry.

    PubMed

    Li, Yong-Guo; Zhang, Fang; Wang, Zheng-Tao; Hu, Zhi-Bi

    2004-09-03

    Monascus purpureus-fermented rice (red yeast rice) was one of the food supplements that had the ability of lowering the blood-lipid levels, and monacolins have been proved to be main active constituents. In total 14 monacolin compounds such as monacolin K (mevinolin), J, L, M, X, and their hydroxy acid form, as well as dehydromonacolin K, dihydromonacolin L, compactin, 3alpha-hydroxy-3,5-dihydromonacolin L, etc. were identified in red yeast rice, using high-performance liquid chromatography with photodiode array detector and tandem mass spectrometry. A chemical fingerprint profiling method to display bioactive monacolins in red yeast rice was established and could be used for the quality control of the target material and its related products. Ten finish products labeled as red yeast rice from different manufacturers in marketing were traced using the chromatographic chemical profiling method, and the results show that only two of them were similar while the other eight were significantly different from the reference red yeast rice. All of these materials including raw material powder and finished products available were quantified and the contents of monacolins were calculated with reference of monacolin K (mevinolin) as the standard.

  7. Fingerprint analysis of Hibiscus mutabilis L. leaves based on ultra performance liquid chromatography with photodiode array detector combined with similarity analysis and hierarchical clustering analysis methods

    PubMed Central

    Liang, Xianrui; Ma, Meiling; Su, Weike

    2013-01-01

    Background: A method for chemical fingerprint analysis of Hibiscus mutabilis L. leaves was developed based on ultra performance liquid chromatography with photodiode array detector (UPLC-PAD) combined with similarity analysis (SA) and hierarchical clustering analysis (HCA). Materials and Methods: 10 batches of Hibiscus mutabilis L. leaves samples were collected from different regions of China. UPLC-PAD was employed to collect chemical fingerprints of Hibiscus mutabilis L. leaves. Results: The relative standard deviations (RSDs) of the relative retention times (RRT) and relative peak areas (RPA) of 10 characteristic peaks (one of them was identified as rutin) in precision, repeatability and stability test were less than 3%, and the method of fingerprint analysis was validated to be suitable for the Hibiscus mutabilis L. leaves. Conclusions: The chromatographic fingerprints showed abundant diversity of chemical constituents qualitatively in the 10 batches of Hibiscus mutabilis L. leaves samples from different locations by similarity analysis on basis of calculating the correlation coefficients between each two fingerprints. Moreover, the HCA method clustered the samples into four classes, and the HCA dendrogram showed the close or distant relations among the 10 samples, which was consistent to the SA result to some extent. PMID:23930008

  8. Current isolating epitaxial buffer layers for high voltage photodiode array

    DOEpatents

    Morse, Jeffrey D.; Cooper, Gregory A.

    2002-01-01

    An array of photodiodes in series on a common semi-insulating substrate has a non-conductive buffer layer between the photodiodes and the semi-insulating substrate. The buffer layer reduces current injection leakage between the photodiodes of the array and allows optical energy to be converted to high voltage electrical energy.

  9. Performances of photodiode detectors for top and bottom counting detectors of ISS-CREAM experiment

    NASA Astrophysics Data System (ADS)

    Hyun, H. J.; Anderson, T.; Angelaszek, D.; Baek, S. J.; Copley, M.; Coutu, S.; Han, J. H.; Huh, H. G.; Hwang, Y. S.; Im, S.; Jeon, H. B.; Kah, D. H.; Kang, K. H.; Kim, H. J.; Kim, K. C.; Kwashnak, K.; Lee, J.; Lee, M. H.; Link, J. T.; Lutz, L.; Mitchell, J. W.; Nutter, S.; Ofoha, O.; Park, H.; Park, I. H.; Park, J. M.; Patterson, P.; Seo, E. S.; Wu, J.; Yoon, Y. S.

    2015-07-01

    The Cosmic Ray Energetics and Mass (CREAM) experiment at the International Space Station (ISS) aims to elucidate the source and acceleration mechanisms of high-energy cosmic rays by measuring the energy spectra from protons to iron. The instrument is planned for launch in 2015 at the ISS, and it comprises a silicon charge detector, a carbon target, top and bottom counting detectors, a calorimeter, and a boronated scintillator detector. The top and bottom counting detectors are developed for separating the electrons from the protons, and each of them comprises a plastic scintillator and a 20×20 silicon photodiode array. Each photodiode is 2.3 cm×2.3 cm in size and exhibits good electrical characteristics. The leakage current is measured to be less than 20 nA/cm2 at an operating voltage. The signal-to-noise ratio is measured to be better than 70 using commercial electronics, and the radiation hardness is tested using a proton beam. A signal from the photodiode is amplified by VLSI (very-large-scale integration) charge amp/hold circuits, the VA-TA viking chip. Environmental tests are performed using whole assembled photodiode detectors of a flight version. Herein, we present the characteristics of the developed photodiode along with the results of the environmental tests.

  10. Intelligent peak deconvolution through in-depth study of the data matrix from liquid chromatography coupled with a photo-diode array detector applied to pharmaceutical analysis.

    PubMed

    Arase, Shuntaro; Horie, Kanta; Kato, Takashi; Noda, Akira; Mito, Yasuhiro; Takahashi, Masatoshi; Yanagisawa, Toshinobu

    2016-10-21

    Multivariate curve resolution-alternating least squares (MCR-ALS) method was investigated for its potential to accelerate pharmaceutical research and development. The fast and efficient separation of complex mixtures consisting of multiple components, including impurities as well as major drug substances, remains a challenging application for liquid chromatography in the field of pharmaceutical analysis. In this paper we suggest an integrated analysis algorithm functioning on a matrix of data generated from HPLC coupled with photo-diode array detector (HPLC-PDA) and consisting of the mathematical program for the developed multivariate curve resolution method using an expectation maximization (EM) algorithm with a bidirectional exponentially modified Gaussian (BEMG) model function as a constraint for chromatograms and numerous PDA spectra aligned with time axis. The algorithm provided less than ±1.0% error between true and separated peak area values at resolution (Rs) of 0.6 using simulation data for a three-component mixture with an elution order of a/b/c with similarity (a/b)=0.8410, (b/c)=0.9123 and (a/c)=0.9809 of spectra at peak apex. This software concept provides fast and robust separation analysis even when method development efforts fail to achieve complete separation of the target peaks. Additionally, this approach is potentially applicable to peak deconvolution, allowing quantitative analysis of co-eluted compounds having exactly the same molecular weight. This is complementary to the use of LC-MS to perform quantitative analysis on co-eluted compounds using selected ions to differentiate the proportion of response attributable to each compound.

  11. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  12. Silicon photodiode as the two-color detector

    NASA Astrophysics Data System (ADS)

    Ponomarev, D. B.; Zakharenko, V. A.

    2015-11-01

    This paper describes a silicon photodiode as the two-color photodetector. The work of one photodiode in two spectral ranges is achieved due to the changes of the spectral sensitivity of the photodiodes in the transition from photodiode mode for photovoltaic in the short circuit mode. On the basis of silicon photodiode FD-256 the layout of the spectral ratio pyrometer was assembled and the results of theoretical calculations was confirmed experimentally. The calculated dependences of the coefficient of error of the spectral ratio pyrometer from temperature reverse voltage 10 and 100 V was presented. The calculated dependence of the instrumental error and the assessment of methodological errors of the proposed photodetector spectral ratio was done. According to the results of the presented research was set the task of development photodiode detectors which change the spectral sensitivity depending on the applied voltage.

  13. A polychromator-type near-infrared spectrometer with a high-sensitivity and high-resolution photodiode array detector for pharmaceutical process monitoring on the millisecond time scale

    NASA Astrophysics Data System (ADS)

    Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro

    2013-02-01

    In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.

  14. UV photodetectors, focal plane arrays, and avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    McClintock, Ryan

    2007-12-01

    The study of III-Nitride based optoelectronics devices is a maturing field, but there are still many underdeveloped areas in which to make a contribution of new and original research. This work specifically targets the goals of realizing high-efficiency back-illuminated solar-blind photodetectors, solar-blind focal plane arrays, and visible- and solar-blind Avalanche photodiodes. Achieving these goals has required systematic development of the material growth and characterization, device modeling and design, device fabrication and processing, and the device testing and qualification. This work describes the research conducted and presents relevant devices results. The AlGaN material system has a tunable direct bandgap that is ideally suited to detection of ultraviolet light, however this material system suffers from several key issues, making realization of high-efficiency photodetectors difficult: large dislocation densities, low n-type and p-type doping efficiency, and lattice and thermal expansion mismatches leading to cracking of the material. All of these problems are exacerbated by the increased aluminum compositions necessary in back-illuminated and solar-blind devices. Overcoming these obstacles has required extensive development and optimization of the material growth techniques necessary: this includes everything from the growth of the buffer and template, to the growth of the active region. The broad area devices realized in this work demonstrate a quantum efficiency that is among the highest ever reported for a back-illuminated solar-blind photodetector (responsivity of 157 mA/W at 280nm, external quantum efficiency of 68%). Taking advantage of the back illuminated nature of these detectors, we have successfully developed the technology to hybridize and test a solar-blind focal plane array camera. The initial focal plane array shows good uniformity and reasonable operability, and several images from this first camera are presented. However, in order to

  15. Quality assurance using a photodiode array.

    PubMed

    Balderson, M J; Spencer, D P; Nygren, I; Brown, D W

    2011-01-31

    Improved treatment techniques in radiation therapy provide incentive to reduce treatment margins, thereby increasing the necessity for more accurate geometrical setup of the linear accelerator and accompanying components. In the present paper, we describe the development of a novel device that enables precise and automated measurement of geometric parameters for the purpose of improving initial setup accuracy, and for standardizing repeated quality control activities. The device consists of a silicon photodiode array, an evaluation board, a data acquisition card, and a laptop. Measurements that demonstrate the utility of the device are also presented. Using the device, we show that the radiation light field congruence for both 6 and 15 MV beams is within 1.3 mm. The maximum measured disagreement between radiation field edges and light field edges was 1.290 ± 0.002 mm, while the smallest disagreement between the light field and radiation field edge was 0.016 ± 0.003 mm. Because measurements are automated, ambiguities resulting from interobserver variability are removed, greatly improving the reproducibility of measurements across observers. We expect the device to find use in consistency measurements on linear accelerators used for stereotactic radiosurgery, during the commissioning of new linear accelerators, or as an alternative to film or other commercially available devices for performing monthly or annual quality control checks.

  16. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits

    PubMed Central

    Aull, Brian

    2016-01-01

    This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging. PMID:27070609

  17. Self-scanned photodiode array - High performance operation in high dispersion astronomical spectrophotometry

    NASA Technical Reports Server (NTRS)

    Vogt, S. S.; Tull, R. G.; Kelton, P.

    1978-01-01

    A multichannel spectrophotometric detector system has been developed using a 1024 element self-scanned silicon photodiode array, which is now in routine operation with the high-dispersion coude spectrograph of the University of Texas McDonald Observatory 2.7-m telescope. Operational considerations in the use of such arrays for high precision and low light level spectrophotometry are discussed. A detailed description of the system is presented. Performance of the detector as measured in the laboratory and on astronomical program objects is described, and it is shown that these arrays are highly effective detectors for high dispersion astronomical spectroscopy.

  18. Characterization and identification of the chemical constituents from tartary buckwheat (Fagopyrum tataricum Gaertn) by high performance liquid chromatography/photodiode array detector/linear ion trap FTICR hybrid mass spectrometry.

    PubMed

    Ren, Qiang; Wu, Caisheng; Ren, Yan; Zhang, Jinlan

    2013-02-15

    In recent years tartary buckwheat has become popular healthful food due to its antioxidant, antidiabetic and antitumor activities. However, its chemical constituents have not yet been fully characterized and identified. In this paper, a novel high performance liquid chromatography coupled with photodiode array detector and linear ion trap FTICR hybrid mass spectrometry (HPLC-PDA/LTQ-FTICRMS) method was established to characterize and identify a total of 36 compounds by a single run. The retention time, maximum UV absorption wavelength, accurate mass weight and characteristic fragment ions were collected on line. To confirm the structures, 11 compounds were isolated and identified by MS and NMR experiments. 1, 3, 6, 6'-tetra-feruloyl sucrose named taroside was a new phenlypropanoid glycoside, together with 3, 6-di-p-coumaroyl-1, 6'-di-feruloyl sucrose, 1, 6, 6'-tri-feruloyl-3-p-coumaroyl sucrose, N-trans-feruloyltyramine and quercetin-3-O-[β-D-xyloxyl-(1→2)-α-L-rhamnoside] were isolated for the first time from the Fagopyrum species. The research enriched the chemical information of tartary buckwheat.

  19. Organic light detectors: photodiodes and phototransistors.

    PubMed

    Baeg, Kang-Jun; Binda, Maddalena; Natali, Dario; Caironi, Mario; Noh, Yong-Young

    2013-08-21

    While organic electronics is mostly dominated by light-emitting diodes, photovoltaic cells and transistors, optoelectronics properties peculiar to organic semiconductors make them interesting candidates for the development of innovative and disruptive applications also in the field of light signal detection. In fact, organic-based photoactive media combine effective light absorption in the region of the spectrum from ultraviolet to near-infrared with good photogeneration yield and low-temperature processability over large areas and on virtually every substrate, which might enable innovative optoelectronic systems to be targeted for instance in the field of imaging, optical communications or biomedical sensing. In this review, after a brief resume of photogeneration basics and of devices operation mechanisms, we offer a broad overview of recent progress in the field, focusing on photodiodes and phototransistors. As to the former device category, very interesting values for figures of merit such as photoconversion efficiency, speed and minimum detectable signal level have been attained, and even though the simultaneous optimization of all these relevant parameters is demonstrated in a limited number of papers, real applications are within reach for this technology, as it is testified by the increasing number of realizations going beyond the single-device level and tackling more complex optoelectronic systems. As to phototransistors, a more recent subject of study in the framework of organic electronics, despite a broad distribution in the reported performances, best photoresponsivities outperform amorphous silicon-based devices. This suggests that organic phototransistors have a large potential to be used in a variety of optoelectronic peculiar applications, such as a photo-sensor, opto-isolator, image sensor, optically controlled phase shifter, and opto-electronic switch and memory.

  20. A room temperature LSO/PIN photodiode PET detector module that measures depth of interaction

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.; Melcher, C.L.; Manente, R.A.

    1994-11-01

    We present measurements of a 4 element PET detector module that uses a 2{times}2 array of 3 mm square PIN photodiodes to both measure the depth of interaction (DOI) and identify the crystal of interaction. Each photodiode is coupled to one end of a 3{times}3{times}25 mm LSO crystal, with the opposite ends of all 4 crystals attached to a single PMT that provides a timing signal and initial energy discrimination. Each LSO crystal is coated with a {open_quotes}lossy{close_quotes} reflector, so the ratio of light detected in the photodiode and PMT depends on the position of interaction in the crystal, and is used to determine this position on an event by event basis. This module is operated at +25{degrees}C with a photodiode amplifier peaking time of 2 {mu}s. When excited by a collimated beam of 511 keV photons at the photodiode end of the module (i.e. closest to the patient), the DOI resolution is 4 mm fwhm and the crystal of interaction is identified correctly 95% of the time. When excited at the opposite end of the module, the DOI resolution is 13 mm fwhm and the crystal of interaction is identified correctly 73% of the time. The channel to channel variations in performance are minimal.

  1. Effect of temperature on silicon PIN photodiode radiation detectors

    NASA Astrophysics Data System (ADS)

    Kim, Han Soo; Jeong, Manhee; Kim, Young Soo; Ha, Jang Ho; Cho, Seong Yeon

    2014-03-01

    One of the noise sources of a semiconductor radiation detector is thermal noise, which degrades the performance, such as the energy resolution and unexpected random pulse signals. In this study, PIN photodiode radiation detectors, with different active areas were designed and fabricated for an experimental comparison of the energy resolutions for different temperatures and capacitances by using a Ba-133 calibration gamma-ray source. The experimental temperature was approximately in the range from -7 to 24 °C and was controlled by using a peltier device. The design considerations and the electrical characteristics, such as the I-V and the C-V characteristics, are also addressed.

  2. Large-Format AlGaN PIN Photodiode Arrays for UV Images

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Franz, David

    2010-01-01

    A large-format hybridized AlGaN photodiode array with an adjustable bandwidth features stray-light control, ultralow dark-current noise to reduce cooling requirements, and much higher radiation tolerance than previous technologies. This technology reduces the size, mass, power, and cost of future ultraviolet (UV) detection instruments by using lightweight, low-voltage AlGaN detectors in a hybrid detector/multiplexer configuration. The solar-blind feature eliminates the need for additional visible light rejection and reduces the sensitivity of the system to stray light that can contaminate observations.

  3. High Density HGCDTE Avalanche Photodiode Array Performance

    DTIC Science & Technology

    1999-08-01

    Laboratory for the Physical Sciences 8050 Greenmead Drive College Park, MD. 20740 W. Trussell, J. Nettleton , A. Hutchinson, and D. Barr Night Vision and...Electronic Sensors Directorate AMSEL RD NV LPD LT Ft. Belvoir, VA 22060-5806 1 This Work Supported in Part by NVESD Laser Technology Branch Contract...advantageous in the development of APD arrays for 3D LADAR imaging applications. HCT APDs show promise for laser range finders with increased range and 3D

  4. Simultaneous determination of three diarylheptanoids and an alpha-tetralone derivative in the green walnut husks (Juglans regia L.) by high-performance liquid chromatography with photodiode array detector.

    PubMed

    Liu, Junxi; Meng, Min; Li, Chen; Huang, Xinyi; Di, Duolong

    2008-05-09

    By optimizing extraction, separation and analytical conditions, a reliable and accurate high-performance liquid chromatographic (HPLC) method coupled with photodiode array detector (DAD) at room temperature is developed for simultaneous determination of three diarylheptanoids (juglanin A, juglanin B, rhoiptelol) and an alpha-tetralone derivative (regiolone) in methanol extracts from the green walnut husks (Juglans regia L.) The sample pretreatment process involved the reflux extraction using methanol as the extract with a ratio of liquor to sample of 15 mL/g. The separation was achieved on a SinoChrom ODS-AP C(18) column with gradient elution using acetonitrile and 2% (v/v) acetic acid in water. The intra-day and inter-day precision (RSD%) for the analytes ranged from 1.08 to 1.51 and 0.60 to 1.13, respectively. The average recoveries obtained were from 88.4% to 96.2% for the analytes with RSDs below 3.13%. The correlation coefficients of the calibration curve exceeded 0.999. The detection limits were 0.51, 0.25, 0.32 and 0.35 ng at a signal-to-noise ratio of 3, respectively. Quantitative analyses of the samples from different grown sites and in obtained different months showed that the contents of the analytes varied significantly. The method was then successfully applied for the detection and isolation of a new diarylheptanoid derivative in the green walnut husks (J. regia L.). The structure of the new compound was elucidated by various spectroscopic methods including 2D NMR techniques (COSY, HMQC, HMBC), HR-ESI-MS and X-ray single-crystal diffraction analysis.

  5. High resolution, low energy avalanche photodiode X-ray detectors

    NASA Technical Reports Server (NTRS)

    Farrell, R.; Vanderpuye, K.; Entine, G.; Squillante, M. R.

    1991-01-01

    Silicon avalanche photodiodes have been fabricated, and their performance as X-ray detectors has been measured. Photon sensitivity and energy resolution were measured as a function of size and operating parameters. Noise thresholds as low as 212 eV were obtained at room temperature, and backscatter X-ray fluorescence data were obtained for aluminum and other light elements. It is concluded that the results with the X-ray detector are extremely encouraging, and the performance is challenging the best available proportional counters. While not at the performance level of either cryogenic silicon or HgI2, these device operate at room temperature and can be reproduced in large numbers and with much larger areas than typically achieved with HgI2. In addition, they are rugged and appear to be indefinitely stable.

  6. Reversed-phase high-performance Liquid Chromatography-ultraviolet Photodiode Array Detector Validated Simultaneous Quantification of six Bioactive Phenolic Acids in Roscoea purpurea Tubers and their In vitro Cytotoxic Potential against Various Cell Lines

    PubMed Central

    Srivastava, Sharad; Misra, Ankita; Kumar, Dharmesh; Srivastava, Amit; Sood, Anil; Rawat, AKS

    2015-01-01

    Background: Roscoea purpurea or Roscoea procera Wall. (Zingiberaceae) is traditionally used for nutrition and in the treatment of various ailments. Objective: Simultaneous reversed-phase high-performance liquid chromatography-ultraviolet (RP-HPLC) photodiode array detector identification of phenolic acids (PA's) was carried out in whole extract of tuber and their cytotoxic potential was estimated along with radical scavenging action. Bioactivity guided fractionation was also done to check the response potential against the same assay. Materials and Methods: Identification and method validation was performed on RP-HPLC column and in vitro assays were used for bioactivity. Results: Protocatechuic acid, syringic acid, ferulic acid, rutin, apigenin, and kaempferol were quantified as 0.774%, 0.064%, 0.265%, 1.125%, 0.128%, and 0.528%, respectively. Validated method for simultaneous determination of PA's was found to be accurate, reproducible, and linearity was observed between peak area response and concentration. Recovery of identified PA's was within the acceptable limit of 97.40–104.05%. Significant pharmacological response was observed in whole extract against in vitro cytotoxic assay, that is, Sulforhodamine B assay, however, fractionation results in decreased action potential. Similar pattern of results were observed in the antioxidant assay, as total phenolic content and total flavonoid content were highest in whole extract and decreases with fractionation. Radical scavenging activity was prominent in chloroform fraction, exhibiting IC50 at 0.25 mg/mL. Conclusion: Study, thus, reveals that R. purpurea exhibit significant efficacy in cytotoxic activity with the potentiality of scavenging free radicals due the presence of PA's as reported through RP-HPLC. SUMMARY Proto-catechuic acid, syringic acid, ferulic acid, rutin, apigenin and kaempferol were quantified as 0.774, 0.064, 0.265, 1.125, 0.128 and 0.528 %Preliminary cytotoxic activity revealed that whole

  7. Compact multispectral photodiode arrays using micropatterned dichroic filters

    NASA Astrophysics Data System (ADS)

    Chandler, Eric V.; Fish, David E.

    2014-05-01

    The next generation of multispectral instruments requires significant improvements in both spectral band customization and portability to support the widespread deployment of application-specific optical sensors. The benefits of spectroscopy are well established for numerous applications including biomedical instrumentation, industrial sorting and sensing, chemical detection, and environmental monitoring. In this paper, spectroscopic (and by extension hyperspectral) and multispectral measurements are considered. The technology, tradeoffs, and application fits of each are evaluated. In the majority of applications, monitoring 4-8 targeted spectral bands of optimized wavelength and bandwidth provides the necessary spectral contrast and correlation. An innovative approach integrates precision spectral filters at the photodetector level to enable smaller sensors, simplify optical designs, and reduce device integration costs. This method supports user-defined spectral bands to create application-specific sensors in a small footprint with scalable cost efficiencies. A range of design configurations, filter options and combinations are presented together with typical applications ranging from basic multi-band detection to stringent multi-channel fluorescence measurement. An example implementation packages 8 narrowband silicon photodiodes into a 9x9mm ceramic LCC (leadless chip carrier) footprint. This package is designed for multispectral applications ranging from portable color monitors to purpose- built OEM industrial and scientific instruments. Use of an eight-channel multispectral photodiode array typically eliminates 10-20 components from a device bill-of-materials (BOM), streamlining the optical path and shrinking the footprint by 50% or more. A stepwise design approach for multispectral sensors is discussed - including spectral band definition, optical design tradeoffs and constraints, and device integration from prototype through scalable volume production

  8. Monolithic and hybrid near infrared detection and imaging based on poly-Ge photodiode arrays

    NASA Astrophysics Data System (ADS)

    Masini, G.; Colace, L.; Petulla, F.; Assanto, G.; Cencelli, V.; DeNotaristefani, F.

    2005-02-01

    In recent years, several Ge-on-Si technologies for the fabrication of near infrared photodetectors on Si substrates were proposed. In particular, using a low temperature (300 °C) technique, we have demonstrated poly-Ge_on_Si detectors with high speed and good NIR responsivity. The low process temperature allows the monolithic integration of the detectors as a final step in the fabrication of Si CMOS integrated circuits. After an introduction on poly-Ge, we describe a novel integrated chip (NIRCAM-1) designed as a readout/control circuit for arrays of 64 (32) poly-Ge_on_Si photodetectors. The photodiodes, monolithically integrated (wire-bonded with a hybrid approach) on the IC, generate a photocurrent which is then ADC converted after subtraction of the dark component, thus allowing a convenient digital readout of the array. The extensive optoelectronic characterization of the IC is presented.

  9. Nano-Multiplication-Region Avalanche Photodiodes and Arrays

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Pain, Bedabrata; Cunningham, Thomas

    2008-01-01

    Nano-multiplication-region avalanche photodiodes (NAPDs), and imaging arrays of NAPDs integrated with complementary metal oxide/semiconductor (CMOS) active-pixel-sensor integrated circuitry, are being developed for applications in which there are requirements for high-sensitivity (including photoncounting) detection and imaging at wavelengths from about 250 to 950 nm. With respect to sensitivity and to such other characteristics as speed, geometric array format, radiation hardness, power demand of associated circuitry, size, weight, and robustness, NAPDs and arrays thereof are expected to be superior to prior photodetectors and arrays including CMOS active-pixel sensors (APSs), charge-coupled devices (CCDs), traditional APDs, and microchannelplate/ CCD combinations. Figure 1 depicts a conceptual NAPD array, integrated with APS circuitry, fabricated on a thick silicon-on-insulator wafer (SOI). Figure 2 presents selected aspects of the structure of a typical single pixel, which would include a metal oxide/semiconductor field-effect transistor (MOSFET) integrated with the NAPD. The NAPDs would reside in silicon islands formed on the buried oxide (BOX) layer of the SOI wafer. The silicon islands would be surrounded by oxide-filled insulation trenches, which, together with the BOX layer, would constitute an oxide embedding structure. There would be two kinds of silicon islands: NAPD islands for the NAPDs and MOSFET islands for in-pixel and global CMOS circuits. Typically, the silicon islands would be made between 5 and 10 m thick, but, if necessary, the thickness could be chosen outside this range. The side walls of the silicon islands would be heavily doped with electron-acceptor impurities (p+-doped) to form anodes for the photodiodes and guard layers for the MOSFETs. A nanoscale reach-through structure at the front (top in the figures) central position of each NAPD island would contain the APD multiplication region. Typically, the reach-through structure would be

  10. New gamma detector modules based on micropixel avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Ahmadov, F.; Ahmadov, G.; Guliyev, E.; Madatov, R.; Sadigov, A.; Sadygov, Z.; Suleymanov, S.; Akberov, R.; Nuriyev, S.; Zerrouk, F.

    2017-01-01

    In this paper presented the results of the ionizing radiation detector modules, which developed on the basis of a new generation of micropixel avalanche photodiode (MAPD) of MAPD-3NK type. The samples were produced in cooperation with the Zecotek Photonics and characterized by the following parameters: sensitive area—3.7 mm × 3.7 mm, density of pixels—10000 pixels/mm2, photon detection efficiency—35-40% (at wavelength of 450-550 nm) and operation voltage—91 V. The beta particle and gamma ray detection performance of MAPD with different single scintillation crystal such as NaI, LFS and p-terphenyl was investigated. The gamma ray detector modules demonstrated a perfect linear behavior of detected signal amplitudes as a function of the gamma ray energy (from 26.3 keV up to 1.33 MeV). Energy resolution for 662 keV gamma rays was 11.2% and the minimum detectable energy was 26.3 keV.

  11. Linear array of photodiodes to track a human speaker for video recording

    NASA Astrophysics Data System (ADS)

    DeTone, D.; Neal, H.; Lougheed, R.

    2012-12-01

    Communication and collaboration using stored digital media has garnered more interest by many areas of business, government and education in recent years. This is due primarily to improvements in the quality of cameras and speed of computers. An advantage of digital media is that it can serve as an effective alternative when physical interaction is not possible. Video recordings that allow for viewers to discern a presenter's facial features, lips and hand motions are more effective than videos that do not. To attain this, one must maintain a video capture in which the speaker occupies a significant portion of the captured pixels. However, camera operators are costly, and often do an imperfect job of tracking presenters in unrehearsed situations. This creates motivation for a robust, automated system that directs a video camera to follow a presenter as he or she walks anywhere in the front of a lecture hall or large conference room. Such a system is presented. The system consists of a commercial, off-the-shelf pan/tilt/zoom (PTZ) color video camera, a necklace of infrared LEDs and a linear photodiode array detector. Electronic output from the photodiode array is processed to generate the location of the LED necklace, which is worn by a human speaker. The computer controls the video camera movements to record video of the speaker. The speaker's vertical position and depth are assumed to remain relatively constant- the video camera is sent only panning (horizontal) movement commands. The LED necklace is flashed at 70Hz at a 50% duty cycle to provide noise-filtering capability. The benefit to using a photodiode array versus a standard video camera is its higher frame rate (4kHz vs. 60Hz). The higher frame rate allows for the filtering of infrared noise such as sunlight and indoor lighting-a capability absent from other tracking technologies. The system has been tested in a large lecture hall and is shown to be effective.

  12. Nano-multiplication region avalanche photodiodes and arrays

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2011-01-01

    An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.

  13. Impact ionization engineered avalanche photodiode arrays for free space optical communication

    NASA Astrophysics Data System (ADS)

    Ferraro, Mike S.; Rabinovich, William S.; Clark, William R.; Waters, William D.; Campbell, Joe C.; Mahon, Rita; Vaccaro, Kenneth; Krejca, Brian D.

    2016-03-01

    High sensitivity photodetectors serve two purposes in free space optical communication: data reception and position sensing for pointing, tracking, and stabilization. Because of conflicting performance criteria, two separate detectors are traditionally utilized to perform these tasks but recent advances in the fabrication and development of large area, low noise avalanche photodiode (APD) arrays have enabled these devices to be used both as position sensitive detectors (PSD) and as communications receivers. Combining these functionalities allows for more flexibility and simplicity in optical assembly design without sacrificing the sensitivity and bandwidth performance of smaller, single element data receivers. Beyond eliminating the need to separate the return beam into two separate paths, these devices enable implementation of adaptive approaches to compensate for focal plane beam wander and breakup often seen in highly scintillated terrestrial and maritime optical links. While the Naval Research Laboratory (NRL) and Optogration Inc, have recently demonstrated the performance of single period, InAlAs/InGaAs APD arrays as combined data reception and tracking sensors, an impact ionization engineered (I2E) epilayer design achieves even lower carrier ionization ratios by incorporating multiple multiplication periods engineered to suppress lower ionization rate carriers while enhancing the higher ionization rate carriers of interest. This work presents a three period I2E concentric, five element avalanche photodiode array rated for bandwidths beyond 1GHz with measured carrier ionization ratios of 0.05-0.1 at moderate APD gains. The epilayer design of the device will be discussed along with initial device characterization and high speed performance measurements.

  14. Characterization of avalanche photodiodes for lidar atmospheric return signal detectors

    NASA Technical Reports Server (NTRS)

    Antill, C. W., Jr.; Holloway, R. M.

    1988-01-01

    Results are presented from tests to characterize noise, dark current, overload, and gain versus bias, relationships of ten avalanche photodiodes. The advantages of avalanche photodiodes over photomultiplier tubes for given laser wavelengths and return signal amplitudes are outlined. The relationship between responsivity and temperature and dark current and temperature are examined. Also, measurements of the noise equivalent power, the excess noise factor, and linearity are given. The advantages of using avalanche photodiodes in the Lidar Atmospheric Sensing Experiment and the Lidar In-Space Technology Experiment are discussed.

  15. Solid state neutron detector array

    SciTech Connect

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  16. Measurement of Radiation - Light Field Congruence using a Photodiode Array

    NASA Astrophysics Data System (ADS)

    Balderson, Michael J.

    Improved treatment techniques in radiation therapy provide incentive to reduce treatment margins, thereby increasing the necessity for more accurate geometrical setup of the linear accelerator and accompanying components. In this thesis, we describe the development of a novel device that enables precise and automated measurement of radiation-light field congruence of medical linear accelerators for the purpose of improving setup accuracy, and standardizing repeated quality control activities. The device consists of a silicon photodiode array, an evaluation board, a data acquisition card, and a laptop. Using the device, we show that the radiation-light field congruence for both 6 and 15 MV beams is within 2 mm on a Varian Clinac 21 EX medical linear accelerator. Because measurements are automated, ambiguities resulting from observer variability are removed, greatly improving the reproducibility of measurements over time and across observers. We expect the device to be useful in providing consistent measurements on linear accelerators used for stereotactic radiosurgery, during the commissioning of new linear accelerators, and as an alternative to film or other commercially available devices for performing monthly or annual quality control checks.

  17. Silicon photodiode soft x-ray detectors for pulsed power experiments

    SciTech Connect

    Idzorek, G.C.; Bartlett, R.J.

    1997-10-01

    Silicon photodiodes offer a number of advantages over conventional photocathode type soft x-ray detectors in pulsed power experiments. These include a nominally flat response, insensitivity to surface contamination, low voltage biasing requirements, sensitivity to low energy photons, excellent detector to detector response reproducibility, and ability to operate in poor vacuum or gas backfilled experiments. Silicon photodiodes available from International Radiation Detectors (IRD), Torrance, California have been characterized for absolute photon response from 1 eV to 10 keV photon energy, time response, and signal saturation levels. The authors calibration measurements show factor of ten deviations from the silicon photodiode theoretical flat response due to diode sensitivity outside the center `sensitive area`. Detector response reproducibility between diodes appears to be better than 5%. Time response measurements show a 10-90% rise time of about 0.1 nanoseconds and a fall time of about 0.5 nanoseconds.

  18. Absolute light and resolution measurements for sensitive CsI(Tl)/photodiode detectors

    NASA Astrophysics Data System (ADS)

    Meier, Michael M.

    2003-01-01

    To conserve volume and power, photodiode/scintillator combinations are strong candidates for gamma-ray detection in space applications. High sensitivity to MeV gamma rays necessitates large-volume scintillators, which are most effectively read out with large-area photodiodes. However, because photodiodes have unity gain, the electronic noise limits resolution, and therefore small-area photodiodes that minimize capacitance are preferred. Thus, optimization of resolution involves maximizing light production and transport in the scintillator and light collection in the photodiode, while minimizing photodiode area. Measurements of performance are reported for 1×1×1cm3/10×10mm2, 80cm3/18×18mm2, and 85cm3/10×10mm2 CsI(Tl)/photodiode combinations. Each large scintillator was a single crystal, machined to a geometry that comprised a 40mm diameter × 50mm height cylindrical section that was extended through a 20°conical section to a square face that matched the respective photodiode sensitive surface. Absolute scales were estimated for the light output by measuring the photodiode responses to 241Am (59.54keV), 57Co (122.06 and 136.47keV), and 133Ba (80.99keV) and assuming a value of 3.67eV/electron-hole pair. The photodiode quantum efficiencies for the CsI(Tl) emission spectrum, corrected for Si reflection back into the scintillator, was taken to be 0.835. We obtained values of 58.2, 46.7, and 34.6 photons/keV for the combined light production and transport into the CsI for the 1cm3, ~80cm3, and ~85cm3 detectors, respectively. The best measured resolutions at 662keVfor the detectors were 5.9%, 7.2%, and 7.4% FWHM, respectively.

  19. Advanced UV Detectors and Detector Arrays

    NASA Technical Reports Server (NTRS)

    Pankove, Jacques I.; Torvik, John

    1998-01-01

    Gallium Nitride (GaN) with its wide energy bandgap of 3.4 eV holds excellent promise for solar blind UV detectors. We have successfully designed, fabricated and tested GaN p-i-n detectors and detector arrays. The detectors have a peak responsivity of 0.14A/W at 363 nm (3.42 eV) at room temperature. This corresponds to an internal quantum efficiency of 56%. The responsivity decreases by several orders of magnitude to 0.008 A/W at 400 nm (3.10 eV) giving the excellent visible rejection ratio needed for solar-blind applications.

  20. Interdigitated microelectrode array-coupled bipolar semiconductor photodiode array (IMEA-PDA) microchip for on-chip electrochemiluminescence detection.

    PubMed

    Pal, Sukdeb; Kim, Min Jung; Tak, Yu Kyung; Kwon, Ho Taik; Song, Joon Myong

    2009-10-01

    This paper reports the design, fabrication and testing of a microchip wherein interdigitated microelectrode arrays (IMEA) were integrated with bipolar semiconductor photodiode array (PDA) chip to fabricate a highly compact embodiment for on-chip handling of solutions and electrochemiluminescence (ECL) detection. A 12 x 12 micro array of photodiodes, each coupled with an interdigitated microelectrode array (IMEA), an array of current amplifiers, and a photodiode element-addressing circuit were integrated into a single 2 x 2 cm² IC chip. Each photodiode had dimensions of 300 x 300 μm² and the photodiode-to-photodiode distance was 100 μm. The chip was successfully applied to the on-chip quantification of electro-chemiluminescing probe-labeled single stranded oligonucleotides. The minimum detectable limit at signal/noise ≥ 3 was found to be 5 x 10⁻¹⁴ moles of oligonucleotides with a sample volume as low as 5 microl (i.e., 10 fmole/μl). The attractive features of the developed IMEA-PDA microchip are that a plurality of samples can be analyzed simultaneously using a chip and that for a given sample the data can be averaged from values obtained from multiple, individually addressed pixels. These in turn bring in speed and statistical confidence in analysis. The IMEA-PDA microchip system has the potential to be used as a versatile and highly compact chemical analysis tool for chemical sensing and metrology applications.

  1. Bright Spots: UV Measurements Using a Vacuum Photodiode Array

    NASA Astrophysics Data System (ADS)

    Perkins, Rory; Bellan, Paul

    2010-11-01

    Solar coronal loops typically erupt abruptly after long quiescent periods. Such eruptions might be initiated by interactions between adjacent loops; this possibility was explored in a laboratory experiment where two plasma-filled flux tubes merge in either a co-or counter-helicity arrangement (J.F. Hansen, S.K.P. Tripathi, and P.M. Bellan, Phys. Plasma 2, 3177(2004)). The latter arrangement produces a bright region with enhanced soft x-ray emission. We investigate such mergings with a new array of EUV photo-detectors (based on S.J. Zweben, R.J. Taylor, Plasma Physics, Vol. 23, No. 4(1981)) that provides spatially and temporally resolved measurements of radiation between 10 and 120 nm. The detector boasts a sub-microsecond rise-time and provides a large signal without amplification. The detector is shielded from the charged particle background by permanent magnets. A novel two-step scheme diverts RF ground loop currents and greatly improves the signal-to-noise ratio.

  2. Using Photodiodes in the Laboratory.

    ERIC Educational Resources Information Center

    Jenkins, T. E.

    1995-01-01

    Describes the most popular optical detector in the design of photodiode detector circuits. Discusses how a photodiode works, points to consider in the design of a photodiode, and photodiode hybrids. (AIM)

  3. Development of Fuses for Protection of Geiger-Mode Avalanche Photodiode Arrays

    NASA Astrophysics Data System (ADS)

    Grzesik, Michael; Bailey, Robert; Mahan, Joe; Ampe, Jim

    2015-11-01

    Current-limiting fuses composed of Ti/Al/Ni were developed for use in Geiger-mode avalanche photodiode arrays for each individual pixel in the array. The fuses were designed to burn out at ˜4.5 × 10-3 A and maintain post-burnout leakage currents less than 10-7 A at 70 V sustained for several minutes. Experimental fuse data are presented and successful incorporation of the fuses into a 256 × 64 pixel InP-based Geiger-mode avalanche photodiode array is reported.

  4. Detector Arrays For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1988-01-01

    Paper describes status of program for developing integrated infrared detectors for astronomy. Program covers variety of detectors, including extrinsic silicon, extrinsic germanium, and indium antimonide devices with hybrid silicon multiplexers. Paper notes for arrays to reach background noise limit in cryogenic telescope, continued reductions in readout noise and dark current needed.

  5. Massively Parallel MRI Detector Arrays

    PubMed Central

    Keil, Boris; Wald, Lawrence L

    2013-01-01

    Originally proposed as a method to increase sensitivity by extending the locally high-sensitivity of small surface coil elements to larger areas, the term parallel imaging now includes the use of array coils to perform image encoding. This methodology has impacted clinical imaging to the point where many examinations are performed with an array comprising multiple smaller surface coil elements as the detector of the MR signal. This article reviews the theoretical and experimental basis for the trend towards higher channel counts relying on insights gained from modeling and experimental studies as well as the theoretical analysis of the so-called “ultimate” SNR and g-factor. We also review the methods for optimally combining array data and changes in RF methodology needed to construct massively parallel MRI detector arrays and show some examples of state-of-the-art for highly accelerated imaging with the resulting highly parallel arrays. PMID:23453758

  6. Application of a silicon photodiode array for solar edge tracking in the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. S.; Mayo, L. S.

    1985-01-01

    The optical and electronic design of the Halogen Occultation Experiment (HALOE) elevation sunsensor is described. This system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned, monolithic charge coupled device. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the HALOE science instantaneous-field-of-view (IFOV) across the vertical solar diameter during instrument calibration, and then maintain the science IFOV four arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 0.7 micrometer operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability. The HALOE instrument is a gas correlation radiometer that is now being developed by NASA Langley Research Center for the Upper Atmospheric Research Satellite.

  7. Stressed detector arrays for airborne astronomy

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Beeman, J. W.; Haller, E. E.; Geis, N.; Poglitsch, A.; Rumitz, M.

    1989-01-01

    The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed.

  8. An InN/InGaN/GaN nanowire array guided wave photodiode on silicon

    NASA Astrophysics Data System (ADS)

    Hazari, Arnab; Zunaid Baten, Md.; Yan, Lifan; Millunchick, Joanna M.; Bhattacharya, Pallab

    2016-11-01

    The III-nitride nanowire heterostructure arrays with multiple InN disk light absorbing regions have been grown by plasma-assisted molecular beam epitaxy on (001)Si substrates, and guided wave photodiodes have been fabricated and characterized. The spectral photocurrent of the devices has been measured under reverse bias, and the data exhibit distinct shoulders in the range of 0.69-3.2 eV (0.39-1.8 μm). The estimated responsivity at a wavelength of 1.3 μm is 0.2 A/W. The nanowire photodiode response was also measured with an excitation at one facet provided by an edge-emitting laser fabricated with the same nanowire array and emitting at 1.3 μm.

  9. High performance x-ray imaging detectors on foil using solution-processed organic photodiodes with extremely low dark leakage current (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Moet, Date; van der Steen, Jan Laurens; van Breemen, Albert; Shanmugam, Santhosh; Gilot, Jan; Andriessen, Ronn; Simon, Matthias; Ruetten, Walter; Douglas, Alexander; Raaijmakers, Rob; Malinowski, Pawel E.; Myny, Kris; Gelinck, Gerwin

    2015-10-01

    High performance X-ray imaging detectors on foil using solution-processed organic photodiodes with extremely low dark leakage current Abhishek Kumara, Date Moeta, Albert van Breemena, Santhosh Shanmugama, Jan-Laurens van der Steena, Jan Gilota, Ronn Andriessena, Matthias Simonb, Walter Ruettenb, Alexander U. Douglasb, Rob Raaijmakersc, Pawel E. Malinowskid, Kris Mynyd and Gerwin H. Gelincka,e a. Holst Centre/TNO, High Tech Campus 31, Eindhoven 5656 AE, The Netherlands b. Philips Research, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands c. Philips Healthcare, Veenpluis 6-8, 5684 PC Best, The Netherlands d. Department of Large Area Electronics, imec vzw, Kapeldreef 75, Leuven B3001, Belgium e. Applied Physics Department, TU Eindhoven, Eindhoven, The Netherlands We demonstrate high performance X-ray imaging detectors on foil suitable for medical grade X-ray imaging applications. The detectors are based on solution-processed organic photodiodes forming bulk-heterojunctions from photovoltaic donor and acceptor blend. The organic photodiodes are deposited using an industrially compatible slot die coating technique with end of line processing temperature below 100°C. These photodiodes have extremely low dark leakage current density of 10-7 mA/cm2 at -2V bias with very high yield and have peak absorption around 550 nm wavelength. We combine these organic photodiodes with high mobility metal oxide semiconductor based thin film transistor arrays with high pixel resolution of 200ppi on thin plastic substrate. When combined with a typical CsI(TI) scintillator material on top, they are well suited for low dose X-ray imaging applications. The optical crosstalk is insignificant upto resolution of 200 ppi despite the fact that the photodiode layer is one continuous layer and is non-pixelated. Low processing temperatures are another key advantage since they can be fabricated on plastic substrate. This implies that we can make X-ray detectors on flexible foil. Those

  10. Predictions of silicon avalanche photodiode detector performance in water vapor differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Kenimer, R. L.

    1988-01-01

    Performance analyses are presented which establish that over most of the range of signals expected for a down-looking differential absorption lidar (DIAL) operated at 16 km the silicon avalanche photodiode (APD) is the preferred detector for DIAL measurements of atmospheric water vapor in the 730 nm spectral region. The higher quantum efficiency of the APD's, (0.8-0.9) compared to a photomultiplier's (0.04-0.18) more than offsets the higher noise of an APD receiver. In addition to offering lower noise and hence lower random error the APD's excellent linearity and impulse recovery minimize DIAL systematic errors attributable to the detector. Estimates of the effect of detector system parameters on overall random and systematic DIAL errors are presented, and performance predictions are supported by laboratory characterization data for an APD receiver system.

  11. Evaluation of a PIN Photodiode Detector in Neutron-Gamma Fields

    NASA Astrophysics Data System (ADS)

    Cárdenas, José Patricio N.; Campos, Letícia L.; Filho, Tufic Madi

    2011-08-01

    Semiconductor detectors are suitable for applications in radiation dosimetry in nuclear research reactors and for radiation protection purposes. The performance of these detectors depends on the quality of their semiconductor. The aim of this work was to evaluate a commercial PIN Photodiode in the neutron-gamma fields of the IEA-R1 nuclear research reactor and from an AmBe neutron source. This semiconductor was studied as a neutron detector using some types of converters to determine a dose-to-counts conversion factor to dose equivalent. The results have shown that this component may be implemented for assessing the neutron spectra in some radiation fields and in dose equivalent in radiation protection routines.

  12. A miniature cesium iodide-photodiode detector for ambulatory monitoring of left ventricular function.

    PubMed

    Millaire, A; Hossein-Foucher, C; Rousseau, J; Bedoui, H; Ducloux, G; Marchandise, X

    1994-05-01

    The physical characteristics of a portable nonimaging scintillation probe system for continuous ambulatory monitoring of the left ventricular function are described. The detector of the equilibrium radionuclide labeled blood pool is a single cesium iodide (CsI) crystal coupled to a silicium photodiode and interfaced to a microcomputer. The spatial properties of this small CsI crystal (1 x 1 x 1 cm3) were evaluated with various single-hole collimators. Linearity was studied in nonattenuating medium. Saturation began at 3000 cps, count loss was 10% at 4000 cps, maximal count rate was 24,000 cps. In attenuating medium, isocount curve of 5% of the maximal count rate was 100 mm deep and 160 mm wide. The most appropriate tested lead collimator to record the global ejection fraction of the left ventricle was a disc-shaped (thickness 5 mm, diameter 41 mm) single-hole (proximal aperture 8 mm, distal aperture 18 mm) collimator. Sensitivity was similar to the sensitivity of a sodium iodide nuclear probe. The detection performance appeared comparable to other available detector systems. Our results indicate that such a CsI-photodiode probe is a promising candidate for left ventricular function monitoring. The application to an ambulatory multicrystal detector system is presented and discussed.

  13. Development of a testbed for flexible a-Si:H photodiode sensing arrays

    NASA Astrophysics Data System (ADS)

    Dominguez, Alfonso; Kunnen, George; Vetrano, Michael; Smith, Joseph; Marrs, Michael; Allee, David R.

    2013-05-01

    Large area, flexible sensing arrays for imaging, biochemical sensing and radiation detection are now possible with the development of flexible active matrix display technology. In particular, large-area flexible imaging arrays can provide considerable advancement in defense and security industries because of their inherent low manufacturing costs and physical plasticity that allows for increased adaptability to non-planar mounting surfaces. For example, a flexible array of photodetectors and lenslets formed into a cylinder could image simultaneously with a 360 degree view without the need for expensive bulky optics or a gimbaled mount. Here we report the design and development of a scalable 16x16 pixel testbed for flexible sensor arrays using commercial-off-the-shelf (COTS) parts and demonstrate the capture of a shadow image with an array of photodiodes and active pixel sensors on a plastic substrate. The image capture system makes use of an array of low-noise, InGaZnO active pixel amplifiers to detect changes in current in 2.4 μm-thick reverse-biased a-Si:H PIN diodes. A thorough characterization of the responsivity, detectivity, and optical gain of an a- Si:H photodiode is also provided. At the back end, analog capture circuitry progressively scans the array and constructs an image based on the electrical activity in each pixel. The use of correlated-double-sampling to remove fixed pattern noise is shown to significantly improve spatial resolution due to process variations. The testbed can be readily adapted for the development of neutron, alpha-particle, or X-ray detection arrays given an appropriate conversion layer.

  14. Arrays of Bolometric Detectors for Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Moseley, S. H.; Freund, M.; Allen, C.; Harper, A.; Loewenstein, R.; Dowell, C. D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Large format two dimensional arrays of bolometric detectors are required for many millimeter and submillimeter applications. We describe the development and testing of such arrays and the plans for using them in both a ground-based and airborne instrument.

  15. Linear charge coupled device detector array for imaging light propagating in an integrated thin-film optical waveguide

    NASA Technical Reports Server (NTRS)

    Chen, C. L.; Boyd, J. T.

    1976-01-01

    Device design, fabrication, and operation of a linear charge coupled device (CCD) detector array integrated with a thin film optical waveguide and applications of this structure to integrated optical signal processing and fiber optical communications were discussed. A two phase, overlapping-gate CCD is connected in parallel by means of a series of gates to an array of photodiodes. The photodiode provides an electrode free surface region so that a highly efficient waveguide detector coupling technique can be implemented. A thermally-oxidized layer of SiO2 forms an effective substrate for the optical waveguide.

  16. Signal-to-noise ratio of Geiger-mode avalanche photodiode single-photon counting detectors

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly

    2014-08-01

    Geiger-mode avalanche photodiodes (GM-APDs) use the avalanche mechanism of semiconductors to amplify signals in individual pixels. With proper thresholding, a pixel will be either "on" (avalanching) or "off." This discrete detection scheme eliminates read noise, which makes these devices capable of counting single photons. Using these detectors for imaging applications requires a well-developed and comprehensive expression for the expected signal-to-noise ratio (SNR). This paper derives the expected SNR of a GM-APD detector in gated operation based on gate length, number of samples, signal flux, dark count rate, photon detection efficiency, and afterpulsing probability. To verify the theoretical results, carrier-level Monte Carlo simulation results are compared to the derived equations and found to be in good agreement.

  17. Si:As BIB detector arrays

    NASA Technical Reports Server (NTRS)

    Bharat, R.; Petroff, M. D.; Speer, J. J.; Stapelbroek, M. G.

    1986-01-01

    Highlights of the results obtained on arsenic-doped silicon blocked impurity band (BIB) detectors and arrays since the invention of the BIB concept a few years ago are presented. After a brief introduction and a description of the BIB concept, data will be given on single detector performance. Then different arrays that were fabricated will be described and test data presented.

  18. A linear photodiode array employed in a short range laser triangulation obstacle avoidance sensor. M.S. Thesis; [Martian roving vehicle sensor

    NASA Technical Reports Server (NTRS)

    Odenthal, J. P.

    1980-01-01

    An opto-electronic receiver incorporating a multi-element linear photodiode array as a component of a laser-triangulation rangefinder was developed as an obstacle avoidance sensor for a Martian roving vehicle. The detector can resolve the angle of laser return in 1.5 deg increments within a field of view of 30 deg and a range of five meters. A second receiver with a 1024 elements over 60 deg and a 3 meter range is also documented. Design criteria, circuit operation, schematics, experimental results and calibration procedures are discussed.

  19. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  20. Apparatus and method for heterodyne-generated two-dimensional detector array using a single element detector

    DOEpatents

    Strauss, Charlie E.

    1997-01-01

    Apparatus and method for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO.sub.2 laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart.

  1. Apparatus and method for heterodyne-generated two-dimensional detector array using a single element detector

    DOEpatents

    Strauss, C.E.

    1997-11-18

    Apparatus and method are disclosed for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO{sub 2} laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart. 4 figs.

  2. Infrared array detectors. [for astronomical observation

    NASA Technical Reports Server (NTRS)

    Arens, J. F.

    1982-01-01

    Arrays of detectors sensitive to infrared radiation will enable astronomical observations to be made with shorter observing times than with discrete detectors and with good relative spatial accuracy. Systems using such arrays are being developed for astronomy in several regions of the electromagnetic spectrum. An example of an infrared system is given here consisting of a 32x32 element bismuth doped silicon charge injection device array that has been used in an astronomical camera.

  3. Low-Timing-Jitter Near-Infrared Single-Photon-Sensitive 16-Channel Intensified-Photodiode Detector

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Lu, Wei; Yang, Guangning; Sun, Xiaoli; Sykora, Derek; Jurkovic, Mike; Aebi, Verle; Costello, Ken; Burns, Richard

    2011-01-01

    We developed a 16-channel InGaAsP photocathode intensified-photodiode (IPD) detector with 78 ps (1-sigma) timing-jitter, less than 500 ps FWHM impulse response, greater than 15% quantum efficiency at 1064 nm wavelength with 131 kcps dark counts at 15 C.

  4. Thermopile Detector Arrays for Space Science Applications

    NASA Technical Reports Server (NTRS)

    Foote, M. C.; Kenyon, M.; Krueger, T. R.; McCann, T. A.; Chacon, R.; Jones, E. W.; Dickie, M. R.; Schofield, J. T.; McCleese, D. J.; Gaalema, S.

    2004-01-01

    Thermopile detectors are widely used in uncooled applications where small numbers of detectors are required, particularly in low-cost commercial applications or applications requiring accurate radiometry. Arrays of thermopile detectors, however, have not been developed to the extent of uncooled bolometer and pyroelectric/ferroelectric arrays. Efforts at JPL seek to remedy this deficiency by developing high performance thin-film thermopile detectors in both linear and two-dimensional formats. The linear thermopile arrays are produced by bulk micromachining and wire bonded to separate CMOS readout electronic chips. Such arrays are currently being fabricated for the Mars Climate Sounder instrument, scheduled for launch in 2005. Progress is also described towards realizing a two-dimensional thermopile array built over CMOS readout circuitry in the substrate.

  5. Initial characterization of a BGO-photodiode detector for high resolution positron emission tomography

    SciTech Connect

    Derenzo, S.E.

    1983-11-01

    Spatial resolution in positron emission tomography is currently limited by the resolution of the detectors. This work presents the initial characterization of a detector design using small bismuth germanate (BGO) crystals individually coupled to silicon photodiodes (SPDs) for crystal identification, and coupled in groups to phototubes (PMTs) for coincidence timing. A 3 mm x 3 mm x 3 mm BGO crystal coupled only to an SPD can achieve a 511 keV photopeak resolution of 8.7% FWHM at -150/sup 0/C, using a pulse peaking time of 10 ..mu..s. When two 3 mm x 3 mm x 15 mm BGO crystals are coupled individually to SPDs and also coupled to a common 14 mm diam PMT, the SPDs detect the 511 keV photopeak with a resolution of 30% FWHM at -76/sup 0/C. In coincidence with an opposing 3 mm wide BGO crystal, the SPDs are able to identify the crystal of interaction with good signal-to-noise ratio, and the detector pair resolution is 2 mm FWHM. 32 references, 7 figures, 3 tables.

  6. A 4 π charged-particle detector array for light-ion-induced nuclear fragmentation studies

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, K.; Alexander, A.; Bracken, D. S.; Brzychczyk, J.; Dorsett, J.; Ensman, R.; Renshaw Foxford, E.; Hamilton, T.; Komisarcik, K.; McDonald, K. N.; Morley, K. B.; Poehlman, J.; Powell, C.; Viola, V. E.; Yoder, N. R.; Ottarson, J.; Madden, N.

    1994-12-01

    Operating characteristics of the Indiana Silicon Sphere 4 π detector array are outlined. The detector geometry is spherical, with 90 telescopes in the forward hemisphere and 72 at backward angles, covering a total solid angle of 74% of 4π. Each telescope consists of a simple gas-ion chamber, operated with C3F8 gas, followed by a 0.5 mm thick ion-implanted silicon detector and a 28 mm CsI(Tl) crystal, readout by a photodiode. Custom-built bias supplies and NIM preamp/shaper modules were used in conjunction with commercial CFD, TDC and ADC CAMAC units.

  7. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S.; Rojeski, Ronald A.

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  8. Determination of acaricides in honey by high-performance liquid chromatography with photodiode array detection.

    PubMed

    Martel, Anne-Claire; Zeggane, Sarah

    2002-04-19

    Rapid analytical methods are described to control quality of honeys, concerning residues of acaricides applied in hives to prevent Varroa jacobsoni infestation. A liquid-liquid extraction with hexane-propanol-2-ammonia (60 ml:30 ml:0.28%) was used for the simultaneous analysis of coumaphos, bromopropylate, amitraz and fluvalinate. For thymol, one clean up on a solid-phase extraction C18 (500 mg, 6 ml) column was performed; for rotenone, a liquid extraction with dichloromethane was realised. Quantitative recoveries obtained with honey were satisfactory and were superior to 80%. All acaricides are identified by reversed-phase high-performance liquid chromatography with photodiode array detection. Quantification limits obtained were below maximal residue limits when these exist.

  9. Determination of diarylheptanoids from Alpinia officinarum (Lesser Galangal) by HPLC with photodiode array and electrochemical detection.

    PubMed

    Liu, Zhihua; Sang, Shengmin; Hartman, Thomas G; Ho, Chi-Tang; Rosen, Robert T

    2005-01-01

    Normal-phase column chromatography followed by semi-preparative reversed-phase HPLC has been used to isolate, from the rhizomes of Alpinia officinarum, five diarylheptanoids identified as 5-hydroxy-7-(4"-hydroxy-3"-methoxyphenyl)-1-phenyl-3-heptanone, 5-methoxy-7-(4"-hydroxy-3"-methoxyphenyl)-1-phenyl-3-heptanone, 7-(4"-hydroxyphenyl)-1-phenylhept-4-en-3-one, 7-(4"-hydroxy-3"-methoxyphenyl)-1-phenyl-hept-4-en-3-one, 1,7-diphenylhept-4-en-3-one. The levels of these five diarylheptanoids in root material were determined quantitatively by HPLC with UV detection and the assay methods so developed were simple, rapid and accurate. Four of the diarylheptanoids could also be detected by HPLC with electrochemical detection (ECD) in the oxidative mode, and ECD was found to have a higher sensitivity than photodiode array detection.

  10. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    NASA Technical Reports Server (NTRS)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  11. Identification of chlorophylls and carotenoids in major teas by high-performance liquid chromatography with photodiode array detection.

    PubMed

    Suzuki, Yasuyo; Shioi, Yuzo

    2003-08-27

    The separation and identification of pigments, chlorophylls, and carotenoids of seven teas and fresh leaf of tea (Camellia sinensis) by high-performance liquid chromatography (HPLC) are described. HPLC was carried out using a Symmetry C(8) column with a photodiode array detector. Pigments were eluted with a binary gradient of aqueous pyridine solution at a flow rate of 1.0 mL/min at 25 degrees C. HPLC analyses achieved the separation of more than 100 pigment peaks, and 79 pigment species, 41 chlorophylls, and 38 carotenoids were detected. The presence of degraded chlorophylls was a common feature, and the number and the variety of pigments differed with tea species. Generally, the numbers of chlorophyll species tended to increase with processing steps, while carotenoid species were decreased, especially by heating. Particularly in green teas, a change of carotenoid structure, conversion of violaxanthin to auroxanthin, occurred. In hot water extracts of teas, both chlorophylls and carotenoids were also detected, but the concentration of chlorophylls was less than 2% as compared with acetone extracts. The pigment compositions were compared between tea species, and they are discussed in terms of the differences in their manufacturing processes.

  12. High-speed Imaging and Wavefront Sensing with an Infrared Avalanche Photodiode Array

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Atkinson, Dani; Riddle, Reed; Hall, Donald; Jacobson, Shane; Law, Nicholas M.; Chun, Mark

    2015-08-01

    Infrared avalanche photodiode (APD) arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed, and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared APD array that achieves a correlated double sampling read noise of 0.73 e- in the lab, and a total noise of 2.52 e- on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics (AO) system at the Palomar Observatory 1.5 m telescope. Here we report on the improved image quality simultaneously achieved at visible and infrared wavelengths by using the array as part of an image stabilization control loop with AO-sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity, as well as future uses of this technology in other AO and high-contrast imaging applications.

  13. HIGH-SPEED IMAGING AND WAVEFRONT SENSING WITH AN INFRARED AVALANCHE PHOTODIODE ARRAY

    SciTech Connect

    Baranec, Christoph; Atkinson, Dani; Hall, Donald; Jacobson, Shane; Chun, Mark; Riddle, Reed; Law, Nicholas M.

    2015-08-10

    Infrared avalanche photodiode (APD) arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed, and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared APD array that achieves a correlated double sampling read noise of 0.73 e{sup −} in the lab, and a total noise of 2.52 e{sup −} on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics (AO) system at the Palomar Observatory 1.5 m telescope. Here we report on the improved image quality simultaneously achieved at visible and infrared wavelengths by using the array as part of an image stabilization control loop with AO-sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity, as well as future uses of this technology in other AO and high-contrast imaging applications.

  14. Low background IR detector and detector array evaluations

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.; Jared, D. A.; Lee, J. H.; Mccreight, C. R.; Mckelvey, M. E.; Stafford, P. S.

    1983-01-01

    A technology program has been underway at Ames since 1978 to develop and evaluate detectors and integrated detector arrays for low-background astronomical applications. The approach is to evaluate existing (less than 24 micron) array technology under low-background conditions, with the aim of adapting and optimizing existing devices. For longer wavelengths, where the technology is much less mature, development is sponsored and devices are evaluated, in both discrete and array formats, for eventual applications. The status of this program has been reported previously. We rely on industrial and university sources for the detectors. Typically, after a brief functionality check in the supplier's laboratory, we work with the device at Ames to characterize its low-background performance. In the case of promising arrays or detectors, we conduct ground-based telescope testing to face the problems associated with real applications. A list of devices tested at Ames is given. In the array category, accumulation-mode charge-injection-devices (AMCIDs) appear repeatedly; this reflects our recent experience with the 2 x 64 and 16 x 16 arrays. Results from the 1 x 16 CID and InSb CCD have been reported. The status of our tests of the discrete Ge:x detectors from Lawrence Berkeley Laboratory are described below. Tests of a 1 x 2 switched sample photoconductor array are just beginning. A 32-channel CMOS multiplexer has been tested at 10 K. Low-temperature silicon MOSFETs and germanium JFETs have also been tested, primarily at Ball Aerospace. This paper describes results to date on three elements of this program: AMCID array, discrete Ge:Ga detectors, and Ge JFET preamplifiers.

  15. Determination of nitroaromatic explosives and their degradation products in unsaturated-zone water samples by high-performance liquid chromatography with photodiode-array, mass spectrometric, and tandem mass spectrometric detection

    USGS Publications Warehouse

    Gates, Paul M.; Furlong, E.T.; Dorsey, T.F.; Burkhardt, M.R.

    1996-01-01

    Mass spectrometry and tandem mass spectrometry, coupled by a thermospray interface to a high-performance liguid chromatography system and equipped with a photodiode array detector, were used to determine the presence of nitroaromatic explosives and their degradation products in USA unsaturated-zone water samples. Using this approach, the lower limits of quantitation for explosives determined by mass spectrometry in this study typically ranged from 10 to 100 ng/l.

  16. Monolithic short wave infrared (SWIR) detector array

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A monolithic self-scanned linear detector array was developed for remote sensing in the 1.1- 2.4-micron spectral region. A high-density IRCCD test chip was fabricated to verify new design approaches required for the detector array. The driving factors in the Schottky barrier IRCCD (Pdsub2Si) process development are the attainment of detector yield, uniformity, adequate quantum efficiency, and lowest possible dark current consistent with radiometric accuracy. A dual-band module was designed that consists of two linear detector arrays. The sensor architecture places the floating diffusion output structure in the middle of the chip, away from the butt edges. A focal plane package was conceptualized and includes a polycrystalline silicon substrate carrying a two-layer, thick-film interconnecting conductor pattern and five epoxy-mounted modules. A polycrystalline silicon cover encloses the modules and bond wires, and serves as a radiation and EMI shield, thermal conductor, and contamination seal.

  17. Modeling Charge Collection in Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Pickel, J. C.

    2003-01-01

    A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

  18. Neutron detector characterization for SCINTIA array

    SciTech Connect

    Matei, C.; Hambsch, F. J.; Oberstedt, S.

    2011-07-01

    SCINTIA is a new detector array of organic scintillators under development at the Inst. for Reference Materials and Measurements (IRMM). The present design of SCINTIA includes NE213, p-terphenyl and Li glass neutron detectors positioned in a spherical configuration around the target. The properties of a novel p-terphenyl neutron detector to be used with SCINTIA have been investigated using photon sources and neutrons from a time tagged {sup 252}Cf(sf) source. The results show that the p-terphenyl crystal has better energy resolution, increased proton light output and neutron efficiency when compared to a similar size NE213 equivalent neutron detector. (authors)

  19. Radiation tolerance of a Geiger-mode avalanche photodiode imaging array

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly E.; Figer, Donald F.; Lee, Joong; Hanold, Brandon J.

    2016-07-01

    Radiation testing results for a Geiger-mode avalanche photodiode (GM-APD) array-based imager are reviewed. Radiation testing is a crucial step in technology development that assesses the readiness of a specific device or instrument for space-based missions or other missions in high-radiation environments. Pre- and postradiation values for breakdown voltage, dark count rate (DCR), after pulsing probability, photon detection efficiency (PDE), crosstalk probability, and intrapixel sensitivity are presented. Details of the radiation testing setup and experiment are provided. The devices were exposed to a total dose of 50 krad(Si) at the Massachusetts General Hospital's Francis H. Burr Proton Therapy Center, using monoenergetic 60 MeV protons as the radiation source. This radiation dose is equivalent to radiation absorbed over 10 solar cycles at an L2 orbit with 1-cm aluminum shielding. The DCR increased by 2.3 e-/s/pix/krad(Si) at 160 K, the afterpulsing probability increased at all temperatures and settings by a factor of ˜2, and the effective breakdown voltage shifted by +1.5 V. PDE, crosstalk probability, and intrapixel sensitivity were unchanged by radiation damage. The performance of the GM-APD imaging array is compared to the performance of the CCD on board the ASCA satellite with a similar radiation shield and radiation environment.

  20. Research on photodiode detector-based spatial transient light detection and processing system

    NASA Astrophysics Data System (ADS)

    Liu, Meiying; Wang, Hu; Liu, Yang; Zhao, Hui; Nan, Meng

    2016-10-01

    In order to realize real-time signal identification and processing of spatial transient light, the features and the energy of the captured target light signal are first described and quantitatively calculated. Considering that the transient light signal has random occurrence, a short duration and an evident beginning and ending, a photodiode detector based spatial transient light detection and processing system is proposed and designed in this paper. This system has a large field of view and is used to realize non-imaging energy detection of random, transient and weak point target under complex background of spatial environment. Weak signal extraction under strong background is difficult. In this paper, considering that the background signal changes slowly and the target signal changes quickly, filter is adopted for signal's background subtraction. A variable speed sampling is realized by the way of sampling data points with a gradually increased interval. The two dilemmas that real-time processing of large amount of data and power consumption required by the large amount of data needed to be stored are solved. The test results with self-made simulative signal demonstrate the effectiveness of the design scheme. The practical system could be operated reliably. The detection and processing of the target signal under the strong sunlight background was realized. The results indicate that the system can realize real-time detection of target signal's characteristic waveform and monitor the system working parameters. The prototype design could be used in a variety of engineering applications.

  1. Coordinated observations of optical lightning from space using the FORTE photodiode detector and CCD imager

    NASA Astrophysics Data System (ADS)

    Suszcynsky, D. M.; Light, T. E.; Davis, S.; Green, J. L.; Guillen, J. L. L.; Myre, W.

    2001-08-01

    This paper presents an overview of the coordinated observation of optical lightning from space using the photodiode detector (PDD) and CCD-based imager known as the Lightning Location System (LLS) aboard the Fast On-Orbit Recording of Transient Events (FORTE) satellite. PDD/LLS coincidence statistics are presented and show that both the detected energy density and the detected peak irradiance of optical lightning events are proportional to the number of LLS pixels (pixel multiplicity) which are activated during the event. The inference is that LLS pixel multiplicity is more a function of the detected intensity and horizontal extent of the optical event rather than a direct indicator of the degree of scattering. PDD/LLS event coincidence is also used to improve upon traditional recurrence/clustering algorithms that discriminate against false LLS events due to energetic particles and glint. Energy density measurements of coincident events show that about 4% of the optical energy detected by the broadband PDD appears in the narrowband LLS. This is in general agreement with ground-based measurements and with assumptions incorporated into the design of current and planned CCD-imaging sensors.

  2. EUV detectors based on AlGaN-on-Si Schottky photodiodes

    NASA Astrophysics Data System (ADS)

    Malinowski, P. E.; Duboz, J.-Y.; De Moor, P.; Minoglou, K.; John, J.; Srivastava, P.; Semond, F.; Frayssinet, E.; BenMoussa, A.; Giordanengo, B.; Van Hoof, C.; Mertens, R.

    2011-05-01

    Photodetectors designed for the Extreme Ultraviolet (EUV) range with the Aluminum Gallium Nitride (AlGaN) active layer are reported. AlGaN layers were grown by Molecular Beam Epitaxy (MBE) on Si(111) wafers. Different device structures were designed and fabricated, including single pixel detectors and 2D detector arrays. Sensitivity in different configurations was demonstrated, including front- and backside illumination. The latter was possible after integration of the detector chips with dedicated Si-based readouts using high-density In bump arrays and flip-chip bonding. In order to avoid radiation absorption in silicon, the substrate was removed, leaving a submicron-thin membrane of AlGaN active layer suspended on top of an array of In bumps. Optoelectrical characterization was performed using different UV light sources, also in the synchrotron beamlines providing radiation down to the EUV range. The measured cut-off wavelength of the active layer used was 280 nm, with a rejection ratio of the visible radiation above 3 orders of magnitude. Spectral responsivity and quantum efficiency values

  3. Simultaneous determination of seven lignans in Justicia procumbens by high performance liquid chromatography-photodiode array detection using relative response factors.

    PubMed

    Luo, Zuliang; Kong, Weijun; Qiu, Feng; Yang, Meihua; Li, Qian; Wei, Riwei; Yang, Xiaoli; Qin, Jieping

    2013-02-01

    A simple and sensitive HPLC coupled with photodiode array (HPLC-PDA) method was developed for simultaneous determination of seven lignans in Justicia procumbens using relative response factors (RRFs). The chromatographic separation was performed on a Shiseido Capcell Pak C(18) column (250 × 4.6 mm id, 5 μm), a gradient elution of acetonitrile/water, and a photodiode array detector. The column temperature was maintained at 35°C and the detection wavelength was set at 256 nm. Chinensinaphthol methyl ether was selected as the reference compound for calculating the relative response factors of the lignans. It has shown that the RRFs for lignans are quite similar at 256 nm of detection under different analytical conditions (different columns and HPLC instruments). Using RRFs, not every lignan is needed as a reference standard, making the method ideal for rapid, routine analysis, especially for those laboratories where lignans standards are not readily available. An economic and practicable HPLC method using RRFs was established for the determination of seven lignans in J. procumbens. This method not only can determine multiple indexes in traditional Chinese medicines (TCMs) simultaneously, but also resolve the problem of lacking of chemical standards. It will be a good quality evaluation method and pattern for TCMs.

  4. Array Detectors for Plasma Spectrochemistry.

    DTIC Science & Technology

    1988-02-04

    Applied Spectroscopy , (1987), 41, 1114. (2) R.B. Bilhorn, P.M. Epperson, J.V. Sweedler, M.B. Denton, Applied Spectroscopy , (1987), 41, 1125. 19. Abstract (continued) ,7different detector element based on the actual photon flux falling on each element during a specific measurement; binning, allowing the combination of charge stored in multiple elements while on the detector; and frame transfer, allowinq computer summation of multiple exposures of a single analysis.tA/,: -. • -’- ,, ,- - Readout modes such as random access

  5. Radiation tolerant compact image sensor using CdTe photodiode and field emitter array (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Masuzawa, Tomoaki; Neo, Yoichiro; Mimura, Hidenori; Okamoto, Tamotsu; Nagao, Masayoshi; Akiyoshi, Masafumi; Sato, Nobuhiro; Takagi, Ikuji; Tsuji, Hiroshi; Gotoh, Yasuhito

    2016-10-01

    A growing demand on incident detection is recognized since the Great East Japan Earthquake and successive accidents in Fukushima nuclear power plant in 2011. Radiation tolerant image sensors are powerful tools to collect crucial information at initial stages of such incidents. However, semiconductor based image sensors such as CMOS and CCD have limited tolerance to radiation exposure. Image sensors used in nuclear facilities are conventional vacuum tubes using thermal cathodes, which have large size and high power consumption. In this study, we propose a compact image sensor composed of a CdTe-based photodiode and a matrix-driven Spindt-type electron beam source called field emitter array (FEA). A basic principle of FEA-based image sensors is similar to conventional Vidicon type camera tubes, but its electron source is replaced from a thermal cathode to FEA. The use of a field emitter as an electron source should enable significant size reduction while maintaining high radiation tolerance. Current researches on radiation tolerant FEAs and development of CdTe based photoconductive films will be presented.

  6. Imaging Using Energy Discriminating Radiation Detector Array

    SciTech Connect

    Willson, Paul D.; Clajus, Martin; Tuemer, Tuemay O.; Visser, Gerard; Cajipe, Victoria

    2003-08-26

    Industrial X-ray radiography is often done using a broad band energy source and always a broad band energy detector. There exist several major advantages in the use of narrow band sources and or detectors, one of which is the separation of scattered radiation from primary radiation. ARDEC has developed a large detector array system in which every detector element acts like a multi-channel analyzer. A radiographic image is created from the number of photons detected in each detector element, rather than from the total energy absorbed in the elements. For high energies, 25 KeV to 4 MeV, used in radiography, energy discriminating detectors have been limited to less than 20,000 photons per second per detector element. This rate is much too slow for practical radiography. Our detector system processes over two million events per second per detector pixel, making radiographic imaging practical. This paper expounds on the advantages of the ARDEC radiographic imaging process.

  7. Mechanics of cadmium telluride-zinc telluride nucleation on (112) Si for mercury cadmium telluride infrared photo-diode arrays

    NASA Astrophysics Data System (ADS)

    Dhar, Nibir Kumar

    Epitaxy of CdTe/ZnTe on the extremely large lattice mismatched Si leads to high density of dislocations, multi-domain facets, rough surface morphology, and often Cd-terminated surface polarity. These problems, related to the mode of nucleation and growth, limit its application to manufacture improved HgCdTe based large area infrared focal plane arrays. Thermo-kinetics of ZnTe nucleation on "atomically" clean, and arsenic modified nominal and vicinal (112) Si surfaces were investigated in a molecular beam epitaxy system. Transition state theory was invoked to understand and model ZnTe nucleation processes. Thin ZnTe templates were fabricated by: (1) migration enhanced epitaxy (MEE), and (2) crystallized amorphous deposits for relaxed epitaxy (CADRE) procedure developed in this research. MBE CdTe/ZnTe/Si structures were characterized, and used to make improved HgCdTe detector arrays. MEE ZnTe nucleation produced small, but misoriented islands. Nucleation involved dissociative adsorption of Tesb2 into highly immobile chemisorbed atoms, with Si-Te covalent bond energy of 3.46 ± 0.1 eV. CdTe layers were heavily twinned, with high dislocation densities, and crystallographic facets; surface morphologies were rough, and exhibited temperature dependent polarity transformation. The CADRE process led to polycrystalline CdTe/ZnTe structures. MEE ZnTe growth on As-terminated Si surfaces was initially by Stranski-Krastanaw mode via chemisorption of tellurium atoms which produced (2sqrt{3} x 2sqrt{3})R30 reconstructed surfaces. The CADRE process did not involve island nucleation. CdTe layers deposited on ZnTe templates prepared by MEE and CADRE were Te-terminated, with extremely good morphologies. For nominal Si, twin concentrations were two orders of magnitude lower than in equivalent structures grown on "atomically" clean Si surfaces. Twin free CdTe layers with dislocation densities in the range of 1-5 × 10sp5 cmsp{-2} were obtained by the CADRE technique. A model is proposed

  8. Non-volatile resistive photo-switches for flexible image detector arrays

    NASA Astrophysics Data System (ADS)

    Nau, Sebastian; Wolf, Christoph; Sax, Stefan; List-Kratochvil, Emil J. W.

    2015-09-01

    The increasing quest to find lightweight, conformable or flexible image detectors for machine vision or medical imaging brings organic electronics into the spotlight for these fields of application. Here were we introduce a unique imaging device concept and its utilization in an organic, flexible detector array with simple passive matrix wiring. We present a flexible organic image detector array built up from non-volatile resistive multi-bit photo-switchable elements. This unique realization is based on an organic photodiode combined with an organic resistive memory device wired in a simple crossbar configuration. The presented concept exhibits significant advantages compared to present organic and inorganic detector array technologies, facilitating the detection and simultaneous storage of the image information in one detector pixel, yet also allowing for simple read-out of the information from a simple passive-matrix crossbar wiring. This concept is demonstrated for single photo-switchable pixels as well as for arrays with sizes up to 32 by 32 pixels (1024 bit). The presented results pave the way for a versatile flexible and easy-to-fabricate sensor array technology. In a final step, the concept was expanded to detection of x-rays.

  9. The SAPHIRA Near-Infrared Avalanche Photodiode Array: Telescope Deployments and Future Developments

    NASA Astrophysics Data System (ADS)

    Atkinson, Dani Eleanor; Hall, Donald; Baranec, Christoph

    2015-01-01

    We present our recent achievements of the Selex SAPHIRA APD arrays, which this year have seen deployment at three different telescopes, most notably demonstrating tip-tilt wavefront sensing in conjunction with the Palomar 1.5-m Telescope's Robo-AO system. A cooperative effort to provide enhanced speckle nulling capability to the SCExAO instrument on the Subaru telescope is also underway. We present the progress and development timeframe for the SAPHIRA and expected future applications, including targets and observational parameter space we expect the detectors to open to the astronomical community.

  10. Development of a (Hg, Cd)Te photodiode detector, Phase 2. [for 10.6 micron spectral region

    NASA Technical Reports Server (NTRS)

    1972-01-01

    High speed sensitive (Hg,Cd)Te photodiode detectors operating in the 77 to 90 K temperature range have been developed for the 10.6 micron spectral region. P-N junctions formed by impurity (gold) diffusion in p-type (Hg, Cd) Te have been investigated. It is shown that the bandwidth and quantum efficiency of a diode are a constant for a fixed ratio of mobility/lifetime ratio of minority carriers. The minority carrier mobility and lifetime uniquely determine the bandwidth and quantum efficiency and indicate the shallow n on p (Hg,Cd) Te diodes are preferable as high performance, high frequency devices.

  11. Gallium-based avalanche photodiode optical crosstalk

    NASA Astrophysics Data System (ADS)

    Blazej, Josef; Prochazka, Ivan; Hamal, Karel; Sopko, Bruno; Chren, Dominik

    2006-11-01

    Solid-state single photon detectors based on avalanche photodiode are getting more attention in various areas of applied physics: optical sensors, quantum key distribution, optical ranging and Lidar, time-resolved spectroscopy, X-ray laser diagnostics, and turbid media imaging. Avalanche photodiodes specifically designed for single photon counting semiconductor avalanche structures have been developed on the basis of various materials: Si, Ge, GaP, GaAsP, and InGaP/InGaAs at the Czech Technical University in Prague during the last 20 years. They have been tailored for numerous applications. Trends in demand are focused on detection array construction recently. Even extremely small arrays containing a few cells are of great importance for users. Electrical crosstalk between individual gating and quenching circuits and optical crosstalk between individual detecting cells are serious limitation for array design and performance. Optical crosstalk is caused by the parasitic light emission of the avalanche which accompanies the photon detection process. We have studied in detail the optical emission of the avalanche photon counting structure in the silicon- and gallium-based photodiodes. The timing properties and spectral distribution of the emitted light have been measured for different operating conditions to quantify optical crosstalk. We conclude that optical crosstalk is an inherent property of avalanche photodiode operated in Geiger mode. The only way to minimize optical crosstalk in avalanche photodiode array is to build active quenching circuit with minimum response time.

  12. Adaptive Detector Arrays for Optical Communications Receivers

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Srinivasan, M.

    2000-01-01

    The structure of an optimal adaptive array receiver for ground-based optical communications is described and its performance investigated. Kolmogorov phase screen simulations are used to model the sample functions of the focal-plane signal distribution due to turbulence and to generate realistic spatial distributions of the received optical field. This novel array detector concept reduces interference from background radiation by effectively assigning higher confidence levels at each instant of time to those detector elements that contain significant signal energy and suppressing those that do not. A simpler suboptimum structure that replaces the continuous weighting function of the optimal receiver by a hard decision on the selection of the signal detector elements also is described and evaluated. Approximations and bounds to the error probability are derived and compared with the exact calculations and receiver simulation results. It is shown that, for photon-counting receivers observing Poisson-distributed signals, performance improvements of approximately 5 dB can be obtained over conventional single-detector photon-counting receivers, when operating in high background environments.

  13. SQUID Multiplexers for Cryogenic Detector Arrays

    NASA Technical Reports Server (NTRS)

    Irwin, Kent; Beall, James; Deiker, Steve; Doriese, Randy; Duncan, William; Hilton, Gene; Moseley, S. Harvey; Reintsema, Carl; Stahle, Caroline; Ullom, Joel; Vale, Leila

    2004-01-01

    SQUID multiplexers make it possible to build arrays of thousands of cryogenic detectors with a manageable number of readout channels. We are developing time-division SQUID multiplexers based on Nb trilayer SQUIDs to read arrays of superconducting transition-edge sensors. Our first-generation, 8-channel SQUID multiplexer was used in FIBRE, a one-dimensional TES array for submillimeter astronomy. Our second-generation 32-pixel multiplexer, based on an improved architecture, has been developed for instruments including Constellation-X, SCUBA-2, and solar x-ray astronomy missions. SCUBA-2, which is being developed for the James Clerk Maxwell Telescope, will have more than 10,000 pixels. We are now developing a third-generation architecture based on superconducting hot-electron switches. The use of SQUID multiplexers in instruments operating at above 2 K will also be discussed.

  14. P-InAsSbP/n-InAs single heterostructure back-side illuminated 8 × 8 photodiode array

    NASA Astrophysics Data System (ADS)

    Brunkov, P. N.; Il'inskaya, N. D.; Karandashev, S. A.; Lavrov, A. A.; Matveev, B. A.; Remennyi, M. A.; Stus', N. M.; Usikova, A. A.

    2016-09-01

    P-InAsSbP/n-InAs/n+-InAs single heterostructure photodiode monolithic array with linear impurity distribution in the space charge region and "bulk" n-InAs absorbing layer has been fabricated by the LPE method and studied for the first time. Unlike all known InAsSbP/InAs PDs with an abrupt p-n junction the linear impurity distribution PDs potentially suggest lower compared with analogs capacitance and tunneling current. Indeed the developed photodiodes showed good perspectives for use in low temperature pyrometry as low dark current (8 × 10-6 A/cm2, Ubias = -0.5 V, 164 K) and background limited infrared photodetector (BLIP) regime starting from 190 K (2π field of view, D3.1μm ∗ = 1.1 × 1012 cm Hz1/2/W) have been demonstrated. High photodiode performance is thought to be due to above peculiarities of the impurity distribution as well as low defect density in P-InAsSbP/n-InAs/n+-InAs single heterostructure.

  15. Separation of some mono-, di- and tri-unsaturated fatty acids containing 18 carbon atoms by high-performance liquid chromatography and photodiode array detection.

    PubMed

    Czauderna, M; Kowalczyk, J

    2001-08-25

    Positional and geometric isomers of mono-, di- and tri-unsaturated fatty acids containing 18 carbon atoms were separated on commercially available reversed-phase columns in gradient systems composed of acetonitrile and water, utilizing photodiode array detection. The biological samples were hydrolyzed with 2 M NaOH for 35-40 min at 85-90 degrees C. After cooling, the hydrolysates were acidified with 4 M HCl and the free fatty acids were extracted with dichloromethane. The organic solvent was removed in a gentle stream of argon. The fatty acids were determined after pre-column derivatization with dibromacetophenone in the presence of triethylamine. The reaction components were mixed and reacted for 2 h at 50 degrees C. Separations of derivatized fatty acids were performed on two C18 columns (Nova Pak C18, 4 microm, 250x4.6 mm, Waters) by binary or ternate gradient programs and UV detection at 254 and 235 nm. The geometric and positional isomers of some unsaturated fatty acids were substantially retained on the C18 columns and were distinct from some saturated fatty acids, endogenous substances in biological samples or background interference. Only slight separation of critical pairs of cis-9 C18:1/cis-11 C18:1 and cis-6 C18:1/trans-11 C18:1 was obtained. A ternate gradient program can be used for complete fractionation of a mixture of conjugated linoleic acid isomers (CLA) from cis-9, cis-12 and trans-9, trans-12 isomers of C18:2. The CLA isomers in the effluent were monitored at 235 nm. The CLA isomers were differentiated from saturated and unsaturated fatty acids using a photodiode array detector. The utility of the method was demonstrated by evaluating the fatty acid composition of duodenal digesta, rapeseed and maize oils.

  16. Development of the HgCdTe Avalanche Photodiode Detectors and the Improvement in the CO2 Lidar Performance for the ASCENDS Mission

    NASA Astrophysics Data System (ADS)

    Sun, X.; Abshire, J. B.; Chen, J. R.; Ramanathan, A. K.; Mao, J.

    2015-12-01

    NASA Goddard Space Flight Center (GSFC) is developing the CO2 lidar as a candidate for the NASA's planned ASCENDS mission under the support of Earth Science Technology Office (ESTO) IIP and ATI-QRS programs. A new type of HgCdTe avalanche photodiode (APD) detector has been developed by the DRS Technologies under the IIP program. The new detectors achieved >70% quantum efficiency, including the effect of the fill factor, over the spectral range from 0.4 to 4.3 μm, which significantly improves the receiver performance of our CO2 lidar and enabled other remote sending measurements. The HgCdTe APD arrays have 80 μm square pixels in a 4x4 array along with a bank of 16 preamplifiers on the same chip carrier. Test results at both DRS and GSFC showed the HgCdTe APD array has achieved, an APD gain of 500-1000, 8-10 MHz electrical bandwidth, and an average noise equivalent power (NEP) of <0.5 fW/Hz1/2. It has demonstrated at least a 3 orders of magnitude dynamic range at a fixed APD gain setting. The gains of the APD and the preamplifier can also be adjusted to further extend the receiver dynamic range. During summer 2014 we successfully demonstrated airborne lidar measurements of column CO2 using one of these detectors. The Aerospace Corporation is currently building a 3U CubeSat with one of these detectors in a small closed-cycle cryocooler as the primary payload under the ESTO In-space Validation of Earth Science Technology (InVEST) program. The CubeSat is scheduled to be launched in late 2016 and will fly in a low Earth orbit and monitor the performance for at least a year. We have also updated the performance analysis of a space-based version of our CO2 lidar with the new HgCdTe APD detector. For the retrievals, a least-square-error method is used to fit the measured transmittances to a predetermined line shape function using 8 to 16 sampling wavelengths. The error in the derived total optical depth and the CO2 mixing ratio are estimated via the standard error

  17. A discrete component low-noise preamplifier readout for a linear (1×16) SiC photodiode array

    NASA Astrophysics Data System (ADS)

    Kahle, Duncan; Aslam, Shahid; Herrero, Federico A.; Waczynski, Augustyn

    2016-09-01

    A compact, low-noise and inexpensive preamplifier circuit has been designed and fabricated to optimally readout a common cathode (1×16) channel 4H-SiC Schottky photodiode array for use in ultraviolet experiments. The readout uses an operational amplifier with 10 pF capacitor in the feedback loop in parallel with a low leakage switch for each of the channels. This circuit configuration allows for reiterative sample, integrate and reset. A sampling technique is given to remove Johnson noise, enabling a femtoampere level readout noise performance. Commercial-off-the-shelf acquisition electronics are used to digitize the preamplifier analog signals. The data logging acquisition electronics has a different integration circuit, which allows the bandwidth and gain to be independently adjusted. Using this readout, photoresponse measurements across the array between spectral wavelengths 200 nm and 370 nm are made to establish the array pixels external quantum efficiency, current responsivity and noise equivalent power.

  18. Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays

    DOEpatents

    Li, Zheng; Chen, Wei

    2016-07-05

    A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.

  19. Linear arrays of InGaAs/InP avalanche photodiodes for 1.0-1.7 micron

    NASA Technical Reports Server (NTRS)

    Ackley, D. E.; Hladky, J.; Lange, M. J.; Mason, S.; Erickson, G.; Olsen, G. H.; Ban, V. S.; Forrest, S. R.; Staller, C.

    1990-01-01

    Separate absorption and multiplication InGaAs/InP avalanche photodiodes (SAM-APDs) with a floating guard ring structure that is well-suited to array applications have been successfully demonstrated. Individual APDs have breakdown voltages greater than 80 V, multiplications over 40 at 100 nA dark current, and uniform spatial gain profiles. Uniform I-V characteristics and gains have been measured over linear dimensions as large as 1.2 cm. Gains over 10 at low multiplied dark currents were measured on 21 consecutive devices at the wafer level.

  20. Nonlinear Time-Variant Response in an Avalanche Photodiode Array Based Laser Detection and Ranging System

    DTIC Science & Technology

    2007-03-01

    Model Details . . . . . . . . . . . . . 23 vi Page 3.5 ROIC Model Details . . . . . . . . . . . . . . . . . . . . 25 3.6 Model Implications...28 4.3 ROIC Systematic Error Suppression . . . . . . . . . . . 29 4.4 Time Variance . . . . . . . . . . . . . . . . . . . . . . . 32 4.5 Time...Field of View . . . . . . . . . . . . . . . . . 2 APD Avalanche Photodiode . . . . . . . . . . . . . . . . . . . . 3 ROIC Read-Out Integrated Circuit

  1. Microphone array based novel infant deafness detector.

    PubMed

    Agnihotri, Chinmayee; Thiyagarajan, S; Kalyansundar, Archana

    2010-01-01

    This work focuses on an infant deafness detector unit, using the concept of microphone array. This instrument is based on the principle of evoked acoustic emissions (OAEs). The key feature of the microphone array is its ability to increase signal-to-noise ratio (SNR) and reproducibility of the OAE responses. These further significantly contribute to improve the sensitivity and specificity of the overall system. Low level sound pressure values are recorded by the sensitive microphones in microphone array unit and processed using TI's DSP6416. The sound stimulus transmitted to human ear is generated and controlled by the 6416 DSP (Digital signal processor). Hardware circuit details and the algorithm used in signal processing are discussed in this paper. Standard averaging technique is used in the implemented algorithm. The final result speaks about the hearing capacity of a patient. The proof that the usage of microphone arrays leads to better SNR values than using a single microphone in an OAE probe, is successfully carried out in this work.

  2. Comparative Performance of the Photomultiplier Tube and the Silicon Avalanche Photodiode When Used as Detectors in Angular Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Kroner, D. O.; Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K.; Smythe, W. D.

    2014-12-01

    We report the results of a comparative study of two types of photometric detectors that are commonly used for, spacecraft, ground-based telescope, and laboratory observations in support of precise angular scattering investigations of the type described in a companion paper (Nelson et al., this meeting). The performance of the state of the art Hamamatsu C12703-01 Silicon Avalanche photodiode (SAD) was compared to that of the Hamamatsu R928 Photomultiplier tube (PMT). The Hamamatsu R928 evolved from a sequence of photometric detectors with a long history of use in support of laboratory and remote sensing studies, tracing backwards to include the RCA 1P21 and the RCA 931A. Two newly acquired SADs were bench tested along with a new R928 photomultiplier tube that was thermoelectrically cooled to -10 deg C. The SAD's employed electronic thermal compensation supplied by the manufacturer. The SADs and PMT measured electromagnetic radiation from solid-state lasers of wavelength 635 nm after the radiation was reflected from diffusely-scattering surfaces of varying albedos. The SADs were housed on tripods that were co-aligned with the PMT and laser. The photometric detectors were placed 4.3 meters from a reflecting disk. The disk was rotated to reduce the effect of laser speckle. All detectors in the experiment were equipped with notch filters that transmit light only of the wavelength emitted by the laser. Three SR830 DSP Lock-in Amplifiers were connected to the detectors and various setting configurations were compared in order to optimize signal to noise. Neutral Density filters (ND 0,3 and ND 0,9) were placed in the light path to determine the linearity in the response function of the detectors. We conclude that in this application SADs and PMTs produce comparable photometric precision and fidelity. SADs offer greater convenience because thermal compensation circuitry is integrated with the detector. This work was partially supported by NASA's Cassini Science

  3. Digital radiography: Present detectors and future developments

    SciTech Connect

    Perez-Mendez, V.

    1990-08-01

    Present detectors for digital radiography are of two classes: real time detectors and storage (non real time) types. Present real time detectors consist of image intensifier tubes with an internal cesium iodide layer x-ray converter. Non real time detectors involve linear sweep arrays or storage detectors such as film. Future detectors discussed here can be of both types utilizing new technologies such as hydrogenated amorphous silicon photodiode arrays coupled to thin film transistor arrays. 17 refs., 10 figs.

  4. Design and testing of an active quenching circuit for an avalanche photodiode photon detector

    NASA Technical Reports Server (NTRS)

    Arbel, D.; Schwartz, J. A.

    1991-01-01

    The photon-detection capabilities of avalanche photodiodes (APDs) operating above their theoretical breakdown voltages are described, with particular attention given to the needs and methods of quenching an avalanche once breakdown has occurred. A brief background on the motives of and previous work with this mode of operation is presented. Finally, a description of the design and testing of an active quenching circuit is given. Although the active quenching circuit did not perform as expected, knowledge was gained as to the signal amplitudes necessary for quenching and the need for a better model for the above-breakdown circuit characteristics of the Geiger-mode APD.

  5. The 1.06 micrometer avalanche photodiode detectors with integrated circuit preamplifiers

    NASA Technical Reports Server (NTRS)

    Eden, R. C.

    1975-01-01

    The development of a complete solid state 1.06 micron optical receiver which can be used in optical communications at data rates approaching 1.5 Gb/s, or in other applications requiring sensitive, short-pulse detection, is reported. This work entailed both the development of a new type of heterojunction 3-5 semiconductor alloy avalanche photodiode and an extremely charge-sensitive wideband low-noise preamp design making use of GaAs Schottky barrier-gate field effect transistors.

  6. Electromagnetic modeling and resonant detectors and arrays

    NASA Astrophysics Data System (ADS)

    Choi, K. K.; Sun, J.; DeCuir, E. A.; Olver, K. A.; Wijewarnasuriya, P.

    2015-05-01

    We recently developed a finite element three-dimensional electromagnetic model for quantum efficiency (QE) computation. It is applicable to any arbitrary detector geometry and materials. Using this model, we can accurately account for the open literature experimental results that we have investigated, which include those from GaAs solar cells, GaSb type-II superlattices, and GaAs quantum wells. We applied the model to design a photon trap to increase detector QE. By accumulating and storing incident light in the resonator-QWIP structure, we observed experimental QE as high as 71%. This improvement shows that we are now able to fully determine the optical properties of QWIPs. For example, we can design QWIPs to detect at certain wavelengths with certain bandwidths. To illustrate this capability, we designed QWIPs with its QE spectrum matching well with the transmission spectrum of a medium. We subsequently produced several focal plane arrays according to these designs with 640 × 512 and 1 K × 1 K formats. In this paper, we will compare the modeled QE and the experimental results obtained from single detectors as well as FPAs.

  7. The enhanced photo absorption and carrier transportation of InGaN/GaN Quantum Wells for photodiode detector applications.

    PubMed

    Yang, Haojun; Ma, Ziguang; Jiang, Yang; Wu, Haiyan; Zuo, Peng; Zhao, Bin; Jia, Haiqiang; Chen, Hong

    2017-02-27

    We have conducted a series of measurements of resonantly excited photoluminescence, photocurrent and photovoltage on InGaN/GaN quantum wells with and without a p-n junction under reverse bias condition. The results indicate that most of the resonantly excited photo-generated carriers are extracted from the quantum wells when a p-n junction exists, and the photon absorption of quantum wells is enhanced by the p-n junction. Additionally, the carrier extraction becomes more distinct under a reverse bias. Our finding brings better understanding of the physical characteristics of quantum wells with p-n junction, which also suggests that the quantum well is suitable for photodiode detectors applications when a p-n junction is used.

  8. The enhanced photo absorption and carrier transportation of InGaN/GaN Quantum Wells for photodiode detector applications

    PubMed Central

    Yang, Haojun; Ma, Ziguang; Jiang, Yang; Wu, Haiyan; Zuo, Peng; Zhao, Bin; Jia, Haiqiang; Chen, Hong

    2017-01-01

    We have conducted a series of measurements of resonantly excited photoluminescence, photocurrent and photovoltage on InGaN/GaN quantum wells with and without a p-n junction under reverse bias condition. The results indicate that most of the resonantly excited photo-generated carriers are extracted from the quantum wells when a p-n junction exists, and the photon absorption of quantum wells is enhanced by the p-n junction. Additionally, the carrier extraction becomes more distinct under a reverse bias. Our finding brings better understanding of the physical characteristics of quantum wells with p-n junction, which also suggests that the quantum well is suitable for photodiode detectors applications when a p-n junction is used. PMID:28240254

  9. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Astrophysics Data System (ADS)

    Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

  10. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Technical Reports Server (NTRS)

    Henderson, S.W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Wollack, E. J.

    2016-01-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies-imaged in intensity and polarization at few arcminute-scale resolution-will enable precision cosmological constraints and also awide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the AdvancedACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the AdvancedACTPol cryogenic detector arrays.

  11. A novel, SiPM-array-based, monolithic scintillator detector for PET

    NASA Astrophysics Data System (ADS)

    Schaart, Dennis R.; van Dam, Herman T.; Seifert, Stefan; Vinke, Ruud; Dendooven, Peter; Löhner, Herbert; Beekman, Freek J.

    2009-06-01

    Silicon photomultipliers (SiPMs) are of great interest to positron emission tomography (PET), as they enable new detector geometries, for e.g., depth-of-interaction (DOI) determination, are MR compatible, and offer faster response and higher gain than other solid-state photosensors such as avalanche photodiodes. Here we present a novel detector design with DOI correction, in which a position-sensitive SiPM array is used to read out a monolithic scintillator. Initial characterization of a prototype detector consisting of a 4 × 4 SiPM array coupled to either the front or back surface of a 13.2 mm × 13.2 mm × 10 mm LYSO:Ce3+ crystal shows that front-side readout results in significantly better performance than conventional back-side readout. Spatial resolutions <1.6 mm full-width-at-half-maximum (FWHM) were measured at the detector centre in response to an ~0.54 mm FWHM diameter test beam. Hardly any resolution losses were observed at angles of incidence up to 45°, demonstrating excellent DOI correction. About 14% FWHM energy resolution was obtained. The timing resolution, measured in coincidence with a BaF2 detector, equals 960 ps FWHM.

  12. A novel, SiPM-array-based, monolithic scintillator detector for PET.

    PubMed

    Schaart, Dennis R; van Dam, Herman T; Seifert, Stefan; Vinke, Ruud; Dendooven, Peter; Löhner, Herbert; Beekman, Freek J

    2009-06-07

    Silicon photomultipliers (SiPMs) are of great interest to positron emission tomography (PET), as they enable new detector geometries, for e.g., depth-of-interaction (DOI) determination, are MR compatible, and offer faster response and higher gain than other solid-state photosensors such as avalanche photodiodes. Here we present a novel detector design with DOI correction, in which a position-sensitive SiPM array is used to read out a monolithic scintillator. Initial characterization of a prototype detector consisting of a 4 x 4 SiPM array coupled to either the front or back surface of a 13.2 mm x 13.2 mm x 10 mm LYSO:Ce(3+) crystal shows that front-side readout results in significantly better performance than conventional back-side readout. Spatial resolutions <1.6 mm full-width-at-half-maximum (FWHM) were measured at the detector centre in response to an approximately 0.54 mm FWHM diameter test beam. Hardly any resolution losses were observed at angles of incidence up to 45 degrees , demonstrating excellent DOI correction. About 14% FWHM energy resolution was obtained. The timing resolution, measured in coincidence with a BaF(2) detector, equals 960 ps FWHM.

  13. X-ray Characterization of a Multichannel Smart-Pixel Array Detector

    SciTech Connect

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A.; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 x 48 pixels, each 130 mu m x 130 mu m x 520 mu m thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.

  14. Measurement of ²²²Rn diffusion through sandy soil with solar cells photodiodes as the detector.

    PubMed

    Shitrit, Y; Dody, A; Alfassi, Z B; Berant, Z

    2012-02-01

    An experimental system was developed to study the diffusion rate of radon (²²²Rn) gas through porous media as a function of soil porosity/grain size and soil water content. Columns with different grain sizes, soil water content and soil depths were used. The system used solar cells photodiodes as alpha (α) detectors. This new detector is highly efficient and low cost compared to other known detectors. Soil water content was found to be the most dominant factor affecting the ²²²Rn diffusion rate. A maximum diffusion rate value of (6.5 ± 0.07) × 10⁻⁶ m²/s was found in dry conditions. The minimum diffusion value of less than (3.9 ± 0.14) × 10⁻⁷ m²/s was found in 2% soil water content. The experimental results were compared with theoretical calculations done with the "GREEN equation". Two discrepancies were observed: the time to equilibrium state in the measurements was longer compare to the calculated values and the α count rates were lower in the experiment compared with the theoretical calculations. These results can be explained by the differences in the system geometry.

  15. Comparison of magnetic resonance imaging-compatible optical detectors for in-magnet tissue spectroscopy: photodiodes versus silicon photomultipliers.

    PubMed

    El-Ghussein, Fadi; Jiang, Shudong; Pogue, Brian W; Paulsen, Keith D

    2014-01-01

    Tissue spectroscopy inside the magnetic resonance imaging (MRI) system adds a significant value by measuring fast vascular hemoglobin responses or completing spectroscopic identification of diagnostically relevant molecules. Advances in this type of spectroscopy instrumentation have largely focused on fiber coupling into and out of the MRI; however, nonmagnetic detectors can now be placed inside the scanner with signal amplification performed remotely to the high field environment for optimized light detection. In this study, the two possible detector options, such as silicon photodiodes (PD) and silicon photomultipliers (SiPM), were systematically examined for dynamic range and wavelength performance. Results show that PDs offer 10⁸(160 dB) dynamic range with sensitivity down to 1 pW, whereas SiPMs have 10⁷(140 dB) dynamic range and sensitivity down to 10 pW. A second major difference is the spectral sensitivity of the two detectors. Here, wavelengths in the 940 nm range are efficiently captured by PDs (but not SiPMs), likely making them the superior choice for broadband spectroscopy guided by MRI.

  16. Comparison of magnetic resonance imaging-compatible optical detectors for in-magnet tissue spectroscopy: photodiodes versus silicon photomultipliers

    PubMed Central

    El-Ghussein, Fadi; Jiang, Shudong; Pogue, Brian W.; Paulsen, Keith D.

    2014-01-01

    Abstract. Tissue spectroscopy inside the magnetic resonance imaging (MRI) system adds a significant value by measuring fast vascular hemoglobin responses or completing spectroscopic identification of diagnostically relevant molecules. Advances in this type of spectroscopy instrumentation have largely focused on fiber coupling into and out of the MRI; however, nonmagnetic detectors can now be placed inside the scanner with signal amplification performed remotely to the high field environment for optimized light detection. In this study, the two possible detector options, such as silicon photodiodes (PD) and silicon photomultipliers (SiPM), were systematically examined for dynamic range and wavelength performance. Results show that PDs offer 108 (160 dB) dynamic range with sensitivity down to 1 pW, whereas SiPMs have 107 (140 dB) dynamic range and sensitivity down to 10 pW. A second major difference is the spectral sensitivity of the two detectors. Here, wavelengths in the 940 nm range are efficiently captured by PDs (but not SiPMs), likely making them the superior choice for broadband spectroscopy guided by MRI. PMID:25006986

  17. Quantifying direct DQPSK receiver with integrated photodiode array by assessing an adapted common-mode rejection ratio

    NASA Astrophysics Data System (ADS)

    Wang, J.; Lauermann, M.; Zawadzki, C.; Brinker, W.; Zhang, Z.; de Felipe, D.; Keil, N.; Grote, N.; Schell, M.

    2011-12-01

    In this work, a direct DQPSK receiver was fabricated, which comprises a polymer waveguide based delay-line interferometer (DLI); a polymer based optical hybrid, and two monolithic pairs of > 25 GHz bandwidth photodiodes that are vertically coupled to the polymer planar lightwave circuit (PLC) via integrated 45° mirrors. The common mode rejection ratio (CMRR) is used to characterize the performance of coherent receivers, by indicating the electrical power balance between the balanced detectors. However, the standard CMRR can only be measured when the PDs can be illuminated separately. Also, the standard CMRR does not take into account the errors in the relative phases of the receiver outputs. We introduce an adapted CMRR to characterize the direct receiver, which takes into account the unequal responsivities of the PDs, the uneven split of the input power by the DLI and hybrid, the phase error and the extinction ratio of the DLI and hybrid.

  18. The Trace Analysis of DEET in Water using an On-line Preconcentration Column and Liquid Chromatography with UV Photodiode Array Detection

    EPA Science Inventory

    A method for the detection of trace levels of N,N-diethyl-m-toluamide (DEET) in water is discussed. The method utilizes an on-line preconcentration column in series with high performance liquid chromatography (HPLC) and UV photodiode array detection. DEET, a common insect repel...

  19. Multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1995-01-01

    A multiwavelength focal plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y<1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  20. Microfluidic biosensor array with integrated poly(2,7-carbazole)/fullerene-based photodiodes for rapid multiplexed detection of pathogens.

    PubMed

    Matos Pires, Nuno Miguel; Dong, Tao

    2013-11-25

    A multiplexed microfluidic biosensor made of poly(methylmethacrylate) (PMMA) was integrated into an array of organic blend heterojunction photodiodes (OPDs) for chemiluminescent detection of pathogens. Waterborne Escherichia coli O157:H7, Campylobacter jejuni and adenovirus were targeted in the PMMA chip, and detection of captured pathogens was conducted by poly(2,7-carbazole)/fullerene OPDs which showed a responsivity over 0.20 A/W at 425 nm. The limits of chemiluminescent detection were 5 × 10(5) cells/mL for E. coli, 1 × 10(5) cells/mL for C. jejuni, and 1 × 10(-8) mg/mL for adenovirus. Parallel analysis for all three analytes in less than 35 min was demonstrated. Further recovery tests illustrated the potential of the integrated biosensor for detecting bacteria in real water samples.

  1. Identification of fish species by reversed-phase high-performance liquid chromatography with photodiode-array detection.

    PubMed

    Knuutinen, J; Harjula, P

    1998-01-23

    A method for the separation of sarcoplasmic fish proteins by RP-HPLC is described. The procedure revealed significant differences useful for reliable identification of fish species. Sixteen of the most common Finnish freshwater fish species were differentiated by species-specific HPLC chromatograms obtained using photodiode-array detection (PAD) at 200-350 nm. The analytical column was a Hi-Pore RP-304 reversed-phase column. The separation was performed by a linear gradient of acetonitrile and water with a small amount of trifluoracetic acid (TFA). Star-symbol plots were constructed from the chromatograms to visualize the data. Clearly different HPLC protein profiles for most fish species were obtained. The chromatograms of salmonoids show similarities, whereas the protein profiles of cyprinids are dissimilar. Minor intraspecific differences were obtained for three types of powan (Coregonus lavaretus).

  2. Optimisation on the two-layer stack gamma detectors of CsI(Tl) coupled with a pin photodiode for non-destructive testing.

    PubMed

    Bai, Jin Hyoung; Whang, Joo Ho

    2011-07-01

    This paper proposed the two-layer stack scintillator-coupled photodiode detector to improve the measurement accuracy of the gamma-ray scanning. Both MCNPX and DETECT97 code were used to design the detector. The two manufactured two-layer stack gamma detectors were used to measure the density profile of the distillation column of the radiographic non-intrusive process diagnostic area. To compare the measurement accuracy of the density profile through the non-destructive transmission test, the relative error of the four fluids used for the process diagnostics was analysed. To summarise the measurement results with regard to the relative error of the NaI(Tl) detector and the manufactured detector by material as well as the total relative error, the total relative error of the NaI(Tl) detector was about 15.7 %, whereas that of the two-layer stack CsI(Tl) with photodiode detectors were about 5 %. This paper confirmed that the measurement accuracy of the detector proposed was improved by about three times as compared with the NaI(Tl) detector mostly used for non-destructive testing.

  3. Fabrication of Pop-up Detector Arrays on Si Wafers

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Allen, Christine A.; Gordon, Scott A.; Kuhn, Jonathan L.; Mott, David B.; Stahle, Caroline K.; Wang, Liqin L.

    1999-01-01

    High sensitivity is a basic requirement for a new generation of thermal detectors. To meet the requirement, close-packed, two-dimensional silicon detector arrays have been developed in NASA Goddard Space Flight Center. The goal of the task is to fabricate detector arrays configured with thermal detectors such as infrared bolometers and x-ray calorimeters to use in space fliGht missions. This paper focuses on the fabrication and the mechanical testing of detector arrays in a 0.2 mm pixel size, the smallest pop-up detectors being developed so far. These array structures, nicknamed "PUDS" for "Pop-Up Detectors", are fabricated on I pm thick, single-crystal, silicon membranes. Their designs have been refined so we can utilize the flexibility of thin silicon films by actually folding the silicon membranes to 90 degrees in order to obtain close-packed two-dimensional arrays. The PUD elements consist of a detector platform and two legs for mechanical support while also serving as electrical and thermal paths. Torsion bars and cantilevers connecting the detector platform to the legs provide additional flexures for strain relief. Using micro-electromechanical structure (MEMS) fabrication techniques, including photolithography, anisotropic chemical etching, reactive-ion etching, and laser dicing, we have fabricated PLTD detector arrays of fourteen designs with a variation of four parameters including cantilever length, torsion bar length and width, and leg length. Folding tests were conducted to test mechanical stress distribution for the array structures. We obtained folding yields and selected optimum design parameters to reach minimal stress levels. Computer simulation was also employed to verify mechanical behaviors of PUDs in the folding process. In addition, scanning electron microscopy was utilized to examine the flatness of detectors and the alignment of detector pixels in arrays. The fabrication of thermistors and heaters on the pop-up detectors is under way

  4. The Impact of Array Detectors on Raman Spectroscopy

    ERIC Educational Resources Information Center

    Denson, Stephen C.; Pommier, Carolyn J. S.; Denton, M. Bonner

    2007-01-01

    The impact of array detectors in the field of Raman spectroscopy and all low-light-level spectroscopic techniques is examined. The high sensitivity of array detectors has allowed Raman spectroscopy to be used to detect compounds at part per million concentrations and to perform Raman analyses at advantageous wavelengths.

  5. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratory test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  6. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratary test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  7. Position sensitivity of MAMA detectors. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Morgan, J. S.; Slater, D. S.; Timothy, J. G.; Jenkins, E. B.

    1988-01-01

    The results of laboratory and telescopic measurements of the position sensitivity of a visible MAMA detector utilizing a 'coarse-fine' array are presented. The photometric accuracy of this detector was determined under point source illumination. It was found that computed centroid positions are accurate across the entire array to within 0.04 pixels.

  8. Modulation transfer function of a trapezoidal pixel array detector

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Guo, Rongli; Ni, Jinping; Dong, Tao

    2016-01-01

    The modulation transfer function (MTF) is the tool most commonly used for quantifying the performance of an electro-optical imaging system. Recently, trapezoid-shaped pixels were designed and used in a retina-like sensor in place of rectangular-shaped pixels. The MTF of a detector with a trapezoidal pixel array is determined according to its definition. Additionally, the MTFs of detectors with differently shaped pixels, but the same pixel areas, are compared. The results show that the MTF values of the trapezoidal pixel array detector are obviously larger than those of rectangular and triangular pixel array detectors at the same frequencies.

  9. Room-temperature InGaAs detector arrays for 1.0 - 1.7 microns spectroscopy

    NASA Technical Reports Server (NTRS)

    Olsen, G. H.; Joshi, A. M.; Mykietyn, E.; Colosi, J.; Woodruff, K. M.

    1989-01-01

    Linear arrays of 256 element InGaAs detectors with 100 x 30 micron pixels were mounted in multiplexer packages and tested in an optical multichannel analyzer (OMA). Typical performance characteristics include dark current (-5V) of 400 picoamps and responsivities of 0.75 A/W (1.3 microns) and 0.14 A/W (0.85 microns). The 256 element exhibited a mean room-temperature dark current of under 400 picoamps when mounted in the OMA and a dynamic range over 11 bits (2000:1). Future applications, including room-temperature detector arrays for 2.5 microns and avalanche photodiode arrays for 1.0-1.7 microns, are discussed.

  10. Development of a Validated HPLC/Photodiode Array Method for the Determination of Isomenthone in the Aerial Parts of Ziziphora tenuior L.

    PubMed Central

    Ghassemi, Nasrollah; Ghanadian, Mustafa; Ghaemmaghami, Lili; Kiani, Haran

    2013-01-01

    Background Ziziphora tenuior L. known as Kakuti in Persian, is used in traditional medicine for fever, dysentery, uterus infection and as an analgesic. It is used also in the treatment of gastrointestinal disorders as carminative, or remedy of diarrhea or nausea. Major components of plant essential oil including pulegone, isomenthone, thymol, menthone, and piperitone are suggested to be responsible for the mentioned medicinal properties. Objectives In the present study, a normal high performance liquid chromatography (HPLC)/photodiode array validated method for quantification of isomenthone, one of the major constituents of Ziziphora, was established for the first time with a simple, rapid and accurate method. Materials and Methods HPLC analysis was done on a Waters system, equipped with 515 HPLC pump and waters 2996 photodiode array detector. The column was a Nova-Pak Silica (3.9 × 150 mm), and Empower software was used for the determination of the compounds and processing the data. The method was validated according to USP 32 requirements. Results A selective method for the resolution of isomenthone from two nearest peaks, thymol, and carvacrol was obtained with gradient system of hexane (A), and hexane: ethyl acetate (9:1) (B), starting with A: B (100:0) for 2 minutes, then 0−20% B in 5 minutes, A:B (80:20) for 5 minutes, then 20-30% B in 3 minutes, 30-100% B for 5 minutes, A:B (0:100) for 4 minutes following with equilibrating for 10 minutes. The flow rate was 1 mL/min at 22˚C and the injection volume for the standards and the samples was 20 μL. The retention time for isomenthone was found to be 7.45 minutes. The regression equation was y = 143235x - 2433 with the correlation co-factor R2 = 0.9992 and the percent recovery of 65.4 ± 3.85%. The sample obtained from 5 g of Z. teniour dried powder in 6 mL extract was standardized to contain 1.14 ± 0.030 μL/mL isomenthone which is equivalent to % 1.37 μL/g of the dried powdered plant. Limit of detection

  11. A 16 x 16 element extrinsic silicon detector array

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Two bismuth-doped silicon accumulation-mode charge-injection device (AMCID) infrared detector arrays are studied. The geometry and composition of the arrays, and a description of the cold and warm electronics components of the system are described. Instructions for setting up and operating the array system, plus results of a functional test, are included.

  12. Results from the Puebla extensive air shower detector array

    NASA Astrophysics Data System (ADS)

    Salazar, H.; Martinez, O.; Moreno, E.; Cotzomi, J.; Villaseñor, L.; Saavedrac, O.

    2003-07-01

    We describe the design and operation of the first stage of the EAS-UAP extensive air shower array, as a detector of very high energy cosmic rays ( Eo > 10 14eV). The array is located at the Campus of Puebla University and consists of 18 liquid scintillator detectors, with an active surface of 1 m2 each and a detector spacing of 20 m in a square grid. In this report we discuss the stability and the calibration of the detector array, as derived from the 10 detectors in operation in the first stage. The main characteristics of the array allow us also to use it as an educational and training facility. First distributions of the arrival direction and the lateral shower srpead are also given.

  13. Silicon photodiode characterization from 1 eV to 10 keV

    SciTech Connect

    Idzorek, G.C.; Bartlett, R.J.

    1997-10-01

    Silicon photodiodes offer a number of advantages over conventional photocathode type soft x-ray detectors in pulsed power experiments. These include a nominally flat response, insensitivity to surface contamination, low voltage biasing requirements, sensitivity to low energy photons, excellent detector to detector response reproducibility, and ability to operate in poor vacuum or gas backfilled experiments. Silicon photodiodes available from International Radiation Detectors (IRD), Torrance, California have been characterized for absolute photon response from 1 eV to 10 keV photon energy, time response, and signal saturation levels. The authors have assembled individually filtered photodiodes into an array designated the XUV-7. The XUV-7 provides seven photodiodes in a vacuum leak tight, electrically isolated, low noise, high bandwidth, x-ray filtered assembly in a compact package with a 3.7 cm outside diameter. In addition they have assembled the diodes in other custom configurations as detectors for spectrometers. Their calibration measurements show factor of ten deviations from the silicon photodiode theoretical flat response due to diode sensitivity outside the center `sensitive area`. Detector response reproducibility between diodes appears to be better than 5%. Time response measurements show a 10-90% rise time of about 0.1 nanoseconds and a fall time of about 0.5 nanoseconds. Silicon photodiodes have proven to be a versatile and useful complement to the standard photocathode detectors for soft x-ray measurement and are very competitive with diamond for a number of applications.

  14. The Indiana silicon sphere 4 π charged-particle detector array

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, K.; Bracken, D. S.; Morley, K. B.; Brzychczyk, J.; Foxford, E. Renshaw; Komisarcik, K.; Viola, V. E.; Yoder, N. R.; Dorsett, J.; Poehlman, J.; Madden, N.; Ottarson, J.

    1995-02-01

    A low threshold charged particle detector array for the study of fragmentation processes in light-ion-induced reactions has been constructed and successfully implemented at the IUCF and Saturne II accelerators. The array consists of 162-triple-element detector telescopes mounted in a spherical geometry and covering 74% of 4π in solid angle. Telescope elements are composed of (1) an axial-field gas ionization chamber operated with C3F8 gas; (2) a 0.5 mm thick passivated silicon detector, and (3) a 2.8 cm thick CsI(TI) scintillation crystal with photodiode readout. Discrete element identification is obtained for ejectiles up to Z ~ 16 over the dynamic range 0.7 <= E/A <= 95 MeV/nucleon. Isotopes are also distinguished for H, He, Li and Be ejectiles with 8 <~ E/A <~ 95 MeV. Custom-designed electronics are employed for bias supplies and linear signal processing. Data are acquired via a CAMAC/VME/Ethernet system.

  15. PbS-PbSe IR detector arrays

    NASA Technical Reports Server (NTRS)

    Barrett, John R. (Inventor)

    1986-01-01

    A silicon wafer is provided which does not employ individually bonded leads between the IR sensitive elements and the input stages of multiplexers. The wafer is first coated with lead selenide in a first detector array area and is thereafter coated with lead sulfide within a second detector array area. The described steps result in the direct chemical deposition of lead selenide and lead sulfide upon the silicon wafer to eliminate individual wire bonding, bumping, flip chipping, planar interconnecting methods of connecting detector array elements to silicon chip circuitry, e.g., multiplexers, to enable easy fabrication of very long arrays. The electrode structure employed, produces an increase in the electrical field gradient between the electrodes for a given volume of detector material, relative to conventional electrode configurations.

  16. Particle Identification in the NIMROD-ISiS Detector Array

    SciTech Connect

    Wuenschel, S.; Hagel, K.; May, L. W.; Wada, R.; Yennello, S. J.

    2009-03-10

    Interest in the influence of the neutron-to-proton (N/Z) ratio on multifragmenting nuclei has demanded an improvement in the capabilities of multi-detector arrays as well as the companion analysis methods. The particle identification method used in the NIMROD-ISiS 4{pi} array is described. Performance of the detectors and the analysis method are presented for the reaction of {sup 86}Kr+{sup 64}Ni at 35 MeV/u.

  17. Scientific Applications and Promise of Cryogenic Detector Arrays

    NASA Astrophysics Data System (ADS)

    Moseley, Samuel Harvey

    2009-12-01

    During the past year, the first results from a new generation of instruments based on kilopixel-scale arrays of cryogenic detectors have been released. I will review the history of low temperature detector arrays which has enabled this development, the science which has driven this rapid progress, describe the instruments now in operation and their initial scientific results, and speculate on the developments we may see in the next decade.

  18. Control and dynamic range extension of linear photodiode arrays by a single board computer

    NASA Astrophysics Data System (ADS)

    McGeorge, Scott W.; Salin, Eric D.

    A complete interface for data acquisition and control of Reticon Series arrays utilizing an inexpensive microcomputer (Rockwell AIM-65) is described and with specific application to atomic spectra (ICP), data collection techniques are illustrated that provide a dynamic range extension for intense signals.

  19. Hybrid photomultiplier tube and photodiode parallel detection array for wideband optical spectroscopy of the breast guided by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    El-Ghussein, Fadi; Mastanduno, Michael A.; Jiang, Shudong; Pogue, Brian W.; Paulsen, Keith D.

    2014-01-01

    A new optical parallel detection system of hybrid frequency and continuous-wave domains was developed to improve the data quality and accuracy in recovery of all breast optical properties. This new system was deployed in a previously existing system for magnetic resonance imaging (MRI)-guided spectroscopy, and allows incorporation of additional near-infrared wavelengths beyond 850 nm, with interlaced channels of photomultiplier tubes (PMTs) and silicon photodiodes (PDs). The acquisition time for obtaining frequency-domain data at six wavelengths (660, 735, 785, 808, 826, and 849 nm) and continuous-wave data at three wavelengths (903, 912, and 948 nm) is 12 min. The dynamic ranges of the detected signal are 105 and 106 for PMT and PD detectors, respectively. Compared to the previous detection system, the SNR ratio of frequency-domain detection was improved by nearly 103 through the addition of an RF amplifier and the utilization of programmable gain. The current system is being utilized in a clinical trial imaging suspected breast cancer tumors as detected by contrast MRI scans.

  20. Hybrid photomultiplier tube and photodiode parallel detection array for wideband optical spectroscopy of the breast guided by magnetic resonance imaging

    PubMed Central

    Mastanduno, Michael A.; Jiang, Shudong; Pogue, Brian W.; Paulsen, Keith D.

    2013-01-01

    Abstract. A new optical parallel detection system of hybrid frequency and continuous-wave domains was developed to improve the data quality and accuracy in recovery of all breast optical properties. This new system was deployed in a previously existing system for magnetic resonance imaging (MRI)-guided spectroscopy, and allows incorporation of additional near-infrared wavelengths beyond 850 nm, with interlaced channels of photomultiplier tubes (PMTs) and silicon photodiodes (PDs). The acquisition time for obtaining frequency-domain data at six wavelengths (660, 735, 785, 808, 826, and 849 nm) and continuous-wave data at three wavelengths (903, 912, and 948 nm) is 12 min. The dynamic ranges of the detected signal are 105 and 106 for PMT and PD detectors, respectively. Compared to the previous detection system, the SNR ratio of frequency-domain detection was improved by nearly 103 through the addition of an RF amplifier and the utilization of programmable gain. The current system is being utilized in a clinical trial imaging suspected breast cancer tumors as detected by contrast MRI scans. PMID:23979460

  1. Enhanced photoresponse of conformal TiO{sub 2}/Ag nanorod array-based Schottky photodiodes fabricated via successive glancing angle and atomic layer deposition

    SciTech Connect

    Haider, Ali; Biyikli, Necmi; Cansizoglu, Hilal; Cansizoglu, Mehmet Fatih; Karabacak, Tansel; Okyay, Ali Kemal

    2015-01-01

    In this study, the authors demonstrate a proof of concept nanostructured photodiode fabrication method via successive glancing angle deposition (GLAD) and atomic layer deposition (ALD). The fabricated metal-semiconductor nanorod (NR) arrays offer enhanced photoresponse compared to conventional planar thin-film counterparts. Silver (Ag) metallic NR arrays were deposited on Ag-film/Si templates by utilizing GLAD. Subsequently, titanium dioxide (TiO{sub 2}) was deposited conformally on Ag NRs via ALD. Scanning electron microscopy studies confirmed the successful formation of vertically aligned Ag NRs deposited via GLAD and conformal deposition of TiO{sub 2} on Ag NRs via ALD. Following the growth of TiO{sub 2} on Ag NRs, aluminum metallic top contacts were formed to complete the fabrication of NR-based Schottky photodiodes. Nanostructured devices exhibited a photo response enhancement factor of 1.49 × 10{sup 2} under a reverse bias of 3 V.

  2. State of the art of AIM LWIR and VLWIR MCT 2D focal plane detector arrays for higher operating temperatures

    NASA Astrophysics Data System (ADS)

    Figgemeier, H.; Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.

    2016-05-01

    In this paper AIM presents its latest results on both n-on-p and p-on-n low dark current planar MCT photodiode technology LWIR and VLWIR two-dimensional focal plane detector arrays with a cut-off wavelength >11μm at 80K and a 640x512 pixel format at a 20μm pitch. Thermal dark currents significantly reduced as compared to `Tennant's Rule 07' at a yet good detection efficiency >60% as well as results from NETD and photo response performance characterization are presented. The demonstrated detector performance paces the way for a new generation of higher operating temperature LWIR MCT FPAs with a <30mK NETD up to a 110K detector operating temperature and with good operability.

  3. Determination of total phthalates in edible oils by high-performance liquid chromatography coupled with photodiode array detection.

    PubMed

    Xie, Qilong; Sun, Dekui; Han, Yangying; Jia, Litao; Hou, Bo; Liu, Shuhui; Li, Debao

    2016-03-01

    The previously reported procedure for the determination of the total phthalate in fatty food involved the extraction of phthalates using chloroform/methanol followed by the removal of the solvents before alkaline hydrolysis requiring 20 h and derivatization of phthalic acid. In this study, a phase-transfer catalyst (tetrabutylammonium chloride) was used in the liquid-liquid heterogeneous hydrolysis of phthalates in oil matrix shortening the reaction time to within 25 min. The resulting phthalic acid in the hydrolysate was extracted by a novel molecular complex based dispersive liquid-liquid microextraction method coupled with back-extraction before high-performance liquid chromatography coupled with photodiode array detection. Under the optimal experimental conditions, the linearity of the method was in the range of 0.5-12 nmol/g with the correlation coefficients (r) >0.997. The detection limit (S/N = 3) was 0.11 nmol/g. Intraday and interday repeatability values expressed as relative standard deviation were 3.9 and 7.1%, respectively. The recovery rates ranged from 82.4 to 99.0%. The developed method was successfully applied for the analysis of total phthalate in seven edible oils.

  4. Study of flavonoids of Sechium edule (Jacq) Swartz (Cucurbitaceae) different edible organs by liquid chromatography photodiode array mass spectrometry.

    PubMed

    Siciliano, Tiziana; De Tommasi, Nunziatina; Morelli, Ivano; Braca, Alessandra

    2004-10-20

    A liquid chromatography-mass spectrometry (LC-MS)-based method was developed for the characterization of flavonoids from Sechium edule (Jacq) Swartz (Cucurbitaceae) edible organs, a plant cultivated since pre-Colombian times in Mexico where the fruit is called chayote. Chayote is used for human consumption in many countries; in addition to the fruits, stems, leaves and the tuberous part of the roots are also eaten. Eight flavonoids, including three C-glycosyl and five O-glycosyl flavones, were detected, characterized by nuclear magnetic resonance spectroscopic data, and quantified in roots, leaves, stems, and fruits of the plant by LC-photodiode array-MS. The aglycone moieties are represented by apigenin and luteolin, while the sugar units are glucose, apiose, and rhamnose. The results indicated that the highest total amount of flavonoids was in the leaves (35.0 mg/10 g of dried part), followed by roots (30.5 mg/10 g), and finally by stems (19.3 mg/10 g).

  5. Gamma-spectrometry with Compton suppressed detectors arrays

    SciTech Connect

    Schueck, C.; Hannachi, F.; Chapman, R.; Lisle, J.C.; Mo, J.N.; Paul, E.; Love, D.J.G.; Nolan, P.J.; Nelson, A.H.; Walker, P.M.

    1985-01-01

    Recent results of experiments performed with two different Compton-suppressed detectors arrays in Daresbury and Berkeley (/sup 163,164/Yb and /sup 154/Er, respectively), are presented together with a brief description of the national French array presently under construction in Strasbourg. 25 refs., 15 figs.

  6. Rubicon - a New Diode Array Detector System

    NASA Astrophysics Data System (ADS)

    Schmidt-Kaler, T.; Rudolph, R.; Tug, H.

    A photon-counting system with a 512-channel parallel output digital image tube is presented. Electronics developed separately for each detector channel as well as data aquisition are optimized for low power consumption and high counting rates. This detector, characterized by wide dynamic range, very low noise and high photometric accuracy, is especially suitable for spectrophotometry and calibrations.

  7. Determination of HT-2 and T-2 toxins in oats and wheat by ultra-performance liquid chromatography with photodiode array detection.

    PubMed

    Pascale, Michelangelo; Panzarini, Giuseppe; Visconti, Angelo

    2012-01-30

    European intake estimates indicate that the presence of HT-2 and T-2 toxins in cereals, mainly in oats, can be of concern for human health. Therefore, the development of sensitive, rapid and reliable methods for determining these mycotoxins in cereals, in particular oats, has high priority. A rapid ultra-performance liquid chromatographic (UPLC) method has been developed for the simultaneous determination of HT-2 and T-2 toxins in oats and wheat at μg kg(-1) level. Ground samples were extracted with methanol/water (90:10, v/v) and the diluted extracts were cleaned up through immunoaffinity columns. HT-2 and T-2 toxins were separated and quantified by UPLC with photodiode array (PDA) detector (λ=202 nm) in less than 5 min. Mean recoveries from blank oats samples spiked with HT-2 and T-2 toxins at levels of 50-1000 μg kg(-1) ranged from 87 to 96%, with relative standard deviations (RSDs) lower than 7%; mean recoveries from wheat spiked with HT-2 and T-2 toxins at levels of 25-100 μg kg(-1) ranged from 91 to 103%, with RSDs lower than 5%. The limit of detection of the method was 8 μg kg(-1) for both toxins (signal-to-noise ratio 3:1). The method was successfully applied to the analysis of HT-2 and T-2 toxins in naturally contaminated oats and wheat samples. A good correlation was found by comparative analysis of naturally contaminated samples of oats (r=0.9985) and wheat (r=0.9058) using the proposed method or a reliable HPLC method with fluorescence detection after pre-column derivatization with 1-anthroylnitrile.

  8. Identification and quantification of stilbenes in fruits of transgenic tomato plants (Lycopersicon esculentum Mill.) by reversed phase HPLC with photodiode array and mass spectrometry detection.

    PubMed

    Nicoletti, Isabella; De Rossi, Antonella; Giovinazzo, Giovanna; Corradini, Danilo

    2007-05-02

    Reversed-phase high-performance liquid chromatography (RP-HPLC) with photodiode array (PDA) and mass spectrometry (MS) detection was employed to study the accumulation of stilbenes and other naturally occurring polyphenol intermediates of flavonoid pathway in tomato fruits of plants genetically modified to synthesize resveratrol. The transgenic tomato fruits were obtained by overexpression of a grapevine gene encoding the enzyme stilbene synthase in tomato plants (Lycopersicon esculentum Mill.). Stilbenes and flavonoids, either glycosylated or free, were simultaneosly identified by electrospray interface (ESI)-MS in negative ionization mode and were quantified by PDA detection at the wavelength corresponding to their maximum absorbance. The two detectors were coupled online with an HPLC system utilizing a narrow-bore C18 reversed-phase column, which was eluted by a multistep gradient of increasing concentration of acetonitrile in water containing 0.5% (v/v) formic acid. The results of these analysis revealed that the genetic modification of the tomato plants originated different levels of accumulation of four stilbenes (i.e., trans- and cis-piceid and trans- and cis-resveratrol) in their fruit depending on the stages of ripening. Either at immature or at mature stages of ripening the stilbenes were preferentially accumulated in the fruit peel as the glycosylated form. The highest amount of trans-piceid and trans-resveratrol were found in the peel of fruits harvested at mature stage of ripening. The variations in the levels of rutin, naringenin, and chlorogenic acid found in the samples extracted from the fruits of transgenic tomato plants, in comparison to that determined in the control lines, seemed to be related to the genetic transformation, whose effect on the flavonoid biosynthetic pathway needs to be elucidated by additional studies.

  9. Low-background detector arrays for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Estrada, J. A.; Goebel, J. H.; Mckelvey, M. E.; Mckibbin, D. D.; Mcmurray, R. E., Jr.; Weber, T. T.

    1989-01-01

    The status of a program which develops and characterizes integrated infrared (IR) detector array technology for space astronomical applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, coupled to silicon readout electronics. Low-background laboratory test results include measurements of responsivity, noise, dark current, temporal response, and the effects of gamma-radiation. In addition, successful astronomical imagery has been obtained on some arrays from this program. These two aspects of the development combine to demonstrate the strong potential for integrated array technology for IR space astronomy.

  10. A Study of Lane Differentiation Using An Array of Detectors.

    SciTech Connect

    McKigney E. A.; Gholkar, R. V.; Vega, D. A.

    2004-01-01

    The authors discuss a method for locating a radioactive source in the context of determining which lane a source is in on a roadway. This method is appropriate for use over a large range of source velocities, and could provide an advance alarm prior to a vehicle passing a portal monitor. This is a novel method which uses data from the entire array simultaneously to locate the source, rather than relying on only one or two sensors. A description of the underlying method will be given, along with results from five and six detector arrays. The five detector array was used mainly for static tests. The six detector array was used for dynamic tests, including slow movement of a source in a vehicle.

  11. LWIR detector arrays based on nipi superlattices

    NASA Technical Reports Server (NTRS)

    Maserjian, J.; Grunthaner, F. J.; Elliott, C. T.

    1990-01-01

    It is proposed that nipi superlattice structures in InSb or InAs can be grown with modern techniques to achieve tunable and stable LWIR detectors with high performance. Key device and material considerations for the application of such nipi superlattices to LWIR detectors are examined. It is shown that practical absorption coefficients (of about 100/cm) can be achieved with high doping concentrations (of about 10 to the 19th/cu cm) achievable in these materials. In particular, recent delta doping techniques being developed in molecular beam epitaxy offer promise of higher doping concentrations, improved uniformity, and greater flexibility in tailoring the structures for optimum detector performance.

  12. Bolometeric detector arrays for CMB polarimetry

    NASA Technical Reports Server (NTRS)

    Kuo, C. L.; Bock, J. J.; Day, P.; Goldin, A.; Golwala, S.; Holmes, W.; Irwin, K.; Kenyon, M.; Lange, A. E.; LeDuc, H. G.; Rossinot, P.; Sterb, J.; Vayonakis, A.; Wang, G.; Yun, M.; Zmuidzinas, J.

    2005-01-01

    We describe the development of antenna coupled bolometers for CMB polarization experiments. The necessary components of a bolometric CMB polarimeter - a beam forming element, a band defining filter, and detectors - are all fabricated on a silicon chip with photolithography.

  13. Surface detector array for the Pierre Auger observatory

    NASA Astrophysics Data System (ADS)

    Salazar, H.; Garipov, G. K.; Khrenov, B. A.; Martínez, O.; Moreno, E.; Villaseñor, L.; Zepeda, A.

    2001-05-01

    The Pierre Auger international collaboration will install two observatories, one in the southern hemisphere and other in the northern hemisphere. Each observatory will consist of two different subsystem: a surface detector array of about 1600 water Cherenkov detectors (WCD) and a set of fluorescence eyes to measure the longitudinal development of air showers. The large area covered by the surface detectors requires efficient calibration and monitoring methods that can be implemented remotely. We present several complementary methods to calibrate and monitor the performance of the individual surface detector stations. We also present some results of the studies made with a full size prototype tank in Puebla, Mexico and in Malargue, Argentina. .

  14. MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.; Wendler, J.; Figgemeier, H.

    2016-09-01

    We present our latest results on n-on- p as well as on p-on- n low dark current planar mercury cadmium telluride (MCT) photodiode technology long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) two-dimensional focal plane arrays (FPAs) with quantum efficiency (QE) cut-off wavelength >11 μm at 80 K and a 512 × 640 pixel format FPA at 20 μm pitch stitched from two 512 × 320 pixel photodiode arrays. Significantly reduced dark currents as compared with Tennant's "Rule 07" are demonstrated in both polarities while retaining good detection efficiency ≥60% for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at 20 K higher operating temperature than with previous AIM INFRAROT-MODULE GmbH (AIM) technology. For p-on- n LWIR MCT FPAs, broadband photoresponse nonuniformity of only about 1.2% is achieved at 55 K with low defective pixel numbers. For an n-on- p VLWIR MCT FPA with 13.6 μm cut-off at 55 K, excellent photoresponse nonuniformity of about 3.1% is achieved at moderate defective pixel numbers. This advancement in detector technology paves the way for outstanding signal-to-noise ratio performance infrared detection, enabling cutting-edge next-generation LWIR/VLWIR detectors for space instruments and devices with higher operating temperature and low size, weight, and power for field applications.

  15. Fully tileable photodiode matrix for medical imaging by using through-wafer interconnects

    NASA Astrophysics Data System (ADS)

    Juntunen, Mikko; Ji, Fan; Henttinen, Kimmo; Luusua, Ismo; Hietanen, Iiro; Eränen, Simo

    2007-10-01

    This paper presents a technology for a fully tileable two-dimensional (2D) photodiode matrix for medical imaging, specifically X-ray computed tomography (CT). A key trend in the CT industry is to build machines with larger area detector to speed up the measurements and to avoid image blurring due to patient movement during scanning. In current CT detector constructions, a major limiting factor in providing more detector coverage is the need to read out the signals from the individual photo-detector elements of the detector array through lines along the surface facing the radiation source and wire bonds down to a substrate or to an electronics chip. Using this method, there is a physical limitation on the size of a photo-detector array that may be manufactured. A photo-detector with the possibility of expansion in all directions is known as a 'tileable' detector. A technology of integrating through-wafer interconnects (TWIs) with traditional front illuminated photodiodes is introduced. Photocurrent can be read out from back side of the photodiode chip through interconnects, giving possibility of constructing arbitrarily large area of photo-detector for CT machine. Results of a sample 2D demonstrator detector array are presented showing that the requirements of modern CT systems can be met.

  16. Residue level and dissipation pattern of lepimectin in shallots using high-performance liquid chromatography coupled with photodiode array detection.

    PubMed

    Kim, Sung-Woo; Rahman, Md Musfiqur; Abd El-Aty, A M; Truong, Lieu T B; Choi, Jeong-Heui; Park, Joon-Seong; Kim, Mi-Ra; Shin, Ho-Chul; Shim, Jae-Han

    2016-11-01

    Lepimectin, as an emulsifiable concentrate, was sprayed on shallots at the recommended dose rate (10 mL/20 L) to determine its residue levels, dissipation pattern, pre-harvest residue limits (PHRLs), and health risk. Samples were randomly collected over 10 days, extracted with acetonitrile, purified using an amino solid-phase extraction (NH2 -SPE) cartridge and analyzed using a high-performance liquid chromatography-photodiode array detection method. Field-incurred samples were confirmed using ultra-performance liquid chromatography-tandem mass spectrometry. The linearity was excellent, with a determination coefficient (R(2) ) of ≥0.9991. The recoveries at two spiking levels (0.2 and 1.0 mg/kg) ranged from 84.49 to 87.64% with relative standard deviations of ≤7.04%. The developed method was applied to field samples grown in separate greenhouses, one located in Naju and one in Muan, in the Republic of Korea. The dissipation pattern was described by first-order kinetics with half-lives of 1.9 (Naju) and 1.7 days (Muan). The PHRL curves indicated that, if the lepimectin residues are <0.18 (Naju) and <0.13 mg/kg (Muan) 5 days before harvest, the residue levels will be lower than the maximum residue limit (0.05 mg/kg) upon harvesting. The risk assessment data indicated that lepimectin is safe for use in the cultivation of shallots, with no risk of detrimental effects to the consumer.

  17. Calibration and operational data for a compact photodiode detector useful for monitoring the location of moving sources of positron emitting radioisotopes

    NASA Astrophysics Data System (ADS)

    Marsland, M. G.; Dehnel, M. P.; Johansson, S.; Rajander, J.; Solin, O.; Theroux, J.; Stewart, T. M.; Christensen, T.; Hollinger, C.

    2013-04-01

    D-Pace has developed a compact cost-effective gamma detector system based on technology licensed from TRIUMF [1]. These photodiode detectors are convenient for detecting the presence of positron emitting radioisotopes, particularly for the case of transport of radioisotopes from a PET cyclotron to hotlab, or from one location to another in an automated radiochemistry processing unit. This paper describes recent calibration experiments undertaken at the Turku PET Centre for stationary and moving sources of F18 and C11 in standard setups. The practical diagnostic utility of using several of these devices to track the transport of radioisotopes from the cyclotron to hotlab is illustrated. For example, such a detector system provides: a semi-quantitative indication of total activity, speed of transport, location of any activity lost en route and effectiveness of follow-up system flushes, a means of identifying bolus break-up, feedback useful for deciding when to change out tubing.

  18. Calibration and operational data for a compact photodiode detector useful for monitoring the location of moving sources of positron emitting radioisotopes

    SciTech Connect

    Marsland, M. G.; Dehnel, M. P.; Theroux, J.; Christensen, T.; Hollinger, C.; Johansson, S.; Rajander, J.; Solin, O.; Stewart, T. M.

    2013-04-19

    D-Pace has developed a compact cost-effective gamma detector system based on technology licensed from TRIUMF. These photodiode detectors are convenient for detecting the presence of positron emitting radioisotopes, particularly for the case of transport of radioisotopes from a PET cyclotron to hotlab, or from one location to another in an automated radiochemistry processing unit. This paper describes recent calibration experiments undertaken at the Turku PET Centre for stationary and moving sources of F18 and C11 in standard setups. The practical diagnostic utility of using several of these devices to track the transport of radioisotopes from the cyclotron to hotlab is illustrated. For example, such a detector system provides: a semi-quantitative indication of total activity, speed of transport, location of any activity lost en route and effectiveness of follow-up system flushes, a means of identifying bolus break-up, feedback useful for deciding when to change out tubing.

  19. Photon counting detector array algorithms for deep space optical communications

    NASA Astrophysics Data System (ADS)

    Srinivasan, Meera; Andrews, Kenneth S.; Farr, William H.; Wong, Andre

    2016-03-01

    For deep-space optical communications systems utilizing an uplink optical beacon, a single-photon-counting detector array on the flight terminal can be used to simultaneously perform uplink tracking and communications as well as accurate downlink pointing at photon-starved (pW=m2) power levels. In this paper, we discuss concepts and algorithms for uplink signal acquisition, tracking, and parameter estimation using a photon-counting camera. Statistical models of detector output data and signal processing algorithms are presented, incorporating realistic effects such as Earth background and detector/readout blocking. Analysis and simulation results are validated against measured laboratory data using state-of-the-art commercial photon-counting detector arrays, demonstrating sub-microradian tracking errors under channel conditions representative of deep space optical links.

  20. Integrated Miniature Arrays of Optical Biomolecule Detectors

    NASA Technical Reports Server (NTRS)

    Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh

    2009-01-01

    Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.

  1. SRAM As An Array Of Energetic-Ion Detectors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Lieneweg, Udo; Nixon, Robert H.

    1993-01-01

    Static random-access memory (SRAM) designed for use as array of energetic-ion detectors. Exploits well-known tendency of incident energetic ions to cause bit flips in cells of electronic memories. Design of ion-detector SRAM involves modifications of standard SRAM design to increase sensitivity to ions. Device fabricated by use of conventional complementary metal oxide/semiconductor (CMOS) processes. Potential uses include gas densimetry, position sensing, and measurement of cosmic-ray spectrum.

  2. Uncooled Infrared Detector Arrays With Electrostatically Levitated Sensing Elements

    DTIC Science & Technology

    2005-03-28

    detectors"" vout operating at room temperature . Their resistance changes V2 Ni l following a temperature rise from the absorption of incident radiation...advantages of this approach are: Although in recent times, uncooled microbolometer 1) The detector temperature is not disturbed by thermal arrays have seen...levels by performing the deposition at an elevated temperature . The technology developed here was applied to a new class of acoustic transducer, a

  3. Status of the Neutral Current Detector Array at SNO

    NASA Astrophysics Data System (ADS)

    Cox, Adam

    2003-05-01

    The third phase of data taking at the Sudbury Neutrino Observatory (SNO) is currently scheduled to begin in the autumn of 2003 with the installation of the Neutral Current Detectors (NCD). The NCDs, an array of ^3He proportional counters, will make an independent measurement of the flux of ^8B solar neutrinos at SNO. The latest results in experimental neutrino physics have given the SNO collaboration the opportunity to maximize the physics capabilities of SNO by deploying just half of the initially proposed NCD array. In order to minimize backgrounds, only the best counters with the lowest intrinsic radioactivity have been selected for deployment into the SNO detector.

  4. Detectors based on silicon photomultiplier arrays for medical imaging applications

    SciTech Connect

    Llosa, G.; Barrio, J.; Cabello, J.; Lacasta, C.; Oliver, J. F.; Stankova, V.; Solaz, C.

    2011-07-01

    Silicon photomultipliers (SiPMs) have experienced a fast development and are now employed in different research fields. The availability of 2D arrays that provide information of the interaction position in the detector has had a high interest for medical imaging. Continuous crystals combined with segmented photodetectors can provide higher efficiency than pixellated crystals and very high spatial resolution. The IRIS group at IFIC is working on the development of detector heads based on continuous crystals coupled to SiPM arrays for different applications, including a small animal PET scanner in collaboration with the Univ. of Pisa and INFN Pisa, and a Compton telescope for dose monitoring in hadron therapy. (authors)

  5. Detector array evaluation and figures of merit

    NASA Technical Reports Server (NTRS)

    Dereniak, Eustace L.

    1990-01-01

    The commonly used methods to evaluate the performance of a two-dimensional focal-plane array using charge transfer devices are reviewed. Two figures of merit that attempt to combine quantum efficiency, read noise and dark-current generation into a single parameter are discussed. The figures of merit are suggested as possible alternatives to the D asterisk.

  6. Design, development, characterization and qualification of infrared focal plane area array detectors for space-borne imaging applications

    NASA Astrophysics Data System (ADS)

    Jain, Ankur; Banerjee, Arup

    2016-05-01

    This paper discusses the design, development, characterization and qualification aspects of large format Infrared Focal Plane Arrays (IRFPA) required for panchromatic, multi-, hyper- and ultra-spectral imaging applications from a space-borne imager. Detection of feeble radiant flux from the intended target in narrow spectral bands requires a highly sensitive low noise sensor array with high well capacity. For this the photodiode arrays responsive in desired spectral band are grown using different growth techniques and flip-chip bonded with a suitable Si Read-out ICs (ROICs) for signal conditioning. IR detectors require cryogenic cooling to achieve background limited performance. Although passive radiative cooling is always the preferred choice of cooling in space, it is not suitable for cooling IRFPAs due to high thermal loads. To facilitate characterization of IRFPAs and cool them to desired cryogenic temperature, an Integrated Detector Dewar Cooler Assembly (IDDCA) is essential where the detector array sits over the cold tip of an active cooler and the detector cooler assembly is vacuum sealed in a thermally isolated Dewar. A cold shield above the sensor array inside the Dewar restricts its field-of-view and a cold filter fine tunes its spectral response. In this paper, various constituents of an IRFPA like sensor array materials, growth techniques, ROICs, filters, cold shields, cooling techniques etc., their types and selection criteria for different applications are discussed in detail. Design aspects of IRFPA characterization test bench, challenges involved in radiometric and spectral characterization and space qualification of such IDDCA based IRFPAs are also discussed.

  7. Si:Bi switched photoconducttor infrared detector array

    NASA Technical Reports Server (NTRS)

    Eakin, C. E.

    1983-01-01

    A multiplexed infrared detector array is described. The small demonstration prototype consisted of two cryogenically cooled, bismuth doped silicon, extrinsic photoconductor pixels multiplexed onto a single output channel using an on focal plane switch integration sampling technique. Noise levels of the order of 400 to 600 rms electrons per sample were demonstrated for this chip and wire hybrid version.

  8. A broadband superconducting detector suitable for use in large arrays.

    PubMed

    Day, Peter K; LeDuc, Henry G; Mazin, Benjamin A; Vayonakis, Anastasios; Zmuidzinas, Jonas

    2003-10-23

    Cryogenic detectors are extremely sensitive and have a wide variety of applications (particularly in astronomy), but are difficult to integrate into large arrays like a modern CCD (charge-coupled device) camera. As current detectors of the cosmic microwave background (CMB) already have sensitivities comparable to the noise arising from the random arrival of CMB photons, the further gains in sensitivity needed to probe the very early Universe will have to arise from large arrays. A similar situation is encountered at other wavelengths. Single-pixel X-ray detectors now have a resolving power of DeltaE < 5 eV for single 6-keV photons, and future X-ray astronomy missions anticipate the need for 1,000-pixel arrays. Here we report the demonstration of a superconducting detector that is easily fabricated and can readily be incorporated into such an array. Its sensitivity is already within an order of magnitude of that needed for CMB observations, and its energy resolution is similarly close to the targets required for future X-ray astronomy missions.

  9. A Broadband Superconducting Detector Suitable for Use in Large Arrays

    NASA Technical Reports Server (NTRS)

    Day, Peter K.; LeDuc, Henry G.; Mazin, Benjamin A.; Vayonakis, Anastasios; Zmuldzinas, Jonas

    2003-01-01

    Cryogenic detectors are extremely sensitive and have a wide variety of applications (particularly in astronomy), but are difficult to integrate into large arrays like a modern CCD (charge-coupled device) camera. As current detectors of the cosmic microwave background (CMB) already have sensitivities comparable to the noise arising from the random arrival of CMB photons, the further gains in sensitivity needed to probe the very early Universe will have to arise from large arrays. A similar situation is encountered at other wavelengths. Single-pixel X-ray detectors now have a resolving power of (Delta)E < 5 eV for single 6-keV photons, and future X-ray astronomy missions anticipate the need for 1,000-pixel arrays. Here we report the demonstration of a superconducting detector that is easily fabricated and can readily be incorporated into such an array. Its sensitivity is already within an order of magnitude of that needed for CMB observations, and its energy resolution is similarly close to the targets required for future X-ray astronomy missions.

  10. Conceptual design of a hybrid Ge:Ga detector array

    NASA Technical Reports Server (NTRS)

    Parry, C. M.

    1984-01-01

    For potential applications in space infrared astronomy missions such as the Space Infrared Telescope Facility and the Large Deployable Reflector, integrated arrays of long-wavelength detectors are desired. The results of a feasibility study which developed a design for applying integrated array techniques to a long-wavelength (gallium-doped germanium) material to achieve spectral coverage between 30 and 200 microns are presented. An approach which builds up a two-dimensional array by stacking linear detector modules is presented. The spectral response of the Ge:Ga detectors is extended to 200 microns by application of uniaxial stress to the stack of modules. The detectors are assembled with 1 mm spacing between the elements. Multiplexed readout of each module is accomplished with integration sampling of a metal-oxide-semiconductor (MOS) switch chip. Aspects of the overall design, including the anticipated level of particle effects on the array in the space environment, a transparent electrode design for 200 microns response, estimates of optical crosstalk, and mechanical stress design calculations are included.

  11. First Results from the Telescope Array RAdar (TARA) Detector

    NASA Astrophysics Data System (ADS)

    Myers, Isaac

    2014-03-01

    The TARA cosmic ray detector has been in operation for about a year and a half. This bi-static radar detector was designed with the goal of detecting cosmic rays in coincidence with Telescope Array (TA). A new high power (25 kW, 5 MW effective radiated power) transmitter and antenna array and 250 MHz fPGA-based DAQ have been operational since August 2013. The eight-Yagi antenna array broadcasts a 54.1 MHz tone across the TA surface detector array toward our receiver station 50 km away at the Long Ridge fluorescence detector. Receiving antennas feed an intelligent DAQ that self-adjusts to the fluctuating radio background and which employs a bank of matched filters that search in real-time for chirp radar echoes. Millions of triggers have been collected in this mode. A second mode is a forced trigger scheme that uses the trigger status of the fluorescence telescope. Of those triggers collected in FD-triggered mode, about 800 correspond with well-reconstructed TA events. I will describe recent advancements in calibrating key components in the transmitter and receiver RF chains and the analysis of FD-triggered data. Work supported by W.M. Keck Foundation and NSF.

  12. High resolution decoding of Multi-Anode Microchannel Array detectors

    NASA Technical Reports Server (NTRS)

    Kasle, David B.; Morgan, Jeffrey S.

    1991-01-01

    The Multi-Anode Microchannel Array (MAMA) is a photon counting detector which utilizes a photocathode for photon to electron conversion, a microchannel plate (MCP) for signal amplification and a proximity focused anode array for position sensitivity. The detector electronics decode the position of an event through coincidence discrimination. The decoding algorithm which associates a given event with the appropriate pixel is determined by the geometry of the array. A new algorithm incorporated into a CMOS Application Specific Integrated Circuit (ASIC) decoder which improves the pixel spatial resolution is described. The new algorithm does not degrade the detector throughput and does not require any modifications to the detector tube. The standard MAMA detector has a pixel size of 25 x 25 square microns, but with the new decoder circuit the pixel size is reduced to 12.5 x 12.5 square microns. We have built the first set of decode electronics utilizing the new ASIC chips and report here on the first imaging tests of this system.

  13. Application of a single area array detector for acquistion, tracking and point-ahead in space optical communications

    NASA Technical Reports Server (NTRS)

    Clark, D. L.; Cosgrove, M.; Vanvranken, R.; Park, H.; Fitzmaurice, M.

    1989-01-01

    Functions of acquisition, tracking, and point-ahead in space optical communications are being combined into a single system utilizing an area array detector. An analysis is presented of the feasibility concept. The key parameters are: optical power less than 1 pW at 0.86 micrometer, acquisition in less than 30 seconds in an acquisition field of view (FOV) of 1 mrad, tracking with 0.5 microrad rms noise at 1000 Hz update rate, and point ahead transfer function precision of 0.25 microrad over a region of 150 microrad. Currently available array detectors were examined. The most demanding specifications are low output noise, a high detection efficiency, a large number of pixels, and frame rates over 1kHz. A proof of concept (POC) demonstration system is currently being built utilizing the Kodak HS-40 detector (a 128 x 128 photodiode array with a 64 channel CCD readout architecture which can be operated at frame rates as high as 40,000/sec). The POC system implements a windowing scheme and special purpose digital signal processing electronic for matched filter acquisition and tracking algorithms.

  14. Applications of pyroelectric materials in array-based detectors.

    PubMed

    Holden, Anthony J

    2011-09-01

    The development of low-cost, uncooled (room temperature operation) thermal detector arrays has been accelerating in recent years and now commercial products are becoming widely available. As costs come down and volumes rise, these devices are entering the consumer marketplace, providing everything from sophisticated security and people-monitoring devices to hand-held thermal imagers for preventative maintenance and building inspection. Two technologies have established significant market shares in uncooled thermal detector array products. These are resistive microbolometers and pyroelectric ceramics. To address the true mass market, the pyroelectric arrays offer significant cost advantage. In this paper, recent developments in a variety of products based on pyroelectric ceramic arrays are described and their performance and applicability are compared and contrasted with competing technologies. This includes the use of low-element-count arrays for applications in people counting and queue measurement, and the drive for cost-effective imaging arrays for mass-market thermal imaging. The technical challenges in materials production, device development, and low-cost manufacture are reviewed and future opportunities and challenges are outlined.

  15. Order-sorting filter transmittance measured with an array detector

    NASA Technical Reports Server (NTRS)

    Heaney, James B.; Bradley, Scott E.; Bly, Vincent T.; Ewin, Audrey J.; La, Anh T.

    1993-01-01

    The simultaneous measurement of the spectrally and spatially variant transmittance of a linear variable order-sorting filter in a manner that closely resembles its conditions of actual use is described. The transmittance of a prototype order-sorting filter was measured in the 400- to 880-nm wavelength region by illuminating it with the output beam of a spectrophotometer while the filter was attached to the front of a 30 x 32 pixel silicon array detector. The filter was designed to be used in the output beam of a grating spectrometer to prevent the dispersal of higher diffracted orders onto an array detector. Areas of the filter that were spatially matched to the corresponding detector pixel column had measured peak transmittances of about 90 percent that were uniform to within +/- 1.5 percent along a given column. Transmittances for incident wavelengths shorter than the desired bandpass, corresponding to the order overlap region, were measured in the 0.003 range. Line spread function measurements made with the array detector indicated no significant beam spreading caused by inserting the filter into the beam.

  16. Spectroscopic characterization by photodiode array detection of human urinary and amniotic protein HC subpopulations fractionated by anion-exchange and size-exclusion high-performance liquid chromatography.

    PubMed

    Calero, M; Escribano, J; Soriano, F; Grubb, A; Brew, K; Méndez, E

    1996-01-05

    A procedure for spectroscopic characterization and partial fractionation of human protein HC populations by high-performance liquid chromatography-photodiode array ultraviolet-visible detection is reported. Human protein HC from urine or amniotic fluid fractionated by anion-exchange HPLC in a protein Pak DEAE 5PW appeared to be heterogeneous as judged by the asymmetric elution pattern, consisting of a continuous irregular broad peak with several shoulders distributed along the whole chromatogram. Selected fractions containing shoulders were rechromatographed and finally six symmetrical homogeneous peaks with different retention times were obtained from each protein HC preparation. The direct automatic absorption spectra analyses at each peak maximum, indicated that all of the homogeneous peaks seemed to be protein HC, all of them associated to the same chromophore although with different stoichiometry ratios. Isoelectric focusing showed that each peak was composed of a limited number of subpopulations of protein HC with different isoelectric points. Size microheterogeneity has been also demonstrated in both urinary and amniotic protein HC preparations by a combination of size-exclusion HPLC on a TSK 3000 SW6 column and photodiode array detection. Partial fractionation of human albumin on an analytical anion-exchange Mono-Q PC 1.6/5 column, has allowed the identification of heterogeneous chromophore-containing populations displaying significant absorption in the visible region in resemblance to that of protein HC.

  17. Heterodyne detection with mismatch correction based on array detector

    NASA Astrophysics Data System (ADS)

    Dong, Hongzhou; Li, Guoqiang; Yang, Ruofu; Yang, Chunping; Ao, Mingwu

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  18. Heterodyne detection with mismatch correction base on array detector

    NASA Astrophysics Data System (ADS)

    Hongzhou, Dong; Guoqiang, Li; Ruofu, Yang; Chunping, Yang; Mingwu, Ao

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  19. A new detector array for charged particle spectroscopy

    NASA Astrophysics Data System (ADS)

    Cowin, R. L.; Watson, D. L.; Chappell, S. P. G.; Clarke, N. M.; Freer, M.; Fulton, B. R.; Cunningham, R. A.; Curtis, N.; Dillon, G. K.; Lilley, J.; Jones, C. D.; Lee, P.; Rae, W. D. M.

    1999-02-01

    A compact and highly segmented detector array consisting of 44 gas-silicon-caesium iodide, position sensitive, particle identification detector telescopes and up to 10 position-sensitive, silicon strip detectors has been constructed for the study of light-ion-heavy-ion reactions including cluster break-up in the energy range 5-15MeV/nucleon. The detectors are housed in a purpose built vacuum chamber. The telescopes are placed in fixed positions, covering the forward hemisphere from 3 to 30° in the laboratory with the target placed at 535mm from the front of the telescopes or 6-52° with the target placed at 215mm. The strip detectors are placed in any of 30 fixed positions in the forward hemisphere. For 85MeV 12C ions the telescope energy resolution (gas plus silicon) is 345keV with an angular resolution of 0.03°. Using the gas-silicon section ions with Z up to 21 can be identified. For ions that pass through the silicon isotopic identification is achieved using the silicon-CsI combination. The strip detector energy resolution is 200keV, with an angular resolution of 0.1°.

  20. SU-E-T-167: Characterization of In-House Plastic Scintillator Detectors Array for Radiation Therapy

    SciTech Connect

    Zhu, T; Liu, H; Dimofte, A; Darafsheh, A; Lin, H; Kassaee, A; Finlay, J; Both, S

    2015-06-15

    Purpose: To characterize basic performance of plastic scintillator detectors (PSD) array designed for dosimetry of radiation therapy. Methods: An in-house PSD array has been developed by placing single point PSD into customized 2D holder. Each point PSD is a plastic scintillating fiber-based detector designed for highly accurate measurement of small radiotherapy fields used in patient plan verification and machine commissioning and QA procedures. A parallel fiber without PSD is used for Cerenkov separation by subtracting from PSD readings. Cerenkov separation was confirmed by optical spectroscopy. Alternative Cerenkov separation approaches are also investigated. The optical signal was converted to electronic signal with a photodiode and then subsequently amplified. We measured its dosimetry performance, including percentage depth dose and output factor, and compared with reference ion chamber measurements. The PSD array is then placed along the radiation beam for multiple point dose measurement, representing subsets of PDD measurements, or perpendicular to the beam for profile measurements. Results: The dosimetry results of PSD point measurements agree well with reference ion chamber measurements. For percentage depth dose, the maximal differences between PSD and ion chamber results are 3.5% and 2.7% for 6MV and 15MV beams, respectively. For the output factors, PSD measurements are within 3% from ion chamber results. PDD and profile measurement with PSD array are also performed. Conclusions: The current design of multichannel PSD array is feasible for the dosimetry measurement in radiation therapy. Dose distribution along or perpendicular to the beam path could be measured. It might as well be used as range verification in proton therapy.A PS hollow fiber detector will be investigated to eliminate the Cerenkov radiation effect so that all 32 channels can be used.

  1. Short wave infrared InGaAs focal plane arrays detector: the performance optimization of photosensitive element

    NASA Astrophysics Data System (ADS)

    Gao, Xin-jiang; Tang, Zun-lie; Zhang, Xiu-chuan; Chen, Yang; Jiang, Li-qun; Cheng, Hong-bing

    2009-07-01

    Significant progress has been achieved in technology of the InGaAs focal plane arrays (FPA) detector operating in short wave infrared (SWIR) last two decades. The no cryogenic cooling, low manufacturing cost, low power, high sensitivity and maneuverability features inherent of InGaAs FPA make it as a mainstream SWIR FPA in a variety of critical military, national security, aerospace, telecommunications and industrial applications. These various types of passive image sensing or active illumination image detecting systems included range-gated imaging, 3-Dimensional Ladar, covert surveillance, pulsed laser beam profiling, machine vision, semiconductor inspection, free space optical communications beam tracker, hyperspectroscopy imaging and many others. In this paper the status and perspectives of hybrid InGaAs FPA which is composed of detector array (PDA) and CMOS readout integrate circuit (ROIC) are reviewed briefly. For various low light levels applications such as starlight or night sky illumination, we have made use of the interface circuit of capacitive feedback transimpedance amplifier (CTIA) in which the integration capacitor was adjustable, therefore implements of the physical and electrical characteristics matches between detector arrays and readout intergrate circuit was achieved excellently. Taking into account the influences of InGaAs detector arrays' optoelectronic characteristics on performance of the FPA, we discussed the key parameters of the photodiode in detailed, and the tradeoff between the responsivity, dark current, impedance at zero bias and junction capacitance of photosensitive element has been made to root out the impact factors. As a result of the educed approach of the photodiode's characteristics optimizing which involve with InGaAs PDA design and process, a high performance InGaAs FPA of 30um pixel pitch and 320×256 format has been developed of which the response spectrum range over 0.9um to 1.7um, the mean peak detectivity (λ=1.55

  2. The Telescope Array Middle Drum fluorescence detector simulation on GPUs

    NASA Astrophysics Data System (ADS)

    Abu-Zayyad, Tareq; Telescope-Array Collaboration

    2014-06-01

    In recent years, the Graphics Processing Unit (GPU) has been recognized and widely used as an accelerator for many scientific calculations. In general, problems amenable to parallelization are ones that benefit most from the use of GPUs. The Monte Carlo simulation of fluorescence detector response to air showers presents many opportunities for parallelization. In this paper we report on a Monte Carlo program used for the simulation of the Telescope Array Fluorescence Detector located at the Middle Drum site which uses GPU acceleration. All of the physics simulation from shower development, light production and atmospheric attenuation, as well as, the realistic detector optics and electronics simulations are done on the GPU. A detailed description of the code implementation is given, and results on the accuracy and performance of the simulation are presented as well. Improvements in computational throughput in excess of 50× are reported and the accuracy of the results is on par with the CPU implementation of the simulation.

  3. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  4. READOUT SYSTEM FOR ARRAYS OF FRISCH-RING CDZNTE DETECTORS.

    SciTech Connect

    CUI, Y.; BOLOTNIKOV, A.E.; CAMARDA, G.S.; DE GERONIMO, G.; O'CONNOR, P.; JAMES, R.B.; KARGAR, A.; HARRISON, M.J.; MCGREGOR, D.S.

    2006-10-29

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution for identifying isotopes, <1% FWHM at 662 keV, and good efficiency for detecting gamma rays. We will fabricate and test at Brookhaven National Laboratory an integrated module of a 64-element array of 6 x 6 x 12 mm{sup 3} Frisch-ring detectors, coupled with a readout electronics system. It supports 64 readout channels, and includes front-end electronics, signal processing circuit, USB interface and high-voltage power supply. The data-acquisition software is used to process the data stream, which includes amplitude and timing information for each detected event. This paper describes the design and assembly of the detector modules, readout electronics, and a conceptual prototype system. Some test results are also reported.

  5. Multispectral breast imaging using a ten-wavelength, 64x64 source/detector channels silicon photodiode-based diffuse optical tomography system

    SciTech Connect

    Li Changqing; Zhao Hongzhi; Anderson, Bonnie; Jiang Huabei

    2006-03-15

    We describe a compact diffuse optical tomography system specifically designed for breast imaging. The system consists of 64 silicon photodiode detectors, 64 excitation points, and 10 diode lasers in the near-infrared region, allowing multispectral, three-dimensional optical imaging of breast tissue. We also detail the system performance and optimization through a calibration procedure. The system is evaluated using tissue-like phantom experiments and an in vivo clinic experiment. Quantitative two-dimensional (2D) and three-dimensional (3D) images of absorption and reduced scattering coefficients are obtained from these experiments. The ten-wavelength spectra of the extracted reduced scattering coefficient enable quantitative morphological images to be reconstructed with this system. From the in vivo clinic experiment, functional images including deoxyhemoglobin, oxyhemoglobin, and water concentration are recovered and tumors are detected with correct size and position compared with the mammography.

  6. Distributed Antenna-Coupled TES for FIR Detectors Arrays

    NASA Technical Reports Server (NTRS)

    Day, Peter K.; Leduc, Henry G.; Dowell, C. Darren; Lee, Richard A.; Zmuidzinas, Jonas

    2007-01-01

    We describe a new architecture for a superconducting detector for the submillimeter and far-infrared. This detector uses a distributed hot-electron transition edge sensor (TES) to collect the power from a focal-plane-filling slot antenna array. The sensors lay directly across the slots of the antenna and match the antenna impedance of about 30 ohms. Each pixel contains many sensors that are wired in parallel as a single distributed TES, which results in a low impedance that readily matches to a multiplexed SQUID readout These detectors are inherently polarization sensitive, with very low cross-polarization response, but can also be configured to sum both polarizations. The dual-polarization design can have a bandwidth of 50The use of electron-phonon decoupling eliminates the need for micro-machining, making the focal plane much easier to fabricate than with absorber-coupled, mechanically isolated pixels. We discuss applications of these detectors and a hybridization scheme compatible with arrays of tens of thousands of pixels.

  7. The detector calibration system for the CUORE cryogenic bolometer array

    NASA Astrophysics Data System (ADS)

    Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; Ejzak, Larissa; Lenz, Daniel; Lim, Kyungeun E.; Heeger, Karsten M.; Maruyama, Reina H.; Nucciotti, Angelo; Sangiorgio, Samuele; Wise, Thomas

    2017-02-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.

  8. Digital readouts for large microwave low-temperature detector arrays

    NASA Astrophysics Data System (ADS)

    Mazin, Benjamin A.; Day, Peter K.; Irwin, Kent D.; Reintsema, Carl D.; Zmuidzinas, Jonas

    2006-04-01

    Over the last several years many different types of low-temperature detectors (LTDs) have been developed that use a microwave resonant circuit as part of their readout. These devices include microwave kinetic inductance detectors (MKID), microwave SQUID readouts for transition edge sensors (TES), and NIS bolometers. Current readout techniques for these devices use analog frequency synthesizers and IQ mixers. While these components are available as microwave integrated circuits, one set is required for each resonator. We are exploring a new readout technique for this class of detectors based on a commercial-off-the-shelf technology called software defined radio (SDR). In this method a fast digital to analog (D/A) converter creates as many tones as desired in the available bandwidth. Our prototype system employs a 100 MS/s 16-bit D/A to generate an arbitrary number of tones in 50 MHz of bandwidth. This signal is then mixed up to the desired detector resonant frequency (˜10 GHz), sent through the detector, then mixed back down to baseband. The baseband signal is then digitized with a series of fast analog to digital converters (80 MS/s, 14-bit). Next, a numerical mixer in a dedicated integrated circuit or FPGA mixes the resonant frequency of a specified detector to 0 Hz, and sends the complex detector output over a computer bus for processing and storage. In this paper we will report on our results in using a prototype system to readout a MKID array, including system noise performance, X-ray pulse response, and cross-talk measurements. We will also discuss how this technique can be scaled to read out many thousands of detectors.

  9. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    SciTech Connect

    Qiu, Weicheng; Hu, Weida Lin, Tie; Yin, Fei; Zhang, Bo; Chen, Xiaoshuang; Lu, Wei; Cheng, Xiang'ai Wang, Rui

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixed conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.

  10. Fluorometric flow-immunoassay for alkylphenol polyethoxylates on a microchip containing a fluorescence detector comprised of an organic light emitting diode and an organic photodiode.

    PubMed

    Liu, Rong; Ishimatsu, Ryoichi; Yahiro, Masayuki; Adachi, Chihaya; Nakano, Koji; Imato, Toshihiko

    2015-03-01

    A compact fluorescence detector was constructed on a microchip from an organic light emitting diode (OLED) as the light source and an organic photodiode (OPD) as the photo-detector and was used in an immunoassay for alkylphenol polyethoxylates (APE). The OLED based on a terbium complex emitted a sharp light at the main wavelength of 546 nm with a full width at half maximum of 9 nm. The incident photo-to-current conversion efficiency (IPCE) of the OPD fabricated with Fullerene 70 (C70) and tris[4-(5-phenylthiopen-2-yl)phenyl]-amine (TPTPA) was approximately 44% for light at a wavelength of 586 nm. The performance of the fluorescence detector was evaluated for the determination of resorufin (λ(em)=586 nm) and the photocurrent of the OPD due to the fluorescence of resorufin was proportional to the concentration of resorufin in the range from 0 to 18 µM with a detection limit (S/N=3) of 0.6 µM. The fluorescence detector was successfully utilized in a competitive enzyme-linked immunosorbent assay for APE, where an anti-APE antibody was immobilized on the surface of the channel of the Polydimethylsiloxane (PDMS) microchip or on the surface of magnetic microbeads. After an immunoreaction with a sample solution of APE containing a horse radish peroxidase (HRP)-labeled APE, the fluorescence of resorufin generated just after introduction of a mixed solution of Amplex Red and H2O2 was measured using the fluorescence detector. The calibration curve for the photocurrent signals of the OPD due to the fluorescence of resorufin against the logarithmic concentration of APE was sigmoidal in shape. The detection limits defined as IC80 were ca. 1 ppb and ca. 2 ppb, respectively, for the methods using the anti-APE antibody immobilized on the surface of the microchannel and in the case where the antibody was immobilized on the surface of magnetic microbeads.

  11. Recent advances in organic photodiodes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kippelen, Bernard; Khan, Talha M.; Fuentes-Hernandez, Canek; Diniz, Larissa; Lukens, Julia M.; Larrain, Felipe

    2016-09-01

    Although the detection of photons is ubiquitous, man-made photon detectors still limits the effectiveness of applications such as light/laser detection, photography, astronomy, quantum information science, medical imaging, microscopy, communications, and others. The performance of the technologically most advanced detectors based on CMOS semiconductor technology has improved during the last decades but at the detriment of increased complexity, higher cost, limited portability and compactness, and limited area. On the other hand, nature has produced a relatively simple detector with remarkable properties: the human eye. The exploration of new paradigms in photon detection using new material platforms might therefore provide a path to further challenge the frontiers of applications enabled by light. In this talk, we will report on the realization of solution-processed organic semiconductor visible spectrum photodetectors with a high specific detectivity above 1014 Jones, at least an order of magnitude larger than values found in photodiodes based on silicon. These detectors demonstrate a sub-pA current under reverse bias in the dark, making them suitable for detecting very low levels of light. The small dark current under reverse bias allows the characterization of these devices over 9 orders of magnitude of increasing light irradiance. The detectors are based on the device structure: tin-doped indium oxide / ethoxylated polyethylenimine / poly(3-hexylthiophene) : indene C60 bisadduct / molybdenum oxide / silver and present a path toward fabrication on flexible substrates. We will show that these detectors can operate over a large dynamic range in the self-powered photovoltaic mode where the light produces a photovoltage that can be measured directly without any external bias source. We believe that large-area flexible photodetectors with detectivity values comparable to or better than those displayed by silicon-based photodiodes will enable a wide variety of

  12. Topological detector: measuring continuous dosimetric quantities with few-element detector array

    NASA Astrophysics Data System (ADS)

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-01

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.

  13. Fast, High-Precision Readout Circuit for Detector Arrays

    NASA Technical Reports Server (NTRS)

    Rider, David M.; Hancock, Bruce R.; Key, Richard W.; Cunningham, Thomas J.; Wrigley, Chris J.; Seshadri, Suresh; Sander, Stanley P.; Blavier, Jean-Francois L.

    2013-01-01

    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128×128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 1×1-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges.

  14. Determination of residues of UV filters in natural waters by solid-phase extraction coupled to liquid chromatography-photodiode array detection and gas chromatography-mass spectrometry.

    PubMed

    Giokas, Dimosthenis L; Sakkas, Vasilios A; Albanis, Triantafyllos A

    2004-02-13

    This study describes a procedure for the enrichment, separation and quantification of four major UV filters in natural waters. Solid-phase extraction combined with liquid chromatography and photodiode array detection (LC-UV-DAD), and gas chromatography with mass spectroscopy (GC-MS) were employed for the analyses. LC of the four compounds with surfactant-modified hydro-organic eluents gave satisfactory resolution of overlapping peaks. In GC, a significant improvement of the detection limits was attained, but only three compounds could be detected. The method was validated for, and applied to, various water samples prone to UV filter accumulation due to recreational activities. Recoveries from real samples were 86-99% with LOQs as low as 0.5 ng/l depending on the sample volume and the analytical procedure.

  15. Evaluation of principal components analysis with high-performance liquid chromatography and photodiode array detection for the forensic differentiation of ballpoint pen inks.

    PubMed

    Kher, A A; Green, E V; Mulholland, M I

    2001-07-01

    Inks from seven black and eight blue ballpoint pens were separated by a high-performance liquid chromatography (HPLC) method utilizing a photodiode array detection (PDA). A classifier flowchart was designed for the chromatographic data based on the presence or absence of certain peaks at different wavelengths to qualitatively discriminate between the inks. The same data were quantitatively classified by principal components analysis (PCA) to estimate the separation between a pair of classes of ink samples. It was found that the black ballpoint pen inks were discriminated satisfactorily utilizing two-dimensional data of the peak areas and retention times at the optimum wavelengths. The blue pens were discriminated by analyzing the chromatographic data at four different wavelengths simultaneously with a cross-validated PCA. The results of this study indicated that HPLC-PDA coupled with chemometrics could make a powerful discriminating tool for the forensic chemist, especially when analyzing extensive and/or complex data.

  16. Simultaneous determination of 16 polycyclic aromatic hydrocarbons in reclaimed water using solid-phase extraction followed by ultra-performance convergence chromatography with photodiode array detection.

    PubMed

    Zhang, Yun; Xiao, Zhiyong; Lv, Surong; Du, Zhenxia; Liu, Xiaoxia

    2016-03-01

    A new fast and effective analysis method has been developed to simultaneously determine 16 polycyclic aromatic hydrocarbons in reclaimed water samples by ultra-performance convergence chromatography with photodiode array detection and solid-phase extraction. The parameters of ultra-performance convergence chromatography on the separation behaviors and the crucial condition of solid-phase extraction were investigated systematically. Under optimal conditions, the 16 polycyclic aromatic hydrocarbons could be separated within 4 min. The limits of detection and quantification were in the range of 0.4-4 and 1-10 μg/L in water, respectively. This approach has been applied to a real industrial wastewater treatment plant successfully. The results showed that polycyclic aromatic hydrocarbons were dramatically decreased after chemical treatment procedure, and the oxidation procedure was effective to remove trace polycyclic aromatic hydrocarbons.

  17. Autofocus technique for three-dimensional imaging, direct-detection laser radar using Geiger-mode avalanche photodiode focal-plane array.

    PubMed

    Oh, Min Seok; Kong, Hong Jin; Kim, Tae Hoon; Jo, Sung Eun

    2010-12-15

    An autofocus technique is proposed for a three-dimensional imaging, direct-detection laser radar system that uses a Geiger-mode avalanche photodiode focal plane array (GmAPD-FPA). This technique is implemented by pointing laser pulses on a target of interest and observing its scattered photon distribution on a GmAPD-FPA. Measuring the standard deviation of the photon distribution on a GmAPD-FPA enables the best focus condition to be found. The feasibility of this technique is demonstrated experimentally by employing a 1 × 8 pixel GmAPD-FPA. It is shown that the spatial resolution improves when the GmAPD-FPA is located in the best focus position found by the autofocus technique.

  18. Bolometric Array Detectors for Space-Borne Astronomy

    NASA Technical Reports Server (NTRS)

    Lange, Andrew E.

    2000-01-01

    Funding from the NASA Innovative Research Grant was used to develop bolometric detectors. As described in the proposal, silicon nitride micromesh ('spider-web') absorbers had been demonstrated at U.C. Berkeley but not developed to be flight-worthy devices. We proceeded to first fabricate bolometers with Neutron Transmutation Doped (NTD) Ge thermistors that demonstrated high optical coupling (Church et al. 1996) and were developed for a ground-based millimeter-wave receiver (Mauskopf et al. 1997). The next generation of devices used In bump-bonded thermistors to achieve devices with performance product NEP*sqrt(tau) = 3e - 18 j at 300 mK, demonstrating a full order of magnitude improvement over pervious devices. These devices achieved an NEP = 1e-18 W/rtHz (Murray et al. 1996) as promised in the proposal. Sensitivities as good as 1e - 19 W/rtHz appear achievable with the silicon nitride architecture (Bock et al. 1997). Finally, arrays of micromesh bolometers were shown to be feasible in the last year of the program by etching a large number of devices on a single silicon wafer (75 mm). Full arrays were subsequently demonstrated for selection on the ESA/NASA Far-Infrared Space Telescope (FIRST) in competition with detectors provided by CEA in France and GSFC in the US Micromesh bolometer arrays are now baselined for both the ESA/NASA Planck and FIRST missions.

  19. Design of micro-sensor-array detector for toxic gas

    NASA Astrophysics Data System (ADS)

    Liao, Hai-yang; Tian, Peng

    2010-08-01

    To quickly measure the trace concentration of the single component toxic gas (e.g. sarin), a micro-array toxic gas detector is designed. A 3 x 3 gas sensor array with metalloporphyrins as sensitive materials is introduced. A micro-capsule that can be easy to be loaded and unloaded is designed for the gas reaction. A fiber-array optical path is designed, which is based on the principle that gas sensors will show different colors after reaction with the toxic gas. The tricolor information about the concentration of gas is collected by the color liner CCD. A control handling system with C8051F021 MCU as the core is implemented and embedded into the detector to perform the functions of gas sampling, data collection and analysis calculation. Data acquisition experimental results show that the proposed scheme can effectively collect the color information after gas reaction. Moreover, the system has many important advantages, such as small size, compact structure, high degree of automation, fast detection speed and high performance-cost ratio, etc.

  20. Novel Multiplexing Technique for Detector and Mixer Arrays

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; McGrath, William R.

    2001-01-01

    Future submillimeter and far-infrared space telescopes will require large-format (many 1000's of elements) imaging detector arrays to perform state-of-the-art astronomical observations. A crucial issue related to a focal plane array is a readout scheme which is compatible with large numbers of cryogenically-cooled (typically < 1 K) detectors elements. When the number of elements becomes of the order of thousands, the physical layout for individual readout amplifiers becomes nearly impossible to realize for practical systems. Another important concern is the large number of wires leading to a 0.1-0.3 K platform. In the case of superconducting transition edge sensors (TES), a scheme for time-division multiplexing of SQUID read-out amplifiers has been recently demonstrated. In this scheme the number of SQUIDs is equal to the number (N) of the detectors, but only one SQUID is turned on at a time. The SQUIDs are connected in series in each column of the array, so the number of wires leading to the amplifiers can be reduced, but it is still of the order of N. Another approach uses a frequency domain multiplexing scheme of the bolometer array. The bolometers are biased with ac currents whose frequencies are individual for each element and are much higher than the bolometer bandwidth. The output signals are connected in series in a summing loop which is coupled to a single SQUID amplifier. The total number of channels depends on the ratio between the SQUID bandwidth and the bolometer bandwidth and can be at least 100 according to the authors. An important concern about this technique is a contribution of the out-of-band Johnson noise which multiplies by factor N(exp 1/2) for each frequency channel. We propose a novel solution for large format arrays based on the Hadamard transform coding technique which requires only one amplifier to read out the entire array of potentially many 1000's of elements and uses approximately 10 wires between the cold stage and room temperature

  1. Two-dimensional focal plane detector arrays for LWIR/VLWIR space and airborne sounding missions

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Bauer, A.; Bitterlich, H.; Bruder, M.; Haas, L.-D.; Haiml, M.; Hofmann, K.; Mahlein, K.-M.; Nothaft, H.-P.; Schallenberg, T.; Weber, A.; Wendler, J.; Wollrab, R.; Ziegler, J.

    2010-10-01

    An increasing need for high-precision atmospheric data especially in the long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) spectral ranges has arisen in the past years not only for the analysis of climate change and its effect on the earth's ecosystem, but also for weather forecast and atmospheric monitoring purposes. Spatially and spectrally resolved atmospheric emission data are advantageously gathered through limb or nadir sounding using an imaging Fourier transform (FT) interferometer with a two-dimensional (2D) high-speed focal plane detector array (FPA). In this paper, AIM reports on its latest results on MCT VLWIR FPAs for Fourier transform infrared sounding applications in the 8-15μm spectral range. The performance of a (112x112) pixel photodiode array with a 40μm pixel pitch incorporating extrinsic p-doping for low dark current, a technique for linearity improvement at high photon fluxes, pixel guards, pixel select/de-select, and a (2x2) super-pixel architecture is discussed. The customized read-out integrated circuit (ROIC) supporting integrate while-read (IWR) operation has a buffered direct injection (BDI) input stage and a full well capacity (FWC) of 143 Megaelectrons per super-pixel. It consists of two independently operating halves with two analog video outputs each. The full frame rate is typically 4k frames/sec, making it suitable for use with rapid scan FT infrared spectrometers. At a 55K operating temperature and an ~14.4μm cut-off wavelength, a photo response of 12.1mV/K and a noise equivalent temperature difference of 24.8mK at half well filling are demonstrated for a 286K reference scene. The nonlinearity error is <0.5%.

  2. Intra-pixel response of infrared detector arrays for JWST

    NASA Astrophysics Data System (ADS)

    Hardy, Tim; Baril, M. R.; Pazder, J.; Stilburn, J. S.

    2008-07-01

    The near-infrared instruments on the James Webb Space Telescope will use 5 micron cutoff HAWAII-2RG detector arrays. We have investigated the response of this type of detector at sub-pixel resolution to determine whether variations at this scale would affect the performance of the instruments. Using a simple experimental setup we were able to get measurements with a resolution of approximately 4 microns. We have measured an un-hybridized HAWAII-1RG multiplexer, a hybridized HAWAII-1RG device with a 5 micron cutoff HgCdTe detector layer, and a hybridized HAWAII-2RG device with a 5 micron cutoff substrate-removed HgCdTe detector layer. We found that the intra-pixel response functions of the hybrid devices are basically smooth and well behaved, and vary little from pixel to pixel. However, we did find numerous sub-pixel sized defects, notably some long straight thin features like scratches. We were not able to detect any significant variations with wavelength between 0.65 and 2.2 microns, but in the -1RG device there was a variation with temperature. When cooled from 80K to 40K, the pixel response became narrower, and some signal began to be lost at the edges of the pixel. We believe this reflects a reduction in charge diffusion at the lower temperature.

  3. Performance simulations of the medusa neutron detector array (abstract)

    SciTech Connect

    Kremens, R.L.; Russotto, M.A.; Tudman, S. )

    1995-01-01

    A 960-channel neutron detector array is under construction to measure various neutron reaction products from direct-drive laser-driven inertially confined fusion experiments. Analytical and Monte-Carlo model simulations have been completed which demonstrate the usefulness of this diagnostic for broad classes of fusion experiments. The modeling accounts for neutron production rate and spectra from the target and detector and acquisition electronics response. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460 and the University of Rochester. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article.

  4. Undersampling Correction for Array Detector-Based Satellite Spectrometers

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Kurosu, Thomas P.; Sioris, Christopher E.

    2004-01-01

    Array detector-based instruments are now fundamental to measurements of ozone and other atmospheric trace gases from space in the ultraviolet, visible, and infrared. The present generation of such instruments suffers, to a greater or lesser degree, from undersampling of the spectra, leading to difficulties in the analysis of atmospheric radiances. We provide extended analysis of the undersampling suffered by modem satellite spectrometers, which include Global Ozone Monitoring Experiment (GOME), Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), Ozone Monitoring Instrument (OMI), and Ozone Mapping and Profiler Suite (OMPS). The analysis includes basic undersampling, the effects of binning into separate detector pixels, and the application of high-resolution Fraunhofer spectral data to correct for undersampling in many useful cases.

  5. Curved-channel microchannel array plates. [photoelectric detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1981-01-01

    The microchannel array plate (MCP) is a photoelectric detector with an imaging capability comparable to that of a photographic plate. Recently MCPs in which the channels are curved to inhibit ion feedback have become available. These devices represent a major advance in MCP technology, since a single curved-channel MCP can be operated stably at high gain in the pulse-counting mode without any of the problems of stability of response or short lifetime reported for 'chevron' MCP detectors. Attention is given to the mode of operation of channel electron multipliers (CEM) and MCP, curved-channel MCP, test procedures, and performance characteristics. The accumulated test data show that the fundamental operating characteristics of the curved-channel MCP are directly related to those for the CEM.

  6. An MLC calibration method using a detector array

    SciTech Connect

    Simon, Thomas A.; Kahler, Darren; Simon, William E.; Fox, Christopher; Li, Jonathan; Palta, Jatinder; Liu, Chihray

    2009-10-15

    Purpose: The authors have developed a quantitative calibration method for a multileaf collimator (MLC) which measures individual leaf positions relative to the MLC backup jaw on an Elekta Synergy linear accelerator. Methods: The method utilizes a commercially available two-axis detector array (Profiler 2; Sun Nuclear Corporation, Melbourne, FL). To calibrate the MLC bank, its backup jaw is positioned at the central axis and the opposing jaw is retracted to create a half-beam configuration. The position of the backup jaws field edge is then measured with the array to obtain what is termed the radiation defined reference line. The positions of the individual leaf ends relative to this reference line are then inferred by the detector response in the leaf end penumbra. Iteratively adjusting and remeasuring the leaf end positions to within specifications completes the calibration. Using the backup jaw as a reference for the leaf end positions is based on three assumptions: (1) The leading edge of an MLC leaf bank is parallel to its backup jaw's leading edge, (2) the backup jaw position is reproducible, and (3) the measured radiation field edge created by each leaf end is representative of that leaf's position. Data from an electronic portal imaging device (EPID) were used in a similar analysis to check the results obtained with the array. Results: The relative leaf end positions measured with the array differed from those measured with the EPID by an average of 0.11 {+-}0.09 mm per leaf. The maximum leaf positional change measured with the Profiler 2 over a 3 month period was 0.51 mm. A leaf positional accuracy of {+-}0.4 mm is easily attainable through the iterative calibration process. The method requires an average of 40 min to measure both leaf banks. Conclusions: This work demonstrates that the Profiler 2 is an effective tool for efficient and quantitative MLC quality assurance and calibration.

  7. Sensitive chiral high-performance liquid chromatographic determination of anthelmintic flubendazole and its phase I metabolites in blood plasma using UV photodiode-array and fluorescence detection Application to pharmacokinetic studies in sheep.

    PubMed

    Nobilis, Milan; Vybíralová, Zuzana; Krízová, Veronika; Kubícek, Vladimír; Soukupová, Marie; Lamka, Jirí; Szotáková, Barbora; Skálová, Lenka

    2008-12-01

    Although benzimidazole anthelmintic flubendazole, methyl ester of [5-(4-fluorobenzoyl)-1H-benzimidazol-2-yl]carbamic acid, is extensively used in veterinary and human medicine for the treatment of gastrointestinal parasitic helminth infections, reliable data about its pharmacokinetics in various species have not been reported. Our previous work [M. Nobilis, Th. Jira, M. Lísa, M. Holcapek, B. Szotáková, J. Lamka, L.Skálová, J. Chromatogr. A 1149 (2007) 112-120] had described the stereospecificity of carbonyl reduction during phase I metabolic experiments in vitro. For in vivo pharmacokinetic studies, further improvement and optimization of bioanalytical HPLC method in terms of sensitivity and selectivity was necessary. Hence, a modified chiral bioanalytical HPLC method involving both UV photodiode-array and fluorescence detection for the determination of flubendazole, both enantiomers of reduced flubendazole and hydrolyzed flubendazole in the extracts from plasma samples was tested and validated. Albendazole was used as an internal standard. Sample preparation process involved a pH-dependent extraction of the analytes from the blood plasma into tert-butylmethyl ether. Chromatographic separations were performed on a Chiralcel OD-R 250 mm x 4.6mm column with mobile phase methanol-1M NaClO(4) (75:25, v/v) at the flow rate 0.5 ml min(-1). In quantitation, selective UV absorption maxima of 290 nm (for reduced flubendazole), 295 nm (for albendazole), 310 nm (for flubendazole) and 330 nm (for hydrolyzed flubendazole) were used in the UV photodiode-array detection, and lambda(exc.)/lambda(emis.)=228 nm/310 nm (for reduced flubendazole) and lambda(exc.)/lambda(emis.)=236 nm/346 nm (for albendazole) were set on the fluorescence detector. The fluorescence detection was approximately 10-times more sensitive than the UV detection. Each HPLC run lasted 27 min. The validated chiral HPLC-PDA-FL method was employed in the pharmacokinetic studies of flubendazole in sheep. The

  8. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    NASA Astrophysics Data System (ADS)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB

  9. Capillary Array Waveguide Amplified Fluorescence Detector for mHealth

    PubMed Central

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2013-01-01

    array can potentially be used for sensitive analysis of multiple fluorescent detection assays simultaneously. The simple phone based capillary array approach presented in this paper is capable of amplifying weak fluorescent signals thereby improving the sensitivity of optical detectors based on mobile phones. This may allow sensitive biological assays to be measured with low sensitivity detectors and may make mHealth practical for many diagnostics applications, especially in resource-poor and global health settings. PMID:24039345

  10. Antenna coupled detectors for 2D staring focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gritz, Michael A.; Kolasa, Borys; Lail, Brian; Burkholder, Robert; Chen, Leonard

    2013-06-01

    Millimeter-wave (mmW)/sub-mmW/THz region of the electro-magnetic spectrum enables imaging thru clothing and other obscurants such as fog, clouds, smoke, sand, and dust. Therefore considerable interest exists in developing low cost millimeter-wave imaging (MMWI) systems. Previous MMWI systems have evolved from crude mechanically scanned, single element receiver systems into very complex multiple receiver camera systems. Initial systems required many expensive mmW integrated-circuit low-noise amplifiers. In order to reduce the cost and complexity of the existing systems, attempts have been made to develop new mmW imaging sensors employing direct detection arrays. In this paper, we report on Raytheon's recent development of a unique focal plane array technology, which operates broadly from the mmW through the sub-mmW/THz region. Raytheon's innovative nano-antenna based detector enables low cost production of 2D staring mmW focal plane arrays (mmW FPA), which not only have equivalent sensitivity and performance to existing MMWI systems, but require no mechanical scanning.

  11. A 1.5k x 1.5k class photon counting HgCdTe linear avalanche photo-diode array for low background space astronomy in the 1-5micron infrared

    NASA Astrophysics Data System (ADS)

    Hall, Donald

    Under a current award, NASA NNX 13AC13G "EXTENDING THE ASTRONOMICAL APPLICATION OF PHOTON COUNTING HgCdTe LINEAR AVALANCHE PHOTODIODE ARRAYS TO LOW BACKGROUND SPACE OBSERVATIONS" UH has used Selex SAPHIRA 320 x 256 MOVPE L-APD HgCdTe arrays developed for Adaptive Optics (AO) wavefront (WF) sensing to investigate the potential of this technology for low background space astronomy applications. After suppressing readout integrated circuit (ROIC) glow, we have placed upper limits on gain normalized dark current of 0.01 e-/sec at up to 8 volts avalanche bias, corresponding to avalanche gain of 5, and have operated with avalanche gains of up to several hundred at higher bias. We have also demonstrated detection of individual photon events. The proposed investigation would scale the format to 1536 x 1536 at 12um (the largest achievable in a standard reticule without requiring stitching) while incorporating reference pixels required at these low dark current levels. The primary objective is to develop, produce and characterize a 1.5k x 1.5k at 12um pitch MOVPE HgCdTe L-APD array, with nearly 30 times the pixel count of the 320 x 256 SAPHIRA, optimized for low background space astronomy. This will involve: 1) Selex design of a 1.5k x 1.5k at 12um pitch ROIC optimized for low background operation, silicon wafer fabrication at the German XFab foundry in 0.35 um 3V3 process and dicing/test at Selex, 2) provision by GL Scientific of a 3-side close-buttable carrier building from the heritage of the HAWAII xRG family, 3) Selex development and fabrication of 1.5k x 1.5k at 12 um pitch MOVPE HgCdTe L-APD detector arrays optimized for low background applications, 4) hybridization, packaging into a sensor chip assembly (SCA) with initial characterization by Selex and, 5) comprehensive characterization of low background performance, both in the laboratory and at ground based telescopes, by UH. The ultimate goal is to produce and eventually market a large format array, the L

  12. Developing Seedless Growth of ZnO Micro/Nanowire Arrays towards ZnO/FeS2/CuI P-I-N Photodiode Application

    PubMed Central

    Yang, Zhi; Wang, Minqiang; Shukla, Sudhanshu; Zhu, Yue; Deng, Jianping; Ge, Hu; Wang, Xingzhi; Xiong, Qihua

    2015-01-01

    A seedless hydrothermal method is developed to grow high density and vertically aligned ZnO micro/nanowire arrays with low defect density on metal films under the saturated nutrition solution. In particular, the mechanism of seedless method is discussed here. A buffer layer can be confirmed by transmission electron microscopy (TEM), which may release the elastic strain between ZnO and substrate to achieve this highly mismatched heteroepitaxial structures. Based on ZnO micro/nanowire arrays with excellent wettability surface, we prepared ZnO-FeS2-CuI p-i-n photodiode by all-solution processed method with the high rectifying ratio of 197 at ±1 V. Under AM 1.5 condition, the Jsc of 0.5 mA/cm2, on-off current ratio of 371 and fast photoresponse at zero bias voltage were obtained. This good performance comes from excellent collection ability of photogenerated electrons and holes due to the increased depletion layer width for p-i-n structure. Finally, the high responsivity around 900 nm shows the potential as near infrared photodetectors applications. PMID:26077658

  13. Commissioning of the NPDGamma Detector Array: Counting Statistics in Current Mode Operation and Parity Violation in the Capture of Cold Neutrons on B 4 C and (27) Al.

    PubMed

    Gericke, M T; Bowman, J D; Carlini, R D; Chupp, T E; Coulter, K P; Dabaghyan, M; Desai, D; Freedman, S J; Gentile, T R; Gillis, R C; Greene, G L; Hersman, F W; Ino, T; Ishimoto, S; Jones, G L; Lauss, B; Leuschner, M B; Losowski, B; Mahurin, R; Masuda, Y; Mitchell, G S; Muto, S; Nann, H; Page, S A; Penttila, S I; Ramsay, W D; Santra, S; Seo, P-N; Sharapov, E I; Smith, T B; Snow, W M; Wilburn, W S; Yuan, V; Zhu, H

    2005-01-01

    The NPDGamma γ-ray detector has been built to measure, with high accuracy, the size of the small parity-violating asymmetry in the angular distribution of gamma rays from the capture of polarized cold neutrons by protons. The high cold neutron flux at the Los Alamos Neutron Scattering Center (LANSCE) spallation neutron source and control of systematic errors require the use of current mode detection with vacuum photodiodes and low-noise solid-state preamplifiers. We show that the detector array operates at counting statistics and that the asymmetries due to B4C and (27)Al are zero to with- in 2 × 10(-6) and 7 × 10(-7), respectively. Boron and aluminum are used throughout the experiment. The results presented here are preliminary.

  14. Mechanical designs and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D.; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Thornton, Robert; Ullom, Joel N.; Vavagiakis, Eve M.; Wollack, Edward J.

    2016-07-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  15. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Wollack, Edward J.

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  16. High efficiency n-Si/ p-Cu2O core-shell nanowires photodiode prepared by atomic layer deposition of Cu2O on well-ordered Si nanowires array

    NASA Astrophysics Data System (ADS)

    Kim, Hangil; Kim, Soo-Hyun; Ko, Kyung Yong; Kim, Hyungjun; Kim, Jaehoon; Oh, Jihun; Lee, Han-Bo-Ram

    2016-05-01

    A highly efficient n-Si/ p-Cu2O core-shell (C-S) nanowire (NW) photodiode was fabricated using Cu2O grown by atomic layer deposition (ALD) on a well-ordered Si NW array. Ordered Si nanowires arrays were fabricated by nano-sphere lithography to pattern metal catalysts for the metal-assisted etching of silicon, resulting in a Si NW arrays with a good arrangement, smooth surface and small diameter distribution. The ALD-Cu2O thin films were grown using a new non-fluorinated Cu precursor, bis(1-dimethylamino-2-methyl-2-butoxy)copper (C14H32N2O2Cu), and water vapor (H2O) at 140°C. Transmission electron microscopy equipped with an energy dispersive spectrometer confirmed that p-Cu2O thin films had been coated over arrayed Si NWs with a diameter of 150 nm (aspect ratio of ˜7.6). The C-S NW photodiode exhibited more sensitive photodetection performance under ultraviolet illumination as well as an enhanced photocurrent density in the forward biasing region than the planar structure diode. The superior performance of C-S NWs photodiode was explained by the lower reflectance of light and the effective carrier separation and collection originating from the C-S NWs structure. [Figure not available: see fulltext.

  17. Thermal crosstalk simulation and measurement of linear terahertz detector arrays

    NASA Astrophysics Data System (ADS)

    Li, Weizhi; Huang, Zehua; Wang, Jun; Li, Mingyu; Gou, Jun; Jiang, Yadong

    2015-11-01

    Thermal simulation of differently structured linear terahertz detector arrays (TDAs) based on lithium tantalate was performed by finite element analysis (FEA). Simulation results revealed that a relatively simple TDA structure can have good thermal insulation, i.e., low thermal crosstalk effect (TCE), between adjacent pixels, which was thus selected for the real fabrication of TDA sample. Current responsivity (Ri) of the sample for a 2.52 THz source was measured to be 6.66 × 10-6 A/W and non-uniformity (NU) of Ri was 4.1%, showing good performance of the sample. TCE test result demonstrated that small TCE existed in the sample, which was in good agreement with the simulation results.

  18. Electrical breakdown gas detector featuring carbon nanotube array electrodes.

    PubMed

    Kim, Seongyul; Pal, Sunil; Ajayan, Pulickel M; Borca-Tasciuc, Theodorian; Koratkar, Nikhil

    2008-01-01

    We demonstrate here detection of dichloro-difluoro-methane and oxygen in mixtures with helium using a carbon nanotube electrical breakdown sensor device. The sensor is comprised of an aligned array of multiwalled carbon nanotubes deposited on a nickel based super-alloy (Inconel 600) as the anode; the counter electrode is a planar nickel sheet. By monitoring the electrical breakdown characteristics of oxygen and dichloro-difluoro-methane in a background of helium, we find that the detection limit for dichloro-difluoro-methane is approximately 0.1% and the corresponding limit for oxygen is approximately 1%. A phenomenologigal model is proposed to describe the trends observed in detection of the two mixtures. These results indicate that carbon nanotube based electrical breakdown sensors show potential as end detectors in gas-chromatography devices.

  19. Method of fabricating multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1996-01-01

    A multiwavelength local plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y.ltoreq.1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  20. Terahertz spectroscopy with a holographic Fourier transform spectrometer plus array detector using coherent synchrotron radiation

    SciTech Connect

    Nikolay I. Agladz, John Klopf, Gwyn Williams, Albert J. Sievers

    2010-06-01

    By use of coherent terahertz synchrotron radiation, we experimentally tested a holographic Fourier transform spectrometer coupled to an array detector to determine its viability as a spectral device. Somewhat surprisingly, the overall performance strongly depends on the absorptivity of the birefringent lithium tantalate pixels in the array detector.

  1. Low dark current MCT-based focal plane detector arrays for the LWIR and VLWIR developed at AIM

    NASA Astrophysics Data System (ADS)

    Gassmann, Kai Uwe; Eich, Detlef; Fick, Wolfgang; Figgemeier, Heinrich; Hanna, Stefan; Thöt, Richard

    2015-10-01

    For nearly 40 years AIM develops, manufactures and delivers photo-voltaic and photo-conductive infrared sensors and associated cryogenic coolers which are mainly used for military applications like pilotage, weapon sights, UAVs or vehicle platforms. In 2005 AIM started to provide the competences also for space applications like IR detector units for the SLSTR instrument on board of the Sentinel 3 satellite, the hyperspectral SWIR Imager for EnMAP or pushbroom detectors for high resolution Earth observation satellites. Meanwhile AIM delivered more than 25 Flight Models for several customers. The first European pulse-tube cooler ever operating on-board of a satellite is made by AIM. AIM homes the required infrared core capabilities such as design and manufacturing of focal plane assemblies, detector housing technologies, development and manufacturing of cryocoolers and also data processing for thermal IR cameras under one roof which enables high flexibility to react to customer needs and assures economical solutions. Cryogenically cooled Hg(1-x)CdxTe (MCT) quantum detectors are unequalled for applications requiring high imaging as well as high radiometric performance in the infrared spectral range. Compared with other technologies, they provide several advantages, such as the highest quantum efficiency, lower power dissipation compared to photoconductive devices and fast response times, hence outperforming micro-bolometer arrays. However, achieving an excellent MCT detector performance at long (LWIR) and very long (VLWIR) infrared wavelengths is challenging due to the exponential increase in the thermally generated photodiode dark current with increasing cut-off wavelength and / or operating temperature. Dark current is a critical design driver, especially for LWIR / VLWIR multi-spectral imagers with moderate signal levels or hyper-spectral Fourier spectrometers operating deep into the VLWIR spectral region. Consequently, low dark current (LDC) technologies are the

  2. Energy spectrum measured by the telescope array surface detector

    NASA Astrophysics Data System (ADS)

    Ivanov, Dmitri

    2012-05-01

    Two conflicting measurements of the ultra high energy cosmic ray (UHECR) flux have been reported by the Akeno Giant Air Shower Array (AGASA) and the High Resolution Fly's Eye (HiRes) experiments. HiRes observes a ˜5sigma suppression at E = 1019.75 eV, which is in agreement with the prediction of Greisen-Zatsepin-Kuz'min (GZK) theory. AGASA, in contrast, sees the flux extended well beyond E = 1020 eV with no visible break, suggesting that the flux is limited only by the rate at which the sources can produce the UHECR and not by interaction of energetic particles with the cosmic microwave background, thus challenging the relativistic invariance principle. In response to this discrepancy, a new experiment named the Telescope Array (TA) has been deployed, which combines the detection elements used separately by HiRes and AGASA. We describe the TA surface detector (SD) analysis using a technique new to the field, which consists of a detailed Monte-Carlo (MC) simulation of the SD response to the natural cosmic rays, validating the MC by comparing its distributions with the data, and calculation of the SD aperture from the MC. We will also describe our reconstruction procedure, based solely upon the data, and its application to both data and the MC. Finally, we will describe the energy spectrum resulting from this analysis, which is found to be in excellent agreement with the HiRes result, and as such, is the first confirmation of the GZK effect by a ground array of scintillation counters.

  3. Assessment study of infrared detector arrays for low-background astronomical research

    NASA Technical Reports Server (NTRS)

    Ando, K. J.

    1978-01-01

    The current state-of-the-art of infrared detector arrays employing charge coupled devices (CCD) or charge injection devices (CID) readout are assessed. The applicability, limitations and potentials of such arrays under the low-background astronomical observing conditions of interest for SIRFT (Shuttle Infrared Telescope Facility) are determined. The following are reviewed: (1) monolithic extrinsic arrays; (2) monolithic intrinsic arrays; (3) charge injection devices; and (4) hybrid arrays.

  4. Determination of nitrofurans in animal feeds by liquid chromatography-UV photodiode array detection and liquid chromatography-ionspray tandem mass spectrometry.

    PubMed

    Barbosa, Jorge; Moura, Sara; Barbosa, Rita; Ramos, Fernando; da Silveira, Maria Irene Noronha

    2007-03-14

    Within the EU, the use of nitrofurans is prohibited in food production animals. For this reason detection of these compounds in feedingstuffs, at whatever limit, constitutes an offence under EU legislation. This detection generally involves the use of analytical methods with limits of quantification lowers than 1 mg kg(-1). These procedures are unsuitable for the detection and confirmation of trace amounts of nitrofurans in feedingstuffs due to contamination. It is well known that very low concentrations of these compounds can be the source of residues of nitrofuran metabolites in meat and other edible products obtained from animals consuming the contaminated feed. The present multi-compound method was capable of measuring very low concentrations of nitrofurantoin (NFT), nitrofurazone (NFZ), furazolidone (FZD) and furaltadone (FTD) in animal feed using nifuroxazide (NXZ) as internal standard. Following ethyl acetate extraction at mild alkaline conditions and purification on NH2 column, the nitrofurans are determined using liquid chromatography with photodiode-array detection (LC-DAD). It was observed a CCalpha ranged from 50 to 100 microg kg(-1). The liquid chromatography-tandem mass spectrometric (LC-MS/MS) procedure was used to confirm the identity of the suspected presence of any of the nitrofuran compounds.

  5. High-performance liquid chromatography with photodiode array detection and chemometrics method for the analysis of multiple components in the traditional Chinese medicine Shuanghuanglian oral liquid.

    PubMed

    Li, Bao Qiong; Chen, Jing; Li, Jiao Jiao; Wang, Xue; Zhai, Hong Lin; Zhang, Xiao Yun

    2015-12-01

    Shuanghuanlian oral liquid, a traditional Chinese medicine preparation, is a mixture of three herbs (Flos Lonicerae, Radix Scutellariae and Fructus Forsythiae). In this study, the quantitative analysis of three main active compounds, chlorogenic acid, forsythin and baicalin in samples from different manufacturers was performed rapidly by high-performance liquid chromatography coupled with photodiode array detection followed by Contour Projection coupled to stepwise regression treatment of the obtained three-dimensional spectra in which the partial overlap between adjacent target components existed. The method was validated for linearity (R>0.9940), precision (RSD<1.25%), recovery (92.20-102.50%), limit of detection (0.01-0.02 μg/mL) and limit of quantification (0.03-0.07 μg/mL). The results indicated that the combination of the three-dimensional spectra of traditional Chinese medicine and Contour Projection-stepwise regression offered an accurate, simple, low-cost and eco-friendly way for the rapid quantitative analysis of Shuanghuanlian oral liquid samples.

  6. Simultaneous Quantification of Antioxidant Compounds in Phellinus igniarius Using Ultra Performance Liquid Chromatography-Photodiode Array Detection-Electrospray Ionization Tandem Mass Spectrometry

    PubMed Central

    Wang, Nani; Li, Hongyu; Zhang, Yang; Zhu, Yan

    2016-01-01

    Natural antioxidants are widely used in the life sciences. Phellinus igniarius is a historically used natural antioxidant containing a variety of active compounds. Phenols, particularly Inoscavin A and Hypholomine B, are found in the high concentrations. Better quantitative methods are needed to perform quality control in order to support further research of this mushroom. An ultra-performance liquid chromatography method coupled to photodiode-array detection and an electrospray ionization tandem mass spectrometry method (UPLC-PAD-MS) was developed to simultaneously quantify Inoscavin A and Hypholomine B levels in the medicinal fungus Phellinus igniarius. The two compounds were quantified using UPLC-PAD and UPLC-MS. The methods were accurate (mean accuracy for spiked matrix ranged from 101.5% to 105.8%), sensitive (limit of detection ranged from 0.28 to 1.14 mg L-1) and precise (the relative standard deviations ranged from 0.13 to 2.8%). Inoscavin A and Hypholomine B were purified using high-speed counter-current chromatography (HSCCC), structural evaluated to meet the request of standard substances. UPLC separation was performed on a reversed-phase C18 column using gradient elution with acetonitrile and 0.1% formic acid over 10 min. The developed method was successfully applied to determine Inoscavin A and Hypholomine B in twelve Phellinus igniarius samples of different origins and the results showed that it was suitable for the analysis of these active components in Phellinus igniarius samples. PMID:27689891

  7. Characterisation of chemical components for identifying historical Chinese textile dyes by ultra high performance liquid chromatography - photodiode array - electrospray ionisation mass spectrometer.

    PubMed

    Han, Jing; Wanrooij, Jantien; van Bommel, Maarten; Quye, Anita

    2017-01-06

    This research makes the first attempt to apply Ultra High Performance Liquid Chromatography (UHPLC) coupled to both Photodiode Array detection (PDA) and Electrospray Ionisation Mass Spectrometer (ESI-MS) to the chemical characterisation of common textile dyes in ancient China. Three different extraction methods, respectively involving dimethyl sulfoxide (DMSO)-oxalic acid, DMSO and hydrochloric acid, are unprecedentedly applied together to achieve an in-depth understanding of the chemical composition of these dyes. The first LC-PDA-MS database of the chemical composition of common dyes in ancient China has been established. The phenomena of esterification and isomerisation of the dye constituents of gallnut, gardenia and saffron, and the dye composition of acorn cup dyed silk are clarified for the first time. 6-Hydroxyrubiadin and its glycosides are first reported on a dyed sample with Rubia cordifolia from China. UHPLC-PDA-ESI-MS with a C18 BEH shield column shows significant advantages in the separation and identification of similar dye constituents, particularly in the cases of analysing pagoda bud and turmeric dyed sample extracts.

  8. Determination of plant hormones in fertilizers by high-performance liquid chromatography with photodiode array detection: method development and single-laboratory validation.

    PubMed

    Gambino, Grazia Laura; Pagano, Pietro; Scordino, Monica; Sabatino, Leonardo; Scollo, Emanuele; Traulo, Pasqualino; Gagliano, Giacomo

    2008-01-01

    A simple and reliable high-performance liquid chromatographic method that uses photodiode array detection was developed for the simultaneous determination of 12 native and synthetic plant hormones, i.e., plant growth regulators (PGRs), in fertilizers, such as 1-naphthol, 2,4-dichlorophenoxyacetic acid, 4-(2,4-dichlorophenoxy)butyric acid, 4-chlorophenoxyacetic acid, indole-3-acetic acid, 4-(3-indolyl)butyric acid, dichlorprop, (4-chloro-2-methylphenoxy)acetic acid, alpha-naphthaleneacetic acid, 1-naphthaleneacetamide, beta-naphthoxyacetic acid, and thidiazuron. The method was experimentally validated for routine regulatory application, and the following analytical parameters were assessed for all PGRs studied: linearity; specificity; precision (relative standard deviation) and accuracy, both measured at 3 concentration levels (0.1, 0.05, and 0.01%, w/w); ruggedness; limit of detection; and limit of quantification. Results were satisfactory for all method validation parameters tested and for all PGRs studied, demonstrating the suitability of the method for the determination of PGRs in fertilizers. The uncertainty of measurement was also estimated at 3 concentration levels for all PGRs by using the approach of the International Organization for Standardization, described in its Guide to the Expression of Uncertainty in Measurement. The method was applied to 20 samples of liquid fertilizer with declared biostimulant properties.

  9. Demonstration of a passive, low-noise, millimeter-wave detector array for imaging

    NASA Astrophysics Data System (ADS)

    Wikner, David; Grossman, Erich

    2009-05-01

    The design of a millimeter-wave (MMW) camera is presented. The camera is meant to serve as a demonstration platform for a new 32-channel MMW detector array that requires no pre-amplification prior to detection. The Army Research Laboratory (ARL) and National Institute of Standards and Technology (NIST) have worked with the Defense Advanced Research Projects Agency and several contractors for four years to develop an affordable MMW detector array technology suitable for use in a large staring array. The camera described uses one particular embodiment of detector array that resulted from the program. This paper reviews the design of the MMW optics that will be used to form imagery with the linear array and the tradeoffs made in that design. Also presented are the results of laboratory tests of the detector array that were made at both ARL and NIST.

  10. Progress of Multicolor Single Detector to Detector Array Development for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Refaat, Tamer F.; Bhat, Ishwara; Xiao, Ye-Gao; Bandra, Sumith; Gunapala, Sarath D.

    2004-01-01

    Knowledge of the spatial and temporal distribution of atmospheric species such as CO2, O3, H2O, and CH4 is important for understanding the chemistry and physical cycles involving Earth s atmosphere. Although several remote sensing techniques are suitable for such measurements they are considered high cost techniques involving complicated instrumentation. Therefore, simultaneous measurement of atmospheric species using a single remote sensing instrument is significant for minimizing cost, size and complexity. While maintaining the instrument sensitivity and range, quality of multicolor detector, in terms of high quantum efficiency and low noise are vital for these missions. As the first step for developing multicolor focal plan array, the structure of a single element multicolor detector is presented in this paper. The detector consists of three p-n junction layers of Si, GaSb and InAs wafer bonded to cover the spectral range UV to 900 nm, 800 nm to 1.7 m, and 1.5 m to 3.4 m, respectively. Modeling of the absorption coefficient for each material was carried out for optimizing the layers thicknesses for maximum absorption. The resulted quantum efficiency of each layer has been determined except InAs layer. The optical and electrical characterization of each layer structure is reported including dark current and spectral response measurements of Si pin structure and of GaSb and InAs p-n junctions. The effect of the material processing is discussed.

  11. HgCdTe e-APD detector arrays with single photon sensitivity for space lidar applications

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoli; Abshire, James B.; Beck, Jeffrey D.

    2014-05-01

    A multi-element HgCdTe electron initiated avalanche photodiode (e-APD) array has been developed for space lidar. The detector array was fabricated with 4.3μm cutoff HgCdTe with a spectral response from 0.4 to 4.3 μm. We have demonstrated a 4x4 e-APD array with 80 μm square elements followed by a custom cryogenic CMOS read-out integrated circuit (ROIC). The device operates at 77K inside a small closed-cycle cooler-Dewar with the support electronics integrated in a field programmable gate array. Measurements showed a unity gain quantum efficiency of about 90% at 1.5-1.6 μm wavelength. The bulk dark current of the HgCdTe e-APD at 77K was less than 50,000 input referred electrons/s at 12 V APD bias where the APD gain was 620 and the measured noise equivalent power (NEP) was 0.4 fW/Hz1/2. The electrical bandwidth of the device was about 6 MHz, mostly limited by the ROIC, but sufficient for the lidar application. Although the devices were designed for low bandwidth pulse detections, the high gain and low dark current enabled them to be used for single photon detections. Because the APD was biased below the break-down voltage, the output is linear to the input signal and there were no nonlinear effect such as dead-time and afterpulsing, and no need for gated operation. A new series of HgCdTe e-APDs have also been developed with a much wider bandwidth ROIC and higher APD gain, which is expected to give a much better performance in single photon detections.

  12. Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring.

    PubMed

    Muneeb, M; Ruocco, A; Malik, A; Pathak, S; Ryckeboer, E; Sanchez, D; Cerutti, L; Rodriguez, J B; Tournié, E; Bogaerts, W; Smit, M K; Roelkens, G

    2014-11-03

    This paper demonstrates a very compact wavelength meter for on-chip laser monitoring in the shortwave infrared wavelength range based on an optimized arrayed waveguide grating (AWG) filter with an integrated photodiode array. The AWG response is designed to obtain large nearest neighbor crosstalk (i.e. large overlap) between output channels, which allows accurately measuring the wavelength of a laser under test using the centroid detection technique. The passive AWG is fabricated on a 220 nm silicon-on-insulator (SOI) platform and is combined with GaInAsSb-based photodiodes. The photodiodes are heterogeneously integrated on the output grating couplers of the AWG using DVS-BCB adhesive bonding. The complete device with AWG and detectors has a footprint of only 2 mm(2) while the measured accuracy and resolution of the detected wavelength is better than 20pm.

  13. Stressed and unstressed Ge:Ga detector arrays for airborne astronomy

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Beeman, J. W.; Haller, E. E.; Geis, N.; Poglitsch, A.; Rumitz, M.

    1992-01-01

    The construction and operation of 2D arrays of both unstressed and stressed Ge:Ga photoconductive detectors for far-IR astronomy from the Kuiper Airborne Observatory is presented. The 25 element (5 x 5) arrays are designed for a new cryogenically cooled spectrometer. The 2D spatial array described has the advantage of absolute registry between pixels in a map.

  14. Determination of quinolones in animal tissues and eggs by high-performance liquid chromatography with photodiode-array detection.

    PubMed

    Gigosos, P G; Revesado, P R; Cadahía, O; Fente, C A; Vazquez, B I; Franco, C M; Cepeda, A

    2000-02-25

    A rapid, specific reversed-phase HPLC method is described, with solid-phase extraction, for assaying five quinolones (ciprofloxacin, difloxacin, enrofloxacin, norfloxacin and marbofloxacin) with confirmative diode-array detection in samples of bovine kidney, muscle and eggs. The least efficient extraction was marbofloxacin from kidney tissue (64%). The lower detection limit for each quinolone was: enrofloxacin and ciprofloxacin, 1 ng; norfloxacin and difloxacin, 2 ng; marbofloxacin, 4 ng injected. The intra-day relative standard deviations were lower than 7.9% and lower than 8.6% for inter-day assays. These results indicate that the developed method had an acceptable precision.

  15. 13 micron cutoff HgCdTe detector arrays for space and ground-based astronomy

    NASA Astrophysics Data System (ADS)

    McMurtry, Craig W.; Cabrera, Mario S.; Dorn, Meghan L.; Pipher, Judith L.; Forrest, William J.

    2016-07-01

    With the recent success of our development of 10 micron HgCdTe infrared (IR) detector arrays,1,2 we have used what we learned and extended the cutoff wavelength to 13 microns. These 13 micron HgCdTe detector arrays can operate at higher temperatures than Si:As, e.g. in a properly designed spacecraft with passive cooling, the 13 micron IR array will work well at temperatures around 30K. We present the initial measurements of dark current, noise and quantum efficiency for the first deliveries of 13 micron HgCdTe detector arrays from Teledyne Imaging Sensors. We also discuss our plans to develop 15 micron cutoff HgCdTe detector arrays which would facilitate the detection of the broad CO2 absorption feature in the atmospheres of exoplanets, particularly those in the habitable zone of their host star.

  16. The development and test of ultra-large-format multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1984-01-01

    The specific tasks that were accomplished with each of the key elements of the multi-anode microchannel array detector system are described. The modes of operation of position-sensitive electronic readout systems for use with high-gain microchannel plates are described and their performance characteristics compared and contrasted. Multi-anode microchannel array detector systems with formats as large as 256 x 1024 pixels are currently under evaluation. Preliminary performance data for sealed ultraviolet and visible-light detector tubes show that the detector systems have unique characteristics which make them complementary to photoconductive array detectors, such as CCDs, and superior to alternative pulse-counting detector systems employing high-gain MCPs.

  17. Synthesis arrangement and parity correction of linear array infrared detector

    NASA Astrophysics Data System (ADS)

    Wang, Qun; Hong, Pu; Wang, Bo; Wang, Chensheng

    2010-11-01

    According to the configuration and technical specification of the detector, which has multiple channels, channels mixing, high speed outputs and separate columns between odd and even, a real time digital processing unit based on the CPLD, FPGA and DSP has been developed to achieve the data synthesis and arrangement function and the parity correction algorithm. A special interface circuit with 4 CPLDs is designed to complete the first synthesis step where the 16 channels of data are combined into 4 channels. The second step is finished in FPGA and ROM address encoder where the 4 channels of data are combined into 1 channel. For output data synchronization, FIFO is adopted to achieve the delay of even channels in the parity correction. Data of odd channels enters the columns synthesis unit without any processing and even channels shall be processed in the columns synthesis unit after entering the FIFO unit first and experiencing the delay process. Thereby the pre-processing before image processing of the linear array thermal imager is accomplished.

  18. Simultaneous determination of pseudoephedrine hydrochloride, chlorpheniramine maleate, and dextromethorphan hydrobromide by second-derivative photodiode array spectroscopy.

    PubMed

    Murtha, J L; Julian, T N; Radebaugh, G W

    1988-08-01

    The simultaneous determination of the active ingredients in multicomponent pharmaceutical products normally requires the use of a separation technique, such as HPLC or GC, followed by quantitation. Presented here is a rapid, validated, analytical method that does not require prior separation for the simultaneous determination of three drugs, pseudoephedrine hydrochloride, chlorpheniramine maleate, and dextromethorphan hydrobromide, in a tablet formulation. A diode array spectrophotometer, capable of multicomponent analysis, was used for the quantitation. The utility of this method was demonstrated in two ways: the analysis of a chewable pediatric tablet (formulation CP) containing 7.5 mg of pseudoephedrine hydrochloride, 0.5 mg of chlorpheniramine maleate, and 2.5 mg of dextromethorphan hydrobromide, and the dissolution analysis of a hydroxypropyl methylcellulose-based sustained-release tablet (formulation SR) containing 120 mg of pseudoephedrine hydrochloride, 8 mg of chlorpheniramine maleate, and 60 mg of dextromethorphan hydrobromide. The sensitivity of this assay is 7.5 micrograms/mL for pseudoephedrine hydrochloride, 1.0 micrograms/mL for chlorpheniramine maleate, and 5.0 micrograms/mL for dextromethorphan hydrobromide, using the second-derivative spectra of the absorbance with respect to wavelength. Determinations were made in 0.1 M sodium acetate buffer at pH 5.0 using a 1-cm quartz cell. Absorbance spectra, and their first and second derivatives, from 240 to 300 nm were used for the determination. The results obtained by this method compared favorably with the results obtained by a validated HPLC method.

  19. New silicon photodiodes for detection of the 1064nm wavelength radiation

    NASA Astrophysics Data System (ADS)

    Wegrzecki, Maciej; Piotrowski, Tadeusz; Puzewicz, Zbigniew; Bar, Jan; Czarnota, Ryszard; Dobrowolski, Rafal; Klimov, Andrii; Kulawik, Jan; Kłos, Helena; Marchewka, Michał; Nieprzecki, Marek; Panas, Andrzej; Seredyński, Bartłomiej; Sierakowski, Andrzej; Słysz, Wojciech; Synkiewicz, Beata; Szmigiel, Dariusz; Zaborowski, Michał

    2016-12-01

    In this paper a concept of a new bulk structure of p+-υ-n+ silicon photodiodes optimized for the detection of fast-changing radiation at the 1064 nm wavelength is presented. The design and technology for two types of quadrant photodiodes, the 8-segment photodiode and the 32-element linear photodiode array that were developed according to the concept are described. Electric and photoelectric parameters of the photodiodes mentioned above are presented.

  20. [Determination of flavonol glycosides in tea samples by ultra-high performance liquid chromatography-photodiode array detection-tandem mass spectrometry].

    PubMed

    Wang, Zhicong; Sha, Yuebing; Yu, Xiaobo; Liang, Yuerong

    2015-09-01

    An ultra-high performance liquid chromatography-photodiode array detection-tandem mass spectrometry (UPLC-PDA-MS/MS) method was developed for the determination of flavonol glycosides in tea samples. The chromatographic separation was performed on an UPLC HSS T3 column by gradient elution with the mobile phases of acetonitrile and water both containing 0.1% (v/v) formic acid. A total of 15 flavonol glycosides which include 3 myricetin glycosides, 6 quercetin glycosides and 6 kaempferol glycosides were positively identified in green and black tea samples by comparing the retention times and mass spectra of the samples with standards and publications. The quantities of flavonol glycosides were relatively calculated with the stand- ard quercetin-3-rhamnosylglucoside (Q-GRh) which was calibrated with external quantification method using multi-reaction monitoring (MRM) mode. The results showed that there were different flavonol glycoside distributions in green tea and black tea. The total amount of flavonol glycosides in green tea was 1. 7 times of that in black tea. The major flavonol glycosides in green tea were myricetin-3-galactoside (M-Ga), myricetin-3-glucoside (M-G), quercetin-3-glucosyl-rhamnosyl-galactoside (Q-GaRhG), quercetin-3-glucosyl-rhamnosyl-glucoside (Q-GRhG), kaempferol-3-glucosyl-rhamnosyl-galactoside (K-GaRhG) and kaempferol-3-glucosyl- rhamnosyl-glucoside (K-GRhG), but for black tea, the major flavonol glycosides were quercetin-3-rhamnosylglucoside (Q-GRh), quercetin-3-glucoside (Q-G), kaempferol-3-rhamnosylglucoside (K-GRh) and kaempferol-3-galactoside (K-Ga). The present method is accurate, convenient for the rapid identification of flavonol glycosides and analysis of constituent distribution for green and black teas.

  1. Determination of eleutheroside E and eleutheroside B in rat plasma and tissue by high-performance liquid chromatography using solid-phase extraction and photodiode array detection.

    PubMed

    Feng, Shi lan; Hu, Fang di; Zhao, Jian Xiong; Liu, Xi; Li, Y'un

    2006-04-01

    A HPLC method with photodiode array detection (PDA) was developed for the determination and a pharmacokinetic study of eleutheroside E (ELU E) and eleutheroside B (ELU B) in rat plasma and tissue following an eleutherococcus injection. The analysis was performed on a Kromasil C18 column, using water-acetonitrile as the gradient mobile phase and 0.8 mL/min flow rate. Detection wavelengths of ELU E and ELU B were 220 and 206 nm, respectively. Protein from the biological sample was deposited using acetonitrile. ELU E and ELU B were extracted from the biological samples using acetonitrile, separated by solid-phase extraction, and eluted from the cartridge using 60% methanol. The extraction recovery of ELU E and ELU B was 91.2 and 88.8%, respectively. The limit of detection was 37.6 ng/mL for ELU E and 37.0 ng/mL for ELU B (S/N = 3) in plasma. Blood drug level-time cuvers of ELU E and ELU B in Wister rats following administration of an eleutherococcus injection into femoral vein were shown to fit a three-compartment model. The half-life (t1/2) was 4.662 h for ELU E and 2.494 h for ELU B. Following administration of a single eleutherococcus injection, the concentration of ELU E and ELU B in the tissue was Cliver > Ckidney > Cspleen > Cheart and Ckidney > Cliver > Cheart. We believe the method described in the present paper is accurate and reliable and can be used for pharmacokinetic studies of ELU E and ELU B in rats. In addition, the method for sample preparation, using solid phase extraction, is precise, simple and rapid.

  2. Adaptive optics wavefront sensors based on photon-counting detector arrays

    NASA Astrophysics Data System (ADS)

    Aull, Brian F.; Schuette, Daniel R.; Reich, Robert K.; Johnson, Robert L.

    2010-07-01

    For adaptive optics systems, there is a growing demand for wavefront sensors that operate at higher frame rates and with more pixels while maintaining low readout noise. Lincoln Laboratory has been investigating Geiger-mode avalanche photodiode arrays integrated with CMOS readout circuits as a potential solution. This type of sensor counts photons digitally within the pixel, enabling data to be read out at high rates without the penalty of readout noise. After a brief overview of adaptive optics sensor development at Lincoln Laboratory, we will present the status of silicon Geigermode- APD technology along with future plans to improve performance.

  3. Method of fabricating a PbS-PbSe IR detector array

    NASA Technical Reports Server (NTRS)

    Barrett, John R. (Inventor)

    1987-01-01

    A silicon wafer is provided which does not employ individually bonded leads between the IR sensitive elements and the input stages of multiplexers. The wafer is first coated with lead selenide in a first detector array area and is thereafter coated with lead sulfide within a second detector array area. The described steps result in the direct chemical deposition of lead selenide and lead sulfide upon the silicon wafer to eliminate individual wire bonding, bumping, flip chiping, planar interconnecting methods of connecting detector array elements to silicon chip circuitry, e.g., multiplexers, to enable easy fabrication of very long arrays. The electrode structure employed, produces an increase in the electrical field gradient between the electrodes for a given volume of detector material, relative to conventional electrode configurations.

  4. Method for producing a hybridization of detector array and integrated circuit for readout

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Grunthaner, Frank J. (Inventor)

    1993-01-01

    A process is explained for fabricating a detector array in a layer of semiconductor material on one substrate and an integrated readout circuit in a layer of semiconductor material on a separate substrate in order to select semiconductor material for optimum performance of each structure, such as GaAs for the detector array and Si for the integrated readout circuit. The detector array layer is lifted off its substrate, laminated on the metallized surface on the integrated surface, etched with reticulating channels to the surface of the integrated circuit, and provided with interconnections between the detector array pixels and the integrated readout circuit through the channels. The adhesive material for the lamination is selected to be chemically stable to provide electrical and thermal insulation and to provide stress release between the two structures fabricated in semiconductor materials that may have different coefficients of thermal expansion.

  5. Assembly and Integration Process of the First High Density Detector Array for the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Li, Yaqiong; Choi, Steve; Ho, Shuay-Pwu; Crowley, Kevin T.; Salatino, Maria; Simon, Sara M.; Staggs, Suzanne T.; Nati, Federico; Wollack, Edward J.

    2016-01-01

    The Advanced ACTPol (AdvACT) upgrade on the Atacama Cosmology Telescope (ACT) consists of multichroicTransition Edge Sensor (TES) detector arrays to measure the Cosmic Microwave Background (CMB) polarization anisotropies in multiple frequency bands. The first AdvACT detector array, sensitive to both 150 and 230 GHz, is fabricated on a 150 mm diameter wafer and read out with a completely different scheme compared to ACTPol. Approximately 2000 TES bolometers are packed into the wafer leading to both a much denser detector density and readout circuitry. The demonstration of the assembly and integration of the AdvACT arrays is important for the next generation CMB experiments, which will continue to increase the pixel number and density. We present the detailed assembly process of the first AdvACT detector array.

  6. Underground Prototype Water Cherenkov Muon Detector with the Tibet Air Shower Array

    SciTech Connect

    Amenomori, M.; Nanjo, H.; Bi, X. J.; Ding, L. K.; Feng, Zhaoyang; He, H. H.; Hu, H. B.; Lu, H.; Lu, S. L.; Ren, J. R.; Tan, Y. H.; Wang, B.; Wang, H.; Wang, Y.; Wu, H. R.; Zhang, H. M.; Zhang, J. L.; Zhang, Y.; Chen, D.; Kawata, K.

    2008-12-24

    We are planning to build a 10,000 m{sup 2} water-Cherenkov-type muon detector (MD) array under the Tibet air shower (AS) array. The Tibet AS+MD array will have the sensitivity to detect gamma rays in the 100 TeV region by an order of the magnitude better than any other previous existing detectors in the world. In the late fall of 2007, a prototype water Cherenkov muon detector of approximately 100 m{sup 2} was constructed under the existing Tibet AS array. The preliminary data analysis is in good agreement with our MC simulation. We are now ready for further expanding the underground water Cherenkov muon detector.

  7. Assembly and integration process of the first high density detector array for the Atacama Cosmology Telescope

    NASA Astrophysics Data System (ADS)

    Li, Yaqiong; Choi, Steve; Ho, Shuay-Pwu; Crowley, Kevin T.; Salatino, Maria; Simon, Sara M.; Staggs, Suzanne T.; Nati, Federico; Ward, Jonathan; Schmitt, Benjamin L.; Henderson, Shawn; Koopman, Brian J.; Gallardo, Patricio A.; Vavagiakis, Eve M.; Niemack, Michael D.; McMahon, Jeff; Duff, Shannon M.; Schillaci, Alessandro; Hubmayr, Johannes; Hilton, Gene C.; Beall, James A.; Wollack, Edward J.

    2016-07-01

    The Advanced ACTPol (AdvACT) upgrade on the Atacama Cosmology Telescope (ACT) consists of multichroic Transition Edge Sensor (TES) detector arrays to measure the Cosmic Microwave Background (CMB) polarization anisotropies in multiple frequency bands. The first AdvACT detector array, sensitive to both 150 and 230 GHz, is fabricated on a 150 mm diameter wafer and read out with a completely different scheme compared to ACTPol. Approximately 2000 TES bolometers are packed into the wafer leading to both a much denser detector density and readout circuitry. The demonstration of the assembly and integration of the AdvACT arrays is important for the next generation CMB experiments, which will continue to increase the pixel number and density. We present the detailed assembly process of the first AdvACT detector array.

  8. Characteristics of stereo images from detectors in focal plane array.

    PubMed

    Son, Jung-Young; Yeom, Seokwon; Chun, Joo-Hwan; Guschin, Vladmir P; Lee, Dong-Su

    2011-07-01

    The equivalent ray geometry of two horizontally aligned detectors at the focal plane of the main antenna in a millimeter wave imaging system is analyzed to reveal the reason why the images from the detectors are fused as an image with a depth sense. Scanning the main antenna in both horizontal and vertical directions makes each detector perform as a camera, and the two detectors can work like a stereo camera in the millimeter wave range. However, the stereo camera geometry is different from that of the stereo camera used in the visual spectral range because the detectors' viewing directions are diverging to each other and they are a certain distance apart. The depth sense is mainly induced by the distance between detectors. The images obtained from the detectors in the millimeter imaging system are perceived with a good depth sense. The disparities responsible for the depth sense are identified in the images.

  9. Enhancement of concentration range of chromatographically detectable components with array detector mass spectrometry

    SciTech Connect

    Enke, Christie

    2013-02-19

    Methods and instruments for high dynamic range analysis of sample components are described. A sample is subjected to time-dependent separation, ionized, and the ions dispersed with a constant integration time across an array of detectors according to the ions m/z values. Each of the detectors in the array has a dynamically adjustable gain or a logarithmic response function, producing an instrument capable of detecting a ratio of responses or 4 or more orders of magnitude.

  10. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  11. Brief Introduction to the γ-DETECTOR Array at Institute of Modern Physics in Lanzhou

    NASA Astrophysics Data System (ADS)

    Hua, W.; Zhang, N. T.; Liu, M. L.; Zheng, Y.; Fang, Y. D.; Zhou, X. H.; Zhang, Y. H.; Lei, X. G.; Guo, Y. X.

    2013-11-01

    A new γ-detector array at Institute of modern physics in Lanzhou is now in construction. The spherical frame is designed using Solidworks, and is assembled by 4 kinds of irregular polygons. 32 detectors could be placed on this frame in maximum, which are arranged with 4-4-4-8-4-4-4 configuration.

  12. Modulation Transfer Function (MTF) measurement techniques for lenses and linear detector arrays

    NASA Technical Reports Server (NTRS)

    Schnabel, J. J., Jr.; Kaishoven, J. E., Jr.; Tom, D.

    1984-01-01

    Application is the determination of the Modulation Transfer Function (MTF) for linear detector arrays. A system set up requires knowledge of the MTF of the imaging lens. Procedure for this measurement is described for standard optical lab equipment. Given this information, various possible approaches to MTF measurement for linear arrays is described. The knife edge method is then described in detail.

  13. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

    SciTech Connect

    Allman, M. S. Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W.; Marsili, F.; Beyer, A.; Shaw, M. D.; Kumor, D.

    2015-05-11

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array as well as characterization measurements are discussed.

  14. Description of the Role of Shot Noise in Spectroscopic Absorption and Emission Measurements with Photodiode and Photomultiplier Tube Detectors: Information for an Instrumental Analysis Course

    ERIC Educational Resources Information Center

    McClain, Robert L.; Wright, John C.

    2014-01-01

    A description of shot noise and the role it plays in absorption and emission measurements using photodiode and photomultiplier tube detection systems is presented. This description includes derivations of useful forms of the shot noise equation based on Poisson counting statistics. This approach can deepen student understanding of a fundamental…

  15. Digital micro-mirror device-based detector for particle-sizing instruments via Fraunhofer diffraction.

    PubMed

    Zhou, Jiayi; Cao, Zhang; Xie, Heng; Xu, Lijun

    2015-06-20

    In this paper, a digital micro-mirror device (DMD)-based detector is proposed for the detection of light intensity in particle-sizing instruments using Fraunhofer diffraction. The detector consists of only one photodiode, which eliminates the distortions caused by the nonuniformity of the detector arrays used in traditional instruments. The center of the diffraction pattern was accurately located to distribute the optimized arc-shaped mirror arrays for the intensity detection. Both simulated and experimental results showed that the proposed detector was superior to the classical one as it was less sensitive to noise than the detector arrays used in traditional systems.

  16. Two-way and three-way approaches to ultra high performance liquid chromatography-photodiode array dataset for the quantitative resolution of a two-component mixture containing ciprofloxacin and ornidazole.

    PubMed

    Dinç, Erdal; Ertekin, Zehra Ceren; Büker, Eda

    2016-09-01

    Two-way and three-way calibration models were applied to ultra high performance liquid chromatography with photodiode array data with coeluted peaks in the same wavelength and time regions for the simultaneous quantitation of ciprofloxacin and ornidazole in tablets. The chromatographic data cube (tensor) was obtained by recording chromatographic spectra of the standard and sample solutions containing ciprofloxacin and ornidazole with sulfadiazine as an internal standard as a function of time and wavelength. Parallel factor analysis and trilinear partial least squares were used as three-way calibrations for the decomposition of the tensor, whereas three-way unfolded partial least squares was applied as a two-way calibration to the unfolded dataset obtained from the data array of ultra high performance liquid chromatography with photodiode array detection. The validity and ability of two-way and three-way analysis methods were tested by analyzing validation samples: synthetic mixture, interday and intraday samples, and standard addition samples. Results obtained from two-way and three-way calibrations were compared to those provided by traditional ultra high performance liquid chromatography. The proposed methods, parallel factor analysis, trilinear partial least squares, unfolded partial least squares, and traditional ultra high performance liquid chromatography were successfully applied to the quantitative estimation of the solid dosage form containing ciprofloxacin and ornidazole.

  17. Detector arrays for high resolution spectroscopy from 5-28 microns (Contributed)

    NASA Astrophysics Data System (ADS)

    Wiedemann, G.; Jennings, D. E.; Moseley, S. H.; Lamb, G.

    A linear Si:As BIB detector array (Rockwell International) is being implemented in a postdispersion detection system for ground based Fourier transform spectrometers. The array version can be used as a multichannel narrow band filter for extended spectral coverage or for imaging with a narrow bandpass. A Si:As solid state photomultiplier array (Rockwell) is evaluated for use in high resolution infrared spectrometers. Test results and applications are discussed.

  18. Electro-Optical Characteristics of P+n In0.53Ga0.47As Hetero-Junction Photodiodes in Large Format Dense Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    DeWames, R.; Littleton, R.; Witte, K.; Wichman, A.; Bellotti, E.; Pellegrino, J.

    2015-08-01

    This paper is concerned with focal plane array (FPA) data and use of analytical and three-dimensional numerical simulation methods to determine the physical effects and processes limiting performance. For shallow homojunction P+n designs the temperature dependence of dark current for T < 300 K depends on the intrinsic carrier concentration of the In0.53Ga0.47As material, implying that the dominant dark currents are generation and recombination (G-R) currents originating in the depletion regions of the double layer planar heterostructure (DLPH) photodiode. In the analytical model differences from bulk G-R behavior are modeled with a G-R like perimeter-dependent shunt current conjectured to originate at the InP/InGaAs interface. In this description the fitting property is the effective conductivity, σ eff( T), in mho cm-1. Variation in the data suggests σ eff (300 K) values of 1.2 × 10-11-4.6 × 10-11 mho cm-1). Substrate removal extends the quantum efficiency (QE) spectral band into the visible region. However, dead-layer effects limit the QE to 10% at a wavelength of 0.5 μm. For starlight-no moon illumination conditions, the signal-to-noise ratio is estimated to be 50 at an operating temperature of 300 K. A major result of the 3D numerical simulation of the device is the prediction of a perimeter G-R current not associated with the properties of the metallurgical interface. Another is the prediction that for a junction positioned in the larger band gap InP cap layer the QE is bias-dependent and that a relatively large reverse bias ≥0.9 V is needed for the QE to saturate to the shallow homojunction value. At this higher bias the dark current is larger than the shallow homojunction value. The 3D numerical model and the analytical model agree in predicting and explaining the measured radiatively limited diffusion current originating at the n-side of the junction. The calculations of the area-dependent G-R current for the condition studied are also in agreement

  19. Integrated filter and detector array for spectral imaging

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C. (Inventor)

    1992-01-01

    A spectral imaging system having an integrated filter and photodetector array is disclosed. The filter has narrow transmission bands which vary in frequency along the photodetector array. The frequency variation of the transmission bands is matched to, and aligned with, the frequency variation of a received spectral image. The filter is deposited directly on the photodetector array by a low temperature deposition process. By depositing the filter directly on the photodetector array, permanent alignment is achieved for all temperatures, spectral crosstalk is substantially eliminated, and a high signal to noise ratio is achieved.

  20. Electronics for the Extensive Air Shower Detector Array at the University of Puebla

    NASA Astrophysics Data System (ADS)

    Pérez, E.; Conde, R.; Martínez, O.; Murrieta, T.; Salazar, H.; Villaseñor, L.

    2006-09-01

    In this paper we describe in detail the electronics cards that were designed to be the basis of the data acquisition system (DAS) of the extensive air shower detector array built in the Campus of the University of Puebla. The purpose of this observatory is to measure the energy and arrival direction of primary cosmic rays with energies around 1015 eV. The array consists of 18 liquid scintillator detectors (12 in the first stage) and 6 water Cherenkov detectors (one of 10 m2 cross section and five smaller ones of 1.86 m2 cross section), distributed in a square grid with a detector spacing of 20 m over an area of 4000 m2. The electronics described here uses analog to digital converters of 10 bits working at a sampling speed of 40 MS/s and field-programmable gate array (FPGA).

  1. Trigger and aperture of the surface detector array of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Abraham, J.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Duvernois, M. A.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D.-H.; Krieger, A.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, K.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Mičanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parlati, S.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; PeĶala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Redondo, A.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santo, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tapia, A.; Tarutina, T.; Taşcău, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Williams, C.; Winchen, T.; Winnick, M. G.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2010-01-01

    The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3×1018eV, for all zenith angles between 0∘ and 60∘, independently of the position of the impact point and of the mass of the primary particle. In these range of energies and angles, the exposure of the surface array can be determined purely on the basis of the geometrical acceptance.

  2. Terahertz 3D printed diffractive lens matrices for field-effect transistor detector focal plane arrays.

    PubMed

    Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech

    2016-09-05

    We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays.

  3. A cooled avalanche photodiode with high photon detection probability

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Metscher, B. D.

    1986-01-01

    An avalanche photodiode has been operated as a photon-counting detector with 2 to 3 times the sensitivity of currently-available photomultiplier tubes. APD (avalanche photodiodes) detection probabilities that exceed 27% and approach 50% have been measured at an optimum operating temperature which minimizes noise. The sources of noise and their dependence on operating temperature and bias voltage are discussed.

  4. Terahertz detectors arrays based on orderly aligned InN nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Xuechen; Liu, Huiqiang; Li, Qiuguo; Chen, Hao; Peng, Rufang; Chu, Sheng; Cheng, Binbin

    2015-08-01

    Nanostructured terahertz detectors employing a single semiconducting nanowire or graphene sheet have recently generated considerable interest as an alternative to existing THz technologies, for their merit on the ease of fabrication and above-room-temperature operation. However, the lack of alignment in nanostructure device hindered their potential toward practical applications. The present work reports ordered terahertz detectors arrays based on neatly aligned InN nanowires. The InN nanostructures (nanowires and nano-necklaces) were achieved by chemical vapor deposition growth, and then InN nanowires were successfully transferred and aligned into micrometer-sized groups by a “transfer-printing” method. Field effect transistors on aligned nanowires were fabricated and tested for terahertz detection purpose. The detector showed good photoresponse as well as low noise level. Besides, dense arrays of such detectors were also fabricated, which rendered a peak responsivity of 1.1 V/W from 7 detectors connected in series.

  5. Terahertz detectors arrays based on orderly aligned InN nanowires

    PubMed Central

    Chen, Xuechen; Liu, Huiqiang; Li, Qiuguo; Chen, Hao; Peng, Rufang; Chu, Sheng; Cheng, Binbin

    2015-01-01

    Nanostructured terahertz detectors employing a single semiconducting nanowire or graphene sheet have recently generated considerable interest as an alternative to existing THz technologies, for their merit on the ease of fabrication and above-room-temperature operation. However, the lack of alignment in nanostructure device hindered their potential toward practical applications. The present work reports ordered terahertz detectors arrays based on neatly aligned InN nanowires. The InN nanostructures (nanowires and nano-necklaces) were achieved by chemical vapor deposition growth, and then InN nanowires were successfully transferred and aligned into micrometer-sized groups by a “transfer-printing” method. Field effect transistors on aligned nanowires were fabricated and tested for terahertz detection purpose. The detector showed good photoresponse as well as low noise level. Besides, dense arrays of such detectors were also fabricated, which rendered a peak responsivity of 1.1 V/W from 7 detectors connected in series. PMID:26289498

  6. Some energy considerations in gamma ray burst location determinations by an anisotropic array of detectors

    NASA Technical Reports Server (NTRS)

    Young, J. H.

    1986-01-01

    The anisotropic array of detectors to be used in the Burst and Transient Experiment (BATSE) for locating gamma ray burst sources is examined with respect to its ability to locate those sources by means of the relative response of its eight detectors. It was shown that the energy-dependent attenuation effects of the aluminum window covering each detector has a significant effect on source location determinations. Location formulas were derived as a function of detector counts and gamma ray energies in the range 50 to 150 keV. Deviation formulas were derived and serve to indicate the location error that would be cuased by ignoring the influence of the passive absorber.

  7. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  8. Assembly, characterization, and operation of large-scale TES detector arrays for ACTPol

    NASA Astrophysics Data System (ADS)

    Pappas, Christine Goodwin

    2016-01-01

    The Polarization-sensitive Receiver for the Atacama Cosmology Telescope (ACTPol) is designed to measure the Cosmic Microwave Background (CMB) temperature and polarization anisotropies on small angular scales. Measurements of the CMB temperature and polarization anisotropies have produced arguably the most important cosmological data to date, establishing the LambdaCDM model and providing the best constraints on most of its parameters. To detect the very small fluctuations in the CMB signal across the sky, ACTPol uses feedhorn-coupled Transition-Edge Sensor (TES) detectors. A TES is a superconducting thin film operated in the transition region between the superconducting and normal states, where it functions as a highly sensitive resistive thermometer. In this thesis, aspects of the assembly, characterization, and in-field operation of the ACTPol TES detector arrays are discussed. First, a novel microfabrication process for producing high-density superconducting aluminum/polyimide flexible circuitry (flex) designed to connect large-scale detector arrays to the first stage of readout is presented. The flex is used in parts of the third ACTPol array and is currently being produced for use in the AdvACT detector arrays, which will begin to replace the ACTPol arrays in 2016. Next, we describe methods and results for the in-lab and on-telescope characterization of the detectors in the third ACTPol array. Finally, we describe the ACTPol TES R(T,I) transition shapes and how they affect the detector calibration and operation. Methods for measuring the exact detector calibration and re-biasing functions, taking into account the R(T,I) transition shape, are presented.

  9. Waveguide biosensor with integrated detector array for tuberculosis testing

    NASA Astrophysics Data System (ADS)

    Yan, Rongjin; Lynn, N. Scott; Kingry, Luke C.; Yi, Zhangjing; Slayden, Richard A.; Dandy, David S.; Lear, Kevin L.

    2011-01-01

    A label-free immunoassay using a local evanescent array coupled (LEAC) biosensor is reported. Complementary metal oxide semiconductor chips with integrated photoconductor arrays are used to detect an antibody to a M. tuberculosis protein antigen, HspX. The metrology limits of the LEAC sensor using dc and ac measurement systems correspond to average film thicknesses of 28 and 14 pm, respectively. Limits of detection are 87 and 108 pm, respectively, for mouse immunoglobulin G antibody patterning and antigen detection.

  10. Coherent summation of spatially distorted Doppler lidar signals using a two-dimensional heterodyne detector array

    NASA Technical Reports Server (NTRS)

    Chan, Kin Pui; Killinger, Dennis K.

    1992-01-01

    We have investigated the improvement in the signal-to-noise ratio for a coherent Doppler lidar through the use of a multi-element heterodyne detector array. Such an array enables the spatial summation of atmospheric refractive turbulence induced speckles, and time varying target speckles. Our recent experiments have shown that the non-coherent summation of the lidar signals from a heterodyne detector array can enhance the heterodyne mixing efficiency and thus the signal-to-noise ratio. In this paper, we expand this work to include the coherent summation of array signals. The digitized heterodyne signals were stored in a personal computer. Fast Fourier transforms were performed on both the non-coherent and coherent summations of the detector array signals. It was found that the coherent summation greatly enhanced the accuracy in the Doppler frequency estimate. A theoretical analysis was performed and indicated good agreement with experimental results. We have also applied these results to the more general lidar applications including atmospheric wind sensing, and have found that in most lidar applications the Doppler frequency estimate is increased through the use of the heterodyne detector array.

  11. Performance of high resolution decoding with Multi-Anode Microchannel Array detectors

    NASA Technical Reports Server (NTRS)

    Kasle, David B.; Horch, Elliott P.

    1993-01-01

    The Multi-Anode Microchannel Array (MAMA) is a microchannel plate based photon counting detector with applications in ground-based and space-based astronomy. The detector electronics decode the position of each photon event, and the decoding algorithm that associates a given event with the appropriate pixel is determined by the geometry of the anode array. The standard MAMA detector has a spatial resolution set by the anode array of 25 microns, but the MCP pore resolution exceeds this. The performance of a new algorithm that halves the pixel spacing and improves the pixel spatial resolution is described. The new algorithm does not degrade the pulse-pair resolution of the detector and does not require any modifications to the detector tube. Measurements of the detector's response demonstrate that high resolution decoding yields a 60 percent enhancement in spatial resolution. Measurements of the performance of the high resolution algorithm with a 14 micron MAMA detector are also described. The parameters that control high resolution performance are discussed. Results of the application of high resolution decoding to speckle interferometry are presented.

  12. Development of a mercuric iodide detector array for in-vivo x-ray imaging

    SciTech Connect

    Patt, B.E.; Iwanczyk, J.S.; Tornai, M.P.; Levin, C.S.; Hoffman, E.J.

    1995-12-31

    A nineteen element mercuric iodide (HgI{sub 2}) detector array has been developed in order to investigate the potential of using this technology for in-vivo x-ray and gamma-ray imaging. A prototype cross-grid detector array was constructed with hexagonal pixels of 1.9 mm diameter (active area = 3.28 mm{sup 2}) and 0.2 mm thick septa. The overall detector active area is roughly 65 mm{sup 2}. A detector thickness of 1.2 mm was used to achieve about 100% efficiency at 60 keV and 67% efficiency at 140 keV The detector fabrication, geometry and structure were optimized for charge collection and to minimize crosstalk between elements. A section of a standard high resolution cast-lead gamma-camera collimator was incorporated into the detector to provide collimation matching the discrete pixel geometry. Measurements of spectral and spatial performance of the array were made using 241-Am and 99m-Tc sources. These measurements were compared with similar measurements made using an optimized single HgI{sub 2} x-ray detector with active area of about 3 mm{sup 2} and thickness of 500 {mu}m.

  13. Proton Transfer Reactions Studied Using the VANDLE Neutron Detector Array

    NASA Astrophysics Data System (ADS)

    Thornsberry, C. R.; Burcher, S.; Gryzwacz, R.; Jones, K. L.; Paulauskas, S. V.; Smith, K.; Vostinar, M.; Allen, J.; Bardayan, D. W.; Blankstein, D.; Deboer, J.; Hall, M.; O'Malley, P. D.; Reingold, C.; Tan, W.; Cizewski, J. A.; Lepailleur, A.; Walter, D.; Febbraro, M.; Pain, S. D.; Marley, S. T.

    2016-09-01

    Proton transfer reactions, such as (d,n), are powerful tools for the study of single particle proton states of exotic nuclei. Measuring the outgoing neutron allows for the extraction of spectroscopic information from the recoil nucleus. With the development of new radioactive ion beam facilities, such as FRIB in the U.S., comes the need for new tools for the study of reactions involving radioactive nuclei. Neutron detectors, such as VANDLE, are sensitive to gamma rays in addition to neutrons. This results in high background rates for measurements with high external trigger rates. The use of discriminating recoil particle detectors, such as phoswich detectors, allow for the selection of a clean recoil tag by separating the recoil nucleus of interest from unreacted RIB components. Developments of low energy proton transfer measurements in inverse kinematics and recent (d,n) results will be presented. This work supported in part by the U.S. Department of Energy and the National Science Foundation.

  14. The DUV Stability of Superlattice-Doped CMOS Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hoenk, M. E.; Carver, A. G.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.; Tsur, S.

    2013-01-01

    JPL and Alacron have recently developed a high performance, DUV camera with a superlattice doped CMOS imaging detector. Supperlattice doped detectors achieve nearly 100% internal quantum efficiency in the deep and far ultraviolet, and a single layer, Al2O3 antireflection coating enables 64% external quantum efficiency at 263nm. In lifetime tests performed at Applied Materials using 263 nm pulsed, solid state and 193 nm pulsed excimer laser, the quantum efficiency and dark current of the JPL/Alacron camera remained stable to better than 1% precision during long-term exposure to several billion laser pulses, with no measurable degradation, no blooming and no image memory at 1000 fps.

  15. Zonal wavefront sensor with reduced number of rows in the detector array.

    PubMed

    Boruah, Bosanta R; Das, Abhijit

    2011-07-10

    In this paper, we describe a zonal wavefront sensor in which the photodetector array can have a smaller number of rows. The test wavefront is incident on a two-dimensional array of diffraction gratings followed by a single focusing lens. The periodicity and the orientation of the grating rulings of each grating can be chosen such that the +1 order beam from the gratings forms an array of focal spots in the detector plane. We show that by using a square array of zones, it is possible to generate an array of +1 order focal spots having a smaller number of rows, thus reducing the height of the required detector array. The phase profile of the test wavefront can be estimated by measuring the displacements of the +1 order focal spots for the test wavefront relative to the +1 order focal spots for a plane reference wavefront. The narrower width of the photodetector array can offer several advantages, such as a faster frame rate of the wavefront sensor, a reduced amount of cross talk between the nearby detector zones, and a decrease in the maximum thermal noise. We also present experimental results of a proof-of-concept experimental arrangement using the proposed wavefront sensing scheme.

  16. Application and Design of Satellite Infrared Spectral Imaging Radiometers with Uncooled Microbolometer Array Detectors

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Lancaster, Regie; Maschhoff, Kevin; Starr, David OC (Technical Monitor)

    2001-01-01

    Uncooled infrared microbolometer array detectors have application for space borne spectral imaging radiometer of several types to lower size, power and cost and provide improved performance. Other advantages of eliminating cooling requirement are simplified systems, simplified satellite integration and improved reliability. A prototype microbolometer instrument for cloud observations was flown on the STS-85 space shuttle mission. Extensive data were acquired at_km resolution at four thermal infrared wavelength bands. From the 320x280 detector array both spectral and angular information can be used to advantage in cloud retrievals and has been demonstrated. An engineering model Compact Visible and Infrared Imaging Radiometer (COVIR) for small satellite missions has been developed. Application of advanced microbolometer array detectors for three axis stabilized GOES thermal imagers has been studied.

  17. Analysis of upper and lower bounds of the frame noise in linear detector arrays

    NASA Technical Reports Server (NTRS)

    Jaggi, S.

    1991-01-01

    This paper estimates the upper and lower bounds of the frame noise of a linear detector array that uses a one-dimensional scan pattern. Using chi-square distribution, it is analytically shown why it is necessary to use the average of the variances and not the average of the standard deviations to estimate these bounds. Also, a criteria for determining whether any excessively noisy lines exist among the detectors is derived from these bounds. Using a Gaussian standard random variable generator, these bounds are demonstrated to be accurate within the specified confidence interval. A silicon detector array is then used for actual dark current measurements. The criterion developed for determination of noisy detectors is checked on the experimentally obtained data.

  18. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Flores, J. L.; Martel, I.; Jiménez, R.; Galán, J.; Salmerón, P.

    2016-09-01

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from 12C up to 84Kr, yielding higher discrimination rates than any other previously reported.

  19. Parasitic antenna effect in terahertz plasmon detector array for real-time imaging system

    NASA Astrophysics Data System (ADS)

    Yang, Jong-Ryul; Lee, Woo-Jae; Ryu, Min Woo; Rok Kim, Kyung; Han, Seong-Tae

    2015-10-01

    The performance uniformity of each pixel integrated with a patch antenna in a terahertz plasmon detector array is very important in building the large array necessary for a real-time imaging system. We found a parasitic antenna effect in the terahertz plasmon detector whose response is dependent on the position of the detector pixel in the illumination area of the terahertz beam. It was also demonstrated that the parasitic antenna effect is attributed to the physical structure consisting of signal pads, bonding wires, and interconnection lines on a chip and a printed circuit board. Experimental results show that the performance of the detector pixel is determined by the sum of the effects of each parasitic antenna and the on-chip integrated antenna designed to detect signals at the operating frequency. The parasitic antenna effect can be minimized by blocking the interconnections with a metallic shield.

  20. Measurements and analysis of optical crosstalk in a microwave kinetic inductance detector array

    NASA Astrophysics Data System (ADS)

    Bisigello, L.; Yates, S. J. C.; Ferrari, L.; Baselmans, J. J. A.; Baryshev, A.

    2016-07-01

    The main advantage of Microwave Kinetic Inductance Detector arrays (MKID) is their multiplexing capability, which allows for building cameras with a large number of pixels and good sensitivity, particularly suitable to perform large blank galaxy surveys. However, to have as many pixels as possible it is necessary to arrange detectors close in readout frequency. Consequently KIDs overlap in frequency and are coupled to each other producing crosstalk. Because crosstalk can be only minimised by improving the array design, in this work we aim to correct for this effect a posteriori. We analysed a MKID array consisting of 880 KIDs with readout frequencies at 4-8 GHz. We measured the beam patterns for every detector in the array and described the response of each detector by using a two-dimensional Gaussian fit. Then, we identified detectors affected by crosstalk above -30 dB level from the maximum and removed the signal of the crosstalking detectors. Moreover, we modelled the crosstalk level for each KID as a function of the readout frequency separation starting from the assumption that the transmission of a KID is a Lorenztian function in power. We were able to describe the general crosstalk level of the array and the crosstalk of each KID within 5 dB, so enabling the design of future arrays with the crosstalk as a design criterion. In this work, we demonstrate that it is possible to process MKID images a posteriori to decrease the crosstalk effect, subtracting the response of each coupled KID from the original map.

  1. Hybrid Extensive Air Shower Detector Array at the University of Puebla to Study Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Martínez, O.; Pérez, E.; Salazar, H.; Villaseñor, L.

    We describe the design of an extensive air shower detector array built in the Campus of the University of Puebla (located at 19°N, 90°W, 800 gcm -2) to measure the energy and arrival direction of primary cosmic rays with energies around 1015 eV. The array consists of 18 liquid scintillator detectors (12 in the first stage) and 6 water Cherenkov detectors (one of 10 m 2 cross section and five smaller ones of 1.86 m 2 cross section), distributed in a square grid with a detector spacing of 20 m over an area of 4000 m 2. In this paper we discuss the calibration and stability of the array, and discuss the capability of hybrid arrays, such as this one consisting of water Cherenkov and liquid scintillator detectors, to allow a separation of the electromagnetic and muon components of extensive air showers. This separation plays an important role in the determination of the mass and identity of the primary cosmic ray. This facility is also used to train students interested in the field of cosmic rays.

  2. The water Cherenkov detector array for studies of cosmic rays at the University of Puebla

    NASA Astrophysics Data System (ADS)

    Cotzomi, J.; Moreno, E.; Murrieta, T.; Palma, B.; Pérez, E.; Salazar, H.; Villaseñor, L.

    2005-11-01

    We describe the design and performance of a hybrid extensive air shower detector array built on the Campus of the University of Puebla ( 19∘N, 90∘W, 800 g/cm2) to measure the energy, arrival direction and composition of primary cosmic rays with energies around 1 PeV, i.e., around the knee of the cosmic ray spectrum. The array consists of 3 water Cherenkov detectors of 1.86 m2 cross-section and 12 liquid scintillator detectors of 1 m2 distributed in a square grid with a detector spacing of 20 m over an area of 4000 m2. We discuss the calibration and stability of the array for both sets of detectors and report on preliminary measurements and reconstruction of the lateral distributions for the electromagnetic (EM) and muonic components of extensive air showers. We also discuss how the hybrid character of the array can be used to measure mass composition of the primary cosmic rays by estimating the relative contents of muons with respect to the EM component of extensive air showers. This facility is also used to train students interested in the field of cosmic rays.

  3. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array

    PubMed Central

    Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B; Tai, Yuan-Chuan

    2010-01-01

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 × 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 × 0.8 × 3 mm3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 × 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing

  4. 20 element HgI sub 2 energy dispersive x-ray array detector system

    SciTech Connect

    Iwanczyk, J.A.; Dorri, N.; Wang, M.; Szczebiot, R.W.; Dabrowski, A.J. ); Hedman, B.; Hodgson, K.O. . Stanford Synchrotron Radiation Lab.); Patt, B.E. )

    1991-01-01

    This paper describes recent progress in the development of HgI{sub 2} energy dispersive x-ray detector arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20 element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K{sub a}) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken from diluted samples simulating proteins with nickel.

  5. 20 element HgI{sub 2} energy dispersive x-ray array detector system

    SciTech Connect

    Iwanczyk, J.A.; Dorri, N.; Wang, M.; Szczebiot, R.W.; Dabrowski, A.J.; Hedman, B.; Hodgson, K.O.; Patt, B.E.

    1991-12-31

    This paper describes recent progress in the development of HgI{sub 2} energy dispersive x-ray detector arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20 element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K{sub a}) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken from diluted samples simulating proteins with nickel.

  6. Extensive Air Shower Detector Array at the Universidad Autonoma de Puebla

    NASA Astrophysics Data System (ADS)

    Cotzomi, J.; Moreno, E.; Aguilar, S.; Palma, B.; Martinez, O.; Salazar, H.; Villasenor, L.

    2002-07-01

    We describe the operation of an Extensive Air Shower Array located at the campus of the FCFM-BUAP. The array consists of 8 liquid scintillation detectors with a surface of 1 m2 each and a detector spacing of 20 m in a square grid. The array was designed to measure the energy and arrival direction of primary particles that generate extensive air showers (EAS) in the region of 1013 eV - 1016 eV. The angular distribution measured with this array, Cos8(Theta) xSin(Theta), agrees very well with the literature. We also present the measured energies of a number of vertical showers in the range of 5 x1012 eV to 5 x1013 eV.

  7. Implementation of digital multiplexing for high resolution X-ray detector arrays.

    PubMed

    Sharma, P; Swetadri Vasan, S N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2012-01-01

    We describe and demonstrate for the first time the use of the novel Multiple Module Multiplexer (MMMIC) for a 2×2 array of new electron multiplying charge coupled device (EMCCD) based x-ray detectors. It is highly desirable for x-ray imaging systems to have larger fields of view (FOV) extensible in two directions yet to still be capable of doing high resolution imaging over regions-of-interest (ROI). The MMMIC achieves these goals by acquiring and multiplexing data from an array of imaging modules thereby enabling a larger FOV, and at the same time allowing high resolution ROI imaging through selection of a subset of modules in the array. MMMIC also supports different binning modes. This paper describes how a specific two stage configuration connecting three identical MMMICs is used to acquire and multiplex data from a 2×2 array of EMCCD based detectors. The first stage contains two MMMICs wherein each MMMIC is getting data from two EMCCD detectors. The multiplexed data from these MMMICs is then forwarded to the second stage MMMIC in the similar fashion. The second stage that has only one MMMIC gives the final 12 bit multiplexed data from four modules. This data is then sent over a high speed Camera Link interface to the image processing computer. X-ray images taken through the 2×2 array of EMCCD based detectors using this two stage configuration of MMMICs are shown successfully demonstrating the concept.

  8. Performances Of Arrays Of Ge:Ga Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Mccreight, C.; Farhoomand, J.

    1992-01-01

    Report presents evaluation of performances of two electronic modules containing few-element linear focal-plane arrays of Ge:Ga photodetectors and associated multiplexing readout circuitry. Tested to demonstrate feasibility of many-element, two-dimensional focal-plane arrays of far-infrared detectors and associated circuitry for use in astronomical and other low-background scientific observations. Revealed deficiencies that must be overcome in future designs.

  9. Multispectral Detector Based on Array of Carbon-Nanotube Quantum Wells

    DTIC Science & Technology

    2009-09-30

    2006-Mar 2009 4. TITLE AND SUBTITLE MULTISPECTRAL DETECTOR BASED ON AN ARRAY OF CARBON- NANOTUBE QUANTUM WELLS 5. FUNDING NUMBERS FA9550-06-1-0366...carbon nanotube quantum wells exposed to external weak THz fields. Each of the individual well in the array had been independently controlled by a dc...the intrinsic noises considerably. 14. SUBJECT TERMS 15. NUMBER OF PAGES 23 THz field nanosensors, carbon nanotube quantum wells, Luttinger

  10. The DUV Stability of Superlattice-Doped CMOS Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hoenk, M. E.; Carver, A.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.

    2013-01-01

    In this paper, we present experimental results and band structure calculations that illuminate the unique properties of superlattice-doped detectors. Numerical band structure calculations are presented to analyze the dependencies of surface passivation on dopant profiles and interface trap densities (Figure 3). Experiments and calculations show that quantum-engineered surfaces, grown at JPL by low temperature molecular beam epitaxy, achieve a qualitative as well as quantitative uniqueness in their near-immunity to high densities of surface and interface traps.

  11. Circuit for high resolution decoding of multi-anode microchannel array detectors

    NASA Technical Reports Server (NTRS)

    Kasle, David B. (Inventor)

    1995-01-01

    A circuit for high resolution decoding of multi-anode microchannel array detectors consisting of input registers accepting transient inputs from the anode array; anode encoding logic circuits connected to the input registers; midpoint pipeline registers connected to the anode encoding logic circuits; and pixel decoding logic circuits connected to the midpoint pipeline registers is described. A high resolution algorithm circuit operates in parallel with the pixel decoding logic circuit and computes a high resolution least significant bit to enhance the multianode microchannel array detector's spatial resolution by halving the pixel size and doubling the number of pixels in each axis of the anode array. A multiplexer is connected to the pixel decoding logic circuit and allows a user selectable pixel address output according to the actual multi-anode microchannel array detector anode array size. An output register concatenates the high resolution least significant bit onto the standard ten bit pixel address location to provide an eleven bit pixel address, and also stores the full eleven bit pixel address. A timing and control state machine is connected to the input registers, the anode encoding logic circuits, and the output register for managing the overall operation of the circuit.

  12. Cooled avalanche photodiode used for photon detection

    NASA Technical Reports Server (NTRS)

    Robinson, Deborah L.; Metscher, Brian D.

    1987-01-01

    Commercial avalanche photodiodes have been operated as single-photon detectors at an optimum operating temperature and bias voltage. These detectors were found to be 1.5 to 3 times more sensitive than presently-available photomultiplier tubes (PPMTs). Both single-photon detection probability and detector noise increase with bias voltage; detection probabilities greater than 25 percent were obtained with detector noise levels comparable to the noise of a PMT; higher probabilities were measured at higher noise levels. The sources of noise and their dependence on temperature and bias voltage are discussed.

  13. Photon detection with cooled avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Metscher, B. D.

    1987-01-01

    Commercial avalanche photodiodes have been operated as single-photon detectors at an optimum operating temperature and bias voltage. These detectors were found to be 1.5-3 times more sensitive than presently available photomultiplier tubes (PMTs). Both single-photon detection probability and detector noise increase with bias voltage; detection probabilities greater than twice that of a PMT were obtained with detector noise levels below 100 counts per second. Higher probabilities were measured at higher noise levels. The sources of noise and their dependence on temperature and bias voltage are discussed.

  14. Laboratory characterization of direct readout Si:Sb and Si:Ga infrared detector arrays

    NASA Technical Reports Server (NTRS)

    Mckelvey, Mark E.; Moss, Nicolas N.; Mcmurray, R. E., Jr.; Estrada, John A.; Goebel, John H.; Mccreight, Craig R.; Savage, Maureen L.; Junga, Frank; Whittemore, Thomas

    1989-01-01

    Highlights of recent results obtained at Ames Research Center in performance evaluations of infrared detector arrays are presented. Antimony- and gallium-doped silicon direct readout 58x62 element hybrid devices from Ames' ongoing detector technology development program are described. The observed characteristics meet most of the performance goals specified by the Space Infrared Telescope Facility (SIRTF) instrument teams and compare favorably with the best performance reported for discrete non-integrating extrinsic silicon detectors. Initial results of radiation environment testing are reported, and non-ideal behavior demonstrated by these test devices is discussed.

  15. Experience using an automated fault location system with a time-of-flight wall detector array

    NASA Astrophysics Data System (ADS)

    Olson, D.; Greiman, W.; Hall, D.; Balaban, D.; Day, C.

    1990-08-01

    We describe the architecture of a general purpose monitoring system and give examples of its use with a 300 element detector array in a relativistic heavy ion experiment. The system has a simple and well defined interface between the detector specific parts of the system and those which are independent of any detector specific features. Tracking simple statistics on the fundamental data items (ADC and TDC values) are sufficient to diagnose the higher level components in the system. The monitoring of on-line beam data provides a sensitive monitor of global parameters of the experiment.

  16. X-ray source considerations in operation of digital detector arrays

    SciTech Connect

    Jensen, Terrence; Wendt, Scott

    2014-02-18

    Digital Detector Arrays (DDA) are increasingly replacing film in radiography applications. Standards exist for characterizing the performance of these detectors, and for using them in specific inspections. We have observed that the selection of the x-ray source to use with these detectors can also have a significant influence on the performance. We look at differences between standard, and micro-focus x-ray tubes, and end-window vs. side-window micro-focus tubes. We find that for best results, one must calibrate the DDA for the source settings used during an inspection. This is particularly true for variable-focus sources.

  17. Detector Arrays for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Alexander, David; Brambora, Clifford K.; Derro, Rebecca; Engler, Chuck; Fox, Ori; Garrison, Matthew B.; Henegar, Greg; Hill, robert J.; Johnson, Thomas; Lindler, Don J.; Manthripragada, Sridhar S.; Marshall, Ceryl; Mott, Brent; Parr, Thomas M.; Roher, Wayne D.; Shakoorzadeh, Kamdin B.; Smith, Miles; Waczynski, Augustyn; Wen, Yiting; Wilson, Donna; Xia-Serafino, Wei

    2007-01-01

    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 microns) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. In this article, we provide a brief introduction to NIRSpec, its detector subsystem (DS), detector readout in the space radiation environment, and present a snapshot of the developmental status of the NIRSpec DS as integration and testing of the engineering test unit begins.

  18. THz Direct Detector and Heterodyne Receiver Arrays in Silicon Nanoscale Technologies

    NASA Astrophysics Data System (ADS)

    Grzyb, Janusz; Pfeiffer, Ullrich

    2015-10-01

    The main scope of this paper is to address various implementation aspects of THz detector arrays in the nanoscale silicon technologies operating at room temperatures. This includes the operation of single detectors, detectors operated in parallel (arrays), and arrays of detectors operated in a video-camera mode with an internal reset to support continuous-wave illumination without the need to synchronize the source with the camera (no lock-in receiver required). A systematic overview of the main advantages and limitations in using silicon technologies for THz applications is given. The on-chip antenna design challenges and co-design aspects with the active circuitry are thoroughly analyzed for broadband detector/receiver operation. A summary of the state-of-the-art arrays of broadband THz direct detectors based on two different operation principles is presented. The first is based on the non-quasistatic resistive mixing process in a MOSFET channel, whereas the other relies on the THz signal rectification by nonlinearity of the base-emitter junction in a high-speed SiGe heterojunction bipolar transistor (HBT). For the MOSFET detector arrays implemented in a 65 nm bulk CMOS technology, a state-of-the-art optical noise equivalent power (NEP) of 14 pW/ at 720 GHz was measured, whereas for the HBT detector arrays in a 0.25 μm SiGe process technology, an optical NEP of 47 pW/ at 700 GHz was found. Based on the implemented 1k-pixel CMOS camera with an average power consumption of 2.5 μW/pixel, various design aspects specific to video-mode operation are outlined and co-integration issues with the readout circuitry are analyzed. Furthermore, a single-chip 2 × 2 array of heterodyne receivers for multi-color active imaging in a 160-1000 GHz band is presented with a well-balanced NEP across the operation bandwidth ranging from 0.1 to 0.24 fW/Hz (44.1-47.8 dB single-sideband NF) and an instantaneous IF bandwidth of 10 GHz. In its present implementation, the receiver RF

  19. Versatile, reprogrammable area pixel array detector for time-resolved synchrotron x-ray applications

    SciTech Connect

    Gruner, Sol

    2010-05-01

    The final technical report for DOE grant DE-SC0004079 is presented. The goal of the grant was to perform research, development and application of novel imaging x-ray detectors so as to effectively utilize the high intensity and brightness of the national synchrotron radiation facilities to enable previously unfeasible time-resolved x-ray research. The report summarizes the development of the resultant imaging x-ray detectors. Two types of detector platforms were developed: The first is a detector platform (called a Mixed-Mode Pixel Array Detector, or MM-PAD) that can image continuously at over a thousand images per second while maintaining high efficiency for wide dynamic range signals ranging from 1 to hundreds of millions of x-rays per pixel per image. Research on an even higher dynamic range variant is also described. The second detector platform (called the Keck Pixel Array Detector) is capable of acquiring a burst of x-ray images at a rate of millions of images per second.

  20. Coherent Detector Arrays for Millimeter and Submillimeter Astronomy

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul F.; Carpenter, John; Erickson, Neal; Fisher, Rick; Ford, John; Gaier, Todd; Groppi, Chris; Harris, Andy; Heyer, Mark; Kulesa, Craig; Lawrence, Charles; Morgan, Matt; Mundy, Lee; Narayanan, Gopal; O'Neil, Karen; Readhead, Tony; Samoska, Lorene; Schloerb, Peter; Snell, Ron; Walker, Christopher; Ziurys, Lucy

    2009-03-01

    Progress in many areas of astronomy requires large-area surveys and observations of extended objects. This includes the cosmic microwave background, nearby galaxies, the Milky Way, and regions of star-forming regions within our galaxy. The ability to carry out such studies is critically dependent on the development of affordable high-sensitivity focal plane arrays, for both spectral line and continuum observations. We discuss a program for the next decade to develop such technology for ground-based and spacebased millimeter and submillimeter astronomy. Appropriate technologies exist, but significant effort is required to make the transition from simply replicating individual pixels to approaching focal plane array design in an integrated fashion from feeds to spectrometers for spectral analysis. This advance is essential to realize the full potential of major new ground-based, suborbital, and future space facilities, and is relevant to the RMS and EOS panels. The recommended budget for this activity is $65M.

  1. Development of 256 x 256 Element Impurity Band Conduction Infrared Detector Arrays for Astronomy

    NASA Technical Reports Server (NTRS)

    Domingo, George

    1997-01-01

    This report describes the work performed on a one and a half year advance technology program to develop Impurity Band Conduction (IBC) detectors with very low dark current, high quantum efficiency, and with good repeatable processes. The program fabricated several epitaxial growths of Si:As detecting layers from 15 to 35 microns thick and analyzed the performance versus the thickness and the Arsenic concentration of these epitaxial layers. Some of the epitaxial runs did not yield because of excessive residual impurities. The thicker epitaxial layers and the ones with higher Arsenic concentration resulted in good detectors with low dark currents and good quantum efficiency. The program hybridized six detector die from the best detector wafers to a low noise, 256 x 256 readout array and delivered the hybrids to NASA Ames for a more detailed study of the performance of the detectors.

  2. Digital Radiography and Computed Tomography Project -- Fully Integrated Linear Detector ArrayStatus Report

    SciTech Connect

    Tim Roney; Robert Seifert; Bob Pink; Mike Smith

    2011-09-01

    The field-portable Digital Radiography and Computed Tomography (DRCT) x-ray inspection systems developed for the Project Manager for NonStockpile Chemical Materiel (PMNSCM) over the past 13 years have used linear diode detector arrays from two manufacturers; Thomson and Thales. These two manufacturers no longer produce this type of detector. In the interest of insuring the long term viability of the portable DRCT single munitions inspection systems and to improve the imaging capabilities, this project has been investigating improved, commercially available detectors. During FY-10, detectors were evaluated and one in particular, manufactured by Detection Technologies (DT), Inc, was acquired for possible integration into the DRCT systems. The remainder of this report describes the work performed in FY-11 to complete evaluations and fully integrate the detector onto a representative DRCT platform.

  3. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy.

    PubMed

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-07

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  4. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  5. Vertical Isolation for Photodiodes in CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2008-01-01

    In a proposed improvement in complementary metal oxide/semi conduct - or (CMOS) image detectors, two additional implants in each pixel would effect vertical isolation between the metal oxide/semiconductor field-effect transistors (MOSFETs) and the photodiode of the pixel. This improvement is expected to enable separate optimization of the designs of the photodiode and the MOSFETs so as to optimize their performances independently of each other. The purpose to be served by enabling this separate optimization is to eliminate or vastly reduce diffusion cross-talk, thereby increasing sensitivity, effective spatial resolution, and color fidelity while reducing noise.

  6. Adaptive Waveform Correlation Detectors for Arrays: Algorithms for Autonomous Calibration

    DTIC Science & Technology

    2008-09-01

    correlation coefficient (CC), or some comparable detection statistic, exceeds a given threshold. Since these methods exploit characteristic details of the...multiple channels since stacking can be performed on the correlation coefficient traces with a significant array-gain. A detected event that is co-located...with the master event will record the same time-difference at every site in an arbitrarily spaced network which means that the correlation coefficient traces

  7. Status of LWIR HgCdTe infrared detector technology

    NASA Technical Reports Server (NTRS)

    Reine, M. B.

    1990-01-01

    The performance requirements that today's advanced Long Wavelength Infrared (LWIR) focal plane arrays place on the HgCdTe photovoltaic detector array are summarized. The theoretical performance limits for intrinsic LWIR HgCdTe detectors are reviewed as functions of cutoff wavelength and operating temperature. The status of LWIR HgCdTe photovoltaic detectors is reviewed and compared to the focal plane array (FPA) requirements and to the theoretical limits. Emphasis is placed on recent data for two-layer HgCdTe PLE heterojunction photodiodes grown at Loral with cutoff wavelengths ranging between 10 and 19 microns at temperatures of 70 to 80 K. Development trends in LWIR HgCdTe detector technology are outlined, and conclusions are drawn about the ability for photovoltaic HgCdTe detector arrays to satisfy a wide variety of advanced FPA array applications.

  8. Silicon Wafer-Scale Substrate for Microshutters and Detector Arrays

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzy; Franz, David E.; Ewin, Audrey J.; Jhabvala, Christine; Babu, Sachi; Snodgrass, Stephen; Costen, Nicholas; Zincke, Christian

    2009-01-01

    The silicon substrate carrier was created so that a large-area array (in this case 62,000+ elements of a microshutter array) and a variety of discrete passive and active devices could be mounted on a single board, similar to a printed circuit board. However, the density and number of interconnects far exceeds the capabilities of printed circuit board technology. To overcome this hurdle, a method was developed to fabricate this carrier out of silicon and implement silicon integrated circuit (IC) technology. This method achieves a large number of high-density metal interconnects; a 100-percent yield over a 6-in. (approximately equal to 15-cm) diameter wafer (one unit per wafer); a rigid, thermally compatible structure (all components and operating conditions) to cryogenic temperatures; re-workability and component replaceability, if required; and the ability to precisely cut large-area holes through the substrate. A method that would employ indium bump technology along with wafer-scale integration onto a silicon carrier was also developed. By establishing a silicon-based version of a printed circuit board, the objectives could be met with one solution. The silicon substrate would be 2 mm thick to survive the environmental loads of a launch. More than 2,300 metal traces and over 1,500 individual wire bonds are required. To mate the microshutter array to the silicon substrate, more than 10,000 indium bumps are required. A window was cut in the substrate to allow the light signal to pass through the substrate and reach the microshutter array. The substrate was also the receptacle for multiple unpackaged IC die wire-bonded directly to the substrate (thus conserving space over conventionally packaged die). Unique features of this technology include the implementation of a 2-mmthick silicon wafer to withstand extreme mechanical loads (from a rocket launch); integrated polysilicon resistor heaters directly on the substrate; the precise formation of an open aperture

  9. Development and test of photon-counting microchannel plate detector arrays for use on space telescopes

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1976-01-01

    The full sensitivity, dynamic range, and photometric stability of microchannel array plates(MCP) are incorporated into a photon-counting detection system for space operations. Components of the system include feedback-free MCP's for high gain and saturated output pulse-height distribution with a stable response; multi-anode readout arrays mounted in proximity focus with the output face of the MCP; and multi-layer ceramic headers to provide electrical interface between the anode array in a sealed detector tube and the associated electronics.

  10. Uniform Non-stoichiometric Titanium Nitride Thin Films for Improved Kinetic Inductance Detector Arrays

    NASA Astrophysics Data System (ADS)

    Coiffard, G.; Schuster, K.-F.; Driessen, E. F. C.; Pignard, S.; Calvo, M.; Catalano, A.; Goupy, J.; Monfardini, A.

    2016-08-01

    We describe the fabrication of homogeneous sub-stoichiometric titanium nitride films for microwave kinetic inductance detector (KID) arrays. Using a 6'' sputtering target and a homogeneous nitrogen inlet, the variation of the critical temperature over a 2'' wafer was reduced to {<}25 %. Measurements of a 132-pixel KID arrays from these films reveal a sensitivity of 16 kHz/pW in the 100 GHz band, comparable to the best aluminum KIDs. We measured a noise equivalent power of NEP = 3.6× 10^{-15} W/Hz^{1/2}. Finally, we describe possible routes to further improve the performance of these TiN KID arrays.

  11. Adaptive Waveform Correlation Detectors for Arrays: Algorithms for Autonomous Calibration

    DTIC Science & Technology

    2007-09-01

    correlation coefficient , or some comparable detection statistic, exceeds a given threshold. Since these methods exploit characteristic details of the full waveform, they provide exquisitely sensitive detectors with far lower detection thresholds than typical short-term average/long-term average (STA/LTA) algorithms. The drawback is that the form of the sought-after signal needs to be known quite accurately a priori, which limits such methods to instances of seismicity whereby a very similar signal has already been observed by every station used. Such instances include

  12. Conceptual design of the early implementation of the NEutron Detector Array (NEDA) with AGATA

    NASA Astrophysics Data System (ADS)

    Hüyük, Tayfun; Di Nitto, Antonio; Jaworski, Grzegorz; Gadea, Andrés; Javier Valiente-Dobón, José; Nyberg, Johan; Palacz, Marcin; Söderström, Pär-Anders; Jose Aliaga-Varea, Ramon; de Angelis, Giacomo; Ataç, Ayşe; Collado, Javier; Domingo-Pardo, Cesar; Egea, Francisco Javier; Erduran, Nizamettin; Ertürk, Sefa; de France, Gilles; Gadea, Rafael; González, Vicente; Herrero-Bosch, Vicente; Kaşkaş, Ayşe; Modamio, Victor; Moszynski, Marek; Sanchis, Enrique; Triossi, Andrea; Wadsworth, Robert

    2016-03-01

    The NEutron Detector Array (NEDA) project aims at the construction of a new high-efficiency compact neutron detector array to be coupled with large γ-ray arrays such as AGATA. The application of NEDA ranges from its use as selective neutron multiplicity filter for fusion-evaporation reaction to a large solid angle neutron tagging device. In the present work, possible configurations for the NEDA coupled with the Neutron Wall for the early implementation with AGATA has been simulated, using Monte Carlo techniques, in order to evaluate their performance figures. The goal of this early NEDA implementation is to improve, with respect to previous instruments, efficiency and capability to select multiplicity for fusion-evaporation reaction channels in which 1, 2 or 3 neutrons are emitted. Each NEDA detector unit has the shape of a regular hexagonal prism with a volume of about 3.23l and it is filled with the EJ301 liquid scintillator, that presents good neutron- γ discrimination properties. The simulations have been performed using a fusion-evaporation event generator that has been validated with a set of experimental data obtained in the 58Ni + 56Fe reaction measured with the Neutron Wall detector array.

  13. Converting films for X-ray detectors, applied to amorphous silicon arrays

    SciTech Connect

    Ross, S.; Zentai, G.

    1998-12-31

    This paper presents results from the on-going efforts to characterize semiconductor thin films for direct X-ray conversion. The authors deposit these thin films onto an amorphous silicon (a-Si:H) readout array with the overall goal of developing a large area X-ray detector for protein crystallography, and for other X-ray imaging fields.

  14. Converting films for x-ray detectors, applied to amorphous silicon arrays.

    SciTech Connect

    Ross, S.; Zentai, G.

    1997-12-05

    This paper presents results from our on-going efforts to characterize semiconductor thin films for direct x-ray conversion. We deposit these thin films onto an amorphous silicon (a-Si:H) readout array with the overall goal of developing a large area x-ray detector for protein crystallography, and for other x-ray imaging fields.

  15. First Data with the Hybrid Array of Gamma-Ray Detectors (HAGRiD)

    NASA Astrophysics Data System (ADS)

    Smith, Karl; Burcher, S.; Carter, A. B.; Gryzwacz, R.; Jones, K. L.; Munoz, S.; Paulauskas, S. V.; Schmitt, K.; Thornsberry, C.; Chipps, K. A.; Febbraro, M.; Pain, S. D.; Baugher, T.; Cizewski, J. A.; Ratkiewicz, A.; Toomey, B.

    2016-09-01

    The structure of nuclei provides insight into astrophysical reaction rates that are difficult to measure directly. These studies are often performed with transfer reaction and beta-decay measurements. These experiments benefit from particle-gamma coincident measurements providing information beyond that of particle detection alone. The Hybrid Array of Gamma Ray Detectors (HAGRiD) of LaBr3(Ce) scintillators has been designed with this purpose in mind. The design of the array permits it to be coupled with particle detector systems, such as the Oak Ridge Rutgers University Barrel Array (ORRUBA) of silicon detectors and the Versatile Array of Neutron Detectors at Low Energy (VANDLE). It is also designed to operate with the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) advanced target system. HAGRiD's design avoids compromising the charged-particle angular resolution due to compact geometries often used to increase the gamma efficiency in other systems. First experimental data with HAGRiD coupled to VANDLE as well as ORRUBA and JENSA will be presented. This work is supported in part by the U.S. Department of Energy, Office of Science Nuclear Physics and the National Science Foundation.

  16. Arrays of Encapsulated CdZnTe Gamma-Ray Detectors for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Moss, C. E.; Ianakiev, K. D.; Prettyman, T. H.; Reedy, R. C.; Smith, M. K.; Sweet, M. R.

    2000-01-01

    Recent results from encapsulated multi-element CdZnTe room-temperature semiconductor gamma-ray detectors are presented. Our multi-element-array design is a good low-mass and low-power candidate for elemental mapping on future planetary missions.

  17. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    PubMed

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.

  18. Recent advances in very large area avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Squillante, Michael R.; Christian, James; Entine, Gerald; Farrell, Richard; Karger, Arieh M.; McClish, Mickel; Myers, Richard; Shah, Kanai S.; Taylor, David; Vanderpuye, Kofi; Waer, Peter; Woodring, Mitchell

    2003-09-01

    The Avalanche Photodiode (APD) is a unique device that combines the advantages of solid state photodetectors with those of high gain devices such as photomultiplier tubes (PMTs). APDs have internal gain that provides a high signal-to-noise ratio. APDs have high quantum efficiency, are fast, compact, and rugged. These properties make them suitable detectors for important applications such as LADAR, detection and identification toxic chemicals and bio-warfare agents, LIDAR fluorescence detection, stand-off laser induced breakdown spectroscopy (LIBS), and nuclear detectors and imagers. Recently there have been significant technical breakthroughs in fabricating very large APDs, APD arrays, and position sensitive APD arrays (PSAPD). Signal gain of over 10,000 has been achieved, single element APDs have been fabricated with active area greater than 40 cm2, monolithic pixelated arrays with up to 28 x 28 elements have been fabricated, and position sensitive APDs have been developed and tested. Additionally, significant progress has been made in improving the fabrication process to provide better uniformity and high yield, permitting cost effective manufacturing of APDs for reduced cost.

  19. Multiple detector focal plane array ultraviolet spectrometer for the AMPS laboratory

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    1975-01-01

    The possibility of meeting the requirements of the amps spectroscopic instrumentation by using a multi-element focal plane detector array in a conventional spectrograph mount was examined. The requirements of the detector array were determined from the optical design of the spectrometer which in turn depends on the desired level of resolution and sensitivity required. The choice of available detectors and their associated electronics and controls was surveyed, bearing in mind that the data collection rate from this system is so great that on-board processing and reduction of data are absolutely essential. Finally, parallel developments in instrumentation for imaging in astronomy were examined, both in the ultraviolet (for the Large Space Telescope as well as other rocket and satellite programs) and in the visible, to determine what progress in that area can have direct bearing on atmospheric spectroscopy.

  20. Performance Measurements On A 32X32 InSb-CID Detector Array For Astronomical Observations

    NASA Astrophysics Data System (ADS)

    Tiphene, D.; Lacombe, F.; Rouan, D.

    1989-01-01

    The use at liquid helium temperature of a InSb-CID detector array differs significantly from opera-tion at conditions usually adopted by the manufacturer (77K). In particular, the dark current behaviour hugely changes between the two temperatures. Only the tunnel current, independant of temperature conditions, is still active at 4.2K while the thermal-family currents vanish. We have studied the tunnel current of one InSb-MIS detector to determine its suitability to the low background conditions that will be met in the space experiment ISO. The search for the maximum integration time and the best quantum efficiency, the constraint about the photonic response linearity (especially at low photon flux), and the reduction of the readout noise constitute the main points of this study. Moreover, laboratory measurements showed secondary effects due to the detector (lag) or to the wiring (crosstalk). The CID array reactions to high energy radiations (Gamma rays) are finally discussed.

  1. Novel Usage for a Cosmic Ray Detector: Study of Lightning at Telescope Array

    NASA Astrophysics Data System (ADS)

    Belz, John; Okuda, Takeshi

    We describe observations performed at the Telescope Array Observatory in which "bursts" of air shower triggers of the surface detector occur in close temporal and spatial coincidence with lighting. These events appear to be consistent with other observations of high-energy particle showers produced by lightning. Telescope Array has the ability to reconstruct these showers using modified UHECR air shower reconstruction techniques, and thus determine the source of particles in the atmospheric breakdown. We describe new efforts to deploy lightning mapping detectors at the Telescope Array site which will enable further study of this phenomenon, along with enabling us to search for evidence of lightning strikes being "seeded" under certain atmospheric conditions by the passage of a UHECR air shower.

  2. Charge Sharing and Charge Loss in a Cadmium-Zinc-Telluride Fine-Pixel Detector Array

    NASA Technical Reports Server (NTRS)

    Gaskin, J. A.; Sharma, D. P.; Ramsey, B. D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Because of its high atomic number, room temperature operation, low noise, and high spatial resolution a Cadmium-Zinc-Telluride (CZT) multi-pixel detector is ideal for hard x-ray astrophysical observation. As part of on-going research at MSFC (Marshall Space Flight Center) to develop multi-pixel CdZnTe detectors for this purpose, we have measured charge sharing and charge loss for a 4x4 (750micron pitch), lmm thick pixel array and modeled these results using a Monte-Carlo simulation. This model was then used to predict the amount of charge sharing for a much finer pixel array (with a 300micron pitch). Future work will enable us to compare the simulated results for the finer array to measured values.

  3. Photodiodes based on self-assembled GeSi/Si(001) nanoisland arrays grown by the combined sublimation molecular-beam epitaxy of silicon and vapor-phase epitaxy of germanium

    SciTech Connect

    Filatov, D. O.; Gorshkov, A. P.; Volkova, N. S.; Guseinov, D. V.; Alyabina, N. A.; Ivanova, M. M.; Chalkov, V. Yu.; Denisov, S. A.; Shengurov, V. G.

    2015-03-15

    We investigate the photosensitivity spectra of photodiodes based on Si p-i-n structures with single-layered and multilayer self-assembled GeSi/Si(001) nanoisland arrays in the i region, which are grown using a technique combining Si molecular-beam epitaxy and Ge vapor-phase epitaxy, in dependence on the temperature, diode bias, and GeSi nanoisland parameters. We show that the temperature and field dependences of the diode photosensitivity in the spectral range of the interband optical absorption in GeSi nanoislands are determined by the ratio between the rate of emission of photoexcited holes from the nanoislands and the rate of the recombination of excess carriers in them. We demonstrate the possibility of determination of the hole recombination lifetime in GeSi nanoislands from the temperature and field dependences of the photosensitivity.

  4. Phytochemical and morphological characterization of hop (Humulus lupulus L.) cones over five developmental stages using high performance liquid chromatography coupled to time-of-flight mass spectrometry, ultrahigh performance liquid chromatography photodiode array detection, and light microscopy techniques.

    PubMed

    Kavalier, Adam R; Litt, Amy; Ma, Chunhui; Pitra, Nicholi J; Coles, Mark C; Kennelly, Edward J; Matthews, Paul D

    2011-05-11

    Hop (Humulus lupulus L.) inflorescences, commonly known as "hop cones", are prized for their terpenophenolic contents, used in beer production and, more recently, in biomedical applications. In this study we investigated morphological and phytochemical characteristics of hop cones over five developmental stages, using liquid chromatography coupled to time-of-flight mass spectrometry (LC-TOF-MS), and ultrahigh performance liquid chromatography photodiode array detection (UHPLC-PDA) methods to quantitate 21 polyphenolics and seven terpenophenolics. Additionally, we used light microscopy to correlate phytochemical quantities with changes in the morphology of the cones. Significant increases in terpenophenolics, concomitant with glandular trichome development and associated gross morphological changes, were mapped over development to fluctuations in contents of polyphenolic constituents and their metabolic precursor compounds. The methods reported here can be used for targeted metabolic profiling of flavonoids, phenolic acids, and terpenophenolics in hops, and are applicable to quantitation in other crops.

  5. Photodiode-Based X-Ray Beam-Position Monitor With High Spatial-Resolution for the NSLS-II Beamlines

    SciTech Connect

    Yoon, P.S.; Siddons, D. P.

    2009-05-25

    We developed a photodiode-based monochromatic X-ray beam-position monitor (X-BPM) with high spatial resolution for the project beamlines of the NSLS-II. A ring array of 32 Si PIN-junction photodiodes were designed for use as a position sensor, and a low-noise HERMES4 ASIC chip was integrated into the electronic readout system. A series of precision measurements to characterize electrically the Si-photodiode sensor and the ASIC chip demonstrated that the inherent noise is sufficiently below tolerance levels. Following up modeling of detector's performance, including geometrical optimization using a Gaussian beam, we fabricated and assembled a first prototype. In this paper, we describe the development of this new state-of-the-art X-ray BPM along the beamline, in particular, downstream from the monochromator.

  6. 3D Dose Verification Using Tomotherapy CT Detector Array

    SciTech Connect

    Sheng Ke; Jones, Ryan; Yang Wensha; Saraiya, Siddharth; Schneider, Bernard; Chen Quan; Sobering, Geoff; Olivera, Gustavo; Read, Paul

    2012-02-01

    Purpose: To evaluate a three-dimensional dose verification method based on the exit dose using the onboard detector of tomotherapy. Methods and Materials: The study included 347 treatment fractions from 24 patients, including 10 prostate, 5 head and neck (HN), and 9 spinal stereotactic body radiation therapy (SBRT) cases. Detector sonograms were retrieved and back-projected to calculate entrance fluence, which was then forward-projected on the CT images to calculate the verification dose, which was compared with ion chamber and film measurement in the QA plans and with the planning dose in patient plans. Results: Root mean square (RMS) errors of 2.0%, 2.2%, and 2.0% were observed comparing the dose verification (DV) and the ion chamber measured point dose in the phantom plans for HN, prostate, and spinal SBRT patients, respectively. When cumulative dose in the entire treatment is considered, for HN patients, the error of the mean dose to the planning target volume (PTV) varied from 1.47% to 5.62% with a RMS error of 3.55%. For prostate patients, the error of the mean dose to the prostate target volume varied from -5.11% to 3.29%, with a RMS error of 2.49%. The RMS error of maximum doses to the bladder and the rectum were 2.34% (-4.17% to 2.61%) and 2.64% (-4.54% to 3.94%), respectively. For the nine spinal SBRT patients, the RMS error of the minimum dose to the PTV was 2.43% (-5.39% to 2.48%). The RMS error of maximum dose to the spinal cord was 1.05% (-2.86% to 0.89%). Conclusions: An excellent agreement was observed between the measurement and the verification dose. In the patient treatments, the agreement in doses to the majority of PTVs and organs at risk is within 5% for the cumulative treatment course doses. The dosimetric error strongly depends on the error in multileaf collimator leaf opening time with a sensitivity correlating to the gantry rotation period.

  7. New detector array - the HRIBF Modular Total Absorption Spectrometer

    NASA Astrophysics Data System (ADS)

    Wolinska-Cichocka, Marzena; Rykaczewski, Krzysztof; Karny, Marek; Kuzniak, Aleksandra; Grzywacz, Robert; Rasco, Charlie; Miller, David; Gross, Carl J.; Johnson, Jim

    2011-10-01

    The construction of a new Modular Total Absorption Spectrometer (MTAS) at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory will be presented. The total absorption gamma spectra measured with MTAS will be used to derive a true beta-feeding pattern and resulting beta strength function for fission products. In particular, the measurements of decay heat released by radioactive nuclei produced in nuclear fuels at power reactors will be performed. MTAS is made up of 19 large NaI(Tl) crystals each encapsulated with a 0.8-mm-thick carbon fiber. There are also two 1-mm- thick Silicon Strip Detectors surrounding a moving tape collector that count beta-energy loss signals. The structure is shielded by more than 1-inch of lead around MTAS which reduces background radiation significantly. MTAS efficiency for full energy deposition of gamma ray approaches nearly 90% for 300 keV gammas and over 75% for a 5 MeV gamma transition. Research supported by the DOE Office of Nuclear Physics.

  8. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  9. Dynamic range considerations for EUV MAMA detectors. [Extreme UV Multianode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Illing, Rainer M. E.; Bybee, Richard L.; Timothy, J. G.

    1990-01-01

    The multianode microchannel array (MAMA) has been chosen as the detector for two instruments on the ESA/NASA Solar Heliospheric Observatory. The response of the MAMA to the two extreme types of solar spectra, disk and corona, have been modeled with a view toward evaluating dynamic range effects present. The method of MAMA operation is discussed, with emphasis given to modeling the effect of electron cloud charge spreading to several detector anodes and amplifiers (n-fold events). Representative synthetic EUV spectra have been created. The detector response to these spectra is modeled by dissecting the input photon radiation field across the detector array into contributions to the various amplifier channels. The results of this dissection are shown for spectral regions across the entire wavelength region of interest. These results are used to identify regions in which total array photon counting rate or individual amplifier rate may exceed the design limits. This allows the design or operational modes to be tailored to eliminate the problem areas.

  10. Large format array NIR detectors for future ESA astronomy missions: characterization and comparison

    NASA Astrophysics Data System (ADS)

    Gooding, David; Crouzet, Pierre-Elie; Duvet, Ludovic; Prod'homme, Thibaut; Smit, Hans; Ter Haar, Jörg; Blommaert, Sander; Visser, Ivo; Lemmel, Frederic; Heijnen, Jerko; Van Der Luijt, Cornelis; Butler, Bart; Beaufort, Thierry

    2016-08-01

    The Payload Technology Validation section in the Future Missions office of ESA's Science directorate at ESTEC provides testing support to present and future missions at different stages in their lifetime, from early technology developments to mission operation validation. In this framework, a test setup to characterize near-infrared (NIR) detectors has been created. In the context of the Astronomy Large Format Array for the near-infrared ("ALFA-N") technology development program, detectors from different suppliers are tested. We report on the characterization progress of the ALFA-N detectors, for which a series of rigorous tests have been performed on two different detectors; one provided by CEA/Leti-CEA/IRFU-SOFRADIR, France and the other by SELEX- UK/ATC, UK. Experimental techniques, the test bench and methods are presented. The conversion gain of two different detectors is measured using the photon transfer curve method. For a Leti LPE detector the persistence effect has been probed across a range of illumination levels to reveal a sharp linear increase of persistence below full-well and a plateauing beyond saturation. The same detector has been proton irradiated which has resulted in no significant dark current increase.

  11. Photoacoustic projection imaging using a 64-channel fiber optic detector array

    NASA Astrophysics Data System (ADS)

    Bauer-Marschallinger, Johannes; Felbermayer, Karoline; Bouchal, Klaus-Dieter; Veres, Istvan A.; Grün, Hubert; Burgholzer, Peter; Berer, Thomas

    2015-03-01

    In this work we present photoacoustic projection imaging with a 64-channel integrating line detector array, which average the pressure over cylindrical surfaces. For imaging, the line detectors are arranged parallel to each other on a cylindrical surface surrounding a specimen. Thereby, the three-dimensional imaging problem is reduced to a twodimensional problem, facilitating projection imaging. After acquisition of a dataset of pressure signals, a twodimensional photoacoustic projection image is reconstructed. The 64 channel line detector array is realized using optical fibers being part of interferometers. The parts of the interferometers used to detect the ultrasonic pressure waves consist of graded-index polymer-optical fibers (POFs), which exhibit better sensitivity than standard glass-optical fibers. Ultrasonic waves impinging on the POFs change the phase of light in the fiber-core due to the strain-optic effect. This phase shifts, representing the pressure signals, are demodulated using high-bandwidth balanced photo-detectors. The 64 detectors are optically multiplexed to 16 detection channels, thereby allowing fast imaging. Results are shown on a Rhodamine B dyed microsphere.

  12. Development of a Prototype for the Fluorescence Detector Array of Single-Pixel Telescopes

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Malacari, M.; Bertaina, M.; Casolino, M.; Dawson, B.; Jiang, J.; Matalon, A.; Matthews, J. N.; Motloch, P.; Privitera, P.; Takizawa, Y.; Yamazaki, K.

    We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECR) with a Fluorescence detector Array of Single-pixel Telescopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report preliminary results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photo-multiplier tube at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment.

  13. Detection and localization of particle-emitting sources with compound-eye inspired detector arrays

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    2007-08-01

    We develop methods to detect and localize particle-emitting sources using detector arrays that are inspired by biological compound eyes. The sources of interest may be optical, nuclear, or cosmic; they emit particles such as visible photons, neutrons, protons, or charged particles. Our results may have wide applications to artificial vision, which can be important in robotics (robot vision) or medicine (e.g., artificial eyes for the blind); security, where the detection of nuclear materials is needed; or astronomy. This dissertation consists of three parts. First, we detect a far-field particle source using two directional detector arrays: cubic and spherical. We propose a mean-difference test (MDT) detector, analyze its statistical performance, and show that the MDT has a number of advantages over the generalized likelihood- ratio test (GLRT). Second, we localize the source by proposing a novel biologically inspired detector array, whose configuration generalizes the compound eye of insects. This array combines the advantages of compound eyes (e.g., large field-of-view) and human eyes (e.g., high angular resolution). Based on a statistical model of the array measurements, we analyze the array performance by computing the Cramérao bound (CRB) on the error in estimating the source direction. We also derive lower bounds on the mean-square angular error (MSAE) of the source localization and investigate the MSAE of two source- direction estimators. Numerical examples, including the optimal array design, are presented to further illustrate the array performance. Third, we derive a statistical angular resolution limit (ARL) on resolving two closely spaced point sources in a three-dimensional frame, which is applicable to various measurement models (e.g., radar, sonar, or astronomy). Using the asymptotic analysis of the GLRT, we derive the ARL with constraints on the probabilities of false alarm and detection. Our results give explicit analytical expression for the ARL

  14. 20-element HgI[sub 2] energy dispersive x-ray array detector system

    SciTech Connect

    Iwanczyk, J.S.; Dorri, N.; Wang, M.; Szczebiot, R.W.; Dabrowski, A.J. ); Hedman, B.; Hodgson, K.O. . Stanford Synchrotron Radiation Lab.); Patt, B.E. )

    1992-10-01

    This paper describes recent progress in the development of HgI[sub 2] energy dispersive x-ray arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20-element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K[sub alpha]) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken form diluted samples simulating proteins with nickel.

  15. Dosimetric characteristics of the novel 2D ionization chamber array OCTAVIUS Detector 1500

    SciTech Connect

    Stelljes, T. S. Looe, H. K.; Chofor, N.; Poppe, B.; Harmeyer, A.; Reuter, J.; Harder, D.

    2015-04-15

    Purpose: The dosimetric properties of the OCTAVIUS Detector 1500 (OD1500) ionization chamber array (PTW-Freiburg, Freiburg, Germany) have been investigated. A comparative study was carried out with the OCTAVIUS Detector 729 and OCTAVIUS Detector 1000 SRS arrays. Methods: The OD1500 array is an air vented ionization chamber array with 1405 detectors in a 27 × 27 cm{sup 2} measurement area arranged in a checkerboard pattern with a chamber-to-chamber distance of 10 mm in each row. A sampling step width of 5 mm can be achieved by merging two measurements shifted by 5 mm, thus fulfilling the Nyquist theorem for intensity modulated dose distributions. The stability, linearity, and dose per pulse dependence were investigated using a Semiflex 31013 chamber (PTW-Freiburg, Freiburg, Germany) as a reference detector. The effective depth of measurement was determined by measuring TPR curves with the array and a Roos chamber type 31004 (PTW-Freiburg, Freiburg, Germany). Comparative output factor measurements were performed with the array, the Semiflex 31010 ionization chamber and the Diode 60012 (both PTW-Freiburg, Freiburg, Germany). The energy dependence of the OD1500 was measured by comparing the array’s readings to those of a Semiflex 31010 ionization chamber for varying mean photon energies at the depth of measurement, applying to the Semiflex chamber readings the correction factor k{sub NR} for nonreference conditions. The Gaussian lateral dose response function of a single array detector was determined by searching the convolution kernel suitable to convert the slit beam profiles measured with a Diode 60012 into those measured with the array’s central chamber. An intensity modulated dose distribution measured with the array was verified by comparing a OD1500 measurement to TPS calculations and film measurements. Results: The stability and interchamber sensitivity variation of the OD1500 array were within ±0.2% and ±0.58%, respectively. Dose linearity was within 1

  16. The HgI sub 2 energy dispersive x-ray array detectors and minaturized processing electronics project

    SciTech Connect

    Iwanczyk, J.S.; Dorri, N.; Wang, M.; Szawlowski . Inst. of Physics); Patt, W.K. ); Hedman, B.; Hodgson, K.O. . Stanford Synchrotron Radiation Lab.)

    1990-04-01

    This paper describes recent progress in the development of HgI{sub 2} energy dispersive x-ray detector arrays for synchrotron radiation research and their associated miniaturized processing electronics. Deploying a 5 element HgI{sub 2} array detector under realistic operating conditions at SSRL, an energy resolution of 252 eV FWHM at 5.9 keV (Mn-K{alpha}) was obtained. The authors also report energy resolution and throughput measurements versus input count rate. The results from the HgI{sub 2} system are then compared to those obtained under identical conditions from a commercial 13 element Ge detector array.

  17. Development of an 8× 8 CPW Microwave Kinetic Inductance Detector (MKID) Array at 0.35 THz

    NASA Astrophysics Data System (ADS)

    Li, Jing; Yang, Jin-Ping; Lin, Zhen-Hui; Liu, Dong; Shi, Sheng-Cai; Mima, S.; Furukawa, N.; Otani, C.

    2016-07-01

    Microwave kinetic inductance detectors (MKIDs) are promising for THz direct detector arrays of large size, particularly with simple frequency-division multiplexing. Purple Mountain Observatory is developing a terahertz superconducting imaging array (TeSIA) for the DATE5 telescope to be constructed at Dome A, Antarctica. Here we report on the development of a prototype array for the TeSIA, namely an 8× 8 CPW MKID array at 0.35 THz. The resonance frequencies of the MKIDs span the 4-5.575 GHz band with an interval of 25 MHz. Each detector is integrated with a twin-slot antenna centered at 0.5 THz and with a relative bandwidth of 10 %, while the whole MKID array with a micro-lens array. Detailed design and measurement results will be presented.

  18. Continuous-wave terahertz digital holographic tomography with a pyroelectric array detector

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Dayong; Zhou, Xun; Rong, Lu; Li, Zeyu; Li, Lei; Min, Wan; Huang, Haochong; Wang, Yunxin

    2016-05-01

    Terahertz computed tomography makes use of the penetrability of terahertz radiation and obtains three-dimensional (3-D) object projection data. Continuous-wave terahertz digital holographic tomography with a pyroelectric array detector is presented. Compared with scanning terahertz computed tomography, a pyroelectric array detector can obtain a large quantity of projection data in a short time. To obtain a 3-D image, in-line digital holograms of the object are recorded from various directions and reconstructed to obtain two-dimensional (2-D) projection data; then 2-D cross-sectional images and 3-D images of the internal structure of the object are obtained by the filtered back projection algorithm. The presented system can rapidly reconstruct the 3-D object and reveals the internal 3-D structure of the object. A 3-D reconstruction of a polyethylene straw is presented with a 6% error in retrieved diameter.

  19. A surface micromachined thermopile detector array with an interference-based absorber

    NASA Astrophysics Data System (ADS)

    Wu, H.; Emadi, A.; Sarro, P. M.; de Graaf, G.; Wolffenbuttel, R. F.

    2011-07-01

    A thermo-electric (TE) infrared detector array composed of 23 thermopiles, each with 5 thermocouples on a suspended beam of 650 × 36 µm2 dimensions, has been fabricated in a CMOS-compatible MEMS process. The array is used for realization of an IR micro-spectrometer in the 1-5 µm spectral range. Interference filter-based IR absorbers using titanium/aluminum layers with a silicon carbide cavity layer have been designed, fabricated and validated. These thin film stacks are more suitable for the subsequent processes as compared to conventional techniques. The silicon carbide layer is also used for device protection. The TE detector with an interference filter-based absorber features a sensitivity of 294 V W-1 in the 2.15 µm wavelength range and a thermal time constant of 4.85 ms in vacuum.

  20. Underground water Cherenkov muon detector array with the Tibet air shower array for gamma-ray astronomy in the 100 TeV region

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Ayabe, S.; Bi, X. J.; Chen, D.; Cui, S. W.; Danzengluobu; Ding, L. K.; Ding, X. H.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gao, X. Y.; Geng, Q. X.; Guo, H. W.; He, H. H.; He, M.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Huang, Q.; Jia, H. Y.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Labaciren; Le, G. M.; Li, A. F.; Li, J. Y.; Lu, H.; Lu, S. L.; Meng, X. R.; Mizutani, K.; Mu, J.; Munakata, K.; Nagai, A.; Nanjo, H.; Nishizawa, M.; Ohnishi, M.; Ohta, I.; Onuma, H.; Ouchi, T.; Ozawa, S.; Ren, J. R.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Sasaki, T.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, B.; Wang, H.; Wang, X.; Wang, Y. G.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yan, C. T.; Yang, X. C.; Yasue, S.; Ye, Z. H.; Yu, G. C.; Yuan, A. F.; Yuda, T.; Zhang, H. M.; Zhang, J. L.; Zhang, N. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhaxisangzhu; Zhou, X. X.

    2007-06-01

    We propose to build a large water-Cherenkov-type muon-detector array (Tibet MD array) around the 37 000 m2 Tibet air shower array (Tibet AS array) already constructed at 4300 m above sea level in Tibet, China. Each muon detector is a waterproof concrete pool, 6 m wide × 6 m long × 1.5 m deep in size, equipped with a 20 inch-in-diameter PMT. The Tibet MD array consists of 240 muon detectors set up 2.5 m underground. Its total effective area will be 8640 m2 for muon detection. The Tibet MD array will significantly improve gamma-ray sensitivity of the Tibet AS array in the 100 TeV region (10 1000 TeV) by means of gamma/hadron separation based on counting the number of muons accompanying an air shower. The Tibet AS+MD array will have the sensitivity to gamma rays in the 100 TeV region by an order of magnitude better than any other previous existing detectors in the world.

  1. Quantum efficiency performances of the NIR European Large Format Array detectors tested at ESTEC

    NASA Astrophysics Data System (ADS)

    Crouzet, P.-E.; Duvet, L.; de Wit, F.; Beaufort, T.; Blommaert, S.; Butler, B.; Van Duinkerken, G.; ter Haar, J.; Heijnen, J.; van der Luijt, K.; Smit, H.

    2015-10-01

    Publisher's Note: This paper, originally published on 10/12/2015, was replaced with a corrected/revised version on 10/23/2015. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. The Payload Technology Validation Section (SRE-FV) at ESTEC has the goal to validate new technology for future or on-going mission. In this framework, a test set up to characterize the quantum efficiency of near-infrared (NIR) detectors has been created. In the context of the NIR European Large Format Array ("LFA"), 3 deliverables detectors coming from SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side were characterized. The quantum efficiency of an HAWAII-2RG detector from Teledyne was as well measured. The capability to compare on the same setup detectors from different manufacturers is a unique asset for the future mission preparation office. This publication will present the quantum efficiency results of a HAWAII-2RG detector from Teledyne with a 2.5um cut off compared to the LFA European detectors prototypes developed independently by SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side.

  2. Investigation of Very Fast Light Detectors: Silicon Photomultiplier and Micro PMT for a Cosmic Ray Array

    NASA Astrophysics Data System (ADS)

    Cervantes, Omar; Reyes, Liliana; Hooks, Tyler; Perez, Luis; Ritt, Stefan

    2016-03-01

    To construct a cosmic detector array using 4 scintillation detectors, we investigated 2 recent light sensor technologies from Hamamatsu, as possible readout detectors. First, we investigated several homemade versions of the multipixel photon counter (MPPC) light sensors. These detectors were either biased with internal or external high voltage power supplies. We made extensive measurements to confirm for the coincidence of the MPPC devices. Each sensor is coupled to a wavelength shifting fiber (WSF) that is embedded along a plastic scintillator sheet (30cmx60cmx1/4''). Using energetic cosmic rays, we evaluated several of these homemade detector modules placed above one another in a light proof enclosure. Next, we assembled 2 miniaturized micro photomultiplier (micro PMT), a device recently marketed by Hamamatsu. These sensors showed very fast response times. With 3 WSF embedded in scintillator sheets, we performed coincidence experiments. The detector waveforms were captured using the 5GS/sec domino ring sampler, the DRS4 and our workflow using the CERN PAW package and data analysis results would be presented. Title V Grant.

  3. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz Detector Array of Bolometric Polarimeters

    NASA Technical Reports Server (NTRS)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Kogut, Alan J..; Miller, Nathan; Moseley, Samuel H.; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  4. AFRL Nanotechnology Initiative: Hybrid Nanomaterials in Photonic Crystal Cavities for Multi-Spectral Infrared Detector Arrays

    DTIC Science & Technology

    2010-03-31

    INITIATIVE) HYBRID NANOMATERIALS IN PHOTONIC CRYSTAL CAVITIES FOR MULTI -SPECTRAL INFRARED DETECTOR ARRAYS 5b. GRANT NUMBER F A9550-06-1-0482 5c...IR) photodetector using hybrid nanornaterials in photonic crystal (PC) cavities for enhanced absorption at selected wavelengths. The simultaneous...infrared photodetection, quantum dots, photonic crystal cavities, matrix-assisted pulsed laser evaporation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  5. Radiation threshold levels for noise degradation of photodiodes. Technical report

    SciTech Connect

    Aukerman, L.W.; Vernon, F.L.; Song, Y.

    1986-09-30

    Space radiation can increase the noise of photodiodes as a result of either a sustained ionizing-dose-rate effect or displacement damage. Elementary, straightforward models are presented for calculating radiation threshold levels and rad hit susceptibility. Radiation-effects experiments that verify these models are discussed. Calculations for room-temperature silicon p-i-n photodetectors, an avalanche photodiode, and a hypothetical cooled staring detector indicate that this damage mechanism should not be ignored for space and nuclear environments.

  6. Lung counting: comparison of detector performance with a four detector array that has either metal or carbon fibre end caps, and the effect on mda calculation.

    PubMed

    Ahmed, Asm Sabbir; Hauck, Barry; Kramer, Gary H

    2012-08-01

    This study described the performance of an array of high-purity Germanium detectors, designed with two different end cap materials-steel and carbon fibre. The advantages and disadvantages of using this detector type in the estimation of the minimum detectable activity (MDA) for different energy peaks of isotope (152)Eu were illustrated. A Monte Carlo model was developed to study the detection efficiency for the detector array. A voxelised Lawrence Livermore torso phantom, equipped with lung, chest plates and overlay plates, was used to mimic a typical lung counting protocol with the array of detectors. The lung of the phantom simulated the volumetric source organ. A significantly low MDA was estimated for energy peaks at 40 keV and at a chest wall thickness of 6.64 cm.

  7. Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    SciTech Connect

    Peters, W. A.; Ilyushkin, S.; Madurga, M.; Matei, C.; Paulauskas, S. V.; Grzywacz, R. K.; Bardayan, D. W.; Brune, C. R.; Allen, J.; Allen, J. M.; Bergstrom, Z.; Blackmon, J.; Brewer, N. T.; Cizewski, J. A.; Copp, P.; Howard, M. E.; Ikeyama, R.; Kozub, R. L.; Manning, B.; Massey, T. N.; Matos, M.; Merino, E.; O'Malley, P. D.; Raiola, F.; Reingold, C. S.; Sarazin, F.; Spassova, I.; Taylor, S.; Walter, D.

    2016-08-26

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom Geant4 simulation models aspects of the detector array and the experimental setups to determine efficiency and detector response. Lastly, a low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.

  8. Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    NASA Astrophysics Data System (ADS)

    Peters, W. A.; Ilyushkin, S.; Madurga, M.; Matei, C.; Paulauskas, S. V.; Grzywacz, R. K.; Bardayan, D. W.; Brune, C. R.; Allen, J.; Allen, J. M.; Bergstrom, Z.; Blackmon, J.; Brewer, N. T.; Cizewski, J. A.; Copp, P.; Howard, M. E.; Ikeyama, R.; Kozub, R. L.; Manning, B.; Massey, T. N.; Matos, M.; Merino, E.; O'Malley, P. D.; Raiola, F.; Reingold, C. S.; Sarazin, F.; Spassova, I.; Taylor, S.; Walter, D.

    2016-11-01

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom GEANT4 simulation models aspects of the detector array and the experimental setups to determine efficiency and detector response. A low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.

  9. Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    DOE PAGES

    Peters, W. A.; Ilyushkin, S.; Madurga, M.; ...

    2016-08-26

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom Geant4 simulation models aspectsmore » of the detector array and the experimental setups to determine efficiency and detector response. Lastly, a low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.« less

  10. A space qualified thermal imaging system using a Pt Si detector array

    NASA Technical Reports Server (NTRS)

    Astheimer, Robert W.

    1989-01-01

    EDO Corporation, Barnes Engineering Division designed and constructed a high resolution thermal imaging system on contract to Lockheed for use in the SDI Star Lab. This employs a Pt Si CCD array which is sensitive in the spectral range of 3 to 5 microns. Star Lab will be flown in the Shuttle bay and consists basically of a large, reflecting, tracking telescope with associated sensors and electronics. The thermal imaging system is designed to operate in the focal plane of this telescope. The configuration of the system is illustrated. The telescope provides a collimated beam output which is focussed onto the detector array by a silicon objective lens. The detector array subtends a field of view of 1.6 degrees x 1.22 degrees. A beam switching mirror permits bypassing the large telescope to give a field of 4 degrees x 3 degrees. Two 8 position filter wheels are provided, and background radiation is minimized by Narcissus mirrors. The detector is cooled with a Joule-Thompson cryostat fed from a high pressure supply tank. This was selected instead of a more convenient closed-cycle system because of concern with vibration. The latter may couple into the extremely critical Starlab tracking telescope. The electronics produce a digitized video signal for recording. Offset and responsivity correction factors are stored for all pixels and these corrections are made to the digitized output in real time.

  11. Development of mercuric iodide energy dispersive x-ray array detectors

    SciTech Connect

    Iwanczyk, J.S.; Warburton, W.K.; Dabrowski, A.J.; Hedman, B.; Hodgson, K.O.; Patt, B.E.

    1988-02-01

    There are various areas of synchrotron radiation research particularly Extended X-Ray Absorption Fine Structure (EXAFS) on dilute solutions and anomalous scattering, which would strongly benefit from the availability of energy dispersive detector arrays with high energy resolution and good spatial resolution. The goal of this development project is to produce high energy resolution mercuric iodide (HgI/sub 2/) detector sub-modules, consisting of several elements. These sub-modules can later be grouped into larger arrays of 100-400 elements. A prototype 5 element HgI/sub 2/ array detector was constructed and tested. Dimensions of each element were 7.3 mm x 0.7 mm. An energy resolution of 335 eV (FWHM) for Mn0K..cap alpha.. at 5.9 keV has been measured. The novel fiber-optic pulsed light feedback has been introduced into the charge preamplifiers in order to minimize electronic crosstalk between channels.

  12. Local polarization phenomena in In-doped CdTe x-ray detector arrays

    SciTech Connect

    Sato, Toshiyuki; Sato, Kenji; Ishida, Shinichiro; Kiri, Motosada; Hirooka, Megumi; Yamada, Masayoshi; Kanamori, Hitoshi

    1995-10-01

    Local polarization phenomena have been studied in detector arrays with the detector element size of 500 {micro}m x 500 {micro}m, which are fabricated from high-resistivity In-doped CdTe crystals grown by the vertical Bridgman technique. It has been found for the first time that a polarization effect, which is characterized by a progressive decrease of the pulse counting rate with increasing photon fluence, strongly depends on the detector elements, that is, the portion of crystals used. The influence of several parameters, such as the applied electric field strength, time, and temperature, on this local polarization effect is also investigated. From the photoluminescence measurements of the inhomogeneity of In dopant, it is concluded that the local polarization effect observed here originates from a deep level associated with In dopant in CdTe crystals.

  13. a Cosmic Ray Detector Array for Schools in the Cambridge Region

    NASA Astrophysics Data System (ADS)

    Wotton, S. A.; Goodrick, M. J.; Hommels, B.; Parker, M. A.

    2011-06-01

    Particle physics, astrophysics and cosmology are areas of research that have captured the imagination of the general public in recent years. By giving school students first-hand experience of building and operating a particle detector and the analysis of the data in a collaborative environment we anticipate that they will gain a deeper insight into the many and diverse facets of experimental particle physics. Cosmic rays provide a readily available source of high energy particles and other projects have already exploited this in building arrays of cosmic ray detectors located in schools and linked together via the internet. We aim to extend this concept by creating our own network of detectors in our region with a particular emphasis on hands-on involvement by school students in the partner schools. This talk outlines our plans towards the implementation of this project and our wider goals of integrating our local network with other projects both nationally and internationally.

  14. Organic photodiodes for biosensor miniaturization.

    PubMed

    Wojciechowski, Jason R; Shriver-Lake, Lisa C; Yamaguchi, Mariko Y; Füreder, Erwin; Pieler, Roland; Schamesberger, Martin; Winder, Christoph; Prall, Hans Jürgen; Sonnleitner, Max; Ligler, Frances S

    2009-05-01

    Biosensors have successfully demonstrated the capability to detect multiple pathogens simultaneously at very low levels. Miniaturization of biosensors is essential for use in the field or at the point of care. While microfluidic systems reduce the footprint for biochemical processing devices and electronic components are continually becoming smaller, optical components suitable for integration--such as LEDs and CMOS chips--are generally still too expensive for disposable components. This paper describes the integration of polymer diodes onto a biosensor chip to create a disposable device that includes both the detector and the sensing surface coated with immobilized capture antibody. We performed a chemiluminescence immunoassay on the OPD substrate and measured the results using a hand-held reader attached to a laptop computer. The miniaturized biosensor with the disposable slide including the organic photodiode detected Staphylococcal enterotoxin B at concentrations as low as 0.5 ng/mL.

  15. Charge-coupled-device/fiberoptic taper array x-ray detector for protein crystallography

    SciTech Connect

    Naday, I.; Ross, S.; Westbrook, E.M.; Zentai, G.

    1997-12-31

    A large area, charge-couple-device (CCD) based fiberoptic taper array detector (APS-1) has been installed at the insertion-device beamline of the Structural Biology Center at the ANL Advanced Photon Source. The detector is used in protein crystallography diffraction experiments, where the objective is to measure the position and intensity of X-ray Bragg peaks in diffraction images. Large imaging area, very high spatial resolution, high X-ray sensitivity, good detective quantum efficiency, low noise, wide dynamic range, excellent stability and short readout time are all fundamental requirements in this application. The APS-1 detector converts the two-dimensional X-ray patterns to a visible light images by a thin layer of X-ray sensitive phosphor. The phosphor coating is directly deposited on the large ends of nine fiberoptic tapers arranged in a 3 x 3 array. Nine, thermoelectrically cooled 1,024 x 1,024 pixel CCD`s image the patterns, demagnified by the tapers. After geometrical and uniformity corrections, the nine areas give a continuous image of the detector face with virtually no gaps between the individual tapers. The 18 parallel analog signal-processing channels and analog-to-digital converters assure short readout time and low readout noise.

  16. Charge-coupled-device/fiberoptic taper array X-ray detector for protein crystallography

    SciTech Connect

    Naday, I.; Ross, S.; Westbrook, E.M.; Zentai, G.

    1997-03-01

    A large area, charge-couple-device (CCD) based fiberoptic taper array detector (APS-1) has been installed at the insertion-device beamline of the Structural Biology Center at the ANL Advanced Photon Source. The detector is used in protein crystallography diffraction experiments, where the objective is to measure the position and intensity of X-ray Bragg peaks in diffraction images. Large imaging area, very high spatial resolution, high X-ray sensitivity, good detective quantum efficiency, low noise, wide dynamic range, excellent stability and short readout time are all fundamental requirements in this application. The APS-1 detector converts the two-dimensional X-ray patterns to a visible light images by a thin layer of X-ray sensitive phosphor. The phosphor coating is directly deposited on the large ends of nine fiberoptic tapers arranged in a 3x3 array. Nine, thermoelectrically cooled 1024 x 1024 pixel CCD`s image the patterns, demagnified by the tapers. After geometrical and uniformity corrections, the nine areas give a continuous image of the detector face with virtually no gaps between the individual tapers. The 18 parallel analog signal-processing channels and analog-to-digital converters assure short readout time and low readout noise.

  17. Studies of Nuclear Structure using Radioactive Decay and a Large Array of Compton Suppressed Ge Detectors

    NASA Astrophysics Data System (ADS)

    Wood, John L.

    2000-11-01

    Radioactive decay has long played a role in contributing to the elucidation of nuclear structure. However compared to in-beam gamma-ray spectroscopy, which has been combined with the extraordinary power of multi-detector arrays, radioactive decay scheme studies have been carried out usually with rather modest detector set-ups (two detectors, no Compton suppression). An extensive program to rectify this situation has been initiated using the "8-PI spectrometer"[1]. This is an array of 20 Compton-suppressed Ge detectors with exceptional stability and peak-to-total ratio. Experiments performed[2] recently at Lawrence Berkeley Laboratory, to better characterize nuclear deformation properties and the onset of deformation in nuclei, will be described. Future plans for the study of nuclei far from beta stability at the TRIUMF/ISAC Facility using the 8-PI spectrometer will also be outlined. [1] J.P.Martin et al., Nucl.Instr.Meth. A 257, 301 (1987). [2] See, e.g., W.D.Kulp et al. Bull.Am.Phys.Soc. 44, 63 (1999); W.D.Kulp et al., ibid., Williamsburg Meeting, Oct 4-7 (2000).

  18. Development of arrays of Silicon Drift Detectors and readout ASIC for the SIDDHARTA experiment

    NASA Astrophysics Data System (ADS)

    Quaglia, R.; Schembari, F.; Bellotti, G.; Butt, A. D.; Fiorini, C.; Bombelli, L.; Giacomini, G.; Ficorella, F.; Piemonte, C.; Zorzi, N.

    2016-07-01

    This work deals with the development of new Silicon Drift Detectors (SDDs) and readout electronics for the upgrade of the SIDDHARTA experiment. The detector is based on a SDDs array organized in a 4×2 format with each SDD square shaped with 64 mm2 (8×8) active area. The total active area of the array is therefore 32×16 mm2 while the total area of the detector (including 1 mm border dead area) is 34 × 18mm2. The SIDDHARTA apparatus requires 48 of these modules that are designed and manufactured by Fondazione Bruno Kessler (FBK). The readout electronics is composed by CMOS preamplifiers (CUBEs) and by the new SFERA (SDDs Front-End Readout ASIC) circuit. SFERA is a 16-channels readout ASIC designed in a 0.35 μm CMOS technology, which features in each single readout channel a high order shaping amplifier (9th order Semi-Gaussian complex-conjugate poles) and a high efficiency pile-up rejection logic. The outputs of the channels are connected to an analog multiplexer for the external analog to digital conversion. An on-chip 12-bit SAR ADC is also included. Preliminary measurements of the detectors in the single SDD format are reported. Also measurements of low X-ray energies are reported in order to prove the possible extension to the soft X-ray range.

  19. Charge-coupled device/fiber optic taper array x-ray detector for protein crystallography

    SciTech Connect

    Naday, I.; Ross, S.; Westbrook, E.M.; Zentai, G.

    1998-04-01

    A large area charge-coupled device (CCD) based fiber optic taper array detector (APS-1) is installed at the insertion-device beamline of the Structural Biology Center at the Argonne Advanced Photon Source x-ray synchrotron. The detector is used in protein crystallography diffraction experiments, where the objective is to measure the position and intensity of x-ray Bragg peaks in diffraction images. Large imaging area, very high spatial resolution, high x-ray sensitivity, good detective quantum efficiency, low noise, wide dynamic range, excellent stability and short readout time are all fundamental requirements in this application. The APS-1 detector converts the 2-D x-ray patterns to visible light images by a thin layer of x-ray sensitive phosphor. The phosphor coating is directly deposited on the large ends of nine fiber optic tapers arranged in a 3{times}3 array. Nine, thermoelectrically cooled 1024{times}1024pixel CCDs image the patterns, demagnified by the tapers. After geometrical and uniformity corrections, the nine areas give a continuous image of the detector face with virtually no gaps between the individual tapers. The 18 parallel analog signal-processing channels and analog-to-digital converters ensure short readout time and low readout noise. We discuss the design and measured performance of the detector. {copyright} {ital 1998 Society of Photo-Optical Instrumentation Engineers.}{ital Key words:} charge-coupled device; fiber optic taper; x-ray diffraction; crystallography; imaging detector. {copyright} {ital 1998} {ital Society of Photo-Optical Instrumentation Engineers}

  20. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    SciTech Connect

    Patt, B.

    1994-11-15

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of the data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.

  1. Performance of charge-injection-device infrared detector arrays at low and moderate backgrounds

    NASA Technical Reports Server (NTRS)

    Mckelvey, M. E.; Mccreight, C. R.; Goebel, J. H.; Reeves, A. A.

    1985-01-01

    Three 2 x 64 element charge injection device infrared detector arrays were tested at low and moderate background to evaluate their usefulness for space based astronomical observations. Testing was conducted both in the laboratory and in ground based telescope observations. The devices showed an average readout noise level below 200 equivalent electrons, a peak responsivity of 4 A/W, and a noise equivalent power of 3x10 sq root of W/Hz. Array well capacity was measured to be significantly smaller than predicted. The measured sensitivity, which compares well with that of nonintegrating discrete extrinsic silicon photoconductors, shows these arrays to be useful for certain astronomical observations. However, the measured readout efficiency and frequency response represent serious limitations in low background applications.

  2. Experimental study of double-{beta} decay modes using a CdZnTe detector array

    SciTech Connect

    Dawson, J. V.; Goessling, C.; Koettig, T.; Muenstermann, D.; Rajek, S.; Schulz, O.; Janutta, B.; Zuber, K.; Junker, M.; Reeve, C.; Wilson, J. R.

    2009-08-15

    An array of sixteen 1 cm{sup 3} CdZnTe semiconductor detectors was operated at the Gran Sasso Underground Laboratory (LNGS) to further investigate the feasibility of double-{beta} decay searches with such devices. As one of the double-{beta} decay experiments with the highest granularity the 4x4 array accumulated an overall exposure of 18 kg days. The setup and performance of the array is described. Half-life limits for various double-{beta} decay modes of Cd, Zn, and Te isotopes are obtained. No signal has been found, but several limits beyond 10{sup 20} years have been performed. They are an order of magnitude better than those obtained with this technology before and comparable to most other experimental approaches for the isotopes under investigation. An improved limit for the {beta}{sup +}/EC decay of {sup 120}Te is given.

  3. Microelectrode Arrays with Overlapped Diffusion Layers as Electroanalytical Detectors: Theory and Basic Applications

    PubMed Central

    Tomčík, Peter

    2013-01-01

    This contribution contains a survey of basic literature dealing with arrays of microelectrodes with overlapping diffusion layers as prospective tools in contemporary electrochemistry. Photolithographic thin layer technology allows the fabrication of sensors of micrometric dimensions separated with a very small gap. This fact allows the diffusion layers of single microelectrodes to overlap as members of the array. Various basic types of microelectrode arrays with interacting diffusion layers are described and their analytical abilities are accented. Theoretical approaches to diffusion layer overlapping and the consequences of close constitution effects such as collection efficiency and redox cycling are discussed. Examples of basis applications in electroanalytical chemistry such as amperometric detectors in HPLC and substitutional stripping voltammetry are also given. PMID:24152927

  4. A compact 64-pixel CsI(T1)/Si PIN photodiode imaging module with IC readout

    SciTech Connect

    Gruber, Gregory J.; Choong, Woon-Seng; Moses, William W.; Derenzo, Stephen E.; Holland, Stephen E.; Pedrali-Noy, Marzio; Krieger, Brad; Mandelli, Emanuele; Meddeler, Gerrit; Wang, Nadine W.

    2001-08-09

    We characterize the performance of a complete 64-pixel compact gamma camera imaging module consisting of optically isolated 3 mm 3 mm 5 mm CsI(Tl) crystals coupled to a custom array of low-noise Si PIN photodiodes read out by a custom IC. At 50 V bias the custom 64-pixel photodiode arrays demonstrate an average leakage current of 28 pA per 3 mm 3 mm pixel, a 98.5 percent yield of pixels with <100 pA leakage, and a quantum efficiency of about 80 percent for 540 nm CsI(Tl) scintillation photons. The custom 64-channel readout IC uses low-noise preamplifiers, shaper amplifiers, and a winner-take-all (WTA) multiplexer. The IC demonstrates maximum gain of 120 mV / 1000 e-, the ability to select the largest input signal in less than 150 ns, and low electronic noise at 8 ms peaking time ranging from 25 e- rms (unloaded) to an estimated 180 e- rms (photodiode load of 3 pF, 50 pA). At room temperature a complete 64-pixel detector module employing a custom photodiode array and readout IC demonstrates an average energy resolution of 23.4 percent fwhm and an intrinsic spatial resolution of 3.3 mm fwhm for the 140 keV emissions of 99mTc. Construction of an array of such imaging modules is straightforward, hence this technology shows strong potential for numerous compact gamma camera applications, including scintimammography.

  5. NORSAR Final Scientific Report Adaptive Waveform Correlation Detectors for Arrays: Algorithms for Autonomous Calibration

    SciTech Connect

    Gibbons, S J; Ringdal, F; Harris, D B

    2009-04-16

    Correlation detection is a relatively new approach in seismology that offers significant advantages in increased sensitivity and event screening over standard energy detection algorithms. The basic concept is that a representative event waveform is used as a template (i.e. matched filter) that is correlated against a continuous, possibly multichannel, data stream to detect new occurrences of that same signal. These algorithms are therefore effective at detecting repeating events, such as explosions and aftershocks at a specific location. This final report summarizes the results of a three-year cooperative project undertaken by NORSAR and Lawrence Livermore National Laboratory. The overall objective has been to develop and test a new advanced, automatic approach to seismic detection using waveform correlation. The principal goal is to develop an adaptive processing algorithm. By this we mean that the detector is initiated using a basic set of reference ('master') events to be used in the correlation process, and then an automatic algorithm is applied successively to provide improved performance by extending the set of master events selectively and strategically. These additional master events are generated by an independent, conventional detection system. A periodic analyst review will then be applied to verify the performance and, if necessary, adjust and consolidate the master event set. A primary focus of this project has been the application of waveform correlation techniques to seismic arrays. The basic procedure is to perform correlation on the individual channels, and then stack the correlation traces using zero-delay beam forming. Array methods such as frequency-wavenumber analysis can be applied to this set of correlation traces to help guarantee the validity of detections and lower the detection threshold. In principle, the deployment of correlation detectors against seismically active regions could involve very large numbers of very specific detectors. To

  6. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    PubMed Central

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.

    2016-01-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed. PMID:26917125

  7. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    DOE PAGES

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; ...

    2016-01-28

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses atmore » megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.« less

  8. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    SciTech Connect

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.

    2016-01-28

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.

  9. Three-dimensional modeling and inversion of x-ray pinhole detector arrays

    SciTech Connect

    Tritz, K.; Stutman, D.; Delgado-Aparicio, L.; Finkenthal, M.

    2006-10-15

    X-ray pinhole detectors are a common and useful diagnostic for high temperature and fusion-grade plasmas. While the measurements from such diagnostics are line integrated, local emission can be recovered by inverting or modeling the data using varying assumptions including toroidal symmetry, flux surface isoemissivity, and one-dimensional (1D) chordal lines of sight. This last assumption is often valid when the structure sizes and gradient scale lengths of interest are much larger than the spatial resolution of the detector elements. However, x-ray measurements of, for example, the strong gradients in the H-mode pedestal may require a full three-dimensional (3D) treatment of the detector geometry when the emission of the plasma has a significant variation within the field of view, especially in a high-triangularity, low aspect ratio plasma. Modeling of a high spatial resolution tangential edge array for NSTX has shown that a proper 3D treatment can improve the effective spatial resolution of the detector by 10%-40% depending on the modeled signal-to-noise ratio and gradient scale length. Results from a general treatment of arbitrary detector geometry will provide a guideline for the amount of systematic error that can be expected by a 1D versus 3D field of view analysis.

  10. Real-time scintillation array dosimetry for radiotherapy: The advantages of photomultiplier detectors

    SciTech Connect

    Liu, Paul Z. Y.; Suchowerska, Natalka; Abolfathi, Peter; McKenzie, David R.

    2012-04-15

    Purpose: In this paper, a photomultiplier tube (PMT) array dosimetry system has been developed and tested for the real-time readout of multiple scintillation signals from fiber optic dosimeters. It provides array dosimetry with the advantages in sensitivity provided by a PMT, but without the need for a separate PMT for each detector element. Methods: The PMT array system consisted of a multianode PMT, a multichannel data acquisition system, housing and optic fiber connections suitable for clinical use. The reproducibility, channel uniformity, channel crosstalk, acquisition speed, and sensitivity of the PMT array were quantified using a constant light source. Its performance was compared to other readout systems used in scintillation dosimetry. An in vivo HDR brachytherapy treatment was used as an example of a clinical application of the dosimetry system to the measurement of dose at multiple sites in the rectum. The PMT array system was also tested in the pulsed beam of a linear accelerator to test its response speed and its application with two separate methods of Cerenkov background removal. Results: The PMT array dosimetry system was highly reproducible with a measurement uncertainty of 0.13% for a 10 s acquisition period. Optical crosstalk between neighboring channels was accounted for by omitting every second channel. A mathematical procedure was used to account for the crosstalk in next-neighbor channels. The speed and sensitivity of the PMT array system were found be superior to CCD cameras, allowing for measurement of more rapid changes in dose rate. This was further demonstrated by measuring the dose delivered by individual photon pulses of a linear accelerator beam. Conclusions: The PMT array system has advantages over CCD camera-based systems for the readout of scintillation light. It provided a more sensitive, more accurate, and faster response to meet the demands of future developments in treatment delivery.

  11. Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors

    DOE PAGES

    Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong; ...

    2016-02-15

    In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sources usingmore » a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less

  12. Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors

    SciTech Connect

    Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong; Camarda, Giuseppe; Cui, Yonggang; Gul, Rubi; Hossain, Anwar; Utpal, Roy; Yang, Ge; James, Ralph

    2016-02-15

    In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sources using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.

  13. Effect of atmospheric turbulence on the bit error probability of a space to ground near infrared laser communications link using binary pulse position modulation and an avalanche photodiode detector

    NASA Technical Reports Server (NTRS)

    Safren, H. G.

    1987-01-01

    The effect of atmospheric turbulence on the bit error rate of a space-to-ground near infrared laser communications link is investigated, for a link using binary pulse position modulation and an avalanche photodiode detector. Formulas are presented for the mean and variance of the bit error rate as a function of signal strength. Because these formulas require numerical integration, they are of limited practical use. Approximate formulas are derived which are easy to compute and sufficiently accurate for system feasibility studies, as shown by numerical comparison with the exact formulas. A very simple formula is derived for the bit error rate as a function of signal strength, which requires only the evaluation of an error function. It is shown by numerical calculations that, for realistic values of the system parameters, the increase in the bit error rate due to turbulence does not exceed about thirty percent for signal strengths of four hundred photons per bit or less. The increase in signal strength required to maintain an error rate of one in 10 million is about one or two tenths of a db.

  14. Two dimensional extensible array configuration for EMCCD-based solid state x-ray detectors

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Swetadri Vasan, S. N.; Cartwright, A. N.; Titus, A. H.; Bednarek, D. R.; Rudin, S.

    2012-03-01

    We have designed and developed from the discrete component level a high resolution dynamic x-ray detector to be used for fluoroscopic and angiographic medical imaging. The heart of the detector is a 1024 ×1024 pixel electron multiplying charge coupled device (EMCCD) with a pixel size of 13 × 13 μm2 (Model CCD201-20, e2v Technologies, Inc.), bonded to a fiber optic plate (FOP), and optically coupled to a 350 μm thick micro-columnar CsI(TI) scintillator via a fiber optic taper (FOT). Our aim is to design an array of these detectors that could be extended to any arbitrary X × Y size in two dimensions to provide a larger field of view (FOV). A physical configuration for a 3×3 array is presented that includes two major sub-systems. First is an optical front end that includes (i) a phosphor to convert the x-ray photons into light photons, and (ii) a fused array of FOTs that focuses light photons from the phosphor onto an array of EMCCD's optically coupled using FOPs. Second is an electronic front end that includes (i) an FPGA board used for generating clocks and for data acquisition (ii) driver boards to drive and digitize the analog output from the EMCCDs, (iii) a power board, and (iv) headboards to hold the EMCCD's while they are connected to their respective driver board using flex cables. This configuration provides a larger FOV as well as region-of-interest (ROI) high-resolution imaging as required by modern neurovascular procedures.

  15. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging

    PubMed Central

    Iwanczyk, Jan S.; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C.; Hartsough, Neal E.; Malakhov, Nail; Wessel, Jan C.

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm2/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a 57Co source. An output rate of 6×106 counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy

  16. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    PubMed

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  17. Hybrid UV Imager Containing Face-Up AlGaN/GaN Photodiodes

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Pain, Bedabrata

    2005-01-01

    A proposed hybrid ultraviolet (UV) image sensor would comprise a planar membrane array of face-up AlGaN/GaN photodiodes integrated with a complementary metal oxide/semiconductor (CMOS) readout-circuit chip. Each pixel in the hybrid image sensor would contain a UV photodiode on the AlGaN/GaN membrane, metal oxide/semiconductor field-effect transistor (MOSFET) readout circuitry on the CMOS chip underneath the photodiode, and a metal via connection between the photodiode and the readout circuitry (see figure). The proposed sensor design would offer all the advantages of comparable prior CMOS active-pixel sensors and AlGaN UV detectors while overcoming some of the limitations of prior (AlGaN/sapphire)/CMOS hybrid image sensors that have been designed and fabricated according to the methodology of flip-chip integration. AlGaN is a nearly ideal UV-detector material because its bandgap is wide and adjustable and it offers the potential to attain extremely low dark current. Integration of AlGaN with CMOS is necessary because at present there are no practical means of realizing readout circuitry in the AlGaN/GaN material system, whereas the means of realizing readout circuitry in CMOS are well established. In one variant of the flip-chip approach to integration, an AlGaN chip on a sapphire substrate is inverted (flipped) and then bump-bonded to a CMOS readout circuit chip; this variant results in poor quantum efficiency. In another variant of the flip-chip approach, an AlGaN chip on a crystalline AlN substrate would be bonded to a CMOS readout circuit chip; this variant is expected to result in narrow spectral response, which would be undesirable in many applications. Two other major disadvantages of flip-chip integration are large pixel size (a consequence of the need to devote sufficient area to each bump bond) and severe restriction on the photodetector structure. The membrane array of AlGaN/GaN photodiodes and the CMOS readout circuit for the proposed image sensor would

  18. A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors

    SciTech Connect

    Verma, V. B. Horansky, R.; Lita, A. E.; Mirin, R. P.; Nam, S. W.; Marsili, F.; Stern, J. A.; Shaw, M. D.

    2014-02-03

    We demonstrate a scalable readout scheme for an infrared single-photon pulse-position camera consisting of WSi superconducting nanowire single-photon detectors. For an N × N array, only 2 × N wires are required to obtain the position of a detection event. As a proof-of-principle, we show results from a 2 × 2 array.

  19. The multi-element mercuric iodide detector array with computer controlled miniaturized electronics for EXAFS

    SciTech Connect

    Patt, B.E.; Iwanczyk, J.S.; Szczebiot, R.; Maculewicz, G.; Wang, M.; Wang, Y.J.; Hedman, B.; Hodgson, K.O.; Cox, A.D. |

    1995-08-01

    Construction of a 100-element HgI{sub 2} detector array, with miniaturized electronics, and software developed for synchrotron applications in the 5 keV to 35 keV region has been completed. Recently, extended x-ray absorption fine structure (EXAFS) data on dilute ({approximately} 1mM) metallo-protein samples were obtained with up to seventy-five elements of the system installed. The data quality obtained is excellent and shows that the detector is quite competitive as compared to commercially available systems. The system represents the largest detector array ever developed for high resolution, high count rate x-ray synchrotron applications. It also represents the first development and demonstration of high-density miniaturized spectroscopy electronics with this high level of performance. Lastly, the integration of the whole system into an automated computer-controlled environment represents a major advancement in the user interface for XAS measurements. These experiments clearly demonstrate that the HgI{sub 2} system, with the miniaturized electronics and associated computer control functions well. In addition it shows that the new system provides superior ease of use and functionality, and that data quality is as good as or better than with state-of-the-art cryogenically cooled Ge systems.

  20. Population density estimated from locations of individuals on a passive detector array

    USGS Publications Warehouse

    Efford, Murray G.; Dawson, Deanna K.; Borchers, David L.

    2009-01-01

    The density of a closed population of animals occupying stable home ranges may be estimated from detections of individuals on an array of detectors, using newly developed methods for spatially explicit capture–recapture. Likelihood-based methods provide estimates for data from multi-catch traps or from devices that record presence without restricting animal movement ("proximity" detectors such as camera traps and hair snags). As originally proposed, these methods require multiple sampling intervals. We show that equally precise and unbiased estimates may be obtained from a single sampling interval, using only the spatial pattern of detections. This considerably extends the range of possible applications, and we illustrate the potential by estimating density from simulated detections of bird vocalizations on a microphone array. Acoustic detection can be defined as occurring when received signal strength exceeds a threshold. We suggest detection models for binary acoustic data, and for continuous data comprising measurements of all signals above the threshold. While binary data are often sufficient for density estimation, modeling signal strength improves precision when the microphone array is small.

  1. Guided-wave photodiode using through-absorber quantum-well-intermixing and methods thereof

    DOEpatents

    Skogen, Erik J.

    2016-10-25

    The present invention includes a high-speed, high-saturation power detector (e.g., a photodiode) compatible with a relatively simple monolithic integration process. In particular embodiments, the photodiode includes an intrinsic bulk absorption region, which is grown above a main waveguide core including a number of quantum wells (QWs) that are used as the active region of a phase modulator. The invention also includes methods of fabricating integrated photodiode and waveguide assemblies using a monolithic, simplified process.

  2. X-ray and charged particle detection with CsI(Tl) layer coupled to a-Si:H photodiode layers

    SciTech Connect

    Fujieda, I.; Cho, G.; Drewery, J.; Gee, T.; Jing, T.; Kaplan, S.N.; Perez-Mendez, V.; Wildermuth, D. ); Street, R.A. )

    1990-10-01

    A compact real-time X-ray and charged particle imager with digitized position output can built either by coupling a fast scintillator to a photodiode array or by forming one on a photodiode array directly. CsI(Tl) layers 100--1000{mu}m thick were evaporated on glass substrates from a crystal CsI(Tl). When coupled to a crystalline Si or amorphous silicon (a-Si:H) photodiode and exposed to calibrated X-ray pulses, their light yields and speed were found to be comparable to those of a crystal CsI(Tl). Single {beta} particle detection was demonstrated with this combination. The light spread inside evaporated CsI(Tl) was suppressed by its columnar structure. Scintillation detection gives much larger signals than direct X-ray detection due to the increased energy deposition in the detector material. Fabrication of monolithic type X-ray sensors consisting of CsI + a-Si:H photodiodes is discussed. 20 refs., 16 figs.

  3. Evaluation of bismuth germanate detectors

    SciTech Connect

    Swinth, K.L.; Eschbach, P.A.

    1993-12-01

    During International Atomic Energy Agency (IAEA) safeguards inspections, one of the activities is the verification of materials in the inventory through quantitative or qualitative measurements. Performance of these measurements requires an array of sophisticated detectors, electronics, shields, and stands. This requires the transport and handling of delicate systems that are both heavy and bulky. The increasing sophistication and miniaturization of electronic and computer systems have led to progressive reductions in both the weight and the bulk of such electronics. However, to take full advantage of these improvements, similar reductions must also occur in the size and weight of the detectors. The purpose of this study was to explore the usefulness of one type of new detector, the bismuth germinate (BGO) scintillator. The purpose was to test detectors for their performance at high (fission products) and low ({sup 235}U) photon energies. Information is also provided on other scintillators, including those using photodiode-coupled cesium iodide and germanium orthosilicate.

  4. THE COSMIC-RAY ENERGY SPECTRUM OBSERVED WITH THE SURFACE DETECTOR OF THE TELESCOPE ARRAY EXPERIMENT

    SciTech Connect

    Abu-Zayyad, T.; Allen, M.; Anderson, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Hanlon, W.; Aida, R.; Azuma, R.; Fukuda, T.; Cheon, B. G.; Cho, E. J.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukushima, M.; and others

    2013-05-01

    The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays (UHECRs) with primary energies above 1.6 Multiplication-Sign 10{sup 18} eV. This measurement is based upon four years of observation by the surface detector component of TA. The spectrum shows a dip at an energy of 4.6 Multiplication-Sign 10{sup 18} eV and a steepening at 5.4 Multiplication-Sign 10{sup 19} eV which is consistent with the expectation from the GZK cutoff. We present the results of a technique, new to the analysis of UHECR surface detector data, that involves generating a complete simulation of UHECRs striking the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the ''thinning'' approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.

  5. β-Decay Studies of r-Process Nuclei Using the Advanced Implantation Detector Array (AIDA)

    NASA Astrophysics Data System (ADS)

    Griffin, C. J.; Davinson, T.; Estrade, A.; Braga, D.; Burrows, I.; Coleman-Smith, P. J.; Grahn, T.; Grant, A.; Harkness-Brennan, L. J.; Kiss, G.; Kogimtzis, M.; Lazarus, I. H.; Letts, S. C.; Liu, Z.; Lorusso, G.; Matsui, K.; Nishimura, S.; Page, R. D.; Prydderch, M.; Phong, V. H.; Pucknell, V. F. E.; Rinta-Antila, S.; Roberts, O. J.; Seddon, D. A.; Simpson, J.; Thomas, S. L.; Woods, P. J.

    Thought to produce around half of all isotopes heavier than iron, the r-process is a key mechanism for nucleosynthesis. However, a complete description of the r-process is still lacking and many unknowns remain. Experimental determination of β-decay half-lives and β-delayed neutron emission probabilities along the r-process path would help to facilitate a greater understanding of this process. The Advanced Implantation Detector Array (AIDA) represents the latest generation of silicon implantation detectors for β-decay studies with fast radioactive ion beams. Preliminary results from commissioning experiments demonstrate successful operation of AIDA and analysis of the data obtained during the first official AIDA experiments is now under-way.

  6. Fabrication and Characterization of Linear Terahertz Detector Arrays Based on Lithium Tantalate Crystal

    NASA Astrophysics Data System (ADS)

    Li, Weizhi; Wang, Jun; Gou, Jun; Huang, Zehua; Jiang, Yadong

    2015-01-01

    Two samples of 30-pixel linear terahertz detector arrays (TDAs) were fabricated based on lithium tantalate (LT) crystals. Pixel readout circuit (ROC) was designed to extract the weak current signal of TDAs. A test platform was established for performance evaluation of TDA+ROC components. By using a 2.52THz laser as radiation source, the test results reveal that average voltage responsivities of the components were larger than 7000V/W and non-uniformity no more than 2.1%. Average noise equivalent power ( NEP) of one sample was measured to be 1.5×10-9 W/Hz1/2, which is low enough and desirable for high performance THz detector.

  7. A new linear array detector for high resolution and low dose digital radiography

    NASA Astrophysics Data System (ADS)

    Bettuzzi, Matteo; Cornacchia, Samantha; Rossi, Massimo; Paltrinieri, Enrica; Morigi, Maria Pia; Brancaccio, Rosa; Romani, Davide; Casali, Franco

    2004-01-01

    At the Department of Physics of the University of Bologna a new intensified linear array detector is under development. The core of the system is a digital intensified CCD camera, the electron bombarded charge coupled device (EBCCD). The main innovation is a coherent rectangular-to-linear fiber optics adapter coupling the 1 in. diameter photocathode of the camera with a linear 129 mm × 1.45 mm strip of Gd 2O 2S:Tb. In this way a high spatial resolution over an extended length is obtained. The detector works as an X-ray scanner by means of a high-precision translation mechanical device to inspect a 13 cm × 18 cm area. A complete characterisation of the system has been made in terms of linearity, dynamic range, modulation transfer function (MTF), noise power spectrum (NPS) and detective quantum efficiency (DQE). At last, radiographic tests on a set of samples have been made and will be presented.

  8. Mosaic wedge-and-strip arrays for large format microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Martin, Christopher; Rasmussen, Andrew

    1989-01-01

    The authors present a novel method for joining wedge-and-strip patterns on single anodes in a mosaic array. With only a modest increase in complexity over three-conductor anodes currently in use, the ultimate detector position resolution can be significantly improved, and large-format microchannel plate detectors with pore-size-limited resolution are made possible. The problem of the transition from one anode to the next has been solved with a novel linear encoding scheme, which exhibits essentially distortionless behavior at boundaries parallel to the conducting elements and only slight distortion at the orthogonal boundaries. The ultimate resolution for two anode designs, one designed for large-format imaging and the other for high-resolution spectroscopy, is also predicted.

  9. A compact pulse shape discriminator module for large neutron detector arrays

    NASA Astrophysics Data System (ADS)

    Venkataramanan, S.; Gupta, Arti; Golda, K. S.; Singh, Hardev; Kumar, Rakesh; Singh, R. P.; Bhowmik, R. K.

    2008-11-01

    A cost-effective high-performance pulse shape discriminator module has been developed to process signals from organic liquid scintillator-based neutron detectors. This module is especially designed for the large neutron detector array used for studies of nuclear reaction dynamics at the Inter University Accelerator Center (IUAC). It incorporates all the necessary pulse processing circuits required for neutron spectroscopy in a novel fashion by adopting the zero crossover technique for neutron-gamma (n- γ) pulse shape discrimination. The detailed layout of the circuit and different features of the module are described in the present paper. The quality of n- γ separation obtained with this electronics is much better than that of commercial modules especially in the low-energy region. The results obtained with our module are compared with similar setups available in other laboratories.

  10. Irradiation stability of silicon photodiodes for extreme-ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Scholze, Frank; Klein, Roman; Bock, Thomas

    2003-10-01

    Photodiodes are used as easy-to-operate detectors in the extreme-ultraviolet spectral range. At the Physikalisch-Technische Bundesanstalt photodiodes are calibrated with an uncertainty of spectral responsivity of 0.3% or less. Stable photodiodes are a prerequisite for the dissemination of these high-accuracy calibrations to customers. Silicon photodiodes with different top layers were exposed to intense extreme-ultraviolet irradiation. Diodes coated with diamondlike carbon or TiSiN proved to be stable within a few percent up to a radiant exposure of 100 kJ/cm2. The changes in responsivity could be explained as being due to carbon contamination and to changes in the internal charge collection efficiency. In ultrahigh vacuum, no indication of oxidation was found.

  11. Determination and purification of sesamin and sesamolin in sesame seed oil unsaponified matter using reversed-phase liquid chromatography coupled with photodiode array and tandem mass spectrometry and high-speed countercurrent chromatography.

    PubMed

    Takahashi, Miki; Nishizaki, Yuzo; Sugimoto, Naoki; Takeuchi, Hiroaki; Nakagawa, Kazuya; Akiyama, Hiroshi; Sato, Kyoko; Inoue, Koichi

    2016-10-01

    In Asian countries, sesame seed oil unsaponified matter is used as a natural food additive due to its associated antioxidant effects. We determined and purified the primary lignans sesamin and sesamolin in sesame seed oil unsaponified matter using reversed-phase liquid chromatography coupled with photodiode array and tandem mass spectrometry and high-speed countercurrent chromatography. Calibration curves showed good correlation coefficients (r(2) > 0.999, range 0.08 and/or 0.15 to 5 μg/mL) with a limit of detection (at 290 nm) of 0.02 μg/mL for sesamin and 0.04 μg/mL for sesamolin. Sesame seed oil unsaponified matter contained 2.82% sesamin and 2.54% sesamolin, respectively. Direct qualitative analysis of sesamin and sesamolin was achieved using quadrupole mass spectrometry with positive-mode electrospray ionization. Pure (>99%) sesamin and sesamolin standards were obtained using high-speed countercurrent chromatographic purification (hexane/ethyl acetate/methanol/water; 7:3:7:3). An effective method for determining and purifying sesamin and sesamolin from sesame seed oil unsaponified matter was developed by combining these separation techniques for standardized food additives.

  12. A Failure Mode in Dense Infrared Detector Arrays Resulting in Increased Dark Current

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin; Bellotti, Enrico

    2016-09-01

    In this paper, we investigate a failure mode that arises in dense infrared focal plane detector arrays as a consequence of the interactions of neighboring pixels through the minority carrier profiles in the common absorber layer. We consider the situation in which one pixel in a hexagonal array becomes de-biased relative to its neighbors and show that the dark current in the six neighboring pixels increases exponentially as a function of the difference between the nominal and anomalous biases. Moreover, we show that the current increase in the six nearest-neighbor pixels is in total larger than that by which the current in the affected pixel decreases, causing a net increase in the dark current. The physical origins of this effect are explained as being due to increased lateral diffusion currents that arise as a consequence of breaking the symmetry of the minority carrier profiles. We then perform a parametric study to quantify the magnitude of this effect for a number of detector geometric parameters, operating temperatures, and spectral bands. Particularly, numerical simulations are carried out for short-, mid-, and long-wavelength HgCdTe infrared detectors operating between 77 K and 210 K. We show that this effect is most prevalent in architectures for which the lateral diffusion current is the largest component of the total dark current—high operating temperature devices with narrow epitaxial absorber thicknesses and pitches small compared to the diffusion length of minority carriers. These results could prove significant particularly for short- and mid-wave infrared detectors, which are typically designed to fit these conditions.

  13. Evaluation of a far infrared Ge:Ga multiplexed detector array

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam; Mccreight, Craig

    1990-01-01

    The performance of a multielement Ge:Ga linear array under low-background conditions is investigated. On-focal plane switching is accomplished by MOSFET switches and the integrated charge is made available through MOSFET source followers. The tests were conducted at 106 microns and the radiation on the detectors was confined to a spectral window 1.25 microns wide using a stack of cold filters. At 4.2 K, the responsivity was measured to be nominally 584 A/W, and the NEP was 1.0 x 10 exp -16 W/sq rt Hz. A detailed description of the test setup and the procedure is presented.

  14. Radioactive Background Measurements in the Neutral Current Detector Array at SNO

    NASA Astrophysics Data System (ADS)

    Cox, G. A.; Doe, P. J.; Formaggio, J. A.; McGee, S.; Stonehill, L. C.; Robertson, R. G. H.; Wall, B. L.; Wilkerson, J. F. W.; Hallin, A. L.; Poon, A. W. P.; Wouters, J. M.

    2003-10-01

    The third phase of data taking at the Sudbury Neutrino Observatory (SNO) is currently scheduled to begin in the autumn of 2003 with the installation of the Neutral Current Detectors (NCD). The NCDs, an array of ^3He proportional counters constructed from ultra-pure nickel, will measure the flux of ^8B solar neutrinos at SNO. The major sources of internal backgrounds in the NCD counters arise from U and Th chain decays. Analysis techniques have been developed to determine the level of these contaminations. These techniques and the impact of the U and Th levels on the neutral current flux measurement will be discussed.

  15. Short range laser obstacle detector. [for surface vehicles using laser diode array

    NASA Technical Reports Server (NTRS)

    Kuriger, W. L. (Inventor)

    1973-01-01

    A short range obstacle detector for surface vehicles is described which utilizes an array of laser diodes. The diodes operate one at a time, with one diode for each adjacent azimuth sector. A vibrating mirror a short distance above the surface provides continuous scanning in elevation for all azimuth sectors. A diode laser is synchronized with the vibrating mirror to enable one diode laser to be fired, by pulses from a clock pulse source, a number of times during each elevation scan cycle. The time for a given pulse of light to be reflected from an obstacle and received is detected as a measure of range to the obstacle.

  16. Observation of high energy atmospheric neutrinos with antarctic muon and neutrino detector array

    SciTech Connect

    Ahrens, J.; Andres, E.; Bai, X.; Barouch, G.; Barwick, S.W.; Bay, R.C.; Becka, T.; Becker, K.-H.; Bertrand, D.; Binon, F.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Bouhali, O.; Boyce, M.M.; Carius, S.; Chen, A.; Chirkin, D.; Conrad, J.; Cooley, J.; Costa, C.G.S.; Cowen, D.F.; Dalberg, E.; De Clercq, C.; DeYoung, T.; Desiati, P.; Dewulf, J.-P.; Doksus, P.; Edsjo, J.; Ekstrom, P.; Feser, T.; Frere, J.-M.; Gaisser, T.K.; Gaug, M.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Hauschildt, T.; Hellwig, M.; Heukenkamp, H.; Hill, G.C.; Hulth, P.O.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kim, J.; Koci, B.; Kopke, L.; Kowalski, M.; Lamoureux, J.I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.M.; Madsen, J.; Marciniewski, P.; Matis, H.S.; McParland, C.P.; Miller, T.C.; Minaeva, Y.; Miocinovic, P.; Mock, P.C.; Morse, R.; Neunhoffer, T.; Niessen, P.; Nygren, D.R.; Ogelman, H.; Olbrechts, Ph.; Perez de los Heros, C.; Pohl, A.C.; Porrata, R.; Price, P.B.; Przybylski, G.T.; Rawlins, K.; Reed, C.; Rhode, W.; Ribordy, M.; Richter, S.; Rodriguez Martino, J.; Romenesko, P.; Ross, D.; Sander, H.-G.; Schmidt, T.; Schneider, D.; Schwarz, R.; Silvestri, A.; Solarz, M.; Spiczak, G.M.; Spiering, C.; Starinsky, N.; Steele, D.; Steffen, P.; Stokstad, R.G.; Streicher, O.; Sudhoff, P.; Sulanke, K.-H.; Taboada, I.; Thollander, L.; Thon, T.; Tilav, S.; Vander Donckt, M.; Walck, C.; Weinheimer, C.; Wiebusch, C.H.; Wiedeman, C.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    2002-05-07

    The Antarctic Muon and Neutrino Detector Array (AMANDA) began collecting data with ten strings in 1997. Results from the first year of operation are presented. Neutrinos coming through the Earth from the Northern Hemisphere are identified by secondary muons moving upward through the array. Cosmic rays in the atmosphere generate a background of downward moving muons, which are about 10{sup 6} times more abundant than the upward moving muons. Over 130 days of exposure, we observed a total of about 300 neutrino events. In the same period, a background of 1.05 x 10{sup 9} cosmic ray muon events was recorded. The observed neutrino flux is consistent with atmospheric neutrino predictions. Monte Carlo simulations indicate that 90 percent of these events lie in the energy range 66 GeV to 3.4 TeV. The observation of atmospheric neutrinos consistent with expectations establishes AMANDA-B10 as a working neutrino telescope.

  17. DENSITY: software for analysing capture-recapture data from passive detector arrays

    USGS Publications Warehouse

    Efford, M.G.; Dawson, D.K.; Robbins, C.S.

    2004-01-01

    A general computer-intensive method is described for fitting spatial detection functions to capture-recapture data from arrays of passive detectors such as live traps and mist nets. The method is used to estimate the population density of 10 species of breeding birds sampled by mist-netting in deciduous forest at Patuxent Research Refuge, Laurel, Maryland, U.S.A., from 1961 to 1972. Total density (9.9 ? 0.6 ha-1 mean ? SE) appeared to decline over time (slope -0.41 ? 0.15 ha-1y-1). The mean precision of annual estimates for all 10 species pooled was acceptable (CV(D) = 14%). Spatial analysis of closed-population capture-recapture data highlighted deficiencies in non-spatial methodologies. For example, effective trapping area cannot be assumed constant when detection probability is variable. Simulation may be used to evaluate alternative designs for mist net arrays where density estimation is a study goal.

  18. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    SciTech Connect

    Howard, Chris; Daigle, Stephen; Buckner, Matt; Erikson, Luke E.; Runkle, Robert C.; Stave, Sean C.; Champagne, Art; Cooper, Andrew; Downen, Lori; Glasgow, Brian D.; Kelly, Keegan; Sallaska, Anne

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  19. Graphical User Interface for a Dual-Module EMCCD X-ray Detector Array.

    PubMed

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen

    2011-03-16

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000× to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2k×1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  20. Graphical user interface for a dual-module EMCCD x-ray detector array

    NASA Astrophysics Data System (ADS)

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen

    2011-03-01

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000x to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2kx1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  1. WE-AB-BRB-09: Real Time In Vivo Scintillating Fiber Array Detector for Medical LINACS

    SciTech Connect

    Knewtson, T; Pokhrel, S; Hernandez-Morales, D; Loyalka, S; Rangaraj, D; Izaguirre, E; Price, S

    2015-06-15

    Purpose: An in vivo transmission scintillation fiber detector was developed to monitor patient treatment in real time for the enhancement of patient safety and treatment accuracy. The detector system is capable of monitoring each pulse from a medical LINAC during treatment to determine the dose delivered as treatment progresses. Methods: The detector system consists of 60 parallel scintillating fibers coupled to fast data processing optoelectronics that can monitor the beam fluence in real time. Each 2.5mm{sup 2} square fiber is aligned with an MLC leaf pair and is long enough to capture a 40cm field. The fibers are embedded within a water equivalent polymer substrate that is secured in the LINAC accessory tray. The fibers are coupled to high speed photosensors and front end amplifiers that filter noise and pass each pulse to a high speed analog-to-digital converter. The system components are capable of detecting pulse repetition times shorter than what is delivered by a medical LINAC to ensure true real time data acquisition. Results: The system was able to capture and record the signal from each linac pulse and display the information in real time with no pulse pile up. It was found that the fiber array attenuates 2.65% of the beam which can easily be compensated for in treatment planning. The fibers responded linearly with dose, are independent of clinical beam energies, and are independent of dose rate. Calibration of the system was performed as a function of beam energy, beam size, dose rate, and monitor units to optimize beam fluence error detection. Conclusion: The detector system presented provides true real time in vivo beam monitoring to enhance patient safety and treatment delivery accuracy. Furthermore, the detector can be used for current patient specific QA.

  2. 2.5-μm InGaAs photodiodes grown on GaAs substrates by interfacial misfit array technique

    NASA Astrophysics Data System (ADS)

    Jurczak, Pamela; Sablon, Kimberly A.; Gutiérrez, Marina; Liu, Huiyun; Wu, Jiang

    2017-03-01

    In0.85Ga0.15As photodetectors grown on GaAs substrates using an interfacial misfit array-based simple buffer are studied. The material quality is assessed with a range of characterization tools showing low surface roughness and low density of threading dislocations. These results indicate a significant improvement on crystal quality compared to structures grown on InP substrates by using metamorphic buffers. Quantum efficiency and responsivity measurements show good performance of the fabricated devices between 1.5 and 2.5 μm, making them highly suitable for short-wavelength infrared applications.

  3. Development of novel on-chip, customer-design spiral biasing adaptor on for Si drift detectors and detector arrays for X-ray and nuclear physics experiments

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Chen, Wei

    2014-11-01

    A novel on-chip, customer-design spiral biasing adaptor (SBA) has been developed. A single SBA is used for biasing a Si drift detector (SDD) and SDD array. The use of an SBA reduces the biasing current. This paper shows the calculation of the geometry of an SBA and an SDD to get the best drift field in the SDD and SDD array. Prototype SBAs have been fabricated to verify the concept. Electrical measurements on these SBAs are in agreement with the expectations. The new SDD array with an SBA can be used for X-ray detection and in nuclear physics experiments.

  4. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.

    PubMed

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter

    2016-02-06

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  5. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging

    PubMed Central

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P.; Zolliker, Peter

    2016-01-01

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8–14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed. PMID:26861341

  6. Enhanced radiation detectors using luminescent materials

    DOEpatents

    Vardeny, Zeev V.; Jeglinski, Stefan A.; Lane, Paul A.

    2001-01-01

    A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.

  7. Performance assessment of a 2D array of plastic scintillation detectors for IMRT quality assurance

    NASA Astrophysics Data System (ADS)

    Guillot, Mathieu; Gingras, Luc; Archambault, Louis; Beddar, Sam; Beaulieu, Luc

    2013-07-01

    The purposes of this work are to assess the performance of a 2D plastic scintillation detectors array prototype for quality assurance in intensity-modulated radiation therapy (IMRT) and to determine its sensitivity and specificity to positioning errors of one multileaf collimator (MLC) leaf and one MLC leaf bank by applying the principles of signal detection theory. Ten treatment plans (step-and-shoot delivery) and one volumetric modulated arc therapy plan were measured and compared to calculations from two treatment-planning systems (TPSs) and to radiochromic films. The averages gamma passing rates per beam found for the step-and-shoot plans were 95.8% for the criteria (3%, 2 mm), 97.8% for the criteria (4%, 2 mm), and 98.1% for the criteria (3%, 3 mm) when measurements were compared to TPS calculations. The receiver operating characteristic curves for the one leaf errors and one leaf bank errors were determined from simulations (theoretical upper limits) and measurements. This work concludes that arrays of plastic scintillation detectors could be used for IMRT quality assurance in clinics. The use of signal detection theory could improve the quality of dosimetric verifications in radiation therapy by providing optimal discrimination criteria for the detection of different classes of errors.

  8. CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging.

    PubMed

    Boppel, Sebastian; Lisauskas, Alvydas; Max, Alexander; Krozer, Viktor; Roskos, Hartmut G

    2012-02-15

    We demonstrate the principle applicability of antenna-coupled complementary metal oxide semiconductor (CMOS) field-effect transistor arrays as cameras for real-time coherent imaging at 591.4 GHz. By scanning a few detectors across the image plane, we synthesize a focal-plane array of 100×100 pixels with an active area of 20×20 mm2, which is applied to imaging in transmission and reflection geometries. Individual detector pixels exhibit a voltage conversion loss of 24 dB and a noise figure of 41 dB for 16 μW of the local oscillator (LO) drive. For object illumination, we use a radio-frequency (RF) source with 432 μW at 590 GHz. Coherent detection is realized by quasioptical superposition of the image and the LO beam with 247 μW. At an effective frame rate of 17 Hz, we achieve a maximum dynamic range of 30 dB in the center of the image and more than 20 dB within a disk of 18 mm diameter. The system has been used for surface reconstruction resolving a height difference in the μm range.

  9. Performance analysis of MIMO FSO systems with radial array beams and finite sized detectors

    NASA Astrophysics Data System (ADS)

    Gökçe, Muhsin C.; Kamacıoǧlu, Canan; Uysal, Murat; Baykal, Yahya

    2014-10-01

    Multiple-input multiple-output (MIMO) systems are employed in free space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, we consider a MIMO FSO system with practical transmitter and receiver configurations that consists of a radial laser array with Gaussian beams and finite sized detectors. We formulate the average received intensity and the power scinitillation as a function of the receiver coordinates in the presence of weak atmospheric turbulence by using the extended Huygens-Fresnel principle. Then, integrations over the finite sized multiple detectors are performed and the effect of the receiver aperture averaging is quantified. We further derive an outage probability expression of this MIMO system in the presence of turbulence-induced fading channels. Using the derived expressions, we demonstrate the effect of several practical system parameters such as the ring radius, the number of array beamlets, the source size, the link length, structure constant and the receiver aperture radius on the system performance.

  10. Small-angle scatter tomography with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Pang, Shuo; Zhu, Zheyuan; Wang, Ge; Cong, Wenxiang

    2016-05-01

    Small-angle x-ray scatter imaging has a high intrinsic contrast in cancer research and other applications, and provides information on molecular composition and micro-structure of the tissue. In general, the implementations of small-angle coherent scatter imaging can be divided into two main categories: direct tomography and angular dispersive computerized tomography. Based on the recent development of energy-discriminative photon-counting detector array, here we propose a computerized tomography setup based on energy-dispersive measurement with a photon-counting detector array. To show merits of the energy-dispersive approach, we have performed numerical tests with a phantom containing various tissue types, in comparison with the existing imaging approaches. The results show that with an energy resolution of ~6 keV, the energy dispersive tomography system with a broadband tabletop x-ray would outperform the angular dispersive system, which makes the x-ray small-angle scatter tomography promising for high-specificity tissue imaging.

  11. Spectrum measurement with the Telescope Array Low Energy Extension (TALE) fluorescence detector

    NASA Astrophysics Data System (ADS)

    Zundel, Zachary James

    The Telescope Array (TA) experiment is the largest Ultra High Energy cosmic ray observatory in the northern hemisphere and is designed to be sensitive to cosmic ray air showers above 1018eV. Despite the substantial measurements made by TA and AUGER (the largest cosmic ray observatory in the southern hemisphere), there remains uncertainty about whether the highest energy cosmic rays are galactic or extragalactic in origin. Locating features in the cosmic ray energy spectrum below 1018eV that indicate a transition from galactic to extragalactic sources would clarify the interpretation of measurements made at the highest energies. The Telescope Array Low Energy Extension (TALE) is designed to extend the energy threshold of the TA observatory down to 1016.5eV in order to make such measurements. This dissertation details the construction, calibration, and operation of the TALE flu- orescence detector. A measurement of the flux of cosmic rays in the energy range of 1016.5 -- 1018.5eV is made using the monocular data set taken between September 2013 and January 2014. The TALE fluorescence detector observes evidence for a softening of the cosmic spectrum at 1017.25+/-0.5eV. The evidence of a change in the spectrum motivates continued study of 1016.5 -- 1018.5eV cosmic rays.

  12. Infrared Detector Activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, T. F.; Sulima, O. V.; Amzajerdian, F.

    2008-01-01

    Infrared detector development and characterization at NASA Langley Research Center will be reviewed. These detectors were intended for ground, airborne, and space borne remote sensing applications. Discussion will be focused on recently developed single-element infrared detector and future development of near-infrared focal plane arrays (FPA). The FPA will be applied to next generation space-based instruments. These activities are based on phototransistor and avalanche photodiode technologies, which offer high internal gain and relatively low noise-equivalent-power. These novel devices will improve the sensitivity of active remote sensing instruments while eliminating the need for a high power laser transmitter.

  13. Preliminary results from a novel CdZnTe linear pad detector array x-ray imaging system

    SciTech Connect

    Peng, J.; Tuemer, T.O.; Petrini, B.M.; Kravis, S.D.; Yin, S.; Parnham, K.B.; Glick, B.; Willson, P.D.

    1996-12-31

    The excellent energy-resolution and short charge collection time, especially the possibility of room temperature operation, make CdZnTe semiconductor detectors an excellent candidate for x-ray imaging and spectroscopic application in nuclear physics. Because of these characteristics, CdZnTe pad detectors with a novel geometry and approximately 1 mm{sup 2} pad area have been developed. These pad type linear arrays are new and important for many scanning type applications using a wide energy range from about 10 to 300 keV energies. A prototype x-ray imaging system has been developed consisting of a state-of-the-art pad type linear array of CdZnTe detectors manufactured by eV Products and low noise readout electronics developed by NOVA R and D, Inc. A series of measurements on the temperature dependence of the performance of CdZnTe linear pad detector arrays has been performed at NOVA R and D, Inc. The changes in dark (leakage) current against temperature have been studied. High resolution x-ray spectra has been obtained using {sup 57}Co source at different temperatures. A low noise front-end electronics ASIC chip for reading out the detector array was developed that can achieve fast data acquisition with dual energy imaging capability. Several prototype CdZnTe pad detector arrays are placed next to each other to form an approximately 30 cm long linear array. This array is used to make preliminary dual energy scanned images of complex objects using a 90 kV x-ray generator. Some of the images will be presented. The results show that the system is excellent for applications in industrial and medical imaging.

  14. Application of visible linear array technology to earth observation sensors

    NASA Technical Reports Server (NTRS)

    Noll, R. E.; Tracy, R. A.

    1975-01-01

    The present paper identifies the systems engineering aspects of applying solid-state technology to earth observations applications being traditionally performed by point (or multiple-point) detector line scanned mechanisms. It is shown that the translation from a basically serial data flow point-detector mechanically-scanned sensor to a solid state highly parallel linear-array pushbroom sensor results in minimizing mechanical complexity and maximizing electronics complexity, with increased demands upon optical performance in some applications. Technical aspects relevant to highly parallel photodiode linear-array pushbroom applications are discussed. Examples of systems engineering applications are provided.

  15. A 2-D Array of Superconducting Magnesium Diboride (MgB2) Far-IR Thermal Detectors for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook

    2009-01-01

    A 2-D array of superconducting Magnesium Diboride(MgB2) far IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.

  16. Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera

    NASA Astrophysics Data System (ADS)

    Dorn, Meghan L.; Pipher, Judith L.; McMurtry, Craig; Hartman, Spencer; Mainzer, Amy; McKelvey, Mark; McMurray, Robert; Chevara, David; Rosser, Joshua

    2016-07-01

    HgCdTe detector arrays with a cutoff wavelength of ˜10 μm intended for the Near-Earth Object Camera (NEOCam) space mission were subjected to proton-beam irradiation at the University of California Davis Crocker Nuclear Laboratory. Three arrays were tested-one with 800-μm substrate intact, one with 30-μm substrate, and one completely substrate-removed. The CdZnTe substrate, on which the HgCdTe detector is grown, has been shown to produce luminescence in shorter wave HgCdTe arrays that causes an elevated signal in nonhit pixels when subjected to proton irradiation. This testing was conducted to ascertain whether or not full substrate removal is necessary. At the dark level of the dewar, we detect no luminescence in nonhit pixels during proton testing for both the substrate-removed detector array and the array with 30-μm substrate. The detector array with full 800-μm substrate exhibited substantial photocurrent for a flux of 103 protons/cm2 s at a beam energy of 18.1 MeV (˜750 e-/s) and 34.4 MeV (˜65 e-/s). For the integrated space-like ambient proton flux level measured by the Spitzer Space Telescope, the luminescence would be well below the NEOCam dark current requirement of <200 e-/s, but the pattern of luminescence could be problematic, possibly complicating calibration.

  17. Dosimetric performance and array assessment of plastic scintillation detectors for stereotactic radiosurgery quality assurance

    SciTech Connect

    Gagnon, Jean-Christophe; Theriault, Dany; Guillot, Mathieu; Archambault, Louis; Beddar, Sam; Gingras, Luc; Beaulieu, Luc

    2012-01-15

    Purpose: To compare the performance of plastic scintillation detectors (PSD) for quality assurance (QA) in stereotactic radiosurgery conditions to a microion-chamber (IC), Gafchromic EBT2 films, 60 008 shielded photon diode (SD) and unshielded diodes (UD), and assess a new 2D crosshair array prototype adapted to small field dosimetry. Methods: The PSD consists of a 1 mm diameter by 1 mm long scintillating fiber (BCF-60, Saint-Gobain, Inc.) coupled to a polymethyl-methacrylate optical fiber (Eska premier, Mitsubishi Rayon Co., Ltd., Tokyo, Japan). Output factors (S{sub c,p}) for apertures used in radiosurgery ranging from 4 to 40 mm in diameter have been measured. The PSD crosshair array (PSDCA) is a water equivalent device made up of 49 PSDs contained in a 1.63 cm radius area. Dose profiles measurements were taken for radiosurgery fields using the PSDCA and were compared to other dosimeters. Moreover, a typical stereotactic radiosurgery treatment using four noncoplanar arcs was delivered on a spherical phantom in which UD, IC, or PSD was placed. Using the Xknife planning system (Integra Radionics Burlington, MA), 15 Gy was prescribed at the isocenter, where each detector was positioned. Results: Output Factors measured by the PSD have a mean difference of 1.3% with Gafchromic EBT2 when normalized to a 10 x 10 cm{sup 2} field, and 1.0% when compared with UD measurements normalized to the 35 mm diameter cone. Dose profiles taken with the PSD crosshair array agreed with other single detectors dose profiles in spite of the presence of the 49 PSDs. Gamma values comparing 1D dose profiles obtained with PSD crosshair array with Gafchromic EBT2 and UD measured profiles shows 98.3% and 100.0%, respectively, of detector passing the gamma acceptance criteria of 0.3 mm and 2%. The dose measured by the PSD for a complete stereotactic radiosurgery treatment is comparable to the planned dose corrected for its SD-based S{sub c,p} within 1.4% and 0.7% for 5 and 35 mm diameter cone

  18. Photon-number-resolving detector with 10 bits of resolution

    SciTech Connect

    Jiang, Leaf A.; Dauler, Eric A.; Chang, Joshua T

    2007-06-15

    A photon-number-resolving detector with single-photon resolution is described and demonstrated. It has 10 bits of resolution, does not require cryogenic cooling, and is sensitive to near ir wavelengths. This performance is achieved by flood illuminating a 32x32 element In{sub x}Ga{sub 1-x}AsP Geiger-mode avalanche photodiode array that has an integrated counter and digital readout circuit behind each pixel.

  19. Analyzing the performance of ArcCHECK diode array detector for VMAT plan

    PubMed Central

    Thiyagarajan, Rajesh; Nambiraj, Arunai; Sinha, Sujit Nath; Yadav, Girigesh; Kumar, Ashok; Subramani, Vikraman; Kothandaraman

    2016-01-01

    Aim The aim of this study is to evaluate performance of ArcCHECK diode array detector for the volumetric modulated arc therapy (VMAT) patient specific quality assurance (QA). VMAT patient specific QA results were correlated with ion chamber measurement. Dose response of the ArcCHECK detector was studied. Background VMAT delivery technique improves the dose distribution. It is complex in nature and requires proper QA before its clinical implementation. ArcCHECK is a novel three dimensional dosimetry system. Materials and methods Twelve retrospective VMAT plans were calculated on ArcCHECK phantom. Point dose and dose map were measured simultaneously with ion chamber (IC-15) and ArcCHECK diode array detector, respectively. These measurements were compared with their respective TPS calculated values. Results The ion chamber measurements are in good agreement with TPS calculated doses. Mean difference between them is 0.50% with standard deviation of 0.51%. Concordance correlation coefficient (CCC) obtained for ion chamber measurements is 0.9996. These results demonstrate a strong correlation between the absolute dose predicted by our TPS and the measured dose. The CCC between ArcCHECK doses and TPS predictions on the CAX was found to be 0.9978. In gamma analysis of dose map, the mean passing rate was 98.53% for 3% dose difference and 3 mm distance to agreement. Conclusions The VMAT patient specific QA with an ion chamber and ArcCHECK phantom are consistent with the TPS calculated dose. Statistically good agreement was observed between ArcCHECK measured and TPS calculated. Hence, it can be used for routine VMAT QA. PMID:26900358

  20. Diagnostic and quality-assurance tools for low-contrast images obtained from array detectors

    NASA Technical Reports Server (NTRS)

    Hatfield, D. B.; Sandel, Bill R.

    1993-01-01

    We investigate methods of estimating a background image frame for subtraction from a data frame for use when a more suitable measured background frame is not available. We define background as any signal component that is not attributable to the phenomenon currently under investigation. We describe a technique that is based on pixel-by-pixel least-squares regression of images for computing a background frame from available data. We argue that the same technique can be a useful quality-assurance tool for evaluating instrument performance. For example, it can help to separate image structure resulting from the reading process from structure resulting from the characteristics of the detector itself. We demonstrate that background estimation can be nontrivial by comparing the results of different background estimation procedures by using data obtained from a CCD array detector. We investigate the temperature-dependent contributions of the detector and readout electronics to the total signal as a demonstration of the diagnostic capabilities of least-squares image regression.

  1. Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity

    DOE PAGES

    Mitrofanov, Oleg; Brener, Igal; Luk, Ting S.; ...

    2015-11-19

    Nanoscale structuring of optical materials leads to modification of their properties and can be used for improving efficiencies of photonic devices and for enabling new functionalities. In ultrafast optoelectronic switches for generation and detection of terahertz (THz) radiation, incorporation of nanostructures allows us to overcome inherent limitations of photoconductive materials. We propose and demonstrate a nanostructured photoconductive THz detector for sampling highly localized THz fields, down to the level of λ/150. The nanostructure that consists of an array of optical nanoantennas and a distributed Bragg reflector forms a hybrid cavity, which traps optical gate pulses within the photoconductive layer. Themore » effect of photon trapping is observed as enhanced absorption at a designed wavelength. This optically thin photoconductive THz detector allows us to detect highly confined evanescent THz fields coupled through a deeply subwavelength aperture as small as 2 μm (λ/150 at 1 THz). As a result, by monolithically integrating the THz detector with apertures ranging from 2 to 5 μm we realize higher spatial resolution and higher sensitivity in aperture-type THz near-field microscopy and THz time-domain spectroscopy.« less

  2. A Deuterated Neutron Detector Array For Nuclear (Astro)Physics Studies

    NASA Astrophysics Data System (ADS)

    Almaraz-Calderon, Sergio; Asher, B. W.; Barber, P.; Hanselman, K.; Perello, J. F.

    2016-09-01

    The properties of neutron-rich nuclei are at the forefront of research in nuclear structure, nuclear reactions and nuclear astrophysics. The advent of intense rare isotope beams (RIBs) has opened a new door for studies of systems with very short half-lives and possible fascinating properties. Neutron spectroscopic techniques become increasingly relevant when these neutron rich nuclei are used in a variety of experiments. At Florida State University, we are developing a neutron detector array that will allow us to perform high-resolution neutron spectroscopic studies with stable and radioactive beams. The neutron detection system consists of 16 deuterated organic liquid scintillation detectors with fast response and pulse-shape discrimination capabilities. In addition to these properties, there is the potential to use the structure in the pulse-height spectra to extract the energy of the neutrons and thus produce directly excitation spectra. This type of detector uses deuterated benzene (C6D6) as the liquid scintillation medium. The asymmetric nature of the scattering between a neutron and a deuterium in the center of mass produces a pulse-height spectrum from the deuterated scintillator which contains useful information on the initial energy of the neutron. Work supported in part by the State of Florida and NSF Grant No. 1401574.

  3. Development of a unit cell for a Ge:Ga detector array

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Two modules of gallium-doped germanium (Ge:Ga) infrared detectors with integrated multiplexing readouts and supporting drive electronics were designed and tested. This development investigated the feasibility of producing two-dimensional Ge:Ga arrays by stacking linear modules in a housing capable of providing uniaxial stress for enhanced long-wavelength response. Each module includes 8 detectors (1x1x2 mm) mounted to a sapphire board. The element spacing is 12 microns. The back faces of the detector elements are beveled with an 18 deg angle, which was proved to significantly enhance optical absorption. Each module includes a different silicon metal-oxide semiconductor field effect transistor (MOSFET) readout. The first circuit was built from discrete MOSFET components; the second incorporated devices taken from low-temperature integrated circuit multiplexers. The latter circuit exhibited much lower stray capacitance and improved stability. Using these switched-FET circuits, it was demonstrated that burst readout, with multiplexer active only during the readout period, could successfully be implemented at approximately 3.5 K.

  4. Intensity information extraction in Geiger mode detector array based three-dimensional imaging applications

    NASA Astrophysics Data System (ADS)

    Wang, Fei

    2013-09-01

    Geiger-mode detectors have single photon sensitivity and picoseconds timing resolution, which make it a good candidate for low light level ranging applications, especially in the case of flash three dimensional imaging applications where the received laser power is extremely limited. Another advantage of Geiger-mode APD is their capability of large output current which can drive CMOS timing circuit directly, which means that larger format focal plane arrays can be easily fabricated using the mature CMOS technology. However Geiger-mode detector based FPAs can only measure the range information of a scene but not the reflectivity. Reflectivity is a major characteristic which can help target classification and identification. According to Poisson statistic nature, detection probability is tightly connected to the incident number of photon. Employing this relation, a signal intensity estimation method based on probability inversion is proposed. Instead of measuring intensity directly, several detections are conducted, then the detection probability is obtained and the intensity is estimated using this method. The relation between the estimator's accuracy, measuring range and number of detections are discussed based on statistical theory. Finally Monte-Carlo simulation is conducted to verify the correctness of this theory. Using 100 times of detection, signal intensity equal to 4.6 photons per detection can be measured using this method. With slight modification of measuring strategy, intensity information can be obtained using current Geiger-mode detector based FPAs, which can enrich the information acquired and broaden the application field of current technology.

  5. Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity

    SciTech Connect

    Mitrofanov, Oleg; Brener, Igal; Luk, Ting S.; Reno, John L.

    2015-11-19

    Nanoscale structuring of optical materials leads to modification of their properties and can be used for improving efficiencies of photonic devices and for enabling new functionalities. In ultrafast optoelectronic switches for generation and detection of terahertz (THz) radiation, incorporation of nanostructures allows us to overcome inherent limitations of photoconductive materials. We propose and demonstrate a nanostructured photoconductive THz detector for sampling highly localized THz fields, down to the level of λ/150. The nanostructure that consists of an array of optical nanoantennas and a distributed Bragg reflector forms a hybrid cavity, which traps optical gate pulses within the photoconductive layer. The effect of photon trapping is observed as enhanced absorption at a designed wavelength. This optically thin photoconductive THz detector allows us to detect highly confined evanescent THz fields coupled through a deeply subwavelength aperture as small as 2 μm (λ/150 at 1 THz). As a result, by monolithically integrating the THz detector with apertures ranging from 2 to 5 μm we realize higher spatial resolution and higher sensitivity in aperture-type THz near-field microscopy and THz time-domain spectroscopy.

  6. ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection

    SciTech Connect

    Wang Guoping; Chu Sheng; Zhan Ning; Liu Jianlin; Lin Yuqing; Chernyak, Leonid

    2011-01-24

    ZnO p-n homojunctions based on Sb-doped p-type nanowire array and n-type film were grown by combining chemical vapor deposition (for nanowires) with molecular-beam epitaxy (for film). Indium tin oxide and Ti/Au were used as contacts to the ZnO nanowires and film, respectively. Characteristics of field-effect transistors using ZnO nanowires as channels indicate p-type conductivity of the nanowires. Electron beam induced current profiling confirmed the existence of ZnO p-n homojunction. Rectifying I-V characteristic showed a turn-on voltage of around 3 V. Very good response to ultraviolet light illumination was observed from photocurrent measurements.

  7. SU-E-P-24: Simplified EDW Profile Measurements Using Two Commonly Available Detector Arrays

    SciTech Connect

    Reynolds, T; Arentsen, L; Watanabe, Y; Alaei, P

    2015-06-15

    Purpose: Enhanced dynamic wedge (EDW) profiles are needed as part of the commissioning of a treatment planning system. This work compares the acquisition of EDW profiles using a linear diode array (LDA) with two commonly used detector arrays available in the clinics, with the goal of identifying the simplest approach for these measurements. Methods: The measurements of EDW profiles were performed on a Varian TrueBeam linear accelerator for 6, 10, and 18 MV photon beams for all seven wedge angles at four depths. The measurements were done using the LDA 99 in Blue Phantom2 (IBA Dosimetry), and IC Profiler and MapCHECK2 (Sun Nuclear) in solid water phantoms. The water phantom was set up at 100 cm SSD, whereas the two other devices were set up at 75 cm due to the size limitations of the devices. The largest possible field size was used. The average and maximum percentage differences were examined within the central 90% of the field and in the penumbra. Results: Dose profiles measured with IC Profiler were in a good agreement with LDA 99 data. The average percentage difference within the field did not exceed 0.5% for all energies. MapCHECK2 measurements matched well with LDA 99 for 10 and 18 MV (within 0.3%) with discrepancies of up to 1.4% observed for the 6 MV beam. The maximum percentage differences for both devices in the penumbra exhibited larger variations than LDA 99 results due to differences in detector spacing and high dose gradient, as expected. Conclusion: Common linac QA devices such as IC Profiler or MapCHECK2 provide EDW beam profile data of reasonable accuracy as compared to measurements performed using a linear diode array in a water phantom, saving the expense and time involved in acquiring and setting up a LDA.

  8. High-performance SPAD array detectors for parallel photon timing applications

    NASA Astrophysics Data System (ADS)

    Rech, I.; Cuccato, A.; Antonioli, S.; Cammi, C.; Gulinatti, A.; Ghioni, M.

    2012-02-01

    Over the past few years there has been a growing interest in monolithic arrays of single photon avalanche diodes (SPAD) for spatially resolved detection of faint ultrafast optical signals. SPADs implemented in planar technologies offer the typical advantages of microelectronic devices (small size, ruggedness, low voltage, low power, etc.). Furthermore, they have inherently higher photon detection efficiency than PMTs and are able to provide, beside sensitivities down to single-photons, very high acquisition speeds. In order to make SPAD array more and more competitive in time-resolved application it is necessary to face problems like electrical crosstalk between adjacent pixel, moreover all the singlephoton timing electronics with picosecond resolution has to be developed. In this paper we present a new instrument suitable for single-photon imaging applications and made up of 32 timeresolved parallel channels. The 32x1 pixel array that includes SPAD detectors represents the system core, and an embedded data elaboration unit performs on-board data processing for single-photon counting applications. Photontiming information is exported through a custom parallel cable that can be connected to an external multichannel TCSPC system.

  9. Fabrication of 721-pixel silicon lens array of a microwave kinetic inductance detector camera

    NASA Astrophysics Data System (ADS)

    Mitsui, Kenji; Nitta, Tom; Okada, Norio; Sekimoto, Yutaro; Karatsu, Kenichi; Sekiguchi, Shigeyuki; Sekine, Masakazu; Noguchi, Takashi

    2015-04-01

    We have been developed a lens-integrated superconducting camera for millimeter and submillimeter astronomy. High-purity silicon (Si) is suitable for the lens array of the microwave kinetic inductance detector camera due to its high refractive index and low dielectric loss at low temperatures. The camera is an antenna-coupled Al coplanar waveguide on a Si substrate. Thus the lens and the device are made of the same material. We report a fabrication method of a 721-pixel Si lens array with an antireflection (AR) coating. The Si lens array was fabricated with an ultraprecision cutting machine. It uses TiAlN-coated carbide end mills attached with a high-speed spindle. The shape accuracy was less than 50 μm peak-to-valley and the surface roughness was arithmetic average roughness (Ra) of 1.8 μm. The mixed epoxy was used as an AR coating to adjust the refractive index. It was shaved to yield a thickness of 185 μm for 220 GHz. Narrow grooves were made between the lenses to prevent cracking due to the different thermal expansion coefficients of Si and the epoxy. The surface roughness of the AR coating was Ra of 2.4 to 4.2 μm.

  10. A 2×2 array of EMCCD-based solid state x-ray detectors.

    PubMed

    Sharma, P; Swetadri Vasan, S N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2012-01-01

    We have designed and developed a new solid-state x-ray imaging system that consists of a 2×2 array of electron multiplying charge coupled devices (EMCCDs). This system is intended for fluoroscopic and angiographic medical imaging. The key components are the four 1024 × 1024 pixel EMCCDs with a pixel size of 13 × 13 µm(2). Each EMCCD is bonded to a fiber optic plate (FOP), and optically coupled to a 350 µm thick micro-columnar CsI(TI) scintillator via a 3.22∶1 fiber optic taper (FOT). The detector provides x-ray images of 9 line pairs/mm resolution at 15 frames/sec and real-time live video at 30 frames/sec with binning at a lower resolution, independent of the electronic gain applied to the EMCCD. The total field of view (FOV) of the array is 8.45 cm × 8.45 cm. The system is designed to also provide the ability to do region-of- interest imaging (ROI) by selectively enabling individual modules of the array.

  11. A new DOI detector design using discrete crystal array with depth-dependent reflector patterns and single-ended readout

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Jae; Lee, Chaeyeong; Kang, Jihoon; Chung, Yong Hyun

    2017-01-01

    We developed a depth of interaction (DOI) positron emission tomography (PET) detector using depth-dependent reflector patterns in a discrete crystal array. Due to the different reflector patterns at depth, light distribution was changed relative to depth. As a preliminary experiment, we measured DOI detector module crystal identification performance. The crystal consisted of a 9×9 array of 2 mmx2 mmx20 mm lutetium-yttrium oxyorthosilicate (LYSO) crystals. The crystal array was optically coupled to a 64-channel position-sensitive photomultiplier tube with a 2 mmx2 mm anode size and an 18.1 mmx18.1 mm effective area. We obtained the flood image with an Anger-type calculation. DOI layers and 9×9 pixels were well distinguished in the obtained images. Preclinical PET scanners based on this detector design offer the prospect of high and uniform spatial resolution.

  12. 1024 × 1024 Si:As IBC detector arrays for JWST MIRI

    NASA Astrophysics Data System (ADS)

    Love, Peter J.; Hoffman, Alan W.; Lum, Nancy A.; Ando, Ken J.; Rosbeck, Joe; Ritchie, William D.; Therrien, Neil J.; Holcombe, Roger S.; Corrales, Elizabeth

    2005-08-01

    1K × 1K Si:As Impurity Band Conduction (IBC) arrays have been developed by RVS for the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI). MIRI provides imaging, coronagraphy, and low and medium resolution spectroscopy over the 5 - 28 μm band. The IBC devices are also suitable for other low-background applications. The Si:As IBC detectors have a pixel dimension of 25 μm and respond to infrared radiation between 5 and 28 μm, covering an important Mid-IR region beyond the 1 - 5 μm range covered by the JWST NIRCam and NIRSpec instruments. Due to high terrestrial backgrounds at the longer Mid-IR wavelengths, it is very difficult to conduct ground-based observations at these wavelengths. Hence, the MIRI instrument on JWST can provide science not obtainable from the ground. We describe results of the development of a new 1024 × 1024 Si:As IBC array that responds with high quantum efficiency over the wavelength range 5 to 28 μm. The previous generation's largest, most sensitive infrared (IR) detectors at these wavelengths were the 256 × 256 / 30 μm pitch Si:As IBC devices built by Raytheon for the SIRTF/IRAC instrument1. Detector performance results will be discussed, including relative spectral response, Responsive Quantum Efficiency (RQE) vs. detector bias, and dark current versus temperature. In addition, Sensor Chip Assembly (SCA) data will be presented from the first Engineering SCAs. The detector ROIC utilizes a PMOS Source Follower per Detector (SFD) input circuit with a well capacity of about 2 × 105 electrons. The read noise of the "bare" MUX is less than 12 e- rms with Fowler-8 sampling at an operating temperature of 7 K. A companion paper by Craig McMurtry (University of Rochester) will discuss the details of SB305 MUX noise measurements2. Other features of the IBC array include 4 video outputs and a separate reference output with a frame rate of 0.36 Hz (2.75 sec frame time). Power dissipation is about 0.5 mW at a 0.36 Hz frame rate

  13. Comparison of Stability-Indicating LC Methods Using Light Scattering and Photodiode Array Detection with Monolithic Column for Determination of Quinapril and Hydrochlorothiazide.

    PubMed

    de Diego, Marta; Godoy, Ricardo; Mennickent, Sigrid; Vergara, Carola; Charnock, Henry; Hernández, Camilo

    2016-09-01

    Rapid stability-indicating LC methods for simultaneous analysis of quinapril and hydrochlorothiazide were developed, validated and compared using evaporative light scattering detection (ELSD) and diode array detection (DAD). For the separation of quinapril, hydrochlorothiazide and its major degradation products, a monolithic column was used and the analytes were eluted within 7 min, applying gradient mobile phase in both methods. Quinapril was subjected to hydrolytic, oxidative, thermal, humidity and photolytic stress conditions. Degradation products were well resolved from main peaks and from each other, proving the stability-indicating power of the methods. The response with DAD was linear and the response with ELSD was fitted to a power function, for quinapril and hydrochlorothiazide concentrations of 20-160 and 12.5-100 µg mL(-1), respectively. DAD method achieved better precision than ELSD method, the LOQ of DAD was lower and the accuracy of the methods was similar. Quinapril degrade by hydrolysis and thermal stress, showing the formation of quinaprilat and quinapril diketopiperazine as degradants, which were identified by MS-MS. The methods were successfully applied to quantify quinapril and hydrochlorothiazide in commercial tablets. LC-DAD and LC-ELSD methods are suitable to assess the stability and routine analysis of quinapril and hydrochlorothiazide in pharmaceutical industry.

  14. Electronics and data acquisition system of the extensive air shower detector array at the University of Puebla

    NASA Astrophysics Data System (ADS)

    Perez, E.; Salazar, H.; Villasenor, L.; Martinez, O.; Conde, R.; Murrieta, T.

    Field programmable gate arrays (FPGAs) are playing an increasing role in DAQ systems in cosmic ray experiments due to their high speed and integration and their low cost and low power comsumption. In this paper we describe in detail the new electronics and data acquisition system based on FPGA boards of the extensive air shower detector array built in the Campus of the University of Puebla. The purpose of this detector array is to measure the energy and arrival direction of primary cosmic rays with energies around 1015 eV. The array consists of 10 liquid scintillator detectors and 6 water Cherenkov detectors (of 1.86 m2 cross section), distributed in a square grid with a detector spacing of 20 m over an area of 4000 m2. The electronics described also makes use of analog to digital converters with a resolution of 10 bits and sampling speeds of 100 MS/s to digitize the PMT signals. We also discuss the advantages of discriminating the PMT signals inside the FPGAs with respect to the conventional use of dedicated discrimination circuits.

  15. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System

    PubMed Central

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-01-01

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s. PMID:26950128

  16. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System.

    PubMed

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-03-02

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s.

  17. Coherent summation of spatially distorted laser Doppler signals by using a two-dimensional heterodyne detector array

    NASA Technical Reports Server (NTRS)

    Chan, Kin P.; Killinger, Dennis K.

    1992-01-01

    Phase-sensitive coherent summation of individual heterodyne detector array signals was demonstrated for the enhanced detection of spatially distorted laser Doppler returns. With the use of a 2 x 2 heterodyne detector array, the phase and amplitude of a time-varying speckle pattern was detected, and the signal-to-noise ratio of the Doppler shift estimate was shown to be improved by a factor of 2, depending on the extent of spatial coherence loss. These results are shown to agree with a first-order analysis and indicate the advantage of coherent summation for both short-range laser Doppler velocimetry and long-range atmospheric coherent lidar.

  18. Performance characteristics of the new detector array for the SANS2d instrument on the ISIS spallation neutron source

    NASA Astrophysics Data System (ADS)

    Duxbury, D.; Heenan, R.; McPhail, D.; Raspino, D.; Rhodes, N.; Rogers, S.; Schooneveld, E.; Spill, E.; Terry, A.

    2014-12-01

    The performance of the new position sensitive neutron detector arrays of the Small Angle Neutron Scattering (SANS) instrument SANS2d is described. The SANS2d instrument is one of the seven instruments currently available for users on the second target station (TS2) of the ISIS spallation neutron source. Since the instrument became operational in 2009 it has used two one metre square multi-wire proportional detectors (MWPC). However, these detectors suffer from a low count rate capability, are easily damaged by excess beam and are then expensive to repair. The new detector arrays each consist of 120 individual position sensitive detector tubes, filled with 15 bar of 3He. Each of the tubes is one metre long and has a diameter of 8mm giving a detector array with an overall area of one square metre. Two such arrays have been built and installed in the SANS2d vacuum tank where they are currently taking user data. For SANS measurements operation of the detector within a vacuum is essential in order to reduce air scattering. A novel, fully engineered approach has been utilised to ensure that the high voltage connections and preamps are located inside the SANS2d vacuum tank at atmospheric pressure, within air tubes and air boxes respectively. The signal processing electronics and data acquisition system are located remotely in a counting house outside of the blockhouse. This allows easy access for maintenance purposes, without the need to remove the detectors from the vacuum tank. The design will be described in detail. A position resolution of 8mm FWHM or less has been measured along the length of the tubes. The initial measurements taken from a standard sample indicate that whilst the detector arrays themselves only represent a moderate improvement in overall detection efficiency (~ 20%), compared to the previous detector, the count rate capability is increased by a factor of 100. A significant advantage of the new array is the ability to change a single tube in situ

  19. Simultaneous determination of vitexin-2"-O-glucoside, vitexin-2"-O-rhamnoside, rutin, and hyperoside in the extract of hawthorn (Crataegus pinnatifida Bge.) leaves by RP-HPLC with ultraviolet photodiode array detection.

    PubMed

    Cheng, Shan; Qiu, Feng; Huang, Jia; He, Junqi

    2007-03-01

    RP-HPLC with UV photodiode array detection (UV-DAD) was developed and validated for the simultaneous determination of vitexin-2"-O-glucoside, vitexin-2"-O-rhamnoside, rutin, and hyperoside in the extract of hawthorn (Crataegus pinnatifida Bge.) leaves. The analytes of interest were separated on a Diamonsil C18 column (250 x 4.6 mm id, 5 microm) with the mobile phase consisting of THF/ACN/methanol/ 0.05% phosphoric acid solution (pH 5.0) (18:1:1:80 v/vl/v). The flow rate was set at 1.0 mL/min and the eluent was detected at 340 nm for the four flavonoids. The method was linear over the studied range of 1.00-100 microg/mL for the four analytes of interest with the correlation coefficient for each analyte greater than 0.999. The LOD and LOQwere 0.03 and 0.10 microg/mL, 0.03 and 0.10 microg/mL, 0.05 and 0.15 pg/mL, 0.10 and 0.30 microg/mL for vitexin-2"-O-glucoside, vitexin-2"-0-rhamnoside, rutin, and hyperoside, respectively. The optimized method was successfully applied to the analysis of four important flavonoids in the extract of hawthorn leaves. The total amounts of the four flavonoids were 22.2, 62.3, 4.27, and 8.24 mg/g dry weight for vitexin-2"-O-glucoside, vitexin-2"-O-rhamnoside, rutin, and hyperoside in the extract of hawthorn leaves, respectively.

  20. An improved high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry method for determination of chlorophylls and their derivatives in freeze-dried and hot-air-dried Rhinacanthus nasutus (L.) Kurz.

    PubMed

    Kao, Tsai Hua; Chen, Chia Ju; Chen, Bing Huei

    2011-10-30

    Rhinacanthus nasutus (L.) Kurz, a traditional Chinese herb possessing antioxidant and anti-cancer activities, has been reported to contain functional components like carotenoids and chlorophylls. However, the variety and amount of chlorophylls remain uncertain. The objectives of this study were to develop a high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry (HPLC-DAD-APCI-MS) method for determination of chlorophylls and their derivatives in hot-air-dried and freeze-dried R. nasutus. An Agilent Eclipse XDB-C18 column and a gradient mobile phase composed of methanol/N,N-dimethylformamide (97:3, v/v), acetonitrile and acetone were employed to separate internal standard zinc-phthalocyanine plus 12 cholorophylls and their derivatives within 21 min, including chlorophyll a, chlorophyll a', hydroxychlorophyll a, 15-OH-lactone chlorophyll a, chlorophyll b, chlorophyll b', hydroxychlorophyll b, pheophytin a, pheophytin a', hydroxypheophytin a, hydroxypheophytin a' and pheophytin b in hot-air-dried R. nasutus with flow rate at 1 mL/min and detection at 660 nm. But, in freeze-dried R. nasutus, only 4 chlorophylls and their derivatives, including chlorophyll a, chlorophyll a', chlorophyll b and pheophytin a were detected. Zinc-phthalocyanine was found to be an appropriate internal standard to quantify all the chlorophyll compounds. After quantification by HPLC-DAD, both chlorophyll a and pheophytin a were the most abundant in hot-air-dried R. nasutus, while in freeze-dried R. nasutus, chlorophyll a and chlorophyll b dominated.

  1. Some studies of avalanche photodiode readout of fast scintillators

    SciTech Connect

    Holl, I.; Lorenz, E.; Natkaniez, S.; Renker, D.; Schmelz, C. |; Schwartz, B.

    1995-08-01

    Photomultipliers (PMs) are the classical readout element for scintillation detectors in high energy particle physics, nuclear physics, medical physics, industrial radiation monitors etc. Here, large area avalanche photodiodes with high performance, narrow operation tolerances and high reliability have recently become available. The authors report on some tests of their performance in the readout of fast scintillators.

  2. SiPM detectors for the ASTRI project in the framework of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Billotta, Sergio; Marano, Davide; Bonanno, Giovanni; Belluso, Massimiliano; Grillo, Alessandro; Garozzo, Salvatore; Romeo, Giuseppe; Timpanaro, Maria Cristina; Maccarone, Maria Concetta C.; Catalano, Osvaldo; La Rosa, Giovanni; Sottile, Giuseppe; Impiombato, Domenico; Gargano, Carmelo; Giarrusso, Salavtore

    2014-07-01

    The Cherenkov Telescope Array (CTA) is a worldwide new generation project aimed at realizing an array of a hundred ground based gamma-ray telescopes. ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is the Italian project whose primary target is the development of an end-to-end prototype, named ASTRI SST-2M, of the CTA small size class of telescopes devoted to investigation of the highest energy region, from 1 to 100 TeV. Next target is the implementation of an ASTRI/CTA mini-array based on seven identical telescopes. Silicon Photo-Multipliers (SiPMs) are the semiconductor photosensor devices designated to constitute the camera detection system at the focal plane of the ASTRI telescopes. SiPM photosensors are suitable for the detection of the Cherenkov flashes, since they are very fast and sensitive to the light in the 300-700nm wavelength spectrum. Their drawbacks compared to the traditional photomultiplier tubes are high dark count rates, after-pulsing and optical cross-talk contributions, and intrinsic gains strongly dependent on temperature. Nonetheless, for a single pixel, the dark count rate is well below the Night Sky Background, the effects of cross-talk and afterpulses are typically lower than 20%, and the gain can be kept stable against temperature variations by means of adequate bias voltage compensation strategies. This work presents and discusses some experimental results from a large set of measurements performed on the SiPM sensors to be used for the ASTRI SST-2M prototype camera and on recently developed detectors demonstrating outstanding performance for the future evolution of the project in the ASTRI/CTA mini-array.

  3. Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver

    NASA Astrophysics Data System (ADS)

    Posada, Chrystian M.; Ade, Peter A. R.; Anderson, Adam J.; Avva, Jessica; Ahmed, Zeeshan; Arnold, Kam S.; Austermann, Jason; Bender, Amy N.; Benson, Bradford A.; Bleem, Lindsey; Byrum, Karen; Carlstrom, John E.; Carter, Faustin W.; Chang, Clarence; Cho, Hsiao-Mei; Cukierman, Ari; Czaplewski, David A.; Ding, Junjia; Divan, Ralu N. S.; de Haan, Tijmen; Dobbs, Matt; Dutcher, Daniel; Everett, Wenderline; Gannon, Renae N.; Guyser, Robert J.; Halverson, Nils W.; Harrington, Nicholas L.; Hattori, Kaori; Henning, Jason W.; Hilton, Gene C.; Holzapfel, William L.; Huang, Nicholas; Irwin, Kent D.; Jeong, Oliver; Khaire, Trupti; Korman, Milo; Kubik, Donna L.; Kuo, Chao-Lin; Lee, Adrian T.; Leitch, Erik M.; Lendinez Escudero, Sergi; Meyer, Stephan S.; Miller, Christina S.; Montgomery, Joshua; Nadolski, Andrew; Natoli, Tyler J.; Nguyen, Hogan; Novosad, Valentyn; Padin, Stephen; Pan, Zhaodi; Pearson, John E.; Rahlin, Alexandra; Reichardt, Christian L.; Ruhl, John E.; Saliwanchik, Benjamin; Shirley, Ian; Sayre, James T.; Shariff, Jamil A.; Shirokoff, Erik D.; Stan, Liliana; Stark, Antony A.; Sobrin, Joshua; Story, Kyle; Suzuki, Aritoki; Tang, Qing Yang; Thakur, Ritoban B.; Thompson, Keith L.; Tucker, Carole E.; Vanderlinde, Keith; Vieira, Joaquin D.; Wang, Gensheng; Whitehorn, Nathan; Yefremenko, Volodymyr; Yoon, Ki Won

    2016-07-01

    Detectors for cosmic microwave background (CMB) experiments are now essentially background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. Here, we present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonal polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES's Tc is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from

  4. Recent detector developments at SINTEF (industrial presentation)

    NASA Astrophysics Data System (ADS)

    Sundby Avset, Berit; Evensen, Lars; Uri Jensen, Geir; Mo, Sjur; Kari Schjølberg-Henriksen; Westgaard, Trond

    1998-02-01

    Results from SINTEF's research on radiation hardness of silicon detectors, thin silicon detectors, silicon drift devices, reach-through avalanche photodiodes, and detectors with thin dead layers are presented.

  5. Determination of selected water-soluble vitamins using hydrophilic chromatography: a comparison of photodiode array, fluorescence, and coulometric detection, and validation in a breakfast cereal matrix.

    PubMed

    Langer, Swen; Lodge, John K

    2014-06-01

    Water-soluble vitamins are an important class of compounds that require quantification from food sources to monitor nutritional value. In this study we have analysed six water-soluble B vitamins ([thiamine (B1), riboflavin (B2), nicotinic acid (B3, NAc), nicotinamide (B3, NAm), pyridoxal (B6), folic acid (B9)], and ascorbic acid (vit C) with hydrophilic interaction liquid chromatography (HILIC), and compared UV, fluorescent (FLD) and coulometric detection to optimise a method to quantitate the vitamins from food sources. Employing UV/diode array (DAD) and fluorimetric detection, six B vitamins were detected in a single run using gradient elution from 100% to 60% solvent B [10mM ammonium acetate, pH 5.0, in acetonitrile and water 95:5 (v:v)] over 18 min. UV detection was performed at 268 nm for B1, 260 nm for both B3 species and 284 nm for B9. FLD was employed for B2 at excitation wavelength of 268 nm, emission of 513 nm, and 284 nm/317 nm for B6. Coulometric detection can be used to detect B6 and B9, and vit C, and was performed isocratically at 75% and 85% of solvent B, respectively. B6 was analysed at a potential of 720 mV, while B9 was analysed at 600 mV, and vit C at 30 mV. Retention times (0.96 to 11.81 min), intra-day repeatability (CV 1.6 to 3.6), inter-day variability (CV 1.8 to 11.1), and linearity (R 0.9877 to 0.9995) remained good under these conditions with limits of detection varying from 6.6 to 164.6 ng mL(-1), limits of quantification between 16.8 and 548.7 ng mL(-1). The method was successfully applied for quantification of six B vitamins from a fortified food product and is, to our knowledge, the first to simultaneously determine multiple water-soluble vitamins extracted from a food matrix using HILIC.

  6. Performance of multiplexed Ge:Ga detector arrays in the far infrared

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam; Mccreight, Craig

    1990-01-01

    The performance of two multi-element, multiplexed Ge:Ga linear arrays under low-background conditions was investigated. The on-focal switching is accomplished by MOSFET switches, and the integrated charge is made available through MOSFET source followers. The tests were conducted at 106 microns, and the radiation on the detectors was confined to a spectral window 1.25 microns wide using a stack of cold filters. At 4.2 K, the highest responsivity was 584 A/W, the noise equivalent power was 1.0 x 10(exp -16) W/square root of Hz, and the read noise was 6100 electrons/sample. A detailed description of the test setup and procedure is presented.

  7. On the estimation of target depth using the single transmit multiple receive metal detector array

    NASA Astrophysics Data System (ADS)

    Ho, K. C.; Gader, P. D.

    2012-06-01

    This paper investigates the use of the Single Transmit Multiple Receive (STMR) metal detector (MD) array to estimate the depth of metal targets, such as 155mm shells. The depth estimation problem using MD has been investigated by a number of researchers and the processing was performed along the down-track. The proposed method takes a different approach by exploring the MD responses in cross-track to achieve the depth estimation. It is found that the normalized energy spread of the MD output is narrower for shallow targets and wider for deeper targets. Based on this observation, a method is derived to estimate the depth of a target. Experimental results from the data collected at an U.S. Army test site validate the performance of the proposed depth estimator.

  8. Development of Multilayer Analyzer Array Detectors for X-ray Fluorescence at the Third Generation Synchrotron Source

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Rosenbaum, G.; Liu, R.; Liu, C.; Carmeli, C.; Bunker, G.; Fischer, D.

    2004-05-01

    The development of Multilayer Analyzer Array Detector (MAAD) for X-ray fluorescence eliminates the count rate limitation encountered with multi-element Ge detectors. A 24-element multilayer detector has been fabricated that is tunable in a large energy region. This detector has been operational for more than two years at the BioCAT Beamline of the Advanced Photon Source at Argonne National Laboratory. Here we report our recent progress in developing multilayer detectors working in lower energy regions, in particular, performance at Ca Kα fluorescence energy and test results at soft x-ray energies. The band width of the analyzer response is found to be 3-4% of the fluorescence energy. Namely, at the Ca Kα energy, the band width is 140 eV; it is reduced to about 60 eV at Al Kα fluorescence energy. The throughput of the detector in this energy region (1.5-3.6 KeV) is 20% to 30%. These results demonstrate the feasibility for constructing multilayer analyzer array detectors for use in the soft x-ray region.

  9. Investigation of avalanche photodiodes radiation hardness for baryonic matter studies

    NASA Astrophysics Data System (ADS)

    Kushpil, V.; Mikhaylov, V.; Ladygin, V. P.; Kugler, A.; Kushpil, S.; Svoboda, O.; Tlustý, P.

    2016-01-01

    Modern avalanche photodiodes (APDs) with high gain are good device candidates for light readout from detectors applied in relativistic heavy ion collisions experiments. The results of the investigations of the APDs properties from Zecotek, Ketek and Hamamatsu manufacturers after irradiation using secondary neutrons from cyclotron facility U120M at NPI of ASCR in Řež are presented. The results of the investigations can be used for the design of the detectors for the experiments at NICA and FAIR.

  10. Final report on LDRD project : single-photon-sensitive imaging detector arrays at 1600 nm.

    SciTech Connect

    Childs, Kenton David; Serkland, Darwin Keith; Geib, Kent Martin; Hawkins, Samuel D.; Carroll, Malcolm S.; Klem, John Frederick; Sheng, Josephine Juin-Jye; Patel, Rupal K.; Bolles, Desta; Bauer, Tom M.; Koudelka, Robert

    2006-11-01

    The key need that this project has addressed is a short-wave infrared light detector for ranging (LIDAR) imaging at temperatures greater than 100K, as desired by nonproliferation and work for other customers. Several novel device structures to improve avalanche photodiodes (APDs) were fabricated to achieve the desired APD performance. A primary challenge to achieving high sensitivity APDs at 1550 nm is that the small band-gap materials (e.g., InGaAs or Ge) necessary to detect low-energy photons exhibit higher dark counts and higher multiplication noise compared to materials like silicon. To overcome these historical problems APDs were designed and fabricated using separate absorption and multiplication (SAM) regions. The absorption regions used (InGaAs or Ge) to leverage these materials 1550 nm sensitivity. Geiger mode detection was chosen to circumvent gain noise issues in the III-V and Ge multiplication regions, while a novel Ge/Si device was built to examine the utility of transferring photoelectrons in a silicon multiplication region. Silicon is known to have very good analog and GM multiplication properties. The proposed devices represented a high-risk for high-reward approach. Therefore one primary goal of this work was to experimentally resolve uncertainty about the novel APD structures. This work specifically examined three different designs. An InGaAs/InAlAs Geiger mode (GM) structure was proposed for the superior multiplication properties of the InAlAs. The hypothesis to be tested in this structure was whether InAlAs really presented an advantage in GM. A Ge/Si SAM was proposed representing the best possible multiplication material (i.e., silicon), however, significant uncertainty existed about both the Ge material quality and the ability to transfer photoelectrons across the Ge/Si interface. Finally a third pure germanium GM structure was proposed because bulk germanium has been reported to have better dark count properties. However, significant

  11. Large dynamic range radiation detector and methods thereof

    DOEpatents

    Marrs, Roscoe E [Livermore, CA; Madden, Norman W [Sparks, NV

    2012-02-14

    According to one embodiment, a radiation detector comprises a scintillator and a photodiode optically coupled to the scintillator. The radiation detector also includes a bias voltage source electrically coupled to the photodiode, a first detector operatively electrically coupled to the photodiode for generating a signal indicative of a level of a charge at an output of the photodiode, and a second detector operatively electrically coupled to the bias voltage source for generating a signal indicative of an amount of current flowing through the photodiode.

  12. The angular dependence of a two dimensional monolithic detector array for dosimetry in small radiation fields

    NASA Astrophysics Data System (ADS)

    Stansook, N.; Petasecca, M.; Utitsarn, K.; Newall, M.; Metcalfe, P.; Carolan, M.; Lerch, M.; Rosenfeld, A. B.

    2017-01-01

    The purpose of this study is to investigate the directional dependence of a two dimensional monolithic detector array (M512) under 6 MV photon irradiation and to evaluate the effect of field size on angular dependence. Square fields of sizes: 3x3 cm2 and 10x10 cm2 were measured at the iso-centre of a cylindrical phantom. Beam angles with incidences from 00- 1800 in increments of 150 were used to investigate the central pixel angular response of M512, normalized to the pixel response for normal (0°) beam incidence. The angular response of the detector was compared to the response of EBT3 radiochromic film in the identical geometric orientation. The maximum angular dependence was observed at the angle 90°±15° to be -18.62% and -17.70% for the field sizes 3x3 cm2 and 10x10 cm2, respectively. The angular dependence of M512 showed no significant difference between field sizes of 3x3 cm2 and 10x10 cm2 (p>0.05). The maximum dose difference measured by the central pixel of M512 and EBT3 for all angles are -20% for 3x3 cm2 field size and -18.58% for the 10x10 cm2 field. The diode array’s size and packaging effects the angular response of the detector. The angular correction factor is necessary to apply to increase accuracy in dosimetry for arc treatment delivery.

  13. I-V and noise performance in MWIR to VLWIR large area Hg1-xCdxTe photodiodes

    NASA Astrophysics Data System (ADS)

    D'Souza, A. I.; Stapelbroek, M. G.; Dolan, P. N.; Wijewarnasuriya, P. S.; Boehmer, E.; Smith, D. S.; Ehlert, J. C.; Andrews, J. E.

    2005-05-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS), is overseen by the Integrated Program Office (IPO), a joint effort of the Department of Defense, Department of Commerce and NASA. One of the instruments on the NPOESS satellite is the Cross-track Infrared Sounder (CrIS) instrument. CrIS is a Fourier Transform interferometric infrared (FTIR) sensor used to measure earth radiance at high spectral resolution to derive pressure, temperature, and moisture profiles of the atmosphere from the ground on up. Each CrIS instrument contains three different cutoff wavelength (λc)focal plane modules (FPMs): an SWIR FPM [λc(98 K) ~ 5 mm], MWIR FPM [λc(98 K) ~ 9 mm] and a LWIR FPM [λc(81 K) ~ 15.5 mm]. There are nine large (850 mm diameter) photodiodes per FPM, the nine detectors being arranged in a 3 x 3 array. The nine detectors are placed under tight tolerances in the X, Y, and Z dimensions. The steps involved in the transfer of photodiodes as part of a newly fabricated wafer to the mounting of the photodiodes on the FPM involves many processing steps including a significant amount of dicing, cleaning, wire bonding and baking at elevated temperatures. Quantum efficiency and 1/f noise in Hg1-xCdxTe photodiodes are critical parameters that limit the sensitivity of infrared sounders. The ratio α, defined as the noise current in unit bandwidth in(f = 1 Hz, Vd, Δf = 1 Hz) to the dark current Id(Vd), that is, α = in/Id is one of the parameters used to select photodiodes for placement in FPMs. α is equivalent to √αH/N that appears in the well-known Hooge expression. For the sixty-one, λc ~ 9 μm photodiodes measured at 60 mV reverse bias and at 98 K, the average value of αdark = 1.3 x 10-4 in the dark and αPHOTO = in/IPHOTO is ~ 2 x 10-6 under illuminated conditions. These values of α are a factor of two lower than that reported previously. The λc ~ 15.5 μm photodiodes have average αdark = 1.3 x 10-5 with the highest performance

  14. Effect of scattered electrons on the ‘Magic Plate’ transmission array detector response

    NASA Astrophysics Data System (ADS)

    Alrowaili, Z. A.; Lerch, M.; Petasecca, M.; Carolan, M.; Rosenfeld, A.

    2017-02-01

    Transmission type detectors can provide a measure of the energy fluence and if they are real-time systems that do not significantly attenuate the radiation beam have a distinct advantage over the current method as Quality Assurance (QA) could in principle be done during the actual patient treatment. The use of diode arrays in QA holds much promise due to real-time operation and feedback when compared to other methods e.g. films which are not real-time. The goal of this work is to describe the characterization of the radiation response of a silicon diode array called the Magic Plate (MP) when operated in transmission mode (MPTM). The response linearity of MPTM was excellent (R2=1). When the MP was placed in linac block tray position; the change in PDD at phantom surface (SSD 100 cm) for a 10 × 10 cm2 was -0.037 %, -0.178 % and -0.949 % for 6 MV, 10 MV and 18 MV beams. Therefore, MP does not provide a significant increase in skin dose to the patient and the percentage depth doses showed an excellent agreement with and without MPTM for 6 MV, 10 MV and 18 MV beams.

  15. Calibration Scheme for Large Kinetic Inductance Detector Arrays Based on Readout Frequency Response

    NASA Astrophysics Data System (ADS)

    Bisigello, L.; Yates, S. J. C.; Murugesan, V.; Baselmans, J. J. A.; Baryshev, A. M.

    2016-07-01

    Microwave kinetic inductance detector (MKID) provides a way to build large ground-based sub-mm instruments such as NIKA and A-MKID. For such instruments, therefore, it is important to understand and characterize the response to ensure good linearity and calibration over a wide dynamic range. We propose to use the MKID readout frequency response to determine the MKID responsivity to an input optical source power. A signal can be measured in a KID as a change in the phase of the readout signal with respect to the KID resonant circle. Fundamentally, this phase change is due to a shift in the KID resonance frequency, in turn due to a radiation induced change in the quasiparticle number in the superconducting resonator. We show that the shift in resonant frequency can be determined from the phase shift by using KID phase versus frequency dependence using a previously measured resonant frequency. Working in this calculated resonant frequency, we gain near linearity and constant calibration to a constant optical signal applied in a wide range of operating points on the resonance and readout powers. This calibration method has three particular advantages: first, it is fast enough to be used to calibrate large arrays, with pixel counts in the thousands of pixels; second, it is based on data that are already necessary to determine KID positions; third, it can be done without applying any optical source in front of the array.

  16. Device localization and dynamic scan plane selection using a wireless MRI detector array

    PubMed Central

    Riffe, Matthew J.; Yutzy, Stephen R.; Jiang, Yun; Twieg, Michael D.; Blumenthal, Colin J.; Hsu, Daniel P.; Pan, Li; Gilson, Wesley D.; Sunshine, Jeffrey L.; Flask, Christopher A.; Duerk, Jeffrey L.; Nakamoto, Dean; Gulani, Vikas; Griswold, Mark A.

    2013-01-01

    Purpose A prototype wireless guidance device using single sideband amplitude modulation (SSB) is presented for a 1.5T MRI system. Methods The device contained three fiducial markers each mounted to an independent receiver coil equipped with wireless SSB technology. Acquiring orthogonal projections of these markers determined the position and orientation of the device, which was used to define the scan plane for a subsequent image acquisition. Device localization and scan plane update required approximately 30 ms, so it could be interleaved with high temporal resolution imaging. Since the wireless device is used for localization and doesn’t require full imaging capability, the design of the SSB wireless system was simplified by allowing an asynchronous clock between the transmitter and receiver. Results When coupled to a high readout bandwidth, the error caused by the lack of a shared frequency reference was quantified to be less than one pixel (0.78 mm) in the projection acquisitions. Image-guidance with the prototype was demonstrated with a phantom where a needle was successfully guided to a target and contrast was delivered. Conclusion The feasibility of active tracking with a wireless detector array is demonstrated. Wireless arrays could be incorporated into devices to assist in image-guided procedures. PMID:23900921

  17. Examination of cotton fibers and common contaminants using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical imaging of cotton fibers and common contaminants in fibers is presented. Chemical imaging was performed with an infrared microscope equipped with a Focal-Plane Array (FPA) detector. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In a...

  18. Performance of new 8-inch photomultiplier tube used for the Tibet muon-detector array

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Huang, J.; Chen, D.; Zhai, L.-M.; Chen, X.; Hu, X.-B.; Lin, Y.-H.; Jin, H.-B.; Zhang, X.-Y.; Feng, C.-F.; Jia, H.-Y.; Zhou, X.-X.; Danzengluobu; Chen, T.-L.; Labaciren; Liu, M.-Y.; Gao, Q.; Zhaxiciren

    2016-06-01

    Since 2014, a new hybrid experiment consisting of a high-energy air-shower-core array (YAC-II), a high-density air-shower array (Tibet-III) and a large underground water-Cherenkov muon-detector array (MD) has been continued by the Tibet ASγ collaboration to measure the chemical composition of cosmic rays in the wide energy range including the ``knee''. In this experiment, YAC-II is used to select high energy core events induced by cosmic rays in the above energy region, while MD is used to estimate the type of nucleus of primary particles by measuring the number of muons contained in the air showers. However, the dynamic range of each MD cell is only 5 to 2000 photoelectrons (PEs) which is mainly designed for observation of high-energy celestial gamma rays. In order to obtain the primary proton, helium and iron spectra and their ``knee'' positions with energy up to 1016 eV, each of PMTs equipped to the MD cell is required to measure the number of photons capable of covering a wide dynamic range of 100-106 PEs according to Monte Carlo simulations. In this paper, we firstly compare the characteristic features between R5912-PMT made by Japan Hamamatsu and CR365-PMT made by Beijing Hamamatsu. If there exists no serious difference, we will then add two 8-inch-in-diameter PMTs to meet our requirements in each MD cell, which are responsible for the range of 100-10000 PEs and 2000-1000000 PEs, respectively. That is, MD cell is expected to be able to measure the number of muons over 6 orders of magnitudes.

  19. Dosimetric Characteristics of a Two-Dimensional Diode Array Detector Irradiated with Passively Scattered Proton Beams

    PubMed Central

    Liengsawangwong, Praimakorn; Sahoo, Nanayan; Ding, Xiaoning; Lii, MingFwu; Gillin, Michale T.; Zhu, Xiaorong Ronald

    2015-01-01

    Purpose: To evaluate the dosimetric characteristics of a two-dimensional (2D) diode array detector irradiated with passively scattered proton beams. Materials and Methods: A diode array detector, MapCHECK (Model 1175, Sun Nuclear, Melbourne, FL, USA) was characterized in passive-scattered proton beams. The relative sensitivity of the diodes and absolute dose calibration were determined using a 250 MeV beam. The pristine Bragg curves (PBCs) measured by MapCHECK diodes were compared with those of an ion chamber using a range shift method. The water-equivalent thickness (WET) of the diode array detector’s intrinsic buildup also was determined. The inverse square dependence, linearity, and other proton dosimetric quantities measured by MapCHECK were also compared with those of the ion chambers. The change in the absolute dose response of the MapCHECK as a function of accumulated radiation dose was used as an indicator of radiation damage to the diodes. 2D dose distribution with and without the compensator were measured and compared with the treatment planning system (TPS) calculations. Results: The WET of the MapCHECK diode’s buildup was determined to be 1.7 cm. The MapCHECK-measured PBC were virtually identical to those measured by a parallel-plate ion chamber for 160, 180, and 250 MeV proton beams. The inverse square results of the MapCHECK were within ±0.4% of the ion chamber results. The linearity of MapCHECK results was within 1% of those from the ion chamber as measured in the range between 10 and 300 MU. All other dosimetric quantities were within 1.3% of the ion chamber results. The 2D dose distributions for non-clinical fields without compensator and the patient treatment fields with the compensator were consistent with the TPS results. The absolute dose response of the MapCHECK was changed by 7.4% after an accumulated dose increased by 170 Gy. Conclusions: The MapCHECK is a convenient and useful tool for 2D dose distribution measurements using passively

  20. Thermal and Cold Neutron Computed Tomography at the Los Alamos Neutron Scattering Center Using an Amorphous Silicon Detector Array

    SciTech Connect

    Claytor, T.N.; Schwab, M.J.; Farnum, E.H.; McDonald, T.E.; Summa, D.A.; Sheats, M.J.; Stupin, D.M.; Sievers, W.L.

    1998-07-19

    The use of the EG and G-Heimann RTM 128 or dpiX FS20 amorphous silicon (a-Si) detector array for thermal neutron radiography/computed tomography has proven to be a quick and efficient means of producing high quality digital radiographic images. The resolution, although not as good as film, is about 750 pm with the RTM and 127 pm with the dpiX array with a dynamic range in excess of 2,800. In many respects using an amorphous silicon detector is an improvement over other techniques such as imaging with a CCD camera, using a storage phosphor plate or film radiography. Unlike a CCD camera, which is highly susceptible to radiation damage, a-Si detectors can be placed in the beam directly behind the object under examination and do not require any special optics or turning mirrors. The amorphous silicon detector also allows enough data to be acquired to construct a digital image in just a few seconds (minimum gate time 40 ms) whereas film or storage plate exposures can take many minutes and then need to be digitized with a scanner. The flat panel can therefore acquire a complete 3D computed tomography data set in just a few tens of minutes. While a-Si detectors have been proposed for use in imaging neutron beams, this is the first reported implementation of such a detector for neutron imaging.

  1. Design, fabrication and testing of 17um pitch 640x480 uncooled infrared focal plane array detector

    NASA Astrophysics Data System (ADS)

    Jiang, Lijun; Liu, Haitao; Chi, Jiguang; Qian, Liangshan; Pan, Feng; Liu, Xiang

    2015-10-01

    Uncooled infrared focal plane array (UIRFPA) detectors are widely used in industrial thermography cameras, night vision goggles, thermal weapon sights, as well as automotive night vision systems. To meet the market requirement for smaller pixel pitch and higher resolution, we have developed a 17um pitch 640x480 UIRFPA detector. The detector is based on amorphous silicon (a-Si) microbolometer technology, the readout integrated circuit (ROIC) is designed and manufactured with 0.35um standard CMOS technology on 8 inch wafer, the microbolometer is fabricated monolithically on the ROIC using an unique surface micromachining process developed inside the company, the fabricated detector is vacuum packaged with hermetic metal package and tested. In this paper we present the design, fabrication and testing of the 17um 640x480 detector. The design trade-off of the detector ROIC and pixel micro-bridge structure will be discussed, by comparison the calculation and simulation to the testing results. The novel surface micromachining process using silicon sacrificial layer will be presented, which is more compatible with the CMOS process than the traditional process with polyimide sacrificial layer, and resulted in good processing stability and high fabrication yield. The performance of the detector is tested, with temperature equivalent temperature difference (NETD) less than 60mK at F/1 aperture, operability better than 99.5%. The results demonstrate that the detector can meet the requirements of most thermography and night vision applications.

  2. Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Herrero, Federico A.; Sigwarth, John; Goldsman, Neil; Akturk, Akin

    2010-01-01

    The proposed device is capable of counting ultraviolet (UV) photons, is compatible for inclusion into space instruments, and has applications as deep- UV detectors for calibration systems, curing systems, and crack detection. The device is based on a Separate Absorption and Charge Multiplication (SACM) structure. It is based on aluminum gallium nitride (AlGaN) absorber on a silicon carbide APD (avalanche photodiode). The AlGaN layer absorbs incident UV photons and injects photogenerated carriers into an underlying SiC APD that is operated in Geiger mode and provides current multiplication via avalanche breakdown. The solid-state detector is capable of sensing 100-to-365-nanometer wavelength radiation at a flux level as low as 6 photons/pixel/s. Advantages include, visible-light blindness, operation in harsh environments (e.g., high temperatures), deep-UV detection response, high gain, and Geiger mode operation at low voltage. Furthermore, the device can also be designed in array formats, e.g., linear arrays or 2D arrays (micropixels inside a superpixel).

  3. Antimonide-based Geiger-mode avalanche photodiodes for SWIR and MWIR photon counting

    NASA Astrophysics Data System (ADS)

    Duerr, Erik K.; Manfra, Michael J.; Diagne, Mohamed A.; Bailey, Robert J.; Zayhowski, John J.; Donnelly, Joseph P.; Connors, Michael K.; Grzesik, Michael J.; Turner, George W.

    2010-04-01

    At MIT Lincoln Laboratory, avalanche photodiodes (APDs) have been developed for both 2-μm and 3.4-μm detection using the antimonide material system. These bulk, lattice-matched detectors operate in Geiger mode at temperatures up to 160 K. The 2-μm APDs use a separate-absorber-multiplier design with an InGaAsSb absorber and electron-initiated avalanching in the multiplier. These APDs have exhibited normalized avalanche probability (product of avalanche probability and photo-carrier-injection probability) of 0.4 and dark count rates of ~150 kHz at 77 K for a 30-μm-diameter device. A 1000- element imaging array of the 2-μm detectors has been demonstrated, which operate in a 5 kg dewar with an integrated Stirling-cycle cooler. The APD array is interfaced with a CMOS readout circuit, which provides photon time-of-arrival information for each pixel, allowing the focal plane array to be used in a photon-counting laser radar system. The 3.4-μm APDs use an InAsSb absorber and hole-initiated avalanching and have shown dark count rates of ~500 kHz at 77 K but normalized avalanche probability of < 1%. Research is ongoing to determine the cause of the low avalanche probability and improve the device performance.

  4. PiN photodiode performance comparison for dosimetry in radiology applications.

    PubMed

    Oliveira, Charles N P; Khoury, Helen J; Santos, Edval J P

    2016-12-01

    Performance comparison of selected photodiodes for usage as radiation detectors for radio-protection is presented. In this study, based on the criteria of minimum sensitive area of 5mm(2), minimum half angle 60° and low cost, four commercial photodiodes are selected for evaluation: SFH205, SFH206, BPW34, and BPX90F. Photodiodes are low cost, small volume and lightweight detectors. As an electronic transducer, photodiode detector is an attractive approach for the development of low power portable electronic dosimeter for direct-reading real-time radiation dose measurement. The devices have been studied with respect to sensitivity (efficiency) in X-rays and gamma rays detection, repeatability and linearity in air kerma.

  5. Analysis of genetically modified organisms by pyrosequencing on a portable photodiode-based bioluminescence sequencer.

    PubMed

    Song, Qinxin; Wei, Guijiang; Zhou, Guohua

    2014-07-01

    A portable bioluminescence analyser for detecting the DNA sequence of genetically modified organisms (GMOs) was developed by using a photodiode (PD) array. Pyrosequencing on eight genes (zSSIIb, Bt11 and Bt176 gene of genetically modified maize; Lectin, 35S-CTP4, CP4EPSPS, CaMV35S promoter and NOS terminator of the genetically modified Roundup ready soya) was successfully detected with this instrument. The corresponding limit of detection (LOD) was 0.01% with 35 PCR cycles. The maize and soya available from three different provenances in China were detected. The results indicate that pyrosequencing using the small size of the detector is a simple, inexpensive, and reliable way in a farm/field test of GMO analysis.

  6. Development of megapixel HgCdTe detector arrays with 15 micron cutoff

    NASA Astrophysics Data System (ADS)

    Forrest, William J.; McMurtry, Craig W.; Dorn, Meghan L.; Pipher, Judith; Cabrera, Mario S.

    2016-06-01

    I. HistoryHgCdTe is a versatile II-VI semiconductor with a direct-bandgap tunable via the Hg:Cd ratio. Hg:Cd ratio = 53:47 (2.5 micron cutoff) was used on the NICMOS instrument on HST and the 2MASS. Increasing Hg:Cd ratio to 70:30 leads to a 5.4 micron cutoff, utilized in NEOWISE and many JWST instruments. Bailey, Wu et al. (1998) motivated extending this technology to 10 microns and beyond. Bacon, McMurtry et al. (2003, 2004) indicated significant progress toward this longwave (LW) goal.Warm-Spitzer has pioneered passive cooling to below 30 K in space, enabling the JWST mission.II. CurrentNASA's proposed NEOcam mission selected HgCdTe with a 10.6 micron cutoff because it promises natural Zodiacal background limited sensitivity with modest cooling (40 K). Teledyne Imaging Systems (TIS) is producing megapixel arrays with excellent performance (McMurtry, Lee, Dorn et al. (2013)) for this mission.III. FutureModest cooling requirements (circa 30 K) coupled with megapixel arrays and LW sensitivity in the thermal IR make HgCdTe attractive for many infrared instruments. For instance, the spectral signature of a terrestrial planet orbiting in the habitable zone of a nearby star will be the deep and wide absorption by CO_2 centered at 15 microns (Seager and Deming, 2010). LW instruments can enhance Solar System missions, such as exploration of the Enceladus geysers (Spencer, Buratti et al. 2006). Passive cooling will be adequate for these missions. Modern ground-based observatories will benefit from infrared capability out to the N band (7.5-13.6 microns). The required detector temperatures (30-40 K) are easily achievable using commercially available mechanical cryo-coolers (refrigerators).IV. Progress to dateTIS is developing megapixel HgCdTe arrays sensitive out to 15 microns under the direction of the University of Rochester. As a first step, we have produced arrays with a 13 micron cutoff. The initial measurements indicate very promising performance. We will present the

  7. Development of megapixel HgCdTe detector arrays with 15 micron cutoff

    NASA Astrophysics Data System (ADS)

    Forrest, William J.; McMurtry, Craig W.; Dorn, Meghan; Pipher, Judith; Cabrera, Mario S.

    2016-10-01

    I. HistoryHgCdTe is a versatile II-VI semiconductor with a direct-bandgap tunable via the Hg:Cd ratio. Hg:Cd ratio = 53:47 (2.5 micron cutoff) was used on the NICMOS instrument on HST and the 2MASS. Increasing Hg:Cd ratio to 70:30 leads to a 5.4 micron cutoff, utilized in NEOWISE and many JWST instruments. Bailey, Wu et al. (1998) motivated extending this technology to 10 microns and beyond. Bacon, McMurtry et al. (2003, 2004) indicated significant progress toward this longwave (LW) goal.Warm-Spitzer has pioneered passive cooling to below 30 K in space, enabling the JWST mission.II. CurrentNASA's proposed NEOcam mission selected HgCdTe with a 10.6 micron cutoff because it promises natural Zodiacal background limited sensitivity with modest cooling (40 K). Teledyne Imaging Systems (TIS) is producing megapixel arrays with excellent performance (McMurtry, Lee, Dorn et al. (2013)) for this mission.III. FutureModest cooling requirements (circa 30 K) coupled with megapixel arrays and LW sensitivity in the thermal IR make HgCdTe attractive for many infrared instruments. For instance, the spectral signature of a terrestrial planet orbiting in the habitable zone of a nearby star will be the deep and wide absorption by CO_2 centered at 15 microns (Seager and Deming, 2010). LW instruments can enhance Solar System missions, such as exploration of the Enceladus geysers (Spencer, Buratti et al. 2006). Passive cooling will be adequate for these missions. Modern ground-based observatories will benefit from infrared capability out to the N band (7.5-13.6 microns). The required detector temperatures (30-40 K) are easily achievable using commercially available mechanical cryo-coolers (refrigerators).IV. Progress to dateTIS is developing megapixel HgCdTe arrays sensitive out to 15 microns under the direction of the University of Rochester. As a first step, we have produced arrays with a 13 micron cutoff. The initial measurements indicate very promising performance. We will present the

  8. The design, implementation, and performance of the Atro-H SXS calorimeter array and anti-coincidence detector

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chervenak, James A.; Chiao, Meng P.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Massimiliano; Grein, Christoph; Jhabvala, Christine A.; Kelley, Richard L.; Kelly, Daniel P.; Leutenegger, Maurice A.; McCammon, Dan; Porter, F. S.; Szymkowiak, Andrew E.; Watanabe, Tomomi; Zhao, Jun

    2016-07-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistorbearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.

  9. The Design, Implementation, and Performance of the Astro-H SXS Calorimeter Array and Anti-Coincidence Detector

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chiao, Meng P.; Chervenak, James A.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.; Kelley, Richard L.; Leutenegger, Maurice A.; McCammon, Dan; Porter, F. Scott; Szymkowiak, Andrew E.; Watanabe, Tomomi; Zhao, Jun

    2016-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.

  10. Optical theory of partially coherent thin-film energy-absorbing structures for power detectors and imaging arrays.

    PubMed

    Withington, Stafford; Thomas, Christopher N

    2009-06-01

    Free-space power detectors often have energy absorbing structures comprising multilayer systems of patterned thin films. We show that for any system of interacting resistive films, the expectation value of the absorbed power is given by the contraction of two tensor fields: one describes the spatial state of coherence of the incoming radiation, the other the state of coherence to which the detector is sensitive. Equivalently, the natural modes of the optical field scatter power into the natural modes of the detector. We describe a procedure for determining the amplitude, phase, and polarization patterns of a detector's optical modes and their relative responsivities. The procedure gives the state of coherence of the currents flowing in the system and leads to important conceptual insights into the way the pixels of an imaging array interact and extract information from an optical field.

  11. Flexible Photodiodes Based on Nitride Core/Shell p–n Junction Nanowires

    PubMed Central

    2016-01-01

    A flexible nitride p-n photodiode is demonstrated. The device consists of a composite nanowire/polymer membrane transferred onto a flexible substrate. The active element for light sensing is a vertical array of core/shell p–n junction nanowires containing InGaN/GaN quantum wells grown by MOVPE. Electron/hole generation and transport in core/shell nanowires are modeled within nonequilibrium Green function formalism showing a good agreement with experimental results. Fully flexible transparent contacts based on a silver nanowire network are used for device fabrication, which allows bending the detector to a few millimeter curvature radius without damage. The detector shows a photoresponse at wavelengths shorter than 430 nm with a peak responsivity of 0.096 A/W at 370 nm under zero bias. The operation speed for a 0.3 × 0.3 cm2 detector patch was tested between 4 Hz and 2 kHz. The −3 dB cutoff was found to be ∼35 Hz, which is faster than the operation speed for typical photoconductive detectors and which is compatible with UV monitoring applications. PMID:27615556

  12. Flexible Photodiodes Based on Nitride Core/Shell p-n Junction Nanowires.

    PubMed

    Zhang, Hezhi; Dai, Xing; Guan, Nan; Messanvi, Agnes; Neplokh, Vladimir; Piazza, Valerio; Vallo, Martin; Bougerol, Catherine; Julien, François H; Babichev, Andrey; Cavassilas, Nicolas; Bescond, Marc; Michelini, Fabienne; Foldyna, Martin; Gautier, Eric; Durand, Christophe; Eymery, Joël; Tchernycheva, Maria

    2016-10-05

    A flexible nitride p-n photodiode is demonstrated. The device consists of a composite nanowire/polymer membrane transferred onto a flexible substrate. The active element for light sensing is a vertical array of core/shell p-n junction nanowires containing InGaN/GaN quantum wells grown by MOVPE. Electron/hole generation and transport in core/shell nanowires are modeled within nonequilibrium Green function formalism showing a good agreement with experimental results. Fully flexible transparent contacts based on a silver nanowire network are used for device fabrication, which allows bending the detector to a few millimeter curvature radius without damage. The detector shows a photoresponse at wavelengths shorter than 430 nm with a peak responsivity of 0.096 A/W at 370 nm under zero bias. The operation speed for a 0.3 × 0.3 cm(2) detector patch was tested between 4 Hz and 2 kHz. The -3 dB cutoff was found to be ∼35 Hz, which is faster than the operation speed for typical photoconductive detectors and which is compatible with UV monitoring applications.

  13. Design and initial performance of the Askaryan Radio Array prototype EeV neutrino detector at the South Pole

    NASA Astrophysics Data System (ADS)

    Ara Collaboration; Allison, P.; Auffenberg, J.; Bard, R.; Beatty, J. J.; Besson, D. Z.; Böser, S.; Chen, C.; Chen, P.; Connolly, A.; Davies, J.; Duvernois, M.; Fox, B.; Gorham, P. W.; Grashorn, E. W.; Hanson, K.; Haugen, J.; Helbing, K.; Hill, B.; Hoffman, K. D.; Hong, E.; Huang, M.; Huang, M. H. A.; Ishihara, A.; Karle, A.; Kennedy, D.; Landsman, H.; Liu, T. C.; Macchiarulo, L.; Mase, K.; Meures, T.; Meyhandan, R.; Miki, C.; Morse, R.; Newcomb, M.; Nichol, R. J.; Ratzlaff, K.; Richman, M.; Ritter, L.; Rott, C.; Rotter, B.; Sandstrom, P.; Seckel, D.; Touart, J.; Varner, G. S.; Wang, M.-Z.; Weaver, C.; Wendorff, A.; Yoshida, S.; Young, R.

    2012-02-01

    We report on studies of the viability and sensitivity of the Askaryan Radio Array (ARA), a new initiative to develop a Teraton-scale ultra-high energy neutrino detector in deep, radio-transparent ice near Amundsen-Scott station at the South Pole. An initial prototype ARA detector system was installed in January 2011, and has been operating continuously since then. We describe measurements of the background radio noise levels, the radio clarity of the ice, and the estimated sensitivity of the planned ARA array given these results, based on the first five months of operation. Anthropogenic radio interference in the vicinity of the South Pole currently leads to a few-percent loss of data, but no overall effect on the background noise levels, which are dominated by the thermal noise floor of the cold polar ice, and galactic noise at lower frequencies. We have also successfully detected signals originating from a 2.5 km deep impulse generator at a distance of over 3 km from our prototype detector, confirming prior estimates of kilometer-scale attenuation lengths for cold polar ice. These are also the first such measurements for propagation over such large slant distances in ice. Based on these data, ARA-37, the ˜200 km2 array now in its initial construction phase, will achieve the highest sensitivity of any planned or existing neutrino detector in the 1016-1019 eV energy range.

  14. Dark current study for CMOS fully integrated-PIN-photodiodes

    NASA Astrophysics Data System (ADS)

    Teva, Jordi; Jessenig, Stefan; Jonak-Auer, Ingrid; Schrank, Franz; Wachmann, Ewald

    2011-05-01

    PIN photodiodes are semiconductor devices widely used in a huge range of applications, such as photoconductors, charge-coupled devices and pulse oximeters for medical applications. The possibility to combine and to integrate the fabrication of the sensor with its signal conditioning circuitry in a CMOS process allows device miniaturization in addition to enhance its properties lowering the production and assembly costs. This paper presents the design and characterization of silicon based PIN photodiodes integrated in a CMOS commercial process. A high-resistivity, low impurity substrate is chosen as the start material for the PIN photodiode array fabrication in order to fabricate devices with a minimum dark current. The dark current is studied, analyzed and measured for two different starting materials and for different geometries. A model previously proposed is reviewed and compared with experimental data.

  15. Determination of ciprofloxacin and levofloxacin in human sputum collected from cystic fibrosis patients using microextraction by packed sorbent-high performance liquid chromatography photodiode array detector.

    PubMed

    Locatelli, Marcello; Ciavarella, Maria Teresa; Paolino, Donatella; Celia, Christian; Fiscarelli, Ersilia; Ricciotti, Gabriella; Pompilio, Arianna; Di Bonaventura, Giovanni; Grande, Rossella; Zengin, Gokhan; Di Marzio, Luisa

    2015-11-06

    This paper reports a new, easy, cheap, and fast MEPS-HPLC-PDA method for the simultaneous analysis of ciprofloxacin and levofloxacin, two fluoroquinolones (FLQs) commonly used for the treatment of pulmonary infections in cystic fibrosis (CF) patients. The FLQs were resolved on a Discovery C8 column (250mm×4.6mm; 5μm particle size) using an isocratic elution with a run time of 15min, without further purification. The method was validated over concentrations ranging from 0.05 to 2μg/mL for both analytes in human sputum, and enrofloxacin was used as internal standard. This method was successfully tested to detect FLQs in sputum collected from CF patients. The MEPS-HPLC-PDA method was validated using biological samples collected from CF patients orally or intravenously injected with FLQs. The resultant data showed that the method is selective, sensitive and robust over range of concentrations for both FLQs. The limit of quantification of the method was 0.05μg/mL for both analytes (comparable to more complex and expensive instrument configurations), weighted-matrix-matched standard curves showed a good linearity up to 2μg/mL, and parallelism tests were also successfully assessed. The intra- and inter-day precision (RSD%) values were ≤10.4% and ≤11.1%, respectively, for all range of analysis. The intra- and inter-day trueness (Bias%) values are ranged from -11.8% to 7.25% for both antibiotic drugs. At the best of our knowledge, this is the first MEPS-HPLC-PDA based method that uses MEPS procedure for simultaneous determination of ciprofloxacin and levofloxacin in human sputum. The method was tested successfully on real sputum samples by following a conventional drug administration. Furthermore, the MEPS-HPLC-PDA based method provides more advantages to detect and analyze quickly the antibiotic drugs in biological matrices than other analytical procedures reported in literature.

  16. Core-shell diode array for high performance particle detectors and imaging sensors: status of the development

    NASA Astrophysics Data System (ADS)

    Jia, G.; Hübner, U.; Dellith, J.; Dellith, A.; Stolz, R.; Plentz, J.; Andrä, G.

    2017-02-01

    We propose a novel high performance radiation detector and imaging sensor by a ground-breaking core-shell diode array design. This novel core-shell diode array are expected to have superior performance respect to ultrahigh radiation hardness, high sensitivity, low power consumption, fast signal response and high spatial resolution simultaneously. These properties are highly desired in fundamental research such as high energy physics (HEP) at CERN, astronomy and future x-ray based protein crystallography at x-ray free electron laser (XFEL) etc.. This kind of detectors will provide solutions for these fundamental research fields currently limited by instrumentations. In this work, we report our progress on the development of core-shell diode array for the applications as high performance imaging sensors and particle detectors. We mainly present our results in the preparation of high aspect ratio regular silicon rods by metal assisted wet chemical etching technique. Nearly 200 μm deep and 2 μm width channels with high aspect ratio have been etched into silicon. This result will open many applications not only for the core-shell diode array, but also for a high density integration of 3D microelectronics devices.

  17. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  18. Characterization of direct readout Si:Sb and Si:Ga infrared detector arrays for space-based astronomy

    NASA Technical Reports Server (NTRS)

    Mckelvey, Mark E.; Mccreight, Craig R.; Goebel, John H.; Moss, Nicolas N.; Savage, Maureen L.

    1988-01-01

    Preliminary test results from the evaluation of Si:Sb and Si:Ga 58 x 62-element infrared detector arrays are presented. These devices are being characterized under background conditions and readout rates representative of operation in orbiting, crogenically-cooled infrared observatories. The arrays are hybridized to silicon direct-readout multiplexers which allow random-access and nondestructive readout. Array performance optimization is being conducted with a flexible microcomputer-based drive and readoaut electronics system. Preliminary Si:Sb measurements indicate a sense node capacitance of 0.06 pF, peak (28-micron) responsivity above 3 A/W at 2V bias, read noise of 130 rms e(-), dark current approximately 10 e(-)/s, and a well capacity greater than 10 to the 5th e(-). The limited test data available on the performance of the Si:Ga array are also discussed.

  19. The VCSEL-based array optical transmitter (ATx) development towards 120-Gbps link for collider detector: development update

    NASA Astrophysics Data System (ADS)

    Guo, D.; Liu, C.; Chen, J.; Chramowicz, J.; Gong, D.; Hou, S.; Huang, D.; Jin, G.; Li, X.; Liu, T.; Prosser, A.; Teng, P. K.; Ye, J.; Zhou, Y.; You, Y.; Xiang, A. C.; Liang, H.

    2015-01-01

    A compact radiation-tolerant array optical transmitter module (ATx) is developed to provide data transmission up to 10Gbps per channel with 12 parallel channels for collider detector applications. The ATx integrates a Vertical Cavity Surface-Emitting Laser (VCSEL) array and driver circuitry for electrical to optical conversion, an edge warp substrate for the electrical interface and a micro-lens array for the optical interface. This paper reports the continuing development of the ATx custom package. A simple, high-accuracy and reliable active-alignment method for the optical coupling is introduced. The radiation-resistance of the optoelectronic components is evaluated and the inclusion of a custom-designed array driver is discussed.

  20. Update on the Fabrication and Performance of 2-D Arrays of Superconducting Magnesium Diboride (MgB2) Thermal Detectors for Outer-Planets Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook; Aslam, S.

    2011-01-01

    Detectors with better performance than the current thermopile detectors that operate at room temperature will be needed at the focal plane of far-infrared instruments on future planetary exploration missions. We will present an update on recent results from the 2-D array of MgB2 thermal detectors being currently developed at NASA Goddard. Noise and sensitivity results will be presented and compared to thermal detectors currently in use on planetary missions.