Science.gov

Sample records for photodissociation iodine laser

  1. Solar-pumped photodissociation iodine laser

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Weaver, W. R.; Humes, D. H.; Williams, M. D.; Lee, M. H.

    1986-01-01

    The scientific feasibility of a solar-pumped iodine photodissociation laser for space applications is under investigation. Recently, a 2-W CW output for more than one hour was achieved using n-C3F7I vapor as the laser material and a vortex-stabilized argon arc as the light source.

  2. Zeeman effects in the hyperfine structure of atomic iodine photodissociation laser emission.

    NASA Technical Reports Server (NTRS)

    Hwang, W. C.; Kasper, J. V. V.

    1972-01-01

    Observation of hyperfine structure in laser emission from CF3I and C2F5I photodissociation lasers. Constant magnetic fields affect the time behavior of the emission by changing the relative gains of the hyperfine transitions. Time-varying fields usually present in photodissociation lasers further complicate the emission.

  3. Analysis of the effect of anhydride of trifluoroacetanhydride in the working mixture composition on the operation of iodine photodissociation laser

    NASA Astrophysics Data System (ADS)

    Vinogradskii, L. M.; Polozov, A. A.; Khudikov, N. M.

    2015-12-01

    The effect of the (CF3CO)2O (trifluoroacetanhydride) buffer additive on the operation of an iodine photodissociation laser is studied experimentally. Comparative experiments for determining the laser energy of the iodine laser with the replacement of the working substance with this buffer additive and without it and with widely used buffer gas SF6 (sulfur hexafluoride) are carried out. Optical inhomogeneities in the working volume, emerging during pumping of working mixtures based on i-C3F7I (perfluoroalkyl iodide) with buffer additives (CF3CO)2O and C6F14 (perfluorohexane), are measured. The results of experiments are analyzed.

  4. Picosecond dynamics of reactions in the liquid phase: studies of iodine photodissociation and development of new laser techniques

    SciTech Connect

    Berg, M.A.

    1985-09-01

    Iodine photodissociation and recombination was studied as a model for processes common to chemical reaction in the liquid phase. Picosecond transient absorption measurements from 1000 to 295 nm were used to monitor the dynamics in a variety of solvents. Most of the atoms which undergo geminate recombination were found to do so in less than or equal to 15 ps, in agreement with the results of existing molecular dynamics simulations. Vibrational relaxation times vary from approx.15 ps near the middle of the ground state well to approx.150 ps for complete relaxation to v = 0. The prediction of strong resonant vibrational energy transfer to chlorinated methane solvents was not supported, but some evidence for this mechanism was found for alkane solvents. Current theory is unable to explain the large variation (65 to 2700 ps) of the excited A'-state lifetime in various solvents. The 10-Hz amplified, synchronously-pumped dye laser which was used in these studies is described and characterized. SERS (Stimulated Electronic Raman Scattering) and difference frequency mixing were used in the generation of the infrared and far-infrared, respectively. 54 refs., 38 figs., 3 tabs. (WRF)

  5. Photodissociation Dye Laser

    DTIC Science & Technology

    1975-04-01

    Chemical Properties of Free Radicals 5 C. Criteria for the Selection of Photodissociation Dye Laser Molecules 6 III. EXPERIMENTAL EFFORT AND...nanoseconds. In radicl systems, however, there is evidence both theoretical and experimental, that the first doublet-doublet electronic tra-jitions are...Properties, of Free Radicals Recombination is only one of many possible reaction paths that can occur in a radical system. Because they are characterized

  6. Investigation of the excited state iodine lifetime in the photodissociation of perfluoroalkyl iodides

    NASA Technical Reports Server (NTRS)

    Cobb, Stephen H.

    1991-01-01

    An evaluation of prospective laser materials for a space-based solar pumped laser system over the past decade has resulted in the identification of the iodine photodissociation laser as that system best suited to solar-pumped high energy operation. The active medium for the solar-pumped iodine photodissociation laser is from the family of perfluoroalkyl iodides. These lasants have the general form C(n)F(2n + 1)I, often abbreviated as RI. These iodides are known to exhibit photodissociaiton of the C-I bond when irradiated by near UV photons. The focus was on the experimental determination of the lifetime of the excited iodine atom following photodissociation of C4F9I, and also to monitor fluorescence from the iodine molecule at 500 nm to determine if I2 is being produced in the process. Photodissociation is achieved using an XeCl excimer laser with an output wavelength of 308 nm. The XeCl beam is focused into the middle of a cylindrical quartz cell containing the lasant. The laser pulse is detected with a fast risetime photomultiplier tube as it exits the cell. Other aspects of the investigation are discussed.

  7. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, K. S.

    1985-01-01

    This semiannual progress report covers the period from April 1, 1985 to Sept. 30, 1985 under NASA grant NAS1-441 entitled direct solar pumped iodine laser amplifier. During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator was carried out before the amplifier studies. The amplifier studies are postponed to the extended period following completion of the parametric studies. In addition, the kinetic modeling of a solar pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) the radiation characteristics of solar simulator and the parametric characteristics of photodissociation iodine laser continuously pumped by a Vortek solar simulator; (2) kinetic modeling of a solar pumped iodine laser amplifier; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.

  8. High power CW iodine laser pumped by solar simulator

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Lee, Min H.; Weaver, Willard R.

    1987-01-01

    An iodine photodissociation laser was pumped by a long Ar arc as the solar simulator to produce a 10-W CW output. Continuous lasing for 1 h was achieved with a flow of the laser material n-C3F7I. The 10-W CW output is the highest produced to date and establishes the feasibility of developing a solar-pumped laser for space power transmission.

  9. A 10-watt CW photodissociation laser with IODO perfluoro-tert-butane

    NASA Technical Reports Server (NTRS)

    Tabibi, Bagher; Venable, Demetrius D.

    1989-01-01

    NASA has been investigating the feasibility of direct solar-pumped laser systems for power beaming in space. Among the various gas, liquid, and solid laser systems being proposed as candidates for solar-pumped lasers, the iodine photodissociation gas laser has demonstrated its potential for space application. Of immediate attention is the determination of system requirements and the choice of lasants to improve the system efficiency. The development of an efficient iodine laser depends on the availability of a suitable iodide which has favorable laser kinetics, chemically reversibility, and solar energy utilization. Among the various alkyliodide lasants comparatively tested in a long-pulse system, perfluoro- tert-butyl iodide, T-C4F9I, was found to be the best. However, the operating conditions for the laser medium in a continuously pumped and continuous-flow iodine laser differ considerably from those in the pulsed regime. The results of the continuous wave (CW)) laser performance from t-C4F9I are reported. Perfluoro- n-propyl iodide, n-C3F7I is used for comparison because of its universal use in photodissociation iodine lasers.

  10. XeCl laser pumped iodine laser using t-C4F9I

    NASA Technical Reports Server (NTRS)

    Hwang, In Heon; Han, Kwang S.; Lee, Ja H.

    1989-01-01

    An iodine photodissociation laser using t-C4F9I as the active material was pumped by a XeCl laser. An iodine laser output energy of 3 mJ with pulse duration of 25 ns was obtained when the pumping pulse energy was 80 mJ, the iodine pressure was 70 torr, and the reflectance of the output mirror was 85 percent. The high pumping efficiency and low threshold pump power achieved in this experiment are attributable to the high absorption cross section at the pump laser wavelength (308 nm) of the iodide used.

  11. XeCl laser pumped iodine laser using t-C4F9I

    NASA Technical Reports Server (NTRS)

    Hwang, In Heon; Han, Kwang S.

    1989-01-01

    An iodine photodissociation laser using t-C4F9I as the active material was pumped by an XeCl laser. An iodine laser output energy of 3 mJ with pulse duration of 25 ns was obtained when the pumping pulse energy was 80 mJ, the iodide pressure was 70 torr, and the reflectance of the output mirror was 85 percent. The high pumping efficiency and low threshold pump power achieved in this experiment are attributable to the high absorption cross section at the pump laser wavelength (308 nm) of the iodide used.

  12. Development of laser-ion beam photodissociation methods

    SciTech Connect

    Russell, D.H.

    1990-08-01

    During this report period our research efforts have concentrated on studies of the dissociation reactions of model peptides and other biologically important molecules. In addition, a considerable amount of research effort has been directed toward improving the apparatus used for laser-ion beam photodissociation. The instrumental improvements include some changes on the original apparatus, but most of this effort involved designing a second generation laser-ion beam photodissociation instrument.

  13. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, K. S.

    1986-01-01

    During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator were carried out before amplifier studies. The amplifier studies are postponed to the extended period after completing the parametric studies. In addition, the kinetic modeling of a solar-pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) a 10 W CW iodine laser pumped by a Vortek solar simulator; (2) kinetic modeling to predict the time to lasing threshold, lasing time, and energy output of solar-pumped iodine laser; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.

  14. Development of a chemical oxygen - iodine laser with production of atomic iodine in a chemical reaction

    SciTech Connect

    Censky, M; Spalek, O; Jirasek, V; Kodymova, J; Jakubec, I

    2009-11-30

    The alternative method of atomic iodine generation for a chemical oxygen - iodine laser (COIL) in chemical reactions with gaseous reactants is investigated experimentally. The influence of the configuration of iodine atom injection into the laser cavity on the efficiency of the atomic iodine generation and small-signal gain is studied. (lasers)

  15. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Kim, K. H.; Stock, L. V.

    1987-01-01

    The improvement on the collection system of the Tarmarack Solar Simulator beam was attemped. The basic study of evaluating the solid state laser materials for the solar pumping and also the work to construct a kinetic model algorithm for the flashlamp pumped iodine lasers were carried out. It was observed that the collector cone worked better than the lens assembly in order to collect the solar simulator beam and to focus it down to a strong power density. The study on the various laser materials and their lasing characteristics shows that the neodymium and chromium co-doped gadolinium scandium gallium garnet (Nr:Cr:GSGG) may be a strong candidate for the high power solar pumped solid state laser crystal. On the other hand the improved kinetic modeling for the flashlamp pumped iodine laser provides a good agreement between the theoretical model and the experimental data on the laser power output, and predicts the output parameters of a solar pumped iodine laser.

  16. Role of molecular photodissociation in ultrafast laser surgery

    NASA Astrophysics Data System (ADS)

    Wang, Jenny; Schuele, Georg; Huie, Phil; Palanker, Daniel V.

    2015-03-01

    Transparent ocular tissues such as cornea and crystalline lens can be precisely ablated or dissected using ultrafast ultraviolet, visible, and infrared lasers. In refractive or cataract surgery, cutting of the cornea, lens, and lens capsule is typically produced by dielectric breakdown in the focus of a short-pulse laser which results in explosive vaporization of the interstitial water and mechanically ruptures the surrounding tissue. Here, we report that tissue can also be disrupted below the threshold of bubble appearance using 400 nm femtosecond pulses with minimal mechanical damage. Using gel electrophoresis and liquid chromatography/mass spectrometry, we assessed photodissociation of proteins and polypeptides by 400 nm femtosecond pulses both below and above the cavitation bubble threshold. Negligible protein dissociation was observed with 800 nm femtosecond lasers even above the threshold of dielectric breakdown. Scanning electron microscopy of the cut edges in porcine lens capsule demonstrated that plasma-mediated cutting results in the formation of grooves. Below the cavitation bubble threshold, precise cutting could still be produced with 400 nm femtosecond pulses, possibly due to molecular photodissociation of the tissue structural proteins.

  17. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In Heon

    1990-01-01

    The optimum conditions of a solar pumped iodine laser are found in this research for the case of a continuous wave operation and a pulsed operation. The optimum product of the pressure(p) inside the laser tube and the tube diameter(d) was pd=40 approx. 50 torr-cm on the contrary to the case of a high intensity flashlamp pumped iodine laser where the optimum value of the product is known to be pd=150 torr-cm. The pressure-diameter product is less than 1/3 of that of the high power iodine laser. During the research period, various laser materials were also studied for solar pumping. Among the laser materials, Nd:YAG is found to have the lowest laser threshold pumping intensity of about 200 solar constant. The Rhodamine 6G was also tested as the solar pumped laser material. The threshold pumping power was measured to be about 20,000 solar constant. The amplification experiment for a continuously pumped iodine laser amplifier was performed using Vortek solar simulator and the amplification factors were measured for single pass amplification and triple pass amplification of the 15 cm long amplifier tube. The amplification of 5 was obtained for the triple pass amplification.

  18. Fullurene-oxygen-iodine laser (FOIL): physical principles

    NASA Astrophysics Data System (ADS)

    Danilov, Oleg B.; Belousova, Inna M.; Mak, Artur A.; Belousov, Vlidilen P.; Grenishin, A. S.; Kiselev, V. M.; Krys'ko, A. V.; Murav'eva, T. D.; Ponomarev, Alexander N.; Sosnov, Eugene N.

    2005-03-01

    The paper considers the physical principles of developing the fullerene - oxygen - iodine laser (FOIL) with optical (sunlight in particular) pumping. Kinetic scheme of such a laser is considered. It is shown that the utmost efficiency of FOIL may exceed 40% of the energy, absorbed by fullerenes. Presented are the experimental results of singlet oxygen generation in liquid media (solutions and suspensions) and in solid-state structures, containing either fullerenes or fullerene-like nanopartickles (FNP). In experiment was shown the possibility of the singlet oxygen transfer to the gaseous phase by means of organizing of the solution (suspension) the boiling as well as of the gasodynamic wave of desorption from the solid-state structures, containing fullerenes or FNP. We present the preliminary experimental results of pulsed generation in optically pumped FOIL with the use of primary photodissociation of iodide for preparation of the atomic iodine in the generation zone. In the experiments on FOIL generation was implemented the principle of spectral separation of optical pumping.

  19. Fullerene-oxygen-iodine laser (FOIL): physical principles

    NASA Astrophysics Data System (ADS)

    Danilov, Oleg B.; Belousova, Inna M.; Mak, Artur A.; Belousov, Vlidilen P.; Grenishin, A. S.; Kiselev, V. M.; Krys'ko, A. V.; Murav'eva, T. D.; Ponomarev, Alexander N.; Sosnov, Eugene N.

    2004-06-01

    The paper considers the physical principles of developing the fullerene-oxygen-iodine laser (FOIL) with optical (sunlight in particular) pumping. Kinetic scheme of such a laser is considered. It is shown that the utmost efficiency of FOIL may exceed 40% of the energy, absorbed by fullerenes. Presented are the experimental results of singlet oxygen generation in liquid media (solutions and suspensions) and in solid-state structures, containing either fullerenes or fullerene-like nanoparticles (FNP). In experiment was shown the possibility of the singlet oxygen transfer to the gaseous phase by means of organizing of the solution (suspension) the boiling as well as of the gasodynamic wave of desorption from the solid-state structures, containing fullerenes or FNP. We present the preliminary experimental results of pulsed generation in optically pumped FOIL with the use of primary photodissociation of iodide for preparation of the atomic iodine in the generation zone. In the experiments on FOIL generation was implemented the principle of spectral separation of optical pumping.

  20. Fullerene-oxygen-iodine laser (FOIL): physical principles

    NASA Astrophysics Data System (ADS)

    Danilov, Oleg B.; Belousova, Inna M.; Mak, Artur A.; Belousov, Vlidilen P.; Grenishin, A. S.; Kiselev, V. M.; Krys'ko, A. V.; Murav'eva, T. D.; Ponomarev, Alexander N.; Sosnov, Eugene N.

    2004-09-01

    The paper considers the physical principles of developing the fullerene-oxygen-iodine laser (FOIL) with optical (sunlight in particular) pumping. Kinetic scheme of such a laser is considered. It is shown that the utmost efficiency of FOIL may exceed 40% of the energy, absorbed by fullerenes. Presented are the experimental results of singlet oxygen generation in liquid media (solutions and suspensions) and in solid-state structures, containing either fullerenes or fullerene-like nanoparticles (FNP). In experiment was shown the possibility of the singlet oxygen transfer to the gaseous phase by means of organizing of the solution (suspension) the boiling as well as of the gasodynamic wave of desorption from the solid-state structures, containing fullerenes or FNP. We present the preliminary experimental results of pulsed generation in optically pumped FOIL with the use of primary photodissociation of iodide for preparation of the atomic iodine in the generation zone. In the experiments on FOIL generation was implemented the principle of spectral separation of optical pumping.

  1. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In H.; Stock, Larry V.

    1988-01-01

    A XeCl laser which was developed earlier for an iodine laser oscillator was modified in order to increase the output pulse energy of XeCl laser so that the iodine laser output energy could be increased. The electrical circuit of the XeCl laser was changed from a simple capacitor discharge circuit of the XeCl laser to a Marx system. Because of this improvement the output energy from the XeCl laser was increased from 60 mj to 80 mj. Subsequently, iodine laser output energy was increased from 100 mj to 3 mj. On the other hand, the energy storage capability and amplification characteristics of the Vortek solar simulator-pumped amplifier was calculated expecting the calculated amplification factor is about 2 and the energy extraction efficiency is 26 percent due to the very low input energy density to the amplifier. As a result of an improved kinetic modeling for the iodine solar simulator pumped power amplifier, it is found that the I-2 along the axis of the tube affects seriously the gain profile. For the gas i-C3F7I at the higher pressures, the gain will decrease due to the I-2 as the pumping intensity increases, and at these higher pressures an increase in flow velocity will increase the gain.

  2. Single photon excimer laser photodissociation of highly vibrationally excited polyatomic molecules

    SciTech Connect

    Tiee, J.J.; Wampler, F.B.; Rice, W.W.

    1980-01-01

    The ir + uv photodissociation of SF/sub 6/ has been performed using CO/sub 2/ and ArF lasers. The two-color photolysis significantly enhances the photodissociation process over ArF irradiation alone and is found to preserve the initial isotopic specificity of the ir excitation process.

  3. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In Heon; Stock, Larry V.

    1989-01-01

    This semiannual progress report covers the period from September 1, 1988 to February 28, 1989 under NASA grant NAG-1-441 entitled, Direct Solar-Pumped Iodine Laser Amplifier. During this period, the research effort was concentrated on the solar pumped master oscillator power amplifier (MOPA) system using n-C3F7I. In the experimental work, the amplification measurement was conducted to identify the optimum conditions for amplification of the center's Vortek solar simulator pumped iodine laser amplifier. A modeling effort was also pursued to explain the experimental results in the theoretical work. The amplification measurement of the solar simulator pumped iodine laser amplifier is the first amplification experiment on the continuously pumped amplifier. The small signal amplification of 5 was achieved for the triple pass geometry of the 15 cm long solar simulator pumped amplifier at the n-C3F7I pressure of 20 torr, at the flow velocity of 6 m/sec and at the pumping intensity of 1500 solar constants. The XeCl laser pumped iodine laser oscillator, which was developed in the previous research, was employed as the master oscillator for the amplification measurement. In the theoretical work, the rate equations of the amplifier was established and the small signal amplification was calculated for the solar simulator pumped iodine laser amplifier. The amplification calculated from the kinetic equations with the previously measured rate coefficients reveals very large disagreement with experimental measurement. Moreover, the optimum condition predicted by the kinetic equation is quite discrepant with that measured by experiment. This fact indicates the necessity of study in the measurement of rate coefficients of the continuously pumped iodine laser system.

  4. Development of laser-ion beam photodissociation methods. Progress report, December 1, 1992--November 30, 1993

    SciTech Connect

    Russell, D.H.

    1992-08-01

    Research efforts were concentrated on developing the tandem magnetic sector (EB)/reflection-time-of-flight (TOF) instrument, preliminary experiments with tandem TOF/TOF instruments, developing method for performing photodissociation with pulsed lasers, experiments with laser ionization of aerosol particles, matrix-assisted laser desorption ionization (MALDI), and ion-molecule reaction chemistry of ground and excited state transition metal ions. This progress report is divided into: photodissociation, MALDI (including aerosols), and ion chemistry fundamentals.

  5. Overview of iodine generation for oxygen-iodine lasers

    NASA Astrophysics Data System (ADS)

    Jirásek, Vít.

    2012-01-01

    A review of the methods for generation of iodine for oxygen-iodine lasers (OIL) is presented. The chemical and physical methods for production of both atomic (AI) and molecular (MI) iodine have been searched in order to improve the efficiency and/or technology of OILs. These trials were motivated by the estimations that a substantial part of singlet oxygen (SO) could be saved with these methods and the onset of the laser active medium will be accelerated. Vapour of MI can be generated by the evaporation of solid or pressurized liquid I2, or synthesized in situ by the reaction of Cl2 with either HI or CuI2. The chemical methods of generation of AI are based on the substitution of I atom in a molecule of HI or ICl by another halogen atom produced usually chemically. The discharge methods include the dissociation of various iodine compounds (organic iodides, I2, HI) in the RF, MW, DC-pulsed or DC-vortex stabilized discharge. Combined methods use discharge dissociation of molecules (H2, F2) to gain atoms which subsequently react to replace AI from the iodine compound. The chemical methods were quite successful in producing AI (up to the 100% yield), but the enhancement of the laser performance was not reported. The discharge methods had been subsequently improving and are today able to produce up to 0.4 mmol/s of AI at the RF power of 500 W. A substantial enhancement of the discharge- OIL performance (up to 40%) was reported. In the case of Chemical-OIL, the enhancement was reported only under the conditions of a low I2/O2 ratio, where the "standard" I2 dissociation by SO is slow. The small-signal gain up to 0.3 %/cm was achieved on the supersonic COIL using the HI dissociated in the RF discharge. Due to the complicated kinetics of the RI-I-I2-SO system and a strong coupling with the gas flow and mixing, the theoretical description of the problem is difficult. It, however, seems that we can expect the major improvement of the OIL performance for those systems, where

  6. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.

    1987-01-01

    This semiannual progress report covers the period from March 1, 1987 to September 30, 1987 under NASA grant NAG1-441 entitled 'Direct solar-pumped iodine laser amplifier'. During this period Nd:YAG and Nd:Cr:GSGG crystals have been tested for the solar-simulator pumped cw laser, and loss mechanisms of the laser output power in a flashlamp-pumped iodine laser also have been identified theoretically. It was observed that the threshold pump-beam intensities for both Nd:YAG and Nd:Cr:GSGG crystals were about 1000 solar constants, and the cw laser operation of the Nd:Cr:GSGG crystal was more difficult than that of the Nd:YAG crystal under the solar-simulator pumping. The possibility of the Nd:Cr:GSGG laser operation with a fast continuously chopped pumping was also observed. In addition, good agreement between the theoretical calculations and the experimental data on the loss mechanisms of a flashlamp-pumped iodine laser at various fill pressures and various lasants was achieved.

  7. Electric Oxygen Iodine Laser: A Study for Scaling

    DTIC Science & Technology

    2009-09-03

    active components in the flow is small, resulting in a low gain coefficient . To produce a high- power oxygen iodine laser system it will be necessary... iodine laser: A study for scaling Sb. GRANT NUMBER F A9550-07-l-0529 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Michael C. Heaven Se...potentially limit scaling of the electric oxygen iodine laser (EOIL) were examined. Quenching of excited iodine atoms (I*) by atomic oxygen has been

  8. A computer modeling study of isotopically selective, laser photodissociation of OCS in cryogenic solutions

    SciTech Connect

    Zittel, P.F.

    1991-12-23

    Computer model calculations are presented for enrichments of carbon, oxygen, and sulfur isotopes by two-step, IR/UV, laser photodissociation of OCS in rare gas liquid solutions. The model calculations are based on previously measured fundamental physical properties, including spectroscopic parameters of the IR absorption bands of OCS in cryogenic solution, UV photodissociation cross sections for specific vibrational levels of OCS, and rates for vibrational relaxation of OCS by cryogenic solvents. Results are presented for both pulsed and continuous wave laser sources. Photodissociation through both the 2{nu}{sub 2} and {nu}{sub 1} intermediate vibrational levels of OCS is investigated. The laser characteristics required to obtain optimum enrichments are determined by modeling the dependence of enrichment on laser wavelength and intensity, as well as pulse width and timing for pulsed sources. Optimum carbon and oxygen isotope enrichment factors of 9--14 are found for two-step photodissociation through the OCS(2{nu}{sub 2}) vibrational level, using pulsed CO{sub 2} and KrF excimer laser sources. Optimum sulfur isotope enrichment factors of 5--6 are found for photodissociation through the OCS({nu}{sub 1}) level, using a pulsed 12 {mu}m laser and a KrF excimer laser. The enrichments found for continuous wave laser sources are smaller than those for pulsed sources. 19 figs., 4 tabs.

  9. A model for a continuous-wave iodine laser

    NASA Technical Reports Server (NTRS)

    Hwang, In H.; Tabibi, Bagher M.

    1990-01-01

    A model for a continuous-wave (CW) iodine laser has been developed and compared with the experimental results obtained from a solar-simulator-pumped CW iodine laser. The agreement between the calculated laser power output and the experimental results is generally good for various laser parameters even when the model includes only prominent rate coefficients. The flow velocity dependence of the output power shows that the CW iodine laser cannot be achieved with a flow velocity below 1 m/s for the present solar-simulator-pumped CW iodine laser system.

  10. Recombination of photodissociated iodine: A time-resolved x-ray-diffraction study

    SciTech Connect

    Wulff, M.; Bratos, S.; Plech, A.; Vuilleumier, R.; Mirloup, F.; Lorenc, M.; Kong, Q.; Ihee, H.

    2006-01-21

    A time-resolved x-ray-diffraction experiment is presented that aims to study the recombination of laser-dissociated iodine molecules dissolved in CCl{sub 4}. This process is monitored over an extended time interval from pico- to microseconds. The variations of atom-atom distances are probed with a milliangstrom resolution. A recent theory of time-resolved x-ray diffraction is used to analyze the experimental data; it employs the correlation function approach of statistical mechanics. The most striking outcome of this study is the experimental determination of time-dependent I-I atom-atom distribution functions. The structure of the CCl{sub 4} solvent changes simultaneously; the solvent thus appears as a reaction partner rather than an inert medium hosting it. Thermal expansion of the system is nonuniform in time, an effect due to the presence of the acoustic horizon. One concludes that a time-resolved x-ray diffraction permits real-time visualization of solvent and solute motions during a chemical reaction.

  11. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In Heon; Kim, Khong Hon; Stock, Larry V.

    1988-01-01

    A XeCl laser pumped iodine laser oscillator was developed which will be incorporated into the Master Oscillator Power Amplifier (MOPA) system. The developed XeCl laser produces output energy of about 60 mJ per pulse. The pulse duration was about 10 nsec. The kinetic model for the solar-pumped laser was refined and the algorithm for the calculation of a set of rate equations was improved to increase the accuracy and the efficiency of the calculation. The improved algorithm was applied to explain the existing experimental data taken from a flashlamp pumped iodine laser for three kinds of lasants, i-C3F7I, n-C4F9I, and t-C4F9I. Various solid laser materials were evaluated for solar-pumping. The materials studied were Nd:YAG, Nd:YLF, and Cr:Nd:GSGG crystals. The slope efficiency of 0.17 percent was measured for the Nd:YLF near the threshold pump intensity which was 211 solar constants (29W/sq cm). The threshold pump intensity of the Nd:YAG was measured to be 236 solar constants (32W/sq cm) and the near-threshold slope efficiency was 0.12 percent. True CW laser operation of Cr:Nd:GSGG was possible only at pump intensities less than or equal to 1,500 solar constants (203 W/sq cm). This fact was attributed to the high thermal focusing effect of the Cr:Nd:GSGG rod.

  12. Optically (solar) pumped oxygen-iodine lasers

    NASA Astrophysics Data System (ADS)

    Danilov, O. B.; Zhevlakov, A. P.; Yur'ev, M. S.

    2014-07-01

    We present the results of theoretical and experimental studies demonstrating the possibility of developing an oxygen-iodine laser (OIL) with direct optical pumping of molecular oxygen involving inter-molecular interaction with charge transfer from donor molecule (buffer gas) to acceptor molecule (oxygen). This interaction lifts degeneracy of the lower energy states of molecular oxygen and increases its absorption cross section in the visible spectral region and the UV Herzberg band, where high quantum yield of singlet oxygen is achieved (QY ˜ 1 and QY ˜ 2, respectively) at the same time. A pulse-periodic optical pump sources with pulse energy of ˜50 kJ, pulse duration of ˜25 μs, and repetition rate of ˜10 Hz, which are synchronized with the mechanism of singlet oxygen generation, are developed. This allows implementation of a pulse-periodic oxygen-iodine laser with an efficiency of ˜25%, optical efficiency of ˜40%, and parameter L/ T ˜ 1/1.5, where T is the thermal energy released in the laser active medium upon generation of energy L. It is demonstrated that, under direct solar pumping of molecular oxygen, the efficiency parameter of the OIL can reach L/ T ˜ 1/0.8 in a wide range of scaling factors.

  13. Demonstration of a new laser diagnostic based on photodissociation spectroscopy for imaging mixture fraction in a non-premixed jet flame.

    PubMed

    Zhao, Yan; Tong, Chenning; Ma, Lin

    2010-04-01

    The study of turbulent combustion calls for new diagnostics that can measure multidimensional mixture fraction under a wide range of flame conditions. A laser diagnostic technique based on photodissociation spectroscopy (PDS) is proposed to address this need. This paper describes the concept of the PDS-based diagnostic, reports its experimental demonstration in a non-premixed jet flame, and assesses its performance and applicable range. This new technique is centered around the creative use of photodissociation (PD) for flow visualization. A carefully chosen PD precursor is seeded into the flow of interest to measure mixture fraction. The precursor is chosen such that (1) both the precursor itself and the products formed from the precursor (if it reacts) can be completely and rapidly photodissociated; thus, the concentration of one of the photofragments forms a conserved scalar and can be used to infer the mixture fraction, and (2) the target photofragment offers friendly spectroscopic properties (e.g., strong laser-induced fluorescence signals and/or simple signal interpretation) so multidimensional imaging can be readily obtained. Molecular iodine (I(2)) was identified as a precursor satisfying both requirements and was seeded into a carbon monoxide (CO)-air jet flame for single-shot two-dimensional imaging of mixture fraction. This demonstration illustrates the potential of the PDS-based technique to overcome the limitations of existing techniques and to provide multidimensional measurements of mixture fraction in a variety of reactive flows.

  14. Oxyhemoglobin photodissociation efficiency in biological tissue exposed to laser radiation

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.

    2011-09-01

    We have obtained quantitative data on the differential (with respect to depth) and the integrated oxyhemoglobin photodissociation efficiency in the dermis when the skin surface is exposed to a light beam in the wavelength range 300-650 nm. With this aim, we have used our own previously developed optical model for skin tissue and analytical procedure for calculating the characteristics of optical fields in a medium. We have estimated the number of oxygen molecules formed at different depths in the medium, and also their integrated number over the entire thickness of the dermis as a function of the irradiation wavelength. We consider models for a dermis that is homogeneous with respect to depth and a dermis that has a layered structure. We show that the spectral photodissociation efficiency has a number of maxima associated with the absorption spectrum of oxyhemoglobin and the optical properties of all the layers of skin tissue. We discuss the effect of the epidermis on these maxima.

  15. Ultraviolet photodissociation of iodine monochloride (ICl) at 235, 250, and 265 nm

    SciTech Connect

    Diamantopoulou, N.; Kitsopoulos, Theofanis N.; Kartakoulis, A.; Glodic, P.; Samartzis, Peter C.

    2011-05-21

    ICl photolysis in the ultraviolet region of the spectrum (235-265 nm) is studied using the Slice Imaging technique. The Cl*({sup 2}P{sub 1/2})/Cl({sup 2}P{sub 3/2}) and the I*({sup 2}P{sub 1/2})/I({sup 2}P{sub 3/2}) branching ratio between the I({sup 2}P{sub 3/2}) + Cl({sup 2}P{sub 3/2})/Cl*({sup 2}P{sub 1/2}) and I*({sup 2}P{sub 1/2}) + Cl({sup 2}P{sub 3/2})/Cl*({sup 2}P{sub 1/2}) channels is extracted from the respective iodine and chlorine photofragment images. We find that ground state chlorine atoms (Cl({sup 2}P{sub 3/2})) are formed nearly exclusively with excited state iodine atoms (I*({sup 2}P{sub 1/2})), while excited spin-orbit chlorine atoms (Cl*({sup 2}P{sub 1/2})) are concurrently produced only with ground state iodine atoms (I({sup 2}P{sub 3/2})). We conclude that photolysis of ICl in this UV region is a relatively ''clean'' source of spin-orbit excited chlorine atoms that can be used in crossed molecular beam experiments.

  16. Experimental analysis of chemical oxygen-iodine lasers

    NASA Astrophysics Data System (ADS)

    Bonnet, J.; David, D.; Georges, E.; Leporcq, B.; Pigache, D.; Verdier, C.

    The dissociation, excitation and quenching of iodine was examined in two lasers to build a data base for the kinetics of oxygen-iodine lasers. I2 mixed with Ar was pumped into a pyrex cavity in a small laser, and mixed with O2 in a larger laser. Measurements were made of the 1270 nm emission of O(2)1Delta in the larger laser. Excited I and I2 luminescence intensity profiles and the excited I emission profile in the presence of water vapor were obtained. Rising water vapor pressure decreased the luminescence and laser power by increasing the I2 dissociation time. In the larger laser, iodine, although injected, never reached the channel midplane, thus reducing the laser output to proportionally less than that of the smaller laser. A new injector will be tested in an attempt to achieve higher lasing powers.

  17. Amplified spontaneous emission in solar-pumped iodine laser

    NASA Technical Reports Server (NTRS)

    Cho, Yong S.; Hwang, In H.; Han, Kwang S.; Lee, Ja H.

    1992-01-01

    The amplified spontaneous emission (ASE) from a long pulse, solar-simulating radiation pumped iodine laser amplifier is studied. The ASE threshold pump intensity is almost proportional to the inverse of the laser gain length when the gas pressure is constant in the laser tube.

  18. Laser Induced Fluorescence of the Iodine Ion

    DTIC Science & Technology

    2014-09-01

    Fluorescence of the Iodine Ion 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER William A. Hargus, Jr. 5e. TASK NUMBER...SUPPLEMENTARY NOTES Briefing Charts presented at Gaseous Electronics Conference; Raleigh, NC; 5 November 2014. PA#14517 14. ABSTRACT Iodine (I2) has been...discussed seriously as a propellant for Hall effect and other electrostatic thrusters as early as 2000. Atomic iodine has a mass of 126.9 amu, but as

  19. Space interferometry application of laser frequency stabilization with molecular iodine.

    PubMed

    Leonhardt, Volker; Camp, Jordan B

    2006-06-10

    A number of planned space interferometry missions, including the Laser Interferometer Space Antenna (LISA) gravitational wave detector, require a laser system with high-frequency stability over long time scales. A 1064 nm wavelength nonplanar ring oscillator (NPRO) laser stabilized to a resonant transition in molecular iodine is suitable for these missions, providing high-frequency stability at an absolute reference frequency. The iodine stabilized laser also offers low sensitivity to temperature and alignment fluctuations and allows frequency tuning. We have evaluated the noise performance of a NPRO laser stabilized to iodine using frequency modulation spectroscopy and have found an Allan standard deviation of 10(-14) over 100 s. Simplified optical configurations and the radiation hardness of the frequency-doubling crystals have also been investigated.

  20. Photo-dissociation quantum yields of mammalian oxyhemoglobin investigated by a nanosecond laser technique

    SciTech Connect

    Yang Ningli; Zhang Shuyi . E-mail: zhangsy@nju.edu.cn; Kuo Paokuang; Qu Min; Fang Jianwen; Li Jiahuang; Hua Zichun

    2007-02-23

    The photo-dissociations of oxyhemoglobin of several mammals, such as human, bovine, pig, horse, and rabbit, have been studied. By means of optical pump-probe technique, the quantum yields for photo-dissociation of these oxyhemoglobin have been determined at pH 7 and 20 {sup o}C. A nanosecond laser at 532 nm is used as the pumping source, and a xenon lamp through a monochrometer provides a probe light at 432 nm. The experimental results show that the quantum yields of these mammalian oxyhemoglobin are different from each other, especially for that of rabbit. By analyzing the amino acid sequences and tetramer structures as well as the flexibility and hydrophobicity of the different hemoglobin, possible explanations for the differences are proposed.

  1. Laser-induced photodissociation of oxyhemoglobin: Optical method of elimination of hypoxia (oxygen deficiency in biotissue)

    NASA Astrophysics Data System (ADS)

    Asimov, M. M.; Thanh, Nguyen Cong

    2011-08-01

    We consider the effect of laser-induced in vivo photodissociation of blood oxyhemoglobin on gas exchange in biological tissues. An optical method of laser-induced oxygenation of biotissues is developed and proposed. We show that, in the region of the action of the laser radiation, the degree of oxygenation of a tissue increases. We experimentally confirm that the phenomenon of laser-induced in vivo photodissociation of oxyhemoglobin opens up a new possibility of controlling the local concentration of free molecular oxygen in tissues, eliminating tissue hypoxia, and stimulating aerobic metabolism of cells. We show that the efficiency of the proposed method of laser-induced oxygenation of biotissues proves to be comparable with the efficiency of the hyperbaric oxygenation, but has the advantage of the locality of the action. The proposed optical method of local oxygenation of biotissues will make it possible to eliminate the problem of hypoxia in cancerous tumor tissue and to considerably increase the efficiency of photodynamic, radiation, and chemotherapy in modern oncology.

  2. Development of Laser-Ion Beam Photodissociation Methods

    SciTech Connect

    David H. Russell

    2004-05-11

    OAK-B135 Our BES funded research is aimed at determining structure(s) of model gas-phase ions and understanding how structure influences unimolecular reactivity. The model gas-phase ions include positional isomers of di- and tri-amino acids synthesized in my laboratory, i.e., RGG, GRG, and GGR, to peptides derived from proteolytic digestion of biologically relevant proteins. We are especially interested in understanding the role of intramolecular interactions in the stabilizing ion structure and how changing the charge-site affects structure. The location of charge of gas-phase ions can be manipulated by changing the position of the charge carrying amino acid (basic vs. acidic side chains) and by derivatization of the N- and/or C-terminus. For example, the proton of [M + H]+ ions is mobile and migrates over the entire molecule, whereas Li+, Na+, and to some extent K+ prefers to bind to the C-terminal or side-chain carboxylic acid groups, and Cu+ binds exclusively to the N-terminus and/or basic side-chains such as H, K, and R. The studies are carried out using tandem TOF mass spectrometry, viz. 193 nm (6.43 eV) photodissociation, low (Elab = 10-100 eV) and high kinetic energy (Elab = 1-10 keV) collision-induced dissociation (CID) and surface-induced dissociation (SID)(Elab = 20-70 eV). These techniques are used to probe the structure of model gas-phase ions, i.e., to determine the amino acid sequence of the peptide ions or metal ion (alkali metal and/or transition metal ions) binding site(s) or the site(s) of other charge-carrying functional groups, i.e., oxidized side-chains as well as phosphate or sulfate groups. We are especially interested in understanding how metal ion binding alters the secondary/tertiary (2o/3o) structure of the peptide, i.e., intra-molecular interactions. We have also combine these studies with solution-phase studies and ion mobility spectrometry (IMS)), which can be used to study 2o/3o structure of low-internal energy (collisionally

  3. Development of Laser-Ion Beam Photodissociation Methods

    SciTech Connect

    David H. Russell

    2004-03-31

    OAK-B135 Our BES funded research is aimed at determining structure(s) of model gas-phase ions and understanding how structure influences unimolecular reactivity. The model gas-phase ions include positional isomers of di- and tri-amino acids synthesized in my laboratory, i.e., RGG, GRG, and GGR, to peptides derived from proteolytic digestion of biologically relevant proteins. We are especially interested in understanding the role of intramolecular interactions in the stabilizing ion structure and how changing the charge-site affects structure. The location of charge of gas-phase ions can be manipulated by changing the position of the charge carrying amino acid (basic vs. acidic side chains) and by derivatization of the N- and/or C-terminus. For example, the proton of [M + H]+ ions is mobile and migrates over the entire molecule, whereas Li+, Na+, and to some extent K+ prefers to bind to the C-terminal or side-chain carboxylic acid groups, and Cu+ binds exclusively to the N-terminus and/or basic side-chains such as H, K, and R. The studies are carried out using tandem TOF mass spectrometry, viz. 193 nm (6.43 eV) photodissociation, low (Elab = 10-100 eV) and high kinetic energy (Elab = 1-10 keV) collision-induced dissociation (CID) and surface-induced dissociation (SID)(Elab = 20-70 eV). These techniques are used to probe the structure of model gas-phase ions, i.e., to determine the amino acid sequence of the peptide ions or metal ion (alkali metal and/or transition metal ions) binding site(s) or the site(s) of other charge-carrying functional groups, i.e., oxidized side-chains as well as phosphate or sulfate groups. We are especially interested in understanding how metal ion binding alters the secondary/tertiary (2o/3o) structure of the peptide, i.e., intra-molecular interactions. We have also combine these studies with solution-phase studies and ion mobility spectrometry (IMS), which can be used to study 2o/3o structure of low-internal energy (collisionally

  4. Photodissociation Dye Laser Studies and High Pressure Discharge Conditioning Studies

    DTIC Science & Technology

    1976-11-01

    reflective dielectric coated mirrors served to form a resonant cavity. However, no laser action was observed from this configuration. Unfortunately, the...temperature Is kept at a minimum. How- ever, composite materials with low work function, such as various types of oxide- coated cathodes, lanthanum...34 Photochromism ," Techniques of Chemistry, Vol. Ill, Wlley-Interscience, New York (1971). d. Henry Gilman, Ed., "Organic Chemistry—An Advanced

  5. Results of experiments on iodine dissociation in active medium of oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Zagidullin, Marsel V.; Khvatov, Nickolay A.; Malyshev, Mikhail S.

    2017-01-01

    Results of experiments on dissociation of iodine molecules in the presence of singlet oxygen molecules are presented for wide range of oxygen-iodine media composition. Rate constants values have been obtained: 4.3ṡ10-17cm3/s for the reaction O2(1Δ)+O2(1Δ)->O2(1Σ) +O2(3Σ) - (1), 2.8ṡ10-13 cm3/s for the reactionO2(1Δ)+I(2P1/2)->O2(1Σ)+I(2P3/2) - (4) and 8.3ṡ10-11 cm3/s for the reaction O2(1Σ) +I2->O2(3Σ)+2I - (2). Analysis of experiments shows that for the wide range of oxygen-iodine medium composition the dissociation occurs via the chain of reactions (1), (2), O2(1Δ)+I(2P3/2)->O2(3Σ)+I(2P1/2), (4) and via cascade process I2+I(2P1/2)->I2(v)+I(2P3/2), I2(v)+O2(1Δ)→2I+O2(3Σ). Contributions of each mechanism in the dissociation of the iodine are comparable for the typical composition of the active medium of the supersonic chemical oxygen-iodine laser. The experiments did not reveal the contribution of vibrationally excited oxygen molecules in the dissociation of iodine. Thus, the experiments and the following conclusions are fully confirmed iodine dissociation mechanism previously proposed by Heidner et al. (J. Phys. Chem., 87, 2348 (1983)).

  6. Investigation of tissue oxygenation by in vivo laser-induced photodissociation of cutaneous arterial blood oxyhemoglobin

    NASA Astrophysics Data System (ADS)

    Asimov, M. M.; Korolevich, A. N.

    2008-06-01

    A novel method of direct control of local tissue oxygenation based on laser-induced photodissociation of oxyhemoglobin in cutaneous blood vessels is discussed. New technology in selective and local increase of the concentration of free molecular oxygen in tissue that enhances metabolism of cells is demonstrated. Direct in vivo measurements of the tissue oxygen tension are carried out on human skin. Kinetics of oxygen tension in tissue is investigated under the effect of He-Ne laser radiation at the power of 1mW relatively to initial value of tissue oxygen tension. The results of experimental study the kinetics of oxygen distribution into tissue from arterial blood is presented. Biomedical applications of proposed new technology in laser therapy of pathologies where elimination of local tissue hypoxia is critical are discussed.

  7. Chemical kinetics of discharge-driven oxygen-iodine lasers

    NASA Astrophysics Data System (ADS)

    Azyazov, Valeriy N.; Kabir, Md. Humayun; Antonov, Ivan O.; Heaven, Michael C.

    2007-05-01

    Oxygen-iodine lasers that utilize electrical discharges to produce O II(a1Δ) are currently being developed. The discharge generators differ from those used in chemical oxygen-iodine lasers in that they produce significant amounts of atomic oxygen and traces of ozone. As a consequence of these differences, the chemical kinetics of the discharge laser are markedly different from those of a conventional chemical oxygen-iodine laser (COIL). The reactions of O with iodine include channels that are both beneficial and detrimental to the laser. The beneficial reactions result in the dissociation of I II while the detrimental processes cause direct and indirect removal of I(2P 1/2) (denoted I*, the upper level of the laser). We have examined kinetic processes relevant to the laser through studies of photo-initiated reactions in N IIO/CO II/I II mixtures. The reactions have been monitored using absorption spectroscopy, laser induced fluorescence and time-resolved emission spectroscopy. It has been established that deactivation of I* by O atoms is a critical energy loss process. We have determined a rate constant of (1.2+/-0.1)×10 -11 cm 3 s -1 for this reaction. As part of this effort the branching fraction for the formation of O II(a) from the reaction of O(1D) with N IIO was determined to be 0.38. This result has implications for lasers based on photolysis of O 3/N IIO/I II mixtures and the formation of O II(a) in the upper atmosphere.

  8. Molecular Iodine Fluorescence Using a Green Helium-Neon Laser

    ERIC Educational Resources Information Center

    Williamson, J. Charles

    2011-01-01

    Excitation of molecular iodine vapor with a green (543.4 nm) helium-neon laser produces a fluorescence spectrum that is well suited for the upper-level undergraduate physical chemistry laboratory. Application of standard evaluation techniques to the spectrum yields ground electronic-state molecular parameters in good agreement with literature…

  9. Development of laser-ion beam photodissociation methods. Progress report, December 1991--November 1994

    SciTech Connect

    Russell, D.H.

    1994-06-01

    This project emphasizes the development of laser mass spectrometry methods for fundamental and applied studies of gas-phase processes. The current studies are focussed on the photochemistry and photophysics of peptides and other biological molecules. Matrix-assisted laser desorption ionization (MALDI) is used to produce ions that are subsequently subjected to photoexcitation and dissociation. MALDI is still very much in the developmental stages, thus a significant portion of this research focusses on fundamental studies of the MALDI ion formation/energy transfer process. The authors view is that excited state H+-transfer reactions play an important role in MALDI, consequently a significant portion of their research activities are focussed on such studies. Fundamental studies of the role of the matrix in MALDI are an integral part of this project. A new MALDI experiment, MALDI of aerosol particles generated from solutions, has been demonstrated and new developmental research in this area is planned. The authors are also actively pursuing a research program on gas-phase H+-transfer processes that mimic the MALDI process. In addition, they are developing photodissociation experiments, based on tandem time-of-flight mass spectrometers, for structural characterization of complex organic molecules. The photodissociation studies use MALDI as the ionization method. These research areas involve the development of new instrumentation, new instrument methodologies, and data processing.

  10. Optically pumped oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Zagidullin, Marsel V.; Malyshev, Mikhail S.

    2017-01-01

    A novel optical pumping scheme considering a two-step irradiation by light at wavelengths near 500 nm and 1315 nm is proposed in this work. Radiation at 500 nm is used to dissociate about 1% of iodine molecules. The radiation at 1315 nm excites atomic iodine to the 2P1/2 state. Singlet oxygen molecules are produced via the energy exchange process I(2P1/2)+O2(X3Σ)-> I(2P3/2)+O2(a1Δ), while I(2P1/2)+O2(a1Δ) energy pooling produces b1Σ oxygen. I(2P3/2) and O2(1Σ) then accelerate the dissociation of I2. After gas dynamic cooling in supersonic nozzle, active medium may reach 100 W cm-2 and small signal gain of 0.01 cm-1.

  11. The biomedical effect of laser-induced photodissociation of oxyhemoglobin in vivo

    NASA Astrophysics Data System (ADS)

    Asimov, M. M.

    2013-11-01

    It is demonstrated that the photodissociation of oxyhemoglobin in cutaneous blood vessels and capillaries allows additional extraction of molecular oxygen, prevents hypoxia, and stimulates aerobic metabolism of cells. On the basis of the studied phenomena, a new optical technology of local oxygenation of tissue directly in the zone of laser irradiation has been developed. It is shown that the efficiency of the proposed method for laser-induced oxygenation of biotissues is comparable with the efficiency of hyperbaric oxygenation, with local action being an additional advantage. Various aspects of the applications of the new technology in modern medicine in which the elimination of local hypoxia is needed are discussed. The proposed optical method for local oxygenation of biotissues makes it possible to solve the hypoxia problem in malignant tissue and substantially increase the efficiency of photodynamic, radiation, and chemical therapy in modern oncology.

  12. Iodine

    USGS Publications Warehouse

    Krukowski, S.T.

    2006-01-01

    In descending order, Chile, Japan and the United States have the largest iodine reserves. Chile produces iodine from iodate minerals while Japan and the United States produce it from sodium iodide solutions found in underground iodide solutions. Iodine is also produced from subterranean brines in Azerbaijan, Russia, Turkmenista, Indonesia and Uzbekistan. In 2005, iodine prices increased sharply to US$19 to US$23 then leveled off at US$23 to US$25.

  13. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Kim, K. H.; Stock, L. V.

    1986-01-01

    In order to evaluate the feasibility of the solar pumped dye laser, the parametric study of a dye laser amplifier pumped by a solar simulator and flashlamp was carried out, and the amplifier gains were measured at various pump beam irradiances on the dye cell. Rhodamine 6G was considered as a candidate for the solar pumped laser because of its good utilization of the solar spectrum and high quantum efficiency. The measurement shows that a solar concentration of 20,000 is required to reach the threshold of the dye. The work to construct a kinetic model algorithm which predicts the output parameter of laser was progressed. The kinetic model was improved such that there is good agreement between the theoretical model and experimental data for the systems defined previously as flashlamp pumped laser oscillator, and the long path length solar pumped laser.

  14. Discharge formation systems for generating atomic iodine in a pulse-periodic oxygen–iodine laser

    SciTech Connect

    Aksinin, V I; Kazantsev, S Yu; Kononov, I G; Podlesnykh, S V; Firsov, K N; Antsiferov, S A; Velikanov, S D; Gerasimov, A Yu; Gostev, I V; Kalinovskii, V V; Konovalov, V V; Mikhalkin, V N; Sevryugin, I V

    2014-01-31

    Generation characteristics of a pulse-periodic oxygen–iodine laser with the electro-discharge production of atomic iodine were compared with inductively stabilised edged or anisotropic- resistive cathodes used for ignition of the volume discharge. The discharge was initiated by the radiation of a barrier discharge from the side of a grid anode. It was found that at equal specific electrical energy depositions to the gas-discharge plasma, the system with the anisotropic-resistive cathode provides a more stable and uniform volume discharge with the possibility of varying the composition and pressure of working mixtures over a wide range and a greater specific extraction of laser energy is observed (up to 2.4 J L{sup -1}). At a high pulse repetition rate of laser pulses (50 – 100 Hz) and long duration of the pulse trains (longer than a minute) the surface of anisotropic-resistive cathode became eroded. (laser applications and other topics in quantum electronics)

  15. Nuclear-driven flashlamp pumping of the atomic iodine laser

    SciTech Connect

    Miley, G.H.

    1992-03-01

    This report is a study of the atomic iodine laser pumped with nuclear- excited XeBr fluorescence. Preliminary experiments, conducted in the TRIGA reactor investigated the fluorescence of the excimer XeBr under nuclear pumping with {sup 10}B and {sup 3}He, for use as a flashlamp gas to stimulate the laser. These measurements included a determination of the fluorescence efficiency (light emitted in the wavelength region of interest, divided by energy deposited in the gas) of XeBr under nuclear pumping, with varying excimer mixtures. Maximum fluorescence efficiencies were approximately 1%. In order to better understand XeBr under nuclear excitation, a kinetics model of the system was prepared. The model generated the time-dependant concentrations of 20 reaction species for three pulse sizes, a TRIGA pulse, a fast burst reactor pulse, and an e-beam pulse. The modeling results predicted fluorescence efficiencies significantly higher (peak efficiencies of approximately 10%) than recorded in the fluorescence experiments. The cause of this discrepancy was not fully determined. A ray tracing computer model was also prepared to evaluate the efficiency with which nuclear-induced fluorescence generated in one cavity of a laser could be coupled into another cavity containing an iodine lasant. Finally, an experimental laser cell was constructed to verify that nuclear-induced XeBr fluorescence could be used to stimulate a laser. Lasing was achieved at 1.31 micron in the TRIGA using C{sub 3}F{sub 7}I, a common iodine lasant. Peak laser powers were approximately 20 mW. Measured flashlamp pump powers at threshold agreed well with literature values, as did lasant pressure dependency on laser operation.

  16. Excited states in the active media of oxygen - iodine lasers

    SciTech Connect

    Azyazov, V N

    2009-11-30

    A review of investigations of kinetic processes in active media oxygen - iodine lasers (OILs) performed in the last decade is presented. The mechanisms of pumping and quenching of electronically and vibrationally excited O{sub 2} and I{sub 2} molecules are considered, and dissociation mechanisms of I{sub 2} in the active medium of the OIL are analysed. The values of kinetic constants of processes proceeding in the active media of OILs are recommended. (review)

  17. ArF laser photodissociation dynamics of furfuryl alcohol: LIF observation of OH state distribution

    NASA Astrophysics Data System (ADS)

    Chowdhury, Pradyot K.; Upadhyaya, Hari P.; Naik, Prakash D.

    2001-08-01

    The dynamics of furfuryl alcohol (FURFUROL) photodissociation at 193 nm is reported, using laser-induced fluorescence (LIF) of the nascent OH radical and RRKM theory. The nascent OH fragments are probed by LIF under collisionless conditions, to determine the initial product state distributions. There is no significant population (<2%) in excited vibrational levels of OH (X 2Π). However, the initial rotational state distribution is Boltzmann-like, characterized by a single rotational temperature Trot of 780±40 K. The average relative translational energy of the photofragments is determined to be 26±4 kJ mol -1. The measured rate constant for the FURFUROL dissociation vis-a-vis statistical RRKM theory, suggests a threshold dissociation energy of 357±20 kJ mol -1.

  18. Solid-State Raman Converters for High-Average Power Chemical Oxygen Iodine Laser

    DTIC Science & Technology

    1998-01-01

    Converters for High-Average Power Chemical Oxygen Iodine Laser. (r7LEODF61708 97W0212 ) Moscow, 1998 j—SisfRSlJTION STA- IOTCQUAIITY INSPECTED 1 ~Z^ZTtop...Kc 1 Distribution Unlimited FINAL REPORT "Solid State Raman Converter for High-Average Power Chemical Oxygen Iodine Laser" Introduction...TITLE AND SUBTITLE Solid-State Raman Converters for High-Average Power Chemical Oxygen Iodine Laser 6. AUTHOR(S) Prof Tasoltan Tazretovich Basiev

  19. Development of the electric discharge oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Carroll, David L.; Verdeyen, Joseph T.; King, Darren M.; Palla, Andrew D.; Laystrom, Julia K.; Benavides, Gabriel F.; Zimmerman, Joseph W.; Woodard, Brian S.; Solomon, Wayne C.

    2007-05-01

    In the hybrid electric discharge Oxygen-Iodine laser (ElectricOIL), the desired O II(a1Δ) is produced using a low-to-medium pressure electric discharge. The discharge production of atomic oxygen, ozone, and other excited species adds higher levels of complexity to the post-discharge kinetics which are not encountered in a classic purely chemical O II(a1Δ) generation system. Experimental studies over the past six years using electric discharges have demonstrated O II(a) yields greater than 20%, gain, and cw laser power. Several modeling studies have also been performed for ElectricOIL and similar systems. As the development of this type of iodine laser continues, the roles of oxygen atoms and NO/NO II are found to be very significant in both the discharge region and downstream of the discharge region. A series of O II(1Δ) emission, I* emission, O-atom titrations, gain, and O II(1Δ) yield, NO II* emission, and laser power measurements have been taken to explore the complex phenomena that are being observed. As the overall system is better understood improvements are being made in laser power and efficiency.

  20. Detection of OH radical in laser induced photodissociation of tetrahydrofuran at 193 nm

    NASA Astrophysics Data System (ADS)

    SenGupta, Sumana; Upadhyaya, Hari P.; Kumar, Awadhesh; Naik, Prakash D.; Bajaj, Paramanand

    2005-03-01

    On excitation at 193nm, tetrahydrofuran (THF) generates OH as one of the photodissociation products. The nascent energy state distribution of the OH radical was measured employing laser induced fluorescence technique. It is observed that the OH radical is formed mostly in the ground vibrational level, with low rotational excitation (˜3%). The rotational distribution of OH (v″=0,J) is characterized by rotational temperature of 1250±140K. Two spin-orbit states, Π3/22 and Π1/22 of OH are populated statistically. But, there is a preferential population in Λ doublet levels. For all rotational numbers, the Π+2(A') levels are preferred to the Π-2(A″) levels. The relative translational energy associated with the photoproducts in the OH channel is calculated to be 17.4±2.2kcalmol-1, giving an fT value of ˜36%, and the remaining 61% of the available energy is distributed in the internal modes of the other photofragment, i.e., C4H7. The observed distribution of the available energy agrees well with a hybrid model of energy partitioning, predicting an exit barrier of ≈16kcalmol-1. Based on both ab initio molecular orbital calculations and experimental results, a plausible mechanism for OH formation is proposed. The mechanism involves three steps, the C-O bond cleavage of the ring, H atom migration to the O atom, and the C-OH bond scission, in sequence, to generate OH from the ground electronic state of THF. Besides this high energy reaction channel, other photodissociation channels of THF have been identified by detecting the stable products, using Fourier transform infrared and gas chromatography.

  1. 20-Kw nitrogen diluent chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Yang, Tientsai T.; Bhowmik, Anup; Burde, David H.; Clark, Roy; Carroll, S.; Dickerson, Robert A.; Eblen, J.; Gylys, Vytas T.; Hsia, Y. C.; Humphreys, Richard H., Jr.; Moon, L. F.; Hurlock, Steve C.; Tomassian, A.

    2002-09-01

    A new Chemical Oxygen-Iodine Laser (COIL) has been developed and demonstrated at chlorine flow rates up to 1 gmol/s. The laser employs a cross flow jet oxygen generator operating with no diluent. The generator product flow enters the laser cavity at Mach 1 and is accelerated by mixing with 5 gmol/s, Mach 5 nitrogen diluent in an ejector nozzle array. The nitrogen also serves as the carrier for iodine. Vortex mixing is achieved through the use of mixing tabs at the nitrogen nozzle exit. Mixing approach design and analysis, including CFD analysis, led to the preferred nozzle configuration. The selected mixing enhancement design was tested in cold flow and the results are in good agreement with the CFD predictions. Good mixing was achieved within the desired cavity flow length of 20 cm and pressure recovery about 90 Torr was measured at the cavity exit. Finally, the design was incorporated into the laser and power extraction as high as 20 kw was measured at the best operating condition of 0.9 gmol/s. Stable resonator mode footprints showed desieable intensity profiles, which none of the sugar scoop profiles characteristic of the conventional COIL designs.

  2. Low threshold solar-pumped iodine laser

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.

    1986-01-01

    Solar-pumped lasing of i-C3F7I and n-C4F9I at lower solar concentrations (170 solar constants) and longer gain lengths than previous solar lasers is demonstrated, with potential application to the lasing needs of space. Two xenon arc solar simulators provide an AM0 spectrum over the 60-cm gain length, and output pulse energies of 70 mJ and an average power of 550 mW are achieved. Low pressure lasing times of 600 ms are reached, and the observed 0.074 percent slope efficiency could approach the 0.2 percent maximum theoretical efficiency. Due to less quenching of I(asterisk), n-C4F9I is found to be a superior lasant to i-C3F7I.

  3. Iodine

    MedlinePlus

    ... applying povidone-iodine reduces the risk of blood stream infections for people with hemodialysis catheters. However, most ... in which chyle is present in the urine stream. This causes the urine to appear milky white. ...

  4. Visible light generation of iodine atoms and I-I bonds: sensitized I(-) oxidation and I(3)(-) photodissociation.

    PubMed

    Gardner, James M; Abrahamsson, Maria; Farnum, Byron H; Meyer, Gerald J

    2009-11-11

    Direct 355 or 532 nm light excitation of TBAI(3), where TBA is tetrabutyl ammonium, in CH(3)CN at room temperature yields an iodine atom, I(*), and an iodine radical anion, I(2)(-*). In the presence of excess iodide, the iodine atom reacts quantitatively to yield a second equivalent of I(2)(-*) with a rate constant of k = 2.5 +/- 0.4 x 10(10) M(-1) s(-1). The I(2)(-*) intermediates are unstable with respect to disproportionation and yield initial reactants, k = 3.3 +/- 0.1 x 10(9) M(-1) s(-1). The coordination compound Ru(bpz)(2)(deeb)(PF(6))(2), where bpz is 2,2'-bipyrazine and deeb is 4,4'-(C(2)H(5)CO(2))(2)-2,2'-bipyridine, was prepared and characterized for mechanistic studies of iodide photo-oxidation in acetonitrile at room temperature. Ru(bpz)(2)(deeb)(2+) displayed a broad metal-to-ligand charge transfer (MLCT) absorption band at 450 nm with epsilon = 1.7 x 10(4) M(-1) cm(-1). Visible light excitation resulted in photoluminescence with a corrected maximum at 620 nm, a quantum yield phi = 0.14, and an excited state lifetime tau = 1.75 micros from which k(r) = 8.36 x 10(4) s(-1) and k(nr) = 5.01 x 10(5) s(-1) were abstracted. Arrhenius analysis of the temperature dependent excited state lifetime revealed an activation energy of approximately 2500 cm(-1) and a pre-exponential factor of 10(10) s(-1), assigned to activated surface crossing to a ligand field or MLCT excited state. Steady state light excitation of Ru(bpz)(2)(deeb)(2+) in a 20 mM TBAI acetonitrile solution resulted in ligand loss photochemistry with a quantum yield of 5 x 10(-5). The MLCT excited state was dynamically quenched by iodide with K(sv) = 1.1 x 10(5) M(-1) and k(q) = 6.6 +/- 0.3 x 10(10) M(-1) s(-1), a value consistent with diffusion-limited electron transfer. Excited state hole transfer to iodide was quantitative but the product yield was low due to poor cage escape yields, phi(CE) = 0.042 +/- 0.001. Nanosecond transient absorption was used to quantify the appearance of two

  5. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.

    1989-01-01

    A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.

  6. Threshold kinetics of a solar-simulator-pumped iodine laser

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Lee, Y.; Weaver, W. R.; Humes, D. H.; Lee, J. H.

    1984-01-01

    A model of the chemical kinetics of the n-C3F7I solar-simulator-pumped iodine laser is utilized to study the major kinetic processes associated with the threshold behavior of this experimental system. Excited-state diffusion to the cell wall is the dominant limiting factor below 5 torr. Excited-state diffusion to the cell wall is the dominant limiting factor below 5 torr. Excited-state recombination with the alkyl radical and quenching by the parent gas control threshold at higher pressures. Treatment of the hyperfine splitting and uncertainty in the pressure broadening are important factors in fixing the threshold level. In spite of scatter in the experimental data caused by instabilities in the simulator high-pressure high-pressure arc, reasonable agreement is achieved between the model and experiment. Model parameters arrived at are within the uncertainty range of values found in the literature.

  7. Stabilized Iodine Flow for Long Run Time Chemical Oxygen-Iodine Lasers

    DTIC Science & Technology

    1992-10-01

    United States Government retains a nonexclusive royalty- free license to publish or reproduce the material contained herein, or allow others to do so, for...4 Flowchart of iodine control logic. 8 5 Variation of iodine flow on the RADICL device in the absence of active control. 11 6 Variation of iodine...flow on the RADICL device in the presence of active control. 11 7 The run helium purposely started low to observe the recovery of the control system. 13

  8. Fragmentation due to centrifugal forces in the photodissociation of H{sub 2}{sup +} in intense laser fields

    SciTech Connect

    Fischer, Michael; Schmidt, Ruediger; Lorenz, Ulf; Schmidt, Burkhard

    2011-09-15

    By means of quantum-dynamical and classical trajectory calculations of H{sub 2}{sup +} photodissociation in strong laser fields, it is shown that for certain combinations of pulse durations and intensities the rotational dynamics can lead to fragmentation. In that case, the photofragments exhibit characteristic angular distributions. The classical calculations provide a transparent physical picture of this mechanism which is also very well established in collisions between atomic nuclei or liquid droplets: nonrotating systems are stable, whereas rotating systems fragment due to the decrease of the fragmentation barrier with increasing angular momentum.

  9. Tracing the photodissociation probability of H{sub 2}{sup +} in intense fields using chirped laser pulses

    SciTech Connect

    Prabhudesai, Vaibhav S.; Natan, Adi; Bruner, Barry D.; Diner, Adi; Silberberg, Yaron; Lev, Uri; Heber, Oded; Zajfman, Daniel; Strasser, Daniel; Schwalm, D.; Ben-Itzhak, Itzik; Hua, J. J.; Esry, B. D.

    2010-02-15

    The temporal evolution of the dissociation probabilities for various vibrational levels of H{sub 2}{sup +} is observed in terms of shifts in the kinetic energy release dissociation spectra, induced by linearly chirped intense laser pulses. In contrast to previous observations, in which no dependence on the chirp sign was observed, the energy spectrum reported here shows peak shifts, up for negative chirp and down for positive chirp. For some vibrational levels, dissociation takes place early on in the pulse; hence, care must be taken while interpreting the effect of pulse duration in photodissociation studies. This interpretation is supported by numerical solutions of the time-dependent Schroedinger equation.

  10. Communication: vacuum ultraviolet laser photodissociation studies of small molecules by the vacuum ultraviolet laser photoionization time-sliced velocity-mapped ion imaging method.

    PubMed

    Pan, Yang; Gao, Hong; Yang, Lei; Zhou, Jingang; Ng, C Y; Jackson, William M

    2011-08-21

    We demonstrate that the vacuum ultraviolet (VUV) photodissociation dynamics of N(2) and CO(2) can be studied using VUV photoionization with time-sliced velocity-mapped ion imaging (VUV-PI-VMI) detection. The VUV laser light is produced by resonant sum frequency mixing in Kr. N(2) is used to show that when the photon energy of the VUV laser is above the ionization energy of an allowed transition of one of the product atoms it can be detected and characterized as the wavelength is varied. In this case a β parameter = 0.57 for the N((2)D°) was measured after exciting N(2)(o(1)Π(u), v(') = 2, J(') = 2) ← N(2)(X(1)Σ(g) (+), v(") = 0, J(") = 1). Studies with CO(2) show that when there is no allowed transition, an autoionization resonance can be used for the detection of a product atom. In this case it is shown for the first time that the O((1)D) atom is produced with CO((1)Σ(+)) at 92.21 nm. These results indicate that the VUV laser photodissociation combined with the VUV-PI-VMI detection is a viable method for studying the one-photon photodissociation from the ground state of simple molecules in the extreme ultraviolet and VUV spectral regions.

  11. Gain and temperature in a slit nozzle supersonic chemical oxygen-iodine laser with transonic and supersonic injection of iodine

    NASA Astrophysics Data System (ADS)

    Rosenwaks, Salman; Barmashenko, Boris D.; Bruins, Esther; Furman, Dov; Rybalkin, Victor; Katz, Arje

    2002-05-01

    Spatial distributions of the gain and temperament across the flow were studied for transonic and supersonic schemes of the iodine injection in a slit nozzle supersonic chemical oxygen-iodine laser as a function of the iodine and secondary nitrogen flow rate, jet penetration parameter and gas pumping rate. The mixing efficiency for supersonic injection of iodine is found to be much larger than for transonic injection, the maximum values of the gain being approximately 0.65 percent/cm for both injection schemes. Measurements of the gain distribution as a function of the iodine molar flow rate nI2 were carried out. For transonic injection the optimal value of nI2 at the flow centerline is smaller than that at the off axis location. The temperature is distributed homogeneously across the flow, increasing only in the narrow boundary layers near the walls. Opening a leak downstream of the cavity in order to decease the Mach number results in a decrease of the gain and increase of the temperature. The mixing efficiency in this case is much larger than for closed leak.

  12. Investigation of laser-induced iodine fluorescence for the measurement of density in compressible flows

    NASA Technical Reports Server (NTRS)

    Mcdaniel, J. C., Jr.

    1982-01-01

    Laser induced fluorescence is an attractive nonintrusive approach for measuring molecular number density in compressible flows although this technique does not produce a signal that is directly related to the number density. Saturation and frequency detuned excitation are explored as means for minimizing the quenching effect using iodine as the molecular system because of its convenient absorption spectrum. Saturation experiments indicate that with available continuous wave laser sources of Gaussian transverse intensity distribution only partial saturation could be achieved in iodine at the pressures of interest in gas dynamics. Using a fluorescence lineshape theory, it is shown that for sufficiently large detuning of a narrow bandwidth laser from a molecular transition, the quenching can be cancelled by collisional broadening over a large range of pressures and temperatures. Experimental data obtained in a Mach 4.3 underexpanded jet of nitrogen seeded with iodine for various single mode argon laser detunings from a strong iodine transition at 5145 A are discussed.

  13. Laser ion beam photodissociation studies of model amino acids and peptides

    SciTech Connect

    Techlenburg, R.E. Jr.; Miller, M.N.; Russell, D.H. )

    1989-02-15

    Visible (458-514.5 nm) and uv (333-385 nm) photodissociation of the (M + H){sup +} ions of dinitrophenyl (DNP) derivatized amino acids and peptides is reported. Photoexcitation of the DNP peptides by a visible proton results in fragmentation of the peptide chain with little fragmentation within the chromophore. Conversely, uv photoexcitation of the DNP peptides results in fragmentation of the chromophore as well as the peptide chain, but loss of NO or NO{sub 2} (within the chromophore) often dominates the photofragment ion spectrum. These results are rationalized with particular emphasis on energy-selective dissociation channels of large ionic systems. DNP-leucine and DNP-isoleucine (M + H){sup +} can be differentiated on the basis of photodissociation reactions which yield distonic radical cations. The rate of dissociation of photoexcited ions of DNP peptides is shown to decrease with increasing molecular weight (degrees of freedom). Lastly, comparisons between photodissociation and collision-induced dissociation as a structural probe are presented. 55 refs., 8 figs., 3 tabs.

  14. State-Resolved and State-To Photodissociation Study of CO_2 by Two-Color Vuv-Vuv Laser Pump-Probe Method

    NASA Astrophysics Data System (ADS)

    Lu, Zhou; Chang, Yih-Chung; Jackson, William M.; Ng, Cheuk-Yiu

    2014-06-01

    CO_2 is known as a strong contributor to the greenhouse effect, and its concentration in the atmosphere increases annually. Photodissociation of CO_2 is considered an important photochemical sink of CO_2 molecules which could ultimately limit the increase of CO_2 concentration in the atmosphere. Since CO_2 molecules have negligibly small absorption from the visible region down to about 200 nm, photodissociation studies of CO_2 in the vacuum ultraviolet (VUV) region below 200 nm are of great importance in understanding the photochemical decomposition processes of CO_2 molecules. State-to-state photodissociation of CO_2 has been investigated by employing two independent VUV lasers and the time-slice velocity-map-imaging-photoion (VMI-PI) method. The spin-allowed photoproduct channels, CO(X1Σ+) + O(1D), CO(X1Σ+) + O(1S), CO(a3Π) + O(3PJ), and C(3PJ) + O2(X3Σg-), and the spin-forbidden photoproduct channel, CO(X1Σ+) + O(3PJ), were directly observed from the time-slice VMI-PI images. The angular anisotropic parameters were evaluated, allowing us to estimate the lifetimes for the formations of these dissociation channels. To the authors' knowledge, the current CO_2 photodissociation studies show for the first time that all of the energetically available photodissociation channels are formed in the CO_2 photoexcitation energy of interest.

  15. Laser pulse design using optimal control theory-based adaptive simulated annealing technique: vibrational transitions and photo-dissociation

    NASA Astrophysics Data System (ADS)

    Nath, Bikram; Mondal, Chandan Kumar

    2014-08-01

    We have designed and optimised a combined laser pulse using optimal control theory-based adaptive simulated annealing technique for selective vibrational excitations and photo-dissociation. Since proper choice of pulses for specific excitation and dissociation phenomena is very difficult, we have designed a linearly combined pulse for such processes and optimised the different parameters involved in those pulses so that we can get an efficient combined pulse. The technique makes us free from choosing any arbitrary type of pulses and makes a ground to check their suitability. We have also emphasised on how we can improve the performance of simulated annealing technique by introducing an adaptive step length of the different variables during the optimisation processes. We have also pointed out on how we can choose the initial temperature for the optimisation process by introducing heating/cooling step to reduce the annealing steps so that the method becomes cost effective.

  16. Fast beam studies of free radical photodissociation

    SciTech Connect

    Neumark, D.M.

    1993-12-01

    The authors have developed a novel technique for studying the photodissociation spectroscopy and dynamics of free radicals. In these experiments, radicals are generated by laser photodetachment of a fast (6-8 keV) mass-selected negative ion beam. The resulting radicals are photodissociated with a second laser, and the photofragments are collected and detected with high efficiency using a microchannel plate detector. The overall process is: ABC{sup -} {yields} ABC + e{sup -} {yields} A + BC, AB + C. Two types of fragment detection schemes are used. To map out the photodissociation cross-section of the radical, the photodissociation laser is scanned and the total photofragment yield is measured as a function of wavelength. In other experiments, the photodissociation frequency is fixed and the photofragment masses, kinetic energy release, and scattering angle is determined for each photodissociation event.

  17. Determination of iodine in oyster tissue by isotope dilution laser resonance ionization mass spectrometry

    SciTech Connect

    Fassett, J.D.; Murphy, T.J. )

    1990-02-15

    The technique of laser resonance ionization mass spectrometry has been combined with isotope dilution analysis to determine iodine in oyster tissue. The long-lived radioisotope, 129I, was used to spike the samples. Samples were equilibrated with the 129I, wet ashed under controlled conditions, and iodine separated by coprecipitation with silver chloride. The analyte was dried as silver ammonium iodide upon a tantalum filament from which iodine was thermally desorbed in the resonance ionization mass spectrometry instrument. A single-color, two-photon resonant plus one-photon ionization scheme was used to form positive iodine ions. Long-lived iodine signals were achieved from 100 ng of iodine. The precision of 127I/129I measurement has been evaluated by replicate determinations of the spike, the spike calibration samples, and the oyster tissue samples and was 1.0%. Measurement precision among samples was 1.9% for the spike calibration and 1.4% for the oyster tissue. The concentration of iodine determined in SRM 1566a, Oyster Tissue, was 4.44 micrograms/g with an estimate of the overall uncertainty for the analysis of +/- 0.12 microgram/g.

  18. Determination of iodine in oyster tissue by isotope dilution laser resonance ionization mass spectrometry.

    PubMed

    Fassett, J D; Murphy, T J

    1990-02-15

    The technique of laser resonance ionization mass spectrometry has been combined with isotope dilution analysis to determine iodine in oyster tissue. The long-lived radioisotope, 129I, was used to spike the samples. Samples were equilibrated with the 129I, wet ashed under controlled conditions, and iodine separated by coprecipitation with silver chloride. The analyte was dried as silver ammonium iodide upon a tantalum filament from which iodine was thermally desorbed in the resonance ionization mass spectrometry instrument. A single-color, two-photon resonant plus one-photon ionization scheme was used to form positive iodine ions. Long-lived iodine signals were achieved from 100 ng of iodine. The precision of 127I/129I measurement has been evaluated by replicate determinations of the spike, the spike calibration samples, and the oyster tissue samples and was 1.0%. Measurement precision among samples was 1.9% for the spike calibration and 1.4% for the oyster tissue. The concentration of iodine determined in SRM 1566a, Oyster Tissue, was 4.44 micrograms/g with an estimate of the overall uncertainty for the analysis of +/- 0.12 microgram/g.

  19. Improved production of Br atoms near zero speed by photodissociating laser aligned Br{sub 2} molecules

    SciTech Connect

    Deng, L. Z. Yin, J. P.

    2014-10-28

    We theoretically investigated the improvement on the production rate of the decelerated bromine (Br) atoms near zero speed by photodissociating laser aligned Br{sub 2} precursors. Adiabatic alignment of Br{sub 2} precursors exposed to long laser pulses with duration on the order of nanoseconds was investigated by solving the time-dependent Schrödinger equation. The dynamical fragmentation of adiabatically aligned Br{sub 2} precursors was simulated and velocity distribution of the Br atoms produced was analyzed. Our study shows that the larger the degree of the precursor alignment, 〈cos{sup 2} θ〉, the higher the production rate of the decelerated Br atoms near zero speed. For Br{sub 2} molecules with an initial rotational temperature of ∼1 K, a 〈cos{sup 2} θ〉 value of ∼0.88 can result in an improvement factor of over ∼20 on the production rate of the decelerated Br atoms near zero speed, requiring a laser intensity of only ∼1 × 10{sup 12} W/cm{sup 2} for alignment.

  20. Planar temperature measurement in compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1991-01-01

    A laser-induced iodine fluorescence technique that is suitable for the planar measurement of temperature in cold nonreacting compressible air flows is investigated analytically and demonstrated in a known flow field. The technique is based on the temperature dependence of the broadband fluorescence from iodine excited by the 514-nm line of an argon-ion laser. Temperatures ranging from 165 to 245 K were measured in the calibration flow field. This technique makes complete, spatially resolved surveys of temperature practical in highly three-dimensional, low-temperature compressible flows.

  1. Noise-immune laser receiver - transmitters with the quantum sensitivity limit

    SciTech Connect

    Kutaev, Yu F; Mankevich, S K; Nosach, O Yu; Orlov, E P

    2009-11-30

    We consider the operation principles of noise-immune near-IR receiver - transmitters with the quantum sensitivity limit, in which active quantum filters based on iodine photodissociation quantum amplifiers and iodine lasers are used. The possible applications of these devices in laser location, laser space communication, for the search for signals from extraterrestrial civilisations and sending signals to extraterrestrial civilisations are discussed. (invited paper)

  2. Relative quantum yield of I-asterisk(2P1/2) in the tunable laser UV photodissociation of i-C3F7I and n-C3F7I - Effect of temperature and exciplex emission

    NASA Technical Reports Server (NTRS)

    Smedley, J. E.; Leone, S. R.

    1983-01-01

    Wavelength-specific relative quantum yields of metastable I from pulsed laser photodissociation of i-C3F7I and n-C3F7I in the range 265-336 nm are determined by measuring the time-resolved infrared emission from the atomic I(P-2(1/2) P-2(3/2) transition. It is shown that although this yield appears to be unity from 265 to 298 nm, it decreases dramatically at longer wavelengths. Values are also reported for the enhancement of emission from metastable I due to exciplex formation at several temperatures. The exciplex formation emission increases linearly with parent gas pressure, but decreases with increasing temperature. Absorption spectra of i- and n-C3F7I between 303 and 497 K are presented, and the effect of temperature on the quantum yields at selected wavelengths greater than 300 nm, where increasing the temperature enhances the absorption considerably, are given. The results are discussed in regard to the development of solar-pumped iodine lasers.

  3. Numerical study of He/CF{sub 3}I pulsed discharge used to produce iodine atom in chemical oxygen-iodine laser

    SciTech Connect

    Zhang Jiao; Wang Yanhui; Wang Dezhen; Duo Liping; Li Guofu

    2013-04-15

    The pulsed discharge for producing iodine atoms from the alkyl and perfluoroalky iodides (CH{sub 3}I, CF{sub 3}I, etc.) is the most efficient method for achieving the pulse operating mode of a chemical oxygen-iodine laser. In this paper, a one-dimensional fluid model is developed to study the characteristics of pulsed discharge in CF{sub 3}I-He mixture. By solving continuity equation, momentum equation, Poisson equation, Boltzmann equation, and an electric circuit equation, the temporal evolution of discharge current density and various discharge products, especially the atomic iodine, are investigated. The dependence of iodine atom density on discharge parameters is also studied. The results show that iodine atom density increases with the pulsed width and pulsed voltage amplitude. The mixture ratio of CF{sub 3}I and helium plays a more significant role in iodine atom production. For a constant voltage amplitude, there exists an optimal mixture ratio under which the maximum iodine atom concentration is achieved. The bigger the applied voltage amplitude is, the higher partial pressure of CF{sub 3}I is needed to obtain the maximum iodine atom concentration.

  4. Modeling of optimal conditions for oxyhemoglobin photodissociation in laser-irradiated biotissue

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.; Bashkatov, A. N.; Genina, E. A.; Tuchin, V. V.

    2013-08-01

    Based on the theory of radiation transfer and a model that describes the structure and optical properties of biotissues, we have found spectral conditions of irradiation of the skin surface that ensure efficient generation of molecular oxygen O2 in the dermis due to the photodissociation of blood oxyhemoglobin. We show that, for maximal local O2 formation at depths z ≤ 0.2 mm, 0.2 mm < z ≤ 0.9 mm, 0.9 mm < z ≤ 2.5 mm, and z > 2.5 mm, it is more effective to use wavelengths in the intervals 418 ± 5, 575 ± 5, 585 ± 5, and 600 ± 5 nm, respectively. Physical reasons for the shift of optimal wavelengths toward the red range of the spectrum are described. We show that they are based on the selectivity of optical properties of the skin biotissue, which acts as of a kind of spectral filter the transmission curve of which depends on the depth. It is found that irradiation at a wavelength near 575 nm is optimal for the generation of a maximal amount of O2 in the intire bulk of the dermis.

  5. Tandem time-of-flight mass spectrometer for photodissociation of biopolymer ions generated by matrix-assisted laser desorption ionization (MALDI-TOF-PD-TOF) using a linear-plus-quadratic potential reflectron.

    PubMed

    Oh, Joo Yeon; Moon, Jeong Hee; Kim, Myung Soo

    2004-08-01

    A tandem time-of-flight mass spectrometer for the study of photodissociation of biopolymer ions generated by matrix-assisted laser desorption ionization was designed and constructed. A reflectron with linear and quadratic (LPQ) potential components was used. Characteristics of the LPQ reflectron and its utility as the second stage analyzer of the tandem mass spectrometer were investigated. Performance of the instrument was tested by observing photodissociation of [M + H](+) from angiotensin II, a prototype polypeptide. Quality of the photodissociation tandem mass spectrum was almost comparable to that of the post-source decay spectrum. Monoisotopic selection of the parent ion was possible, which was achieved through the ion beam-laser beam synchronization. General theoretical considerations needed for a successful photodissociation of large biopolymer ions are also presented.

  6. Analytical evaluation of kinetics in oxygen-iodine laser nozzle flows

    NASA Astrophysics Data System (ADS)

    Quan, Victor

    1997-05-01

    The reaction processes in chemical oxygen-iodine laser nozzle flows are investigated analytically. In the transport equations for the reacting species, order-of-magnitude arguments are applied to retain the dominant terms. The effects of local flow properties on the chemical kinetics are found in terms of a transformed coordinate which is a function of the nozzle shape and inlet flow conditions. Approximate closed-form solutions for the iodine dissociation, oxygen yield, and the dissociation cost are derived. The results indicate that the chemical processes occur predominantly in the subsonic section of the nozzle where the pressure is high and velocity is low.

  7. Simultaneous multiple-point velocity measurements using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Mcdaniel, J. C.; Hiller, B.; Hanson, R. K.

    1983-01-01

    A technique is demonstrated for measuring velocity at multiple locations in a plane of a gaseous flowfield using Doppler-shifted absorption with fluorescence detection from iodine molecules, excited by a sheet of tunable single-axial-mode argon-ion laser radiation at 514.5 nm. Measurements were made simultaneously at 10,000 points in an iodine-seeded supersonic flow field with a 100 x 100 element photodiode array camera and were found to agree well with a numerical solution for the velocity field. The accuracy with which a component of velocity can be measured is limited, in the current approach, by the iodine linewidth to about 5 m/sec.

  8. Flow Measurements of Translational-Rotational Nonequilibrium Using Laser-Induced Iodine Fluorescence

    NASA Astrophysics Data System (ADS)

    Cecil, Eric; McDaniel, James C.

    2011-05-01

    A shock wave impingement flow was studied under low temperature, low density conditions in a hypersonic free-jet wind tunnel. A sharp-edged flat plate was placed at zero incidence in the hypersonic core of a free-jet of nitrogen gas at Mach 12; a right circular cylinder mounted in the middle of the plate projected out normal to the plate surface. The oblique shock produced at the plate leading edge impinged on the detached bow shock wave produced by the cylinder. The symmetry plane in the flow was studied using a laser sheet-beam probe from a narrow-bandwidth laser source, which induced fluorescence in iodine molecules seeded in the gas. Fluorescence patterns produced by the sheet-beam were recorded by a charge-coupled device camera as the laser frequency was tuned in increments over a range spanning two distinct absorption lines in the iodine spectrum. The fluorescence intensity-versus-laser excitation frequency data recorded at each pixel was least-squares fitted to a nonequilibrium model of the iodine spectrum to estimate local translational and rotational temperature, velocity, and density. Contour plots of these results are presented at a resolution equal to roughly one mean-free-path of the oncoming flow at the plate leading edge. Profile plots of translational and rotational temperature on the plate are presented.

  9. Improvement in Suppression of Pulsed Nd:YAG Laser Light With Iodine Absorption Cells for Filtered Rayleigh Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Buggele, Alvin E

    1997-01-01

    Filtered Rayleigh scattering using iodine absorption cells is an effective technique for obtaining density, temperature, and velocity measurements in high speed confined flows. By tuning a single frequency laser to a strong iodine absorption line, stray scattered laser light can be greatly suppressed. For example, the minimum transmission predicted by an iodine absorption model calculation is less than 10(exp -5) at the 18788.44/cm line using a 200 mm absorption cell containing iodine vapor at 0.46 T. Measurements obtained by other researches using a CW Nd:YAG laser agree with the model calculations. However, measurements made by us and by others using Q-switched, injection-seeded, frequency doubled Nd:YAG lasers only show minimum transmission of about 3 x 10(exp -3). This greatly reduces the applicability of the filtered Rayleigh scattering technique using these lasers in experiments having large amounts of stray scattered laser light. The purposes of the present study are to characterize the spectrum of the excess light transmitted by the iodine cell and to make changes to the laser to reduce the transmitted laser light. Transmission data as a function of laser frequency for the iodine absorption line at 18788.44/cm are presented. A planar mirror Fabry-Perot interferometer was used to characterize the frequency spectrum of the light passed through the cell. Measurements taken with the laser tuned to the center of the iodine absorption line show the light transmitted through the iodine cell to have a component with a bandwidth of about 40 GHz. This is probably caused by other modes in the laser that exist in spite of the single frequency injection beam. A second broadband component was also observed, possibly caused by the laser flash lamps or by fluorescence. An intracavity etalon was installed in the laser oscillator cavity to suppress the 40 GHz component. Measurements taken with the etalon tuned to the injection frequency showed a reduction in the transmitted

  10. Optimal buffer gas pressure for laser-induced fluorescence detection of the iodine-129 isotope in the atmosphere

    SciTech Connect

    Kireev, S.V.; Pit`ko, A.V.; Shnyrev, S.L.

    1995-06-01

    The effect of atmospheric air pressure on the intensity of iodine-129 vapor fluorescence excited by a He-Ne (633 nm) laser is studied. It is shown that to achieve the maximum intensity of fluorescence of molecular iodine-129, it is advantageous, first, to use a {sup 3}He-{sup 20}Ne laser for excitation, and second, to detect atmospheric iodine impurities in the gas mixture under analysis evacuated to 2 x 10{sup 18} - 4 x 10{sup 18} mol/cm{sup 3}. In this case, the sensitivity increases about twofold. 7 refs., 4 figs.

  11. A pared-down gas-phase kinetics for the chemical oxygen-iodine laser medium

    NASA Astrophysics Data System (ADS)

    Pichugin, S. Yu.; Heaven, M. C.

    2013-11-01

    Kinetic data obtained in the last decade has resulted in revisions of some mechanisms of excitation and deactivation of excited states in the chemical oxygen-iodine laser (COIL) medium. This review considers new kinetic data and presents analyses of the mechanisms of pumping and quenching of electronically and vibrationally excited states in the oxygen-iodine laser media. An effective three-level model of I2 molecule excitation and relaxation has been developed. The calculated effective rate constants for deactivation of I2(X,11 ⩽ υ ⩽ 24) by O2, N2, He and CO2 are presented. A simplified kinetic package for the COIL active medium is recommended. This model consists of a 30-reaction set with 14 species. The results of calculations utilizing simplified model are in good agreement with the experimental data.

  12. Use of basic deuterium peroxide in the chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Yang, Tientsai T.; Copeland, Drew A.

    2000-05-01

    The chemical oxygen-iodine laser (COIL) uses a reaction of gaseous chorine and aqueous solution of basic oxygen peroxide (BHP) to produce oxygen singlet delta molecules, O2(1(Delta) ). Quenching of O2(1(Delta) ) during its extraction from the BHP solution and quenching of excited atomic iodine I* by water vapor from the O2(1(Delta) ) production process are well-known parasitic effects in COIL. This paper shows that both of these effects can be significantly reduced by replacing the hydrogen 1H1 isotope atoms in BHP by the 1H2 isotope atoms. In addition to restoring laser power lost to parasitic quenching, use of basic deuterium peroxide (BDP) rather than BHP is expected to allow generation of O2(1(Delta) ) at elevated temperature. This approach promises to save refrigerant, reduce the risk of BDP freezing, and delay precipitation of salt form BDP solution. Methods for producing BDP are outlined.

  13. Operational characteristics of high-pressure subsonic mode chemical oxygen-iodine lasers

    NASA Astrophysics Data System (ADS)

    Endo, Masamori; Sugimoto, Daichi; Tei, Kazuyoku; Takeda, Shuzaburo; Nanri, Kenzo; Fujioka, Tomoo

    2000-05-01

    High-pressure subsonic mode operation of chemical oxygen- iodine laser (COIL) is studied. In this mode, the singlet oxygen generated by the liquid-jet singlet oxygen generator (SOG) is directly utilized in the optical cavity without supersonic expansion. Drastic reduction of the required vacuum pump capacity, and iodine consumption was obtained. We have demonstrated a 25.0 percent of chemical efficiency with a small-scale device. The scale-up version of the COIL is developed and initial tests are conducted. The device is so designed that it will operate for 2 hours at 1kW laser output. Due to the inadequate heat exchanger of basic hydrogen peroxide (BHP), performance of the system was not yet satisfactory. However, a 30-minute continuous operation o the counter-flow type jet SOG with recirculation of BHP was demonstrated for the first time.

  14. Nuclear-driven flashlamp pumping of the atomic iodine laser. Final report

    SciTech Connect

    Miley, G.H.

    1992-03-01

    This report is a study of the atomic iodine laser pumped with nuclear- excited XeBr fluorescence. Preliminary experiments, conducted in the TRIGA reactor investigated the fluorescence of the excimer XeBr under nuclear pumping with {sup 10}B and {sup 3}He, for use as a flashlamp gas to stimulate the laser. These measurements included a determination of the fluorescence efficiency (light emitted in the wavelength region of interest, divided by energy deposited in the gas) of XeBr under nuclear pumping, with varying excimer mixtures. Maximum fluorescence efficiencies were approximately 1%. In order to better understand XeBr under nuclear excitation, a kinetics model of the system was prepared. The model generated the time-dependant concentrations of 20 reaction species for three pulse sizes, a TRIGA pulse, a fast burst reactor pulse, and an e-beam pulse. The modeling results predicted fluorescence efficiencies significantly higher (peak efficiencies of approximately 10%) than recorded in the fluorescence experiments. The cause of this discrepancy was not fully determined. A ray tracing computer model was also prepared to evaluate the efficiency with which nuclear-induced fluorescence generated in one cavity of a laser could be coupled into another cavity containing an iodine lasant. Finally, an experimental laser cell was constructed to verify that nuclear-induced XeBr fluorescence could be used to stimulate a laser. Lasing was achieved at 1.31 micron in the TRIGA using C{sub 3}F{sub 7}I, a common iodine lasant. Peak laser powers were approximately 20 mW. Measured flashlamp pump powers at threshold agreed well with literature values, as did lasant pressure dependency on laser operation.

  15. Advanced Nozzle Concepts for the Chemical Oxygen-Iodine Laser (COIL)

    DTIC Science & Technology

    2006-03-01

    Branch *) The objective of this project is to develop the optimal ejector nozzle bank (with additional nozzles for injection iodine vapor at low...gain (SSG) by employing of the Rigrod dependencies of the laser power. An application of an ejector -like nozzle bank to produce a gain medium in the...sonic/supersonic jets is very slow and it is necessary to use some kind of mixing enhancement schemes. Such mixing enhancement in the ejector

  16. Communication: State-to-state photodissociation study by the two-color VUV-VUV laser pump-probe time-slice velocity-map-imaging-photoion method.

    PubMed

    Gao, Hong; Song, Yu; Jackson, William M; Ng, C Y

    2013-05-21

    We demonstrate that combining two independently tunable vacuum ultraviolet (VUV) lasers and the time-slice velocity-map-imaging-photoion (VMI-PI) method allows the rovibronically state-selected photodissociation study of CO in the VUV region along with the state-selective detection of product C((3)P(0,1,2)) using the VUV-UV (1+1') resonance-enhanced photoionization and the VUV Rydberg autoionization methods. Both tunable VUV lasers are generated based on the two-photon resonance-enhanced four-wave mixing scheme using a pulsed rare gas jet as the nonlinear medium. The observed fine-structure distributions of product C((3)P(J)), J = 0, 1, and 2, are found to depend on the CO rovibronic state populated by VUV photoexcitation. The branching ratios for C((3)P0) + O((3)P(J)): C((3)P0) + O((1)D2), C((3)P1) + O((3)P(J)): C((3)P1) + O((1)D2), and C((3)P2) + O((3)PJ): C((3)P2) + O((1)D2), which were determined based on the time-slice VMI-PI measurements of C(+) ions formed by J-state selective photoionization sampling of C((3)P(0,1,2)), also reveal strong dependences on the spin-orbit state of C((3)P(0,1,2)). By combining the measured branching ratios and fine-structure distributions of C((3)P(0,1,2)), we have determined the correlated distributions of C((3)P(0,1,2)) accompanying the formation of O((1)D2) and O((3)P(J)) produced in the VUV photodissociation of CO. The success of this demonstration experiment shows that the VUV photodissociation pump-VUV photoionization probe method is promising for state-to-state photodissociation studies of many small molecules, which are relevant to planetary atmospheres as well as fundamental understanding of photodissociation dynamics.

  17. Calculations on Isotope Separation by Laser Induced Photodissociation of Polyatomic Molecules. Final Report

    DOE R&D Accomplishments Database

    Lamb, W. E. Jr.

    1978-11-01

    This report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. Newton`s equations of motion were integrated for the atoms of the SF{sub 6} molecule including the laser field interaction. The first year`s work has been largely dedicated to obtaining a suitable interatomic potential valid for arbitrary configurations of the seven particles. This potential gives the correct symmetry of the molecule, the equilibrium configuration, the frequencies of the six distinct normal modes of oscillation and the correct (or assumed) value of the total potential energy of the molecule. Other conditions can easily be imposed in order to obtain a more refined potential energy function, for example, by making allowance for anharmonicity data. A suitable expression was also obtained for the interaction energy between a laser field and the polyatomic molecule. The electromagnetic field is treated classically, and it would be easily possible to treat the cases of time dependent pulses, frequency modulation and noise.

  18. Performance characteristics of a chemical oxygen-iodine laser without a water vapor trap

    NASA Astrophysics Data System (ADS)

    Kikuchi, Toshio; Tsuruyama, Toru; Uchiyama, Taro

    1988-09-01

    The effect of water vapor on the operation of a chemical oxygen-iodine laser without a water vapor trap is described. The maximum CW laser power of 87 W was obtained without the water vapor trap at a Cl2 flow rate of 740 mmol/min. An alkaline H2O2 solution (90 wt pct H2O2, 50 wt pct KOH) was cooled down to about -30 C in order to control the saturated H2O2-H2O vapor pressure to less than 100 mTorr. Two porous pipes made of carbon were utilized as a singlet oxygen generator.

  19. Laser detection of spin-polarized hydrogen from HCl and HBr photodissociation: comparison of H- and halogen-atom polarizations.

    PubMed

    Sofikitis, Dimitris; Rubio-Lago, Luis; Bougas, Lykourgos; Alexander, Andrew J; Rakitzis, T Peter

    2008-10-14

    Thermal HCl and HBr molecules were photodissociated using circularly polarized 193 nm light, and the speed-dependent spin polarization of the H-atom photofragments was measured using polarized fluorescence at 121.6 nm. Both polarization components, described by the a(0)(1)(perpendicular) and Re[a(1)(1)(parallel, perpendicular)] parameters which arise from incoherent and coherent dissociation mechanisms, are measured. The values of the a(0)(1)(perpendicular) parameter, for both HCl and HBr photodissociation, are within experimental error of the predictions of both ab initio calculations and of previous measurements of the polarization of the halide cofragments. The experimental and ab initio theoretical values of the Re[a(1)(1)(parallel, perpendicular)] parameter show some disagreement, suggesting that further theoretical investigations are required. Overall, good agreement occurs despite the fact that the current experiments photodissociate molecules at 295 K, whereas previous measurements were conducted at rotational temperatures of about 15 K.

  20. Effect of buffer gases on broadening of the Iodine-127 resonance absorption line at a 633-nm He-Ne laser wavelength

    SciTech Connect

    Kireev, S.V.; Shnyrev, S.L.; Zaspa, Yu.P.

    1995-04-01

    Collisional broadening coefficients are measured for iodine-127 resonance absorption lines in several rare cases of atmospheric air and CO{sub 2}. The results obtained are used to determine the optimum pressure of a gaseous mixture in a measuring cell for detecting iodine-127 by a helium-neon (633 nm) laser-induced fluorescence technique of monitoring iodine in atmospheric air.

  1. Design and chemical synthesis of iodine-containing molecules for application to solar-pumped I* lasers

    NASA Technical Reports Server (NTRS)

    Shiner, C. S.

    1985-01-01

    This work is directed toward the design and chemical synthesis of new media for solar-pumped I* lasers. In view of the desirability of preparing a perfluoroalkyl iodide absorbing strongly at 300 nm, the relationship betwen perfluoroalkyl iodide structure and the corresponding absorption wavelength was reexamined. Analysis of existing data suggests that, in this family of compounds, the absorption maximum shifts to longer wavelength, as desired, as the C-I bond in the lasant is progressively weakened. Weakening of the C-I bond correlates, in turn, with increasing stability of the perfluoroalkyl radical formed upon photodissociation of the iodide. The extremely promising absorption characteristics of perfluoro-tert-butyl iodide can be accounted for on this basis. A new technique of diode laser probing to obtain precise yields of I* atoms in photodissociation was also developed.

  2. Molecular iodine fluorescence spectra generated with helium-neon lasers for spectrometer calibration.

    PubMed

    Williamson, J Charles

    2010-12-01

    Gas-phase molecular iodine laser-induced fluorescence (LIF) spectra were recorded out to 815 nm at 1 cm(-1) resolution using green, yellow, and red helium-neon (HeNe) lasers as excitation sources. Nine previously unreported I(2) B←X absorption transitions accessed by these lasers were identified, and specific rovibronic transition assignments were made for two hundred LIF peaks--more than sixty per laser. These I(2) LIF peaks can be used to calibrate the vacuum wavenumber coordinate of spectrometers to better than 0.1 cm(-1) accuracy. In particular, green HeNe excitation of the I(2) R(106) 28-0 transition leads to strong fluorescence well suited for calibration, with a rotational doublet spacing of 15 cm(-1) and a doublet-to-doublet spacing of 190 cm(-1). Calibration by HeNe I(2) LIF may be an especially valuable technique for Raman spectroscopy applications.

  3. A unified planar measurement technique for compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1992-01-01

    A unified laser-induced fluorescence technique for conducting planar measurements of temperature, pressure and velocity in nonreacting, highly compressible flows has been developed, validated and demonstrated. Planar fluorescence from iodine, seeded into air, was induced by an argon-ion laser and collected using a liquid-nitrogen cooled CCD camera. In the measurement technique, temperature is determined from the fluorescence induced with the laser operated broad band. Pressure and velocity are determined from the shape and position of the fluorescence excitation spectrum which is measured with the laser operated narrow band. The measurement approach described herein provides a means of obtaining accurate, spatially-complete maps of the primary flow field parameters in a wide variety of cold supersonic and transonic flows.

  4. Test bed for a high throughput supersonic chemical oxygen - iodine laser

    SciTech Connect

    Singhal, Gaurav; Mainuddin; Rajesh, R; Varshney, A K; Dohare, R K; Kumar, Sanjeev; Singh, V K; Kumar, Ashwani; Verma, Avinash C; Arora, B S; Chaturvedi, M K; Tyagi, R K; Dawar, A L

    2011-05-31

    The paper reports the development of a test bed for a chemical oxygen - iodine laser based on a high throughput jet flow singlet oxygen generator (JSOG). The system provides vertical singlet oxygen extraction followed by horizontal orientation of subsequent subsystems. This design enables the study of flow complexities and engineering aspects of a distributed weight system as an input for mobile and other platform-mounted systems developed for large scale power levels. The system under consideration is modular and consists of twin SOGs, plenum and supersonic nozzle modules, with the active medium produced in the laser cavity. The maximal chlorine flow rate for the laser is {approx}1.5 mole s{sup -1} achieving a typical chemical efficiency of about 18%. (lasers)

  5. Mixing effects in postdischarge modeling of electric discharge oxygen-iodine laser experiments

    NASA Astrophysics Data System (ADS)

    Palla, Andrew D.; Carroll, David L.; Verdeyen, Joseph T.; Solomon, Wayne C.

    2006-07-01

    In an electric discharge oxygen-iodine laser, laser action at 1315nm on the I(P1/22)→I(P3/22) transition of atomic iodine is obtained by a near resonant energy transfer from O2(aΔ1) which is produced using a low-pressure electric discharge. The discharge production of atomic oxygen, ozone, and other excited species adds higher levels of complexity to the postdischarge kinetics which are not encountered in a classic purely chemical O2(aΔ1) generation system. Mixing effects are also present. In this paper we present postdischarge modeling results obtained using a modified version of the BLAZE-II gas laser code. A 28 species, 105 reaction chemical kinetic reaction set for the postdischarge kinetics is presented. Calculations were performed to ascertain the impact of a two stream mixing mechanism on the numerical model and to study gain as a function of reactant mass flow rates. The calculations were compared with experimental data. Agreement with experimental data was improved with the addition of new kinetics and the mixing mechanism.

  6. Mechanism of singlet oxygen deactivation in an electric discharge oxygen - iodine laser

    NASA Astrophysics Data System (ADS)

    Azyazov, V. N.; Mikheyev, P. A.; Pershin, A. A.; Torbin, A. P.; Heaven, M. C.

    2014-12-01

    We have determined the influence of the reaction of molecular singlet oxygen with a vibrationally excited ozone molecule O2(a 1Δ) + O3(ν) → 2O2 + O on the removal rate of O2(a 1Δ) in an electric-discharge-driven oxygen - iodine laser. This reaction has been shown to be a major channel of O2(a 1Δ) loss at the output of an electric-discharge singlet oxygen generator. In addition, it can also contribute significantly to the loss of O2(a 1Δ) in the discharge region of the generator.

  7. Quantitative characterization of a nonreacting, supersonic combustor flowfield using unified, laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; Mcdaniel, J. C.

    1989-01-01

    A calibrated, nonintrusive optical technique, laser-induced iodine fluorescence (LIIF) was used to quantify the steady, compressible flowfield of a nonreacting, supersonic combustor. The combustor was configured with single and staged, transverse-air injection into a supersonic-air freestream behind a rearward-facing step. Pressure, temperature, two-velocity components, and injectant mole fraction were measured with high spatial resolution in the three-dimensional flowfields. These experimental results provide a benchmark set of data for validation of computational fluid dynamic (CFD) codes being developed to model supersonic combustor flowfields.

  8. Radioactive Iodine

    MedlinePlus

    ... Phone Home » Radioactive Iodine Leer en Español Radioactive Iodine Iodine is essential for proper function of the ... that takes up and holds onto iodine. Radioactive Iodine FAQs WHAT IS RADIOACTIVE IODINE (RAI)? Iodine, in ...

  9. Chemical oxygen-iodine laser (COIL) for the dismantlement of nuclear facilities

    NASA Astrophysics Data System (ADS)

    Hallada, Marc R.; Seiffert, Stephan L.; Walter, Robert F.; Vetrovec, John

    2000-05-01

    The dismantlement of obsolete nuclear facilities is a major challenge for both the US Department of Energy and nuclear power utilities. Recent demonstrations have shown that lasers can be highly effective for size reduction cutting, especially for the efficient storage and recycling of materials. However, the full benefits of lasers can only be realized with high average power beams that can be conveniently delivered, via fiber optics, to remote and/or confined areas. Industrial lasers that can meet these requirements are not available now or for the foreseeable future. However, a military weapon laser, a Chemical Oxygen Iodine Laser (COIL), which has been demonstrated at over a hundred kilo Watts, could be adapted to meet these needs and enable entirely new industrial applications. An 'industrialized' COIL would enable rapid sectioning of thick and complex structures, such as glove boxes, reactor vessels, and steam generators, accelerating dismantlement schedules and reducing worker hazards. The full advantages of lasers in dismantlement could finally be realized with a portable COIL which is integrated with sophisticated robotics. It could be built and deployed in less than two years, breaking the paradigm of labor-intensive dismantlement operations and cutting processing times and costs dramatically.

  10. Singlet oxygen generator for a solar powered chemically pumped iodine laser

    NASA Technical Reports Server (NTRS)

    Busch, G. E.

    1984-01-01

    The potential of solid phase endoperoxides as a means to produce single-delta oxygen in the gas phase in concentrations useful to chemical oxygen-iodine lasers was investigated. The 1,4 - endoperoxide of ethyl 3- (4-methyl - 1-naphthyl) propanoate was deposited over an indium-oxide layer on a glass plate. Single-delta oxygen was released from the endoperoxide upon heating the organic film by means of an electrical discharge through the conductive indium oxide coating. The evolution of singlet-delta oxygen was determined by measuring the dimol emission signal at 634 nm. Comparison of the measured signal with an analytic model leads to two main conclusions: virtually all the oxygen being evolved is in the singlet-delta state and in the gas phase, and there is no significant quenching other than energy pooling on the time scale of the experiment (approximately 10 msec). The use of solid phase endoperoxide as a singlet-delta oxygen generator for an oxygen-iodine laser appears promising.

  11. Performance model for optical extraction from a pulsed chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Copeland, D. A.; Bauer, A. H.; Jones, K. D.

    A comprehensive time-dependent gain model for pulsed optical extraction from a flowing oxygen-iodine laser medium is described. Gas flow is treated using an unsteady, premixed, quasi-one-dimensional model which accounts for gas motion and expansion as well as heat release in the cavity. The model uses a simplified, temperature-dependent, chemical kinetics package which consists of several reactions among the 3Sigma, 1Delta, and 1Sigma states of oxygen, atomic and molecular iodine, water, and helium. Hyperfine relaxation effects on the gain and optical extraction from the 3-4 line are treated using a simple four-level laser model. An efficient algorithm for solving the coupled medium and optical extraction equations is described. This gain model, in conjunction with a geometric model of an unstable confocal resonator, is used to examine energy extraction from the medium as a function of pulse repetition rate, duty cycle, and optical mode width. It is shown that the output power may exhibit flow-induced relaxation oscillations and the conditions under which these oscillations occur are discussed.

  12. Performance model for optical extraction from a Q-switched chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Copeland, D. A.; Bauer, A. H.; Jones, K. D.

    1993-03-01

    A comprehensive time-dependent model for optical extraction from a Q-switched supersonic oxygen-iodine laser is described. Gas flow is treated by using an unsteady, premixed, quasi-1D model that accounts for gas motion and expansion as well as heat release in the cavity. The model uses a simplified, temperature-dependent, chemical kinetics package that consists of several reactions among the 3Sigma, 1Delta, and 1Sigma states of oxygen, atomic and molecular iodine, water, and helium. Hyperfine relaxation effects on the gain and optical extraction from the 3-4 transition line are treated by using a simple four-level laser model. An efficient algorithm for solving the coupled medium and optical extraction equations, in conjunction with a geometric model of an unstable confocal resonator, is used to examine optical extraction from the medium as a function of pulse repetition rate, duty cycle, and optical mode width. It is shown that the output power may exhibit flow-induced relaxation oscillations.

  13. Removal of Water Vapor in a Mist Singlet Oxygen Generator for Chemical Oxygen Iodine Laser

    NASA Astrophysics Data System (ADS)

    Muto, Shigeki; Endo, Masamori; Nanri, Kenzo; Fujioka, Tomoo

    2004-02-01

    The mist singlet oxygen generator (Mist-SOG) for a chemical oxygen iodine laser (COIL) has been developed in order to increase basic hydrogen peroxide (BHP) utilization. It was clarified that the Mist-SOG generated much more water vapor than conventional SOGs because the heat capacity of BHP is small. The water vapor deactivates the excited iodine and depresses the laser power. Therefore, a jet-cold trap was developed in order to remove the water vapor while maintaining a minimum deactivation of singlet oxygen. In this method, a nozzle was used to spray chilled H2O2 at 238 K as a thin layer directly to the gas flow to achieve a large specific surface area for water vapor. As a result, the water vapor mole fraction was reduced to 7% from 18% with the BHP utilization of 21% at the Cl2 consumption rate of 3.5 mmol/s (Cl2 input flow rate of 8.0 mmol/s) for 65-μm-diameter BHP droplets.

  14. Mechanism of singlet oxygen deactivation in an electric discharge oxygen – iodine laser

    SciTech Connect

    Azyazov, V N; Mikheyev, P A; Torbin, A P; Pershin, A A; Heaven, M C

    2014-12-31

    We have determined the influence of the reaction of molecular singlet oxygen with a vibrationally excited ozone molecule O{sub 2}(a {sup 1}Δ) + O{sub 3}(ν) → 2O{sub 2} + O on the removal rate of O{sub 2}(a {sup 1}Δ) in an electric-discharge-driven oxygen – iodine laser. This reaction has been shown to be a major channel of O{sub 2}(a {sup 1}Δ) loss at the output of an electric-discharge singlet oxygen generator. In addition, it can also contribute significantly to the loss of O{sub 2}(a {sup 1}Δ) in the discharge region of the generator. (lasers)

  15. Theoretical shaping of femtosecond laser pulses for ultrafast molecular photo-dissociation with control techniques based on time-dependent density functional theory.

    PubMed

    Castro, Alberto

    2013-05-10

    The combination of time-dependent density functional theory and quantum optimal control formalism is used to optimize the shape of ultra-short laser pulses in order to achieve the photodissociation of the hydrogen molecule. The very short pulse durations used in this work (a few femtoseconds) do not allow for significant nuclear movement during irradiation, and thus the dissociation mechanism is sequential. During pulse irradiation, a large sudden momentum is communicated which can be understood in terms of population of excited, bound or unbound, dissociative electronic states. The target is defined in terms of the average opposing force during the action of the pulse, or equivalently, in terms of the final dissociative velocity.

  16. Design and chemical synthesis of iodine-containing molecules for application to solar-pumped I* lasers

    NASA Technical Reports Server (NTRS)

    Shiner, Christopher S.

    1986-01-01

    Research is directed toward the design and synthesis of new media for solar-pumped I* lasers. Since the most effective existing lasants are perfluoroalkyl iodides, a strategy was proposed for the development of improved materials of this type with absorption maxima at 300 nm. Absorption spectra were synthesized and measured for prototypical species containing iodine bound to boron, iron, and cobalt.

  17. A 50-kW Module Power Station of Directly Solar-Pumped Iodine Laser

    NASA Technical Reports Server (NTRS)

    Choi, S. H.; Lee, J. H.; Meador, W. E.; Conway, E. J.

    1997-01-01

    The conceptual design of a 50 kW Directly Solar-Pumped Iodine Laser (DSPIL) module was developed for a space-based power station which transmits its coherent-beam power to users such as the moon, Martian rovers, or other satellites with large (greater than 25 kW) electric power requirements. Integration of multiple modules would provide an amount of power that exceeds the power of a single module by combining and directing the coherent beams to the user's receiver. The model developed for the DSPIL system conservatively predicts the laser output power (50 kW) that appears much less than the laser output (93 kW) obtained from the gain volume ratio extrapolation of experimental data. The difference in laser outputs may be attributed to reflector configurations adopted in both design and experiment. Even though the photon absorption by multiple reflections in experimental cavity setup was more efficient, the maximum secondary absorption amounts to be only 24.7 percent of the primary. However, the gain volume ratio shows 86 percent more power output than theoretical estimation that is roughly 60 percent more than the contribution by the secondary absorption. Such a difference indicates that the theoretical model adopted in the study underestimates the overall performance of the DSPIL. This fact may tolerate more flexible and radical selection of design parameters than used in this design study. The design achieves an overall specific power of approximately 5 W/kg and total mass of 10 metric tons.

  18. Mathematical modeling of a photovoltaic-laser energy converter for iodine laser radiation

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Heinbockel, John H.

    1987-01-01

    Space-based laser power systems will require converters to change laser radiation into electricity. Vertical junction photovoltaic converters are promising devices for this use. A promising laser for the laser power station is the t-C4F9I laser which emits radiation at a wavelength of 1.315 microns. This paper describes the results of mathematical modeling of a photovoltaic-laser energy converter for use with this laser. The material for this photovoltaic converter is Ga(53)In(47)As which has a bandgap energy of 0.94 eV, slightly below the energy of the laser photons (0.943 eV). Results of a study optimizing the converter parameters are presented. Calculated efficiency for a 1000 vertical junction converter is 42.5 percent at a power density of 1 x 10 to the 3d power w/sq cm.

  19. Kinematically complete final state investigations of molecular photodissociation: two- and three-body decay of laser-prepared H 3 3 s 2 A 1 '

    NASA Astrophysics Data System (ADS)

    Galster, U.; Kaminski, P.; Beckert, M.; Helm, H.; Müller, U.

    2001-12-01

    We have performed kinematically complete investigations of molecular photodissociation of triatomic hydrogen in a fast beam translational spectrometer recently built in Freiburg. The apparatus allows us to investigate laser-induced dissociation of neutral molecules into two, three, or more neutral products. The fragments are detected in coincidence and their vectorial momenta in the center-of-mass frame are determined. We demonstrate the potential of the method at the fragmentation of the 3 s 2A1'(N = 1, K = 0) state of triatomic hydrogen. In this state, three-body decay into ground state hydrogen atoms H+H+H, two-body predissociation into H+H2(v, J), and photoemission to the H3 ground state surface with subsequent two-body decay are competing channels. In the case of two-body predissociation, we determine the rovibrational population in the H2(v, J) fragment. The vibrational distribution of H2 is compared with approximate theoretical predictions. For three-body decay, we measure the six-fold differential photodissociation cross-section. To determine accurate final state distributions, the geometric collection efficiency of the apparatus is calculated by a Monte Carlo simulation, and the raw data are corrected for apparatus efficiency. The final state momentum distribution shows pronounced correlation patterns which are characteristic for the dissociation mechanism. For a three-body decay process with a discrete kinetic energy release we have developed a novel data reduction procedure based on the detection of two fragments. The final state distribution determined by this independent method agrees extremely well with that observed in the triple-coincidence data. In addition, this method allows us to fully explore the phase space of the final state and to determine the branching ratios between the two- and three-body decay processes.

  20. Experimental investigation of a supersonic swept ramp injector using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J.; Hollo, Steven D.; Mcdaniel, James C.

    1990-01-01

    Planar measurements of injectant mole fraction and temperature have been conducted in a nonreacting supersonic combustor configured with underexpanded injection in the base of a swept ramp. The temperature measurements were conducted with a Mach 2 test section inlet in streamwise planes perpendicular to the test section wall on which the ramp was mounted. Injection concentration measurements, conducted in cross flow planes with both Mach 2 and Mach 2.9 free stream conditions, dramatically illustrate the domination of the mixing process by streamwise vorticity generated by the ramp. These measurements, conducted using a nonintrusive optical technique (laser-induced iodine fluorescence), provide an accurate and extensive experimental data base for the validation of computation fluid dynamic codes for the calculation of highly three-dimensional supersonic combustor flow fields.

  1. Directly solar-pumped iodine laser for beamed power transmission in space

    NASA Technical Reports Server (NTRS)

    Choi, S. H.; Meador, W. E.; Lee, J. H.

    1992-01-01

    A new approach for development of a 50-kW directly solar-pumped iodine laser (DSPIL) system as a space-based power station was made using a confocal unstable resonator (CUR). The CUR-based DSPIL has advantages, such as performance enhancement, reduction of total mass, and simplicity which alleviates the complexities inherent in the previous system, master oscillator/power amplifier (MOPA) configurations. In this design, a single CUR-based DSPIL with 50-kW output power was defined and compared to the MOPA-based DSPIL. Integration of multiple modules for power requirements more than 50-kW is physically and structurally a sound approach as compared to building a single large system. An integrated system of multiple modules can respond to various mission power requirements by combining and aiming the coherent beams at the user's receiver.

  2. A computational fluid dynamics simulation of a supersonic chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Waichman, K.; Rybalkin, V.; Katz, A.; Dahan, Z.; Barmashenko, B. D.; Rosenwaks, S.

    2007-05-01

    The dissociation of I II molecules at the optical axis of a supersonic chemical oxygen-iodine laser (COIL) was studied via detailed measurements and three dimensional computational fluid dynamics calculations. Comparing the measurements and the calculations enabled critical examination of previously proposed dissociation mechanisms and suggestion of a mechanism consistent with the experimental and theoretical results. The gain, I II dissociation fraction and temperature at the optical axis, calculated using Heidner's model (R.F. Heidner III et al., J. Phys. Chem. 87, 2348 (1983)), are much lower than those measured experimentally. Agreement with the experimental results was reached by using Heidner's model supplemented by Azyazov-Heaven's model (V.N. Azyazov and M.C. Heaven, AIAA J. 44, 1593 (2006)) where I II(A') and vibrationally excited O II(a1Δ) are significant dissociation intermediates.

  3. Regeneration of basic hydrogen peroxide for chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Hano, Masami; Wakita, Syuhei; Uno, Masaharu; Endo, Masamori; Nanri, Kenzo; Takeda, Shuzaburo; Fujioka, Tomoo

    2003-11-01

    Regeneration of Basic Hydrogen Peroxide (BHP) for Chemical Oxygen Iodine Laser (COIL) has been studied. The apparatus is an electrolyte H2O2 generator, which is composed of anode chamber, cathode chamber with gas diffusion electrode and cation exchange membrane. BHP containing 5 to 10 weight percent (wt%) of H2O2 is supplied to the apparatus and the change in the H2O2 concentration is measured for various operational conditions. A 5.11wt% BHP is regenerated with current efficiency of 92% and a 10.4wt% BHP is regenerated with current efficiency of 73%. It is found that the BHP flow rate and temperature of the BHP are critical to obtain high current efficiency.

  4. CONTROL OF LASER RADIATION PARAMETERS: Enhancement of the efficiency and control of emission parameters of an unstable-resonator chemical oxygen—iodine laser

    NASA Astrophysics Data System (ADS)

    Boreisho, A. S.; Lobachev, V. V.; Savin, A. V.; Strakhov, S. Yu; Trilis, A. V.

    2007-07-01

    The outlook is considered for the development of a high-power supersonic flowing chemical oxygen—iodine laser operating as an amplifier and controlled by radiation from a master oscillator by using an unstable resonator with a hole-coupled mirror. The influence of the seed radiation intensity, the coupling-hole diameter, the active-medium length, and the magnification factor on the parameters of laser radiation is analysed. It is shown that the use of such resonators is most advisable in medium-power oxygen—iodine lasers for which classical unstable resonators are inefficient because of their low magnification factors. The use of unstable resonators with a hole-coupled mirror and injection provides the control of radiation parameters and a considerable increase in the output power and brightness of laser radiation.

  5. Theoretical Shaping of Femtosecond Laser Pulses for Molecular Photodissociation with Control Techniques Based on Ehrenfest's Dynamics and Time-Dependent Density Functional Theory.

    PubMed

    Castro, Alberto

    2016-06-03

    The combination of nonadiabatic Ehrenfest-path molecular dynamics (EMD) based on time-dependent density functional theory (TDDFT) and quantum optimal control formalism (QOCT) was used to optimize the shape of ultra-short laser pulses to achieve photodissociation of a hydrogen molecule and the trihydrogen cation H3 (+) . This work completes a previous one [A. Castro, ChemPhysChem, 2013, 14, 1488-1495], in which the same objective was achieved by demonstrating the combination of QOCT and TDDFT for many-electron systems on static nuclear potentials. The optimization model, therefore, did not include the nuclear movement and the obtained dissociation mechanism could only be sequential: fast laser-assisted electronic excitation to nonbonding states (during which the nuclei are considered to be static), followed by field-free dissociation. Here, in contrast, the optimization was performed with the QOCT constructed on top of the full dynamic model comprised of both electrons and nuclei, as described within EMD based on TDDFT. This is the first numerical demonstration of an optimal control formalism for a hybrid quantum-classical model, that is, a molecular dynamics method.

  6. Laser Doppler velocimetry for continuous flow solar-pumped iodine laser system

    NASA Technical Reports Server (NTRS)

    Tabibi, Bagher M.; Lee, Ja H.

    1991-01-01

    A laser Doppler velocimetry (LDV) system was employed to measure the flow velocity profile of iodide vapor inside laser tubes of 36 mm ID and 20 mm ID. The LDV, which was operated in the forward scatter mode used a low power (15 mW) He-Ne laser beam. Velocity ranges from 1 m/s was measured to within one percent accuracy. The flow velocity profile across the laser tube was measured and the intensity of turbulence was determined. The flow of iodide inside the laser tube demonstrated a mixture of both turbulence and laminar flow. The flowmeter used for the laser system previously was calibrated with the LDV and found to be in good agreement.

  7. Speciation of iodine-containing proteins in Nori seaweed by gel electrophoresis laser ablation ICP-MS.

    PubMed

    Romarís-Hortas, V; Bianga, J; Moreda-Piñeiro, A; Bermejo-Barrera, P; Szpunar, J

    2014-09-01

    An analytical approach providing an insight into speciation of iodine in water insoluble fraction of edible seaweed (Nori) was developed. The seaweed, harvested in the Galician coast (Northwestern Spain), contained 67.7±1.3 μg g(-1) iodine of which 25% was water soluble and could be identifies as iodide. Extraction conditions of water insoluble residue using urea, NaOH, SDS and Triton X-100 were investigated. The protein pellets obtained in optimized conditions (after precipitation of urea extracts with acetone), were digested with trypsin and protease XIV. Size exclusion chromatography-ICP-MS of both enzymatic digests demonstrated the occurrence of iodoaminoacids putatively present in proteins. Intact proteins could be separated by gel electrophoresis after an additional extraction of the protein extract with phenol. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) with laser ablation ICP-MS detection of (127)I indicated the presence of iodine in protein bands corresponding to molecular masses of 110 kDa, 40 kDa, 27 kDa, 20 kDa and 10 kDa. 2D IEF-SDS PAGE with laser ablation ICP-MS (127)I imaging allowed the detection of 5 iodine containing protein spots in the alkaline pI range.

  8. Subwavenumber charge-coupled device spectrometer calibration using molecular iodine laser-induced fluorescence

    SciTech Connect

    Lambert, Joseph G.; Hernandez-Diaz, Carlos; Williamson, J. Charles

    2010-01-15

    Spectrometers configured with charge-coupled devices (CCD) or other array-based detectors require calibration to convert from the pixel coordinate to a spectral coordinate. A CCD calibration method well suited for Raman spectroscopy has been developed based on the 514.5 nm Ar{sup +} laser-induced fluorescence (LIF) spectrum of room-temperature molecular iodine vapor. Over 360 primary and secondary I{sub 2} LIF calibration lines spanning 510-645 nm were identified as calibrant peaks using an instrumental resolution of 1 cm{sup -1}. Two instrument calibration functions were evaluated with these peaks: a second-order polynomial and a function derived from simple optomechanical considerations. The latter function provided better fitting characteristics. Calibration using I{sub 2} LIF was tested with measurements of both laser light scattering and Raman spectra. The I{sub 2} LIF reference spectra and the signal spectra were recorded simultaneously, with no cross talk, by separating the two signals spatially along the vertical axis of the CCD imager. In this way, every CCD image could be independently calibrated. An accuracy and a precision of {+-}0.05 cm{sup -1} were achieved with this calibration technique.

  9. Chemical oxygen-iodine laser with a centrifugal spray generator of singlet oxygen

    NASA Astrophysics Data System (ADS)

    Špalek, Otomar; Jirásek, Vít; Čenský, Miroslav; Kodymová, Jarmila

    2010-09-01

    A chemical oxygen-iodine laser driven by the centrifugal spray generator of singlet oxygen was developed and experimentally studied. Modeling and experimental studies showed that the designed generator can produce singlet oxygen, O2(1Δg), with a high efficiency (chlorine utilization 0.68 - 0.87 and O2(1Δg) yield 0.35 - 0.7) even at very high generator pressures (25 - 70 kPa), which cannot be attained by other O2(1Δg) generators. This high-pressure operation should be beneficial for a pressure recovery system of the laser. Another specific feature of the generator is a very high BHP utilization (0.24-0.6). The developed separator can effectively remove even small droplets (> 1 μm) from gas at the generator exit. Preliminary experiments on the COIL driven the centrifugal spray generator provided the small signal gain up to 0.5 % cm-1.

  10. Parametric studies of a small-scale chemical oxygen-iodine laser/jet generator system: recent achievements

    NASA Astrophysics Data System (ADS)

    Furman, Dov; Barmashenko, Boris D.; Rosenwaks, Salman

    1998-05-01

    Recent results of parametric studies of an efficient supersonic chemical oxygen-iodine laser are presented. The laser is energized by a jet type singlet oxygen generator, operated without primary buffer gas and applies simple nozzle geometry and transonic mixing of iodine and oxygen. Output power of 190 W with chemical efficiency of 18% was obtained in a 5 cm gain length for Cl2 flow rate of 11.8 mmole/s. The power is studied as a function of the distance between the optical axis and the supersonic nozzle exit plane, the molar flow rates of various reagents, the BHP and gas pressures in the generator, the type of the secondary buffer gas (N2 or He) and the stagnation temperature of the gas. It is found that the power under the present operation conditions is almost unaffected by water vapor in the medium. The role of buffer gas under different conditions is discussed.

  11. Kinetics of an oxygen - iodine active medium with iodine atoms optically pumped on the 2P1/2 - 2P3/2 transition

    NASA Astrophysics Data System (ADS)

    Zagidullin, M. V.; Malyshev, M. S.; Azyazov, V. N.

    2015-08-01

    The kinetics of the processes occurring in an O2 - I2 - He - H2O gas flow in which photodissociation of molecular iodine at a wavelength close to 500 nm and excitation of atomic iodine on the 2P1/2 - 2P3/2 transition by narrow-band radiation near 1315 nm are implemented successively has been analysed. It is shown that implementation of these processes allows one to form an oxygen - iodine medium with a high degree of dissociation of molecular iodine and a relative content of singlet oxygen O2(a1Δ) exceeding 10%. Having formed a supersonic gas flow with a temperature ~100 K from this medium, one can reach a small-signal gain of about 10-2 cm-1 on the 2P1/2 - 2P3/2 transition in iodine atoms. The specific power per unit flow cross section in the oxygen - iodine laser with this active medium may reach ~100 W cm-2.

  12. Flowfield measurements in a model scramjet combustion using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Mcdaniel, J. C., Jr.

    1984-01-01

    Preliminary designs were completed for an iodine mixing chamber and the optical setup to be used with a modified wind tunnel in obtaining accurate, spatially resolved measurements of variables in the flowfield of a model nonreacting scramjet combustor. Schematics of the iodine-seeded wind tunnel and a sketch of the charcoal filter for removing the iodine are included along with a cutaway section of the laboratory.

  13. Kinetic-fluid dynamics modeling of I2 dissociation in supersonic chemical oxygen-iodine lasers

    NASA Astrophysics Data System (ADS)

    Waichman, K.; Barmashenko, B. D.; Rosenwaks, S.

    2009-09-01

    The mechanism of I2 dissociation in supersonic chemical oxygen-iodine lasers (COILs) is studied applying kinetic-fluid dynamics modeling, where pathways involving the excited species I2(X Σ1g +,10≤v<25), I2(X Σ1g +,25≤v≤47), I2(A'Π32u), I2(AΠ31u), O2(X Σ3g -,v), O2(aΔ1g,v), O2(b Σ1g +,v), and I(P21/2) as intermediate reactants are included. The gist of the model is adding the first reactant and reducing the contribution of the second as compared to previous models. These changes, recently suggested by Azyazov, et al. [J. Chem. Phys. 130, 104306 (2009)], significantly improve the agreement with the measurements of the gain in a low pressure supersonic COIL for all I2 flow rates that have been tested in the experiments. In particular, the lack of agreement for high I2 flow rates, which was encountered in previous models, has been eliminated in the present model. It is suggested that future modeling of the COIL operation should take into account the proposed contribution of the above mentioned reactants.

  14. Computer-controlled multi-parameter mapping of 3D compressible flowfields using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Donohue, James M.; Victor, Kenneth G.; Mcdaniel, James C., Jr.

    1993-01-01

    A computer-controlled technique, using planar laser-induced iodine fluorescence, for measuring complex compressible flowfields is presented. A new laser permits the use of a planar two-line temperature technique so that all parameters can be measured with the laser operated narrowband. Pressure and temperature measurements in a step flowfield show agreement within 10 percent of a CFD model except in regions close to walls. Deviation of near wall temperature measurements from the model was decreased from 21 percent to 12 percent compared to broadband planar temperature measurements. Computer-control of the experiment has been implemented, except for the frequency tuning of the laser. Image data storage and processing has been improved by integrating a workstation into the experimental setup reducing the data reduction time by a factor of 50.

  15. Optical Frequency Metrology of an Iodine-Stabilized He-Ne Laser Using the Frequency Comb of a Quantum-Interference-Stabilized Mode-Locked Laser

    PubMed Central

    Smith, Ryan P.; Roos, Peter A.; Wahlstrand, Jared K.; Pipis, Jessica A.; Rivas, Maria Belmonte; Cundiff, Steven T.

    2007-01-01

    We perform optical frequency metrology of an iodine-stabilized He-Ne laser using a mode-locked Ti:sapphire laser frequency comb that is stabilized using quantum interference of photocurrents in a semiconductor. Using this technique, we demonstrate carrier-envelope offset frequency fluctuations of less than 5 mHz using a 1 s gate time. With the resulting stable frequency comb, we measure the optical frequency of the iodine transition [127I2 R(127) 11-5 i component] to be 473 612 214 712.96 ± 0.66 kHz, well within the uncertainty of the CIPM recommended value. The stability of the quantum interference technique is high enough such that it does not limit the measurements. PMID:27110472

  16. Influence of the gaseous mixture composition on accuracy of molecular iodine on-line detection by laser-induced fluorescence method

    NASA Astrophysics Data System (ADS)

    Kireev, S. V.; Shnyrev, S. L.

    2016-07-01

    This paper informs on research into the influence of the composition of gaseous mixtures analyzed on the accuracy of on-line molecular iodine detection by laser-induced fluorescence in various gaseous media—in atmospheric air and in technological mixtures formed during reprocessing of spent nuclear fuel. The paper shows that by considering the composition of buffer media and parts of its components, the accuracy of iodine content measurement may be increased in several times.

  17. Solvent evaporation versus proton transfer in nucleobase-Pt(CN)(4,6)²⁻ dianion clusters: a collisional excitation and electronic laser photodissociation spectroscopy study.

    PubMed

    Sen, Ananya; Luxford, Thomas F M; Yoshikawa, Naruo; Dessent, Caroline E H

    2014-08-07

    Isolated molecular clusters of adenine, cytosine, thymine and uracil with Pt(CN)6(2-) and Pt(CN)4(2-) were studied for the first time to characterize the binding and reactivity of isolated transition metal complex ions with nucleobases. These clusters represent model systems for understanding metal complex-DNA adducts, as a function of individual nucleobases. Collisional excitation revealed that the clusters decay on the ground electronic surface by either solvent evaporation (i.e. loss of a nucleobase unit from the cluster) or via proton transfer from the nucleobase to the dianion. The Pt(CN)6(2-)-nucleobase clusters decay only by solvent evaporation, while the Pt(CN)4(2-) clusters fragment by both pathways. The enhanced proton-transfer reactivity of Pt(CN)4(2-) is attributed to the higher charge-density of the ligands in this transition metal anion. % fragmentation curves of the clusters reveal that the adenine clusters display distinctively higher fragmentation onsets, which are traced to the propensity of adenine to form the shortest intercluster H-bond. We also present laser electronic photodissociation measurements for the Pt(CN)6(2-)·Ur, Pt(CN)4(2-)·Ur and Pt(CN)4(2-)·Ur2 clusters to illustrate the potential of exploring metal complex DNA photophysics as a function of nucleobase within well-defined gaseous clusters. The spectra reported herein represent the first such measurements. We find that the electronic excited states decay with production of the same fragments (associated with solvent evaporation and proton transfer) observed upon collisional excitation of the electronic ground state, indicating ultrafast deactivation of the excited-state uracil-localized chromophore followed by vibrational predissociation.

  18. The elementary steps of the photodissociation and recombination reactions of iodine molecules enclosed in cages and channels of zeolite crystals: A femtosecond time-resolved study of the geometry effect

    NASA Astrophysics Data System (ADS)

    Flachenecker, G.; Materny, A.

    2004-03-01

    We present femtosecond time-resolved pump-probe experiments on iodine molecules enclosed into well-defined cages and channels of different crystalline SiO2 modifications of zeolites. The new experimental results obtained from iodine in TON (Silica-ZSM-22), FER (Silica-Ferrierit), and MFI (Silicalit-1) porosils are compared with data published earlier on the iodine/DDR (Decadodecasil 3R) porosil system [Flachenecker et al., Phys. Chem. Chem. Phys. 5, 865 (2003)]. A summary of all findings is given. The processes analyzed by means of the ultrafast spectroscopy are the vibrational relaxation as well as the dissociation and recombination reactions, which are caused by the interaction of the photo-excited iodine molecules with the cavity walls of the porosils. A clear dependence of the observed dynamics on the geometry of the surrounding lattice structure can be seen. These measurements are supported by temperature-dependent experiments. Making use of a theoretical model which is based on the classical Langevin equation, an analysis of the geometry-reaction relation is performed. The Brownian dynamics simulations show that in contrast to the vibrational relaxation the predissociation dynamics are independent of the frequency of collisions with the surroundings. From the results obtained in the different surroundings, we conclude that mainly local fields are responsible for the crossing from the bound B state to the repulsive a/a' states of the iodine molecules.

  19. Efficient photo-dissociation of CH4 and H2CO molecules with optimized ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Rasti, S.; Irani, E.; Sadighi-Bonabi, R.

    2015-11-01

    The fragmentation dynamics of CH4 and H2CO molecules have been studied with ultra-short pulses at laser intensityof up to 1015Wcm-2. Three dimensional molecular dynamics calculations for finding the optimized laser pulses are presented based on time-dependent density functional theory and quantum optimal control theory. A comparison of the results for orientation dependence in the ionization process shows that the electron distribution for CH4 is more isotropic than H2CO molecule. Total conversion yields of up to 70% at an orientation angle of 30o for CH4 and 65% at 900 for H2CO are achieved which lead to enhancement of dissociation probability.

  20. Analytic study of the chain dark decomposition reaction of iodides - atomic iodine donors - in the active medium of a pulsed chemical oxygen-iodine laser: 2. Limiting parameters of the branching chain dark decomposition reaction of iodides

    SciTech Connect

    Andreeva, Tamara L; Kuznetsova, S V; Maslov, Aleksandr I; Sorokin, Vadim N

    2009-08-31

    The final stages in the development of a branching chain decomposition reaction of iodide in the active medium of a pulsed chemical oxygen-iodine laser (COIL) are analysed. Approximate expressions are derived to calculate the limiting parameters of the chain reaction: the final degree of iodide decomposition, the maximum concentration of excited iodine atoms, the time of its achievement, and concentrations of singlet oxygen and iodide at that moment. The limiting parameters, calculated by using these expressions for a typical composition of the active medium of a pulsed COIL, well coincide with the results of numerical calculations. (active media)

  1. Digital control of an iodine stabilized He-Ne laser by using a personal computer and a simple electronic system

    NASA Astrophysics Data System (ADS)

    Pantelić, Dejan V.; Panić, Bratimir M.; Kovačević, Aleksander G.

    2003-06-01

    An electronic system used for active control and optical frequency stabilization of a He-Ne laser is described. It is based on digital acquisition and signal processing, using minimum of analog electronics, and a personal computer (PC). Main functions of the system: phase sensitive detection, automatic control, and user interface, are performed in software. Simultaneous frequency and iodine cell temperature stabilization algorithm is described. Electronic system is compact (occupies only desktop PC case), inexpensive (commercial, of-the-shelf, components are mostly used), and can be easily upgraded and reprogrammed (new stabilization algorithms can be implemented). It is now a part of the primary length standard of Yugoslavia.

  2. Quantitative measurement of transverse injector and free stream interaction in a nonreacting SCRAMJET combustor using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; Mcdaniel, J. C.

    1987-01-01

    A preliminary quantitative study of the compressible flowfield in a steady, nonreacting model SCRAMJET combustor using laser-induced iodine fluorescence (LIIF) is reported. Measurements of density, temperature, and velocity were conducted with the calibrated, nonintrusive, optical technique for two different combustor operating conditions. First, measurements were made in the supersonic flow over a rearward-facing step without transverse injection for comparison with calculated pressure profiles. The second configuration was staged injection behind the rearward-facing step at an injection dynamic pressure ratio of 1.06. These experimental results will be used to validate computational fluid dynamic (CFD) codes being developed to model supersonic combustor flowfields.

  3. Planar measurement of flow field parameters in a nonreacting supersonic combustor using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1990-01-01

    A nonintrusive optical technique, laser-induced iodine fluorescence, has been used to obtain planar measurements of flow field parameters in the supersonic mixing flow field of a nonreacting supersonic combustor. The combustor design used in this work was configured with staged transverse sonic injection behind a rearward-facing step into a Mach 2.07 free stream. A set of spatially resolved measurements of temperature and injectant mole fraction has been generated. These measurements provide an extensive and accurate experimental data set required for the validation of computational fluid dynamic codes developed for the calculation of highly three-dimensional combustor flow fields.

  4. A velocity map imaging study of the photodissociation of the methyl iodide cation.

    PubMed

    Marggi Poullain, S; Chicharro, D V; González-Vázquez, J; Rubio-Lago, L; Bañares, L

    2017-03-06

    The photodissociation dynamics of the methyl iodide cation has been studied using the velocity map imaging technique. A first laser pulse is used to ionize methyl iodide via a (2 + 1) REMPI scheme through the 5pπ → 6p Rydberg state two-photon transition. The produced CH3I(+)(X[combining tilde](2)E3/2) ions are subsequently excited at several wavelengths between 242 and 260 nm. The reported translational energy distributions for the methyl and iodine ions present a Boltzmann-type unstructured distribution at low excitation energies as well as a recoiled narrow structure at higher excitation energies highlighting two different dissociation processes. High level ab initio calculations have been performed in order to obtain a deeper understanding of the photodissociation dynamics of the CH3I(+) ion. Direct dissociation on a repulsive state from the manifold of states representing the B[combining tilde] excited state leads to CH3(+)(X[combining tilde](1)A1') + I*((2)P1/2), while the CH3 + I(+)((3)P2) channel is populated through an avoided crossing outside the Franck-Condon region. In contrast, an indirect process involving the transfer of energy from highly excited electronic states to the ground state of the ion is responsible for the observed Boltzmann-type distributions.

  5. Kinetics of an oxygen – iodine active medium with iodine atoms optically pumped on the {sup 2}P{sub 1/2} – {sup 2}P{sub 3/2} transition

    SciTech Connect

    Zagidullin, M V; Azyazov, V N; Malyshev, M S

    2015-08-31

    The kinetics of the processes occurring in an O{sub 2} – I{sub 2} – He – H{sub 2}O gas flow in which photodissociation of molecular iodine at a wavelength close to 500 nm and excitation of atomic iodine on the {sup 2}P{sub 1/2} – {sup 2}P{sub 3/2} transition by narrow-band radiation near 1315 nm are implemented successively has been analysed. It is shown that implementation of these processes allows one to form an oxygen – iodine medium with a high degree of dissociation of molecular iodine and a relative content of singlet oxygen O{sub 2}(a{sup 1}Δ) exceeding 10%. Having formed a supersonic gas flow with a temperature ∼100 K from this medium, one can reach a small-signal gain of about 10{sup -2} cm{sup -1} on the {sup 2}P{sub 1/2} – {sup 2}P{sub 3/2} transition in iodine atoms. The specific power per unit flow cross section in the oxygen – iodine laser with this active medium may reach ∼100 W cm{sup -2}. (active media)

  6. A Ground-Based Instrument for the Laser-Induced Fluorescence Detection of Coastal Iodine Monoxide (IO)

    NASA Astrophysics Data System (ADS)

    Hannun, R. A.; Thurlow, M. E.; O'Brien, A.; Co, D. T.; Hanisco, T. F.; Lapson, L. B.; Anderson, J.

    2011-12-01

    The photochemistry of iodine monoxide (IO) within the marine boundary layer plays a role in the catalytic loss cycles of surface ozone and potentially leads to the nucleation of marine aerosols. Biogenic emissions of molecular iodine and organo-halide precursor molecules account for the largest sources of IO in marine and coastal environments. Due to the inhomogeneous distribution of atmospheric IO in conjunction with low mixing ratios of less than 10 ppt, high sensitivity in-situ measurements are needed in order to better understand the impact of IO photochemistry in a quantifiable way. To address these challenges, a laser-induced fluorescence instrument has been developed, with a nanosecond-pulsed Nd:YAG-pumped Ti:Sapphire laser system. Through efficient optical design and fluorescence detection, we are able to operate in the sensitivity threshold of 1 ppt per minute for IO. Further design considerations included the development of a mobile, weatherproof instrument configuration, which can sustain deployment in a variety of field conditions. In order to validate the detection technique, the instrument was deployed at Shoals Marine Laboratory in Maine from August-September 2011. Instrument design considerations as well as preliminary results of the detection of IO from laminaria digitata, a kelp species present in coastal New England sites, will be presented.

  7. Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system.

    PubMed

    Palla, A D; Zimmerman, J W; Woodard, B S; Carroll, D L; Verdeyen, J T; Lim, T C; Solomon, W C

    2007-07-26

    Laser oscillation at 1315 nm on the I(2P1/2)-->I(2P3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O2(a1Delta) produced using a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O2(a1Delta) generation system. The advanced model BLAZE-IV has been introduced to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms, and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O3, O atom, and gas temperature measurements but is under-predicting the increase in O2(a1Delta) concentration resulting from the presence of NO in the discharge and under-predicting the O2(b1Sigma) concentrations. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O2(a1Delta) concentrations downstream of the discharge in part via a recycling process; however, there are still some important processes related to the NOX discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics.

  8. Reduced dimer production in solar-simulator-pumped continuous wave iodine lasers based on model simulations and scaling and pumping studies

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Heinbockel, John H.; Miner, Gilda A.; Meador, Willard E., Jr.; Tabibi, Bagher M.; Lee, Ja H.; Williams, Michael D.

    1995-01-01

    A numerical rate equation model for a continuous wave iodine laser with longitudinally flowing gaseous lasant is validated by approximating two experiments that compare the perfluoroalkyl iodine lasants n-C3F7I and t-C4F9I. The salient feature of the simulations is that the production rate of the dimer (C4F9)2 is reduced by one order of magnitude relative to the dimer (C3F7)2. The model is then used to investigate the kinetic effects of this reduced dimer production, especially how it improves output power. Related parametric and scaling studies are also presented. When dimer production is reduced, more monomer radicals (t-C4F9) are available to combine with iodine ions, thus enhancing depletion of the laser lower level and reducing buildup of the principal quencher, molecular iodine. Fewer iodine molecules result in fewer downward transitions from quenching and more transitions from stimulated emission of lasing photons. Enhanced depletion of the lower level reduces the absorption of lasing photons. The combined result is more lasing photons and proportionally increased output power.

  9. Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode

    NASA Astrophysics Data System (ADS)

    Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej

    2017-04-01

    We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He–Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.

  10. The photodissociation and reaction dynamics of vibrationally excited molecules

    SciTech Connect

    Crim, F.F.

    1993-12-01

    This research determines the nature of highly vibrationally excited molecules, their unimolecular reactions, and their photodissociation dynamics. The goal is to characterize vibrationally excited molecules and to exploit that understanding to discover and control their chemical pathways. Most recently the author has used a combination of vibrational overtone excitation and laser induced fluorescence both to characterize vibrationally excited molecules and to study their photodissociation dynamics. The author has also begun laser induced grating spectroscopy experiments designed to obtain the electronic absorption spectra of highly vibrationally excited molecules.

  11. Data acquisition and control system with a programmable logic controller (PLC) for a pulsed chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Yu, Haijun; Li, Guofu; Duo, Liping; Jin, Yuqi; Wang, Jian; Sang, Fengting; Kang, Yuanfu; Li, Liucheng; Wang, Yuanhu; Tang, Shukai; Yu, Hongliang

    2015-02-01

    A user-friendly data acquisition and control system (DACS) for a pulsed chemical oxygen -iodine laser (PCOIL) has been developed. It is implemented by an industrial control computer,a PLC, and a distributed input/output (I/O) module, as well as the valve and transmitter. The system is capable of handling 200 analogue/digital channels for performing various operations such as on-line acquisition, display, safety measures and control of various valves. These operations are controlled either by control switches configured on a PC while not running or by a pre-determined sequence or timings during the run. The system is capable of real-time acquisition and on-line estimation of important diagnostic parameters for optimization of a PCOIL. The DACS system has been programmed using software programmable logic controller (PLC). Using this DACS, more than 200 runs were given performed successfully.

  12. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation.

    PubMed

    Drescher, L; Galbraith, M C E; Reitsma, G; Dura, J; Zhavoronkov, N; Patchkovskii, S; Vrakking, M J J; Mikosch, J

    2016-07-07

    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ(*) excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings.

  13. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation

    NASA Astrophysics Data System (ADS)

    Drescher, L.; Galbraith, M. C. E.; Reitsma, G.; Dura, J.; Zhavoronkov, N.; Patchkovskii, S.; Vrakking, M. J. J.; Mikosch, J.

    2016-07-01

    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ* excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings.

  14. Laser studies of chemical reaction and collision processes

    SciTech Connect

    Flynn, G.

    1993-12-01

    This work has concentrated on several interrelated projects in the area of laser photochemistry and photophysics which impinge on a variety of questions in combustion chemistry and general chemical kinetics. Infrared diode laser probes of the quenching of molecules with {open_quotes}chemically significant{close_quotes} amounts of energy in which the energy transferred to the quencher has, for the first time, been separated into its vibrational, rotational, and translational components. Probes of quantum state distributions and velocity profiles for atomic fragments produced in photodissociation reactions have been explored for iodine chloride.

  15. Photodissociation of dimethylnitrosamine

    NASA Astrophysics Data System (ADS)

    Geiger, G.; Stafast, H.; Brühlmann, U.; Huber, J. Robert

    1981-05-01

    Photodissociation of (CH 3) 2N-NO following S 1(nπ *) ← S 0 excitation yields (CH 3) 2N - and NO with a quantum yield of 1.03 ± 0.10. These fragments recombine leaving no stable photopioducts. A fraction of NO produced by photolysis is vibrationally excited. The rate of the NO( v = 1) relaxation in collision with (CH 3) 2N-NO, measured by IR fluorescence, is (1.47 ± 0.03) × 10 4 s -1 Torr -1.

  16. Solar-pumped gas laser development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1981-01-01

    The direct conversion of solar radiation into an inverted population for extraction in an optical cavity holds promise as a relatively simple system design. Broad-band photoabsorption in the visible or near-UV range is required to excite large volumes of gas and to ensure good solar absorption efficiency. The state excited must be a metastable state which is not quenched by the parent gas. The emission bandwidth must be less than approximately 10 A. The system should show chemical reversibility and an insensitivity to increasing temperature. Other properties such as good quantum efficiency and kinetic efficiency are also implied. A search of electronic-vibrational transitions in diatomic molecules satisfying these conditions is now in progress. A photodissociation-pumped atomic iodine laser is now being tested under solar pumping conditions. Photodissociation studies for thallium spin-flip metastable formation will begin in the near future.

  17. Iodine poisoning

    MedlinePlus

    Iodine is found in: Amiodarone (Cordarone) Chemicals (catalysts) for photography and engraving Dyes and inks Lugol's solution Pima syrup Potassium iodide Radioactive iodine used for certain medical tests or the treatment ...

  18. Development of a mist singlet oxygen generator for a chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Muto, Shigeki; Endo, Masamori; Nanri, Kenzo; Fujioka, Tomoo

    2003-11-01

    Mist singlet oxygen generator (Mist-SOG) has been developed in order to increase the BHP utilization. On the other hand, Mist-SOG generates much more water vapor than conventional SOG because the heat capacity of the BHP is small. It is well known that the water vapor deactivates the excited iodine. In order to remove the water vapor, we developed a jet-cold trap. In this method, a nozzle sprayed a chilled H2O2 at 238K with a thin layer form to the gas flow directly in order to get the large specific surface for the water vapor. As a result of experiment, Water vapor partial pressure reduced from 3.3 Torr at the BHP flow rate of 2.2 ml/s and Cl2 flow rate of 3.5 mmol/s for the 65μm BHP droplets.

  19. Coherent control over the photodissociation of CH3I

    NASA Astrophysics Data System (ADS)

    Kleiman, Valeria D.; Zhu, Langchi; Allen, Jeanette; Gordon, Robert J.

    1995-12-01

    Coherent phase control of the photodissociation of CH3I has been achieved by quantum mechanical interference between competing paths. The control was accomplished by exciting the parent molecules with three UV photons of frequency ω1 and one VUV photon of frequency ω3=3ω1. Varying the phase difference between the two laser beams resulted in a modulation of the I+ and CH+3 signals, without affecting the parent ion signal. We propose a mechanism in which control occurs over the photodissociation step to produce CH3+I*, followed by ionization of the neutral fragments by additional UV photons.

  20. Interpretation of In-Situ Measurements of Iodine Monoxide in Coastal Regions Using Laser-Induced Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Furneaux, K. L.; Whalley, L. K.; Heard, D. E.

    2009-04-01

    Iodine species are present in coastal and open ocean regions due to the release of I2 and iodocarbons from macro and micro algae. The photolysis of these molecules yields iodine atoms, which react with ozone to produce iodine monoxide (IO). IO is involved in ozone depletion cycles, the partitioning of HOx and NOx, and the formation and growth of new particles. A novel point source Laser Induced Fluorescence (LIF) instrument was deployed to measure IO in September 2006 at Roscoff, France as part of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) programme (1 instrument uncertainty = 23%)1. The maximum IO mixing ratio was 30 ± 7.1 pptV (10 s integration period, limit of detection = 1.4 pptV) at this semi-polluted coastal site (NOx levels = 1 - 5 ppbV). The closest macroalgae beds known to strongly emit I2 (laminaria) were ~ 300 m from the LIF instrument. IO displayed a strong anti-correlation with tidal height which is consistent with previous studies. IO was also dependent on solar irradiation and meteorological conditions. The dominant source of IO at this site was the photolysis of I2. The measurements provided by this instrument aim to address the main uncertainties associated with iodine chemistry. Co-ordinated measurement of IO by point source (LIF) and spatially averaged (Long Path Differential Optical Absorption Spectroscopy) instruments confirm the presence of IO hotspots due to non-uniform macroalgae distribution at this location (resulting in a spatially variable I2 source). The ratio of point source/spatially averaged IO is determined by meteorological conditions and distance of the instrument from macroalgae beds. Co-located point source I2 (Broadband Cavity Ringdown Spectroscopy) and IO (LIF) measurements correlated on some days but cannot be explained by our current knowledge of iodine chemistry. The influence of NOx on IO has been investigated. The detection of IO by LIF at the Roscoff site shows that IO can survive in a high NOx

  1. Ultraviolet laser excitation source

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.

    1980-01-01

    A new intense ultraviolet light source has been developed from an array of hypocycloidal pinch (HCP) devices. The basic unit of the array is constructed with three disk electrodes and is capable of producing dense plasmas at temperatures up to 10,000,000 K. Very high input power levels to the array are possible without significantly shortening its useful life, in strong contrast with conventional xenon flashlamps. The new light source, when operated with Ar and Xe gas mixtures at high pressures (approximately 5 x 10 to the 4th Pa), produced a light output of over 100 MW in the near-UV spectral range and successfully pumped an iodine photodissociation laser at 1.315 microns. A xenon recombination laser at 2.027 microns was also pumped in the HCP array.

  2. Dissociation of I II in chemical oxygen-iodine lasers: experiment, modeling, and pre-dissociation by electrical discharge

    NASA Astrophysics Data System (ADS)

    Katz, A.; Waichman, K.; Dahan, Z.; Rybalkin, V.; Barmashenko, B. D.; Rosenwaks, S.

    2007-06-01

    The dissociation of I II molecules at the optical axis of a supersonic chemical oxygen-iodine laser (COIL) was studied via detailed measurements and three dimensional computational fluid dynamics calculations. Comparing the measurements and the calculations enabled critical examination of previously proposed dissociation mechanisms and suggestion of a mechanism consistent with the experimental and theoretical results obtained in a supersonic COIL for the gain, temperature and I II dissociation fraction at the optical axis. The suggested mechanism combines the recent scheme of Azyazov and Heaven (AIAA J. 44, 1593 (2006)), where I II(A' 3Π 2u), I II(A 3Π 1u) and O II(a1Δ g, v) are significant dissociation intermediates, with the "standard" chain branching mechanism of Heidner et al. (J. Phys. Chem. 87, 2348 (1983)), involving I(2P 1/2) and I II(X1Σ + g, v). In addition, we examined a new method for enhancement of the gain and power in a COIL by applying DC corona/glow discharge in the transonic section of the secondary flow in the supersonic nozzle, dissociating I II prior to its mixing with O II(1Δ). The loss of O II(1Δ) consumed for dissociation was thus reduced and the consequent dissociation rate downstream of the discharge increased, resulting in up to 80% power enhancement. The implication of this method for COILs operating beyond the specific conditions reported here is assessed.

  3. Toward understanding the dissociation of I2 in chemical oxygen-iodine lasers: Combined experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Waichman, K.; Rybalkin, V.; Katz, A.; Dahan, Z.; Barmashenko, B. D.; Rosenwaks, S.

    2007-07-01

    The dissociation of I2 molecules at the optical axis of a supersonic chemical oxygen-iodine laser (COIL) was studied via detailed measurements and three-dimensional computational fluid dynamics calculations. The measurements, briefly reported in a recent paper [Rybalkin et al., Appl. Phys. Lett. 89, 021115 (2006)] and reanalyzed in detail here, revealed that the number N of consumed O2(aΔg1) molecules per dissociated I2 molecule depends on the experimental conditions: it is 4.5±0.4 for typical conditions and I2 densities applied for optimal operation of the COIL but increases at lower I2 densities. Comparing the measurements and the calculations enabled critical examination of previously proposed dissociation mechanisms and suggestion of a mechanism consistent with the experimental and theoretical results obtained in a supersonic COIL for the gain, temperature, I2 dissociation fraction, and N at the optical axis. The suggested mechanism combines the recent scheme of Azyazov and Heaven [AIAA J. 44, 1593 (2006)], where I2(A'Π2u3), I2(AΠ1u3), and O2(aΔg1,v) are significant dissociation intermediates, with the "standard" chain branching mechanism of Heidner III et al. [J. Phys. Chem. 87, 2348 (1983)], involving I(P1/22) and I2(XΣg +1,v).

  4. Electric Discharge and Afterglow Kinetics for Laser Mixtures with Carbon Monoxide, Oxygen and Iodine

    DTIC Science & Technology

    2006-01-01

    place in the active media of different electric discharge and chemical lasers. 15. SUBJECT TERMS EOARD, Physics, Optics 16 ...Mikheev 15. Dr. A.A. Shel 16 . Dr. S.Yu.Savinov 17. Yu.M. Klimach 18. N.A. Ionina 19. S.A. Vetoshkin 20. A.Yu. Kozlov 21. O.A.Rulev 22. Yu.V...mixtures, laser cavity and excitation pulse, selected in the kinetic modelling. Gas density (Amagat) 0.2 Gas temperature (K) 100 E/N (10- 16 V cm2) 1

  5. Electron-beam sustained discharge in oxygen gas mixtures: singlet delta oxygen production for oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Frolov, Mikhail P.; Hager, Gordon D.; Ionin, Andrei A.; Klimachev, Yurii M.; Kochetov, Igor V.; Kotkov, Andrei A.; McIver, John K.; Napartovich, Anatolii P.; Podmar'kov, Yurii P.; Seleznev, Leonid V.; Sinitsyn, Dmitrii V.; Vagin, Nikolai P.; Yuryshev, Nikolay N.

    2004-09-01

    Electric properties and spectroscopy of an e-beam sustained discharge (EBSD) in oxygen and oxygen gas mixtures at gas pressure up to 100 Torr were experimentally studied. The pulsed discharge in pure oxygen and its mixtures with noble gases was shown to be very unstable and characterized by low input energy. When adding small amount of carbon monoxide or hydrogen, the electric stability of the discharge increases, specific input energy (SIE) per molecular component being more than order of magnitude higher and coming up to 6.5 kJ/(l atm) for gas mixture O2:Ar:CO = 1:1:0.1. The results of experiments on spectroscopy of the singlet delta oxygen O2(a1Δg)(SDO) and O2(b1Σg+) states in the EBSD are presented. The calibration of the optical scheme for measuring the SDO absolute concentration and yield using the detection of luminescence of the SDO going from a chemical SDO generator was done. The preliminary measurement of the SDO yield demonstrated that it was ~3% for the SIE of ~1 kJ/(l atm), which is close to the results of theoretical calculations for such a SIE. Theoretical calculations demonstrated that for the SIE of 6.5 kJ/(l atm) the SDO yield may reach ~20% exceeding its threshold value needed for oxygen-iodine laser operation at room temperature, although a part of the energy loaded into the EBSD goes into the vibrational energy of the molecular admixture, (which was experimentally demonstrated by launching a CO laser operating on an oxygen-rich mixture O2:Ar:CO = 1:1:0.1 and measuring its small-signal gain).

  6. INTERACTION OF LASER RADIATION WITH TARGETS Tomographic imaging of a target directly irradiated in experiments on the Iskra-5 iodine laser facility

    NASA Astrophysics Data System (ADS)

    Bondarenko, S. V.; Garanin, R. V.; Garanin, Sergey G.; Zhidkov, N. V.; Oreshkov, O. V.; Potapov, S. V.; Suslov, N. A.; Frolova, N. V.

    2010-12-01

    We set forth the data of experiments involving direct microtarget irradiation by the 12 second-harmonic beams (λ = 0.66 μm) of iodine laser radiation carried out on the Iskra-5 facility. For microtargets we employed glass shells ~500 μm in diameter with ~1-μm thick walls, which were filled with a DT mixture at a pressure pDT approx 3-4 atm. In one of these experiments, a tomographic image of the microtarget was recorded from the images obtained using pinhole cameras, which were arranged along seven different directions. The pinhole images were acquired in the X-ray radiation with photon energies above 1.5 keV. The procedure used for reconstructing the volume luminosity of the microtarget is described. An analysis of the tomographic image suggests that the compressed microtarget domain possesses a complex asymmetric shape; 20-30 μm sized structural elements being clearly visible. The resultant data set allowed us to estimate the initial nonuniformity of microtarget surface irradiation by the laser radiation. The rms nonuniformity of microtarget irradiance was estimated at ~60 %.

  7. Carrier phases for iodine in the Allende meteorite and their associated Xe-129(r)/I-127 ratios - A laser microprobe study

    NASA Technical Reports Server (NTRS)

    Kirschbaum, C.

    1988-01-01

    This paper presents the results of a study of the carrier phases of iodine in the Allende meteorite and their associated Xe-129(r)/I-127 ratios, obtained using a new high-sensitivity low-blank mass spectrometer coupled with a low-blank laser extraction system. Two types of experiments were performed: a survey of the Xe-129(r) amounts in unirradiated specimens of fine-grained assemblages and individual coarse mineral grains, and a study of the relationship between chlorine and iodine in irradiated samples of the inclusions, in which the Xe-129(r)/I-127 ratios were determined for various minerals. As a by-product of these measurements, the Ar-40/Ar-39 ages were obtained along with some results on trapped Xe components. A schematic diagram of the new mass spectrometer system is included.

  8. Apparatus for extraction and separation of a preferentially photo-dissociated molecular isotope into positive and negative ions by means of an electric field

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E. (Inventor)

    1978-01-01

    Molecules of one and the same isotope were preferentially photodissociated by a laser and an ultraviolet source, or by multiphoton absorption of laser radiation. The resultant ions were confined with a magnetic field, moved in opposite directions by an electric field, extracted from the photodissociation region by means of screening and accelerating grids, and collected in ducts.

  9. Iodine revisited.

    PubMed

    Cooper, Rose A

    2007-06-01

    Iodine is an antiseptic that has been used in wound care for more than 150 years. Traditional formulations of iodine had serious limitations that were reduced in later products. Much has been written about iodine and opinions on its clinical efficacy are divided. There have been reviews of the chemical properties of iodine, its antimicrobial activity, human physiology, cytotoxicity and its clinical effectiveness, but few have addressed all these aspects. With the recent development of iodine-containing wound care products and the continued publication of laboratory and clinical studies, it seems timely to reassess the evidence relating to the effectiveness of iodine for treating wounds. This literature review attempts to provide an appropriate chemical and physiological background of the characteristics of iodine in order to provide a sound basis for understanding the available microbiological and clinical data. It will show that understanding the factors that contribute to the activity and potential cytotoxicity of iodine are important in evaluating the clinical evidence. Although definitive studies are needed, the sustained delivery of low doses of free iodine offers the potential to inhibit a broad range of microbial species without selecting for resistant strains or inducing cytotoxic effects.

  10. Kinetic-fluid dynamics modeling of I{sub 2} dissociation in supersonic chemical oxygen-iodine lasers

    SciTech Connect

    Waichman, K.; Barmashenko, B. D.; Rosenwaks, S.

    2009-09-15

    The mechanism of I{sub 2} dissociation in supersonic chemical oxygen-iodine lasers (COILs) is studied applying kinetic-fluid dynamics modeling, where pathways involving the excited species I{sub 2}(X {sup 1}SIGMA{sub g}{sup +},10<=v<25), I{sub 2}(X {sup 1}SIGMA{sub g}{sup +},25<=v<=47), I{sub 2}(A{sup '} {sup 3}PI{sub 2u}), I{sub 2}(A {sup 3}PI{sub 1u}), O{sub 2}(X {sup 3}SIGMA{sub g}{sup -},v), O{sub 2}(a {sup 1}DELTA{sub g},v), O{sub 2}(b {sup 1}SIGMA{sub g}{sup +},v), and I({sup 2}P{sub 1/2}) as intermediate reactants are included. The gist of the model is adding the first reactant and reducing the contribution of the second as compared to previous models. These changes, recently suggested by Azyazov, et al. [J. Chem. Phys. 130, 104306 (2009)], significantly improve the agreement with the measurements of the gain in a low pressure supersonic COIL for all I{sub 2} flow rates that have been tested in the experiments. In particular, the lack of agreement for high I{sub 2} flow rates, which was encountered in previous models, has been eliminated in the present model. It is suggested that future modeling of the COIL operation should take into account the proposed contribution of the above mentioned reactants.

  11. A Plasma Ultraviolet Source for Short Wavelength Lasers.

    DTIC Science & Technology

    1988-04-15

    Iodine photodissociation laser pumped with radiation from magnetoplasma compressions", G. N . Kashikov, V. K. Orlov, A. N . Panin, A. K. Piskunov and V. A...H DAAL3-86-G-0ee3 UNCLASIFIED F.’G 9/3 W EEEEEEEEEEommoiE EEEEEEEEEEEE Eu.... N ’ "’ II~ N .’ 1-0 L; 7, 1,,- / 41 5 u 1-25 IllII4 UNCLASSIFIED...REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER %Id AA6. ~-/h N /A N /ACo0 S TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

  12. Effect of velocity cross-relaxation and mode separation upon the power spectrum of a chemical oxygen-iodine laser resonator

    NASA Astrophysics Data System (ADS)

    Copeland, Drew A.

    1990-06-01

    A gain model for optical extraction from the CW chemical oxygen-iodine laser medium is described. It uses a simplified, temperatuire-dependent, chemical kinetics package which consists of several reactions between molecular oxygen, atomic and molecular iodine, water, and helium. The Heidner I2 dissociation mechanism is included to allow for incomplete dissociation. Gas flow is treated using a premixed, one-dimensional stream-tube model which accounts for gas expansion and heat release in the cavity. Collisional cross-relaxation effects upon the Doppler-broadened line are treated using a Fokker-Planck diffusion model of the velocity distribution of the upper and lower laser levels. This model, in conjunction with geometric optics, multimode model of an unstable standing-wave confocal resonator, is used to examine the influence of incomplete velocity cross-relaxation and longitudinal mode separation upon the output power and mode spectrum of the laser. It is shown that lasing will occur on all available modes even when the mode separation is less than the collision linewidth.

  13. Planar Laser-Induced Iodine Fluorescence Measurements in Rarefied Hypersonic Flow

    NASA Astrophysics Data System (ADS)

    Cecil, Eric; McDaniel, James C.

    2005-05-01

    A planar laser-induced fluorescence (PLIF) technique is discussed and applied to measurement of time-averaged values of velocity and temperature in an I2-seeded N2 hypersonic free jet facility. Using this technique, a low temperature, non-reacting, hypersonic flow over a simplified model of a reaction control system (RCS) was investigated. Data are presented of rarefied Mach 12 flow over a sharp leading edge flat plate at zero incidence, both with and without an interacting jet issuing from a nozzle built into the plate. The velocity profile in the boundary layer on the plate was resolved. The slip velocity along the plate, extrapolated from the velocity profile data, varied from nearly 100% down to 10% of the freestream value. These measurements are compared with results of a DSMC solution. The velocity variation along the centerline of a jet issuing from the plate was measured and found to match closely with the correlation of Ashkenas and Sherman. The velocity variation in the oblique shock terminating the jet was resolved sufficiently to measure the shock wave thickness.

  14. Planar Laser-Induced Iodine Fluorescence Measurements in Rarefied Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Cecil, Eric; McDaniel, James C.

    2005-01-01

    A planar laser-induced fluorescence (PLIF) technique is discussed and applied to measurement of time-averaged values of velocity and temperature in an I(sub 2)-seeded N(sub 2) hypersonic free jet facility. Using this technique, a low temperature, non-reacting, hypersonic flow over a simplified model of a reaction control system (RCS) was investigated. Data are presented of rarefied Mach 12 flow over a sharp leading edge flat plate at zero incidence, both with and without an interacting jet issuing from a nozzle built into the plate. The velocity profile in the boundary layer on the plate was resolved. The slip velocity along the plate, extrapolated from the velocity profile data, varied from nearly 100% down to 10% of the freestream value. These measurements are compared with results of a DSMC solution. The velocity variation along the centerline of a jet issuing from the plate was measured and found to match closely with the correlation of Ashkenas and Sherman. The velocity variation in the oblique shock terminating the jet was resolved sufficiently to measure the shock wave thickness.

  15. Photodissociation cross section of ClOOCl at 330 nm.

    PubMed

    Jin, Bing; Chen, I-Cheng; Huang, Wen-Tsung; Lien, Chien-Yu; Guchhait, Nikhil; Lin, Jim J

    2010-04-15

    The photolysis rate of ClOOCl is crucial in the catalytic destruction of polar stratospheric ozone. In this work, we determined the photodissociation cross section of ClOOCl at 330 nm with a molecular beam and with mass-resolved detection. The photodissociation cross section is the product of the absorption cross section and the dissociation quantum yield. We formed an effusive molecular beam of ClOOCl at a nozzle temperature of 200 or 250 K and determined its photodissociation probability by measuring the decrease of the ClOOCl intensity upon laser irradiation. By comparing with a reference molecule (Cl(2)), of which the absorption cross section and dissociation quantum yield are well-known, we determined the absolute photodissociation cross section of ClOOCl at 330 nm to be (2.31 +/- 0.11) x 10(-19) cm(2) at 200 K and (2.47 +/- 0.12) x 10(-19) cm(2) at 250 K. Impurity interference has been a well-recognized problem in conventional spectroscopic studies of ClOOCl; our mass-resolved measurement directly overcomes such a problem. This measurement of the ClOOCl photolysis cross section at 330 nm is particularly useful in constraining its atmospheric photolysis rate, which in the polar stratosphere peaks near this wavelength.

  16. Iodine Deficiency

    MedlinePlus

    ... enlargement of the thyroid (goiter – see Goiter brochure ), hypothyroidism (see Hypothyroidism brochure ) and to mental retardation in infants and ... when lying down, and difficulty swallowing and breathing. HYPOTHYROIDISM – As the body’s iodine levels fall, hypothyroidism may ...

  17. Formation and stimulated photodissociation of metastable molecules with emission of photon at the collision of two atoms in a laser radiation field

    NASA Astrophysics Data System (ADS)

    Gazazyan, E.; Gazazyan, A.

    2017-04-01

    The formation of metastable molecules (Feshbach resonances) at the collision of two atoms and subsequent stimulated transition to a lower unbound electronic molecular state, with emission of a photon of the laser radiation has been investigated. This can develop, in particular, for Rb 2 molecules due to resonance scattering of two Rb atoms. This process is a basis for the creation of excimer lasers. Expressions have been obtained for the cross sections of elastic and inelastic resonance scattering and the intensity of the stimulated emission of the photons.

  18. Photodissociation of Peroxynitric Acid in the Near-IR

    NASA Technical Reports Server (NTRS)

    Roehl, Coleen M.; Nizkorodov, Sergey A.; Zhang, Hui; Blake, Geoffrey A.; Wennberg, Paul O.

    2002-01-01

    Temperature-dependent near-IR photodissociation spectra were obtained for several vibrational overtone transitions of peroxynitric acid (HNO4) with a tunable OPO photolysis/OH laser-induced-fluorescence system. Band-integrated photodissociation cross-sections (definity integral of sigma(sub diss)), determined relative to that for the 3nu(sub 1), OH stretching overtone, were measured for three dissociative bands. Assuming unit quantum efficiency for photodissociation of 3nu(sub 1), we find 2nu(sub 1) + nu(sub 3)(8242/cm) = (1.21 x 10(exp -20) (independent of temperature), 2nu(sub 1) (6900/cm) = 4.09 x 10(exp 18) * e(sup (-826,5/T)) (295 K greater than T greater than 224 K), and nu(sub 1) + 2nu(sub 3) (6252/cm) = 1.87 x 10(exp -19) * e(sup (- 1410.7/T)) (278 K greater than T greater than 240 K) sq cm/molecule cm. The photodissociation cross-sections are independent of pressure over the range 2 to 40 Torr. Temperature-dependent quantum yields (phi) for these transitions were obtained using integrated absorption cross-sections (definity integral of sigma(sub abs)) of HNO4 overtone vibrations measured with a FTIR spectrometer. In the atmosphere, photodissociation in the infrared is dominated by excitation of the first overtone of the OH stretching vibration (2nu((sub 1)). Inclusion of all dissociative HNO4 overtone and combination transitions yields a daytime IR photolysis rate of approximately 1 x 10(esp -1)/s. This process significantly shortens the estimated lifetime of HNO4 in the upper troposphere and lower stratosphere.

  19. Efficient photo-dissociation of CH{sub 4} and H{sub 2}CO molecules with optimized ultra-short laser pulses

    SciTech Connect

    Rasti, S.; Irani, E.; Sadighi-Bonabi, R.

    2015-11-15

    The fragmentation dynamics of CH{sub 4} and H{sub 2}CO molecules have been studied with ultra-short pulses at laser intensityof up to 10{sup 15}Wcm{sup −2}. Three dimensional molecular dynamics calculations for finding the optimized laser pulses are presented based on time-dependent density functional theory and quantum optimal control theory. A comparison of the results for orientation dependence in the ionization process shows that the electron distribution for CH{sub 4} is more isotropic than H{sub 2}CO molecule. Total conversion yields of up to 70% at an orientation angle of 30{sup o} for CH{sub 4} and 65% at 90{sup 0} for H{sub 2}CO are achieved which lead to enhancement of dissociation probability.

  20. Iodine Absorption Cells Purity Testing.

    PubMed

    Hrabina, Jan; Zucco, Massimo; Philippe, Charles; Pham, Tuan Minh; Holá, Miroslava; Acef, Ouali; Lazar, Josef; Číp, Ondřej

    2017-01-06

    This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions' spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches).

  1. Photochemistry. Evidence for direct molecular oxygen production in CO₂ photodissociation.

    PubMed

    Lu, Zhou; Chang, Yih Chung; Yin, Qing-Zhu; Ng, C Y; Jackson, William M

    2014-10-03

    Photodissociation of carbon dioxide (CO2) has long been assumed to proceed exclusively to carbon monoxide (CO) and oxygen atom (O) primary products. However, recent theoretical calculations suggested that an exit channel to produce C + O2 should also be energetically accessible. Here we report the direct experimental evidence for the C + O2 channel in CO2 photodissociation near the energetic threshold of the C((3)P) + O2(X(3)Σ(g)(-)) channel with a yield of 5 ± 2% using vacuum ultraviolet laser pump-probe spectroscopy and velocity-map imaging detection of the C((3)PJ) product between 101.5 and 107.2 nanometers. Our results may have implications for nonbiological oxygen production in CO2-heavy atmospheres.

  2. Threshold photodissociation of Cr+2

    NASA Astrophysics Data System (ADS)

    Lessen, D. E.; Asher, R. L.; Brucat, P. J.

    1991-08-01

    A one-photon photodissociation threshold for supersonically cooled Cr+2 is determined to be 2.13 eV. This threshold provides a strict upper limit to the adiabatic binding energy of the ground state of chromium dimer cation if the initial internal energy of the parent ion may be neglected. From the difference in the IPs of chromium atom and dimer, an upper limit to the dissociation of Cr2 is placed at 1.77 eV.

  3. Photodissociation spectroscopy of protonated leucine enkephalin.

    PubMed

    Herburger, Andreas; van der Linde, Christian; Beyer, Martin K

    2017-02-24

    Protonated leucine enkephalin (YGGFL) was studied by ultraviolet photodissociation (UVPD) from 225 to 300 nm utilizing an optical parametric oscillator tunable wavelength laser system (OPO). Fragments were identified by absolute mass measurement in a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). Bond cleavage was preferred in the vicinity of the two aromatic residues, resulting in high ion abundances for a4, a1, b3, y2 and y1 fragments. a, b and y ions dominated the mass spectrum, and full sequence coverage was achieved for those types. Photodissociation was most effective at the short wavelength end of the studied range, which is assigned to the onset of the La π-π* transition of the tyrosine chromophore, but worked well also at the Lb π-π* chromophore absorption maxima in the 35 000-39 000 cm(-1) region. Several side-chain and internal fragments were observed. H atom loss is observed only above 41 000 cm(-1), consistent with the requirement of a curve crossing to a repulsive (1)πσ* state. It is suggested that the photochemically generated mobile H atom plays a role in further backbone cleavages, similar to the mechanism for electron capture dissociation. The b4 fragment is most intense at the Lb chromophore absorptions, undergoing additional fragmentation at higher photon energies. The high resolution of the FT-ICR MS revealed that out of all x and z-type fragments only x3 and x4 were formed, with low intensity. Other previously reported x- and z-fragments were re-assigned to internal fragments, based on exact mass measurement.

  4. The Development and Deployment of a Ground-Based, Laser-Induced Fluorescence Instrument for the In Situ Detection of Iodine Monoxide Radicals

    NASA Technical Reports Server (NTRS)

    Thurlow, M. E.; Co, D. T.; O'Brien, A. S.; Hannun, R. A.; Lapson, L. B.; Hanisco, T. F.; Anderson, J. G.

    2014-01-01

    High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer. Of particular interest are the roles IO plays in the formation of new particles in coastal marine environments and in depletion episodes of ozone and mercury in the Arctic polar spring. This paper describes a ground-based instrument that measures IO at mixing ratios less than one part in 1012. The IO radical is measured by detecting laser-induced fluorescence at wavelengths longer that 500 nm. Tunable visible light is used to pump the A23/2 (v = 2) ? X23/2 (v = 0) transition of IO near 445 nm. The laser light is produced by a solid-state, Nd:YAG-pumped Ti:Sapphire laser at 5 kHz repetition rate. The laser-induced fluorescence instrument performs reliably with very high signal-to-noise ratios (>10) achieved in short integration times (<1 min). The observations from a validation deployment to the Shoals Marine Lab on Appledore Island, ME are presented and are broadly consistent with in situ observations from European Coastal Sites. Mixing ratios ranged from the instrumental detection limit (<1 pptv) to 10 pptv. These data represent the first in situ point measurements of IO in North America.

  5. The development and deployment of a ground-based, laser-induced fluorescence instrument for the in situ detection of iodine monoxide radicals

    SciTech Connect

    Thurlow, M. E. Hannun, R. A.; Lapson, L. B.; Anderson, J. G.; Co, D. T.; O'Brien, A. S.; Hanisco, T. F.

    2014-04-15

    High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer. Of particular interest are the roles IO plays in the formation of new particles in coastal marine environments and in depletion episodes of ozone and mercury in the Arctic polar spring. This paper describes a ground-based instrument that measures IO at mixing ratios less than one part in 10{sup 12}. The IO radical is measured by detecting laser-induced fluorescence at wavelengths longer that 500 nm. Tunable visible light is used to pump the A{sup 2}Π{sub 3/2} (v{sup ′} = 2) ← X{sup 2}Π{sub 3/2} (v{sup ″} = 0) transition of IO near 445 nm. The laser light is produced by a solid-state, Nd:YAG-pumped Ti:Sapphire laser at 5 kHz repetition rate. The laser-induced fluorescence instrument performs reliably with very high signal-to-noise ratios (>10) achieved in short integration times (<1 min). The observations from a validation deployment to the Shoals Marine Lab on Appledore Island, ME are presented and are broadly consistent with in situ observations from European Coastal Sites. Mixing ratios ranged from the instrumental detection limit (<1 pptv) to 10 pptv. These data represent the first in situ point measurements of IO in North America.

  6. Moving in on the Action: An Experimental Comparison of Fluorescence Excitation and Photodissociation Action Spectroscopy.

    PubMed

    Wellman, Sydney M J; Jockusch, Rebecca A

    2015-06-18

    Photodissociation action spectroscopy is often used as a proxy for measuring gas-phase absorption spectra of ions in a mass spectrometer. Although the potential discrepancy between linear optical and photodissociation spectra is generally acknowledged, direct experimental comparisons are lacking. In this work, we use a quadrupole ion trap that has been modified to enable both photodissociation and laser-induced fluorescence to assess how closely the visible photodissociation action spectrum of a fluorescent dye reflects its fluorescence excitation spectrum. Our results show the photodissociation action spectrum of gaseous rhodamine 110 is both substantially narrower and slightly red-shifted (∼120 cm(-1)) compared to its fluorescence excitation spectrum. Power dependence measurements reveal that the photodissociation of rhodamine 110 requires, on average, the absorption of three photons whereas fluorescence is a single-photon process. These differing power dependences are the key to interpreting the differences in the measured spectra. The experimental results provide much-needed quantification and insight into the differences between action spectra and linear optical spectra, and emphasize the utility of fluorescence excitation spectra to provide a more reliable benchmark for comparison with theory.

  7. Photodissociation of interstellar N2

    NASA Astrophysics Data System (ADS)

    Li, X.; Heays, A. N.; Visser, R.; Ubachs, W.; Lewis, B. R.; Gibson, S. T.; van Dishoeck, E. F.

    2013-07-01

    Context. Molecular nitrogen is one of the key species in the chemistry of interstellar clouds and protoplanetary disks, but its photodissociation under interstellar conditions has never been properly studied. The partitioning of nitrogen between N and N2 controls the formation of more complex prebiotic nitrogen-containing species. Aims: The aim of this work is to gain a better understanding of the interstellar N2 photodissociation processes based on recent detailed theoretical and experimental work and to provide accurate rates for use in chemical models. Methods: We used an approach similar to that adopted for CO in which we simulated the full high-resolution line-by-line absorption + dissociation spectrum of N2 over the relevant 912-1000 Å wavelength range, by using a quantum-mechanical model which solves the coupled-channels Schrödinger equation. The simulated N2 spectra were compared with the absorption spectra of H2, H, CO, and dust to compute photodissociation rates in various radiation fields and shielding functions. The effects of the new rates in interstellar cloud models were illustrated for diffuse and translucent clouds, a dense photon dominated region and a protoplanetary disk. Results: The unattenuated photodissociation rate in the Draine (1978, ApJS, 36, 595) radiation field assuming an N2 excitation temperature of 50 K is 1.65 × 10-10 s-1, with an uncertainty of only 10%. Most of the photodissociation occurs through bands in the 957-980 Å range. The N2 rate depends slightly on the temperature through the variation of predissociation probabilities with rotational quantum number for some bands. Shielding functions are provided for a range of H2 and H column densities, with H2 being much more effective than H in reducing the N2 rate inside a cloud. Shielding by CO is not effective. The new rates are 28% lower than the previously recommended values. Nevertheless, diffuse cloud models still fail to reproduce the possible detection of interstellar N2

  8. REVIEWS OF TOPICAL PROBLEMS: Gas lasers with solar excitation

    NASA Astrophysics Data System (ADS)

    Gordiets, B. F.; Panchenko, Vladislav Ya

    1986-07-01

    CONTENTS 1. Introduction 703 2. General requirements for laser media using solar excitation 704 3. Lasers with direct excitation by solar light 705 3.1. Basic characteristics of laser media. 3.2. Photodissociation Br2-CO2 lasers. 3.3. Interhalogen molecule lasers. 3.4. Iodine lasers. 3.5. Alkali metal vapor lasers. 4. Lasers with thermal conversion of solar pumping 709 4.1. General considerations. 4.2. CO2 laser with excitation in a black body cavity and with gas flow. 4.3. cw CO2 laser without gas flow. 5. Space laser media with solar excitation 713 5.1. Population inversion of molecular levels in the outer atmosphere of the Earth. 5.2. Laser effect in the atmospheres of Venus and Mars. 5.3. Terrestrial experimental technique for observing infrared emission in the atmospheres of planets. 5.4. Designs for laser systems in the atmospheres of Venus and Mars. 6. Conclusions 717 References 717

  9. Photodissociation of Cerium Oxide Nanocluster Cations.

    PubMed

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A

    2016-04-21

    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)).

  10. Iodine Satellite

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Dankanich, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Iodine Satellite (iSat) spacecraft will be the first CubeSat to demonstrate high change in velocity from a primary propulsion system by using Hall thruster technology and iodine as a propellant. The mission will demonstrate CubeSat maneuverability, including plane change, altitude change and change in its closest approach to Earth to ensure atmospheric reentry in less than 90 days. The mission is planned for launch in fall 2017. Hall thruster technology is a type of electric propulsion. Electric propulsion uses electricity, typically from solar panels, to accelerate the propellant. Electric propulsion can accelerate propellant to 10 times higher velocities than traditional chemical propulsion systems, which significantly increases fuel efficiency. To enable the success of the propulsion subsystem, iSat will also demonstrate power management and thermal control capabilities well beyond the current state-of-the-art for spacecraft of its size. This technology is a viable primary propulsion system that can be used on small satellites ranging from about 22 pounds (10 kilograms) to more than 1,000 pounds (450 kilograms). iSat's fuel efficiency is ten times greater and its propulsion per volume is 100 times greater than current cold-gas systems and three times better than the same system operating on xenon. iSat's iodine propulsion system consists of a 200 watt (W) Hall thruster, a cathode, a tank to store solid iodine, a power processing unit (PPU) and the feed system to supply the iodine. This propulsion system is based on a 200 W Hall thruster developed by Busek Co. Inc., which was previously flown using xenon as the propellant. Several improvements have been made to the original system to include a compact PPU, targeting greater than 80 percent reduction in mass and volume of conventional PPU designs. The cathode technology is planned to enable heaterless cathode conditioning, significantly increasing total system efficiency. The feed system has been designed to

  11. Solar energy conversion through ligand photodissociation

    SciTech Connect

    Hoffman, B.M.; Sima, P.D.

    1983-04-06

    A new technique for photochemical conversion of solar energy based on ligand photodissociation from metal complexes is examined. The concept is illustrated with a photogalvanic cell in which voltages are generated by photodissociation of CO from carbonylferroheme and with a cell in which the illuminated electrode is coated with an iron tetraphenylporphyrin.

  12. Combined Infrared Multiphoton Dissociation with Ultraviolet Photodissociation for Ubiquitin Characterization

    NASA Astrophysics Data System (ADS)

    Halim, Mohammad A.; Girod, Marion; MacAleese, Luke; Lemoine, Jérôme; Antoine, Rodolphe; Dugourd, Philippe

    2016-09-01

    Herein we report the successful implementation of the consecutive and simultaneous photodissociation with high (213 nm) and low (10.6 μm) energy photons (HiLoPD, high-low photodissociation) on ubiquitin in a quadrupole-Orbitrap mass spectrometer. Absorption of high-energy UV photon is dispersed over the whole protein and stimulates extensive C-Cα backbone fragmentation, whereas low-energy IR photon gradually increases the internal energy and thus preferentially dissociates the most labile amide (C-N) bonds. We noticed that simultaneous irradiation of UV and IR lasers on intact ubiquitin in a single MS/MS experiment provides a rich and well-balanced fragmentation array of a/x, b/y, and z ions. Moreover, secondary fragmentation from a/x and z ions leads to the formation of satellite side-chain ions (d, v, and w) and can help to distinguish isomeric residues in a protein. Implementation of high-low photodissociation in a high-resolution mass spectrometer may offer considerable benefits to promote a comprehensive portrait of protein characterization.

  13. Energy distribution in the no fragment after photodissociation of dimethylnitrosamine (CH 3) 2NNO

    NASA Astrophysics Data System (ADS)

    Dubs, Martin; Huber, J. Robert

    1984-06-01

    The vibrational and rotational state distributions as well as the translational energy have been measured for the nascent NO fragment after photodissociation of dimethylnitrosamine at 363.5 nm. Four different vibrational states (υ″ = 0-3) and rotational transitions with quantum numbers up to J″ = 50 were observed using two-photon laser-induced flourescence.

  14. Vacuum ultraviolet photoionization and photodissociation of polyatomic molecules and radicals

    SciTech Connect

    Ng, C.Y.

    1993-12-01

    In the past decade, tremendous progress has been made in understanding the photodissociation (PD) dynamics of triatomic molecules. However, the PD study of radicals, especially polyatomic radicals, has remained essentially an unexplored research area. Detailed state-to-state PD cross sections for radicals in the UV and VUV provide challenges not only for dynamical calculations, but also for ab initio quantum chemical studies. The authors have developed a laser based pump-probe apparatus for the measurement of absolute PD cross sections for CH{sub 3}S and HS is summarized.

  15. Vector Correlation in the Photodissociation of Metal Nitrosyls

    NASA Astrophysics Data System (ADS)

    Bartz, Jeffrey A.; Peden, Amber L.; Kieda, Ryan D.

    2010-06-01

    The vector correlation in the photodissociation of metal nitrosyls has been determined using linearly-polarized laser light and velocity-mapped ion imaging. The 225-nm dissociation beam excites a doubly-degenerate metal-to-ligand charge transfer in both eta5-C5H5NiNO and Co(CO)3NO. State-resolved detection of the NO product through the A (v'=0) ← X (v"=0) transition reveals that both molecules dissociate promptly with a high degree of vector correlation.

  16. Coherent phase control of the photodissociation of HOD

    SciTech Connect

    Allendorf, S.W.; Conaway, W.E.; Krause, J.L.

    1993-07-19

    A goal of chemical reaction dynamics is to control the course of reactions. We are examining the photodissocation of HOD, which is attractive for coherent control studies. A fixed frequency laser at 600 nm and its third harmonic at 200 nm is used to simultaneously and coherently photodissociate the rovibrationally excited parent molecules. Preliminary experiments focussed on confirming individual steps of the complex experiment; results are given of three-photon dissociation of H{sub 2}O, which gives confidence for the HOD three-photon dissociation.

  17. Velocity map ion imaging study of Ar2+ photodissociation

    NASA Astrophysics Data System (ADS)

    Maner, J. A.; Mauney, D. T.; Duncan, M. A.

    2017-03-01

    The argon dimer cation is produced in a plasma generated by a laser spark in a supersonic expansion. The cold ions are mass selected and investigated by photodissociation at 355 nm, with velocity map imaging of the Ar+ photofragment. Using the radius of the image, we determine the kinetic energy release and derive the ground state dissociation energy of Ar2+ as D0″ = 1.32 +0.03/-0.02 eV. Additionally, the angular distribution is described with β = 1.71-1.95, consistent with excitation of the parallel-type 2Σg+ ← 2Σu+ transition.

  18. Radioactive Iodine (Radioiodine) Therapy

    MedlinePlus

    ... and Stage Thyroid Cancer Treating Thyroid Cancer Radioactive Iodine (Radioiodine) Therapy for Thyroid Cancer Your thyroid gland absorbs nearly all of the iodine in your body. When radioactive iodine (RAI), also ...

  19. Iodine in diet

    MedlinePlus

    ... Iodine is needed for the cells to convert food into energy. Humans need iodine for normal thyroid function, and for the production of thyroid hormones. Food Sources Iodized salt is table salt with iodine ...

  20. Laser induced fluorescence studies of iodine oxide chemistry. Part II. The reactions of IO with CH3O2, CF3O2 and O3.

    PubMed

    Dillon, Terry J; Tucceri, María E; Crowley, John N

    2006-11-28

    The technique of pulsed laser photolysis was coupled to laser induced fluorescence detection of iodine oxide (IO) to measure rate coefficients, k for the reactions IO + CH(3)O(2)--> products (R1, 30-318 Torr N(2)), IO + CF(3)O(2)--> products (R2, 70-80 Torr N(2)), and IO + O(3)--> OIO + O(2) (R3a). Values of k(1) = (2 +/- 1) x 10(-12) cm(3) molecule(-1) s(-1), k(2) = (3.6 +/- 0.8) x 10(-11) cm(3) molecule(-1) s(-1), and k(3a) <5 x 10(-16) cm(3) molecule(-1) s(-1) were obtained at T = 298 K. In the course of this work, the product yield of IO from the reaction of CH(3)O(2) with I was determined to be close to zero, whereas CH(3)OOI was formed efficiently at 70 Torr N(2). Similarly, no evidence was found for IO formation in the CF(3)O(2) + I reaction. An estimate of the rate coefficients k(CH(3)O(2) + I) = 2 x 10(-11) cm(3) molecule(-1) s(-1) and k(CH(3)OOI + I) = 1.5 x 10(-10) cm(3) molecule(-1) s(-1) was also obtained. The results on k(1)-k(3) are compared to the limited number of previous investigations and the implications for the chemistry of the marine boundary layer are briefly discussed.

  1. Study of photodissociation parameters of carboxyhemoglobin

    SciTech Connect

    Kuz'min, V V; Salmin, V V; Provorov, A S; Salmina, A B

    2008-07-31

    The general properties of photodissociation of carboxyhemoglobin (HbCO) in buffer solutions of whole human blood are studied by the flash photolysis method on a setup with intersecting beams. It is shown that the efficiency of photoinduced dissociation of the HbCO complex virtually linearly depends on the photolytic irradiation intensity for the average power density not exceeding 45 mW cm{sup -2}. The general dissociation of the HbCO complex in native conditions occurs in a narrower range of values of the saturation degree than in model experiments with the hemoglobin solution. The dependence of the pulse photolysis efficiency of HbCO on the photolytic radiation wavelength in the range from 550 to 585 nm has a broad bell shape. The efficiency maximum corresponds to the electronic Q transition (porphyrin {pi}-{pi}* absorption) in HbCO at a wavelength of 570 nm. No dissociation of the complex was observed under given experimental conditions upon irradiation of solutions by photolytic radiation at wavelengths above 585 nm. (laser applications and other topics in quantum electronics)

  2. H{sub 2}{sup +} photodissociation by an intense pulsed photonic Fock state

    SciTech Connect

    Paul, Amit K.; Adhikari, Satrajit; Baer, Michael; Baer, Roi

    2010-01-15

    We study the photodissociation of the H{sub 2}{sup +} molecule by ultrashort Fock-state electromagnetic pulses (EMPs). We use the Born-Oppenheimer treatment combined with an explicit photon number representation via diabatic electrophoton potential surfaces for simplification of the basic equations. We discuss the issue of the number of photon states required and show that six photon states enable good accuracy for photoproduct kinetic energies of up to 3 eV. We calculate photodissociation probabilities and nuclear kinetic-energy (KE) distributions of the photodissociation products for 800-nm, 50-TW/cm{sup 2} pulses. We show that KE distributions depend on three pulse durations of 10, 20, and 45 fs and on various initial vibrational states of the molecule. We compare the Fock-state results to those obtained by 'conventional', i.e., coherent-state, laser pulses of equivalent electric fields and durations. The effects of the quantum state of EMPs on the photodissociation dynamics are especially strong for high initial vibrational states of H{sub 2}{sup +}. While coherent-state pulses suppress photodissociation for the high initial vibrational states of H{sub 2}{sup +}, the Fock-state pulses enhance it.

  3. Photodissociation dynamics and atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Wayne, R. P.

    1993-07-01

    The paper uses data from the literature to explore photodissociation dynamics of molecules possessing three, four, and five atoms, as represented by O3 and CO2, NH3 and C2H2, and CH4, respectively. The results yield many details, even in regard to the disposal of energy into rotation, which have applications to atmospheric problems. For instance, experiments probing the translational energies of the O and the vibrational and rotational distributions in the CO suggest that a spin-forbidden channel operates as it does in ozone photolysis. The data for both O3 and CO2 suggest a relationship between the structure of the parent molecule and the dynamics of dissociation.

  4. Photodissociation dynamics of benzoic acid

    SciTech Connect

    Dyakov, Yuri A.; Bagchi, Arnab; Lee, Yuan T.; Ni, Chi-Kung

    2010-01-07

    The photodissociation of benzoic acid at 193 and 248 nm was investigated using multimass ion imaging techniques. Three dissociation channels were observed at 193 nm: (1) C{sub 6}H{sub 5}COOH{yields}C{sub 6}H{sub 5}+COOH, (2) C{sub 6}H{sub 5}COOH{yields}C{sub 6}H{sub 5}CO+OH, and (3) C{sub 6}H{sub 5}COOH{yields}C{sub 6}H{sub 6}+CO{sub 2}. Only channels, (2) and (3), were observed at 248 nm. Comparisons of the ion intensities and photofragment translational energy distributions with the potential energies obtained from ab initio calculations and the branching ratios obtained from the Rice-Ramsperger-Kassel-Marcus theory suggest that the dissociation occurs on many electronic states.

  5. Iodine volatility. [PWR; BWR

    SciTech Connect

    Beahm, E.C.; Shockley, W.E.

    1984-01-01

    The ultimate aim of this program is to couple experimental aqueous iodine volatilities to a fission product release model. Iodine partition coefficients, for inorganic iodine, have been measured during hydrolysis and radiolysis. The hydrolysis experiments have illustrated the importance of reaction time on iodine volatility. However, radiolysis effects can override hydrolysis in determining iodine volatility. In addition, silver metal in radiolysis samples can react to form silver iodide accompanied by a decrease in iodine volatility. Experimental data are now being coupled to an iodine transport and release model that was developed in the Federal Republic of Germany.

  6. Epidemiology of iodine deficiency.

    PubMed

    Vanderpump, Mark P

    2017-04-01

    Iodine is an essential component of the thyroid hormones thyroxine (T4) and triiodothyronine (T3) produced by the thyroid gland. Iodine deficiency impairs thyroid hormone production and has adverse effects throughout life, particularly early in life as it impairs cognition and growth. Iodine deficiency remains a significant problem despite major national and international efforts to increase iodine intake, primarily through the voluntary or mandatory iodization of salt. Recent epidemiological data suggest that iodine deficiency is an emerging issue in industrialized countries, previously thought of as iodine-sufficient. International efforts to control iodine deficiency are slowing, and reaching the third of the worldwide population that remains deficient poses major challenges.

  7. Iodine deficiency: Clinical implications.

    PubMed

    Niwattisaiwong, Soamsiri; Burman, Kenneth D; Li-Ng, Melissa

    2017-03-01

    Iodine is crucial for thyroid hormone synthesis and fetal neurodevelopment. Major dietary sources of iodine in the United States are dairy products and iodized salt. Potential consequences of iodine deficiency are goiter, hypothyroidism, cretinism, and impaired cognitive development. Although iodine status in the United States is considered sufficient at the population level, intake varies widely across the population, and the percentage of women of childbearing age with iodine deficiency is increasing. Physicians should be aware of the risks of iodine deficiency and the indications for iodine supplementation, especially in women who are pregnant or lactating.

  8. High steady-state column density of I(2P3/2) atoms from I2 photodissociation at 532 nm: Towards parity non-conservation measurements

    NASA Astrophysics Data System (ADS)

    Katsoprinakis, G. E.; Chatzidrosos, G.; Kypriotakis, J. A.; Stratakis, E.; Rakitzis, T. P.

    2016-09-01

    Steady-state column densities of 1017 cm‑2 of I(2P3/2) atoms are produced from photodissociation of I2 vapour at 290.5 K using 5 W of 532 nm laser light. Recombination of the I(2P3/2) atoms at the cell walls is minimized by coating the cell surface with a hydrophobic silane (dimethyldichlorosilane/DMDCS). Operation at room temperature, and at an I2 vapour pressure of ~0.2 mbar, without using a buffer gas, allows relatively low Lorentz and Doppler widths of ~2π × 1.5 (FWHM) and ~2π × 150 (HW at 1/e2) Mrad/s, respectively, at the M1 transition of atomic iodine at 1315 nm. These high column densities and low linewidths are favorable for parity nonconservation optical rotation measurements near this M1 transition. Furthermore, as the cell is completely sealed, this method of production of high-density 127I(2P3/2) atoms is also compatible with using iodine radioisotopes, such as for the production of high-density 129I(2P3/2).

  9. High steady-state column density of I(2P3/2) atoms from I2 photodissociation at 532 nm: Towards parity non-conservation measurements

    PubMed Central

    Katsoprinakis, G. E.; Chatzidrosos, G.; Kypriotakis, J. A.; Stratakis, E.; Rakitzis, T. P.

    2016-01-01

    Steady-state column densities of 1017 cm−2 of I(2P3/2) atoms are produced from photodissociation of I2 vapour at 290.5 K using 5 W of 532 nm laser light. Recombination of the I(2P3/2) atoms at the cell walls is minimized by coating the cell surface with a hydrophobic silane (dimethyldichlorosilane/DMDCS). Operation at room temperature, and at an I2 vapour pressure of ~0.2 mbar, without using a buffer gas, allows relatively low Lorentz and Doppler widths of ~2π × 1.5 (FWHM) and ~2π × 150 (HW at 1/e2) Mrad/s, respectively, at the M1 transition of atomic iodine at 1315 nm. These high column densities and low linewidths are favorable for parity nonconservation optical rotation measurements near this M1 transition. Furthermore, as the cell is completely sealed, this method of production of high-density 127I(2P3/2) atoms is also compatible with using iodine radioisotopes, such as for the production of high-density 129I(2P3/2). PMID:27629914

  10. High steady-state column density of I((2)P3/2) atoms from I2 photodissociation at 532 nm: Towards parity non-conservation measurements.

    PubMed

    Katsoprinakis, G E; Chatzidrosos, G; Kypriotakis, J A; Stratakis, E; Rakitzis, T P

    2016-09-15

    Steady-state column densities of 10(17) cm(-2) of I((2)P3/2) atoms are produced from photodissociation of I2 vapour at 290.5 K using 5 W of 532 nm laser light. Recombination of the I((2)P3/2) atoms at the cell walls is minimized by coating the cell surface with a hydrophobic silane (dimethyldichlorosilane/DMDCS). Operation at room temperature, and at an I2 vapour pressure of ~0.2 mbar, without using a buffer gas, allows relatively low Lorentz and Doppler widths of ~2π × 1.5 (FWHM) and ~2π × 150 (HW at 1/e(2)) Mrad/s, respectively, at the M1 transition of atomic iodine at 1315 nm. These high column densities and low linewidths are favorable for parity nonconservation optical rotation measurements near this M1 transition. Furthermore, as the cell is completely sealed, this method of production of high-density (127)I((2)P3/2) atoms is also compatible with using iodine radioisotopes, such as for the production of high-density (129)I((2)P3/2).

  11. Application of an InGaAsP diode laser to probe photodissociation dynamics - I(asterisk) quantum yields from n- and i-C3F7I and CH3I by laser gain vs absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, W. P.; Kohler, S. J.; Haugen, H. K.; Leone, S. R.

    1986-01-01

    Initial measurements on I-asterisk yields of alkyl iodides at 266 nm are reported using gain vs. absorption spectroscopy with an InGaAsP diode probe laser. The results are 102 percent + or - 4 percent, 102 percent + or - 7 percent, and 73 percent + or - 4 percent for n-C3F7I, i-C3F7I, and CH3I respectively. Future prospects for the development of diode laser systems and for their use in dynamical studies are discussed.

  12. Experimental verification of the Einstein A-coefficient used for evaluation of O2(1Δg) concentration in the chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Spalek, O.; Kodymová, J.; Stopka, P.; Micek, I.

    1999-04-01

    This paper is a contribution to the current discussion on the Einstein coefficient for spontaneous emission (A-coefficient) of singlet delta oxygen, O2(1Δg), that is often used for an evaluation of O2(1Δg) concentration in a chemical oxygen-iodine laser (COIL). The published values of the A-coefficient vary in a wide range, corresponding to a radiative lifetime of O2(1Δg), τ_Δ^rad, from ~53 to ~151 min. This could make an evaluation of COIL operation questionable. In this paper, the Einstein A-coefficient is estimated, based on the comparison of O2(1Δg) concentrations determined by two independent methods: electron paramagnetic resonance and emission spectroscopy. Within the accuracy of the experimental techniques used, the value of the A-coefficient resulting from our investigation is (2.24±0.40) × 10-4 s-1, corresponding to τ_Δ^rad of ~74 min. This result is more consistent with the value of 2.58 × 10-4 s-1 of Badger et al [1] than with the value of 1.47 × 10-4 s-1 reported recently by Mlynczak and Nesbitt [2], who raised doubt about the Badger et al value.

  13. Dependence of the molecular iodine B-state predissociation induced by a femtosecond laser pulse on pulse phase modulation

    SciTech Connect

    Kostyukevich, Yu I; Umanskii, Stanislav Ya

    2011-12-31

    The processes of pumping and laser-induced predissociation of B-states of the I{sub 2} molecule under the action of femtosecond laser pulses are considered theoretically. An analytical formula is derived, which describes the dependence of the predissociation on such parameters of femtosecond pulses as spectral chirp, spectral width and delay time between pulses. The formula is used to calculate numerically the dependence of the predissociation yield on the parameters of the phase modulation of the pump pulse and coupling pulse.

  14. Infrared photodissociation of size-selected methanol clusters

    NASA Astrophysics Data System (ADS)

    Buck, U.; Gu, X. J.; Lauenstein, Ch.; Rudolph, A.

    1990-05-01

    Size-selective IR photodissociation spectra of (CH3OH)n clusters from n = 2 to n = 9 near the absorption band of the C-O stretching mode of the monomer at 1033.5/cm were measured using an experimental apparatus with a CW CO2 laser collinear to the size-selected cluster beam. The observed spectral features vary from dimer to octamer, with a special transition from the pentamer to the hexamer. An intermolecular model potential is used to derive a correlation between the observed spectra and the cluster configuration of minimum energy. The results show that only internally excited dimers and trimers can be dissociated with one or two CO2 laser photons, respectively.

  15. Photodissociation dynamics of hydroxybenzoic acids

    SciTech Connect

    Yang Yilin; Dyakov, Yuri; Lee, Y. T.; Ni, Chi-Kung; Sun Yilun; Hu Weiping

    2011-01-21

    Aromatic amino acids have large UV absorption cross-sections and low fluorescence quantum yields. Ultrafast internal conversion, which transforms electronic excitation energy to vibrational energy, was assumed to account for the photostability of amino acids. Recent theoretical and experimental investigations suggested that low fluorescence quantum yields of phenol (chromophore of tyrosine) are due to the dissociation from a repulsive excited state. Radicals generated from dissociation may undergo undesired reactions. It contradicts the observed photostability of amino acids. In this work, we explored the photodissociation dynamics of the tyrosine chromophores, 2-, 3- and 4-hydroxybenzoic acid in a molecular beam at 193 nm using multimass ion imaging techniques. We demonstrated that dissociation from the excited state is effectively quenched for the conformers of hydroxybenzoic acids with intramolecular hydrogen bonding. Ab initio calculations show that the excited state and the ground state potential energy surfaces change significantly for the conformers with intramolecular hydrogen bonding. It shows the importance of intramolecular hydrogen bond in the excited state dynamics and provides an alternative molecular mechanism for the photostability of aromatic amino acids upon irradiation of ultraviolet photons.

  16. C60 in Photodissociation Regions

    NASA Astrophysics Data System (ADS)

    Castellanos, Pablo; Berné, Olivier; Sheffer, Yaron; Wolfire, Mark G.; Tielens, Alexander G. G. M.

    2014-10-01

    Recent studies have confirmed the presence of buckminsterfullerene (C60) in different interstellar and circumstellar environments. However, several aspects regarding C60 in space are not yet well understood, such as the formation and excitation processes, and the connection between C60 and other carbonaceous compounds in the interstellar medium, in particular polycyclic aromatic hydrocarbons (PAHs). In this paper, we study several photodissociation regions (PDRs) where C60 and PAHs are detected and the local physical conditions are reasonably well constrained to provide observational insights into these questions. C60 is found to emit in PDRs where the dust is cool (Td = 20-40 K) and even in PDRs with cool stars. These results exclude the possibility for C60 to be locked in grains at thermal equilibrium in these environments. We observe that PAH and C60 emission are spatially uncorrelated and that C60 is present in PDRs where the physical conditions (in terms of radiation field and hydrogen density) allow for full dehydrogenation of PAHs, with the exception of Ced 201. We also find trends indicative of an increase in C60 abundance within individual PDRs, but these trends are not universal. These results support models where the dehydrogenation of carbonaceous species is the first step toward C60 formation. However, this is not the only parameter involved and C60 formation is likely affected by shocks and PDR age.

  17. The photodissociation dynamics of tetrachloroethylene

    SciTech Connect

    Herath, Nuradhika; Hause, Michael L.; Suits, Arthur G.

    2011-04-28

    We present a direct current slice imaging study of tetrachloroethylene (C{sub 2}Cl{sub 4}) photodissociation, probing the resulting ground state Cl ({sup 2}P{sub 3/2}) and spin-orbit excited state Cl* ({sup 2}P{sub 1/2}) products. We report photofragment images, total translational energy distributions and the product branching ratio of Cl*/Cl following dissociation at 235 and 202 nm, obtained using a two-color reduced-Doppler dissociation/probe. Near 235 nm, the Cl translational energy distribution shows a peak at the limit of the available energy, indicating a direct dissociation through a {sigma}*(C-Cl) (leftarrow){pi} (C=C) transition, which is superimposed on a broader underlying distribution. The ground state Cl image and associated translational energy distribution at 202 nm is broad and peaked at lower energy, suggesting either internal conversion to the ground state or a lower excited state prior to dissociation. The Cl* images are similarly broad at both wavelengths. The branching ratio is presented as a function of recoil energy, but after integration shows a near-statistical average of Cl:Cl* as 70:30 at both wavelengths. All the images are largely isotropic, with anisotropy parameters ({beta}) of 0.05 {+-} 0.03.

  18. Iodine Absorption Cells Purity Testing

    PubMed Central

    Hrabina, Jan; Zucco, Massimo; Philippe, Charles; Pham, Tuan Minh; Holá, Miroslava; Acef, Ouali; Lazar, Josef; Číp, Ondřej

    2017-01-01

    This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions’ spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches). PMID:28067834

  19. Photodissociation dynamics of polyatomic molecules

    SciTech Connect

    Zhao, Hequan

    1998-02-23

    This report consists of five studies as follows: A laser photofragmentation time-of-flight mass spectrometric study of acetophenone at 193 and 248 nm; A 193 nm laser photofragmentation time-of-flight mass spectrometric study of dimethylsulfoxide; 193 nm laser photofragmentation time-of-flight mass spectrometric study of HSCH2CH2SH; Thiophene biradical decay of the primary laser photofragmentation product at 193 nm; and Scattering cross sections for O(3P)[SO(X,3Σ-)] + He[Ne, Ar, Kr]. Chapters are included for the introduction and general conclusions.

  20. Radioactive Iodine Treatment for Hyperthyroidism

    MedlinePlus

    ... Balance › Radioactive Iodine for Hyperthyroidism Fact Sheet Radioactive Iodine for Hyperthyroidism April, 2012 Download PDFs English Zulu ... prepare for RAI or surgery. How does radioactive iodine treatment work? Iodine is important for making thyroid ...

  1. Molecular dynamics simulation of photodissociation of carbon monoxide from hemoglobin

    SciTech Connect

    Henry, E.R.; Levitt, M.; Eaton, W.A.

    1985-04-01

    A molecular dynamics simulation of the photodissociation of carbon monoxide from the alpha subunit of hemoglobin is described. To initiate photodissociation, trajectories of the liganded molecule were interrupted, the iron-carbon monoxide bond was broken, and the parameters of the iron-nitrogen bonds were simultaneously altered to produce a deoxyheme conformation. Heme potential functions were used that reproduce the energies and forces for the iron out-of-plane motion obtained from quantum mechanical calculations. The effect of the protein on the rate and extent of the displacement of the iron from the porphyrin plane was assessed by comparing the results with those obtained for an isolated complex of heme with imidazole and carbon monoxide. The half-time for the displacement of the iron from the porphyrin plane was found to be 50-150 fs for both the protein and the isolated complex. These results support the interpretation of optical absorption studies using 250-fs laser pulses that the iron is displaced from the porphyrin plane within 350 fs in both hemoglobin and a free heme complex in solution.

  2. Photodissociation pathways and lifetimes of protonated peptides and their dimers

    SciTech Connect

    Aravind, G.; Klaerke, B.; Rajput, J.; Toker, Y.; Andersen, L. H.; Bochenkova, A. V.; Antoine, R.; Racaud, A.; Dugourd, P.; Lemoine, J.

    2012-01-07

    Photodissociation lifetimes and fragment channels of gas-phase, protonated YA{sub n} (n = 1,2) peptides and their dimers were measured with 266 nm photons. The protonated monomers were found to have a fast dissociation channel with an exponential lifetime of {approx}200 ns while the protonated dimers show an additional slow dissociation component with a lifetime of {approx}2 {mu}s. Laser power dependence measurements enabled us to ascribe the fast channel in the monomer and the slow channel in the dimer to a one-photon process, whereas the fast dimer channel is from a two-photon process. The slow (1 photon) dissociation channel in the dimer was found to result in cleavage of the H-bonds after energy transfer through these H-bonds. In general, the dissociation of these protonated peptides is non-prompt and the decay time was found to increase with the size of the peptides. Quantum RRKM calculations of the microcanonical rate constants also confirmed a statistical nature of the photodissociation processes in the dipeptide monomers and dimers. The classical RRKM expression gives a rate constant as an analytical function of the number of active vibrational modes in the system, estimated separately on the basis of the equipartition theorem. It demonstrates encouraging results in predicting fragmentation lifetimes of protonated peptides. Finally, we present the first experimental evidence for a photo-induced conversion of tyrosine-containing peptides into monocyclic aromatic hydrocarbon along with a formamide molecule both found in space.

  3. Surface chemistry in photodissociation regions

    NASA Astrophysics Data System (ADS)

    Esplugues, G. B.; Cazaux, S.; Meijerink, R.; Spaans, M.; Caselli, P.

    2016-06-01

    Context. The presence of dust can strongly affect the chemical composition of the interstellar medium. We model the chemistry in photodissociation regions (PDRs) using both gas-phase and dust-phase chemical reactions. Aims: Our aim is to determine the chemical compositions of the interstellar medium (gas/dust/ice) in regions with distinct (molecular) gas densities that are exposed to radiation fields with different intensities. Methods: We have significantly improved the Meijerink PDR code by including 3050 new gas-phase chemical reactions and also by implementing surface chemistry. In particular, we have included 117 chemical reactions occurring on grain surfaces covering different processes, such as adsorption, thermal desorption, chemical desorption, two-body reactions, photo processes, and cosmic-ray processes on dust grains. Results: We obtain abundances for different gas and solid species as a function of visual extinction, depending on the density and radiation field. We also analyse the rates of the formation of CO2 and H2O ices in different environments. In addition, we study how chemistry is affected by the presence/absence of ice mantles (bare dust or icy dust) and the impact of considering different desorption probabilities. Conclusions: The type of substrate (bare dust or icy dust) and the probability of desorption can significantly alter the chemistry occurring on grain surfaces, leading to differences of several orders of magnitude in the abundances of gas-phase species, such as CO, H2CO, and CH3OH. The type of substrate, together with the density and intensity of the radiation field, also determine the threshold extinction to form ices of CO2 and H2O. We also conclude that H2CO and CH3OH are mainly released into the gas phase of low, far-ultraviolet illuminated PDRs through chemical desorption upon two-body surface reactions, rather than through photodesorption.

  4. Photodissociation of Mg +(NH 3) ion

    NASA Astrophysics Data System (ADS)

    Yoshida, Shinji; Okai, Nobuhiro; Fuke, Kiyokazu

    2001-10-01

    Electronically excited states of Mg +(NH 3) are studied by photodissociation after mass selection. The dissociation spectrum shows relatively sharp vibronic transitions centered at about 28 000 and 36 000 cm-1. These absorption bands are assigned to the 2P- 2S type transitions localized on the Mg + ion. In photodissociation, a photoinduced charge-transfer process to produce NH 3+ is observed in addition to evaporation and intracluster reaction processes to produce Mg + and MgNH 2+ ions, respectively. The mechanism for the production of these ions is discussed in terms of the predissociative and non-adiabatic interactions between the low-lying states.

  5. The photodissociation of CO in circumstellar envelopes

    NASA Technical Reports Server (NTRS)

    Mamon, G. A.; Glassgold, A. E.; Huggins, P. J.

    1988-01-01

    The CO photodissociation rate for the unshielded ISM is calculated using recent laboratory results which confirm that photodissociation occurs by way of line absorption. A value of 2.0 x 10 to the -10th/s, an order of magnitude higher than the rate used in the past, is obtained. The new rate and a treatment of the radiative transfer and shielding are used to develop a theory for the CO abundance in the circumstellar envelopes of cool, evolved stars, and results are presented on the spatial variation of CO, C, and C(+). It is shown that these distributions play important roles in determining the observational properties of circumstellar envelopes.

  6. Iodine absorption cells quality evaluation methods

    NASA Astrophysics Data System (ADS)

    Hrabina, Jan; Zucco, Massimo; Holá, Miroslava; Šarbort, Martin; Acef, Ouali; Du-Burck, Frédéric; Lazar, Josef; Číp, Ondřej

    2016-12-01

    The absorption cells represent an unique tool for the laser frequency stabilization. They serve as irreplaceable optical frequency references in realization of high-stable laser standards and laser sources for different brands of optical measurements, including the most precise frequency and dimensional measurement systems. One of the most often used absorption media covering visible and near IR spectral range is molecular iodine. It offers rich atlas of very strong and narrow spectral transitions which allow realization of laser systems with ultimate frequency stabilities in or below 10-14 order level. One of the most often disccussed disadvantage of the iodine cells is iodine's corrosivity and sensitivity to presence of foreign substances. The impurities react with absorption media and cause spectral shifts of absorption spectra, spectral broadening of the transitions and decrease achievable signal-to-noise ratio of the detected spectra. All of these unwanted effects directly influence frequency stability of the realized laser standard and due to this fact, the quality of iodine cells must be precisely controlled. We present a comparison of traditionally used method of laser induced fluorescence (LIF) with novel technique based on hyperfine transitions linewidths measurement. The results summarize advantages and drawbacks of these techniques and give a recommendation for their practical usage.

  7. Consequences of excess iodine

    PubMed Central

    Leung, Angela M.; Braverman, Lewis E.

    2014-01-01

    Iodine is a micronutrient that is essential for the production of thyroid hormones. The primary source of iodine is the diet via consumption of foods that have been fortified with iodine, including salt, dairy products and bread, or that are naturally abundant in the micronutrient, such as seafood. Recommended daily iodine intake is 150 μg in adults who are not pregnant or lactating. Ingestion of iodine or exposure above this threshold is generally well-tolerated. However, in certain susceptible individuals, including those with pre-existing thyroid disease, the elderly, fetuses and neonates, or patients with other risk factors, the risk of developing iodine-induced thyroid dysfunction might be increased. Hypothyroidism or hyperthyroidism as a result of supraphysiologic iodine exposure might be either subclinical or overt, and the source of the excess iodine might not be readily apparent. PMID:24342882

  8. Quantum yield for carbon monoxide production in the 248 nm photodissociation of carbonyl sulfide (OCS)

    NASA Technical Reports Server (NTRS)

    Zhao, Z.; Stickel, R. E.; Wine, P. H.

    1995-01-01

    Tunable diode laser absorption spectroscopy has been coupled with excimer laser flash photolysis to measure the quantum yield for CO production from 248 nm photodissociation of carbonyl sulfide (OCS) relative to the well-known quantum yield for CO production from 248 nm photolysis of phosgene (Cl2CO2). The temporal resolution of the experiments was sufficient to distinguish CO formed directly by photodissociation from that formed by subsequent S((sup 3)P(sub J)) reaction with OCS. Under the experimental conditions employed, CO formation via the fast S((sup 1)D(sub 2)) + OCS reaction was minimal. Measurements at 297K and total pressures from 4 to 100 Torr N2 + N2O show the CO yield to be greater than 0.95 and most likely unity. This result suggests that the contribution of OCS as a precursor to the lower stratospheric sulfate aerosol layer is somewhat larger than previously thought.

  9. Photodissociation Dynamics of 2-BROMOETHYLNITRITE at 351 NM and C-C Bond Fission in the β - Radical Product

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Chhantyal-Pun, Rabi; Brynteson, Matt D.; Miller, Terry A.; Butler, Laurie J.

    2013-06-01

    We used a crossed laser-molecular beam scattering experiment to investigate the primary photodissociation channels of bromoethylnitrite at 351 nm. Only the O-NO bond fission channel forming the β -bromoethoxy radical and NO, no HBr photoelimination, was detected upon 351 nm photoexcitation,. The subsequent decomposition of the highly vibrational excited β -bromoethoxy radical to formaldehyde + CH{_2}Br was also investigated.

  10. Photodissociation of methyl formate: Conical intersections, roaming and triple fragmentation

    SciTech Connect

    Lin, King-Chuen; Tsai, Po-Yu; Chao, Meng-Hsuan; Kasai, Toshio; Lombardi, Andrea; Palazzetti, Federico; Aquilanti, Vincenzo

    2015-12-31

    The photodissociation channels of methyl formate have been extensively investigated by two different advanced experimental techniques, ion imaging and Fourier-Transform-Infrared emission spectroscopy, combined with quantum chemical calculations and molecular dynamics simulations. Our aim is to characterize the role of alternative routes to the conventional transition-state mediated pathway: the roaming and the triple fragmentation processes. The photolysis experiments, carried out at a range of laser wavelengths in the vicinity of the triple fragmentation threshold, beside the simulation of large bunches of classical trajectories with different initial conditions, have shown that both mechanisms share a common path that involves a conical intersection during the relaxation process from the electronic excited state S{sub 1} to the ground state S{sub 0}.

  11. Lone-pair interactions and photodissociation of compressed nitrogen trifluoride.

    PubMed

    Kurzydłowski, D; Wang, H B; Troyan, I A; Eremets, M I

    2014-08-14

    High-pressure behavior of nitrogen trifluoride (NF3) was investigated by Raman and IR spectroscopy at pressures up to 55 GPa and room temperature, as well as by periodic calculations up to 100 GPa. Experimentally, we find three solid-solid phase transitions at 9, 18, and 39.5 GPa. Vibrational spectroscopy indicates that in all observed phases NF3 remains in the molecular form, in contrast to the behavior of compressed ammonia. This finding is confirmed by density functional theory calculations, which also indicate that the phase transitions of compressed NF3 are governed by the interplay between lone‑pair interactions and efficient molecule packing. Although nitrogen trifluoride is molecular in the whole pressure range studied, we show that it can be photodissociated by mid-IR laser radiation. This finding paves the way for the use of NF3 as an oxidizing and fluorinating agent in high-pressure reactions.

  12. Lone-pair interactions and photodissociation of compressed nitrogen trifluoride

    NASA Astrophysics Data System (ADS)

    Kurzydłowski, D.; Wang, H. B.; Troyan, I. A.; Eremets, M. I.

    2014-08-01

    High-pressure behavior of nitrogen trifluoride (NF3) was investigated by Raman and IR spectroscopy at pressures up to 55 GPa and room temperature, as well as by periodic calculations up to 100 GPa. Experimentally, we find three solid-solid phase transitions at 9, 18, and 39.5 GPa. Vibrational spectroscopy indicates that in all observed phases NF3 remains in the molecular form, in contrast to the behavior of compressed ammonia. This finding is confirmed by density functional theory calculations, which also indicate that the phase transitions of compressed NF3 are governed by the interplay between lone-pair interactions and efficient molecule packing. Although nitrogen trifluoride is molecular in the whole pressure range studied, we show that it can be photodissociated by mid-IR laser radiation. This finding paves the way for the use of NF3 as an oxidizing and fluorinating agent in high-pressure reactions.

  13. Lone-pair interactions and photodissociation of compressed nitrogen trifluoride

    SciTech Connect

    Kurzydłowski, D.; Wang, H. B.; Eremets, M. I.; Troyan, I. A.

    2014-08-14

    High-pressure behavior of nitrogen trifluoride (NF{sub 3}) was investigated by Raman and IR spectroscopy at pressures up to 55 GPa and room temperature, as well as by periodic calculations up to 100 GPa. Experimentally, we find three solid-solid phase transitions at 9, 18, and 39.5 GPa. Vibrational spectroscopy indicates that in all observed phases NF{sub 3} remains in the molecular form, in contrast to the behavior of compressed ammonia. This finding is confirmed by density functional theory calculations, which also indicate that the phase transitions of compressed NF{sub 3} are governed by the interplay between lone‑pair interactions and efficient molecule packing. Although nitrogen trifluoride is molecular in the whole pressure range studied, we show that it can be photodissociated by mid-IR laser radiation. This finding paves the way for the use of NF{sub 3} as an oxidizing and fluorinating agent in high-pressure reactions.

  14. Near infrared photodissociation spectra of the aniline +-argon ionic complexes

    NASA Astrophysics Data System (ADS)

    Pino, T.; Douin, S.; Boudin, N.; Bréchignac, Ph.

    2006-02-01

    The near infrared spectra of the ionic complexes aniline(NH 2) +-argon and aniline(ND 2) +-argon have been measured by laser photodissociation spectroscopy. The bands observed from 10 500 to 13 500 cm -1 have been assigned to the D1(A˜2A2)←D0(X˜2B1) electronic transition within the solvated chromophore. They are characterized by a long vibrational progression involving the 6a mode. On the basis of CASSCF calculations, a large change of geometry along this coordinate is found while the amino group remains in the ring plane. Therefore, a change of the conjugation of the ring rather than a charge transfer is inferred. This is thought to be the origin of the extent of the progression.

  15. Isotope separation by selective photodissociation of glyoxal

    DOEpatents

    Marling, John B.

    1976-01-01

    Dissociation products, mainly formaldehyde and carbon monoxide, enriched in a desired isotope of carbon, oxygen, or hydrogen are obtained by the selective photodissociation of glyoxal wherein glyoxal is subjected to electromagnetic radiation of a predetermined wavelength such that photon absorption excites and induces dissociation of only those molecules of glyoxal containing the desired isotope.

  16. The {sup 2}P{sub 1/2} {yields} {sup 2}P{sub 3/2} laser transition in atomic iodine and the problem of search for signals from extraterrestrial intelligence

    SciTech Connect

    Kutaev, Yu F; Mankevich, S K; Nosach, O Yu; Orlov, E P

    2007-07-31

    It is proposed to search for signals from extraterrestrial intelligence (ETI) at a wavelength of 1.315 {mu}m of the laser {sup 2}P{sub 1/2} {yields} {sup 2}P{sub 3/2} transition in the atomic iodine, which can be used for this purpose as the natural frequency reference. The search at this wavelength is promising because active quantum filters (AQFs) with the quantum sensitivity limit have been developed for this wavelength, which are capable of receiving laser signals, consisting of only a few photons, against the background of emission from a star under study. In addition, high-power iodine lasers emitting diffraction-limited radiation at 1.315 {mu}m have been created, which highly developed ETI also can have. If a ETI sends in our direction a diffraction-limited 10-ns, 1-kJ laser pulse with the beam diameter of 10 m, a receiver with an AQF mounted on a ten-meter extra-atmospheric optical telescope can detect this signal at a distance of up to 300 light years, irrespective of the ETI position on the celestial sphere. The realisation of the projects for manufacturing optical telescopes of diameter 30 m will increase the research range up to 2700 light years. A weak absorption of the 1.315-{mu}m radiation in the Earth atmosphere (the signal is attenuated by less than 20%) allows the search for ETI signals by using ground telescopes equipped with adaptive optical systems. (laser applications and other topics in quantum electronics)

  17. Photodissociation of protonated leucine-enkephalin in the VUV range of 8-40 eV.

    PubMed

    Bari, S; Gonzalez-Magaña, O; Reitsma, G; Werner, J; Schippers, S; Hoekstra, R; Schlathölter, T

    2011-01-14

    Until now, photodissociation studies on free complex protonated peptides were limited to the UV wavelength range accessible by intense lasers. We have studied photodissociation of gas-phase protonated leucine-enkephalin cations for vacuum ultraviolet (VUV) photons energies ranging from 8 to 40 eV. We report time-of-flight mass spectra of the photofragments and various photofragment-yields as a function of photon energy. For sub-ionization energies our results are in line with existing studies on UV photodissociation of leucine-enkephalin. For photon energies exceeding 10 eV we could identify a new dissociation scheme in which photoabsorption leads to a fast loss of the tyrosine side chain. This loss process leads to the formation of a residual peptide that is remarkably cold internally.

  18. Photodissociation of protonated leucine-enkephalin in the VUV range of 8-40 eV

    SciTech Connect

    Bari, S.; Gonzalez-Magana, O.; Reitsma, G.; Hoekstra, R.; Schlathoelter, T.; Werner, J.; Schippers, S.

    2011-01-14

    Until now, photodissociation studies on free complex protonated peptides were limited to the UV wavelength range accessible by intense lasers. We have studied photodissociation of gas-phase protonated leucine-enkephalin cations for vacuum ultraviolet (VUV) photons energies ranging from 8 to 40 eV. We report time-of-flight mass spectra of the photofragments and various photofragment-yields as a function of photon energy. For sub-ionization energies our results are in line with existing studies on UV photodissociation of leucine-enkephalin. For photon energies exceeding 10 eV we could identify a new dissociation scheme in which photoabsorption leads to a fast loss of the tyrosine side chain. This loss process leads to the formation of a residual peptide that is remarkably cold internally.

  19. Laser power transmission

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1992-01-01

    An overview of previous studies related to laser power transmission is presented. Particular attention is given to the use of solar pumped lasers for space power applications. Three general laser mechanisms are addressed: photodissociation lasing driven by sunlight, photoexcitation lasing driven directly by sunlight, and photoexcitation lasing driven by thermal radiation.

  20. Solar pumped laser

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Weaver, W. R. (Inventor)

    1984-01-01

    A solar pumped laser is described in which the lasant is a gas that will photodissociate and lase when subjected to sunrays. Sunrays are collected and directed onto the gas lasant to cause it to lase. Applications to laser propulsion and laser power transmission are discussed.

  1. Photodissociation dynamics of ethyl ethynyl ether: A ketenyl radical precursor

    NASA Astrophysics Data System (ADS)

    Krisch, Maria; Miller, Johanna; Butler, Laurie; Su, Hongmei; Bersohn, Richard; Shu, Jinian

    2006-03-01

    We investigate the photodissociation dynamics of ethyl ethynyl ether at 193.3 nm with crossed laser-molecular beam photofragment translational spectroscopy and laser-induced fluorescence. We establish ethyl ethynyl ether as the first clean precursor to the ketenyl radical, a key species in combustion reactions. One major bond fission channel was observed for the system, cleavage along the HCCO-C2H5 bond, leading to ground state C2H5 (ethyl) radicals and HCCO (ketenyl) radical products in two distinct electronic states. We observed neither cleavage of the other C-O bond nor molecular elimination to form C2H4 + CH2CO (ketene). Ketenyl radicals formed in the higher recoil kinetic energy channel could be either X(^2A") or Ã(^2A') state ketenyl radical. We assign the lower recoil kinetic energy channel to the spin forbidden ã(^4A") state of the ketenyl radical, reached through intersystem crossing. Laser-induced fluorescence from the ketenyl radical peaks after a 20 μs delay, indicating that it is formed with a significant amount of internal energy and subsequently relaxes to the lowest vibrational level of the ground electronic state, a result consistent with the product assignment.

  2. Ultravioret and Infrared Photodissociation Spectroscopy of Hydrated Anilinium Ion

    NASA Astrophysics Data System (ADS)

    Kurusu, Itaru; Yagi, Reona; Kasahara, Yasutoshi; Ishikawa, Haruki

    2015-06-01

    To understand the temperature effect on the microscopic hydration, we have been carrying out the laser spectroscopy of temperature-controlled hydrated phenol cation clusters using our temperature-variable ion trap apparatus. In the present study, we have chosen an anilinium ion (AnH^+) as a solute. Since the phenol cation has (π)-1 configuration, the phenyl ring does not play as a proton-acceptor. On the contrary, the π-orbitals in the AnH^+ are fulfilled and both the NH_3^+ and phenyl groups can behave as hydrogen-bonding sites. Thus, hydration structures around the AnH^+ are expected to be different from those of the phenol cation. Since there is no spectroscopic report on the hydrated AnH^+ clusters, we have carried out the UV and IR photodissociation spectroscopy of AnH^+(H_2O) clusters. In the present study, the AnH^+(H_2O) is produced by an electrospray ionization method. As the first step, spectroscopic measurements are carried out without temperature control. In the UV photodissociation spectrum, the 0-0 band appears at 36351 cm-1 which is red-shifted by 1863 cm-1 from that of the AnH^+ monomer. The band pattern is similar to that of the AnH^+ monomer. This indicates that the structure of the AnH^+ is not so affected by the single hydration. In the IR photodissociation spectrum, OH stretching band of the H_2O moiety and free NH stretching band of AnH^+ moiety are observed. Comparison with the results of the DFT calculation at M05-2X/6-31++G(d,p) level, we determined the structure of the AnH^+(H_2O) cluster. R.~Yagi, Y.~Kasahara, H.~Ishikawa, the 70th International Symposium on Molecular Spectroscopy (2015). H.~Ishikawa, T.~Nakano, T.~Eguchi, T.~Shibukawa, K.~Fuke Chem. Phys. Lett. 514, 234 (2011). G.~Féraud, et al. Phys. Chem. Chem. Phys. 16, 5250 (2014).

  3. An ion mobility mass spectrometer for investigating photoisomerization and photodissociation of molecular ions.

    PubMed

    Adamson, B D; Coughlan, N J A; Markworth, P B; Continetti, R E; Bieske, E J

    2014-12-01

    An ion mobility mass spectrometry apparatus for investigating the photoisomerization and photodissociation of electrosprayed molecular ions in the gas phase is described. The device consists of a drift tube mobility spectrometer, with access for a laser beam that intercepts the drifting ion packet either coaxially or transversely, followed by a quadrupole mass filter. An ion gate halfway along the drift region allows the instrument to be used as a tandem ion mobility spectrometer, enabling mobility selection of ions prior to irradiation, with the photoisomer ions being separated over the second half of the drift tube. The utility of the device is illustrated with photoisomerization and photodissociation action spectra of carbocyanine molecular cations. The mobility resolution of the device for singly charged ions is typically 80 and it has a mass range of 100-440 Da, with the lower limit determined by the drive frequency for the ion funnels, and the upper limit by the quadrupole mass filter.

  4. An ion mobility mass spectrometer for investigating photoisomerization and photodissociation of molecular ions

    SciTech Connect

    Adamson, B. D.; Coughlan, N. J. A.; Markworth, P. B.; Bieske, E. J.; Continetti, R. E.

    2014-12-15

    An ion mobility mass spectrometry apparatus for investigating the photoisomerization and photodissociation of electrosprayed molecular ions in the gas phase is described. The device consists of a drift tube mobility spectrometer, with access for a laser beam that intercepts the drifting ion packet either coaxially or transversely, followed by a quadrupole mass filter. An ion gate halfway along the drift region allows the instrument to be used as a tandem ion mobility spectrometer, enabling mobility selection of ions prior to irradiation, with the photoisomer ions being separated over the second half of the drift tube. The utility of the device is illustrated with photoisomerization and photodissociation action spectra of carbocyanine molecular cations. The mobility resolution of the device for singly charged ions is typically 80 and it has a mass range of 100-440 Da, with the lower limit determined by the drive frequency for the ion funnels, and the upper limit by the quadrupole mass filter.

  5. Photodissociation of an Internally Cold Beam of CH+ Ions in a Cryogenic Storage Ring

    NASA Astrophysics Data System (ADS)

    O'Connor, A. P.; Becker, A.; Blaum, K.; Breitenfeldt, C.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; von Hahn, R.; Hechtfischer, U.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lohmann, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; Repnow, R.; Saurabh, S.; Schwalm, D.; Spruck, K.; Sunil Kumar, S.; Vogel, S.; Wolf, A.

    2016-03-01

    We have studied the photodissociation of CH+ in the Cryogenic Storage Ring at ambient temperatures below 10 K. Owing to the extremely high vacuum of the cryogenic environment, we were able to store CH+ beams with a kinetic energy of ˜60 keV for several minutes. Using a pulsed laser, we observed Feshbach-type near-threshold photodissociation resonances for the rotational levels J =0 - 2 of CH+, exclusively. In comparison to updated, state-of-the-art calculations, we find excellent agreement in the relative intensities of the resonances for a given J , and we can extract time-dependent level populations. Thus, we can monitor the spontaneous relaxation of CH+ to its lowest rotational states and demonstrate the preparation of an internally cold beam of molecular ions.

  6. Photodissociation of an Internally Cold Beam of CH^{+} Ions in a Cryogenic Storage Ring.

    PubMed

    O'Connor, A P; Becker, A; Blaum, K; Breitenfeldt, C; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; von Hahn, R; Hechtfischer, U; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lohmann, S; Meyer, C; Mishra, P M; Novotný, O; Repnow, R; Saurabh, S; Schwalm, D; Spruck, K; Sunil Kumar, S; Vogel, S; Wolf, A

    2016-03-18

    We have studied the photodissociation of CH^{+} in the Cryogenic Storage Ring at ambient temperatures below 10 K. Owing to the extremely high vacuum of the cryogenic environment, we were able to store CH^{+} beams with a kinetic energy of ∼60  keV for several minutes. Using a pulsed laser, we observed Feshbach-type near-threshold photodissociation resonances for the rotational levels J=0-2 of CH^{+}, exclusively. In comparison to updated, state-of-the-art calculations, we find excellent agreement in the relative intensities of the resonances for a given J, and we can extract time-dependent level populations. Thus, we can monitor the spontaneous relaxation of CH^{+} to its lowest rotational states and demonstrate the preparation of an internally cold beam of molecular ions.

  7. Extreme ultraviolet photodissociative excitation of molecular oxygen

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.

    1974-01-01

    Photodissociation processes in molecular oxygen occurring in the wavelength range from 500 to 900 A, investigated through observations of the resulting atomic fluorescence radiation, are reported. The dispersed radiation from a continuous light source was used to excite the gas, and the resulting fluorescence radiation was observed in the ultraviolet and infrared. The results obtained are compared with the dissociation cross sections derived by Matsunaga and Watanabe (1967).

  8. Characterization of Iodine Quenching and Energy Transfer Rate Constants for Supersonic Flow Visualization Applications

    DTIC Science & Technology

    2007-09-28

    SUBTITLE Sm. CONTRACTNUBER Characterization of iodine quenching and energy transfer rate FA9550-41-- o3G Sb. GRANT NUMBER constants for supersonic flow...in the nozzle from a chemical oxygen iodine laser (COIL). PLIF images are recorded using laser excitation of the I= B-X transition. Data for the...Preacolbed byANSI Sad Z30.16 20071015188 Final report for the project, "Characterization of iodine quenching and energy transfer rate constants for

  9. Characterization of low-molecular weight iodine-terminated polyethylenes by gas chromatography/mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with the use of derivatization.

    PubMed

    Zaikin, Vladimir G; Borisov, Roman S; Polovkov, Nikolai Yu; Zhilyaev, Dmitry I; Vinogradov, Aleksei A; Ivanyuk, Aleksei V

    2013-01-01

    Gas chromatography/mass spectrometry (GC/MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry, in conjunction with various derivatization approaches, have been applied to structure determination of individual oligomers and molecular-mass distributions (MMD) in low-molecular mass polyethylene having an iodine terminus. Direct GC/MS analysis has shown that the samples under investigation composed of polyethyelene-iodides (major components) and n-alkanes. Exchange reaction with methanol in the presence of NaOH gave rise to methoxy-derivatives and n-alkenes. Electron ionization mass spectra have shown that the former contained terminal methoxy groups indicating the terminal position of the iodine atom in the initial oligomers. MMD parameters have been determined with the aid of MALDI mass spectrometry followed by preliminary derivatization-formation of covalently bonded charge through the reaction of iodides with triphenylphosphine, trialkylamines, pyridine or quinoline. The mass spectra revealed well-resolved peaks for cationic parts of derivatized oligomers allowing the determination of MMD. The latter values have been compared with those calculated from GC/MS data.

  10. Resonant photodissociation in substituted benzenes

    NASA Astrophysics Data System (ADS)

    Scarborough, Tim; McAcy, Collin; Foote, David; Uiterwaal, Cornelis

    2011-05-01

    Cyclic aromatic molecules are abundant in organic chemistry, with a wide variety of applications, including pharmacology, pollution studies and genetic research. Among the simplest of these molecules is benzene (C6H6) , with many relevant molecules being benzene-like with a single atomic substitution. In such a substitution, the substituent determines a characteristic perturbation of the electronic structure of the molecule. We discuss the substitution of halogens into the ring (C6H5X), and its effects on the dynamics of ionization and dissociation of the molecule without the focal volume effect. In particular, using 800-nm, 50-fs laser pulses, we present results in the dissociation of fluorobenzene, chlorobenzene, bromobenzene and iodobenzene into the phenyl ring (C6H5) and the atomic halogen, and the subsequent ionization of these fragments. The impact of the ``heavy atom effect'' on a 1 (π , π*) -->3 (n , σ*) singlet-triplet intersystem crossing will be emphasized. Currently under investigation is whether such a dissociation can be treated as an effective source of the neutral substituent. This material is based upon work supported by the National Science Foundation under Grant No. PHY-0355235.

  11. Iodine generator for reclaimed water purification

    NASA Technical Reports Server (NTRS)

    Wynveen, R. A.; Powell, J. D.; Schubert, F. H. (Inventor)

    1977-01-01

    The system disclosed is for controlling the iodine level in a water supply in a spacecraft. It includes an iodine accumulator which stores crystalline iodine, an electrochemical valve to control the input of iodine to the drinking water and an iodine dispenser. A pump dispenses fluid through the iodine dispenser and an iodine sensor to a potable water tank storage. The iodine sensor electronically detects the iodine level in the water, and through electronic means, produces a correction current control. The correction current control operates the electro-chemical iodine valve to release iodine from the iodine accumulator into the iodine dispenser.

  12. Linkage and Anomeric Differentiation in Trisaccharides by Sequential Fragmentation and Variable-Wavelength Infrared Photodissociation

    NASA Astrophysics Data System (ADS)

    Tan, Yanglan; Polfer, Nicolas C.

    2015-02-01

    Carbohydrates and their derivatives play important roles in biological systems, but their isomeric heterogeneity also presents a considerable challenge for analytical techniques. Here, a stepwise approach using infrared multiple-photon dissociation (IRMPD) via a tunable CO2 laser (9.2-10.7 μm) was employed to characterize isomeric variants of glucose-based trisaccharides. After the deprotonated trisaccharides were trapped and fragmented to disaccharide C2 fragments in a Fourier transform ion cyclotron resonance (FTICR) cell, a further variable-wavelength infrared irradiation of the C2 ion produced wavelength-dependent dissociation patterns that are represented as heat maps. The photodissociation patterns of these C2 fragments are shown to be strikingly similar to the photodissociation patterns of disaccharides with identical glycosidic bonds. Conversely, the photodissociation patterns of different glycosidic linkages exhibit considerable differences. On the basis of these results, the linkage position and anomericity of glycosidic bonds of disaccharide units in trisaccharides can be systematically differentiated and identified, providing a promising approach to characterize the structures of isomeric oligosaccharides.

  13. Ultracold photodissociation and progress towards a molecular lattice clock with 88 Sr

    NASA Astrophysics Data System (ADS)

    Lee, Chih-Hsi; McGuyer, Bart; McDonald, Mickey; Apfelback, Florian; Grier, Andrew; Zelevinsky, Tanya

    2016-05-01

    Techniques originally developed for the construction of atomic clocks can be adapted to the study of ultracold molecules, with applications ranging from studies of ultracold chemistry to searches for new physics. We present recent experimental results involving studies of fully quantum state-resolved photodissociation of 88 Sr2 molecules, as well as progress toward building a molecular clock. First, our system has allowed for precise, quantum state-resolved photodissociation studies, revealing not only excellent control over quantum states but also a more accurate way to describe the photodissociation of diatomic molecules and access ultracold chemistry. Second, the molecular clock will allow us to search for a possible time variation of the proton-electron mass ratio. The ``oscillator'' of such a molecular clock would consist of the frequency difference between two lasers driving a two-photon Raman transition between deeply and intermediately-bound rovibrational levels in the electronic ground state. Accomplishing this task requires exploring several research directions, including the precision spectroscopy of bound states and developing tools for the control and minimization of differential lattice light shifts.

  14. Imaging the photodissociation dynamics of the methyl radical from the 3s and 3pz Rydberg states

    PubMed Central

    Marggi Poullain, Sonia; Chicharro, David V.; Zanchet, Alexandre; González, Marta G.; Rubio-Lago, Luis; Senent, María L.; García-Vela, Alberto; Bañares, Luis

    2016-01-01

    The photodissociation dynamics of the methyl radical from the 3s and 3pz Rydberg states have been studied using velocity map and slice ion imaging in combination with pump-probe nanosecond laser pulses. The reported translational energy and angular distributions of the H(2S) photofragment detected by (2+1) REMPI highlight different dissociation mechanisms for the 3s and 3pz Rydberg states. A narrow peak in the translational energy distribution and an anisotropic angular distribution characterizes the fast 3s photodissociation, while for the 3pz state Boltzmann-type translational energy and isotropic angular distributions are found. High level ab initio calculations have been performed in order to elucidate the photodissociation mechanisms from the two Rydberg states and to rationalize the experimental results. The calculated potential energy curves highlight a typical predissociation mechanism for the 3s state, characterized by the coupling between the 3s Rydberg state and a valence repulsive state. On the other hand, the photodissociation on the 3pz state is initiated by a predissociation process due to the coupling between the 3pz Rydberg state and a valence repulsive state and constrained, later on, by two conical intersections that allow the system to relax to lower electronic states. Such mechanism opens different reaction pathways leading to CH2 photofragments in different electronic states and inducing a transfer of energy between translational and internal modes. PMID:27296907

  15. THE PHOTODISSOCIATION OF FORMALDEHYDE IN COMETS

    SciTech Connect

    Feldman, Paul D.

    2015-10-20

    Observations of comets in the 905–1180 Å spectral band made with the Far Ultraviolet Spectroscopic Explorer in 2001 and 2004 show unusual features in the fluorescent emissions of CO and H{sub 2}. These include emission from a non-thermal high-J rotational population of CO and solar Lyα induced fluorescence from excited vibrational levels of H{sub 2}, both of which are attributed to the photodissociation of formaldehyde. In this paper we model the large number of observed H{sub 2} lines and demonstrate the dependence of the pumping on the heliocentric velocity of the comet and the solar line profiles. We also derive the rotational and vibrational populations of H{sub 2} and show that they are consistent with the results of laboratory studies of the photodissociation of H{sub 2}CO. In addition to the principal series of H i and O i, the residual spectrum is found to consist mainly of the Rydberg series of C i multiplets from which we derive the mean carbon column abundance in the coma. Fluorescent emissions from N i and N{sub 2} are also searched for.

  16. High-Resolution Photoionization, Photoelectron and Photodissociation Studies. Determination of Accurate Energetic and Spectroscopic Database for Combustion Radicals and Molecules

    SciTech Connect

    Ng, Cheuk-Yiu

    2016-04-25

    The main goal of this research program was to obtain accurate thermochemical and spectroscopic data, such as ionization energies (IEs), 0 K bond dissociation energies, 0 K heats of formation, and spectroscopic constants for radicals and molecules and their ions of relevance to combustion chemistry. Two unique, generally applicable vacuum ultraviolet (VUV) laser photoion-photoelectron apparatuses have been developed in our group, which have used for high-resolution photoionization, photoelectron, and photodissociation studies for many small molecules of combustion relevance.

  17. Photodissociation and photoionization of organosulfur radicals

    SciTech Connect

    Hsu, Chia-Wei

    1994-05-27

    The dynamics of S(3P2,1,0, 1D2) production from the 193 nm photodissociation of CH3SCH3, H2S and CH3SH have been studied using 2 + 1 resonance-enhanced multiphoton ionization (REMPI) techniques. The 193 nm photodissociation cross sections for the formation of S from CH3S and HS initially prepared in the photodissociation of CH3SCH3 and H2S are estimated to be 1 x 10-18 and 1.1 x 10-18 cm2, respectively. The dominant product from CH3S is S(1D), while that from SH is S(3P). Possible potential energy surfaces involved in the 193 nm photodissociation of CH3S($\\tilde{X}$) and SH(X) have been also examined. Threshold photoelectron (PE) spectra for SH and CH3S formed in the ultraviolet photodissociation of H2S and CH3SH, respectively, have been measured using the nonresonant two-photon pulsed field ionization (N2P-PFI) technique. The rotationally resolved N2P-PFI-PE spectrum obtained for SH indicates that photoionization dynamics favors the rotational angular momentum change ΔN < 0 with the ΔN value up to -3, an observation similar to that found in the PFI-PE spectra of OH (OD) and NO. The ionization energies for SH(X2Π3,2) and CH3S($\\tilde{X}$2E3/2) are determined to be 84,057.5 ± 3 cm-1 and 74,726 ± 8 cm-1 respectively. The spin-orbit splittings for SH(X2Π3/2, 1/2) and CH3S($\\tilde{X}$2E3/2, 1/2) are found to be 377 ± 2 and 257 ± 5 cm-1, respectively, in agreement with previous measurements. The C-S stretching frequency for CH3S+($\\tilde{X}$3A2) is 733 ± 5 cm-1. This study illustrates that the PFI-PE detection method can be a

  18. Radioactive iodine uptake

    MedlinePlus

    ... too much thyroid hormone medicine or supplements) Iodine overload Subacute thyroiditis (swelling or inflammation of the thyroid ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  19. Iodine Clock Reaction.

    ERIC Educational Resources Information Center

    Mitchell, Richard S.

    1996-01-01

    Describes a combination of solutions that can be used in the study of kinetics using the iodine clock reaction. The combination slows down degradation of the prepared solutions and can be used successfully for several weeks. (JRH)

  20. Picosecond absorption studies on the photodissociation of alpha- and beta-nitrosyl hemoglobin monomers

    SciTech Connect

    Guest, C.R.; Noe, L.J.

    1988-10-01

    Transient absorption studies of the pump-probe type were performed on the NO forms of the alpha- and beta-monomers of hemoglobin using a Nd3+ phosphate-glass laser. A second harmonic 531-nm, 8-ps fwhm pulse pumped the Q-band while a delayed continuum generated pulse was used to monitor pi pi* Soret absorption changes in the 410-453-nm region. Photodissociation of nitrosyl alpha- and beta-monomers was found to differ markedly from the tetramer in what we believe to be the formation of a five-coordinate HbNO (with proximal imidazole detached) photoproduct within the first 50 ps after photon absorption.

  1. Iodine Hall Thruster

    NASA Technical Reports Server (NTRS)

    Szabo, James

    2015-01-01

    Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).

  2. Ab initio study of the KrH+ photodissociation.

    PubMed

    Alekseyev, Aleksey B; Buenker, Robert J; Liebermann, Heinz-Peter

    2008-06-21

    The multireference spin-orbit configuration interaction method is employed to calculate potential energy curves for the ground and low-lying excited states of the KrH(+) cation. For the first time, the spin-orbit interaction is taken into account and electric dipole moments are computed for transitions to the states responsible for the first absorption continuum (A band) of KrH(+). On this basis, the partial and total absorption spectra in this energy range are obtained. It is shown that the A-band absorption is dominated by the parallel A (1)Sigma(+)<--X (1)Sigma(+) transition. In the low-energy part of the band (<83x10(3) cm(-1)) the absorption is mainly caused by the spin-forbidden b (3)Pi(0(+) )<--X (1)Sigma(+) excitation, while perpendicular transitions to the B (1)Pi and b (3)Pi(1) states are significantly weaker. The branching ratio Gamma for the photodissociation products is calculated and it is shown to increase smoothly from 0 in the red tail of the band to 1 at E>or=90x10(3) cm(-1). The latter value corresponds to the exclusive formation of the spin-excited Kr(+)((2)P(12)) ions, which may be used to obtain laser generation on the Kr(+)((2)P(12)-(2)P(32)) transition.

  3. Prediction of I2P 1/2-->2P 3/2 transition lineshapes from 3-D, time dependent simulations of chemical oxygen-iodine laser (COIL) flowfields

    NASA Astrophysics Data System (ADS)

    Madden, Timothy J.

    2008-02-01

    The lineshape of the I2P 1/2-->2P 3/2 transition provides a means to ascertain a variety of useful information regarding the performance of the chemical oxygen-iodine laser (COIL). The value at the center of the lineshape, commonly referred to as the 'line center,' is proportional to the laser amplification on the I2P 1/2-->2P 3/2 transition. The infinite integral of the lineshape is proportional to the number density of the ground and excited states of atomic iodine in the gas, indicating the degree of I II dissociation. And the width of the lineshape indicates the amount of broadening of the transition, both due to collisional and Doppler shift effects. As the Doppler shift is proportional to velocity, the width of the transition can be used to estimate the degree of random molecular motion in the gas, expressed in macroscopic terms as temperature. A Doppler shift to the frequencies in the transition can also occur through the straight-line, bulk motion of the gas, and this can be used to examine the velocity field of the gas. However, the flow may experience rotation through the presence of eddies carried within the gas, and these too may contribute to the Doppler shift of the lineshape frequencies. Given that eddies by virtue of their positive and negative velocity components can induce positive and negative Doppler shift, the widening of the lineshape is similar to thermal motion which also includes positive and negative velocities. Thus, when interpreting transition lineshapes, if some account is not made for both thermal and rotational motion, the effect of either physical process will be over-estimated. The work discussed here is oriented toward examining the interplay between the gas dynamics and the lineshape of the I2P 1/2-->2P 3/2 transition, and in turn determine the ramifications for the use of spectroscopic lineshape based diagnostics and interpretation of their data. These efforts in turn are directly linked to efforts improve the understanding of

  4. Development of a linear ion trap/orthogonal-time-of-flight mass spectrometer for time-dependent observation of product ions by ultraviolet photodissociation of peptide ions.

    PubMed

    Kim, Tae-Young; Schwartz, Jae C; Reilly, James P

    2009-11-01

    A hybrid linear ion trap/orthogonal time-of-flight (TOF) mass spectrometer has been developed to observe time-dependent vacuum ultraviolet photodissociation product ions. In this apparatus, a reflectron TOF mass analyzer is orthogonally interfaced to an LTQ using rf-only octopole and dc quadrupole ion guides. Precursor ions are generated by electrospray ionization and isolated in the ion trap. Subsequently they are directed to the TOF source where photodissociation occurs and product ions are extracted for mass analysis. To detect photodissociation product ions having axially divergent trajectories, a large rectangular detector is utilized. With variation of the time between photodissociation and orthogonal extraction in the TOF source, product ions formed over a range of times after photoexcitation can be sampled. Time-dependent observation of product ions following 157 nm photodissociation of a singly charged tryptic peptide ion (NWDAGFGR) showed that prompt photofragment ions (x- and v-type ions) dominate the tandem mass spectrum up to 1 micros after the laser shot, but the intensities of low energy thermal fragment ions (y-type ions) become comparable several microseconds later. Different proton mobilization time scales were observed for arginine- and lysine-terminated tryptic peptides.

  5. Iodine deficiency in Europe.

    PubMed

    Delange, F

    1995-01-18

    Iodine is a trace element present in the human body in minute amounts (15-20 mg in adults, i.e. 0.0285 x 10(-3)% of body weight). The only confirmed function of iodine is to constitute an essential substrate for the synthesis of thyroid hormones, tetraiodothyronine, thyroxine or T4 and triiodothyronine, T3 (1). In thyroxine, iodine is 60% by weight. Thyroid hormones, in turn, play a decisive role in the metabolism of all cells of the organism (2) and in the process of early growth and development of most organs, especially of the brain (3). Brain development in humans occurs from fetal life up to the third postnatal year (4). Consequently, a deficit in iodine and/or in thyroid hormones occurring during this critical period of life will result not only in the slowing down of the metabolic activities of all the cells of the organism but also in irreversible alterations in the development of the brain. The clinical consequence will be mental retardation (5). When the physiological requirements of iodine are not met in a given population, a series of functional and developmental abnormalities occur (Table 1), including thyroid function abnormalities and, when iodine deficiency is severe, endemic goiter and cretinism, endemic mental retardation, decreased fertility rate, increased perinatal death, and infant mortality. These complications, which constitute an hindrance to the development of the affected population, are grouped under the general heading of Iodine Deficiency Disorders, IDD (6). Broad geographic areas exist in which the population is affected by IDD.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Iodine nutrition in pregnancy and lactation.

    PubMed

    Leung, Angela M; Pearce, Elizabeth N; Braverman, Lewis E

    2011-12-01

    Adequate iodine intake is required for the synthesis of thyroid hormones that are important for normal fetal and infant neurodevelopment. In this review, we discuss iodine physiology during pregnancy and lactation, methods to assess iodine sufficiency, the importance of adequate iodine nutrition, studies of iodine supplementation during pregnancy and lactation, the consequences of hypothyroidism during pregnancy, the current status of iodine nutrition in the United States, the global efforts toward achieving universal iodine sufficiency, and substances that may interfere with iodine use.

  7. Ultraviolet Photodissociation Action Spectroscopy of Protonated Azabenzenes

    NASA Astrophysics Data System (ADS)

    Hansen, Christopher S.; Blanksby, Stephen J.; Bieske, Evan; Reimers, Jeffrey R.; Trevitt, Adam J.

    2014-06-01

    Azabenzenes are derivatives of benzene containing between one and six nitrogen atoms. Protonated azabenzenes are the fundamental building blocks of many biomolecules, charge-transfer dyes, ionic liquids and fluorescent tags. However, despite their ubiquity, there exists limited spectroscopic data that reveals the structure, behaviour and stability of these systems in their excited states. For the case of pyridinium (C_5H_5N-H^+), the simplest azabenzene, the electronic spectroscopy is complicated by short excited state lifetimes, efficient non-radiative deactivation methods and limited fluorescence. Ultraviolet (UV) photodissociation (PD) action spectroscopy provides new insight into the spectroscopic details, excited state behaviour and photodissociation processes of a series of protonated azabenzenes including pyridinium, diazeniums and their substituted derivatives. The room-temperature UV PD action spectra, often exhibiting vibronic detail,^b will be presented alongside PD mass spectra and the kinetic data from structurally-diagnostic ion-molecule reaction kinetics. Analysis of the spectra, with the aid of quantum chemical calculations, reveal that many azabenzenes prefer a non-planar excited state geometry reminiscent of the structures encountered in 'channel 3'-like deactivation of aromatics. The normal modes active in this isomerization contribute largely to the spectroscopy of the N-pyridinium ion as they build upon totally-symmetric vibronic transitions leading to repeating sets of closely-spaced spectral features. Hansen, C.S. et al.; J. Am. Soc. Mass Spectrom. 24:932-940 (2013) Hansen, C.S. et al.; J. Phys. Chem. A 117:10839-10846 (2013)

  8. Photodissociation of CO in turbulent molecular clouds

    NASA Astrophysics Data System (ADS)

    Röllig, M.; Hegmann, M.; Kegel, W. H.

    2002-09-01

    We study the formation of CO molecules at the edge of dense molecular clouds. As shown by van Dishoeck & Black \\cite{dishoeck88} the CO photodissociation process is dominated by line rather than continuous absorption. Hence, a turbulent velocity field, modifying the line shape, strongly affects the CO density distribution. We investigate these effects in detail. To describe the turbulent velocity field we use the statistical approach by G. Traving and collaborators (cf. Gail et al. \\cite{GaH74}) which accounts for a finite correlation length for the velocity field. We solve the radiative transfer equation selfconsistently with the rate equations describing the chemical reactions. One main goal of the investigation is an improvement of molecular cloud models used to analyze observational data. To bring the observational data into agreement with the model of an isothermal spherical cloud being stabilized by turbulent and thermal pressure it turned out to be neccessary to implement a cut off radius for the CO density distribution in order to define a cloud edge (Piehler & Kegel \\cite{Pie95}). This radius depends heavily on the intensity and density distribution in the outer parts of the cloud. Our calculations show that turbulence has substantial influence on the penetration of UV radiation into a molecular cloud. Even turbulent velocities in the order of a few thermal velocities are sufficient to allow the radiation to penetrate significantly deeper into the cloud than in a nonturbulent medium. On the other hand correlation length effects may lead to a decrease in photodissociation efficiency. By accounting for a finite correlation length of the stochastic velocity field the self-shielding of CO absorption bands is considerably enhanced and CO molecules can effectively form in depths that have a much stronger UV intensity in standard radiative transfer models.

  9. Photodissociation mass spectrometry: New tools for characterization of biological molecules

    PubMed Central

    Brodbelt, Jennifer S.

    2014-01-01

    Photodissociation mass spectrometry combines the ability to activate and fragment ions using photons with the sensitive detection of the resulting product ions by mass spectrometry. The resulting combination affords a versatile tool for characterization of biological molecules. The scope and breadth of photodissociation mass spectrometry have increased substantially over the past decade as new research groups have entered the field and developed a number of innovative applications that illustrate the ability of photodissociation to produce rich fragmentation patterns, to cleave bonds selectively, and to target specific molecules based on incorporation of chromophores. This review focuses on many of the key developments in photodissociation mass spectrometry over the past decade with a particular emphasis on its applications to biological molecules. PMID:24481009

  10. [Iodinated contrast media and iodine allergy: myth or reality?].

    PubMed

    Meunier, B; Joskin, J; Damas, F; Meunier, P

    2013-09-01

    The term "iodine allergy" is an old phrase that refers to a reaction to iodinated contrast media. After a brief review of definitions, pathophysiological mechanisms and risk factors of this clinical entity, management is urged immediate and delayed according to the most recent recommendations from the literature. We underline that iodine allergy, as such, does not really exist.

  11. Iodine deficiency disorders in Europe.

    PubMed Central

    Delange, F.; Bürgi, H.

    1989-01-01

    Recent data on iodine excretion in the urine of adults, adolescents and newborns and on the iodine content of breast milk indicate a high prevalence of iodine deficiency (moderate in many cases and severe in a few) in many European countries. These cases may manifest as subclinical hypothyroidism in neonates and as goitre in adolescents and adults. Lack of iodine causes not only goitre, but also mental deficiency, hearing loss and other neurological impairments, and short stature due to thyroid insufficiency during fetal development and childhood. Although iodinated salt is available theoretically in most countries where it is needed, its quality and share of the market are often unsatisfactory. In many countries where only household salt is iodinated the iodine content has been set too low owing to an overestimation of household salt consumption. Governments are therefore urged to pass legislation and provide means for efficient iodination of salt wherever this is necessary. PMID:2670299

  12. Volatilization of iodine from vegetation

    NASA Astrophysics Data System (ADS)

    Amiro, B. D.; Johnston, F. L.

    Gaseous emissions of iodine were measured from bean plant foliage. A gamma-emitting iodine tracer, Na 125I, was taken up by the plants from a hydroponic growth medium and released to a cuvette atmosphere. The dynamics of the flux were studied using a flow-through gamma detector. The relationship between leaf radioactive tracer activity and growth-medium activity was linear, as was the relationship between the iodine flux and both leaf and growth-medium activity. Iodine flux and leaf conductance to water responded similarly to changes in light levels, suggesting that the stomata may partially control the flux. The flux was inhibited by aeration of the hydroponic growth medium, and we postulate that methylation causes the iodine flux. Iodine emissions from living vegetation probably contribute <0.1 % to the stable iodine concentration in the atmosphere above terrestrial areas. However, this pathway may be a direct route for radioactive iodine transport from contaminated soils to the atmosphere.

  13. Preliminary conceptual design and weight of a one-megawatt space-based laser power station utilizing a solar-pumped iodine lasant

    NASA Technical Reports Server (NTRS)

    De Young, R. J.; Walker, G. H.; Williams, M. D.; Schuster, G. L.; Conway, E. J.

    1987-01-01

    A preliminary conceptual design of a space-based solar-pumped iodide laser emitting 1 MW of laser power for space-to-space power transmission is described. A near-parabolic solar collector focuses sunlight onto the t-C4F9I lasant within a transverse-flow optical cavity. Using waste heat, a thermal system supplies compressor and auxiliary power. The major system components are designed with weight estimates assigned. In particular, it is found that laser efficiency is not a dominant weight factor, the dominant factor being the laser transmission optics. The station mass is 92,000 kg, requiring approximately eight Shuttle flights to LEO, where an orbital transfer vehicle can transport it to the final altitude of 6378 km.

  14. Quantum yield for carbon monoxide production in the 248 nm photodissociation of carbonyl sulfide (OCS)

    SciTech Connect

    Zhao, Z.; Stickel, R.E.; Wine, P.H.

    1995-03-01

    Tunable diode laser absorption spectroscopy has been coupled with excimer laser flash photolysis to measure the quantum yield for CO production from 248 nm photodissociation of carbonyl sulfide (OCS) relative to the well known quantum yield for CO production from 248 nm photolysis of phosgene (Cl{sub 2}CO). The temporal resolution of the experiments was sufficient to distinguish CO formed directly by photodissociation from that formed by subsequent S({sup 3}P{sub j}) reaction with OCS. Under the experimental conditions employed, CO formation via the fast S({sup 1}D{sub 2})+OCS reaction was minimal. Measurements at 297K and total pressures from 4 to 100 Torr N{sub 2}+N{sub 2}O show the CO yield to be greater than 0.95 and most likely unity. This result suggests that the contribution of OCS as a precursor to the lower stratospheric sulfate aerosol layer is somewhat larger than previously thought. 25 refs., 1 fig., 2 tabs.

  15. Photodissociation of TEMPO-modified peptides: new approaches to radical-directed dissociation of biomolecules.

    PubMed

    Marshall, David L; Hansen, Christopher S; Trevitt, Adam J; Oh, Han Bin; Blanksby, Stephen J

    2014-03-14

    Radical-directed dissociation of gas phase ions is emerging as a powerful and complementary alternative to traditional tandem mass spectrometric techniques for biomolecular structural analysis. Previous studies have identified that coupling of 2-[(2,2,6,6-tetramethylpiperidin-1-oxyl)methyl]benzoic acid (TEMPO-Bz) to the N-terminus of a peptide introduces a labile oxygen-carbon bond that can be selectively activated upon collisional activation to produce a radical ion. Here we demonstrate that structurally-defined peptide radical ions can also be generated upon UV laser photodissociation of the same TEMPO-Bz derivatives in a linear ion-trap mass spectrometer. When subjected to further mass spectrometric analyses, the radical ions formed by a single laser pulse undergo identical dissociations as those formed by collisional activation of the same precursor ion, and can thus be used to derive molecular structure. Mapping the initial radical formation process as a function of photon energy by photodissociation action spectroscopy reveals that photoproduct formation is selective but occurs only in modest yield across the wavelength range (300-220 nm), with the photoproduct yield maximised between 235 and 225 nm. Based on the analysis of a set of model compounds, structural modifications to the TEMPO-Bz derivative are suggested to optimise radical photoproduct yield. Future development of such probes offers the advantage of increased sensitivity and selectivity for radical-directed dissociation.

  16. Aqueous chemistry of iodine

    SciTech Connect

    Toth, L.M.; Pannell, K.D.; Kirkland, O.L.

    1984-01-01

    The chemistry of iodine has been examined in aqueous solutions of pH 6 to 10 containing 2500 ppM boron as H/sub 3/BO/sub 3/ at temperatures up to 150/sup 0/C using absorption spectrophotometry to identify and monitor the iodine species present. Kinetic rate constants for the disproportionation of the HOI intermediate, 3HOI= IO/sub 3//sup -/ + 2I/sup -/ + 3H/sup +/, have been measured as a function of pH even though no direct spectral evidence for HOI itself has been observed. An HOI partition coefficient >10/sup 4/ has been estimated; results of ionic strength tests are consistent with HOI being present as an uncharged triatomic species in solution. Redox and radiation effects on the aqueous iodine chemistry have also been described. 11 refs., 2 figs., 3 tabs.

  17. Photodissociation of the carbon monoxide dication in the (3)Σ(-) manifold: Quantum control simulation towards the C(2+) + O channel.

    PubMed

    Vranckx, S; Loreau, J; Vaeck, N; Meier, C; Desouter-Lecomte, M

    2015-10-28

    The photodissociation and laser assisted dissociation of the carbon monoxide dication X(3)Π CO(2+) into the (3)Σ(-) states are investigated. Ab initio electronic structure calculations of the adiabatic potential energy curves, radial nonadiabatic couplings, and dipole moments for the X (3)Π state are performed for 13 excited (3)Σ(-) states of CO(2+). The photodissociation cross section, calculated by time-dependent methods, shows that the C(+) + O(+) channels dominate the process in the studied energy range. The carbon monoxide dication CO(2+) is an interesting candidate for control because it can be produced in a single, long lived, v = 0 vibrational state due to the instability of all the other excited vibrational states of the ground (3)Π electronic state. In a spectral range of about 25 eV, perpendicular transition dipoles couple this (3)Π state to a manifold of (3)Σ(-) excited states leading to numerous C(+) + O(+) channels and a single C(2+) + O channel. This unique channel is used as target for control calculations using local control theory. We illustrate the efficiency of this method in order to find a tailored electric field driving the photodissociation in a manifold of strongly interacting electronic states. The selected local pulses are then concatenated in a sequence inspired by the "laser distillation" strategy. Finally, the local pulse is compared with optimal control theory.

  18. Photodissociation of the carbon monoxide dication in the 3Σ- manifold: Quantum control simulation towards the C2+ + O channel

    NASA Astrophysics Data System (ADS)

    Vranckx, S.; Loreau, J.; Vaeck, N.; Meier, C.; Desouter-Lecomte, M.

    2015-10-01

    The photodissociation and laser assisted dissociation of the carbon monoxide dication X3Π CO2+ into the 3Σ- states are investigated. Ab initio electronic structure calculations of the adiabatic potential energy curves, radial nonadiabatic couplings, and dipole moments for the X 3Π state are performed for 13 excited 3Σ- states of CO2+. The photodissociation cross section, calculated by time-dependent methods, shows that the C+ + O+ channels dominate the process in the studied energy range. The carbon monoxide dication CO2+ is an interesting candidate for control because it can be produced in a single, long lived, v = 0 vibrational state due to the instability of all the other excited vibrational states of the ground 3Π electronic state. In a spectral range of about 25 eV, perpendicular transition dipoles couple this 3Π state to a manifold of 3Σ- excited states leading to numerous C+ + O+ channels and a single C2+ + O channel. This unique channel is used as target for control calculations using local control theory. We illustrate the efficiency of this method in order to find a tailored electric field driving the photodissociation in a manifold of strongly interacting electronic states. The selected local pulses are then concatenated in a sequence inspired by the "laser distillation" strategy. Finally, the local pulse is compared with optimal control theory.

  19. Ion Imaging Studies of CH_2I_2 Photodissociation at 248 NM

    NASA Astrophysics Data System (ADS)

    Lehman, Julia H.; Li, Hongwei; Lester, Marsha I.

    2013-06-01

    CH_2I_2 plays an important role in atmospheric chemistry as a significant natural source of organohalide compounds. The photodissociation dynamics of CH_2I_2 in the ultraviolet range of 277-305 nm via the two lowest B_1 excited states has been well studied using one-color velocity map ion imaging (VMI) and photofragment translational spectroscopy. In this two-color experimental study, CH_2I_2 is photodissociated by 248 nm via the B_2 or A_1 excited states to give rise to CH_2I and I (^2P_3_/_2) or I^* (^2P_1_/_2). The iodine atoms are then state selectively ionized using a (2+1) resonance-enhanced multiphoton ionization process near 310 nm and detected by VMI. Preliminary results show about 85% of the available energy is being funneled into the internal energy of the CH_2I fragment, consistent with prior infrared emission results of Baughcum and Leone. The anisotropy parameter derived from the image indicates this is a fast dissociation process and reflects the character of the electronic transition. The internal energy distribution of the CH_2I fragment is of particular interest because of its subsequent reaction with O_2 in a near thermo-neutral reaction to produce the smallest Criegee intermediate, CH_2OO. We anticipate that the internal energy contained in CH_2I will likely be carried into CH_2OO. S. L. Baughcum and S. R. Leone, J. Chem. Phys. 72, 6531 (1980).

  20. Effect of dietary iodine on production of iodine enriched eggs

    PubMed Central

    Sumaiya, Shaikh; Nayak, Sunil; Baghel, R. P. S.; Nayak, Anju; Malapure, C. D.; Kumar, Rajesh

    2016-01-01

    Aim: Objective of this study was to investigate the effect of different levels of iodine supplementation on iodine content of eggs in laying hens. Materials and Methods: In the experiment, 135 laying hens (White Leghorn) of 55 weeks age were randomly distributed to 5 dietary treatments; each group contained 27 laying hens distributed in three replicates of 9 birds each. Diet T1 was control basal layer diet without iodine enrichment in which iodine content (I2) was as per NRC recommendation. Basal diets were supplemented with calcium iodate (Ca (IO3)2) at 5, 10, 15 and 20 mg/kg in T2, T3, T4 and T5 groups, respectively. The iodine content in the calcium iodate is 65.21%, therefore, the diets T2, T3, T4 and T5 contained 3.25, 6.50, 9.75 and 13.0 ppm iodine, respectively. The laying hens were fed the respective experimental diets ad libitum during the experimental period of 10-week. The iodine content of egg yolk and albumen was analyzed at the end of 5th and 10th week of the experiment. Economics of feeding for the production of iodine enriched egg was calculated at the end of the experiment. Results: Increasing iodine levels in diet of hens from 0.45 to 13.0 ppm significantly increased egg iodine concentration, the highest concentration of egg iodine was observed in the group fed diet supplemented with 13.0 ppm iodine followed by those fed 9.75, 6.50, 3.25 and 0.45 ppm iodine in diet. There was no significant difference in the iodine levels of unboiled versus boiled eggs. Therefore, the consumers are ensured to receive the optimal levels of iodine from boiled iodine-enriched eggs. Among different diets, minimum and significantly lower feeding cost (Rs. per dozen or per kg eggs) was noticed in hens allotted T3 diet (6.50 ppm I2). However, feeding cost of hens receiving 3.25 and 9.25 ppm I2 was statistically (p<0.05) similar to control group (T1). Further, it was noticed that feeding cost (Rs. per dozen or per kg eggs) was significantly increased due to the inclusion

  1. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  2. Radionuclide Basics: Iodine

    MedlinePlus

    ... like particles and fall to the ground. from nuclear weapons or reactor accidents can occur in particle form, which can be ingested in food or water. I-131 is often used to treat ... used in nuclear medicine. External exposure to large amounts of iodine ...

  3. Fast beam studies of free radical photodissociation

    SciTech Connect

    Cyr, Douglas Robert

    1993-11-01

    The photodissociation of free radicals is studied in order to characterize the spectroscopy and dissociation dynamics of the dissociative electronic states in these species. To accomplish this, a novel method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with a highly complementary form of photofragment translational spectroscopy. The optical spectroscopy of transitions to dissociative states is determined by monitoring the total photofragment yield as a function of dissociation photon energy. Branching ratios to various product channels, internal energy distributions of the fragments, bond dissociation energies, and the translational energy-dependent photofragment recoil angular distributions are then determined at selected excitation energies. A detailed picture of the dissociation dynamics can then be formulated, allowing insight concerning the interactions of potential energy surfaces involved in the dissociation. After an introduction to the concepts and techniques mentioned above, the experimental apparatus used in these experiments is described in detail. The basis and methods used in the treatment of data, especially in the dissociation dynamics experiments, are then put forward.

  4. The photodissociation dynamics of alkyl radicals

    SciTech Connect

    Giegerich, Jens; Fischer, Ingo

    2015-01-28

    The photodisscociation dynamics of the alkyl radicals i-propyl (CH(CH{sub 3}){sub 2}) and t-butyl (C(CH{sub 3}){sub 3}) are investigated by H-atom photofragment imaging. While i-propyl is excited at 250 nm, the photodynamics of t-butyl are explored over a large energy range using excitation wavelengths between 347 nm and 233 nm. The results are compared to those obtained previously for ethyl, CH{sub 3}CH{sub 2}, and to those reported for t-butyl using 248 nm excitation. The translational energy (E{sub T}) distribution of the H-atom photofragments is bimodal and appears rather similar for all three radicals. The low E{sub T} part of the distribution shows an isotropic photofragment angular distribution, while the high E{sub T} part is associated with a considerable anisotropy. Thus, for t-butyl, two H-atom loss channels of roughly equal importance have been identified in addition to the CH{sub 3}-loss channel reported previously. A mechanism for the photodissociation of alkyl radicals is suggested that is based on interactions between Rydberg- and valence states.

  5. Photodissociation of Small Molecules and Photoionization of Free Radicals Using the VUV Velocity-Map Imaging Photoion and Photoelectron Method

    NASA Astrophysics Data System (ADS)

    Gao, Hong

    The tunable vacuum ultraviolet (VUV) laser generated through the two-photon resonance-enhanced four-wave mixing scheme is combined with the newly developed time-slice velocity map imaging photoion method to study the photodissociation of small molecules in the VUV region, and with the velocity map imaging photoelectron method to study the photoionization of free radicals. The photodissociation dynamics of NO in the energy region around 13.5 eV has been investigated. Branching ratios of the three lowest dissociation channels of 12C 16O that produce C(3P) + O(3P), C( 1D) + O(3P) and C(3P) + O(1D) are measured for the first time in the VUV region from 102,500 cm-1 to 110,500 cm-1, valuable information of the dissociation dynamics for this prototype system has been deduced. We demonstrated an experiment that has two independently tunable VUV lasers and a time-slice velocity map imaging setup, this provides us a global way to perform systematic state-selected photodissociation of small molecules via state-selected detection of the atomic products in the VUV region. The velocity map imaging photoelectron method was successfully used to obtain the photoelectron spectrum of the propargyl radical (C3H3) via a single VUV photoionization process. The propargyl radical is generated by the 193 nm laser photodissociation of the precursor C3H3Cl. This is the first time that the velocity map imaging photoelectron method is used to get the photoelectron spectra of free radicals, indicating that it is a powerful technique for studying the photoionization of free radicals which are always hard to be produced with high enough number densities for spectroscopic studies. This dissertation is mainly based on the following peer-reviewed journal articles: 1. Hong Gao, Yang Pan, Lei Yang, Jingang Zhou, C. Y. Ng and William M. Jackson. "Time-slice velocity-map ion imaging studies of the Photodissociation of NO in the vacuum ultraviolet region", the Journal of Chemical Physics, 136, 134302

  6. Adsorption of iodine from COIL waste gas on soaked coal-based activated carbon

    NASA Astrophysics Data System (ADS)

    Zhou, Junbo; Hao, Shan; Gao, Liping

    2014-04-01

    The chemical oxygen-iodine laser (COIL) has wide application prospects in military, industrial and medical treatment fields as a second generation gas chemical laser to follow the first HF/DF chemical laser. However, a COIL releases large amounts of gas, such as helium, oxygen, chlorine and iodine. Chlorides have a serious corrosive effect on the system, especially iodine vapor crystallization, which seriously endangers the normal use of vacuum systems, and radioactive methyl iodide, which is hazardous to operators and pollutes the environment. The use of soaked coal-based activated carbon as an adsorbent for removing methyl iodine is proposed, while it is proposed that coal-based activated carbon is an effective adsorbent for removing stable iodine. The research conducted in this work shows that iodine residues are less than 0.5 μg ml-1 after the adsorption treatment and the decontamination factor of the coal-based activated carbon for removing stable iodine is more than 1000. Using this method can achieve the purpose of removing harmful iodine, satisfy the requirements for engineering applications, and also be applied to other nuclear power plant flue gas treatments.

  7. Airborne Laser (ABL): Issues for Congress

    DTIC Science & Technology

    2007-07-09

    bulbous turret on the front of the aircraft, but the COIL (Chemical Oxygen Iodine laser) is located in the aft section of the aircraft. System Overview...Chemical Oxygen Iodine Laser). COIL generates its energy through an onboard chemical reaction of oxygen and iodine molecules. Because this laser...The Air Force, and other Services, frequently complain about the onerous and disproportionate O&S (Operations and Support) costs of “high demand, low

  8. An iodine hypersonic wind tunnel for the study of nonequilibrium reacting flows

    NASA Technical Reports Server (NTRS)

    Pham-Van-diep, G. C.; Muntz, E. P.; Weaver, D. P.; Dewitt, T. G.; Bradley, M. K.; Erwin, D. A.; Kunc, J. A.

    1992-01-01

    A pilot scale hypersonic wind tunnel operating on pure iodine vapor has been designed and tested. The wind tunnel operates intermittently with a run phase lasting approximately 20 minutes. Successful recirculation of the iodine used during the run phase has been achieved but can be improved. Relevant issues regarding the full scale facility's design and operation, and the use of iodine as a working gas are discussed. Continuous wave laser induced fluorescence was used to monitor number densities within the plume flowfield, while pulsed laser induced fluorescence was used in an initial attempt to measure vibrational energy state population distributions. Preliminary nozzle flow calculations based on finite rate chemistry are presented.

  9. High-performance iodine fiber frequency standard.

    PubMed

    Lurie, Anna; Baynes, Fred N; Anstie, James D; Light, Philip S; Benabid, Fetah; Stace, Thomas M; Luiten, Andre N

    2011-12-15

    We have constructed a compact and robust optical frequency standard based around iodine vapor loaded into the core of a hollow-core photonic crystal fiber (HC-PCF). A 532 nm laser was frequency locked to one hyperfine component of the R(56) 32-0 (127)I(2) transition using modulation transfer spectroscopy. The stabilized laser demonstrated a frequency stability of 2.3×10(-12) at 1 s, almost an order of magnitude better than previously reported for a laser stabilized to a gas-filled HC-PCF. This limit is set by the shot noise in the detection system. We present a discussion of the current limitations to the performance and a route to improve the performance by more than an order of magnitude.

  10. Rovibrational analysis of the XUV photodissociation of HeH{sup +} ions

    SciTech Connect

    Loreau, J.; Lecointre, J.; Urbain, X.; Vaeck, N.

    2011-11-15

    We investigate the dynamics of the photodissociation of the helium hydride ion HeH{sup +} by XUV radiation with the aim to establish a detailed comparison with a recent experimental work carried out at the FLASH free electron laser using both vibrationally hot and cold ions. We determine the corresponding rovibrational distributions using a dissociative charge transfer setup and the same source conditions as in the FLASH experiment. Using a nonadiabatic time-dependent wave-packet method, we calculate the partial photodissociation cross sections for the n=1-3 coupled electronic states of HeH{sup +}. We find good agreement with the experiment for the cross section into the He + H{sup +} dissociative channel. On the other hand, we show that the experimental observation of the importance of the electronic states with n>3 cannot be well explained theoretically, especially for cold (v=0) ions. We find a good agreement with the experiment on the relative contribution of the {Sigma} and {Pi} states to the cross section for the He{sup +} + H channel, but only a qualitative one for the He + H{sup +} channel. We discuss the factors that could explain the remaining discrepancies between theory and experiment.

  11. Intense-Field Multiple-Detachment of F2¯: Competition with Photodissociation.

    PubMed

    Shahi, Abhishek; Albeck, Yishai; Strasser, Daniel

    2017-04-07

    The competition of intense-field multiple-detachment with efficient photodissociation of F2¯ is studied as a function of laser peak intensity. The main product channels are disentangled and characterized by 3D coincidence fragment imaging. The presented kinetic energy release spectra, angular distributions as well as two color pump-probe measurements allow identification of competing sequential and non-sequential mechanisms. Dissociative detachment, producing two neutral atoms (F + F) is found to be dominated by a sequential mechanism of photodissociation (F¯ + F) followed by detachment of the atomic anion fragment. In contrast, dissociative ionization (F + F(+)) shows competing contributions of both a sequential two-step mechanism as well as a non-sequential double-detachment of the molecular anion, which are distinguished by the kinetic energy released in the dissociation. Triple-detachment is found to be non-sequential in nature and results in Coulomb explosion (F(+)+F(+)). Furthermore, the measured kinetic energy release for dissociation on the (2)Σg(+) state provides a direct measurement of the F2¯ dissociation energy, D0 = 1.26±0.03 eV.

  12. Photodissociation dynamics and spectroscopy of free radical combustion intermediates

    SciTech Connect

    Osborn, David Lewis

    1996-12-01

    The photodissociation spectroscopy and dynamics of free radicals is studied by the technique of fast beam photofragment translational spectroscopy. Photodetachment of internally cold, mass-selected negative ions produces a clean source of radicals, which are subsequently dissociated and detected. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states of the radical. In addition, the photodissociation dynamics, product branching ratios, and bond energies are probed at fixed photon energies by measuring the translational energy, P(ET), and angular distribution of the recoiling fragments using a time- and position-sensitive detector. Ab initio calculations are combined with dynamical and statistical models to interpret the observed data. The photodissociation of three prototypical hydrocarbon combustion intermediates forms the core of this work.

  13. Theoretical studies of photodissociation of small molecules of astrophysical importance

    NASA Technical Reports Server (NTRS)

    Saxon, R. P.

    1983-01-01

    The radicals and ions observed in comets result from photodissociation and photoionization of molecules. According to current models, a comet is composed chiefly of a large, solid nucelus of frozen gases (parent molecules) such as H2O, HCN, and NH3. It is believed comets were formed at the same time and in the same region of space as the major planets and that their chemical composition is the same as that of the early solar system. As the comet nears the Sun, the surface heats up, liberating the frozen gases as well as dust particles. Solar radiation photodissociates the parent molecules into fragments that are observed by resonance fluorescence. Both polyatomic molecules, present in the interstellar medium, and cometary radicals were observed. Using laboratory photo-dissociation data and computer models, astronomers are attempting to identify the parent molecules that account for all observed radicals and ions.

  14. Photoevaporation of Clumps in Photodissociation Regions

    NASA Technical Reports Server (NTRS)

    Gorti, Uma; Hollenbach, David; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    We present the results of an investigation of the effects of Far Ultraviolet (FUV) radiation (6.0eV < hv < 13.6eV) from hot early type OB stars on clumps in star-forming molecular clouds. Clumps in FUV-illuminated regions (or photodissociation regions or PDRs) undergo external heating and photodissociation as they are exposed to the FUV field, resulting in a loss of cold, molecular lump mass as it is converted to warm atomic gas. The heating, if rapid, creates strong photoevaporative mass flows off the clump surfaces, and drives shocks into the clumps, compressing them to high densities. The clumps lose mass on relatively short timescales. The evolution of an individual clump is found to be sensitive to three dimensionless parameters: Nc0, the ratio of the initial column density of the clump to the column N(0) approx. 10(exp 21) cm(exp -2) of a warm FUV-heated surface region; upsilon, the ratio of the sound speed in the heated surface to that in the cold clump material: and t(FUV)t(c), the ratio of the "turn-on time" t(FUV) of the heating flux on a clump to its initial sound crossing-time t(c). The evolution also depends on whether a confining interclump medium exists, or whether the interclump region has negligible pressure, as is the case for turbulence-generated clumps. In this paper, we use spherical 1-D numerical hydrodynamic models as well as approximate analytical models to study the dependence of clump photoevaporation on the physical parameters of the clump, and to derive the dynamical evolution, mass loss rates and photoevaporative timescales of a clump for a variety of astrophysical situations. Turbulent clumps evolve so that their column densities are equal to a critical value determined by the local FUV field, and typically have short photo evaporation timescales, approx. 10(exp 4-5) years for a 1 M(solar mass) clump in a typical star-forming region (Nc0 = 10, upsilon = 10). Clumps with insufficient magnetic pressure support, and in strong FUV fields

  15. C{sub 60} in photodissociation regions

    SciTech Connect

    Castellanos, Pablo; Tielens, Alexander G.G.M.; Berné, Olivier; Sheffer, Yaron; Wolfire, Mark G.

    2014-10-10

    Recent studies have confirmed the presence of buckminsterfullerene (C{sub 60}) in different interstellar and circumstellar environments. However, several aspects regarding C{sub 60} in space are not yet well understood, such as the formation and excitation processes, and the connection between C{sub 60} and other carbonaceous compounds in the interstellar medium, in particular polycyclic aromatic hydrocarbons (PAHs). In this paper, we study several photodissociation regions (PDRs) where C{sub 60} and PAHs are detected and the local physical conditions are reasonably well constrained to provide observational insights into these questions. C{sub 60} is found to emit in PDRs where the dust is cool (T{sub d} = 20-40 K) and even in PDRs with cool stars. These results exclude the possibility for C{sub 60} to be locked in grains at thermal equilibrium in these environments. We observe that PAH and C{sub 60} emission are spatially uncorrelated and that C{sub 60} is present in PDRs where the physical conditions (in terms of radiation field and hydrogen density) allow for full dehydrogenation of PAHs, with the exception of Ced 201. We also find trends indicative of an increase in C{sub 60} abundance within individual PDRs, but these trends are not universal. These results support models where the dehydrogenation of carbonaceous species is the first step toward C{sub 60} formation. However, this is not the only parameter involved and C{sub 60} formation is likely affected by shocks and PDR age.

  16. Ultraviolet photodissociation dynamics of the phenyl radical

    SciTech Connect

    Song Yu; Lucas, Michael; Alcaraz, Maria; Zhang Jingsong; Brazier, Christopher

    2012-01-28

    Ultraviolet (UV) photodissociation dynamics of jet-cooled phenyl radicals (C{sub 6}H{sub 5} and C{sub 6}D{sub 5}) are studied in the photolysis wavelength region of 215-268 nm using high-n Rydberg atom time-of-flight and resonance enhanced multiphoton ionization techniques. The phenyl radicals are produced from 193-nm photolysis of chlorobenzene and bromobenzene precursors. The H-atom photofragment yield spectra have a broad peak centered around 235 nm and are in good agreement with the UV absorption spectra of phenyl. The H + C{sub 6}H{sub 4} product translational energy distributions, P(E{sub T})'s, peak near {approx}7 kcal/mol, and the fraction of average translational energy in the total excess energy, , is in the range of 0.20-0.35 from 215 to 268 nm. The H-atom product angular distribution is isotropic. The dissociation rates are in the range of 10{sup 7}-10{sup 8} s{sup -1} with internal energy from 30 to 46 kcal/mol above the threshold of the lowest energy channel H +o-C{sub 6}H{sub 4} (ortho-benzyne), comparable with the rates from the Rice-Ramsperger-Kassel-Marcus theory. The results from the fully deuterated phenyl radical are identical. The dissociation mechanism is consistent with production of H +o-C{sub 6}H{sub 4}, as the main channel from unimolecular decomposition of the ground electronic state phenyl radical following internal conversion of the electronically excited state.

  17. Iodine addition using triiodide solutions

    NASA Technical Reports Server (NTRS)

    Rutz, Jeffrey A.; Muckle, Susan V.; Sauer, Richard L.

    1992-01-01

    The study develops: a triiodide solution for use in preparing ground service equipment (GSE) water for Shuttle support, an iodine dissolution method that is reliable and requires minimal time and effort to prepare, and an iodine dissolution agent with a minimal concentration of sodium salt. Sodium iodide and hydriodic acid were both found to dissolve iodine to attain the desired GSE iodine concentrations of 7.5 +/- 2.5 mg/L and 25 +/- 5 mg/L. The 1.75:1 and 2:1 sodium iodide solutions produced higher iodine recoveries than the 1.2:1 hydriodic acid solution. A two-hour preparation time is required for the three sodium iodide solutions. The 1.2:1 hydriodic acid solution can be prepared in less than 5 min. Two sodium iodide stock solutions (2.5:1 and 2:1) were found to dissolve iodine without undergoing precipitation.

  18. Ab initio computations of photodissociation products of CFC alternatives

    SciTech Connect

    Tai, S.; Illinger, K.H.; Kenny, J.E.

    1995-12-31

    Ab initio computations, have already been used to examine the energetics of the photodissociation of stratospheric chlorofluorocarbons. Our awn research has investigated the ab initio computation of vibrational frequencies and infrared intensities of CF{sub 3}CH{sub 2}F, CF{sub 3}CF{sub 2}H, and CF{sub 3}CH{sub 3}; continuing research will attempt to expand these computations to the energetics of the photodissociation of these molecules, since sane of the most common types of chlorofluorocarbon substitutes are hydrofluoroethanes.

  19. Photoabsorption and photodissociation of molecules important in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Lee, L. C.

    1986-01-01

    In the period from May 15, 1985 to May 14, 1986, the photoabsorption and photodissociation cross sections of the interstellar radical of SO and the interstellar molecules of HCl, H2CO, and CH3CN were measured and the results were reported in scientific papers. In the meantime, a windowless apparatus is used to measure the photoabsorption and photodissociation cross sections of CO in the 90-105 nm region. The optical data obtained in this research program are needed for the determination of the formation and destruction rates of molecules and radicals in the interstellar medium. Accomplishments in this research period are summarized below.

  20. Photodissociation near a rough metal surface: Effect of reaction fields

    NASA Astrophysics Data System (ADS)

    Das, Purna C.; Puri, Ashok; George, Thomas F.

    1990-12-01

    The modification of the photochemical dissociation rate of molecules in the presence of a rough metal surface is explored. Classical electromagnetic calculations are presented for the photodissociation rate of a point dipole near a rough surface modeled as a hemispheroidal bump on a semi-infinite flat plane. A correction is introduced by accounting for the reaction fields due to the dipole-substrate system radiating photons and coupling to delocalized surface plasmons. The effects of the shape and size of the bump, and the separation of the molecule from the bump on the rate of photodissociation of the molecule, are studied numerically.

  1. The stability of allyl radicals following the photodissociation of allyl iodide at 193 nm.

    SciTech Connect

    Fan, H.; Pratt, S. T.; Chemistry

    2006-01-01

    The photodissociation of allyl iodide (C{sub 3}H{sub 5}I) at 193 nm was investigated by using a combination of vacuum-ultraviolet photoionization of the allyl radical, resonant multiphoton ionization of the iodine atoms, and velocity map imaging. The data provide insight into the primary C-I bond fission process and into the dissociative ionization of the allyl radical to produce C{sub 3}H{sup 3+}. The experimental results are consistent with the earlier results of Szpunar et al. [J. Chem. Phys. 119, 5078 (2003)], in that some allyl radicals with internal energies higher than the secondary dissociation barrier are found to be stable. This stability results from the partitioning of available energy between the rotational and vibrational degrees of freedom of the radical, the effects of a centrifugal barrier along the reaction coordinate, and the effects of the kinetic shift in the secondary dissociation of the allyl radical. The present results suggest that the primary dissociation of allyl iodide to allyl radicals plus I*({sup 2}P{sub 1/2}) is more important than previously suspected.

  2. Iodine neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Ahmed, Kazi Fariduddin

    A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at

  3. Radioactive Iodine (I-131) Therapy for Hyperthyroidism

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z Radioactive Iodine (I-131) Therapy Radioiodine therapy is a nuclear ... thyroid cancer. When a small dose of radioactive iodine I-131 (an isotope of iodine that emits ...

  4. Improving COIL Efficiency By Iodine Pre-Dissociation Via Corona Discharge In The Transonic Section Of The Secondary Flow

    DTIC Science & Technology

    2006-08-01

    chemical laser operating to date. Iodine atoms are pumped by a near resonant energy transfer from oxygen molecules in the excited singlet-delta state, O2...dissociation of molecular iodine to atomic iodine which is subsequently excited via reaction (1). O I2 2(1Δ) is the energy carrier for the COIL...expanding flows, near the critical cross section, for spectroscopy of jet-cooled ions and radicals3. Using this corona excited supersonic expansion ( CESE

  5. Photodissociation Studies of Polyatomic Free Radicals

    DTIC Science & Technology

    1993-08-01

    Box 23346 UPR Station AMOR R ~ Rio Piedras, PR 00931 9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESSIES) 10. SPONSORING/ MONITORING AGENCY REPORT...Latinoamericano de Quimica , Buefios Aires, Argentina, November 1990. "Probing Chemical Reactions with Lasers." (invited) Brad R. Weiner Department of...de Quimica , Buefios Aires, Argentina, November 1990. "Probing Chemical Reactions with Lasers." (invited) Brad R. Weiner Department of Chemistry

  6. The Photodissociation of Nitromethane at 193 nm.

    DTIC Science & Technology

    1983-02-28

    gas fill; the focus and alignment were kept constant. The dissociation products were detected in the plane of the laser and molecular beams by a...This background is presumably due to scattereo light from the intense laser dissociating or desorbing diffusion pump oil from the wall behind the...When dissociated , other nitroalkanes exhibit the same emission spectrum as CH3NO2, suggesting little transfer of energy from the excited NO2 group to

  7. NO sub 3 , the study of molecular properties and photodissociation by ab initio method, spectroscopy, and translational spectroscopy

    SciTech Connect

    Kim, B.

    1990-10-01

    This report discusses the following topics: molecular structure of NO{sub 3} radical studied by laser induced fluorescence; photodissociation and fluorescence spectroscopy of NO{sub 3} in molecular beam; vertical electronic spectrum of NO{sub 3}:{sup 2}A{prime}{sub 2}, {sup 2}E{double prime}({sup 2}A{sub 2}{sup 2}B{sub 1}), and {sup 2}E{prime} states; and Ab initio study of the vibrational spectra of NO{sub 3}.

  8. SITS Derivatization of Peptides to Enhance 266 nm Ultraviolet Photodissociation (UVPD)

    NASA Astrophysics Data System (ADS)

    Quick, M. Montana; Mehaffey, M. Rachel; Johns, Robert W.; Parker, W. Ryan; Brodbelt, Jennifer S.

    2017-03-01

    N-terminal derivatization of peptides with the chromogenic reagent 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (SITS) is demonstrated to enhance the efficiency of 266 nm ultraviolet photodissociation (UVPD). Attachment of the chromophore results in a mass shift of 454 Da and provides significant gains in the number and abundances of diagnostic fragment ions upon UVPD. Activation of SITS-tagged peptides with 266 nm UVPD leads to many fragment ions akin to the a/b/y ions commonly produced by CID, along with other sequence ions (c, x, and z) typically accessed through higher energy pathways. Extreme bias towards C-terminal fragment ions is observed upon activation of SITS-tagged peptides using multiple 266 nm laser pulses. Due to the high reaction efficiency of the isothiocyanate coupling to the N-terminus of peptides, we demonstrate the ability to adapt this strategy to a high-throughput LC-MS/MS workflow with 266 nm UVPD.

  9. Coherent phase control of the product branching ratio in the photodissociation of dimethylsulfide

    SciTech Connect

    Nagai, Hidekazu; Ohmura, Hideki; Ito, Fumiyuki; Nakanaga, Taisuke; Tachiya, Masanori

    2006-01-21

    Coherent phase control of the photodissociation reaction of the dimethylsulfide has been achieved by means of quantum-mechanical interference between one- and three-photon transitions. Dimethylsulfide was irradiated by fundamental and frequency-tripled outputs of a visible laser (600.5-602.5 nm), simultaneously to yield CH{sub 3}S{sup +} and CH{sub 3}SCH{sub 2}{sup +} fragment ions. The branching ratio of the two product channels could be modulated with variation of the phase difference between the light fields. This accounted for the difference between the molecular phases of the two product channels. The phase lag was observed to have a maximum value of 8 deg. at 601.5 nm. This is the first result of a selective bond breaking in a polyatomic molecule by the coherent phase control.

  10. Photodissociation spectroscopy of the Mg + -CO2 complex and its isotopic analogs

    NASA Astrophysics Data System (ADS)

    Yeh, C. S.; Willey, K. F.; Robbins, D. L.; Pilgrim, J. S.; Duncan, M. A.

    1993-02-01

    Mg+-CO2 ion-molecule cluster complexes are produced by laser vaporization in a pulsed nozzle cluster source. The vibronic spectroscopy in these complexes is studied with mass-selected photodissociation spectroscopy in a reflectron time-of-flight mass spectrometer. Two excited electronic states are observed (2) 2Σ+ and 2Π. The 2Π state has a vibrational progression in the metal-CO2 stretching mode (ωe'=381.8 cm-1). The complexes are linear (Mg+-OCO) and are bound by the charge-quadrupole interaction. The dissociation energy (D0`) is 14.7 kcal/mol. Corresponding spectra are measured for each of the 24, 25, and 26 isotopes of magnesium. These results are compared to theoretical predictions made by Bauschlicher and co-workers.

  11. Iodine-Catalyzed Polysaccharide Esterification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review is provided of the recent reports to use iodine-catalyzed esterification reaction to produce esters from polysaccharides. The process entails reaction of the polysaccharide with an acid anhydride in the presence of a catalytic level of iodine, and in the absence of additional solvents. T...

  12. Hypothyroidism following iodine-131 therapy

    SciTech Connect

    Hays, M.T.

    1982-02-01

    A teaching editorial dealing with the hypothyroidism side effect of Iodine-131 radiotherapy is presented. The author reviews two articles in this issue of the Journal of Nuclear Medicine on the subject, discusses Graves' disease, Iodine 125 radiotherapy, and the patient-physician relationship when dealing with the problem. (JMT)

  13. Iodine-123 generator/iodination kit: a preliminary report

    SciTech Connect

    Richards, P; Prach, T; Srivastava, S C; Meinken, G E

    1980-01-01

    Preliminary results are described of a xenon-123 filled device to serve as a combination iodine-123 generator/iodination kit. Xenon-123 is produced in the Brookhaven Linac Isotope Producer (BLIP) by the reaction /sup 127/I(p, 5n)/sup 123/Xe. The device consists of a small glass ampoule containing an internal glass breakseal and a flanged neck on which is crimped a multi-injection type septum. The ampoule contains a hydrogen sulfide atmosphere to assure that the iodine generated from the decay of the xenon is in the form of iodide. Following an adequate period for xenon-123 to decay (this period can be used for shipment), a needle is forced through the septum breaking the seal and residual gases are pumped off. The iodine-123 in the form of iodide can then be rinsed from the ampoule with any desired solvent or reagent added directly to the device to carry out an iodination in an enclosed environment. Preliminary results of both iodine recovery and iodinations have been promising.

  14. Photodissociation of HBr. 1. Electronic structure, photodissociation dynamics, and vector correlation coefficients.

    PubMed

    Smolin, Andrey G; Vasyutinskii, Oleg S; Balint-Kurti, Gabriel G; Brown, Alex

    2006-04-27

    Ab initio potential energy curves, transition dipole moments, and spin-orbit coupling matrix elements are computed for HBr. These are then used, within the framework of time-dependent quantum-mechanical wave-packet calculations, to study the photodissociation dynamics of the molecule. Total and partial integral cross sections, the branching fraction for the formation of excited-state bromine atoms Br(2P(1/2)), and the lowest order anisotropy parameters, beta, for both ground and excited-state bromine are calculated as a function of photolysis energy and compared to experimental and theoretical data determined previously. Higher order anisotropy parameters are computed for the first time for HBr and compared to recent experimental measurements. A new expression for the Re[a1(3) (parallel, perpendicular)] parameter describing coherent parallel and perpendicular production of ground-state bromine in terms of the dynamical functions is given. Although good agreement is obtained between the theoretical predictions and the experimental measurements, the discrepancies are analyzed to establish how improvements might be achieved. Insight is obtained into the nonadiabatic dynamics by comparing the results of diabatic and fully adiabatic calculations.

  15. Iodine Tagging Velocimetry in a Mach 10 Wake

    NASA Technical Reports Server (NTRS)

    Balla, Robert Jeffrey

    2013-01-01

    A variation on molecular tagging velocimetry (MTV) [1] designated iodine tagging velocimetry (ITV) is demonstrated. Molecular iodine is tagged by two-photon absorption using an Argon Fluoride (ArF) excimer laser. A single camera measures fluid displacement using atomic iodine emission at 206 nm. Two examples ofMTVfor cold-flowmeasurements areN2OMTV [2] and Femtosecond Laser Electronic Excitation Tagging [3]. These, like most MTV methods, are designed for atmospheric pressure applications. Neither can be implemented at the low pressures (0.1- 1 Torr) in typical hypersonic wakes. Of all the single-laser/singlecamera MTV approaches, only Nitric-Oxide Planar Laser Induced Fluorescence-based MTV [4] has been successfully demonstrated in a Mach 10 wake. Oxygen quenching limits transit times to 500 ns and accuracy to typically 30%. The present note describes the photophysics of the ITV method. Off-body velocimetry along a line is demonstrated in the aerothermodynamically important and experimentally challenging region of a hypersonic low-pressure near-wake in a Mach 10 air wind tunnel. Transit times up to 10 µs are demonstrated with conservative errors of 10%.

  16. Capture of Aerosols by Iodinated Fiber Media

    DTIC Science & Technology

    2007-11-02

    iodine. While iodine is an excellent antimicrobial agent, overexposure to iodine can cause adverse health effects . The National Research Council...recommends that exposure to iodine not exceed 150 micrograms per day (Rtg/day) (ASTDR, 2003). The major health effect of concern with excess iodine exposure by...of biological weaponry, methods for effective capture and neutralization of airborne microorganisms are of great interest. A new technology has been

  17. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions.

    PubMed

    Roithová, Jana; Gray, Andrew; Andris, Erik; Jašík, Juraj; Gerlich, Dieter

    2016-02-16

    The interrogation of reaction intermediates is key for understanding chemical reactions; however their direct observation and study remains a considerable challenge. Mass spectrometry is one of the most sensitive analytical techniques, and its use to study reaction mixtures is now an established practice. However, the information that can be obtained is limited to elemental analysis and possibly to fragmentation behavior, which is often challenging to analyze. In order to extend the available experimental information, different types of spectroscopy in the infrared and visible region have been combined with mass spectrometry. Spectroscopy of mass selected ions usually utilizes the powerful sensitivity of mass spectrometers, and the absorption of photons is not detected as such but rather translated to mass changes. One approach to accomplish such spectroscopy involves loosely binding a tag to an ion that will be removed by absorption of one photon. We have constructed an ion trapping instrument capable of reaching temperatures that are sufficiently low to enable tagging by helium atoms in situ, thus permitting infrared photodissociation spectroscopy (IRPD) to be carried out. While tagging by larger rare gas atoms, such as neon or argon is also possible, these may cause significant structural changes to small and reactive species, making the use of helium highly beneficial. We discuss the "innocence" of helium as a tag in ion spectroscopy using several case studies. It is shown that helium tagging is effectively innocent when used with benzene dications, not interfering with their structure or IRPD spectrum. We have also provided a case study where we can see that despite its minimal size there are systems where He has a huge effect. A strong influence of the He tagging was shown in the IRPD spectra of HCCl(2+) where large spectral shifts were observed. While the presented systems are rather small, they involve the formation of mixtures of isomers. We have therefore

  18. Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure.

    PubMed

    Hrabina, Jan; Šarbort, Martin; Acef, Ouali; Burck, Frédéric Du; Chiodo, Nicola; Holá, Miroslava; Číp, Ondřej; Lazar, Josef

    2014-11-01

    We present the results of measurement and evaluation of spectral properties of iodine absorption cells filled at certain saturation pressure. A set of cells made of borosilicate glass instead of common fused silica was tested for their spectral properties in greater detail with special care for the long-term development of the absorption media purity. The results were compared with standard fused silica cells and the high quality of iodine was verified. A measurement method based on an approach relying on measurement of linewidth of the hyperfine transitions is proposed as a novel technique for iodine cell absorption media purity evaluation. A potential application in laser metrology of length is also discussed.

  19. A velocity-map imaging study of methyl non-resonant multiphoton ionization from the photodissociation of CH3I in the A-band.

    PubMed

    Poullain, Sonia Marggi; Chicharro, David V; Rubio-Lago, Luis; García-Vela, Alberto; Bañares, Luis

    2017-04-28

    Chemical reaction dynamics and, particularly, photodissociation in the gas phase are generally studied using pump-probe schemes where a first laser pulse induces the process under study and a second one detects the produced fragments. Providing an efficient detection of ro-vibrationally state-selected photofragments, the resonance enhanced multiphoton ionization (REMPI) technique is, without question, the most popular approach used for the probe step, while non-resonant multiphoton ionization (NRMPI) detection of the products is scarce. The main goal of this work is to test the sensitivity of the NRMPI technique to fragment vibrational distributions arising from molecular photodissociation processes. We revisit the well-known process of methyl iodide photodissociation in the A-band at around 280 nm, using the velocity-map imaging technique in conjunction with NRMPI of the methyl fragment. The detection wavelength, carefully selected to avoid any REMPI transition, was scanned between 325 and 335 nm seeking correlations between the different observables-the product vibrational, translational and angular distributions-and the excitation wavelength of the probe laser pulse. The experimental results have been discussed on the base of quantum dynamics calculations of photofragment vibrational populations carried out on available ab initio potential-energy surfaces using a four-dimensional model.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

  20. Photodissociable dimer reduction products of 2-thiopyrimidine derivatives.

    PubMed

    Wrona, M; Giziewicz, J; Shugar, D

    1975-12-01

    Both 4,6-dimethyl-2-thipyrimidine and its 1-methyl derivative undergo polarographic reduction in aqueous medium, via a 1e/1H+ reduction to a free radical which rapidly dimerizes to products isolates and identified as 4,4'-bis-(4,6-dimethyl-3,4-dihydropyrimidin-2-thione) and the corresponding 1-methyl dimer. The dimers may be oxidized electrolytically to regenerate the parent monomers. Both dimers also undergo photodissociation to quantitatively regenerate the parent monomers, in high quantum yield, 0.23 and 0.35 M/Einstein. The correlation between electrochemical and photochemical reductions of 2-thiopyrimidines are discussed, as well as the significance of the dimer photodissociation reactions in relation to nucleic acid photochemistry.

  1. Photodissociation of CO2 and quenching of metastables

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.

    1978-01-01

    Investigations in four different areas were carried out to further our understanding of the chemistry of the atmospheres of Mars and Venus. CO2 photodissociation quantum yields were determined in the 1300-1500 A spectral region by measuring both CO and oxygen atoms. The O(1S) quantum yield was determined for CO2 photodissociation in the 1060-1175 A spectral region. The measurement resolves the differences between two earlier experiments, and demonstrates that the O(1S) yield is unity throughout most of the measured region. The pathways for the quenching of O(1S) by N2O, CO2, H2O and NO were investigated and the source of the Venus nightglow, detected by Venera 9 and 10, was investigated. What appears to be a new O2 band system, was detected although the identity of the transition is not yet evident.

  2. Photodissociation spectroscopy and dynamics of free radicals, clusters, and ions

    SciTech Connect

    Choi, Hyeon

    1999-12-01

    The photodissociation spectroscopy and dynamics of free radicals and ions is studied to characterize the dissociative electronic states in these species. To accomplish this, a special method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with the technique of fast beam photofragment translational spectroscopy. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states. Branching ratios to various product channels, the translational energy distributions of the fragments, and bond dissociation energies are then determined at selected photon energies. The detailed picture of photodissociation dynamics is provided with the aid of ab initio calculations and a statistical model to interpret the observed data. Important reaction intermediates in combustion reactions have been studied: CCO, C2H5O, and linear Cn (n = 4--6).

  3. Imide photodissociation investigated by X-ray absorption spectroscopy.

    PubMed

    Johnson, Phillip S; Cook, Peter L; Liu, Xiaosong; Yang, Wanli; Bai, Yiqun; Abbott, Nicholas L; Himpsel, F J

    2012-06-21

    X-ray absorption spectroscopy is used to investigate the photodissociation of the imides PMDI (pyromellitic diimide) and SSMCC (sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate). PMDI contains only one type of imide, and its photodissociation can be explained by a simple conversion from imide to a mix of imine and nitrile after desorption of the oxygens from the imide. SSMCC contains two different imides. One reacts like PMDI, the other in a more complex multistep process. Eventually, N(2) is formed in the bulk of the sample at high radiation density. The sequence of reactions is inferred from the π* peaks in total electron yield and fluorescence yield absorption spectra at the N 1s and O 1s edges. First-order rate equations are used to model the evolution of the peak areas versus radiation dose.

  4. Anatomy of the Photodissociation Region in the Orion Bar

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Meixner, M. M.; vanderWerf, P. P.; Bregman, J.; Tauber, J. A.; Stutzki, J.; Rank, D.

    1993-01-01

    Much of the interstellar gas resides in photodissociation regions whose chemistry and energy balance is controlled by the flux of far-ultraviolet radiation upon them. These photons can ionize and dissociate molecules and heat the gas through the photoelectric effect working on dust grains. These regions have been extensively modeled theoretically, but detailed observational studies are few. Mapping of the prominent Orion Bar photo-dissociation region at wavelengths corresponding to the carbon-hydrogen stretching mode of polycyclic aromatic hydrocarbons, the 1-0 S(l) line of molecular hydrogen, and the J = 1-0 rotational line of carbon monoxide allows the penetration of the far-ultraviolet radiation into the cloud to be traced. The results strongly support the theoretical models and show conclusively that the incident far-ultraviolet radiation field, not shocks as has sometimes been proposed, is responsible for the emission in the Orion Bar.

  5. Photodissociation yield spectroscopy of vinyl bromide cation generated by mass-analyzed threshold ionization: Vibrational spectroscopy and decay dynamics in the B ˜ state

    NASA Astrophysics Data System (ADS)

    Lee, Mina; Kim, Myung Soo

    2007-04-01

    A new technique [mass-analyzed threshold ionization (MATI)-photodissociation yield spectroscopy] to probe bound excited states of a cation was developed, which measures photodissociation yield of the cation generated by mass-analyzed threshold ionization. A vibrational spectrum of vinyl bromide cation in the B ˜ state was obtained using this technique. Optical resolution in the low vibrational energy range of the spectrum was far better than in conventional MATI spectra. The origin of the B ˜ state was found at 2.2578±0.0003eV above the first ionization onset. Almost complete vibrational assignment was possible for peaks appearing in the spectrum. Analysis of time-of-flight profiles of C2H3+ product ion obtained with different laser polarization angles suggested that photoexcited vinyl bromide cation remained in the B ˜ state for several hundred picoseconds prior to internal conversion to the ground state and dissociation therein.

  6. Photodissociation of Cl2O2 in the spring Antarctic lower stratosphere

    NASA Technical Reports Server (NTRS)

    Eberstein, Igor J.

    1990-01-01

    The likely photodissociation pathways of chlorine peroxide are examined. Reasoning by analogy between hydrogen peroxide and chlorine peroxide, it is shown that photodissociation of chlorine peroxide at wavelengths longer than 250 nm is not likely to give chlorine atoms as a primary product. Reasoning by analogy with molecules whose visible spectra are known, it is concluded that chlorine peroxide is also likely to photodissociate in the visible to give ClO radicals as primary products.

  7. Photodissociation of carbon dioxide in the Mars upper atmosphere

    NASA Technical Reports Server (NTRS)

    Barth, C. A.

    1974-01-01

    Calculation of the intensity of two of the emissions produced during the dissociative excitation of carbon dioxide in the upper atmosphere of Mars by solar ultraviolet radiation. The calculation tangential column emission rates of the atomic oxygen 2972-A line and the carbon monoxide Cameron bands produced by the photodissociative mechanism are found to be factors of 3 and 10, respectively, smaller than the emission rates observed by Mariner ultraviolet spectrometers.

  8. Immobilization of iodine in concrete

    DOEpatents

    Clark, Walter E.; Thompson, Clarence T.

    1977-04-12

    A method for immobilizing fission product radioactive iodine recovered from irradiated nuclear fuel comprises combining material comprising water, Portland cement and about 3-20 wt. % iodine as Ba(IO.sub.3).sub.2 to provide a fluid mixture and allowing the fluid mixture to harden, said Ba(IO.sub.3).sub.2 comprising said radioactive iodine. An article for solid waste disposal comprises concrete prepared by this method. BACKGROUND OF THE INVENTION This invention was made in the course of, or under a contract with the Energy Research and Development Administration. It relates in general to reactor waste solidification and more specifically to the immobilization of fission product radioactive iodine recovered from irradiated nuclear fuel for underground storage.

  9. Facilities for radio-iodination.

    PubMed

    Ramsey, N W; Bhattacharyya, A K; Dunn, M J

    1980-02-01

    A fume cabinet with a sloping front, fitted with a chemical absorbing filter and extractor fan, but without exhaust ducting, appears to possess considerable advantages for radio-iodination work compared with standard fume cupboards.

  10. Thyroidectomy: is Lugol's iodine necessary?

    PubMed

    Coyle, P J; Mitchell, J E

    1982-09-01

    In a randomised controlled clinical trial of Lugol's iodine against placebo in 44 patients undergoing thyroidectomy we have failed to show any benefit in terms of reduced bleeding or operative facility after using iodide solution.

  11. Photodissociation of semiconductor positive cluster ions

    SciTech Connect

    Zhang, Q.; Liu, Y.; Curl, R.F.; Tittel, F.K.; Smalley, R.E.

    1988-02-01

    Laser photofragmentation of Si, Ge, and GaAs positive cluster ions prepared by laser vaporization and supersonic beam expansion has been investigated using tandem time-of-flight mass spectrometry. Si clusters up to size 80, Ge clusters to size 40, and GaAs clusters up to a total of 31 atoms were studied. Si/sup +//sub n/ and Ge/sup +//sub n/ for n = 12--26 give daughter ions of about half their original size. For both Si and Ge, this apparent positive ion fissioning appears to go over with increasing n to neutral loss of seven and ten, but for Si/sup +//sub n/ the range of n values where this is observed is rather small. At low fluences, the larger Ge/sup +//sub n/ clusters up to the maximum size observed (50) sequentially lose Ge/sub 10/ (and in some cases with lower intensity Ge/sub 7/). Larger Si/sup +//sub n/ clusters (n>30) always fragment primarily to produce positive ion clusters in the 6--11 size range with a subsidiary channel of loss of a single Si atom. At high laser fluences, Ge/sup +//sub n/ also fragments to produce primarily positive ion clusters in the 6--11 size range with an intensity pattern essentially identical to Si/sup +//sub n/ at similar fluences. Ga/sub x/As/sup +//sub y/ clusters lose one or more atoms in what is probably a sequential process with positive ion clusters in which the total number of atoms, x+y, is odd being more prominent.

  12. Investigations of Ferric Heme Cyanide Photodissociation in Myoglobin and Horseradish Peroxidase

    PubMed Central

    Zeng, Weiqiao; Sun, Yuhan; Benabbas, Abdelkrim; Champion, Paul M.

    2013-01-01

    The photodissociation of cyanide from ferric myoglobin (MbCN) and horseradish peroxidase (HRPCN) has been definitively observed. This has implications for the interpretation of ultrafast IR (Helbing et al. Biophys. J. 2004, 87, 1881–1891) and optical (Gruia et al. Biophys. J. 2008, 94, 2252–2268) studies that had previously suggested the Fe-CN bond was photostable in MbCN. The photolysis of ferric MbCN takes place with a quantum yield of ~75% and the resonance Raman spectrum of the photoproduct observed in steady-state experiments as a function of laser power and sample spinning rate is identical to that of ferric Mb (metMb). The data are quantitatively analyzed using a simple model where cyanide is photodissociated and, although geminate rebinding with a rate kBA ≈ (3.6 ps)−1 is the dominant process, some CN− exits from the distal heme pocket and is replaced by water. Using independently determined values for the CN− association rate, we find that the CN− escape rate from the ferric myoglobin pocket to the solution at 293 K is kout ≈ 1–2 × 107 s−1. This value is very similar to, but slightly larger than, the histidine gated escape rate of CO from Mb (1.1×107 s−1) under the same conditions. The analysis leads to an escape probability kout/(kout+kBA) ~ 10−4, which is unobservable in most time domain kinetic measurements. However, the photolysis is surprisingly easy to detect in Mb using cw resonance Raman measurements. This is due to the anomalously slow CN− bimolecular association rate (170 M−1s−1), which arises from the need for water to exchange at the ferric heme binding site of Mb. In contrast, ferric HRP does not have a heme bound water molecule and its CN− bimolecular association rate is larger by ~103 making the CN− photolysis more difficult to observe. PMID:23472676

  13. Lithium-iodine pacemaker cell

    SciTech Connect

    Schneider, A.A.; Snyder, S.E.; DeVan, T.; Harney, M.J.; Harney, D.E.

    1980-01-01

    The lithium-iodine pacemaker cell is described as supplied by several manufacturers. The features of each design are discussed along with their effect on energy density, self-discharge and shape of the discharge curve. Differences in performance characteristics are related to morphology of the lithium iodine electrolyte and to the form of the cathode. A new, high-drain cell is mentioned which can supply 60 /mu/a/cm/sup 2/. 10 refs.

  14. ROVIBRATIONALLY RESOLVED PHOTODISSOCIATION OF HeH{sup +}

    SciTech Connect

    Miyake, S.; Gay, C. D.; Stancil, P. C. E-mail: stancil@physast.uga.edu

    2011-07-01

    Accurate photodissociation cross sections have been obtained for the A{sup 1}{Sigma}{sup +} <- X{sup 1}{Sigma}{sup +} electronic transition of HeH{sup +} using ab initio potential curves and dipole transition moments. Partial cross sections have been evaluated for all rotational transitions from the vibrational levels v'' = 0-11 and over the entire accessible wavelength range {lambda}{lambda}100-1129. Assuming a Boltzmann distribution of the rovibrational levels of the X{sup 1}{Sigma}{sup +} state, photodissociation cross sections are presented for temperatures between 500 and 12,000 K. A similar set of calculations was performed for the pure rovibrational photodissociation in the X{sup 1}{Sigma}{sup +} electronic ground state, but covering photon wavelengths into the far-infrared. Applications of the cross sections to the destruction of HeH{sup +} in the early universe and in UV-irradiated environments such as primordial halos and protoplanetary disks are briefly discussed.

  15. Photodissociation of ultracold diatomic strontium molecules with quantum state control

    NASA Astrophysics Data System (ADS)

    McDonald, M.; McGuyer, B. H.; Apfelbeck, F.; Lee, C.-H.; Majewska, I.; Moszynski, R.; Zelevinsky, T.

    2016-07-01

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold 88Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.

  16. Photodissociation of ultracold diatomic strontium molecules with quantum state control.

    PubMed

    McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T

    2016-07-07

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.

  17. Excited state property of hardly photodissociable heme-CO adduct studied by time-dependent density functional theory.

    PubMed

    Ohta, Takehiro; Pal, Biswajit; Kitagawa, Teizo

    2005-11-10

    While most of CO-bound hemes are easily photodissociated with a quantum yield of nearly unity, we occasionally encounter a CO-heme which appears hardly photodissociable under the ordinary measurement conditions of resonance Raman spectra using CW laser excitation and a spinning cell. This study aims to understand such hemes theoretically, that is, the excited-state properties of the five-coordinate heme-CO adduct (5cH) as well as the 6c heme-CO adduct (6cH) with a weak axial ligand. Using a hybrid density functional theory, we scrutinized the properties of the ground and excited spin states of the computational models of a 5cH and a water-ligated 6cH (6cH-H(2)O) and compared these properties with those of a photodissociable imidazole-ligated 6cH (6cH-Im). Jahn-Teller softening for the Fe-C-O bending potential in the a(1)-e excited state was suggested. The excited-state properties of 6cH-Im and 5cH were further studied with time-dependent DFT theory. The reaction products of 6cH-Im and 5cH were assumed to be quintet and triplet states, respectively. According to the time-dependent DFT calculations, the Q excited state of 6cH-Im, which is initially a pure pi-pi state, crosses the Fe-CO dissociative state (2A') without large elongation of the Fe-CO bond. In contrast, the Q state of the 5cH does not cross the Fe-CO dissociative state but results in the formation of the excited spin state with a bent Fe-C-O. Consequently, photoisomerization from linear to bent Fe-C-O in the 5cH is a likely mechanism for apparent nonphotodissociation.

  18. Micro Chemical Oxygen-Iodine Laser (COIL)

    DTIC Science & Technology

    2007-10-01

    required to form a good o-ring seal. Steam generator design A pumping system based on steam ejectors was designed during the course of the previous HEL-JTO...options for the steam generator design . The first is to catalyze the decomposition of hydrogen peroxide through the use of a standard solid

  19. Iodoperfluorohexane as a Lasant for Iodine Lasers

    DTIC Science & Technology

    1990-07-01

    0 Justification D iStrb ut on I Dr. Iagher M. Tabibi Availability Codes Avail aridlor Dist Special Dr. Demetrius D. Venable STAtMNT "A" per Major J...Whisker Total Army Personnel ConWmand/TAPC-PB-D 200 Stovall Alexandria, VA 22332-0411 TELECON 9/6/90 VG ir. .Lee Dr. Demetrius D. Venable Dean of the...like to express my appreciation to Dr. Bagher M. Tabibi and to Dr. Demetrius D. Venable for the patience and support provided during this graduate

  20. Photodissociation dynamics of ethyl ethynyl ether: A new ketenyl radical precursor

    NASA Astrophysics Data System (ADS)

    Krisch, M. J.; Miller, J. L.; Butler, L. J.; Su, H.; Bersohn, R.; Shu, J.

    2003-07-01

    The work presented here investigates the dynamics of the photodissociation of ethyl ethynyl ether at 193.3 nm with photofragment translational spectroscopy and laser-induced fluorescence. The data from two crossed laser-molecular beam apparatuses, one with vacuum ultraviolet photoionization detection and one with electron bombardment detection, showed that only cleavage of the C-O bond to form a C2HO radical and a C2H5 (ethyl) radical occurs. We observed neither cleavage of the other C-O bond nor molecular elimination to form C2H4+CH2CO (ketene). The C2HO radical is formed in two distinct product channels, with 37% of the radicals formed from a channel with recoil kinetic energies extending from about 10 to 70 kcal/mole and the other 63% formed from a channel with lower average recoil energies ranging from 0 to 40 kcal/mole. The measurements using photoionization detection reveal that the C2HO radical formed in the higher recoil kinetic-energy channel has a larger ionization cross section for photon energies between 10.3 and 11.3 eV than the radical formed in the lower recoil kinetic-energy channel, and that the transition to the ion is more vertical. The radicals formed in the higher recoil kinetic-energy channel could be either X˜(2A″) or Ã(2A') state ketenyl (HCCO) product and the shape of the recoil kinetic-energy distribution fitting this data does not vary with ionization energy between 10.3 and 11.3 eV. The C2HO formed in the channel with the lower kinetic-energy release is likely the spin forbidden ã(4A″) state of the ketenyl radical, reached through intersystem crossing. The B˜ state of ketenyl is energetically inaccessible. We also consider the possibility that the lower kinetic-energy channel forms two other C2HO isomers, the CCOH (hydroxyethynyl) radical or the cyclic oxiryl radical. Signal from laser-induced fluorescence of the HCCO photofragment was detected at the electronic origin and the 510 band. The fluorescence signal peaks after a 20

  1. Development of an online method for quantification of maritime molecular iodine and other gaseous iodine containing inorganic compounds

    NASA Astrophysics Data System (ADS)

    Götz, Sven; Hoffmann, Thorsten

    2014-05-01

    The atmospheric chemistry of iodine is important in multiple ways. The focus lies on the ability to influence the oxidizing capacity of the atmosphere, i.e. by destruction of ozone, and the formation of iodine oxide particles (IOP), i.e. the influence on condensation nuclei (CCN). Using a variation of techniques, like differential optical absorption spectroscopy (DOAS), laser-induced fluorescence (LIF), inductively coupled plasma mass spectrometry (ICP-MS) and atmospheric pressure chemical ionization with tandem mass spectrometry (APCI-MS/MS), the reactive iodine species of atomic iodine (I), molecular iodine (I2), iodine monoxide (IO) and iodine dioxide (OIO) have all been detected in the atmosphere from Antarctica to the equatorial marine boundary layer (MBL). In the past few years there have been active research on IO, especially after revealing significant levels in open ocean measurements, OIO and higher iodine oxides. In addition to atmospheric measurements, significant developments in laboratory kinetics, photochemistry and heterogeneous chemistry of iodine species have been accomplished. [1] Here we introduce an online-method for detecting gaseous molecular iodine and other gaseous iodine-containing inorganic compounds such as HOI, which is a further development of the technique used by Carpenter et al. [2]. The method is based on selective photolytic dissociation of the analytes, followed by oxidization and particle formation of the iodine compounds. The particles are than size-segregated and detected by a scanning mobility particle sizer (SMPS) system. Initial IOP forming is performed in a reaction chamber providing specific wavelengths according to corresponding bond dissociation thresholds. Atmospheric samples can also be pre concentrated by diffusion denuder (with α Cyclodextrin modified and immobilised silica coating) [3-5] and afterwards released by thermodesorption. First attempts of quantification are carried out by external calibration using an

  2. High-Performance Water-Iodinating Cartridge

    NASA Technical Reports Server (NTRS)

    Sauer, Richard; Gibbons, Randall E.; Flanagan, David T.

    1993-01-01

    High-performance cartridge contains bed of crystalline iodine iodinates water to near saturation in single pass. Cartridge includes stainless-steel housing equipped with inlet and outlet for water. Bed of iodine crystals divided into layers by polytetrafluoroethylene baffles. Holes made in baffles and positioned to maximize length of flow path through layers of iodine crystals. Resulting concentration of iodine biocidal; suppresses growth of microbes in stored water or disinfects contaminated equipment. Cartridge resists corrosion and can be stored wet. Reused several times before necessary to refill with fresh iodine crystals.

  3. PRODUCTION OF RADIOACTIVE IODINE.

    SciTech Connect

    SCHLYER,D.J.

    2001-08-08

    Probably the most widely used cyclotron produced radiohalogen is I-123. It has gradually replaced I-131 as the isotope of choice for diagnostic radiopharmaceuticals containing radioiodine. It gives a much lower radiation dose to the patient and the gamma ray energy of 159 keV is ideally suited for use in a gamma camera. The gamma ray will penetrate tissue very effectively without excessive radiation dose. For this reason, it has in many instances replaced the reactor produced iodine-131 (Lambrecht and Wolf 1973). A great number of radiopharmaceuticals have been labeled using I-123 and the number is increasing. One of the most promising uses of I-123 is in the imaging of monoclonal antibodies to localize and visualize tumors. However, preclinical and clinical experiences with radiolabeled antibodies have not realized the expectations regarding specificity and sensitivity of tumor localization with these agents. It appears that much of the administered activity is not associated with the tumor site and only a small fraction actually accumulates there. Work continues in this area and tumor-associated antigens can be targets for specific antibody reagents.

  4. The Absorption Spectrum of Iodine Vapour

    ERIC Educational Resources Information Center

    Tetlow, K. S.

    1972-01-01

    A laboratory experiment is described which presents some molecular parameters of iodine molecule by studying iodine spectrum. Points out this experiment can be conducted by sixth form students in high school laboratories. (PS)

  5. Iodine deficiency in vegetarians and vegans.

    PubMed

    Krajcovicová-Kudlácková, M; Bucková, K; Klimes, I; Seboková, E

    2003-01-01

    Iodine content in food of plant origin is lower in comparison with that of animal origin due to a low iodine concentration in soil. Urinary iodine excretion was assessed in 15 vegans, 31 lacto- and lacto-ovovegetarians and 35 adults on a mixed diet. Iodine excretion was significantly lower in alternative nutrition groups - 172 microg/l in vegetarians and 78 microg/l in vegans compared to 216 microg/l in subjects on a mixed diet. One fourth of the vegetarians and 80% of the vegans suffer from iodine deficiency (iodine excretion value below 100 microg/l) compared to 9% in the persons on a mixed nutrition. The results show that under conditions of alternative nutrition, there is a higher prevalence of iodine deficiency, which might be a consequence of exclusive or prevailing consumption of food of plant origin, no intake of fish and other sea products, as well as reduced iodine intake in the form of sea salt.

  6. Radioactive Iodine (I-131) Therapy for Hyperthyroidism

    MedlinePlus

    ... of your treatment team. top of page What equipment is used? There is no equipment used during ... iodine therapy. top of page Who operates the equipment? There is no equipment used during radioactive iodine ...

  7. Photodissociation dynamics of C{sub 3}H{sub 5}I in the near-ultraviolet region

    SciTech Connect

    Sumida, Masataka; Hanada, Takuya; Yamasaki, Katsuyoshi; Kohguchi, Hiroshi

    2014-09-14

    The ultraviolet photodissociation dynamics of allyl iodide (C{sub 3}H{sub 5}I) have been studied by ion-imaging at 266 nm and 213 nm. These photolysis wavelengths are located in the two lowest absorption bands in the near-ultraviolet region. The atomic iodine products were detected by [2+1] resonantly enhanced multiphoton ionization spectroscopy. The spectra showed that the branching fraction for the spin-orbit excited ({sup 2}P{sub 1/2}) state was larger than that for the ground ({sup 2}P{sub 3/2}) state at both photolysis wavelengths. The state-resolved scattering images of iodine showed two maxima in the velocity distributions in the {sup 2}P{sub 3/2} state and a single peak in the {sup 2}P{sub 1/2} state. The spin-orbit specificity indicates that the C−I bond cleavage at both absorption bands is governed by the dissociative n{sub I}σ{sup *}{sub C−I} potential energy surfaces. The nascent internal energy distribution of the allyl radical (C{sub 3}H{sub 5}) counter product, which was obtained by the analysis of the state-resolved scattering distributions, showed a marked difference between the photolysis at 266 nm and 213 nm. The generation of the colder C{sub 3}H{sub 5} with the higher translational energy at 266 nm implied the direct photoexcitation to the n{sub I}σ{sup *}{sub C−I} repulsive surfaces, whereas the internally hot C{sub 3}H{sub 5} at 213 nm was ascribed to the local π{sub CC}π{sup *}{sub CC} photoinitiation in the allyl framework followed by predissociation to the n{sub I}σ{sup *}{sub C−I} states.

  8. The photodissociation dynamics of O2 at 193 nm: an O3PJ angular momentum polarization study.

    PubMed

    Brouard, M; Cireasa, R; Clark, A P; Quadrini, F; Vallance, C

    2006-12-21

    In the following paper we present translational anisotropy and angular momentum polarization data for O((3)P(1)) and O((3)P(2)) products of the photodissociation of molecular oxygen at 193 nm. The data were obtained using polarized laser photodissociation coupled with resonantly enhanced multiphoton ionization and velocity-map ion imaging. Under the jet-cooled conditions employed, absorption is believed to be dominated by excitation into the Herzberg continuum. The experimental data are compared with previous experiments and theoretical calculations at this and other wavelengths. Semi-classical calculations performed by Groenenboom and van Vroonhoven [J. Chem. Phys, 2002, 116, 1965] are used to estimate the alignment parameters arising from incoherent excitation and dissociation and these are shown to agree qualitatively well with the available experimental data. Following the work of Alexander et al. [J. Chem. Phys, 2003, 118, 10566], orientation and alignment parameters arising from coherent excitation and dissociation are modelled more approximately by estimating phase differences generated subsequent to dissociation via competing adiabatic pathways leading to the same asymptotic products. These calculations lend support to the view that large values of the coherent alignment moments, but small values of the corresponding orientation moments, could arise from coherent excitation of (and subsequent dissociation via) parallel and perpendicular components of the Herzberg I, II and III transitions.

  9. Mineral resource of the month: iodine

    USGS Publications Warehouse

    Polyak, Désirée E.

    2009-01-01

    The article focuses on iodine, its benefits and adverse effects, and its production and consumption. It states that iodine is essential to humans for it produces thyroid hormones to nourish thyroid glands but excessive intake could cause goiter, hyperthyroidism or hypothyroidism. U.S. laws require salt iodization to help prevent diseases. Chile and Japan are the world's leading iodine producer while in the U.S. iodine is mined from deep well brines in northern Oklahoma.

  10. Dietary restriction causing iodine-deficient goitre.

    PubMed

    Cheetham, Tim; Plumb, Emma; Callaghan, James; Jackson, Michael; Michaelis, Louise

    2015-08-01

    Iodine-deficient goitre was common in some parts of the UK prior to the introduction of salt iodisation. Many contemporary salt preparations do not contain much iodine, and there are renewed concerns about the iodine status of the population. We present a boy with severe allergy who developed goitre and significant thyroid dysfunction in association with an iodine-deficient 'food-restricted' diet. The case highlights the importance of a comprehensive nutritional assessment in all children on multiple food restrictions.

  11. Photodissociation dynamics of dimethylnitrosamine studied by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lenderink, Egbert; Wiersma, Douwe A.

    1994-02-01

    The initial molecular dynamics in the dissociative S 1 (n, π *) state of dimethylnitrosamine (DMN) is investigated using resonance Raman spectroscopy. We find that photochemical N-N bond cleavage in DMN proceeds via a bent conformation around the amine N atom, which supports the outcome of ab initio and classical trajectory calculations [M. Persico, I. Cacelli and A. Ferretti, J. Chem. Phys. 94 (1991) 5508]. Additional information is obtained about the other motions that accompany the photodissociation: a stretch of the N-N bond and a change of the NNO angle.

  12. Sublimation of Iodine at Various Pressures

    ERIC Educational Resources Information Center

    Leenson, Ilya A.

    2005-01-01

    Various phenomena that are observed in the process of heating solid iodine in closed vessels at different pressures and temperatures are described. When solid iodine is heated in an evacuated ampoule where the pressure is less than 10(super -3), no noticeable color appears and immediate condensation of tiny iodine crystals is visible higher up on…

  13. MARGINAL IODINE DEFICIENCY EXACERBATES PERCHLORATE THYROID TOXICITY.

    EPA Science Inventory

    The environmental contaminant perchlorate disrupts thyroid homeostasis via inhibition of iodine uptake into the thyroid. This work tested whether iodine deficiency exacerbates the effects of perchlorate. Female 27 day-old LE rats were fed a custom iodine deficient diet with 0, 50...

  14. Advanced prototype automated iodine monitor system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The technique of detecting and measuring parts-per-million concentrations of aqueous iodine by direct spectrophotometric means is discussed, and development of a prototype Automated Iodine Monitoring/Controller System (AIMS) is elaborated. The present effort is directed primarily toward reducing the power requirement and the weight of the AIMS. Other objectives include determining the maximum concentration of iodine that can be dissolved in an alcohol solution, and in an aqueous potassium iodide solution. Also discussed are the effects of a no flow condition on iodine measurements and the effect of pH on spectrophotometric iodine determinations.

  15. Photodissociation spectroscopy of the dysprosium monochloride molecular ion

    SciTech Connect

    Dunning, Alexander Schowalter, Steven J.; Puri, Prateek; Hudson, Eric R.; Petrov, Alexander; Kotochigova, Svetlana

    2015-09-28

    We have performed a combined experimental and theoretical study of the photodissociation cross section of the molecular ion DyCl{sup +}. The photodissociation cross section for the photon energy range 35 500 cm{sup −1} to 47 500 cm{sup −1} is measured using an integrated ion trap and time-of-flight mass spectrometer; we observe a broad, asymmetric profile that is peaked near 43 000 cm{sup −1}. The theoretical cross section is determined from electronic potentials and transition dipole moments calculated using the relativistic configuration-interaction valence-bond and coupled-cluster methods. The electronic structure of DyCl{sup +} is extremely complex due to the presence of multiple open electronic shells, including the 4f{sup 10} configuration. The molecule has nine attractive potentials with ionically bonded electrons and 99 repulsive potentials dissociating to a ground state Dy{sup +} ion and Cl atom. We explain the lack of symmetry in the cross section as due to multiple contributions from one-electron-dominated transitions between the vibrational ground state and several resolved repulsive excited states.

  16. Photodissociation and photoisomerization dynamics of CH2=CHCHO in solution

    NASA Astrophysics Data System (ADS)

    Wu, Weiqiang; Yang, Chunfan; Zhao, Hongmei; Liu, Kunhui; Su, Hongmei

    2010-03-01

    By means of time-resolved Fourier transform infrared absorption spectroscopy, we have investigated the 193 nm photodissociation and photoisomerization dynamics of the prototype molecule of α,β-enones, acrolein (CH2CHCHO) in CH3CN solution. The primary photolysis channels and absolute branching ratios are determined. The most probable reaction mechanisms are clarified by control experiments monitoring the product yields varied with the triplet quencher addition. The predominant channel is the 1,3-H migration yielding the rearrangement product CH3CHCO with a branching ratio of 0.78 and the less important channel is the α cleavage of CH bond yielding radical fragments CH2CHCO+H with a branching ratio of only 0.12. The 1,3-H migration is strongly suggested to correlate with the triplet (ππ ∗)3 state rather than the ground S0 state and the α cleavage of CH bond is more likely to proceed in the singlet S1 (nπ∗)1 state. From the solution experiments we have not only acquired clues clarifying the previous controversial mechanisms, but also explored different photochemistry in solution. Compared to the gas phase photolysis which is dominated by photodissociation channels, the most important channel in solution is the photoisomerization of 1,3-H migration. The reason leading to the different photochemistry in solution is further ascribed to the solvent cage effect.

  17. Photodissociation spectroscopy of the Mg{sup +}-acetic acid complex

    SciTech Connect

    Abate, Yohannes; Kleiber, P. D.

    2006-11-14

    We have studied the structure and photodissociation of Mg{sup +}-acetic acid clusters. Ab initio calculations suggest four relatively strongly bound ground state isomers for the [MgC{sub 2}H{sub 4}O{sub 2}]{sup +} complex. These isomers include the cis and trans forms of the Mg{sup +}-acetic acid association complex with Mg{sup +} bonded to the carbonyl O atom of acetic acid, the Mg{sup +}-acetic acid association complex with Mg{sup +} bonded to the hydroxyl O atom of acetic acid, or to a Mg{sup +}-ethenediol association complex. Photodissociation through the Mg{sup +}-based 3p<-3s absorption bands in the near UV leads to direct (nonreactive) and reactive dissociation products: Mg{sup +}, MgOH{sup +}, Mg(H{sub 2}O){sup +}, CH{sub 3}CO{sup +}, and MgCH{sub 3}{sup +}. At low energies the dominant reactive quenching pathway is through dehydration to Mg(H{sub 2}O){sup +}, but additional reaction channels involving C-H and C-C bond activation are also open at higher energies.

  18. Photodissociation of HI and DI: polarization of atomic photofragments.

    PubMed

    Brown, Alex

    2005-02-22

    The complete angular momentum distributions and vector correlation coefficients (orientation and alignment) of ground state I((2)P(32)) and excited state I((2)P(12)) atoms resulting from the photodissociation of HI have been computed as a function of photolysis energy. The orientation and alignment parameters a(Q) ((K))(p) that describe the coherent and incoherent contributions to the angular momentum distributions from the multiple electronic states accessed by parallel and perpendicular transitions are determined using a time-dependent wave packet treatment of the dissociation dynamics. The dynamics are based on potential energy curves and transition dipole moments that have been reported previously [R. J. LeRoy, G. T. Kraemer, and S. Manzhos, J. Chem. Phys. 117, 9353 (2002)] and used to successfully model the scalar (total cross section and branching fraction) and lowest order vector (anisotropy parameter beta) properties of the photodissociation. Predictions of the a(Q) ((K))(p), parameters for the isotopically substituted species DI are reported and contrasted to the analogous HI results. The resulting polarization for the corresponding H/D partners are also determined and demonstrate that both H and D atoms produced can be highly spin polarized. Comparison of these predictions for HI and DI with experimental measurement will provide the most stringent test of the current model for the electronic structure and the interpretation of the dissociation based on noncoupled excited state dynamics.

  19. Comparison of the magnetic properties of deoxy- and photodissociated myoglobin.

    PubMed Central

    Roder, H; Berendzen, J; Bowne, S F; Frauenfelder, H; Sauke, T B; Shyamsunder, E; Weissman, M B

    1984-01-01

    The magnetic susceptibility of photodissociated carbon monoxy myoglobin has been measured over the temperature range from 1.7 to 25 K at 10 and 50 kG with a superconducting susceptometer. The spin and the crystal field parameters of the iron ion were extracted by a spin Hamiltonian approach. Under equivalent conditions the magnetic susceptibility of deoxy myoglobin was measured. In both experiments the CO-bound protein was used as a diamagnetic reference. Above about 5 K the metastable photolysed state and the equilibrium deoxy form of myoglobin are magnetically indistinguishable and can be fitted with S = 2 and g = 2. The transition from spin 0 to spin 2 and the conformational changes known to accompany the electronic change thus also occur after photolysis at low temperature. At temperatures below 5 K, differences become apparent, indicating a somewhat smaller zero-field splitting in the photoproduct as compared to the ligand-free state at equilibrium. In qualitative agreement with observations made by other techniques, the data imply that even at 1.7 K substantial structural relaxation occurs in the heme region of myoglobin after photodissociation. The results are important for the interpretation of the ligand binding kinetics after flash photolysis at low temperature and contribute to the understanding of the relationship between electronic structure and function in heme proteins. PMID:6585802

  20. Photodissociation dynamics of phenol: multistate trajectory simulations including tunneling.

    PubMed

    Xu, Xuefei; Zheng, Jingjing; Yang, Ke R; Truhlar, Donald G

    2014-11-19

    We report multistate trajectory simulations, including coherence, decoherence, and multidimensional tunneling, of phenol photodissociation dynamics. The calculations are based on full-dimensional anchor-points reactive potential surfaces and state couplings fit to electronic structure calculations including dynamical correlation with an augmented correlation-consistent polarized valence double-ζ basis set. The calculations successfully reproduce the experimentally observed bimodal character of the total kinetic energy release spectra and confirm the interpretation of the most recent experiments that the photodissociation process is dominated by tunneling. Analysis of the trajectories uncovers an unexpected dissociation pathway for one quantum excitation of the O-H stretching mode of the S1 state, namely, tunneling in a coherent mixture of states starting in a smaller ROH (∼0.9-1.0 Å) region than has previously been invoked. The simulations also show that most trajectories do not pass close to the S1-S2 conical intersection (they have a minimum gap greater than 0.6 eV), they provide statistics on the out-of-plane angles at the locations of the minimum energy adiabatic gap, and they reveal information about which vibrational modes are most highly activated in the products.

  1. Uv Photodissociation Spectroscopy of Temperature Controlled Hydrated Phenol Cluster Cation

    NASA Astrophysics Data System (ADS)

    Kurusu, Itaru; Yagi, Reona; Kasahara, Yasutoshi; Ishikawa, Haruki

    2016-06-01

    Owing to various developments of spectroscopic techniques, microscopic hydration structures of various clusters in the gas phase have been determined so far. The next step for further understanding of the microscopic hydration is to reveal the temperature effect, such as a fluctuation of the hydration structure. Thus, we have been carrying out photodissociation spectroscopy on the hydrated phenol cation clusters, [PhOH(H_2O)_n]^+, trapped in our temperature-variable ion trap. After the last symposium, we succeeded in improving our experimental condition and recorded the UV photodissociation spectra of [PhOH(H_2O)_5]^+ at the trap temperatures of 20, 50, and 100 K. We identified three groups of bands by their temperature dependence in the spectra. Based on the results of the DFT calculations, we estimated the temperature dependence of the relative populations among the isomers. As a results, the isomers were grouped into three groups having different motifs of the hydrogen-bond structures. Comparing the experimental with the theoretical results, we assigned the relation between the band carriers and the hydrogen-bond structure motifs. Details of the discussion will be presented in the paper. H. Ishikawa, T. Nakano, T. Eguchi, T. Shibukawa, K. Fuke, Chem. Phys. Lett. 514, 234 (2011) R. Yagi, Y. Kasahara, H. Ishikawa, WH12, the 70th International Symposium on Molecular Spectroscopy (2015)

  2. Slice imaging of photodissociation of spatially oriented molecules

    SciTech Connect

    Lipciuc, M. Laura; Brom, Alrik J. van den; Dinu, Laura; Janssen, Maurice H.M.

    2005-12-15

    An electrostatic ion lens to spatially orient parent molecules and to image the angular distribution of photofragments is presented. Photodissociation of laboratory-oriented molecules makes it possible to study the dynamics of the dissociation process in more detail compared to photodissociation of nonoriented molecules. Using the velocity map imaging technique in combination with the slice imaging technique, the spatial recoil distribution of the photofragments can be measured with high resolution and without symmetry restrictions. Insertion of orientation electrodes between the repeller and the extractor of a velocity mapping electrostatic lens severely distorts the ion trajectories. The position where the ions are focused by the lens, the focal length, can be very different in the directions parallel and perpendicular to the inserted orientation electrodes. The focal length depends on the exact dimensions and positions of the electrodes of the ion lens. As this dependence is different in both directions, this dependence can be used to correct for the distorted ion trajectories. We discuss the design of an electrostatic ion lens, which is able to orient parent molecules and map the velocity of the photofragments. We report sliced images of photofragments from photolysis of spatially oriented CD{sub 3}I molecules to demonstrate the experimental combination of molecular orientation and velocity map slice imaging with good resolution.

  3. Iodine deficiency, more than cretinism and goiter.

    PubMed

    Verheesen, R H; Schweitzer, C M

    2008-11-01

    Recent reports of the World Health Organization show iodine deficiency to be a worldwide occurring health problem. As iodine status is based on median urinary iodine excretion, even in countries regarded as iodine sufficient, a considerable part of the population may be iodine deficient. Iodine is a key element in the synthesis of thyroid hormones and as a consequence, severe iodine deficiency results in hypothyroidism, goiter, and cretinism with the well known biochemical alterations. However, it is also known that iodine deficiency may give rise to clinical symptoms of hypothyroidism without abnormality of thyroid hormone values. This led us to the hypothesis that iodine deficiency may give rise to subtle impairment of thyroid function leading to clinical syndromes resembling hypothyroidism or diseases that have been associated with the occurrence of hypothyroidism. We describe several clinical conditions possibly linked to iodine deficiency, a connection that has not been made thus far. In this paper we will focus on the relationship between iodine deficiency and obesity, attention deficit hyperactivity disorder (ADHD), psychiatric disorders, fibromyalgia, and malignancies.

  4. An iodine-based frequency reference for space applications

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Johann, Ulrich; Doeringshoff, Klaus; Kovalchuk, Evgeny; Peters, Achim; Braxmaier, Claus; Pahl, Julia; Stuehler, Johannes; Franz, Matthias

    We present the development of an iodine-based frequency reference for future potential applications in space, including the gravitational wave detector LISA/eLISA (Laser Interferometer Space Antenna), the mini SpaceTime Asymmetry Research (mSTAR) program, the aperture-synthesis telescope Darwin and the GRACE (Gravity Recovery and Climate Experiment) follow on mission/NGGM (Next Generation Gravity Mission) exploring Earth's gravity. Based on a state-of-the-art laboratory iodine frequency reference, setups on elegant breadboard (EBB) and engineering model (EM) level were realized, taking into account specific design criteria for space compatibility such as compactness and robustness. Both setups employ modulation transfer spectroscopy (MTS) in combination with balanced detection. They use a baseplate made of glass material in combination with a dedicated easy-to-handle assembly-integration technology (adhesive bonding) ensuring high pointing stability of the two counter-propagating laser beams in the iodine cell and therefore high long-term stability. The EBB setup utilizes a commercial off-the-shelf 30 cm long iodine cell in triple-pass configuration, the EM setup a specifically designed and manufactured compact iodine cell made of fused silica in a nine-pass configuration with a specific robust cold finger design. Both setups were characterized in beat measurements with a ULE cavity setup. Similar frequency stabilities of about 1*10 (-14) at an integration time of 1 s and below 5*10 (-15) at integration times between 10 s and 100 s were demonstrated. These values are comparable to the currently best laboratory setups. The EM setup was further subjected to environmental testing including thermal cycling and vibrational testing. Financial support by the German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under grant numbers 50 QT 1102 and 50 QT 1201 is highly appreciated. The authors thank Jan Hrabina and Josef Lazar

  5. Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability.

    PubMed

    Gonzali, Silvia; Kiferle, Claudia; Perata, Pierdomenico

    2016-10-27

    Iodine deficiency is a widespread micronutrient malnutrition problem, and the addition of iodine to table salt represents the most common prophylaxis tool. The biofortification of crops with iodine is a recent strategy to further enrich the human diet with a potentially cost-effective, well accepted and bioavailable iodine source. Understanding how iodine functions in higher plants is key to establishing suitable biofortification approaches. This review describes the current knowledge regarding iodine physiology in higher plants, and provides updates on recent agronomic and metabolic engineering strategies of biofortification. Whereas the direct administration of iodine is effective to increase the iodine content in many plant species, a more sophisticated genetic engineering approach seems to be necessary for the iodine biofortification of some important staple crops.

  6. UV Photodissociation of Proline-containing Peptide Ions: Insights from Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Girod, Marion; Sanader, Zeljka; Vojkovic, Marin; Antoine, Rodolphe; MacAleese, Luke; Lemoine, Jérôme; Bonacic-Koutecky, Vlasta; Dugourd, Philippe

    2015-03-01

    UV photodissociation of proline-containing peptide ions leads to unusual product ions. In this paper, we report laser-induced dissociation of a series of proline-containing peptides at 213 nm. We observe specific fragmentation pathways corresponding to the formation of (y-2), (a + 2) and (b + 2) fragment ions. This was not observed at 266 nm or for peptides which do not contain proline residues. In order to obtain insights into the fragmentation dynamics at 213 nm, a small peptide (RPK for arginine-proline-lysine) was studied both theoretically and experimentally. Calculations of absorption spectra and non-adiabatic molecular dynamics (MD) were made. Second and third excited singlet states, S2 and S3, lie close to 213 nm. Non-adiabatic MD simulation starting from S2 and S3 shows that these transitions are followed by C-C and C-N bond activation close to the proline residue. After this first relaxation step, consecutive rearrangements and proton transfers are required to produce unusual (y-2), (a + 2) and (b + 2) fragment ions. These fragmentation mechanisms were confirmed by H/D exchange experiments.

  7. Photodissociation study of ethyl bromide in the ultraviolet range by the ion-velocity imaging technique.

    PubMed

    Tang, Ying; Ji, Lei; Zhu, Rongshu; Wei, Zhengrong; Zhang, Bing

    2005-10-14

    The photodissociation of ethyl bromide has been studied in the wavelength range of 231-267 nm by means of the ion velocity imaging technique coupled with a [2+1] resonance-enhanced multiphoton ionization (REMPI) scheme. The velocity distributions for the Br ((2)P(1/2)) (denoted Br*) and Br ((2)P(3/2)) (denoted Br) fragments are determined, and each can be well-fitted by a narrow single-peaked Gaussian curve, which suggests that the bromine fragments are generated as a result of direct dissociation via repulsive potential-energy surfaces (PES). The recoil anisotropy results show that beta(Br) and beta(Br*) decrease with the wavelength, and the angular distributions of Br* suggest a typical parallel transition. The product relative quantum yields at two different wavelengths are Phi(234nm)(Br*)=0.17 and Phi(267nm)(Br*)=0.31. The relative fractions of each potential surface for the bromine fragments' production at 234 and 267 nm reveal the existence of a curve crossing between the (3)Q(0) and (1)Q(1) potential surfaces, and the probability of curve crossing decreases with the laser wavelength. The symmetry reduction of C(2)H(5)Br from C(3v) to C(s) invokes a nonadiabatic coupling between the (3)Q(0) and (1)Q(1) states, and with higher energy photons, the probability that crossing will take place increases.

  8. Carbon recombination lines as a diagnostic of photodissociation regions

    NASA Technical Reports Server (NTRS)

    Natta, A.; Walmsley, C. M.; Tielens, A. G. G. M.

    1994-01-01

    We have observed the C91 alpha radio recombination line toward the Orion H II region. This narrow (approximately 3-5 km per sec full width at half maximum (FWHM)) line is spatially very extended (approximately 8 arcmin or 1 pc). These charateristics compare well with the observed characteristics of the C II fine structure line at 158 microns. Thus, the C91 alpha line originates in the predominantly neutral photodissociation regions separating the H II region from the molecular cloud. We have developed theoretical models for the C II radio recombination lines from photodissociation regions. The results show that the I(C91 alpha)/I(C158) intensity ratio is a sensitive function of the temperature and density of the emitting gas. We have also extended theoretical models for photodissociation regions to include the C II recombination lines. Comparison with these models show that, in the central portion of the Orion region, the C91 alpha line originates in dense (10(exp 6) per cu cm), warm (500-1000 K) gas. Even at large projected distances (approximately 1 pc), the inferred density is still high (10(exp 5) per cu cm) and implies extremely high thermal pressures. As in the case of the (C II) 158 microns line, the large extent of the C91 alpha line shows that (FUV) photons can penetrate to large distances from the illuminating source. The decline of the intensity of the incident radiation field with distance from Theta(sup 1) C seems to be dominated by geometrical dilution, rather than dust extinction. Finally, we have used our models to calculate the intensity of the 9850 A recombination line of C II. The physical conditions inferred from this line are in good agreement with those determined from the radio recombination and the far-infrared fine-structure lines. We show that the ratio of the 9850 A to the C91 alpha lines is a very good probe of very high density clumps.

  9. Photoisomerization and photodissociation dynamics of reactive free radicals

    SciTech Connect

    Bise, Ryan T.

    2000-08-01

    The photofragmentation pathways of chemically reactive free radicals have been examined using the technique of fast beam photofragment translational spectroscopy. Measurements of the photodissociation cross-sections, product branching ratios, product state energy distributions, and angular distributions provide insight into the excited state potential energy surfaces and nonadiabatic processes involved in the dissociation mechanisms. Photodissociation spectroscopy and dynamics of the predissociative $\\tilde{A}$2A1 and $\\tilde{B}$2A2 states of CH3S have been investigated. At all photon energies, CH3 + S(3Pj), was the main reaction channel. The translational energy distributions reveal resolved structure corresponding to vibrational excitation of the CH3 umbrella mode and the S(3Pj) fine-structure distribution from which the nature of the coupled repulsive surfaces is inferred. Dissociation rates are deduced from the photofragment angular distributions, which depend intimately on the degree of vibrational excitation in the C-S stretch. Nitrogen combustion radicals, NCN, CNN and HNCN have also been studied. For all three radicals, the elimination of molecular nitrogen is the primary reaction channel. Excitation to linear excited triplet and singlet electronic states of the NCN radical generates resolved vibrational structure of the N2 photofragment. The relatively low fragment rotational excitation suggests dissociation via a symmetric C2V transition state. Resolved vibrational structure of the N2 photofragment is also observed in the photodissociation of the HNCN radical. The fragment vibrational and rotational distributions broaden with increased excitation energy. Simple dissociation models suggest that the HNCN radical isomerizes to a cyclic intermediate (c-HCNN) which then dissociates via a tight cyclic

  10. Biologically available iodine in goitrogenic diets

    SciTech Connect

    Van Middlesworth, L.

    1985-01-01

    Eight different sources of low-iodine diet (LID) were tested in mice over 14 years. The available iodine in each diet was measured by isotopic equilibration. Commercially prepared Remington diets contained 6.8 to 69.3 ng available iodine/g, and the results were usually different from shipment to shipment. Some samples produced greatly enlarged thyroids. The Remington diets from two sources were occasionally low in iodine but produced little thyroid enlargement. Between 1977 and 1980 only one shipment of Remington diet was found to contain less than 10 ng available I/g, and it resulted in large goiters. Since 1980 other compositions of LID have been used, but they caused additional abnormalities during breeding or chronic feeding. A low-iodine wheat diet produced goiter in mice more readily than in rats. In the course of testing for unavailable forms of dietary iodine, it was found that only 34.2% of thyroxine iodine was available to the thyroid iodine pool of mice. It is concluded that unidentified nutritional deficiency or dietary contaminants can alter the goitrogenic response to restricted iodine intake. Furthermore, at least one natural form of potential dietary iodine is incompletely available to mice.

  11. Geochemical Cycling of Iodine Species in Soils

    SciTech Connect

    Hu, Q; Moran, J E; Blackwood, V

    2007-08-23

    Iodine is an important element in studies of environmental protection and human health, global-scale hydrologic processes and nuclear nonproliferation. Biogeochemical cycling of iodine in soils is complex, because iodine occurs in multiple oxidation states and as inorganic and organic species that may be hydrophilic, atmophilic, and biophilic. In this study, we applied new analytical techniques to study the content and speciation of stable iodine in representative surface soils, and sorption and transport behavior of iodine species (iodide, iodate, and 4-iodoaniline) in sediments collected at numerous nuclear facilities in the United States, where anthropogenic {sup 129}I from prior nuclear fuel processing activities poses an environmental risk. The surface soil samples were chosen for their geographic locations (e.g., near the ocean or nuclear facilities) and for their differing physico-chemical characteristics (organic matter, texture, etc). Extracted solutions were analyzed by IC and ICP-MS methods to determine iodine concentrations and to examine iodine speciation (iodide, iodate, and organic iodine). In natural soils, iodine is mostly (nearly 90% of total iodine) present as organic species, while inorganic iodine becomes important (up to 50%) only in sediments with low organic matter. Results from laboratory column studies, aimed at examining transport of different iodine species, showed much greater retardation of 4-iodoaniline than iodide or iodate. Careful attention must be given to potential interconversion among species when interpreting the biogeochemical behavior of iodine in the environment. In addition to speciation, input concentration and residence time effects will influence the biogeochemical cycling of anthropogenic 129I deposited on surface soils.

  12. Effects of iodine intake and teat-dipping practices on milk iodine concentrations in dairy cows.

    PubMed

    Castro, S I Borucki; Berthiaume, R; Robichaud, A; Lacasse, P

    2012-01-01

    Two studies were conducted to determine the effects of dietary iodine and teat-dipping practices on iodine concentrations in milk. In the first study, 63 cows in mid lactation were assigned to a 3×3 factorial design in which the main effects were dietary iodine levels (0.3, 0.6, and 0.9 mg of dietary I/kg of dry matter) and 3 different postdip managements (chlorhexidine with dip cup, 1% iodine dip cup, and 1% iodine by manual spray). During the 13-d pre-experimental period and the 15-d experimental period, noniodized sanitizers were used in premilking management. During the pre-experimental period, the levels of milk iodine averaged 241.2±5.8 μg/kg, and no relationship was found with lactation number, days in milk, or milk production. Milk iodine concentrations increased linearly with iodine intake. Although teat dipping with 1% iodine had no effect on milk iodine concentration, the same solution applied by spraying greatly increased milk iodine levels. The second study was conducted to determine the effects of udder preparation before milking on milk iodine concentrations. Thirty-two lactating cows were assigned to 4 treatments: no predip (Con); predip with a predip solution containing 0.5% iodine+complete cleaning (Comp); predip with a postdip solution containing 1% iodine+complete cleaning (Post); and predip with a predip solution containing 0.5% iodine+incomplete cleaning (Inc). During the 14-d pre-experimental period and the 19-d experimental period, cows were fed the same diet, and noniodized sanitizers were used for postmilking dipping. During the last week of treatment, milk iodine averaged 164, 189, 218, and 252±9.8 μg/kg for Con, Comp, Post, and Inc, respectively. Preplanned orthogonal contrasts indicated that predipping with a 0.5% iodine predip solution completely wiped off (Comp) tended to increase milk iodine content above that of the control and that the iodine content of Post and Inc were higher than that of the Comp treatment. The results of

  13. Strong field laser control of photochemistry.

    PubMed

    Solá, Ignacio R; González-Vázquez, Jesús; de Nalda, Rebeca; Bañares, Luis

    2015-05-28

    Strong ultrashort laser pulses have opened new avenues for the manipulation of photochemical processes like photoisomerization or photodissociation. The presence of light intense enough to reshape the potential energy surfaces may steer the dynamics of both electrons and nuclei in new directions. A controlled laser pulse, precisely defined in terms of spectrum, time and intensity, is the essential tool in this type of approach to control chemical dynamics at a microscopic level. In this Perspective we examine the current strategies developed to achieve control of chemical processes with strong laser fields, as well as recent experimental advances that demonstrate that properties like the molecular absorption spectrum, the state lifetimes, the quantum yields and the velocity distributions in photodissociation processes can be controlled by the introduction of carefully designed strong laser fields.

  14. Photodissociation of the carbon monoxide dication in the {sup 3}Σ{sup −} manifold: Quantum control simulation towards the C{sup 2+} + O channel

    SciTech Connect

    Vranckx, S.; Loreau, J.; Vaeck, N.; Desouter-Lecomte, M.

    2015-10-28

    The photodissociation and laser assisted dissociation of the carbon monoxide dication X{sup 3}Π CO{sup 2+} into the {sup 3}Σ{sup −} states are investigated. Ab initio electronic structure calculations of the adiabatic potential energy curves, radial nonadiabatic couplings, and dipole moments for the X {sup 3}Π state are performed for 13 excited {sup 3}Σ{sup −} states of CO{sup 2+}. The photodissociation cross section, calculated by time-dependent methods, shows that the C{sup +} + O{sup +} channels dominate the process in the studied energy range. The carbon monoxide dication CO{sup 2+} is an interesting candidate for control because it can be produced in a single, long lived, v = 0 vibrational state due to the instability of all the other excited vibrational states of the ground {sup 3}Π electronic state. In a spectral range of about 25 eV, perpendicular transition dipoles couple this {sup 3}Π state to a manifold of {sup 3}Σ{sup −} excited states leading to numerous C{sup +} + O{sup +} channels and a single C{sup 2+} + O channel. This unique channel is used as target for control calculations using local control theory. We illustrate the efficiency of this method in order to find a tailored electric field driving the photodissociation in a manifold of strongly interacting electronic states. The selected local pulses are then concatenated in a sequence inspired by the “laser distillation” strategy. Finally, the local pulse is compared with optimal control theory.

  15. Chemical "Double Slits": dynamical interference of photodissociation pathways in water

    PubMed

    Dixon; Hwang; Yang; Harich; Lin; Yang

    1999-08-20

    Photodissociation of water at a wavelength of 121.6 nanometers has been investigated by using the H-atom Rydberg tagging technique. A striking even-odd intensity oscillation was observed in the OH(X) product rotational distribution. Model calculations attribute this oscillation to an unusual dynamical interference brought about by two dissociation pathways that pass through dissimilar conical intersections of potential energy surfaces, but result in the same products. The interference pattern and the OH product rotational distribution are sensitive to the positions and energies of the conical intersections, one with the atoms collinear as H-OH and the other as H-HO. An accurate simulation of the observations would provide a detailed test of global H(2)O potential energy surfaces for the three (&Xtilde;/A/&Btilde;) contributing states. The interference observed from the two conical intersection pathways provides a chemical analog of Young's well-known double-slit experiment.

  16. Production of Excited Atomic Hydrogen and Deuterium from HD Photodissociation

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; Bozek, J. D.; Furst, J. E.; Gay, T. J.; Gould, H.; Kilcoyne, A. L. D.; McLaughlin, K. W.

    2008-05-01

    We have measured the production of Lyα, Hα, and Hβ fluorescence from atomic H and D for the photodissociation of HD by linearly-polarized photons with energies between 20 and 66 eV. In this energy range, excited photofragments result primarily from the production of doubly-excited molecular species which promptly autoionize or dissociate into two neutrals. Theoretical calculation are not yet available for HD, but comparison between the relative cross sections for H2, D2 and HD targets and the available theory for H2 and D2 [1] allow for an estimate of the relative strength of each dissociation channel in this energy range. [1] J. D. Bozek et al., J. Phys. B 39, 4871 (2006). Support provided by the NSF (Grant PHY-0653379), DOE (LBNL/ALS) and ANSTO (Access to Major Research Facilities Programme).

  17. Is Nitrate Anion Photodissociation Mediated by Singlet-Triplet Absorption?

    PubMed

    Svoboda, Ondřej; Slavíček, Petr

    2014-06-05

    Photolysis of the nitrate anion is involved in the oxidation processes in the hydrosphere, cryosphere, and stratosphere. While it is known that the nitrate photolysis in the long-wavelength region proceeds with a very low quantum yield, the mechanism of the photodissociation remains elusive. Here, we present the quantitative modeling of singlet-singlet and singlet-triplet absorption spectra in the atmospherically relevant region around 300 nm, and we argue that a spin-forbidden transition between the singlet ground state and the first triplet state contributes non-negligibly to the nitrate anion photolysis. We further propose that the nitrate anion excited into the first singlet excited state relaxes nonradiatively into its ground state. The full understanding of the nitrate anion photolysis can improve modeling of the asymmetric solvation in the atmospheric processes, e.g., photolysis on the surfaces of ice or snow.

  18. Products and yields from O3 photodissociation at 1576 A

    NASA Technical Reports Server (NTRS)

    Taherian, M. R.; Slanger, T. G.

    1985-01-01

    An analysis has been made of the primary atomic and molecular products arising from O3 photodissociation at 1576 A. The yield of oxygen atoms is 1.90 + or - 0.30, of which 71 percent are O(3P) and 29 percent are O(1D). Since a primary yield greater than unity can only be a consequence of three-fragment dissociation, these results suggest that fragmentation into three O(3P) atoms, and production of O(1D) plus a singlet oxygen molecule, have comparable yields. Observation of prompt emission in the 7300-8100 A spectral region indicates that the singlet O2 is O2(b 1Sigma + g). Vibrational levels in the range v = 0-6 have been detected, the distribution corresponding to a vibrational temperature of 1000 K.

  19. Photodissociation dynamics of tryptophan and the implication of asymmetric photolysis

    SciTech Connect

    Tseng, Chien-Ming; Dyakov, Yuri A.; Huang, Huai Ching; Huang, Kuan Yu; Lee, Yuan T.; Ni, Chi-Kung; Chiang, Su-Yu

    2010-08-21

    Photodissociation of amino acid tryptophan in a molecular beam at wavelengths of 212.8 and 193 nm, corresponding to excitation to the second and third absorption bands, was investigated using multimass ion imaging techniques. The respective wavelengths also represent excitation to the edge of a positive circular dichroism band and the center of a negative circular dichroism band of L-tryptophan. Only one dissociation channel was observed at both photolysis wavelengths: C{sub 8}NH{sub 6}CH{sub 2}CHNH{sub 2}COOH{yields}C{sub 8}NH{sub 6}CH{sub 2}+CHNH{sub 2}COOH. Dissociation rates were found to be 1.3x10{sup 6} and 5x10{sup 6} s{sup -1} at the respective wavelengths. Comparison to theoretical calculation indicates that dissociation occurs on the ground state after internal conversion. Implication of asymmetric photolysis is discussed.

  20. Multiple product pathways in photodissociation of nitromethane at 213 nm

    SciTech Connect

    Sumida, Masataka; Kohge, Yasunori; Yamasaki, Katsuyoshi; Kohguchi, Hiroshi

    2016-02-14

    In this paper, we present a photodissociation dynamics study of nitromethane at 213 nm in the π → π{sup *} transition. Resonantly enhanced multiphoton ionization spectroscopy and ion-imaging were applied to measure the internal state distributions and state-resolved scattering distributions of the CH{sub 3}, NO(X {sup 2}Π, A {sup 2}Σ{sup +}), and O({sup 3}P{sub J}) photofragments. The rotationally state-resolved scattering distribution of the CH{sub 3} fragment showed two velocity components, of which the slower one decreased the relative intensity as the rotational and vibrational excitations. The translational energy distribution of the faster CH{sub 3} fragment indicated the production of the NO{sub 2} counter-product in the electronic excited state, wherein 1 {sup 2}B{sub 2} was the most probable. The NO(v = 0) fragment exhibited a bimodal translational energy distribution, whereas the NO(v = 1 and 2) fragment exhibited a single translational energy component with a relatively larger internal energy. The translational energy of a portion of the O({sup 3}P{sub J}) photofragment was found to be higher than the one-photon dissociation threshold, indicating the two-photon process involved. The NO(A {sup 2}Σ{sup +}) fragment, which was detected by ionization spectroscopy via the Rydberg ←A {sup 2}Σ{sup +} transition, also required two-photon energy. These experimental data corroborate the existence of competing photodissociation product pathways, CH{sub 3} + NO{sub 2},CH{sub 3} + NO + O,CH{sub 3}O + NO, and CH{sub 3}NO + O, following the π → π{sup *} transition. The origins of the observed photofragments are discussed in this report along with recent theoretical studies and previous dynamics experiments performed at 193 nm.

  1. Ultrafast studies of photodissociation in solution: Dissociation, recombination and relaxation

    SciTech Connect

    King, Jason Christopher

    1995-05-01

    Photodissociation of M(CO)6 (M=Cr,Mo,W) and the formation of solvated M(CO)5•S complex was studied in cyclohexane; rate-limiting step is vibrational energy relaxation from the new bond to the solvent. For both M=Cr and Mo, the primary relaxation occurs in 18 ps; for Cr, there is an additional vibrational relaxation (150 ps time scale) of a CO group poorly coupled to other modes. Relaxation of M=W occurs in 42 ps; several possible mechanisms for the longer cooling are discussed. Vibrational relaxation is also investigated for I2- and IBr- in nonpolar and slightly polar solvents. Attempts were made to discover the mechanism for the fast energy transfer in nonpolar solvent. The longer time scale dynamics of I3- and IBr2- were also studied; both formed a metastable complex following photodissociation and 90-95% return to ground state in 100 ps, implying a barrier to recombination of 4.3 kcal/mol and a barrier to escape of ≥5.5 kcal/mol. The more complex photochemistry of M3(CO)12 (M=Fe,Ru) is also investigated, using visible and ultraviolet radiations, dissociation, geminate recombination, vibrational relaxation, and bridging structures and their reactions were studied. Attempts were made to extend ultrafast spectroscopy into the mid-infrared, but signal-to-noise was poor.

  2. Effect of iodine disinfectant source and water quality parameters on soluble iodine speciation

    NASA Technical Reports Server (NTRS)

    Silverstein, Joann; Hurst, Charles; Barkley, Robert; Dunham, Andrew

    1993-01-01

    Investigations of iodine species distribution of various aqueous solutions of iodine disinfectants and water from equilibrated suspensions of triodide and pentaiodide resins were done at the University of Colorado for the Center for Space Environmental Health during 1992 and 1993. Direct measurements of three individual iodine species: I(-), I2 and I3(-), were made. In addition three measures of total titratable iodine species were used. It has been found that I2 and I3(-) solutions produce a significant fraction of the non-disinfecting species iodine I(-), ranging from 50 to 80% of added iodine, respectively, at pH values of approximately 5. Correspondingly, I2 solutions produce more than twice the concentration of disinfecting iodine species per mass iodine dose than I3(-) solutions. Both I(-) and I2 species were found in aqeuous extracts of pentaiodide resin, although no soluble species were detected with triiodide resin.

  3. Nighttime atmospheric chemistry of iodine

    NASA Astrophysics Data System (ADS)

    Saiz-Lopez, Alfonso; Plane, John M. C.; Cuevas, Carlos A.; Mahajan, Anoop S.; Lamarque, Jean-François; Kinnison, Douglas E.

    2016-12-01

    Little attention has so far been paid to the nighttime atmospheric chemistry of iodine species. Current atmospheric models predict a buildup of HOI and I2 during the night that leads to a spike of IO at sunrise, which is not observed by measurements. In this work, electronic structure calculations are used to survey possible reactions that HOI and I2 could undergo at night in the lower troposphere, and hence reduce their nighttime accumulation. The new reaction NO3+ HOI → IO + HNO3 is proposed, with a rate coefficient calculated from statistical rate theory over the temperature range 260-300 K and at a pressure of 1000 hPa to be k(T) = 2.7 × 10-12 (300 K/T)2.66 cm3 molecule-1 s-1. This reaction is included in two atmospheric models, along with the known reaction between I2 and NO3, to explore a new nocturnal iodine radical activation mechanism. The results show that this iodine scheme leads to a considerable reduction of nighttime HOI and I2, which results in the enhancement of more than 25 % of nighttime ocean emissions of HOI + I2 and the removal of the anomalous spike of IO at sunrise. We suggest that active nighttime iodine can also have a considerable, so far unrecognized, impact on the reduction of the NO3 radical levels in the marine boundary layer (MBL) and hence upon the nocturnal oxidizing capacity of the marine atmosphere. The effect of this is exemplified by the indirect effect on dimethyl sulfide (DMS) oxidation.

  4. Photodissociation of HBr/LiF(001) - A quantum mechanical model

    NASA Technical Reports Server (NTRS)

    Seideman, Tamar

    1993-01-01

    The photodissociation dynamics of HBr adsorbed on an LiF(001) surface is studied using time-independent quantum mechanics. The photodissociation line shape and the Br(2P(1/2))/Br(2P(3/2)) yield ratio are computed and compared with the corresponding quantities for gas phase photodissociation. The angular distribution of the hydrogen photofragments following excitation of adsorbed HBr is computed and found to agree qualitatively with experimental data. The effect of polarization of the photon is illustrated and discussed. We find the field polarization to affect significantly the magnitude of the photodissociation signal but not the angular dependence of the photofragment distribution, in agreement with experiment and in accord with expectations for a strongly aligned adsorbed phase.

  5. Photodissociation of HBr/LiF(001): A quantum mechanical model

    NASA Technical Reports Server (NTRS)

    Seideman, Tamar

    1993-01-01

    The photodissociation dynamics of HBr adsorbed on a LiF(001) surface is studied using time-independent quantum mechanics. The photodissociation lineshape and the Br(P(sub 1/2)-2)/Br(P(sub 3/2)-2) yield ratio are computed and compared with the corresponding quantities for gas phase photodissociation. The angular distribution of the hydrogen photofragments following excitation of adsorbed HBr is computed and found to agree qualitatively with experimental data. The effect of polarization of the photon is illustrated and discussed. The field polarization is found to affect significantly the magnitude of the photodissociation signal but not the angular dependence of the photofragment distribution, in agreement with experiment and in accord with expectations for a strongly aligned adsorbed phase.

  6. Experimental investigation of the iodine partition coefficient

    SciTech Connect

    Kelly, J.L.; Babad, C.J.; Mulder, R.U.

    1985-11-01

    Short-term values of the iodine partition coefficient (IPC) were evaluated experimentally by an air/water system over the following ranges of conditions: temperature = 25 to 70/sup 0/C, pH = 5 to 9, and iodine concentration = 10/sup -9/ to 10/sup -2/ kg iodine/m/sup 3/ H/sub 2/O. The experimental IPC values are relatively independent of temperature over the indicated range, but show a significant dependence on pH and iodine concentration. In basic solutions the short-term values are several orders of magnitude less than the true equilibrium values; in acid solutions, the differences are much less. These results are useful for predicting the disposition of iodine shortly (i.e., 1 to 10 h) after iodine has been released into an air/water environment.

  7. Injection of iodine to the stratosphere

    NASA Astrophysics Data System (ADS)

    Saiz-Lopez, A.; Baidar, S.; Cuevas, C. A.; Koenig, T. K.; Fernandez, R. P.; Dix, B.; Kinnison, D. E.; Lamarque, J.-F.; Rodriguez-Lloveras, X.; Campos, T. L.; Volkamer, R.

    2015-08-01

    We report a new estimation of the injection of iodine into the stratosphere based on novel daytime (solar zenith angle < 45°) aircraft observations in the tropical tropopause layer and a global atmospheric model with the most recent knowledge about iodine photochemistry. The results indicate that significant levels of total reactive iodine (0.25-0.7 parts per trillion by volume), between 2 and 5 times larger than the accepted upper limits, can be injected into the stratosphere via tropical convective outflow. At these iodine levels, modeled iodine catalytic cycles account for up to 30% of the contemporary ozone loss in the tropical lower stratosphere and can exert a stratospheric ozone depletion potential equivalent to, or even larger than, that of very short-lived bromocarbons. Therefore, we suggest that iodine sources and chemistry need to be considered in assessments of the historical and future evolution of the stratospheric ozone layer.

  8. Atmospheric science: marine aerosols and iodine emissions.

    PubMed

    McFiggans, Gordon

    2005-02-10

    O'Dowd et al. describe the formation of marine aerosols from biogenic iodine and the growth of these aerosols into cloud-condensation nuclei (CCN). Based on chamber and modelling results, the authors suggest that biogenic organic iodine compounds emitted from macroalgae may be responsible for coastal particle bursts and that production of these compounds in the open ocean could increase CCN there too. It has since been shown that coastal particles are more likely to be produced from the photooxidation of molecular iodine. Moreover, I contend that open-ocean particle production and cloud enhancement do not result from emissions of organic iodine at atmospheric levels. For iodine particles to affect cloud properties over the remote ocean, an additional source of iodine is necessary as organic precursors cannot be responsible.

  9. Discovery and Early Uses of Iodine

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Louis

    2000-08-01

    The ancient Chinese recognized goiter and the therapeutic effects of burnt sponge and seaweed in reducing its size or causing its disappearance. The modern use of iodine in the prevention of goiter dates from 1830, when it was proposed that goiter is an iodine deficiency disease due to lack of iodine in the water supply. But unfavorable symptoms of iodism were frequent owing to overenthusiastic use and overdose of iodine. Consequently, iodide prophylaxis was discredited and abandoned. The presence of iodine in organic combination as a normal constituent of the thyroid was established in 1896 and the use of iodine in treatment and prevention of goiter was revived. In 1917 the general use of iodized salt in goitrous areas was shown to be effective in preventing simple endemic goiter.

  10. Determining median urinary iodine concentration that indicates adequate iodine intake at population level.

    PubMed Central

    Delange, François; de Benoist, Bruno; Burgi, Hans

    2002-01-01

    OBJECTIVE: Urinary iodine concentration is the prime indicator of nutritional iodine status and is used to evaluate population-based iodine supplementation. In 1994, WHO, UNICEF and ICCIDD recommended median urinary iodine concentrations for populations of 100- 200 micro g/l, assuming the 100 micro g/l threshold would limit concentrations <50 micro g/l to iodine in iodine-replete populations (schoolchildren and adults) and the proportion of concentrations <50 micro g/l. METHOD: A questionnaire on frequency distribution of urinary iodine in iodine-replete populations was circulated to 29 scientific groups. FINDINGS: Nineteen groups reported data from 48 populations with median urinary iodine concentrations >100 micro g/l. The total population was 55 892, including 35 661 (64%) schoolchildren. Median urinary iodine concentrations were 111-540 (median 201) micro g/l for all populations, 100-199 micro g/l in 23 (48%) populations and >/=200 micro g/l in 25 (52%). The frequencies of values <50 micro g/l were 0-20.8 (mean 4.8%) overall and 7.2% and 2.5% in populations with medians of 100-199 micro g/l and >200 micro g/l, respectively. The frequency reached 20% only in two places where iodine had been supplemented for <2 years. CONCLUSION: The frequency of urinary iodine concentrations <50 micro g/l in populations with median urinary iodine concentrations >/=100 micro g/l has been overestimated. The threshold of 100 micro g/l does not need to be increased. In populations, median urinary iodine concentrations of 100-200 micro g/l indicate adequate iodine intake and optimal iodine nutrition. PMID:12219154

  11. INACTIVATION OF PEPSIN BY IODINE AND THE ISOLATION OF DIIODO-TYROSINE FROM IODINATED PEPSIN

    PubMed Central

    Herriott, Roger M.

    1937-01-01

    In the presence of iodine at pH 5.0–6.0 a solution of pepsin absorbs iodine and the specific proteolytic activity of the solution decreases. The activity is less than 1 per cent of the original activity when the number of iodine atoms per mol of pepsin is 35–40. If the pH is 4.5 or less, iodine reacts very slowly and there is a correspondingly slower loss in activity. Glycyl tyrosine reacts with iodine in a manner similar to pepsin. Experiments were performed to determine the extent to which oxidation of pepsin by iodine occurs during iodination, and if such oxidation were responsible for the loss in enzymatic activity. Although the results were not absolutely decisive, there seems to be no appreciable oxidation taking place during iodination and no relationship between the slight oxidation and loss in peptic activity. From a dialyzed preparation of completely iodinated pepsin which was inactive and contained 13.4 per cent bound iodine, 82 per cent of the iodine was obtained in a solution which analyzed as a solution of diiodo-tyrosine. Because of the presence of a material which contained no iodine and prevented quantitative crystallization, only 53 per cent of the iodine containing substance could be crystallized. This 53 per cent was, however, identified as diiodo-tyrosine. The part of the titration curve which in pepsin and most proteins represents the phenolic group of tyrosine was, in the curve for iodinated pepsin, shifted toward the acid region as expected. From these results, it appears that the loss in proteolytic activity of pepsin, when treated with iodine under the specified conditions, is due to the reaction of the iodine with the tyrosine in pepsin. PMID:19872995

  12. Disposal of radioactive iodine in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.; Defield, J. G.

    1978-01-01

    The possibility of space disposal of iodine waste from nuclear power reactors is investigated. The space transportation system utilized relies upon the space shuttle, a liquid hydrogen/liquid oxygen orbit transfer vehicle, and a solid propellant final stage. The iodine is assumed to be in the form of either an iodide or an iodate, and calculations assume that the final destination is either solar orbit or solar system escape. It is concluded that space disposal of iodine is feasible.

  13. Salivary gland dysfunction following radioactive iodine therapy

    SciTech Connect

    Wiesenfeld, D.; Webster, G.; Cameron, F.; Ferguson, M.M.; MacFadyen, E.E.; MacFarlane, T.W.

    1983-02-01

    Radioactive iodine is used extensively for the treatment of thyrotoxicosis and thyroid carcinoma. Iodine is actively taken up by the salivary glands and, following its use, salivary dysfunction may result as a consequence of radiation damage. The literature is reviewed and a case is reported in which a patient presented with a significant increase in caries rate attributed to salivary dysfunction following radioactive iodine therapy for a thyroid carcinoma.

  14. Lasers.

    PubMed

    Passeron, T

    2012-12-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  15. [Lasers].

    PubMed

    Passeron, T

    2012-11-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  16. Injection of iodine to the stratosphere

    NASA Astrophysics Data System (ADS)

    Saiz-Lopez, Alfonso; Baidar, Sunil; Cuevas, Carlos A.; Koening, Theodore; Fernandez, Rafael P.; Dix, Barbara; Kinnison, Douglas E.; Lamarque, Jean-Francois; Rodriguez-Lloveras, Xavier; Campos, Teresa L.; Volkamer, Rainer

    2016-04-01

    There are still many uncertainties about the influence of iodine chemistry in the stratosphere, as the real amount of reactive iodine injected to this layer the troposphere and the partitioning of iodine species are still unknown. In this work we report a new estimation of the injection of iodine into the stratosphere based on novel daytime (SZA < 45°) aircraft observations in the tropical tropopause layer (TORERO campaign) and a 3D global chemistry-climate model (CAM-Chem) with the most recent knowledge about iodine photochemistry. The results indicate that significant levels of total reactive iodine (0.25-0.7 pptv), between 2 and 5 times larger than the accepted upper limits, could be injected into the stratosphere via tropical convective outflow. At these iodine levels, modelled iodine catalytic cycles account for up to 30% of the contemporary ozone loss in the tropical lower stratosphere and can exert a stratospheric ozone depletion potential equivalent or even larger than that of very short-lived bromocarbons. Therefore, we suggest that iodine sources and chemistry need to be considered in assessments of the historical and future evolution of the stratospheric ozone layer.

  17. Chalcogenide aerogels as sorbents for radioactive iodine

    SciTech Connect

    Subrahmanyam, Kota S.; Sarma, Debajit; Malliakas, Christos; Polychronopoulou, Kyriaki; Riley, Brian J.; Pierce, David A.; Chun, Jaehun; Kanatzidis, Mercouri G.

    2015-04-14

    Iodine (129I) is one of the radionuclides released in nuclear fuel reprocessing and poses risk to public safety due to its involvement in human metabolic processes. In order to prevent the leaching of hazardous radioactive iodine into the environment, its effective capture and sequestration is pivotal. In the context of finding a suitable matrix for capturing radioactive iodine the chalcogels, NiMoS4, CoMoS4, Sb4Sn4S12, Zn2Sn2S6, and CoSx (x = 4-5) were explored as iodine sorbents. All the chalcogels showed high uptake, reaching up to 225 mass% (2.25 g/g) of the final mass owing to strong chemical and physical iodine-chalcogen interactions. Analysis of the iodine-loaded specimens revealed that the iodine chemically reacted with Sb4Sn4S12, Zn2Sn2S6, and CoSx to form metal complexes SbI3, SnI4, and, KI respectively. The NiMoS4 and CoMoS4 chalcogels did not appear to undergo a chemical reaction with iodine since iodide complexes were not observed with these samples. Once heated, the iodine-loaded chalcogels released iodine in the temperature range of 75 °C to 220 °C, depending on the nature of iodine speciation. In the case of Sb4Sn4S12 and Zn2Sn2S6 iodine release was observed around 150 °C in the form of SnI4 and SbI3, respectively. The NiMoS4, CoMoS4, and CoSx released iodine at ~75 °C, which is consistent with physisorbed iodine. Preliminary investigations on consolidation of iodine-loaded Zn2Sn2S6 with Sb2S3 as a glass forming additive showed the content of iodine in consolidated glass ingots at around 25 mass%.

  18. Automated iodine monitor system. [for aqueous solutions

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The feasibility of a direct spectrophotometric measurement of iodine in water was established. An iodine colorimeter, was built to demonstrate the practicality of this technique. The specificity of this method was verified when applied to an on-line system where a reference solution cannot be used, and a preliminary design is presented for an automated iodine measuring and controlling system meeting the desired specifications. An Automated iodine monitor/controller system based on this preliminary design was built, tested, and delivered to the Johnson Space Center.

  19. Large-Eddy/Reynolds-Averaged Navier-Stokes Simulation of Shock-Train Development in a Coil-Laser Diffuser

    DTIC Science & Technology

    2014-09-06

    train formation and reactant mixing in a model Chemical Oxygen Iodine Laser (COIL) unit. The configuration consists of a converging-diverging nozzle, a...appear to influence the mixing process in the lasing cavity significantly. 15. SUBJECT TERMS Large-eddy simulation, chemical oxygen iodine lasers...model Chemical Oxygen Iodine Laser (COIL) unit. The configuration consists of a converging-diverging nozzle, a lasing cavity, and a diffuser. The

  20. Theoretical studies of solar lasers and converters

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.

    1988-01-01

    A second computer program was developed for the simulation of an n - C3F7I iodine laser. The computer program is given in Appendix A and a typical output from the computer program is illustrated in Appendix B.

  1. Advanced solar energy conversion. [solar pumped gas lasers

    NASA Technical Reports Server (NTRS)

    Lee, J. H.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.

  2. Urinary iodine, thyroid function, and thyroglobulin as biomarkers of iodine status.

    PubMed

    Pearce, Elizabeth N; Caldwell, Kathleen L

    2016-09-01

    The accurate assessment of population iodine status is necessary to inform public health policies and clinical research on iodine nutrition, particularly the role of iodine adequacy in normal neurodevelopment. Urinary iodine concentration (UIC) directly reflects dietary iodine intake and is the most common indicator used worldwide to assess population iodine status. The CDC established the Ensuring the Quality of Iodine Procedures program in 2001 to provide laboratories that measure urinary iodine with an independent assessment of their analytic performance; this program fosters improvement in the assessment of UIC. Clinical laboratory tests of thyroid function (including serum concentrations of the pituitary hormone thyrotropin and the thyroid hormones thyroxine and triiodothyronine) are sometimes used as indicators of iodine status, although such use is often problematic. Even in severely iodine-deficient regions, there is a great deal of intraindividual variation in the ability of the thyroid to adapt. In most settings and in most population subgroups other than newborns, thyroid function tests are not considered sensitive indicators of population iodine status. However, the thyroid-derived protein thyroglobulin is increasingly being used for this purpose. Thyroglobulin can be measured in either serum or dried blood spot (DBS) samples. The use of DBS samples is advantageous in resource-poor regions. Improved methodologies for ascertaining maternal iodine status are needed to facilitate research on developmental correlates of iodine status. Thyroglobulin may prove to be a useful biomarker for both maternal and neonatal iodine status, but validated assay-specific reference ranges are needed for the determination of iodine sufficiency in both pregnant women and neonates, and trimester-specific ranges are possibly needed for pregnant women. UIC is currently a well-validated population biomarker, but individual biomarkers that could be used for research, patient care

  3. Exploding conducting film laser pumping apparatus

    DOEpatents

    Ware, K.D.; Jones, C.R.

    1984-04-27

    The 342-nm molecular iodine and the 1.315-..mu..m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  4. Historical aspects of iodine deficiency control.

    PubMed

    Vanderpas, Jean-Baptiste; Moreno-Reyes, Rodrigo

    2017-04-01

    In 1895, iodine was characterized as an essential element of thyroid tissue by Baumann. The efficacy of iodine to prevent goiter was demonstrated by Marine in Northern USA in 1916-1920. Severe endemic goiter and cretinism had been almost entirely eliminated from continental Western Europe and Northern America before the 1930's; however large populations elsewhere and even some places in Western Europe (Sicily) were still affected up to the 2000's. Public health consequences of iodine deficiency are not limited to endemic goiter and cretinism. Iodine deficiency disorders include also increased neonatal death rate and decreased intellectual development, although these consequences are not included in the current estimation of the Global Burden Disease related to iodine deficiency. Severe iodine deficiency as a public health problem is now largely under control worldwide, but can still affect isolated places, in hard-to-reach and/or politically neglected populations. We emphasize the importance of maintaining international cooperation efforts, in order to monitor iodine status where iodine deficiency is now adequately controlled, and identify at-risk population where it is not. The goal should be now global eradication of severe iodine deficiency. Commercial distribution of iodized salt remains the most appropriate strategy. A randomized clinical trial in New Guinea clearly showed in the 1970's that correcting severe iodine deficiency early in pregnancy prevents endemic neurological cretinism. This supports the essential role of thyroid hormones of maternal origin on the normal fetal development, during the first trimester of pregnancy (i.e. when fetal thyroid is still not functional). A randomized clinical trial in Congo (RD) in the 1970's also showed that correcting severe iodine deficiency during pregnancy prevents myxœdematous cretinism, particularly prevalent in affected Congolese areas.

  5. The short- and long-term frequency stabilization of an injection-locked Nd:YAG laser in reference to a Fabry-Perot cavity and an iodine saturated absorption line

    NASA Astrophysics Data System (ADS)

    Musha, Mitsuru; Kanaya, Takeshi; Nakagawa, Ken'ichi; Ueda, Ken-ichi

    2000-09-01

    We have developed a wideband frequency-stabilized injection-locked Nd:YAG laser as a light source for the laser interferometric gravitational wave detector, in which short-term frequency stability of the laser improves the sensitivity of the interferometer and the long-term frequency stability aims for the stable long-time operation of the interferometer. The frequency of a 2-W injection-locked laser is locked to both a rigid Fabry-Perot cavity with ULE spacer and saturated absorption line of 127I2 simultaneously with two nested servo loops, and the long-term as well as short-term frequency stability are obtained. The drift of the resonant frequency of the rigid Fabry-Perot cavity is measured and the stability of the Fabry-Perot cavity is estimated to be 20× f-1 [Hz/√Hz]. The predicted frequency stabilities of the present dual-reference-locked laser are numerically simulated. Our wideband frequency-stabilized laser is also available for the high-resolution spectroscopy.

  6. Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine

    NASA Astrophysics Data System (ADS)

    Carpenter, Lucy J.; MacDonald, Samantha M.; Shaw, Marvin D.; Kumar, Ravi; Saunders, Russell W.; Parthipan, Rajendran; Wilson, Julie; Plane, John M. C.

    2013-02-01

    Naturally occurring bromine- and iodine-containing compounds substantially reduce regional, and possibly even global, tropospheric ozone levels. As such, these halogen gases reduce the global warming effects of ozone in the troposphere, and its capacity to initiate the chemical removal of hydrocarbons such as methane. The majority of halogen-related surface ozone destruction is attributable to iodine chemistry. So far, organic iodine compounds have been assumed to serve as the main source of oceanic iodine emissions. However, known organic sources of atmospheric iodine cannot account for gas-phase iodine oxide concentrations in the lower troposphere over the tropical oceans. Here, we quantify gaseous emissions of inorganic iodine following the reaction of iodide with ozone in a series of laboratory experiments. We show that the reaction of iodide with ozone leads to the formation of both molecular iodine and hypoiodous acid. Using a kinetic box model of the sea surface layer and a one-dimensional model of the marine boundary layer, we show that the reaction of ozone with iodide on the sea surface could account for around 75% of observed iodine oxide levels over the tropical Atlantic Ocean. According to the sea surface model, hypoiodous acid--not previously considered as an oceanic source of iodine--is emitted at a rate ten-fold higher than that of molecular iodine under ambient conditions.

  7. Photodissociation dynamics of IBr(-)(CO(2))(n), n<15.

    PubMed

    Sanford, Todd; Han, Sang-Yun; Thompson, Matthew A; Parson, Robert; Lineberger, W Carl

    2005-02-01

    We report the ionic photoproducts produced following photoexcitation of mass selected IBr(-)(CO(2))(n), n=0-14, cluster ions at 790 and 355 nm. These wavelengths provide single state excitation to two dissociative states, corresponding to the A(') (2)Pi(1/2) and B 2 (2)Sigma(1/2) (+) states of the IBr(-) chromophore. Excitation of these states in IBr(-) leads to production of I(-)+Br and Br(-)+I( *), respectively. Potential energy curves for the six lowest electronic states of IBr(-) are calculated, together with structures for IBr(-)(CO(2))(n), n=1-14. Translational energy release measurements on photodissociated IBr(-) determine the I-Br(-) bond strength to be 1.10+/-0.04 eV; related measurements characterize the A(') (2)Pi(1/2)<--X (2)Sigma(1/2) (+) absorption band. Photodissociation product distributions are measured as a function of cluster size following excitation to the A(') (2)Pi(1/2) and B 2 (2)Sigma(1/2) (+) states. The solvent is shown to drive processes such as spin-orbit relaxation, charge transfer, recombination, and vibrational relaxation on the ground electronic state. Following excitation to the A(') (2)Pi(1/2) electronic state, IBr(-)(CO(2))(n) exhibits size-dependent cage fractions remarkably similar to those observed for I(2) (-)(CO(2))(n). In contrast, excitation to the B 2 (2)Sigma(1/2) (+) state shows extensive trapping in excited states that dominates the recombination behavior for all cluster sizes we investigated. Finally, a pump-probe experiment on IBr(-)(CO(2))(8) determines the time required for recombination on the ground state following excitation to the A(') state. While the photofragmentation experiments establish 100% recombination in the ground electronic state for this and larger IBr(-) cluster ions, the time required for recombination is found to be approximately 5 ns, some three orders of magnitude longer than observed for the analogous I(2) (-) cluster ion. Comparisons are made with similar experiments carried out on I(2

  8. On the ultraviolet photodissociation of H{sub 2}Te

    SciTech Connect

    Alekseyev, Aleksey B.; Liebermann, Heinz-Peter; Wittig, Curt

    2004-11-15

    The photodissociation of H{sub 2}Te through excitation in the first absorption band is investigated by means of multireference spin-orbit configuration interaction (CI) calculations. Bending potentials for low-lying electronic states of H{sub 2}Te are obtained in C{sub 2v} symmetry for Te-H distances fixed at the ground state equilibrium value of 3.14a{sub 0}, as well as for the minimum energy path constrained to R{sub 1}=R{sub 2}. Asymmetric cuts of potential energy surfaces for excited states (at R{sub 1}=3.14a{sub 0} and {theta}=90.3 deg.) are obtained for the first time. It is shown that vibrational structure in the 380-400 nm region of the long wavelength absorption tail is due to transitions to 3A{sup '}, which has a shallow minimum at large HTe-H separations. Transitions to this state are polarized in the molecular plane, and this state converges to the excited TeH({sup 2}{pi}{sub 1/2})+H({sup 2}S) limit. These theoretical data are in accord with the selectivity toward TeH({sup 2}{pi}{sub 1/2}) relative to TeH({sup 2}{pi}{sub 3/2}) that has been found experimentally for 355 nm H{sub 2}Te photodissociation. The calculated 3A{sup <}-X-tildeA{sup '} transition dipole moment increases rapidly with HTe-H distance; this explains the observation of 3A{sup '} vibrational structure for low vibrational levels, despite unfavorable Franck-Condon factors. According to the calculated vertical energies and transition moment data, the maximum in the first absorption band at {approx_equal}245 nm is caused by excitation to 4A{sup ''}, which has predominantly 2{sup 1}A{sup ''} ({sup 1}B{sub 1} in C{sub 2v} symmetry) character.

  9. Iodine transport analysis in the ESBWR.

    SciTech Connect

    Kalinich, Donald A.; Gauntt, Randall O.; Young, Michael Francis; Longmire, Pamela

    2009-03-01

    A simplified ESBWR MELCOR model was developed to track the transport of iodine released from damaged reactor fuel in a hypothesized core damage accident. To account for the effects of iodine pool chemistry, radiolysis of air and cable insulation, and surface coatings (i.e., paint) the iodine pool model in MELCOR was activated. Modifications were made to MELCOR to add sodium pentaborate as a buffer in the iodine pool chemistry model. An issue of specific interest was whether iodine vapor removed from the drywell vapor space by the PCCS heat exchangers would be sequestered in water pools or if it would be rereleased as vapor back into the drywell. As iodine vapor is not included in the deposition models for diffusiophoresis or thermophoresis in current version of MELCOR, a parametric study was conducted to evaluate the impact of a range of iodine removal coefficients in the PCCS heat exchangers. The study found that higher removal coefficients resulted in a lower mass of iodine vapor in the drywell vapor space.

  10. Modeling the complex bromate-iodine reaction.

    PubMed

    Machado, Priscilla B; Faria, Roberto B

    2009-05-07

    In this article, it is shown that the FLEK model (ref 5 ) is able to model the experimental results of the bromate-iodine clock reaction. Five different complex chemical systems, the bromate-iodide clock and oscillating reactions, the bromite-iodide clock and oscillating reactions, and now the bromate-iodine clock reaction are adequately accounted for by the FLEK model.

  11. An Iodine Fluorescence Quenching Clock Reaction

    ERIC Educational Resources Information Center

    Weinberg, Richard B.; Muyskens, Mark

    2007-01-01

    Clock reactions based upon competing oxidation and reduction reactions of iodine and starch as the most popular type of chemistry example is presented to illustrate the redox phenomena, reaction kinetics, and principles of chemical titration. The examination of the photophysical principles underlying the iodine fluorescence quenching clock…

  12. Iodine concentration of organic and conventional milk: implications for iodine intake.

    PubMed

    Bath, Sarah C; Button, Suzanne; Rayman, Margaret P

    2012-04-01

    Iodine is required for adequate thyroid hormone production, which is essential for brain development, particularly in the first trimester of pregnancy. Milk is the principal source of iodine in UK diets, and while small studies in Europe have shown organic milk to have a lower iodine concentration than conventional milk, no such study has been conducted in Britain. In view of the increasing popularity of organic milk in the UK, we aimed to compare the iodine concentration of retail organic and conventional milk and to evaluate regional influences in iodine levels. Samples of organic milk (n 92) and conventional milk (n 80), purchased from retail outlets in sixteen areas of the UK (southern England, Wales and Northern Ireland), were analysed for iodine using inductively coupled plasma MS. The region of origin of the milk was determined from information on the label. Organic milk was 42·1 % lower in iodine content than conventional milk (median iodine concentration 144·5 v. 249·5 ng/g; P < 0·001). There was no difference in the iodine concentration of either conventional or organic milk by area of purchase. However, a difference was seen in iodine concentration of organic milk by region of origin (P < 0·001). The lower iodine concentration of organic milk has public-health implications, particularly in view of emerging evidence of iodine deficiency in UK population sub-groups, including pregnant women. Individuals who choose organic milk should be aware that their iodine intake may be compromised and should ensure adequate iodine intake from alternative sources.

  13. Multiphoton Ionization of Laser-Desorbed Neutral Molecules in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    DTIC Science & Technology

    1990-05-19

    dissociates when irradiated with a gated pulse of light from a continuous wave carbon dioxide laser , forming two fragment ions at m/z = 200 and 171...this manner to laser photodissociation in a unique 3- laser experiment in which a third (gated, continuous- wave (cw) CO) laser has been used to...pathway shown in Figure 1), thus allowing the beam to travel through the center of the cell. Typical UV laser pulse energies were on the order of 50-100

  14. Oriented grain growth in ZnO thin films by Iodine doping

    NASA Astrophysics Data System (ADS)

    Thomas, Deepu; Vattappalam, Sunil C.; Mathew, Sunny; Augustine, Simon

    2015-02-01

    ZnO thin films were prepared by Successive Ionic Layer Adsorption Reaction (SILAR) method. Oriented grain growth in Iodine doped ZnO thin films were studied. The oriented grain growth in samples was studied by comparing the peak intensities from X-ray diffraction data and surface morphology by scanning electron microscopy. It is found that oriented grain growth significantly enhanced by Iodine doping. When the oriented grain growth increases, crystallinity of the thin film improves, resistance and band gap decrease. ZnO thin films having good crystallinity with preferential (002) orientation is a prerequisite for the fabrication of devices like UV diode lasers, acoustic- optic devices etc. A possible mechanism for the oriented grain growth is also investigated. It is inferred that creation of point defects is responsible for the enhanced oriented grain growth in ZnO thin films when doped with iodine.

  15. Fluorescence analysis of iodinated acetophenone derivatives.

    PubMed

    Crivelaro, F; Oliveira, M R S; Lima, S M; Andrade, L H C; Casagrande, G A; Raminelli, C; Caires, A R L

    2015-03-15

    In the present paper the synthesis and optical characterization of iodinated acetophenone, 4-hydroxy-3-iodoacetophenone and 4-hydroxy-3,5-diiodoacetophenone obtained from 4-hydroxyacetophenone, were carried out. The optical features of iodinated molecules were determined by performing the UV-Vis absorption, fluorescence and thermal lens spectroscopies. The results showed that the optical properties of the 4-hydroxyacetophenone is altered when the iodine atom is inserted, as substituent, in the aromatic ring. Although it was determined that the optical feature was changed when one iodine atom was inserted in the aromatic ring (4-hydroxy-3-iodoacetophenone), the results revealed that emission behavior was strongly altered when two iodine atoms (4-hydroxy-3,5-diiodoacetophenone) were acting as substituents: the fluorescence quantum efficiency increases approximately 60%.

  16. Global modeling of tropospheric iodine aerosol

    NASA Astrophysics Data System (ADS)

    Sherwen, Tomás. M.; Evans, Mat J.; Spracklen, Dominick V.; Carpenter, Lucy J.; Chance, Rosie; Baker, Alex R.; Schmidt, Johan A.; Breider, Thomas J.

    2016-09-01

    Natural aerosols play a central role in the Earth system. The conversion of dimethyl sulfide to sulfuric acid is the dominant source of oceanic secondary aerosol. Ocean emitted iodine can also produce aerosol. Using a GEOS-Chem model, we present a simulation of iodine aerosol. The simulation compares well with the limited observational data set. Iodine aerosol concentrations are highest in the tropical marine boundary layer (MBL) averaging 5.2 ng (I) m-3 with monthly maximum concentrations of 90 ng (I) m-3. These masses are small compared to sulfate (0.75% of MBL burden, up to 11% regionally) but are more significant compared to dimethyl sulfide sourced sulfate (3% of the MBL burden, up to 101% regionally). In the preindustrial, iodine aerosol makes up 0.88% of the MBL burden sulfate mass and regionally up to 21%. Iodine aerosol may be an important regional mechanism for ocean-atmosphere interaction.

  17. Three-body dissociations: The photodissociation of dimethyl sulfoxide at 193 nm

    SciTech Connect

    Blank, D.A.; North, S.W.; Stranges, D.

    1997-04-01

    When a molecule with two equivalent chemical bonds is excited above the threshold for dissociation of both bonds, how the rupture of the two bonds is temporally coupled becomes a salient question. Following absorption at 193 nm dimethyl sulfoxide (CH{sub 3}SOCH{sub 3}) contains enough energy to rupture both C-S bonds. This can happen in a stepwise (reaction 1) or concerted (reaction 2) fashion where the authors use rotation of the SOCH{sub 3} intermediate prior to dissociation to define a stepwise dissociation: (1) CH{sub 3}SOCH{sub 3} {r_arrow} 2CH{sub 3} + SO; (2a) CH{sub 3}SOCH{sub 3} {r_arrow} CH{sub 3} + SOCH{sub 3}; and (2b) SOCH{sub 3} {r_arrow} SO + CH{sub 3}. Recently, the dissociation of dimethyl sulfoxide following absorption at 193 nm was suggested to involve simultaneous cleavage of both C-S bonds on an excited electronic surface. This conclusion was inferred from laser induced fluorescence (LIF) and resonant multiphoton ionization (2+1 REMPI) measurements of the internal energy content in the CH{sub 3} and SO photoproducts and a near unity quantum yield measured for SO. Since this type of concerted three body dissociation is very interesting and a rather rare event in photodissociation dynamics, the authors chose to investigate this system using the technique of photofragment translational spectroscopy at beamline 9.0.2.1. The soft photoionization provided by the VUV undulator radiation allowed the authors to probe the SOCH{sub 3} intermediate which had not been previously observed and provided good evidence that the dissociation of dimethyl sulfoxide primarily proceeds via a two step dissociation, reaction 2.

  18. Photodissociation of cyclobutyl bromide at 234 nm studied using velocity map imaging.

    PubMed

    Liu, Yi; Lau, Kai-Chung; Butler, Laurie J

    2006-04-27

    This study investigates the 234 nm photodissociation dynamics of cyclobutyl bromide using a two-dimensional photofragment velocity imaging technique. The spin-orbit ground- and excited-state Br(2P) atoms are state-selectively detected via [2+1] resonance enhanced multiphoton ionization (REMPI), whereas the cyclobutyl radicals are ionized using 157 nm laser light. The Br(2P(3/2)) and the Br(2P(1/2)) atoms and their c-C4H7 radical cofragments evidence a single-peaked, Gaussian-shaped translational energy distribution ranging from approximately 14 to approximately 39 kcal/mol and angular distributions with significant parallel character. The Br(2P(1/2))/ Br(2P(3/2)) spin-orbit branching ratio is determined to be 0.11 +/- 0.07 by momentum match between the Br(2P) photofragments and the recoiling c-C4H7 fragments, assuming a uniform photoionization probability of the c-C4H7 radicals with an internal energy range of 10-35 kcal/mol. The REMPI line strength ratio for the detection of Br(2P(3/2)) and Br(2P(1/2)) atoms at 233.681 and 234.021 nm, respectively, is therefore derived to be 0.10 +/- 0.07. The measured recoil kinetic energies of the c-C4H7 radicals, and the resulting distribution of internal energies, indicates some of the radicals are formed with total internal energies above the barrier to isomerization and subsequent dissociation, but our analysis indicates they may be stable due to the substantial fraction of the internal energy which is partitioned to rotational energy of the radicals.

  19. Carbon monoxide binding by hemoglobin and myoglobin under photodissociating conditions.

    PubMed

    Brunori, M; Bonaventura, J; Bonaventura, C; Antonini, E; Wyman, J

    1972-04-01

    Carbon monoxide binding by myoglobin and hemoglobin has been studied under conditions of constant illumination. For hemoglobin, the homotropic heme-heme interaction (cooperativity) and the heterotropic Bohr effect are invariant with light intensity over a 1000-fold change of c((1/2)). The dissociation constant, measured as c((1/2)), increases linearly with light intensity, indicating that photodissociation is a one-quantum process. At sufficiently high illumination the apparent enthalpy of ligand binding becomes positive, although in the absence of light it is known to be negative. This finding indicates that light acts primarily by increasing the "off" constants by an additive factor. The invariance of both cooperativity and Bohr effect raises a perplexing issue. It would appear to demand either that the "off" constants for the various elementary steps are all alike (which is contrary to current ideas) or that the additive factor is in each case proportional to the particular "off" constant to which it is added (a seemingly improbable alternative).

  20. Radical formation in the coma from photodissociation of ice grains

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Gerth, Christopher

    1990-01-01

    Long ago visual observations of comets suggested that there are jets in comets but it has only been recently that A'Hearn et al. have proven that some of these jets are due to emission from the CN radical. Recent studies in the lab have shown that CN radicals can be ejected directly into the gas phase from the photolysis of frozen vapors if the parent molecular has been excited to repulsive excited state. This later observation suggests that the jets that have been observed may be due to photodissociation of icy grains in the coma. A theory of radical formation from icy grains is presented. It is shown that direct formation of free radicals in the coma is an effective way to produce radicals from icy grains in the coma. The model predicts that icy grains could produce from 6 to 800,000 OH radicals/s per grain depending upon whether the radius of the grain is 0.3 to 100 micron.

  1. Theoretical study of ultraviolet induced photodissociation dynamics of sulfuric acid

    NASA Astrophysics Data System (ADS)

    Murakami, Tatsuhiro; Ohta, Ayumi; Suzuki, Tomoya; Ikeda, Kumiko; Danielache, Sebastian O.; Nanbu, Shinkoh

    2015-05-01

    Photodissociation dynamics of sulfuric acid after excitation to the first and second excited states (S1 and S2) were studied by an on-the-fly ab initio molecular dynamics simulations based on the Zhu-Nakamura version of the trajectory surface hopping (ZN-TSH). Forces acting on the nuclear motion were computed on-the-fly by CASSCF method with Dunning's augmented cc-pVDZ basis set. It was newly found that the parent molecule dissociated into two reaction-channels (i) HSO4(12A″) + H(2S) by S1-excitation, and (ii) HSO4(22A″) + H(2S) by S2-excitation. The direct dissociation dynamics yield products different from the SO2 + 2OH fragments often presented in the literature. Both channels result in the same product and differs only in the electronic state of the HSO4 fragment. The trajectories running on S2 do not hop with S0 and a nonadiabatic transition happens at the S2-S1 conical intersection located at a longer OH bond-length than the S1-S0 intersection producing an electronic excited state (22A″) of HSO4 product.

  2. State-correlated DC slice imaging of formaldehyde photodissociation

    NASA Astrophysics Data System (ADS)

    Suits, Arthur G.; Chambreau, Steven D.; Lahankar, Sridhar A.

    High-resolution slice imaging methods allow for detection of single product quantum states with sufficient velocity resolution to infer the full correlated product state distribution of the undetected fragment. This is a level of detail not available in previous studies of formaldehyde photodissociation, and in this application it reveals startling new aspects of unimolecular decomposition. The CO rotational distributions from near ultraviolet dissociation of formaldehyde are bimodal, and the imaging experiments allow us to decompose these into two dynamically distinct components: the conventional molecular dissociation over a high exit barrier, and a novel `roaming atom' reaction in which frustrated radical dissociation events lead to intramolecular H abstraction, bypassing the transition state entirely. In probing the dynamics of the conventional molecular dissociation over the barrier, we use the complete vH2-jCO correlation to model the exit channel dynamics in new detail. Furthermore, these state-correlated measurements provide insight into radical-radical reactions and the underlying dynamics and energy dependence of the roaming pathway.

  3. Photodissociation spectroscopy of Ca+(C2H4)

    NASA Astrophysics Data System (ADS)

    Holmes, J. H.; Kleiber, P. D.; Olsgaard, D. A.; Yang, K.-H.

    2000-04-01

    We have studied Ca+(C2H4) by photodissociation spectroscopy in a reflectron time-of-flight mass spectrometer over the spectral range 440-790 nm. Ca+ is the only photofragment observed. We find four absorption bands of the complex and assign them to metal-centered transitions correlating with excitation of Ca+(3d and 4p). Spectral assignment is supported by ab initio electronic structure calculations of the complex and isotope substitution experiments. Calculations find a weakly bound ground state equilibrium structure with C2V π-bonding geometry and a dissociation energy of De″=0.506 eV. Theoretical and experimental results show the 4pπ(2 2B2 & 2 2B1) excited states to be relatively weakly bound at long range. Spectral analysis gives vibrational constants for the Ca+--C2H4 intermolecular a1-stretch in the 1 2A1, 2 2B1, and 2 2B2 states, and for the CH2-CH2 a1-wag and the HCH a1-bend in 2 2B2. The results offer an interesting comparison with previous studies of similar weakly bound bimolecular complexes of light metal ions with alkene or alkane hydrocarbons.

  4. Zero-width resonances in intense-field molecular photodissociation

    SciTech Connect

    Atabek, Osman; Lefebvre, Roland; Gadea, Florent Xavier

    2006-12-15

    We provide additional evidence for the existence of zero-width resonances in the intense-field photodissociation of H{sub 2}{sup +}. In a previous investigation [Atabek, Chrysos, and Lefebvre, Phys. Rev. A 49, R8 (1994)] the situation, in a two-channel dressed picture, corresponded to a diabatic crossing point classically reachable in both adiabatic potentials. A semiclassical explanation could be modeled after that developed for predissociation in the intermediate-coupling regime. At higher frequencies the crossing point lies between the two turning points. A numerical study shows that zero-width resonances exist also in such a case. An extension of the semiclassical approach provides an explanation for the occurrence of these resonances. It is shown that they survive even when going to a multichannel description. The associated wave functions and probability densities are studied: they are very similar to those of the upper adiabatic potential, with a minor component in the lower adiabatic channel. Some conditions for the production of such long-lived dressed molecular species are stated.

  5. Ultrafast anisotropic protein quake propagation after CO photodissociation in myoglobin

    PubMed Central

    Brinkmann, Levin U. L.

    2016-01-01

    “Protein quake” denotes the dissipation of excess energy across a protein, in response to a local perturbation such as the breaking of a chemical bond or the absorption of a photon. Femtosecond time-resolved small- and wide-angle X-ray scattering (TR-SWAXS) is capable of tracking such ultrafast protein dynamics. However, because the structural interpretation of the experiments is complicated, a molecular picture of protein quakes has remained elusive. In addition, new questions arose from recent TR-SWAXS data that were interpreted as underdamped oscillations of an entire protein, thus challenging the long-standing concept of overdamped global protein dynamics. Based on molecular-dynamics simulations, we present a detailed molecular movie of the protein quake after carbon monoxide (CO) photodissociation in myoglobin. The simulations suggest that the protein quake is characterized by a single pressure peak that propagates anisotropically within 500 fs across the protein and further into the solvent. By computing TR-SWAXS patterns from the simulations, we could interpret features in the reciprocal-space SWAXS signals as specific real-space dynamics, such as CO displacement and pressure wave propagation. Remarkably, we found that the small-angle data primarily detect modulations of the solvent density but not oscillations of the bare protein, thereby reconciling recent TR-SWAXS experiments with the notion of overdamped global protein dynamics. PMID:27601659

  6. On the conformational memory in the photodissociation of formic acid.

    PubMed

    Martínez-Núñez, E; Vazquez, S A; Borges, I; Rocha, A B; Estévez, C M; Castillo, J F; Aoiz, F J

    2005-03-31

    The photodissociation of formic acid at 248 and 193 nm was investigated by classical trajectory and RRKM calculations using an interpolated potential energy surface, iteratively constructed using the B3LYP/aug-cc-pVDZ level of calculation. Several sampling schemes in the ground electronic state were employed to explore the possibility of conformational memory in formic acid. The CO/CO2 branching ratios obtained from trajectories initiated at the cis and at the trans conformers are almost identical to each other and in very good accordance with the RRKM results. In addition, when a specific initial excitation that simulates more rigorously the internal conversion process is used, the calculated branching ratio does not vary with respect to those obtained from cis and trans initializations. This result is at odds with the idea of conformational memory in the ground state proposed recently for the interpretation of the experimental results. It was also found that the calculated CO vibrational distributions after dissociation of the parent molecule at 248 nm are in agreement with the experimental available data.

  7. Evolution and saturation of Autowaves in photodissociation regions

    NASA Astrophysics Data System (ADS)

    Krasnobaev, K. V.; Tagirova, R. R.; Arafailov, S. I.; Kotova, G. Yu.

    2016-07-01

    The propagation of plane, cylindrical, and spherical waves in a thermally unstable gas-dust medium has been simulated numerically. As applied to the photodissociation regions near O and B stars, we take into account the interaction of ultraviolet radiation with dust grains and large polycyclic aromatic hydrocarbon molecules as well as the gas cooling through the excitation of CII ions and OI atoms and the deexcitation of rotational levels of CO molecules. The instability regions have been determined. The perturbation growth times corresponding to them are ~103-105 yr. We show that wave breaking occurs irrespective of the geometry of motion, while a perturbation in the form of a single pulse gives rise to a sequence of shock waves. The post-shock gas velocity is approximately 0.1-0.5 of the sound velocity, so that the autowaves can contribute noticeably to the observed velocity dispersion of the gas near the boundaries of HII regions. Two-dimensional simulations suggest that the presence of multiple shocks in a thermally unstable medium can accelerate significantly the destruction of preexisting isolated condensations.

  8. Photodissociation of CCH: classical trajectory calculations involving seven electronic states.

    PubMed

    Apaydin, Gökşin; Fink, William H; Jackson, William M

    2004-11-15

    The photodissociation dynamics of ethynyl radical, C(2)H, involving seven electronic states is studied by classical trajectory calculations. Initial values of the trajectories are selected based on relative absorption intensities calculated by Mebel et al. The energies and the derivatives are interpolated by three-dimensional cubic spline interpolator using an extended data pool. Mean square errors and standard deviations in interpolation of energies for 450 data points are found to be in the range 3.1 x 10(-6)-1.4 x 10(-5) and 1.7 x 10(-3)-3.8 x 10(-3) hartrees, respectively. The photofragments of C(2) and H are produced mainly in the X (1)Sigma(g) (+), a (3)Pi(u), b (3)Sigma(g) (-), c (3)Sigma(u) (+), A (1)Pi(u), B (1)Delta(g) electronic states of C(2) as product. The avoided crossings do not appear to be in the main dissociation pathways. The internal distributions are in good accord with the experimental results where comparison is possible, suggesting that the fragmentation mechanism of C(2)H(2) into C(2) and H is a two step process involving C(2)H radical as an intermediate with a life time long enough to allow complete collection of the phase space in the experiments.

  9. Photodissociation of CCH: Classical trajectory calculations involving seven electronic states

    NASA Astrophysics Data System (ADS)

    Apaydın, Gökşin; Fink, William H.; Jackson, William M.

    2004-11-01

    The photodissociation dynamics of ethynyl radical, C2H, involving seven electronic states is studied by classical trajectory calculations. Initial values of the trajectories are selected based on relative absorption intensities calculated by Mebel et al. The energies and the derivatives are interpolated by three-dimensional cubic spline interpolator using an extended data pool. Mean square errors and standard deviations in interpolation of energies for 450 data points are found to be in the range 3.1×10-6-1.4×10-5 and 1.7×10-3-3.8×10-3 hartrees, respectively. The photofragments of C2 and H are produced mainly in the X 1Σg+, a 3Πu, b 3Σg-, c 3Σu+, A 1Πu, B 1Δg electronic states of C2 as product. The avoided crossings do not appear to be in the main dissociation pathways. The internal distributions are in good accord with the experimental results where comparison is possible, suggesting that the fragmentation mechanism of C2H2 into C2 and H is a two step process involving C2H radical as an intermediate with a life time long enough to allow complete collection of the phase space in the experiments.

  10. Changes in the regulation of iodine crystals and chemical mixtures containing over 2.2 percent iodine. Final rule.

    PubMed

    2007-07-02

    This rulemaking changes the regulation of the listed chemical iodine under the chemical regulatory provisions of the Controlled Substances Act (CSA). The Drug Enforcement Administration (DEA) believes that this action is necessary to remove deficiencies in the existing regulatory controls, which have been exploited by drug traffickers who divert iodine (in the form of iodine crystals and iodine tincture) for the illicit production of methamphetamine in clandestine drug laboratories. This rulemaking moves iodine from List II to List I; reduces the iodine threshold from 0.4 kilograms to zero kilograms; adds import and export regulatory controls; and controls chemical mixtures containing greater than 2.2 percent iodine. This rulemaking establishes regulatory controls that will apply to iodine crystals and iodine chemical mixtures that contain greater than 2.2 percent iodine. This regulation therefore controls iodine crystals and strong iodine tinctures/solutions (e.g., 7 percent iodine) that do not have common household uses and instead have limited application in livestock, horses, and for disinfection of equipment. Household products such as 2 percent iodine tincture/solution and household disinfectants containing iodine complexes will not be adversely impacted by this regulation. Additionally, the final rule exempts transactions of up to one-fluid-ounce (30 ml) of Lugol's Solution. Persons handling regulated iodine materials are required to register with DEA, are subject to the import/export notification requirements of the CSA, and are required to maintain records of all regulated transactions involving iodine regardless of size.

  11. Assessing Capabilities of the High Energy Liquid Laser Area Defense System through Combat Simulations

    DTIC Science & Technology

    2008-03-01

    Coast ............................................ 36 Figure 10. Extinction Coefficient vs Wavelength...significant cooling system. For example, the current Chemical Oxygen Iodine Laser (COIL) technology used in the ABL requires the Boeing 747 as a...HEL is a Chemical Oxygen Iodine Laser (COIL). The COIL, invented by the Air Force Research Laboratory (AFRL) in 1977, uses a mixture of chemicals

  12. Current Iodine Nutrition Status and Awareness of Iodine Deficiency in Tuguegarao, Philippines

    PubMed Central

    Kim, Bu Kyung; Seok, Kwang-Hyuk; Lee, Andrew S.; Oak, Chul Ho; Kim, Ghi Chan; Jeong, Chae-Kyeong; Choi, Sung In; Afidchao, Pablo M.; Choi, Young Sik

    2014-01-01

    The Philippines is one of the countries where adequate iodine status has been achieved. However, iodine deficiency still remains an important public health problem in this country. In this study, we evaluated iodine nutrition status and investigated an awareness status of iodine deficiency targeting high school students of Tuguegarao, Philippines. A total of 260 students provided samples for urinary iodine analysis, among which 146 students completed thyroid volume measurement by ultrasonography and answering the questionnaires. The median urinary iodine level was 355.3 µg/L and only 3.8% of the students were in the range of iodine deficiency status according to the ICCIDD criteria. Although 62.3% of students answered that they can list problems resulting from iodine deficiency, a majority of students (70.5%) were unable to identify problems other than goiter. They did not appreciate that adequate iodine levels are important during pregnancy and for development of children. 33.6% of students answered that they did not use iodized salt and the biggest reason was that they did not find it necessary. Based on these results, we suggest that a future strategy should be focused on vulnerable groups to completely eliminate iodine deficiency, including women at their reproductive ages and during pregnancy. PMID:25374598

  13. Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode.

    PubMed

    Zhao, Qing; Lu, Yanying; Zhu, Zhiqiang; Tao, Zhanliang; Chen, Jun

    2015-09-09

    Rechargeable Li-iodine batteries are attractive electrochemical energy storage systems because iodine cathode provides the possibility of high energy density, wide abundance and low cost. However, the safety risk caused by low thermostability of iodine and the self-discharge reaction due to high solvency of iodine in aprotic solvent are target issues to be considered. Herein, we designed a room-temperature "solution-adsorption" method to prepare a thermostable iodine-carbon cathode by utilizing the strong adsorption of nanoporous carbon. Meanwhile, Li-iodine batteries constructed by the as-prepared cathode and ether-based electrolyte with the addition of LiNO3 showed negligible self-discharge reaction, high rate and long cycling performance. The reversible reactions of I2/LiI3 and LiI3/LiI in Li-iodine batteries were also proved with in situ Raman measurement. For the demonstration of application, soft-package batteries with Al-plastic film were assembled, displaying energy densities of 475 Wh/kg by mass of Li and iodine, and 136 Wh/kg by total mass of the battery. The use of nanoporous carbon to adsorb iodine at room-temperature represents a new and promising direction for realizing high-performance cathode for rechargeable Li-iodine batteries.

  14. Use of iodine for water disinfection: iodine toxicity and maximum recommended dose.

    PubMed Central

    Backer, H; Hollowell, J

    2000-01-01

    Iodine is an effective, simple, and cost-efficient means of water disinfection for people who vacation, travel, or work in areas where municipal water treatment is not reliable. However, there is considerable controversy about the maximum safe iodine dose and duration of use when iodine is ingested in excess of the recommended daily dietary amount. The major health effect of concern with excess iodine ingestion is thyroid disorders, primarily hypothyroidism with or without iodine-induced goiter. A review of the human trials on the safety of iodine ingestion indicates that neither the maximum recommended dietary dose (2 mg/day) nor the maximum recommended duration of use (3 weeks) has a firm basis. Rather than a clear threshold response level or a linear and temporal dose-response relationship between iodine intake and thyroid function, there appears to be marked individual sensitivity, often resulting from unmasking of underlying thyroid disease. The use of iodine for water disinfection requires a risk-benefit decision based on iodine's benefit as a disinfectant and the changes it induces in thyroid physiology. By using appropriate disinfection techniques and monitoring thyroid function, most people can use iodine for water treatment over a prolonged period of time. PMID:10964787

  15. The disorders induced by iodine deficiency.

    PubMed

    Delange, F

    1994-01-01

    This paper reviews present knowledge on the etiology, pathophysiology, complications, prevention, and therapy of the disorders induced by iodine deficiency. The recommended dietary allowances of iodine are 100 micrograms/day for adults and adolescents, 60-100 micrograms/day for children aged 1 to 10 years, and 35-40 micrograms/day in infants aged less than 1 year. When the physiological requirements of iodine are not met in a given population, a series of functional and developmental abnormalities occur including thyroid function abnormalities and, when iodine deficiency is severe, endemic goiter and cretinism, endemic mental retardation, decreased fertility rate, increased perinatal death, and infant mortality. These complications, which constitute a hindrance to the development of the affected populations, are grouped under the general heading of iodine deficiency disorders (IDD). At least one billion people are at risk of IDD. Iodine deficiency, therefore, constitutes one of the most common preventable causes of mental deficiency in the world today. Most of the affected populations live in mountainous areas in preindustrialized countries, but 50 to 100 million people are still at risk in Europe. The most important target groups to the effects of iodine deficiency from a public health point of view are pregnant mothers, fetuses, neonates, and young infants because the main complication of IDD, i.e., brain damage resulting in irreversible mental retardation, is the consequence of thyroid failure occurring during pregnancy, fetal, and early postnatal life. The main cause of endemic goiter and cretinism is an insufficient dietary supply of iodine. The additional role of naturally occurring goitrogens has been documented in the case of certain foods (milk, cassava, millet, nuts) and bacterial and chemical water pollutants. The mechanism by which the thyroid gland adapts to an insufficient iodine supply is to increase the trapping of iodide as well as the subsequent

  16. Current global iodine status and progress over the last decade towards the elimination of iodine deficiency.

    PubMed Central

    Andersson, Maria; Takkouche, Bahi; Egli, Ines; Allen, Henrietta E.; de Benoist, Bruno

    2005-01-01

    OBJECTIVE: To estimate worldwide iodine nutrition and monitor country progress towards sustained elimination of iodine deficiency disorders. METHODS: Cross-sectional data on urinary iodine (UI) and total goitre prevalence (TGP) in school-age children from 1993-2003 compiled in the WHO Global Database on Iodine Deficiency were analysed. The median UI was used to classify countries according to the public health significance of their iodine nutrition status. Estimates of the global and regional populations with insufficient iodine intake were based on the proportion of each country's population with UI below 100 microg/l. TGP was computed for trend analysis over 10 years. FINDINGS: UI data were available for 92.1% of the world's school-age children. Iodine deficiency is still a public health problem in 54 countries. A total of 36.5% (285 million) school-age children were estimated to have an insufficient iodine intake, ranging from 10.1% in the WHO Region of the Americas to 59.9% in the European Region. Extrapolating this prevalence to the general population generated an estimate of nearly two billion individuals with insufficient iodine intake. Iodine intake was more than adequate, or excessive, in 29 countries. Global TGP in the general population was 15.8%. CONCLUSION: Forty-three countries have reached optimal iodine nutrition. Strengthened UI monitoring is required to ensure that salt iodization is having the desired impact, to identify at-risk populations and to ensure sustainable prevention and control of iodine deficiency. Efforts to eliminate iodine deficiency should be maintained and expanded. PMID:16175826

  17. History of U.S. Iodine Fortification and Supplementation

    PubMed Central

    Leung, Angela M.; Braverman, Lewis E.; Pearce, Elizabeth N.

    2012-01-01

    Iodine is a micronutrient required for thyroid hormone production. This review highlights the history of the discovery of iodine and its uses, discusses the sources of iodine nutrition, and summarizes the current recommendations for iodine intake with a focus on women of childbearing age. PMID:23201844

  18. Thermodynamic properties of organic iodine compounds

    NASA Astrophysics Data System (ADS)

    Richard, Laurent; Gaona, Xavier

    2011-11-01

    A critical evaluation has been made of the thermodynamic properties reported in the literature for 43 organic iodine compounds in the solid, liquid, or ideal gas state. These compounds include aliphatic, cyclic and aromatic iodides, iodophenols, iodocarboxylic acids, and acetyl and benzoyl iodides. The evaluation has been made on the basis of carbon number systematics and group additivity relations, which also allowed to provide estimates of the thermodynamic properties of those compounds for which no experimental data were available. Standard molal thermodynamic properties at 25 °C and 1 bar and heat capacity coefficients are reported for 13 crystalline, 29 liquid, and 39 ideal gas organic iodine compounds, which can be used to calculate the corresponding properties as a function of temperature and pressure. Values derived for the standard molal Gibbs energy of formation at 25 °C and 1 bar of these crystalline, liquid, and ideal gas organic iodine compounds have subsequently been combined with either solubility measurements or gas/water partition coefficients to obtain values for the standard partial molal Gibbs energies of formation at 25 °C and 1 bar of 32 aqueous organic iodine compounds. The thermodynamic properties of organic iodine compounds calculated in the present study can be used together with those for aqueous inorganic iodine species to predict the organic/inorganic speciation of iodine in marine sediments and petroleum systems, or in the near- and far-field of nuclear waste repositories.

  19. The way forward in Italy for iodine.

    PubMed

    Olivieri, Antonella; DI Cosmo, Caterina; DE Angelis, Simona; DA Cas, Roberto; Stacchini, Paolo; Pastorelli, Augusto; Vitti, Paolo

    2017-04-01

    Italy is dealing with iodine deficiency since ancient times. In 1848 an ad hoc committee appointed by the king of Sardinia, identified extensive areas afflicted by endemic goiter and endemic cretinism in Piedmont, Liguria and Sardinia. Since then many epidemiological studies have been conducted in our country. These showed that iodine deficiency was present not only in mountain areas but also in coastal areas. In 1972 the iodization of salt at 15 mg/kg was allowed by law and iodized salt was distributed on request to selected endemic areas. Five years later the distribution was extended to the whole country. However the sale of iodized salt was not mandatory at that time and only a small fraction of the Italian population started using iodized salt. In 1991 the content of iodine in the salt was raised to 30 mg/kg and in 2005 a nationwide salt iodization program was finally implemented. Some years later a nationwide monitoring program of iodine prophylaxis was also implemented. Since 2005 the sale of iodized salt in Italian supermarkets has increased (34% in 2006, 55% in 2012), although it has been observed that the use of iodized salt is still low in the communal eating areas and in the food industry. These data are coherent with recent epidemiological studies showing that some regions in our country are still characterized by mild iodine deficiency and a high frequency of goiter and other iodine deficiency disorders. This implies that further efforts should be made to successfully correct iodine deficiency in Italy.

  20. Method and apparatus for removing iodine from a nuclear reactor coolant

    DOEpatents

    Cooper, Martin H.

    1980-01-01

    A method and apparatus for removing iodine-131 and iodine-125 from a liquid sodium reactor coolant. Non-radioactive iodine is dissolved in hot liquid sodium to increase the total iodine concentration. Subsequent precipitation of the iodine in a cold trap removes both the radioactive iodine isotopes as well as the non-radioactive iodine.

  1. Computation of iodine species concentrations in water

    NASA Technical Reports Server (NTRS)

    Schultz, John R.; Mudgett, Paul D.; Flanagan, David T.; Sauer, Richard L.

    1994-01-01

    During an evaluation of the use of iodine as a water disinfectant and the development of methods for measuring various iodine species in water onboard Space Freedom, it became necessary to compute the concentration of the various species based on equilibrium principles alone. Of particular concern was the case when various amounts of iodine, iodide, strong acid, and strong base are added to water. Such solutions can be used to evaluate the performance of various monitoring methods being considered. The authors of this paper present an overview of aqueous iodine chemistry, a set of nonlinear equations which can be used to model the above case, and a computer program for solving this system of equations using the Newton-Raphson method. The program was validated by comparing results over a range of concentrations and pH values with those previously presented by Gottardi for a given pH. Use of this program indicated that there are multiple roots to many cases and selecting an appropriate initial guess is important. Comparison of program results with laboratory results for the case when only iodine is added to water indicates the program gives high pH values for the iodine concentrations normally used for water disinfection. Extending the model to include the effects of iodate formation results in the computer pH values being closer to those observed, but the model with iodate does not agree well for the case in which base is added in addition to iodine to raise the pH. Potential explanations include failure to obtain equilibrium conditions in the lab, inaccuracies in published values for the equilibrium constants, and inadequate model of iodine chemistry and/or the lack of adequate analytical methods for measuring the various iodine species in water.

  2. Competition between photochemistry and energy transfer in UV-excited diazabenzenes. 4. UV photodissociation of 2,3-, 2,5-, and 2,6-dimethylpyrazine.

    PubMed

    Duffin, Andrew M; Johnson, Jeremy A; Muyskens, Mark A; Sevy, Eric T

    2007-12-27

    The quantum yield for HCN formation via 248 nm photodissociation of 2,3-, 2,5-, and 2,6-dimethylpyrazine (DMP, C6N2H8) was measured using diode laser probing of the HCN photoproduct. The total quantum yield is phi = 0.039 +/- 0.07, 0.14 +/- 0.02, and 0.30 +/- 0.06 for 248 nm excitation of 2,3-, 2,5- and 2,6-DMP, respectively. Analysis of the quenching data within the context of a gas kinetic, strong collision model allows an estimate of the rate constant for HCN production via DMP photodissociation, ks = 4.1 x 10(3), 1.0 x 10(3), and 1.3 x 10(4) s(-1) for 2,3-, 2,5- and 2,6-DMP, respectively. Unlike HCN produced from the photodissociation of pyrazine and methylpyrazine, the amount of HCN produced via a prompt, unquenched dissociation channel was essentially zero, suggesting little multiphoton UV absorption. The rate constants for HCN formation together with previously measured rate constants for HCN production from photodissociation of pyrazine and methylpyrazine have been used to investigate possible reaction mechanisms. The position of the methyl group affects the HCN rate constant, suggesting that the mechanism for pyrazine dissociation involves an initial step that is hindered by the addition of the methyl groups. The proposed initial molecular motion of the mechanism, an out-of-plane H atom migration across a N atom, is consistent with (1) the position of the methyl groups, (2) the dissociation lifetime of the various pyrazine molecules studied, and (3) the observed large energy transfer magnitudes from pyrazine near dissociation. These so-called "supercollisions" have been linked to low-frequency, out-of-plane motion, suggesting that the molecular motions leading to efficient energy transfer are the same motions involved in dissociation. In addition, the pyrazine (C4N2H4) 248 nm photoproduct (C3H3N) was identified as acrylonitrile using IR spectroscopy, an observation that aids in understanding the dissociation mechanism.

  3. Effect of chronic douching with polyvinylpyrrolidone-iodine on iodine absorption and thyroid function

    SciTech Connect

    Safran, M.; Braverman, L.E.

    1982-07-01

    Daily vaginal douching with polyvinylpyrrolidone-iodine in 12 euthyroid volunteers for 14 days resulted in a significant increase in serum total iodine concentration and urine iodine excretion. The increase in serum total iodine was associated with a marked decrease in 24-hour /sup 123/I uptake by the thyroid and a small but significant increase in serum thyrotropin (TSH) concentration. However, values for serum TSH never rose above the normal range. No significant changes in serum thyroxine (T4), free T4 index (FTI), or triiodothyronine concentrations were observed, although serum T4 and FTI did decrease slightly during treatment. The findings suggest that iodine is absorbed across the vaginal mucosa and that the subsequent increase in serum total iodine does induce subtle increases in serum TSH concentration. There was no evidence, however, of overt hypothyroidism in these euthyroid women.

  4. [Sanitary and technological solutions of the elimination of iodine deficiency by iodination of drinking water].

    PubMed

    Rakhmanin, Iu A; Kir'ianova, L F; Mikhaĭlova, R I; Sevost'ianova, E M; Ryzhova, I N; Alekseeva, A B; Nedachin, A E

    2001-01-01

    Comprehensive studies of the sanitary standards provided research evidence for the maximum allowable concentrations of iodine in the drinking water by taking into account its daily allowances dose and the formation of transformation by-products due to iodine disinfection, drinking water preservation, and iodine deficiency prevention in the endemic areas. Techniques of water iodination have been devised and tested in the experimental and industrial setting, including those for packaging drinking water, as well as those by using portable water purifiers based on highly effective iodine-selective adsorptive compounds which make it possible to solve the task of administering iodine dosages into the water (with allowances born in mind), under domestic conditions as well.

  5. Modeling an Iodine Hall Thruster Plume in the Iodine Satellite (ISAT)

    NASA Technical Reports Server (NTRS)

    Choi, Maria

    2016-01-01

    An iodine-operated 200-W Hall thruster plume has been simulated using a hybrid-PIC model to predict the spacecraft surface-plume interaction for spacecraft integration purposes. For validation of the model, the plasma potential, electron temperature, ion current flux, and ion number density of xenon propellant were compared with available measurement data at the nominal operating condition. To simulate iodine plasma, various collision cross sections were found and used in the model. While time-varying atomic iodine species (i.e., I, I+, I2+) information is provided by HP Hall simulation at the discharge channel exit, the molecular iodine species (i.e., I2, I2+) are introduced as Maxwellian particles at the channel exit. Simulation results show that xenon and iodine plasma plumes appear to be very similar under the assumptions of the model. Assuming a sticking coefficient of unity, iodine deposition rate is estimated.

  6. Photodissociation of carbon monoxide and dioxygen forms of synthetic heme complexes studied by using picosecond absorption spectroscopy. Evidence of a pseudo-four-coordinate intermediate

    SciTech Connect

    Caldwell, K.; Noe, L.J.; Ciccone, J.D.; Traylor, T.G.

    1986-10-01

    The authors have studied the photodissociation of the CO and O/sub 2/ forms of a number of synthetic heme complexes by using 531-nm, 8-ps pulses from a mode-locked Nd-phosphate glass laser employing the standard pump-probe technique. These complexes closely mimic the R and T states of hemoglobin depending on whether the imidazole-heme steric interaction is strain free or not. Such variations in the proximal imidazole-heme geometry allow one to explore the effects of tertiary constraint of this type on the dissociation. The results of this work are complementary to their earlier work on the natural compounds, hemoglobin and myoglobin, and show that the effects of strain on the heme are manifest in the dynamics and mechanism of the photodissociation. For both the natural and synthetic compounds, they have identified certain predissociative and postdissociative photointermediates as they sequentially evolve by monitoring the ..pi pi../sup */ porphyrin Soret absorption changes as a function of time. Their kinetic analysis indicates that it takes from 2 to 16 ps for the synthetic complexes to dissociate depending on whether the Fe-imidazole bond is strain free or not. They also suggest that a pseudo-four-coordinate complex may be present as a photointermediate in the compounds having the strained Fe-imidazole linkage.

  7. The Visible Photodissociation Spectra of the Molecular Ions of Negative Carbonate, Negative Ozone, and Positive Ozone by Triple Quadrupole Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Hiller, Joseph Francis, Jr.

    A modified version of the triple quadrupole photodissociation mass spectrometer utilizing a chemical ionization ion source and a nitrogen pumped tunable dye laser is described. The visible photodissociation spectra are reported for the processes. CO(,3)('-) + h(nu) (--->) O('-) + CO(,2). O(,3)('-) + h(nu) (--->) O('-) + O(,2). (--->) O(,2)('-) + O. O(,3)('+) + h(nu) (--->) O('+) + O(,2). (--->) O(,2)('+) + O. as absolute cross sections as functions of photon energy. Sequential two photon processes and excited state ion/neutral. reactions are observed directly for the visible excitation of CO(,3)('-). Rate constants and absolute cross sections are presented for these. reactions, and for the inferred fluorescent and relaxation processes. as well. Thresholds are located for three of these dissociations as. D(CO(,2)-O('-)) 2.258 (+OR-) 0.008 eV. D(O-O(,2)('-)) 2.410 (+OR-) 0.010 eV. D(O(,2)-O('+)) 1.860 (+OR-) 0.005 eV. Excited states of O(,3)('-) are identified, and vibrational analyses are included for the O(,3)('-) and O(,3)('+) spectra.

  8. Probing starch-iodine interaction by atomic force microscopy.

    PubMed

    Du, Xiongwei; An, Hongjie; Liu, Zhongdong; Yang, Hongshun; Wei, Lijuan

    2014-01-01

    We explored the interaction of iodine with three crystalline type starches, corn, potato, and sweet potato starches using atomic force microscopy. Results revealed that starch molecules aggregated through interaction with iodine solution as well as iodine vapor. Detailed fine structures such as networks, chains, and super-helical structures were found in iodide solution tests. The nanostructures formed due to iodine adsorption could help to understand the formation and properties of the starch-iodine complex.

  9. Velocity distributions of H and OH produced through solar photodissociation of H2O

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. Robert; Chen, F. Z.; Judge, D. L.

    1992-01-01

    The calculated velocity distributions of atomic hydrogen and hydroxyl radicals produced through solar photodissociation of gaseous water molecules are presented. Under collisionless conditions, the calculation was carried out using the most recent available data for the production of H and OH through photodissociation of H2O from its dissociation onset throughout the EUV region. Because the lack of data in certain spectral regions, only upper and lower bounds to the velocity distributions can be obtained. The results show that the H atoms and OH radicals produced exhibit multiple velocity groups. Since most of the current cometary modeling uses a single velocity of 20 km/s associated with the photodissociation of H2O, the present results may be useful in interpreting the many peaks observed in the velocity distributions of cometary atomic hydrogen.

  10. Photodissociation of Trapped Rb2+: Implications for Simultaneous Trapping of Atoms and Molecular Ions

    NASA Astrophysics Data System (ADS)

    Jyothi, S.; Ray, Tridib; Dutta, Sourav; Allouche, A. R.; Vexiau, Romain; Dulieu, Olivier; Rangwala, S. A.

    2016-11-01

    The direct photodissociation of trapped 85Rb2+ (rubidium) molecular ions by the cooling light for the 85Rb magneto-optical trap (MOT) is studied, both experimentally and theoretically. Vibrationally excited Rb2+ ions are created by photoionization of Rb2 molecules formed photoassociatively in the Rb MOT and are trapped in a modified spherical Paul trap. The decay rate of the trapped Rb2+ ion signal in the presence of the MOT cooling light is measured and agreement with our calculated rates for molecular ion photodissociation is observed. The photodissociation mechanism due to the MOT light is expected to be active and therefore universal for all homonuclear diatomic alkali metal molecular ions.

  11. Quantum and classical non-adiabatic dynamics of Li_{2}^{+}Ne photodissociation

    NASA Astrophysics Data System (ADS)

    Pouilly, Brigitte; Monnerville, Maurice; Zanuttini, David; Gervais, Benoît

    2015-01-01

    The 3D photodissociation dynamics of Li2+Ne system is investigated by quantum calculations using the multi-configuration time-dependent Hartree (MCTDH) method and by classical simulations with the trajectory surface hopping (TSH) approach. Six electronic states of A’ symmetry and two states of A” symmetry are involved in the process. Couplings in the excitation region and two conical intersections in the vicinity of the Franck-Condon zone control the non-adiabatic nuclear dynamics. A diabatic representation including all the states and the couplings is determined. Diabatic and adiabatic populations calculated for initial excitation to pure diabatic and adiabatic states lead to a clear understanding of the mechanisms governing the non-adiabatic photodissociation process. The classical and quantum photodissociation cross-sections for absorption in two adiabatic states of the A’ symmetry are calculated. A remarkable agreement between quantum and classical results is obtained regarding the populations and the absorption cross-sections.

  12. Photodissociation of Trapped Rb_{2}^{+}: Implications for Simultaneous Trapping of Atoms and Molecular Ions.

    PubMed

    Jyothi, S; Ray, Tridib; Dutta, Sourav; Allouche, A R; Vexiau, Romain; Dulieu, Olivier; Rangwala, S A

    2016-11-18

    The direct photodissociation of trapped ^{85}Rb_{2}^{+} (rubidium) molecular ions by the cooling light for the ^{85}Rb magneto-optical trap (MOT) is studied, both experimentally and theoretically. Vibrationally excited Rb_{2}^{+} ions are created by photoionization of Rb_{2} molecules formed photoassociatively in the Rb MOT and are trapped in a modified spherical Paul trap. The decay rate of the trapped Rb_{2}^{+} ion signal in the presence of the MOT cooling light is measured and agreement with our calculated rates for molecular ion photodissociation is observed. The photodissociation mechanism due to the MOT light is expected to be active and therefore universal for all homonuclear diatomic alkali metal molecular ions.

  13. Method for immobilizing radioactive iodine

    DOEpatents

    Babad, Harry; Strachan, Denis M.

    1980-01-01

    Radioactive iodine, present as alkali metal iodides or iodates in an aqueous solution, is incorporated into an inert solid material for long-term storage by adding to the solution a stoichiometric amount with respect to the formation of a sodalite (3M.sub.2 O.3Al.sub.2 O.sub.3. 6SiO.sub.2.2MX, where M=alkali metal; X=I.sup.- or IO.sub.3.sup.-) of an alkali metal, alumina and silica, stirring the solution to form a homogeneous mixture, drying the mixture to form a powder, compacting and sintering the compacted powder at 1073 to 1373 K (800.degree. to 1100.degree. C.) for a time sufficient to form sodalite.

  14. Does iodine gas released from seaweed contribute to dietary iodine intake?

    PubMed

    Smyth, P P A; Burns, R; Huang, R J; Hoffman, T; Mullan, K; Graham, U; Seitz, K; Platt, U; O'Dowd, C

    2011-08-01

    Thyroid hormone levels sufficient for brain development and normal metabolism require a minimal supply of iodine, mainly dietary. Living near the sea may confer advantages for iodine intake. Iodine (I(2)) gas released from seaweeds may, through respiration, supply a significant fraction of daily iodine requirements. Gaseous iodine released over seaweed beds was measured by a new gas chromatography-mass spectrometry (GC-MS)-based method and iodine intake assessed by measuring urinary iodine (UI) excretion. Urine samples were obtained from female schoolchildren living in coastal seaweed rich and low seaweed abundance and inland areas of Ireland. Median I(2) ranged 154-905 pg/L (daytime downwind), with higher values (~1,287 pg/L) on still nights, 1,145-3,132 pg/L (over seaweed). A rough estimate of daily gaseous iodine intake in coastal areas, based upon an arbitrary respiration of 10,000L, ranged from 1 to 20 μg/day. Despite this relatively low potential I(2) intake, UI in populations living near a seaweed hotspot were much higher than in lower abundance seaweed coastal or inland areas (158, 71 and 58 μg/L, respectively). Higher values >150 μg/L were observed in 45.6% of (seaweed rich), 3.6% (lower seaweed), 2.3% (inland)) supporting the hypothesis that iodine intake in coastal regions may be dependent on seaweed abundance rather than proximity to the sea. The findings do not exclude the possibility of a significant role for iodine inhalation in influencing iodine status. Despite lacking iodized salt, coastal communities in seaweed-rich areas can maintain an adequate iodine supply. This observation brings new meaning to the expression "Sea air is good for you!"

  15. Photodissociation dynamics of superexcited O2: Dissociation channels O(5S) vs. O(3S)

    NASA Astrophysics Data System (ADS)

    Zhou, Yiyong; Meng, Qingnan; Mo, Yuxiang

    2014-07-01

    The photodissociation dynamics of O2, O2 + hυ → O(3P) + O(2p3(4S)3s, 3S/5S), has been studied by combining the XUV laser pump / UV laser probe and velocity map imaging methods in the photon energy range 14.64-15.20 eV. The fragment yield spectra of O(3S) and O(5S) and their velocity map images have been recorded using the state-selective (1+1) REMPI method to detect the fragments. The fragment yield spectra show resolved fine structure that arises from the predissociated Rydberg states I, I' and I″ (3ΠΩ = 0,1,2). The branching ratios between the two decay channels have been measured by one-photon ionization of the fragments O(3S) and O(5S) simultaneously. It is surprising to find that the dissociation cross sections for the production of O(5S) are larger than, or comparable to, those of O(3S) for the I and I' states, while the cross sections for the production of O(5S) are smaller than those of O(3S) for the I″ state. All fragments O(5S) arise from perpendicular transitions, which provides direct experimental evidence about the symmetry assignments of the states I, I' and I″ excited in this energy region. Although most of the fragments O(3S) arise from perpendicular transitions, some of them are from parallel transitions. Based on the calculated ab initio potential energy curves, we propose that the neutral dissociation into O(3P) + O(3S) occurs mainly via the interaction of the Rydberg states I, I', and I″ with the vibrational continuum of the diabatic 83Πu state (1π _u^{ - 1} (a^4 {Π}_u {)3}sσ _g ,^3 Π_u), while the neutral dissociation into O(3P) + O(5S) occurs mainly via the interaction of Rydberg states I, I', and I″ with the diabatic 73Πu (1π _g^{ - 1} (X^2 {Π}_g {)3}p{σ }_u ,^3 Π_u).

  16. Iodine binding to humic acid.

    PubMed

    Bowley, H E; Young, S D; Ander, E L; Crout, N M J; Watts, M J; Bailey, E H

    2016-08-01

    The rate of reactions between humic acid (HA) and iodide (I(-)) and iodate (IO3(-)) have been investigated in suspensions spiked with (129)I at concentrations of 22, 44 and 88 μg L(-1) and stored at 10 °C. Changes in the speciation of (129)I(-), (129)IO3(-) and mixed ((129)I(-) + (129)IO3(-)) spikes were monitored over 77 days using liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS). In suspensions spiked with (129)I(-) 25% of the added I(-) was transformed into organic iodine (Org-(129)I) within 77 days and there was no evidence of (129)IO3(-) formation. By contrast, rapid loss of (129)IO3(-) and increase in both (129)I(-) and Org-(129)I was observed in (129)IO3(-)-spiked suspensions. However, the rate of Org-(129)I production was greater in mixed systems compared to (129)IO3(-)-spiked suspensions with the same total (129)I concentration, possibly indicating IO3(-)I(-) redox coupling. Size exclusion chromatography (SEC) demonstrated that Org-(129)I was present in both high and low molecular weight fractions of the HA although a slight preference to bond with the lower molecular weight fractions was observed indicating that, after 77 days, the spiked isotope had not fully mixed with the native (127)I pool. Iodine transformations were modelled using first order rate equations and fitted rate coefficients determined. However, extrapolation of the model to 250 days indicated that a pseudo-steady state would be attained after ∼200 days but that the proportion of (129)I incorporated into HA was less than that of (127)I indicating the presence of a recalcitrant pool of (127)I that was unavailable for isotopic mixing.

  17. Dust processing in photodissociation regions. Mid-IR emission modelling

    NASA Astrophysics Data System (ADS)

    Compiègne, M.; Abergel, A.; Verstraete, L.; Habart, E.

    2008-12-01

    Context: Mid-infrared spectroscopy of dense illuminated ridges (or photodissociation regions, PDRs) suggests dust evolution. Such evolution must be reflected in the gas physical properties through processes like photo-electric heating or H2 formation. Aims: With Spitzer Infrared Spectrograph (IRS) and ISOCAM data, we study the mid-IR emission of closeby, well known PDRs. Focusing on the band and continuum dust emissions, we follow their relative contributions and analyze their variations in terms of abundance of dust populations. Methods: In order to disentangle dust evolution and excitation effects, we use a dust emission model that we couple to radiative transfer. Our dust model reproduces extinction and emission of the standard interstellar medium that we represent with diffuse high galactic latitude clouds called Cirrus. We take the properties of dust in Cirrus as a reference to which we compare the dust emission from more excited regions, namely the Horsehead and the reflection nebula NGC 2023 North. Results: We show that in both regions, radiative transfer effects cannot account for the observed spectral variations. We interpret these variations in term of changes of the relative abundance between polycyclic aromatic hydrocarbons (PAHs, mid-IR band carriers) and very small grains (VSGs, mid-IR continuum carriers). Conclusions: We conclude that the PAH/VSG abundance ratio is 2.4 times smaller at the peak emission of the Horsehead nebula than in the Cirrus case. For NGC 2023 North where spectral evolution is observed across the northern PDR, we conclude that this ratio is ~5 times lower in the dense, cold zones of the PDR than in its diffuse illuminated part where dust properties seem to be the same as in Cirrus. We conclude that dust in PDRs seems to evolve from “dense” to “diffuse” properties at the small spatial scale of the dense illuminated ridge.

  18. Far-Ultraviolet Studies of H2 in Photodissociation Regions

    NASA Astrophysics Data System (ADS)

    France, Kevin; McCandliss, Stephan R.; Burgh, Eric B.

    2009-05-01

    We present a brief review of molecules studied with far-ultraviolet spectroscopy, discussing absorption line measurements of the dominant interstellar molecules (H2 and CO) and H2 emission from molecular clouds near hot stars. We give two examples where the CO/H2 ratio, which can only be derived uniquely in the far-ultraviolet, can be used to study the structure of the interstellar medium. Prospects are discussed for future work with deeper observations that would allow one to probe farther into molecular clouds in the galaxy. We describe a mini-survey of five local photodissociation regions (PDRs) carried out with FUSE. We use these data to characterize the far-UV spectra of PDRs for the first time and to refine models of the H2 fluorescent emission process. We find that our models can adequately reproduce the observed emission spectra of three of these regions (IC 63, M42, and IC 405). The remaining two (NGC 2023 and NGC 7023) do not show clear emission from H2 in the FUSE band, despite the well defined and characteristic double-peaked emission features at 1575 and 1608 Å observed in archival observations, as well as the clear fluorescent signatures in the well studied near-IR rovibrational emission lines, thus suggesting a more complex radiative transfer scenario in these environments. We conclude with simple simulations showing the potential gains that could be made in the studies of PDRs with future far-ultraviolet spectrographs with increased effective area and resolving power over current instruments.

  19. Photodissociation of S atom containing amino acid chromophores

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Fu; Dyakov, Yuri A.; Lee, Yuan T.; Lin, S. H.; Mebel, Alexander M.; Ni, Chi-Kung

    2007-08-01

    Photodissociation of 3-(methylthio)propylamine and cysteamine, the chromophores of S atom containing amino acid methionine and cysteine, respectively, was studied separately in a molecular beam at 193 nm using multimass ion imaging techniques. Four dissociation channels were observed for 3-(methylthio)propylamine, including (1) CH3SCH2CH2CH2NH2-->CH3SCH2CH2CH2NH+H, (2) CH3SCH2CH2CH2NH2-->CH3+SCH2CH2CH2NH2, (3) CH3SCH2CH2CH2NH2-->CH3S+CH2CH2CH2NH2, and (4) CH3SCH2CH2CH2NH2-->CH3SCH2+CH2CH2NH2. Two dissociation channels were observed from cysteamine, including (5) HSCH2CH2NH2-->HS+CH2CH2NH2 and (6) HSCH2CH2NH2-->HSCH2+CH2NH2. The photofragment translational energy distributions suggest that reaction (1) and parts of the reactions (2), (3), (5) occur on the repulsive excited states. However, reaction (4), (6) occur only after the internal conversion to the electronic ground state. Since the dissociation from an excited state with a repulsive potential energy surface is very fast, it would not be quenched completely even in the condensed phase. Our results indicate that reactions following dissociation may play an important role in the UV photochemistry of S atom containing amino acid chromophores in the condensed phase. A comparison with the potential energy surface from ab initio calculations and branching ratios from RRKM calculations was made.

  20. Magnetic field in the NGC7023 photodissociation region

    NASA Astrophysics Data System (ADS)

    Alves, Marta

    2015-10-01

    The far-UV radiation of massive stars illuminates molecular clouds creating photodissociation regions (PDRs), the transition layers between atomic and molecular media. Recent results based on Herschel observations reveal the presence of small regions at high gas pressure in the PDRs, whose origin is still not well understood, while polarization measurements towards a few PDRs indicate that magnetic fields can play a significant role in their structure. The limited number of existing polarization observations suggest that, when subject to a high gas and radiation pressure from the stars, the magnetic field tends to align and to be compressed in the PDR. As a consequence, bright PDRs should be magnetically dominated. However, this possibility has been the subject of very few studies due to the sparsity of relevant data. We propose to map the magnetic field in a nearby bright PDR, NGC 7023, using the unique capabilities of HAWC+ onboard SOFIA. For one, we wish to test the hypothesis that the magnetic field should be parallel to this PDR, which is illuminated by a radiation field of 2600 (in Habing units). Secondly, since NGC 7023 is a well studied region, its physical conditions (density, temperature) are known and can thus be related to the magnetic field across the PDR. We can investigate the relation between the field structure and the geometry of the PDR, and aided by Herschel observations we can also explore a possible connection between the magnetic field and the existence of high density regions in the PDR. SOFIA HAWC+ is the only instrument capable of imaging the polarized emission of extended objects, with structure at arcsecond scales. Moreover, it allows us trace the magnetic field within the PDR, owing to its 63micron band that traces the warm (40K) dust present at the illuminated surface. Our observations will be complementary to those led by the instrument team, who will observe NGC 7023 using the three highest wavelength filters.

  1. Photodissociation dynamics of 2-bromopropane using velocity map imaging technique.

    PubMed

    Zhu, Rongshu; Tang, Bifeng; Zhang, Xiu; Zhang, Bing

    2010-06-03

    Photodissociation dynamics of 2-bromopropane in the A band was investigated at several wavelengths between 232 and 267 nm using resonance-enhanced multiphoton ionization technique combined with velocity map ion-imaging detection. The ion images of Br ((2)P(3/2)) and Br* ((2)P(1/2)) were analyzed to yield corresponding total translational energy and angular distributions. The total translational energy distributions showed that the channel leading to Br carried more internal energy in the 2-C(3)H(7) moiety than the channel leading to Br*. The anisotropy parameters of beta (Br) were obtained to be between 0.68 and 1.49, and beta (Br*) between 0.73 and 1.96, indicating that the Br* product originates from direct excitation of the (3)Q(0) state and the (1)Q(1) --> (3)Q(0) nonadiabatic transition, and the Br product from direct excitation of the (1)Q(1) or (3)Q(1) state and the (3)Q(0) --> (1)Q(1) nonadiabatic transition. The curve crossing probabilities were determined to be increase with the wavelength. As compared with the case of CH(3)Br, the two heavier branched CH(3) groups significantly enhance the Br ((2)P(3/2)) production from nonadiabatic contribution. The curve crossing from the (3)Q(0) to the (1)Q(1) surface is much higher than that of the reverse from the (1)Q(1) to the (3)Q(0) surface, which may have resulted from the difference in shape between the potential energy surfaces of the (3)Q(0) and (1)Q(1) states. Finally, based on the experimental data, the partial absorption cross sections of the A band for the (3)Q(0), (3)Q(1), and (1)Q(1) states were extracted.

  2. Trajectory surface-hopping study of methane photodissociation dynamics

    SciTech Connect

    Lodriguito, Maricris D.; Schatz, George C.; Lendvay, Gyoergy

    2009-12-14

    We use the fewest switches nonadiabatic trajectory surface hopping approach to study the photodissociation of methane on its lowest singlet excited state potential surface (1 {sup 1}T{sub 2}) at 122 nm, with emphasis on product state branching and energy partitioning. The trajectories and couplings are based on CASSCF(8,9) calculations with an aug-cc-pvdz basis set. We demonstrate that nonadiabatic dynamics is important to describe the dissociation processes. We find that CH{sub 3}(X-tilde{sup 2}A{sub 2}{sup ''})+H and CH{sub 2}(a-tilde{sup 1}A{sub 1})+H{sub 2} are the major dissociation channels, as have been observed experimentally. CH{sub 3}+H is mostly formed by direct dissociation that is accompanied by hopping to the ground state. CH{sub 2}+H{sub 2} can either be formed by hopping to the ground state to give CH{sub 2}(a-tilde{sup 1}A{sub 1})+H{sub 2} or by adiabatic dissociation to CH{sub 2}(b-tilde{sup 1}B{sub 1})+H{sub 2}. In the latter case, the CH{sub 2}(b-tilde{sup 1}B{sub 1}) can then undergo internal conversion to the ground singlet state by Renner-Teller induced hopping. Less important dissociation mechanisms lead to CH{sub 2}+H+H and to CH+H{sub 2}+H. Intersystem crossing effects, which are not included, do not seem essential to describe the experimentally observed branching behavior. About 5% of trajectories involve a roaming atom mechanism which can eventually lead to formation of products in any of the dissociation channels. Branching fractions to give H and H{sub 2} are in good agreement with experiment, and the H atom translational energy distribution shows bimodal character which also matches observations.

  3. Critical evaluation of cadexomer-iodine ointment and povidone-iodine sugar ointment.

    PubMed

    Noda, Yasuhiro; Fujii, Kiori; Fujii, Satoshi

    2009-05-08

    Topical iodine forms are used for infected and necrotic pressure ulcers. Despite antimicrobial advantages several potential disadvantages were observed with controversial results. To clarify the controversy, the reactivity of povidone-iodine (PI) sugar ointment and cadexomer-iodine (CI) ointment toward biological components was investigated. L-Tyrosine as a component of proteins and egg lecithin as a component of lipid membranes were reacted with forms of iodine. Furthermore, water absorption abilities of ointments were investigated. The reactions of PI sugar ointment and CI ointment with L-tyrosine were reversely dependent on iodine concentrations. CI ointment reacted with lecithin in an iodine concentration dependent manner, while PI sugar ointment reacted with lecithin in an iodine concentration independent steady manner. However, at the clinically relevant iodine concentration (0.1, w/v%) PI sugar ointment reacted efficiently with L-tyrosine and less efficiently with lecithin, while CI ointment reacted efficiently with lecithin and less efficiently with L-tyrosine. Water absorption rate constant was 29.9 mg/cm(2)/min(0.5) for PI sugar ointment and 15.3 for CI ointment. Water absorption capacity per weight over 24 h was 26% forPI sugar ointment and 76% for CI ointment [corrected]. These results suggest that PI sugar ointment and CI ointment have different characteristics for iodine reactivity and water absorption.

  4. Single dose povidone-iodine on thyroid functions and urinary iodine excretion.

    PubMed

    Yilmaz, Deniz; Teziç, H Tahsin; Zorlu, Pelin; Firat, Serap; Bilaloğlu, Eriş; Kutlu, Alev Oğuz

    2003-08-01

    The effect of single dose povidone-iodine on serum thyrotropin and thyroxine levels and urinary iodine excretion in 30 preterm, 40 full-term newborns and 50 infants at Dr. Sami Ulus Children's Hospital was studied. There was no significant change of thyroid function in any of the groups (p>0.05). Urinary iodine excretion in preterm and full-term groups elevated significantly (p<0.05). The authors conclude that patients who receive single dose povidone-iodine for skin disinfection are not at risk for thyroid disorders.

  5. Recycling of iodine in fore-arc areas: evidence from the iodine brines in Chiba, Japan

    NASA Astrophysics Data System (ADS)

    Muramatsu, Yasuyuki; Fehn, Udo; Yoshida, Satoshi

    2001-11-01

    The distribution of iodine in the Earth's crust is dominated by its accumulation in marine sediments. If fluxes between terrestrial and marine compartments are considered, however, a significant imbalance exists between known sources and sinks of iodine. We present here evidence from the fore-arc area near Chiba, Japan, the world's largest brine-iodine producing area, that iodine is mobilized from marine sediments during the early stages of subduction. Based on detailed chemical analyses of 22 brines and 129I dating of 13 of these samples collected from the Kazusa Formation, we show that iodine in these fluids is derived from organic-rich marine sediments with a minimum age of 50 Myr. Geochemical characteristics of the brines and the age of the iodine indicate that the iodine enrichment is caused by mobilization from subducting marine sediments and not by derivation from the host formation (age 1-2 Myr). The direct return of iodine from marine sediments into the oceans during the subduction of oceanic plates could provide the missing link in the iodine cycle and be an important pathway also in the marine cycle of carbon.

  6. Iodination and stability of somatostatin analogues: comparison of iodination techniques. A practical overview.

    PubMed

    de Blois, Erik; Chan, Ho Sze; Breeman, Wouter A P

    2012-01-01

    For iodination ((125/127)I) of tyrosine-containing peptides, chloramin-T, Pre-Coated Iodo-Gen(®) tubes and Iodo-Beads(®) (Pierce) are commonly used for in vitro radioligand investigations and there have been reliant vendors hereof for decades. However, commercial availability of these radio-iodinated peptides is decreasing. For continuation of our research in this field we investigated and optimized (radio-)iodination of somatostatin analogues. In literature, radioiodination using here described somatostatin analogues and iodination techniques are described separately. Here we present an overview, including High Performance Liquid Chromatography (HPLC) separation and characterisation by mass spectrometry, to obtain mono- and di-iodinated analogues. Reaction kinetics of (125/127)I iodinated somatostatin analogues were investigated as function of reaction time and concentration of reactants, including somatostatin analogues, iodine and oxidizing agent. To our knowledge, for the here described somatostatin analogues, no (127)I iodination and optimization are described. (Radio-)iodinated somatostatin analogues could be preserved with a >90% radiochemical purity for 1 month after reversed phase HPLC-purification.

  7. [Stable iodine as a prophylaxis therapy following exposure to radioactive iodines: pharmacological and pharmaceutical characteristics].

    PubMed

    Hosten, B; Rizzo-Padoin, N; Scherrmann, J-M; Bloch, V

    2012-03-01

    More or less rapid radio-induction of thyroidian cancers is the main pathological consequence of an accidental exposure to ingested or inhaled radioactive iodines following a nuclear power plant accident. The prophylactic administration of potassium iodine in a single oral dose has to be practiced as soon as possible after the nuclear accident. The efficacy of this therapy depends on pharmacokinetics of radioidines. Iodines are rapidly and completely absorbed as iodides. The radioactive iodines, mainly iodine 131, concentrate in the thyroid gland because of a carrier-mediated transport by the Na-I symporter. Administration of stable iodine results in the symporter blockade, which limits the uptake of radioactive iodines by the thyroid and the duration of the internal irradiation. This irradiation will never exceed 3days if the therapy is started between 6h before the accidental exposure and 1h after. The pharmacist asked to dispense the tablets of stable iodine has a important place because, besides his advices on the optimal modalities of taking stable iodine and the risks of unwanted effects, he extend these advices to information on the radioactive risk and on measures of civil and sanitary protection.

  8. Proposed Molecular Beam Determination of Energy Partition in the Photodissociation of Polyatomic Molecules

    DOE R&D Accomplishments Database

    Zare, P. N.; Herschbach, D. R.

    1964-01-29

    Conventional photochemical experiments give no information about the partitioning of energy between translational recoil and internal excitation of the fragment molecules formed in photodissociation of a polyatomic molecule. In a molecular beam experiment, it becomes possible to determine the energy partition from the form of the laboratory angular distribution of one of the photodissociation products. A general kinematic analysis is worked out in detail, and the uncertainty introduced by the finite angular resolution of the apparatus and the velocity spread in the parent beam is examined. The experimental requirements are evaluated for he photolysis of methyl iodide by the 2537 angstrom Hg line.

  9. Probing the Cl-HCl complex via bond-specific photodissociation of (HCl) 2

    NASA Astrophysics Data System (ADS)

    Liu, K.; Kolessov, A.; Partin, J. W.; Bezel, I.; Wittig, C.

    1999-01-01

    Infrared-ultraviolet double resonance has been used to photodissociate the free HCl bond of the HCl dimer. This creates Cl-HCl in a coherent superposition of electronic and vibrational states. Measurement of the translational energy of the departing H atom using high- n Rydberg time-of-flight spectroscopy enables the Cl-HCl potential surfaces to be probed. The features thus obtained agree with theoretical estimates. At long IR-UV delays, the fastest H atoms derive primarily from UV photodissociation of internally excited HCl (e.g., high rotational levels) formed by (HCl) 2 predissociation.

  10. Measurement of water vapor in the stratosphere by photodissociation with Ly alpha (1216 A) light.

    PubMed

    Kley, D; Stone, E J

    1978-06-01

    Photodissociation of polyatomic molecules by vacuum-uv light often results in the formation of electronically excited diatomic molecular fragments. Based on this, instruments that measure mixing ratios or densities of selected polyatomic species in the stratosphere and higher troposphere can be constructed. This is demonstrated by an instrument to detect and measure stratospheric water mixing ratios utilizing H(2)O photodissociation by Ly alpha (1216 A) light and detecting OH(A(2)J(+)X(2)Pi) emission. Also, detectors for H(2)O(2), HNO(3), and NO(2) are discussed.

  11. Charge-transfer photodissociation of adsorbed molecules via electron image states

    SciTech Connect

    Jensen, E. T.

    2008-01-28

    The 248 and 193 nm photodissociations of submonolayer quantities of CH{sub 3}Br and CH{sub 3}I adsorbed on thin layers of n-hexane indicate that the dissociation is caused by dissociative electron attachment from subvacuum level photoelectrons created in the copper substrate. The characteristics of this photodissociation-translation energy distributions and coverage dependences show that the dissociation is mediated by an image potential state which temporarily traps the photoelectrons near the n-hexane-vacuum interface, and then the charge transfers from this image state to the affinity level of a coadsorbed halomethane which then dissociates.

  12. Teaching the Rovibronic Spectroscopy of Molecular Iodine

    ERIC Educational Resources Information Center

    Williamson, J. Charles

    2007-01-01

    The rovibronic spectroscopy of molecular iodine provides a clearer understanding of the electronic potential parameters of various systems to the undergraduate students. The technique also helps them to test the various other quantum mechanical concepts.

  13. The Electronic Spectrum of Iodine Revisited.

    ERIC Educational Resources Information Center

    McNaught, Ian J.

    1980-01-01

    Presents equations and techniques for calculating and interpreting many of the spectroscopically important parameters associated with the ground and second excited states of the iodine molecule. (Author/CS)

  14. Tositumomab and Iodine I 131 Tositumomab

    Cancer.gov

    This page contains brief information about tositumomab and iodine I 131 tositumomab and a collection of links to more information about the use of this drug combination, research results, and ongoing clinical trials.

  15. Regenerable Iodine Water-Disinfection System

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.

    1994-01-01

    Iodinated resin bed for disinfecting water regenerated to extend useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle manually controlled readily automated to start and stop according to signals from concentration sensors. Further benefit of regeneration is bed provides highly concentrated biocide source when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.

  16. The chlorate-iodine clock reaction.

    PubMed

    Oliveira, André P; Faria, Roberto B

    2005-12-28

    A clock reaction produced by mixing chlorate and iodine solutions in perchloric acid media is reported. This is the first example of a clock reaction using chlorate as a reagent. Increasing chlorate and acid concentration reduces the induction period. Changing the initial iodine concentration does not affect the length of the induction period. The discovery of this clock reaction opens the possibility that a new family of oscillation reactions can be built using chlorate as reagent.

  17. Theory of the photodissociation of ozone in the Hartley continuum: potential energy surfaces, conical intersections, and photodissociation dynamics.

    PubMed

    Baloïtcha, Ezinvi; Balint-Kurti, Gabriel G

    2005-07-01

    Ab initio potential energy and transition dipole moment surfaces are presented for the five lowest singlet even symmetry electronic states of ozone. The surfaces are calculated using the complete active space self consistent field method followed by contracted multireference configuration interaction (MRCI) calculations. A slightly reduced augmented correlation consistent valence triple-zeta orbital basis set is used. The ground and excited state energies of the molecule have been computed at 9282 separate nuclear geometries. Cuts through the potential energy surfaces, which pass through the geometry of the minimum of the ground electronic state, show several closely avoided crossings. Close examination, and higher level calculations, very strongly suggests that some of these seemingly avoided crossings are in fact associated with non-symmetry related conical intersections. Diabatic potential energy and transition dipole moment surfaces are created from the computed ab initio adiabatic MRCI energies and transition dipole moments. The transition dipole moment connecting the ground electronic state to the diabatic B state surface is by far the strongest. Vibrational-rotational wavefunctions and energies are computed using the ground electronic state. The energy level separations compare well with experimentally determined values. The ground vibrational state wavefunction is then used, together with the diabatic B<--X transition dipole moment surface, to form an initial wavepacket. The analysis of the time-dependent quantum dynamics of this wavepacket provides the total and partial photodissociation cross sections for the system. Both the total absorption cross section and the predicted product quantum state distributions compare well with experimental observations. A discussion is also given as to how the observed alternation in product diatom rotational state populations might be explained.

  18. Studies of new media radiation induced laser

    NASA Technical Reports Server (NTRS)

    Han, K. S.; Shiu, Y. J.; Raju, S. R.; Hwang, I. H.; Tabibi, B.

    1984-01-01

    Various lasants were investigated especially, 2-iodohepafluoropropane (i-C3F7I) for the direct solar pumped lasers. Optical pumping of iodine laser was achieved using a small flashlamp. Using i-C3F7I as a laser gain medium, threshold inversion density, small signal gain, and laser performance at the elevated temperature were measured. The experimental results and analysis are presented. The iodine laser kinetics of the C3F7I and IBr system were numerically simulated. The concept of a direct solar-pumped laser amplifier using (i-C3F7I) as the laser material was evaluated and several kinetic coefficients for i-C3F7I laser system were reexamined. The results are discussed.

  19. Modern and past volcanic degassing of iodine

    NASA Astrophysics Data System (ADS)

    Bureau, H.; Auzende, A.-L.; Marocchi, M.; Raepsaet, C.; Munsch, P.; Testemale, D.; Mézouar, M.; Kubsky, S.; Carrière, M.; Ricolleau, A.; Fiquet, G.

    2016-01-01

    We have monitored iodine degassing from a melt to a water vapor during decompression (i.e. magma ascent). Experiments have been performed by combining diamond anvil cells experiments with synchrotron X-rays fluorescence analysis. Partition coefficients DIfluid/melt measured for a pressure and temperature range of 0.1-1.8 GPa and 500-900 °C, range from 41 to 1.92, values for room conditions DIfluid/glass (quenched samples) are equal to or higher than 350. We show that iodine degassing with water is earlier and much more efficient than for lighter halogen elements, Cl and Br. Iodine is totally degassed from the silicate melt at room conditions. By applying these results to modern volcanology, we calculate an annual iodine flux for subduction related volcanism of 0.16-2.4 kt yr-1. We suggest that the natural iodine degassing may be underestimated, having possible consequences on the Earth's ozone destruction cycle. By applying this results to the Early Earth, we propose a process that may explain the contrasted signature of I, Br and Cl, strongly depleted in the bulk silicate Earth, the most depleted being iodine, whereas fluorine is almost enriched. The Earth may have lost heavy halogen elements during an early water degassing process from the magma ocean.

  20. Dietary Iodine Intake of the Australian Population after Introduction of a Mandatory Iodine Fortification Programme

    PubMed Central

    Charlton, Karen; Probst, Yasmine; Kiene, Gabriella

    2016-01-01

    To address mild iodine deficiency in Australia, a mandatory fortification program of iodised salt in bread was implemented in 2009. This study aimed to determine factors associated with achieving an adequate dietary iodine intake in the Australian population post-fortification, and to assess whether bread consumption patterns affect iodine intake in high-risk groups. Using nationally representative data of repeated 24-h dietary recalls from the 2011–2012 Australian National Nutrition and Physical Activity Survey, dietary iodine intakes and food group contributions were compared by age, socioeconomic status (SES), and geographical remoteness (N = 7735). The association between fortified bread intake and adequacy of iodine intake (meeting age and sex-specific Estimated Average Requirements) was investigated using logistic regression models in women of childbearing age 14–50 years (n = 3496) and children aged 2–18 years (n = 1772). The effect of SES on bread consumption was further investigated in a sub group of children aged 5–9 years (n = 488). Main sources of iodine intake at the time of the survey were cereal and cereal products, followed by milk products and dishes. Differences in iodine intake and dietary iodine habits according to age, SES and location were found (p < 0.001) for women of child-bearing age. Fortified bread consumption at ≥100 g/day was associated with five times greater odds of achieving an adequate iodine intake (OR 5.0, 95% CI 4.96–5.13; p < 0.001) compared to lower bread consumption in women and 12 times in children (OR 12.34, 95% CI 1.71–89.26; p < 0.001). Disparities in dietary iodine intake exist within sectors of the Australian population, even after mandatory fortification of a staple food. On-going monitoring and surveillance of iodine status is required. PMID:27827915

  1. Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling

    SciTech Connect

    Liu, Z.S.; Chen, W.B.; Hair, J.W.; She, C.Y.

    1996-12-31

    A new incoherent lidar for measuring atmospheric wind using iodine molecular filter is proposed. A unique feature of the proposed lidar lies in its capability for simultaneous measurement of aerosol mixing ratio, with which the radial wind can be determined uniquely from lidar return. A preliminary laboratory experiment using a dye laser at 589 nm and a rotating wheel has been performed demonstrating the feasibility of the proposed wind measurement.

  2. Iodine derivatives of chemically modified gum Arabic microspheres.

    PubMed

    Ganie, Showkat A; Ali, Akbar; Mazumdar, Nasreen

    2015-09-20

    Acetylated gum Arabic (AGA) derivatives with different degrees of substitution (DS 0.97-2.74) were synthesized using acetyl chloride and a base under varying reaction conditions. The AGA derivatives were obtained in the form of microspheres and thereafter stable iodine products were prepared by doping the microspheres with an iodinating agent, iodine monochloride (ICl). The reaction between electrophilic iodine and polar carbonyl groups was studied by FT-IR, (1)H-NMR, and UV-VIS spectroscopies. The products were also characterized by DSC, TGA and SEM studies. The incorporated iodine was released in aqueous medium as iodide ions (I(-)). A reaction scheme has been proposed for the iodination and de-iodination of the gum derivatives. This work suggests that the iodine derivatives of modified gum Arabic could be used as a source of iodide ions which is the nutritional form of iodine.

  3. Effect of iodine disinfection products on higher plants

    NASA Technical Reports Server (NTRS)

    Janik, D.; Macler, B.; Macelroy, R. D.; Thorstenson, Y.; Sauer, R.

    1989-01-01

    Iodine is used to disinfect potable water on United States spacecraft. Iodinated potable water will likely be used to grow plants in space. Little is known about the effects of iodine disinfection products on plants. Seeds of select higher plants were germinated in water iodinated using the Shuttle Microbial Check Valve, and water to which measured amounts of iodine was added. Percent germination was decreased in seeds of most species germinated in iodinated water. Beans were most affected. Germination rates, determined from germination half-times, were decreased for beans germinated in iodinated water, and water to which iodide was added. Development was retarded and rootlets were conspicuously absent in bean and several other plant species germinated in iodinated water. Iodide alone did not elicit these responses. Clearly iodine disinfection products can affect higher plants. These effects must be carefully considered for plant experimentation and cultivation in space, and in design and testing of closed environmental life support systems.

  4. Thyroid and iodine nutritional status: a UK perspective.

    PubMed

    Vanderpump, Mark

    2014-12-01

    Iodine is an essential component of the thyroid hormones, which play a crucial role in brain and neurological development. At least one-third of the world's population is estimated to be iodine deficient predominantly in developing countries. Recently concern had also been expressed about the iodine status in industrialised countries such as the UK. A recent survey of the UK iodine status found that that more than two-thirds of schoolgirls aged 14-15 years were iodine deficient due to the reduced milk intake. Maternal iodine deficiency in pregnancy is correlated with cognitive outcomes such as intelligence quotient and reading ability in offspring. No randomised trial data exist for iodine supplementation in mild-moderate iodine-deficient pregnant women. It is possible to combine population interventions to reduce population salt intake with salt iodisation programmes in order to maintain adequate levels of iodine nutrition.

  5. Symmetry matters: photodissociation dynamics of symmetrically versus asymmetrically substituted phenols.

    PubMed

    Karsili, Tolga N V; Wenge, Andreas M; Marchetti, Barbara; Ashfold, Michael N R

    2014-01-14

    We report a combined experimental (H (Rydberg) atom photofragment translational spectroscopy) and theoretical (ab initio electronic structure and vibronic coupling calculations) study of the effects of symmetry on the photodissociation dynamics of phenols. Ultraviolet photoexcitation to the bound S1((1)ππ*) state of many phenols leads to some O-H bond fission by tunneling through the barrier under the conical intersection (CI) between the S1 and dissociative S2((1)πσ*) potential energy surfaces in the R(O-H) stretch coordinate. Careful analysis of the total kinetic energy release spectra of the resulting products shows that the radicals formed following S1 ← S0 excitation of phenol and symmetrically substituted phenols like 4-fluorophenol all carry an odd number of quanta in vibrational mode ν(16a), whereas those deriving from asymmetrically substituted systems like 3-fluorophenol or 4-methoxyphenol do not. This contrasting behavior can be traced back to symmetry. Symmetrically substituted phenols exist in two equivalent rotamers, which interconvert by tunneling through the barrier to OH torsional motion. Their states are thus best considered in the non-rigid G4 molecular symmetry group, wherein radiationless transfer from the S1 to S2 state requires a coupling mode of a2 symmetry. Of the three a2 symmetry parent modes, the out-of-plane ring puckering mode ν(16a) shows much the largest interstate coupling constant in the vicinity of the S1/S2 CI. The nuclear motions associated with ν(16a) are orthogonal to the dissociation coordinate, and are thus retained in the radical products. Introducing asymmetry (even a non-linear substituent in the 4-position) lifts the degeneracy of the rotamers, and lowers the molecular symmetry to Cs. Many more parent motions satisfy the reduced (a'') symmetry requirement to enable S1/S2 coupling, the most effective of which is OH torsion. This motion 'disappears' on O-H bond fission; symmetry thus imposes no restriction to

  6. Density structure of the Horsehead nebula photo-dissociation region

    NASA Astrophysics Data System (ADS)

    Habart, E.; Abergel, A.; Walmsley, C. M.; Teyssier, D.; Pety, J.

    2005-07-01

    We present high angular resolution images of the H2 1-0 S(1) line emission obtained with the Son of ISAAC (SOFI) at the New Technology Telescope (NTT) of the Horsehead nebula. These observations are analysed in combination with Hα line emission, aromatic dust, CO and dust continuum emissions. The Horsehead nebula illuminated by the O9.5V star σ Ori (χ ˜ 60) presents a typical photodissociation region (PDR) viewed nearly edge-on and offers an ideal opportunity to study the gas density structure of a PDR. The H2 fluorescent emission observations reveal extremely sharp and bright filaments associated with the illuminated edge of the nebula which spatially coincides with the aromatic dust emission. Analysis of the H2 fluorescent emission, sensitive to both the far-UV radiation field and the gas density, in conjunction with the aromatic dust and Hα line emission, brings new constraints on the illumination conditions and the gas density in the outer PDR region. Furthermore, combination of this data with millimeter observations of CO and dust continuum emission allows us to trace the penetration of the far-UV radiation field into the cloud and probe the gas density structure throughout the PDR. From comparison with PDR model calculations, we find that i) the gas density follows a steep gradient at the cloud edge, with a scale length of 0.02 pc (or 10'') and nH˜ 104 and 105 cm-3 in the H2 emitting and inner cold molecular layers respectively; and ii) this density gradient model is essentially a constant pressure model, with P˜ 4 × 106 K cm-3. The constraints derived here on the gas density profile are important for the study of physical and chemical processes in PDRs and provide new insight into the evolution of interstellar clouds. Also, this work shows the strong influence of the density structure on the PDR spatial stratification and illustrates the use of different tracers to determine this density structure.

  7. Photodissociation of FONO: an excited state nonadiabatic dynamics study.

    PubMed

    Hilal, Allaa R; Hilal, Rifaat

    2017-03-01

    The photo dissociation of nitrosyl fluorite, FONO, a potential source of atmospheric fluorine, underlies its active role in ozone depletion and other activities in the troposphere. In the present work, the electronic structure of FONO is revisited at high level of ab initio and density functional theory (DFT) theoretical levels. Several different post SCF methods were used to compute excited states, vertical excitation energies and intensities, namely configuration interaction with single excitations (CIS), equation of motion coupled cluster with single and double excitations (EOM-CCSD), and symmetry adopted cluster configuration interaction (SAC-CI) methods. The potential energy functions along two internal coordinates, namely the F-ONO bond and the FONO dihedral angle, have been computed on the ground state relaxed potential energy surface (PES) for the ground, 5A' and 5A″ excited states using the EOM-CCSD method. In the gas phase, the decay of the excited states of FONO was examined closely by calculating the UV photoabsorption cross-section spectrum and by nonadiabatic dynamics simulations. Nonadiabatic dynamics were simulated by sampling 300 trajectories in two spectral windows at 3.0 ± 0.25 and 4.5 ± 0.25 eV using the surface hopping method. Two different photodissociation reaction pathways with two main products, including multifragmentation (FO+NO) and atomic elimination (F) mechanisms were identified. For the cis-isomer, the main photochemical channel is F+NO2, representing 67% of all processes. For the trans-isomer, however, the main dissociation pathway is (FO+NO). Graphical Abstract Photodisscociation of nitrosyl fluorite (FONO) seems to underlie its active role in ozone depletion and other activities in the troposphere. The present research revisits the electronic structure of FONO at high level of ab initio and DFT theoretical levels. Cis-trans isomerization and dissociation in the ground and low lying excited states were examined

  8. Photodissociation of S atom containing amino acid chromophores

    SciTech Connect

    Lin, Ming-Fu; Dyakov, Yuri A.; Lee, Yuan T.; Lin, S. H.; Mebel, Alexander M.; Ni, Chi-Kung

    2007-08-14

    Photodissociation of 3-(methylthio)propylamine and cysteamine, the chromophores of S atom containing amino acid methionine and cysteine, respectively, was studied separately in a molecular beam at 193 nm using multimass ion imaging techniques. Four dissociation channels were observed for 3-(methylthio)propylamine, including (1) CH{sub 3}SCH{sub 2}CH{sub 2}CH{sub 2}NH{sub 2}{yields}CH{sub 3}SCH{sub 2}CH{sub 2}CH{sub 2}NH+H, (2) CH{sub 3}SCH{sub 2}CH{sub 2}CH{sub 2}NH{sub 2}{yields}CH{sub 3}+SCH{sub 2}CH{sub 2}CH{sub 2}NH{sub 2}, (3) CH{sub 3}SCH{sub 2}CH{sub 2}CH{sub 2}NH{sub 2}{yields}CH{sub 3}S+CH{sub 2}CH{sub 2}CH{sub 2}NH{sub 2}, and (4) CH{sub 3}SCH{sub 2}CH{sub 2}CH{sub 2}NH{sub 2}{yields}CH{sub 3}SCH{sub 2}+CH{sub 2}CH{sub 2}NH{sub 2}. Two dissociation channels were observed from cysteamine, including (5) HSCH{sub 2}CH{sub 2}NH{sub 2}{yields}HS+CH{sub 2}CH{sub 2}NH{sub 2} and (6) HSCH{sub 2}CH{sub 2}NH{sub 2}{yields}HSCH{sub 2}+CH{sub 2}NH{sub 2}. The photofragment translational energy distributions suggest that reaction (1) and parts of the reactions (2), (3), (5) occur on the repulsive excited states. However, reaction (4), (6) occur only after the internal conversion to the electronic ground state. Since the dissociation from an excited state with a repulsive potential energy surface is very fast, it would not be quenched completely even in the condensed phase. Our results indicate that reactions following dissociation may play an important role in the UV photochemistry of S atom containing amino acid chromophores in the condensed phase. A comparison with the potential energy surface from ab initio calculations and branching ratios from RRKM calculations was made.

  9. Photodissociation Regions in the Interstellar Medium of Galaxies

    NASA Technical Reports Server (NTRS)

    Hollenbach, David J.; Tielens, A. G. G. M.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The interstellar medium of galaxies is the reservoir out of which stars are born and into which stars inject newly created elements as they age. The physical properties of the interstellar medium are governed in part by the radiation emitted by these stars. Far-ultraviolet (6 eV less than h(nu) less than 13.6 eV) photons from massive stars dominate the heating and influence the chemistry of the neutral atomic gas and much of the molecular gas in galaxies. Predominantly neutral regions of the interstellar medium in which the heating and chemistry are regulated by far ultraviolet photons are termed Photo-Dissociation Regions (PDRs). These regions are the origin of most of the non-stellar infrared (IR) and the millimeter and submillimeter CO emission from galaxies. The importance of PDRs has become increasingly apparent with advances in IR and submillimeter astronomy. The IR emission from PDRs includes fine structure lines of C, C+, and O; rovibrational lines of H2, rotational lines of CO; broad middle features of polycyclic aromatic hydrocarbons; and a luminous underlying IR continuum from interstellar dust. The transition of H to H2 and C+ to CO occurs within PDRs. Comparison of observations with theoretical models of PDRs enables one to determine the density and temperature structure, the elemental abundances, the level of ionization, and the radiation field. PDR models have been applied to interstellar clouds near massive stars, planetary nebulae, red giant outflows, photoevaporating planetary disks around newly formed stars, diffuse clouds, the neutral intercloud medium, and molecular clouds in the interstellar radiation field-in summary, much of the interstellar medium in galaxies. Theoretical PDR models explain the observed correlations of the [CII] 158 microns with the COJ = 1-0 emission, the COJ = 1-0 luminosity with the interstellar molecular mass, and the [CII] 158 microns plus [OI] 63 microns luminosity with the IR continuum luminosity. On a more global

  10. Addition of chlorine during water purification reduces iodine content of drinking water and contributes to iodine deficiency.

    PubMed

    Samson, L; Czegeny, I; Mezosi, E; Erdei, A; Bodor, M; Cseke, B; Burman, K D; Nagy, E V

    2012-01-01

    Drinking water is the major natural source of iodine in many European countries. In the present study, we examined possible sites of iodine loss during the usual water purification process.Water samples from 6 sites during the technological process were taken and analyzed for iodine content. Under laboratory circumstances, prepared iodine in water solution has been used as a model to test the effect of the presence of chlorine. Samples from the purification sites revealed that in the presence of chlorine there is a progressive loss of iodine from the water. In the chlorine concentrations employed in the purification process, 24-h chlorine exposure eliminated more than 50% of iodine when the initial iodine concentration was 250 μg/l or less. Iodine was completely eliminated if the starting concentration was 16 μg/l.We conclude that chlorine used during water purification may be a major contributor to iodine deficiency in European communities.

  11. UV photodissociation dynamics of iodobenzene: Effects of fluorination

    SciTech Connect

    Murdock, Daniel; Ashfold, Michael N. R.; Crow, Martin B.; Ritchie, Grant A. D.

    2012-03-28

    The UV photochemistry of various fluorinated iodobenzenes (4-fluoro-, 2,4-difluoro-, 3,5-difluoro-, and perfluoro-iodobenzene) has been investigated at many wavelengths by velocity map imaging, time-resolved near infrared absorption spectroscopy and (spin-orbit resolved) ab initio calculations of the ground and excited state potentials along the C-I stretch coordinate, R{sub C-I}. The textbook description of the near UV photochemistry of CH{sub 3}I, i.e., {sigma}*(leftarrow)n excitation to the {sup 3}Q{sub 0+} state, followed by direct dissociation (to yield spin-orbit excited iodine atom (I*) products) or by non-adiabatic coupling via a conical intersection (CI) with the {sup 1}Q{sub 1} potential (to yield ground state iodine (I) atoms) is shown to provide a good zero-order model for aryl iodide photochemistry also. However, the aryl halides also possess occupied {pi} and low-lying {pi}* orbitals, and have lower (C{sub 2v} or C{sub s}) symmetry than CH{sub 3}I. Both of these factors introduce additional subtleties. For example, excitations to and predissociation of {pi}{pi}* excited states provide additional routes to I products, most obviously at long UV wavelengths. n{sigma}*/{pi}{sigma}* configuration mixing stabilizes the (analogue of the) {sup 3}Q{sub 0+} potential energy surface (PES), to an extent that scales with the degree of fluorination; the corresponding 4A{sub 1} PES in C{sub 6}F{sub 5}I is actually predicted to exhibit a minimum at extended R{sub C-I}. This has the effect of extending the long wavelength threshold for forming I* products. The lowered symmetry enables an additional (sloped) CI with the 5A{sub 2} (9A{sup ''} in 2,4-difluorobenzene) PES, which provides an extra non-adiabatic route to (fast) ground state I atoms when populating the 4A{sub 1} PES at shorter UV excitation wavelengths.

  12. [Application of iodine metabolism analysis methods in thyroid diseases].

    PubMed

    Han, Jian-hua; Qiu, Ling

    2013-08-01

    The main physiological role of iodine in the body is to synthesize thyroid hormone. Both iodine deficiency and iodine excess can lead to severe thyroid diseases. While its role in thyroid diseases has increasingly been recognized, few relevant platforms and techniques for iodine detection have been available in China. This paper summarizes the advantages and disadvantages of currently iodine detection methods including direct titration, arsenic cerium catalytic spectrophotometry, chromatography with pulsed amperometry, colorimetry based on automatic biochemistry, inductively coupled plasma mass spectrometry, so as to optimize the iodine nutrition for patients with thyroid diseases.

  13. The uptake of elemental iodine vapour by bean leaves

    NASA Astrophysics Data System (ADS)

    Garland, J. A.; Cox, L. C.

    Deposition of iodine vapour to leaves of phaseolus vulgaris was measured over a range of conditions of humidity, temperature and illumination. Transpiration measurements were used to deduce stomatal opening. The results showed that stomatal resistance controlled iodine absorption at relative humidities below 40 per cent, but that the rate of absorption of iodine increased by an order of magnitude when the relative humidity was raised to 80 per cent, presumably due to cuticular absorption. After exposure to iodine at high humidity, a substantial fraction of the iodine could be washed from the leaves. In Britain, cuticular uptake would probably dominate stomatal uptake of iodine on most occasions.

  14. Iodine-129 Dose in LLW Disposal Facility Performance Assessments

    SciTech Connect

    Wilhite, E.L.

    1999-10-15

    Iodine-129 has the lowest Performance Assessment derived inventory limit in SRS disposal facilities. Because iodine is concentrated in the body to one organ, the thyroid, it has been thought that dilution with stable iodine would reduce the dose effects of 129I.Examination of the dose model used to establish the Dose conversion factor for 129I shows that, at the levels considered in performance assessments of low-level waste disposal facilities, the calculated 129I dose already accounts for ingestion of stable iodine. At higher than normal iodine ingestion rates, the uptake of iodine by the thyroid itself decrease, which effectively cancels out the isotopic dilution effect.

  15. Effects of Increased Iodine Intake on Thyroid Disorders

    PubMed Central

    Sun, Xin; Shan, Zhongyan

    2014-01-01

    Iodine is a micronutrient essential for the production of thyroid hormones. Iodine deficiency is the most common cause of preventable mental impairment worldwide. Universal salt iodization (USI) has been introduced in many countries as a cost-effective and sustainable way to eliminate iodine deficiency disorders for more than 25 years. Currently, the relationship between USI and iodine excess has attracted more attention. Iodine excess can lead to hypothyroidism and autoimmune thyroiditis, especially for susceptible populations with recurring thyroid disease, the elderly, fetuses, and neonates. Nationwide USI was introduced in China in 1996. This review focused on the effects of iodine excess worldwide and particularly in China. PMID:25309781

  16. 40 CFR 415.430 - Applicability; description of the iodine production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... iodine production subcategory. 415.430 Section 415.430 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Iodine Production Subcategory § 415.430 Applicability; description of the iodine production... iodine....

  17. 40 CFR 415.430 - Applicability; description of the iodine production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... iodine production subcategory. 415.430 Section 415.430 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Iodine Production Subcategory § 415.430 Applicability; description of the iodine production... iodine....

  18. 40 CFR 415.430 - Applicability; description of the iodine production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... iodine production subcategory. 415.430 Section 415.430 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Iodine Production Subcategory § 415.430 Applicability; description of the iodine production... iodine....

  19. 40 CFR 415.430 - Applicability; description of the iodine production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... iodine production subcategory. 415.430 Section 415.430 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Iodine Production Subcategory § 415.430 Applicability; description of the iodine production... iodine....

  20. 40 CFR 415.430 - Applicability; description of the iodine production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... iodine production subcategory. 415.430 Section 415.430 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Iodine Production Subcategory § 415.430 Applicability; description of the iodine production... iodine....