Science.gov

Sample records for photoelectron photoion molecular

  1. Photoelectron photoion molecular beam spectroscopy

    SciTech Connect

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  2. Global nonresonant vibrational-photoelectron coupling in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Poliakoff, Erwin; Das, Aloke; Hardy, David; Bozek, John; Aguilar, Alex; Lucchese, Robert

    2009-05-01

    Using photoelectron spectroscopy and Schwinger variational scattering theory, we have investigated the coupling between vibrational motion and the exiting photoelectron over extended ranges of photoelectron kinetic energy. Photoelectron spectroscopy is performed with vibrational resolution over uncommonly large ranges of energy (ca. 200 eV). We find clear and significant changes in vibrational branching ratios as a function of photon energy, in direct contradiction to predictions of the Franck-Condon principle. While it is well known that resonances lead to coupling between electronic and vibrational degrees of freedom, nonresonant mechanisms that result in such coupling are not expected or well-documented. Photoelectron spectra are presented for several electronic states of N2^+, CO^+, and NO^+, and we find that valence isoelectronic channels behave very differently, which is also surprising. Theoretical results indicate that Cooper minima are the underlying cause of these effects, and we are currently working to understand the reasons for the sensitivity of the Cooper minima on bond length.

  3. Photoionization-photoelectron research

    SciTech Connect

    Berkowitz, J.; Ruscic, B.

    1993-12-01

    The photoionization research program is aimed at understanding the basic processes of interaction of vacuum ultraviolet (VUV) light with atoms and molecules. This research provides valuable information on both thermochemistry and dynamics. Recent studies include atoms, clusters, hydrides, sulfides and an important fluoride.

  4. Photoionization-photoelectron research.

    SciTech Connect

    Ruscic, B.

    1998-03-06

    In the broad sense of a general definition, the fundamental goal of this research program is to explore, understand, and utilize the basic processes of interaction of vacuum UV light with atoms and molecules. In practical terms, this program uses photoionization mass spectrometry and other related techniques to study chemically relevant transient and metastable species that are intimately connected to energy-producing processes, such as combustion, or play-prominent roles in the associated environmental issues. Some recent examples of species that have been studied are: CH{sub 3}, CH{sub 2}, CH{sub 3}O, CH{sub 2}OH, CH{sub 3}S, CH{sub 2}SH, HCS, HNCO, NCO, HNCS, NCS, the isomers of C{sub 2}H{sub 5}O, HOBr, CF{sub 3} and CF{sub 3}OH. The ephemeral species of interest are produced in situ using various suitable techniques, such as sublimation, pyrolysis, microwave discharge, chemical abstraction reactions with H or F atoms, laser photodissociation, on-line synthesis, and others. The desired information is obtained by applying a variety of suitable photoionization methods, which use both conventional and coherent light sources in the vacuum W region. The spiritus movens of our studies is the need to provide the chemical community with essential information on the species of interest, such as accurate and reliable thermochemical, spectroscopic and structural data, and thus contribute to the global comprehension of the underlying chemical processes. The scientific motivation is also fueled by the necessity to unveil useful generalities, such as bonding patterns within a class of related compounds, or systematic behavior in the ubiquitous autoionization processes. In addition, the nature of the results obtained in this program is such that it generates a significant impetus for further theoretical work. The experimental work of this program is coordinated with other related experimental and theoretical efforts of the Chemical Dynamics Group to provide a broad perspective

  5. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  6. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428

  7. Molecular photoionization studies

    SciTech Connect

    Dehmer, P.M.

    1983-01-01

    This program is concerned with the study of the electronic structure of small molecules and clusters of molecules. Of particular interest is the interaction of discrete electronic states with one another and with the various ionization and dissociation continua. Since the Second Annual Meeting of the DOE-OHER Program on The Physics and Chemistry of Energy-Related Atmospheric Pollutants in April 1981, significant progress has been made in the following areas: (1) the study of the electronic structure of dimers and small clusters of rare gas atoms using photoionization techniques; (2) similar studies on clusters of CO/sub 2/ molecules; (3) the study of electronic structure of rare gas dimers and trimers using photoelectron and photoelectron-photoion coincidence techniques; (4) the investigation of the relationship between Rydberg states in atoms, van der Waals molecules, and chemically-bonded molecules; (5) the extension of the study of photoabsorption, photoionization, and predissociation processes in H/sub 2/ to the unsymmetric isotope HD; (6) the study of photoelectron spectra of H/sub 2/ and C/sub 2/H/sub 2/; (7) a review of some of the aspects of dissociation processes in small molecules; and (8) the creation of a new program to study the spectra and dynamics of the photoionization processes in small molecules using the technique of multiphoton ionization followed by mass and electron energy analysis of the product ions and electrons. Some of the highlights of this work are reviewed.

  8. Molecular photoionization dynamics

    SciTech Connect

    Dehmer, Joseph L.

    1982-05-01

    This program seeks to develop both physical insight and quantitative characterization of molecular photoionization processes. Progress is briefly described, and some publications resulting from the research are listed. (WHK)

  9. Molecular Isomer Identification of Titan's Tholins Organic Aerosols by Photoelectron/Photoion Coincidence Spectroscopy Coupled to VUV Synchrotron Radiation.

    PubMed

    Cunha de Miranda, Barbara; Garcia, Gustavo A; Gaie-Levrel, François; Mahjoub, Ahmed; Gautier, Thomas; Fleury, Benjamin; Nahon, Laurent; Pernot, Pascal; Carrasco, Nathalie

    2016-08-25

    The chemical composition of Titan organic haze is poorly known. To address this issue, laboratory analogues named tholins are synthesized and analyzed by methods often requiring an extraction process in a carrier solvent. These methods exclude the analysis of the insoluble tholins' fraction and assume a hypothetical chemical equivalence between soluble and insoluble fractions. In this work, we present a powerful complementary analysis method recently developed on the DESIRS VUV synchrotron beamline at SOLEIL. It involves soft pyrolysis of tholins at ∼230 °C and electron/ion coincidence analysis of the emitted volatile compounds photoionized by tunable synchrotron radiation. By comparison with reference photoelectron spectra (PES), the spectral information collected on the detected molecules yields their isomeric structure. The method is more readily applied to light species (m/z ≤ 69), while for heavier ones, the number of possibilities and the lack of PES reference spectra in the literature limit its analysis. A notable pattern in the analyzed tholins is the presence of species containing adjacent doubly bonded N atoms, which might be a signature of heterogeneous incorporation of N2 in tholins.

  10. Molecular Isomer Identification of Titan's Tholins Organic Aerosols by Photoelectron/Photoion Coincidence Spectroscopy Coupled to VUV Synchrotron Radiation.

    PubMed

    Cunha de Miranda, Barbara; Garcia, Gustavo A; Gaie-Levrel, François; Mahjoub, Ahmed; Gautier, Thomas; Fleury, Benjamin; Nahon, Laurent; Pernot, Pascal; Carrasco, Nathalie

    2016-08-25

    The chemical composition of Titan organic haze is poorly known. To address this issue, laboratory analogues named tholins are synthesized and analyzed by methods often requiring an extraction process in a carrier solvent. These methods exclude the analysis of the insoluble tholins' fraction and assume a hypothetical chemical equivalence between soluble and insoluble fractions. In this work, we present a powerful complementary analysis method recently developed on the DESIRS VUV synchrotron beamline at SOLEIL. It involves soft pyrolysis of tholins at ∼230 °C and electron/ion coincidence analysis of the emitted volatile compounds photoionized by tunable synchrotron radiation. By comparison with reference photoelectron spectra (PES), the spectral information collected on the detected molecules yields their isomeric structure. The method is more readily applied to light species (m/z ≤ 69), while for heavier ones, the number of possibilities and the lack of PES reference spectra in the literature limit its analysis. A notable pattern in the analyzed tholins is the presence of species containing adjacent doubly bonded N atoms, which might be a signature of heterogeneous incorporation of N2 in tholins. PMID:27471793

  11. Attosecond Delays in Molecular Photoionization

    NASA Astrophysics Data System (ADS)

    Huppert, Martin; Jordan, Inga; Baykusheva, Denitsa; von Conta, Aaron; Wörner, Hans Jakob

    2016-08-01

    We report measurements of energy-dependent photoionization delays between the two outermost valence shells of N2O and H2O . The combination of single-shot signal referencing with the use of different metal foils to filter the attosecond pulse train enables us to extract delays from congested spectra. Remarkably large delays up to 160 as are observed in N2O , whereas the delays in H2O are all smaller than 50 as in the photon-energy range of 20-40 eV. These results are interpreted by developing a theory of molecular photoionization delays. The long delays measured in N2O are shown to reflect the population of molecular shape resonances that trap the photoelectron for a duration of up to ˜110 as. The unstructured continua of H2O result in much smaller delays at the same photon energies. Our experimental and theoretical methods make the study of molecular attosecond photoionization dynamics accessible.

  12. Attosecond Delays in Molecular Photoionization.

    PubMed

    Huppert, Martin; Jordan, Inga; Baykusheva, Denitsa; von Conta, Aaron; Wörner, Hans Jakob

    2016-08-26

    We report measurements of energy-dependent photoionization delays between the two outermost valence shells of N_{2}O and H_{2}O. The combination of single-shot signal referencing with the use of different metal foils to filter the attosecond pulse train enables us to extract delays from congested spectra. Remarkably large delays up to 160 as are observed in N_{2}O, whereas the delays in H_{2}O are all smaller than 50 as in the photon-energy range of 20-40 eV. These results are interpreted by developing a theory of molecular photoionization delays. The long delays measured in N_{2}O are shown to reflect the population of molecular shape resonances that trap the photoelectron for a duration of up to ∼110 as. The unstructured continua of H_{2}O result in much smaller delays at the same photon energies. Our experimental and theoretical methods make the study of molecular attosecond photoionization dynamics accessible. PMID:27610849

  13. Molecular alignment dependent electron interference in attosecond ultraviolet photoionization

    PubMed Central

    Yuan, Kai-Jun; Bandrauk, André D.

    2015-01-01

    We present molecular photoionization processes by intense attosecond ultraviolet laser pulses from numerical solutions of time-dependent Schrödinger equations. Simulations preformed on a single electron diatomic H2+ show minima in molecular photoelectron energy spectra resulting from two center interference effects which depend strongly on molecular alignment. We attribute such sensitivity to the spatial orientation asymmetry of the photoionization process from the two nuclei. A similar influence on photoelectron kinetic energies is also presented. PMID:26798785

  14. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    PubMed

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization. PMID:27475368

  15. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    PubMed

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  16. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization

    NASA Astrophysics Data System (ADS)

    Germann, Matthias; Willitsch, Stefan

    2016-07-01

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  17. Determination of photoionization branching ratios and total photoionization cross sections at 304 A from experimental ionospheric photoelectron fluxes

    NASA Technical Reports Server (NTRS)

    Richards, P. G.; Torr, D. G.; Espy, P. J.

    1982-01-01

    High-resolution measurements of the ionospheric photoelectron spectrum are used to derive photoionization cross sections and branching ratios for N2 and O at 304 A, the wavelength of the intense He II solar radiation. Based on a theory in which the measured fluxes at energies 22.5, 24.5, 25.5 and 27.5 eV are determined by the ratio of the production rate and the loss rate coefficient, values are obtained for the ratio of molecular nitrogen density to atomic oxygen density as a function of altitude, the sum of the total photoionization cross sections, the 2P/4S and 2D/4S branching ratios for O and the B/X and A/X branching ratios for N2 photoionization and the ratios and the interspecies cross section ratios 2D/A, 4S/X and 2P/B. The values obtained are in accord with the photoionization cross sections of Kirby et al. (1979).

  18. Imaging photoelectron photoion coincidence spectroscopy with velocity focusing electron optics

    NASA Astrophysics Data System (ADS)

    Bodi, Andras; Johnson, Melanie; Gerber, Thomas; Gengeliczki, Zsolt; Sztáray, Bálint; Baer, Tomas

    2009-03-01

    An imaging photoelectron photoion coincidence spectrometer at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source is presented and a few initial measurements are reported. Monochromatic synchrotron VUV radiation ionizes the cooled or thermal gas-phase sample. Photoelectrons are velocity focused, with better than 1 meV resolution for threshold electrons, and also act as start signal for the ion time-of-flight analysis. The ions are accelerated in a relatively low, 40-80 V cm-1 field, which enables the direct measurement of rate constants in the 103-107 s-1 range. All electron and ion events are recorded in a triggerless multiple-start/multiple-stop setup, which makes it possible to carry out coincidence experiments at >100 kHz event frequencies. As examples, the threshold photoelectron spectrum of the argon dimer and the breakdown diagrams for hydrogen atom loss in room temperature methane and the chlorine atom loss in cold chlorobenzene are shown and discussed.

  19. Imaging breakdown diagrams for bromobutyne isomers with photoelectron-photoion coincidence.

    PubMed

    Bodi, Andras; Hemberger, Patrick

    2014-01-14

    Internal energy selected C4H5Br(+) ions were prepared by vacuum ultraviolet photoionization from the bromobutyne constitutional isomers 4-bromo-1-butyne, 1-bromo-2-butyne, and 3-bromo-1-butyne. The lowest energy dissociative photoionization channel is Br-loss. 1-Bromo-2-butyne and 3-bromo-1-butyne cations are not metastable, and based on the threshold photoionization breakdown diagrams and neutral internal energy distributions, 0 K appearance energies of E0 = 10.375 ± 0.010 and 10.284 ± 0.010 eV are obtained, respectively. A kinetic shift has been observed in the Br loss of the 4-bromo-1-butyne cation, and the experimental dissociation rates were also modeled to obtain E0 = 10.616 ± 0.030 eV. The energetics of the samples and nine C4H5 and C4H5(+) structures are explored using G4 theory, which suggests that only the staggered 4-bromo-1-butyne rotamer cation loses Br to form a high-energy cyclic C4H5(+) isomer, while the relative appearance energies indicate that 1-bromo-2-butyne and 3-bromo-1-butyne form the linear CH2CCCH3(+) ion. The subtraction scheme for hot electron suppression in threshold photoelectron-photoion coincidence (TPEPICO) is discussed, and is used to introduce velocity map imaging (VMI-)PEPICO and data analysis. The derived onsets and the dissociation rate curve show that modeling VMI-PEPICO data taken close above or below the disappearance energy of the parent ion to obtain imaging breakdown diagrams is a feasible approach also in the presence of a kinetic shift. Imaging breakdown diagrams are advantageous when signal levels are low or short acquisition times necessary, such as in the case of reactive intermediates or in time resolved experiments, and can also be used as a fast molecular thermometer. PMID:24108175

  20. A photoelectron-photoion coincidence imaging apparatus for femtosecond time-resolved molecular dynamics with electron time-of-flight resolution of {sigma}=18 ps and energy resolution {delta}E/E=3.5%

    SciTech Connect

    Vredenborg, Arno; Roeterdink, Wim G.; Janssen, Maurice H. M.

    2008-06-15

    We report on the construction and performance of a novel photoelectron-photoion coincidence machine in our laboratory in Amsterdam to measure the full three-dimensional momentum distribution of correlated electrons and ions in femtosecond time-resolved molecular beam experiments. We implemented sets of open electron and ion lenses to time stretch and velocity map the charged particles. Time switched voltages are operated on the particle lenses to enable optimal electric field strengths for velocity map focusing conditions of electrons and ions separately. The position and time sensitive detectors employ microchannel plates (MCPs) in front of delay line detectors. A special effort was made to obtain the time-of-flight (TOF) of the electrons at high temporal resolution using small pore (5 {mu}m) MCPs and implementing fast timing electronics. We measured the TOF distribution of the electrons under our typical coincidence field strengths with a temporal resolution down to {sigma}=18 ps. We observed that our electron coincidence detector has a timing resolution better than {sigma}=16 ps, which is mainly determined by the residual transit time spread of the MCPs. The typical electron energy resolution appears to be nearly laser bandwidth limited with a relative resolution of {delta}E{sub FWHM}/E=3.5% for electrons with kinetic energy near 2 eV. The mass resolution of the ion detector for ions measured in coincidence with electrons is about {delta}m{sub FWHM}/m=1/4150. The velocity map focusing of our extended source volume of particles, due to the overlap of the molecular beam with the laser beams, results in a parent ion spot on our detector focused down to {sigma}=115 {mu}m.

  1. Molecular photoionization studies of nucleobases and correlated systems

    SciTech Connect

    Poliakoff, Erwin D.

    2015-03-11

    We proposed molecular photoionization studies in order to probe correlated events in fundamental scattering phenomena. In particular, we suggested that joint theoretical-experimental studies would provide a window into the microscopic aspects that are of central importance in AMO and chemical physics generally, and would generate useful data for wide array of important DOE topics, such as ultrafast dynamics, high harmonic generation, and probes of nonadiabatic processes. The unifying theme is that correlations between electron scattering dynamics and molecular geometry highlight inherently molecular aspects of the photoelectron behavior.

  2. Energy Correlation among Three Photoelectrons Emitted in Core-Valence-Valence Triple Photoionization of Ne

    SciTech Connect

    Hikosaka, Y.; Soejima, K.; Lablanquie, P.; Penent, F.; Palaudoux, J.; Andric, L.; Shigemasa, E.; Suzuki, I. H.; Nakano, M.; Ito, K.

    2011-09-09

    The direct observation of triple photoionization involving one inner shell and two valence electrons is reported. The energy distribution of the three photoelectrons emitted from Ne is obtained using a very efficient multielectron coincidence method using the magnetic bottle electron spectroscopic technique. A predominance of the direct path to triple photoionization for the formation of Ne{sup 3+} in the 1s2s{sup 2}2p{sup 4} configuration is observed. It is demonstrated that the energy distribution evolves with photon energy and indicates a significant difference with triple photoionization involving only valence electrons.

  3. Double imaging photoelectron photoion coincidence sheds new light on the dissociation of energy-selected CH3Cl(+) ions.

    PubMed

    Tang, Xiaofeng; Lin, Xiaoxiao; Zhang, Weijun; Garcia, Gustavo A; Nahon, Laurent

    2016-09-14

    The vacuum ultraviolet (VUV) photoionization and dissociative photoionization of CH3Cl in the energy range of 11-17 eV have been investigated in detail by combining synchrotron radiation and double imaging photoelectron photoion coincidences (i(2)PEPICO). Three low-lying electronic states of the CH3Cl(+) molecular ion, X(2)E, A(2)A1 and B(2)E, were prepared and analyzed. The appearance energies of the energetically accessible fragment ions, CH2Cl(+), CHCl(+), CH3(+) and CH2(+), have been obtained from their respective mass-selected threshold photoelectron spectra (TPES) or photoionization efficiency (PIE) curves. The dissociation mechanisms of energy-selected CH3Cl(+) ions, prepared in the A(2)A1 and the B(2)E electronic states, as well as outside the Franck-Condon region, have been revealed to be state-specific via ion/electron kinetic energy correlation diagrams. In particular, the umbrella mode vibrational progression of the CH3(+) fragment ion in the direct dissociation of the A(2)A1 electronic state was identified and assigned indicating that this state correlates to the CH3(+)(1(1)A1') + Cl((2)P1/2) dissociation limit, in agreement with the theoretical calculations performed in this work. PMID:27524637

  4. Vibrationally induced inversion of photoelectron forward-backward asymmetry in chiral molecule photoionization by circularly polarized light

    PubMed Central

    Garcia, Gustavo A.; Nahon, Laurent; Daly, Steven; Powis, Ivan

    2013-01-01

    Electron–nuclei coupling accompanying excitation and relaxation processes is a fascinating phenomenon in molecular dynamics. A striking and unexpected example of such coupling is presented here in the context of photoelectron circular dichroism measurements on randomly oriented, chiral methyloxirane molecules, unaffected by any continuum resonance. Here, we report that the forward-backward asymmetry in the electron angular distribution, with respect to the photon axis, which is associated with photoelectron circular dichroism can surprisingly reverse direction according to the ion vibrational mode excited. This vibrational dependence represents a clear breakdown of the usual Franck–Condon assumption, ascribed to the enhanced sensitivity of photoelectron circular dichroism (compared with other observables like cross-sections or the conventional anisotropy parameter-β) to the scattering phase off the chiral molecular potential, inducing a dependence on the nuclear geometry sampled in the photoionization process. Important consequences for the interpretation of such dichroism measurements within analytical contexts are discussed. PMID:23828557

  5. Relativistic effects on interchannel coupling in atomic photoionization: The photoelectron angular distribution of Xe 5s

    SciTech Connect

    Hemmers, O.; Manson, S. T.; Sant'Anna, M. M.; Focke, P.; Wang, H.; Sellin, I. A.; Lindle, D. W.

    2001-08-01

    Measurements of the photoelectron angular-distribution asymmetry parameter {beta} for Xe 5s photoionization have been performed in the 80--200 eV photon-energy region. The results show a substantial deviation from the nonrelativistic value of {beta}=2 and provide a clear signature of significant relativistic effects in interchannel coupling.

  6. In situ flame chemistry tracing by imaging photoelectron photoion coincidence spectroscopy

    SciTech Connect

    Oßwald, P.; Köhler, M.; Hemberger, P.; Bodi, A.; Gerber, T.; Bierkandt, T.; Akyildiz, E.; Kasper, T.

    2014-02-15

    Adaptation of a low-pressure flat flame burner with a flame-sampling interface to the imaging photoelectron photoion coincidence spectrometer (iPEPICO) of the VUV beamline at the Swiss Light Source is presented. The combination of molecular-beam mass spectrometry and iPEPICO provides a new powerful analytical tool for the detailed investigation of reaction networks in flames. First results demonstrate the applicability of the new instrument to comprehensive flame diagnostics and the potentially high impact for reaction mechanism development for conventional and alternative fuels. Isomer specific identification of stable and radical flame species is demonstrated with unrivaled precision. Radical detection and identification is achieved for the initial H-abstraction products of fuel molecules as well as for the reaction controlling H, O, and OH radicals. Furthermore, quantitative evaluation of changing species concentrations during the combustion process and the applicability of respective results for kinetic model validation are demonstrated. Utilization of mass-selected threshold photoelectron spectra is shown to ensure precise signal assignment and highly reliable spatial profiles.

  7. In situ flame chemistry tracing by imaging photoelectron photoion coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Oßwald, P.; Hemberger, P.; Bierkandt, T.; Akyildiz, E.; Köhler, M.; Bodi, A.; Gerber, T.; Kasper, T.

    2014-02-01

    Adaptation of a low-pressure flat flame burner with a flame-sampling interface to the imaging photoelectron photoion coincidence spectrometer (iPEPICO) of the VUV beamline at the Swiss Light Source is presented. The combination of molecular-beam mass spectrometry and iPEPICO provides a new powerful analytical tool for the detailed investigation of reaction networks in flames. First results demonstrate the applicability of the new instrument to comprehensive flame diagnostics and the potentially high impact for reaction mechanism development for conventional and alternative fuels. Isomer specific identification of stable and radical flame species is demonstrated with unrivaled precision. Radical detection and identification is achieved for the initial H-abstraction products of fuel molecules as well as for the reaction controlling H, O, and OH radicals. Furthermore, quantitative evaluation of changing species concentrations during the combustion process and the applicability of respective results for kinetic model validation are demonstrated. Utilization of mass-selected threshold photoelectron spectra is shown to ensure precise signal assignment and highly reliable spatial profiles.

  8. Short-time Chebyshev wave packet method for molecular photoionization

    NASA Astrophysics Data System (ADS)

    Sun, Zhaopeng; Zheng, Yujun

    2016-08-01

    In this letter we present the extended usage of short-time Chebyshev wave packet method in the laser induced molecular photoionization dynamics. In our extension, the polynomial expansion of the exponential in the time evolution operator, the Hamiltonian operator can act on the wave packet directly which neatly avoids the matrix diagonalization. This propagation scheme is of obvious advantages when the dynamical system has large Hamiltonian matrix. Computational simulations are performed for the calculation of photoelectronic distributions from intense short pulse ionization of K2 and NaI which represent the Born-Oppenheimer (BO) model and Non-BO one, respectively.

  9. Photodissociation of Small Molecules and Photoionization of Free Radicals Using the VUV Velocity-Map Imaging Photoion and Photoelectron Method

    NASA Astrophysics Data System (ADS)

    Gao, Hong

    The tunable vacuum ultraviolet (VUV) laser generated through the two-photon resonance-enhanced four-wave mixing scheme is combined with the newly developed time-slice velocity map imaging photoion method to study the photodissociation of small molecules in the VUV region, and with the velocity map imaging photoelectron method to study the photoionization of free radicals. The photodissociation dynamics of NO in the energy region around 13.5 eV has been investigated. Branching ratios of the three lowest dissociation channels of 12C 16O that produce C(3P) + O(3P), C( 1D) + O(3P) and C(3P) + O(1D) are measured for the first time in the VUV region from 102,500 cm-1 to 110,500 cm-1, valuable information of the dissociation dynamics for this prototype system has been deduced. We demonstrated an experiment that has two independently tunable VUV lasers and a time-slice velocity map imaging setup, this provides us a global way to perform systematic state-selected photodissociation of small molecules via state-selected detection of the atomic products in the VUV region. The velocity map imaging photoelectron method was successfully used to obtain the photoelectron spectrum of the propargyl radical (C3H3) via a single VUV photoionization process. The propargyl radical is generated by the 193 nm laser photodissociation of the precursor C3H3Cl. This is the first time that the velocity map imaging photoelectron method is used to get the photoelectron spectra of free radicals, indicating that it is a powerful technique for studying the photoionization of free radicals which are always hard to be produced with high enough number densities for spectroscopic studies. This dissertation is mainly based on the following peer-reviewed journal articles: 1. Hong Gao, Yang Pan, Lei Yang, Jingang Zhou, C. Y. Ng and William M. Jackson. "Time-slice velocity-map ion imaging studies of the Photodissociation of NO in the vacuum ultraviolet region", the Journal of Chemical Physics, 136, 134302

  10. State-To Spectroscopy and Dynamics of Ions and Neutrals by Photoionization and Photoelectron Methods

    NASA Astrophysics Data System (ADS)

    Ng, Cheuk-Yiu

    2014-06-01

    Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (VIS)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. We show that VUV laser photoionization coupled with velocity-map-imaging (VMI)-threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolutions, but higher detection sensitivities than those observed in VUV laser pulsed field ionization-photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and VIS-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE and VIS-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI-photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.

  11. State-to-state spectroscopy and dynamics of ions and neutrals by photoionization and photoelectron methods.

    PubMed

    Ng, Cheuk-Yiu

    2014-01-01

    Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (Vis)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. VUV laser photoionization coupled with velocity-map-imaging threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolution but has higher-detection sensitivities than those observed in VUV laser pulsed field ionization photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and Vis-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE, and Vis-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics. PMID:24328445

  12. State-to-State Spectroscopy and Dynamics of Ions and Neutrals by Photoionization and Photoelectron Methods

    NASA Astrophysics Data System (ADS)

    Ng, Cheuk-Yiu

    2014-04-01

    Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (Vis)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. VUV laser photoionization coupled with velocity-map-imaging threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolution but has higher-detection sensitivities than those observed in VUV laser pulsed field ionization photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and Vis-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE, and Vis-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.

  13. Velocity map photoelectron-photoion coincidence imaging on a single detector.

    PubMed

    Lehmann, C Stefan; Ram, N Bhargava; Janssen, Maurice H M

    2012-09-01

    Here we report on a new simplified setup for velocity map photoelectron-photoion coincidence imaging using only a single particle detector. We show that both photoelectrons and photoions can be extracted toward the same micro-channel-plate delay line detector by fast switching of the high voltages on the ion optics. This single detector setup retains essentially all the features of a standard two-detector coincidence imaging setup, viz., the high spatial resolution for electron and ion imaging, while only slightly decreasing the ion time-of-flight mass resolution. The new setup paves the way to a significant cost reduction in building a coincidence imaging setup for experiments aiming to obtain the complete correlated three-dimensional momentum distribution of electrons and ions.

  14. Velocity map photoelectron-photoion coincidence imaging on a single detector

    SciTech Connect

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M.

    2012-09-15

    Here we report on a new simplified setup for velocity map photoelectron-photoion coincidence imaging using only a single particle detector. We show that both photoelectrons and photoions can be extracted toward the same micro-channel-plate delay line detector by fast switching of the high voltages on the ion optics. This single detector setup retains essentially all the features of a standard two-detector coincidence imaging setup, viz., the high spatial resolution for electron and ion imaging, while only slightly decreasing the ion time-of-flight mass resolution. The new setup paves the way to a significant cost reduction in building a coincidence imaging setup for experiments aiming to obtain the complete correlated three-dimensional momentum distribution of electrons and ions.

  15. Disentangling Multichannel Photodissociation Dynamics in Acetone by Time-Resolved Photoelectron-Photoion Coincidence Spectroscopy.

    PubMed

    Maierhofer, Paul; Bainschab, Markus; Thaler, Bernhard; Heim, Pascal; Ernst, Wolfgang E; Koch, Markus

    2016-08-18

    For the investigation of photoinduced dynamics in molecules with time-resolved pump-probe photoionization spectroscopy, it is essential to obtain unequivocal information about the fragmentation behavior induced by the laser pulses. We present time-resolved photoelectron-photoion coincidence (PEPICO) experiments to investigate the excited-state dynamics of isolated acetone molecules triggered by two-photon (269 nm) excitation. In the complex situation of different relaxation pathways, we unambiguously identify three distinct pump-probe ionization channels. The high selectivity of PEPICO detection allows us to observe the fragmentation behavior and to follow the time evolution of each channel separately. For channels leading to fragment ions, we quantitatively obtain the fragment-to-parent branching ratio and are able to determine experimentally whether dissociation occurs in the neutral molecule or in the parent ion. These results highlight the importance of coincidence detection for the interpretation of time-resolved photochemical relaxation and dissociation studies if multiple pathways are present.

  16. Threshold Photoelectron Photoion Coincidence (TPEPICO) Studies. The Road to ± 0.1 kJ/mol Thermochemistry

    SciTech Connect

    Baer, Tomas

    2013-10-14

    The threshold photoelectron photoion coincidence (TPEPICO) technique is utilized to investigate the dissociation dynamics and thermochemistry of energy selected medium to large organic molecular ions. The reactions include parallel and consecutive steps that are modeled with the statistical theory in order to extract dissociation onsets for multiple dissociation paths. These studies are carried out with the aid of molecular orbital calculations of both ions and the transition states connecting the ion structure to their products. The results of these investigations yield accurate heats of formation of ions, free radicals, and stable molecules. In addition, they provide information about the potential energy surface that governs the dissociation process. Isomerization reactions prior to dissociation are readily inferred from the TPEPICO data.

  17. Ultrafast Electronic And Nuclear Dynamics In Dissociative Photoionization Of Molecular Hydrogen and Deuterium

    NASA Astrophysics Data System (ADS)

    Billaud, P.; Picard, Y. J.; Géléoc, M.; Hergott, J.-F.; Carré, B.; Breger, P.; Ruchon, T.; Veyrinas, K.; Roulliay, M.; Delmotte, F.; Böttcher, M.; Huetz, A.; Dowek, D.

    2012-11-01

    Single-photon dissociative photoionization of H2/D2 in the Q1, Q2 doubly excited states resonance regions, where ultrafast electronic and nuclear dynamics are coupled, is studied using the vector-correlation method with single selected femtosecond high-order harmonic and synchrotron radiation in the VUV. Results are compared at the level of electron-ion kinetic energy correlation diagrams, asymmetry parameters, and the molecular frame photoelectron angular distributions.

  18. Rovibronically selected and resolved two-color laser photoionization and photoelectron study of nickel carbide cation

    SciTech Connect

    Chang, Yih Chung; Shi Xiaoyu; Ng, C. Y.; Lau, Kai-Chung; Yin Qingzhu; Liou, H. T.

    2010-08-07

    We have performed a two-color laser photoionization and photoelectron study of nickel carbide (NiC) and its cation (NiC{sup +}). By preparing NiC in a single rovibronic level of an intermediate vibronic state via visible laser excitation prior to ultraviolet laser photoionization, we have measured the photoionization efficiency spectrum of NiC near its ionization threshold, covering the formation of NiC{sup +}(X {sup 2}{Sigma}{sup +};v{sup +}=0-3). We have also obtained well-resolved rotational transitions for the v{sup +}=0 and 1 vibrational bands of the NiC{sup +}(X {sup 2}{Sigma}{sup +}) ground state. The assignment of rotational transitions observed between the neutral NiC intermediate state and the NiC{sup +} ion ground state has allowed the direct determination of a highly precise value for the ionization energy of NiC, IE(NiC)=67 525.1{+-}0.5 cm{sup -1} (8.372 05{+-}0.000 06 eV). This experiment also provides reliable values for the vibrational spacing [{Delta}G(1/2)=859.5{+-}0.5 cm{sup -1}], rotational constants (B{sub e}{sup +}=0.6395{+-}0.0018 cm{sup -1} and {alpha}{sub e}{sup +}=0.0097{+-}0.0009 cm{sup -1}), and equilibrium bond distance (r{sub e}{sup +}=1.628 A) for the NiC{sup +}(X {sup 2}{Sigma}{sup +}) ground state. The experimental results presented here are valuable for benchmarking the development of more reliable ab initio quantum computation procedures for energetic and spectroscopic calculations of transition metal-containing molecules.

  19. Near-threshold photoelectron angular distributions from two-photon resonant photoionization of He

    NASA Astrophysics Data System (ADS)

    O'Keeffe, P.; Mihelič, A.; Bolognesi, P.; Žitnik, M.; Moise, A.; Richter, R.; Avaldi, L.

    2013-01-01

    Two-photon resonant photoionization of helium is investigated both experimentally and theoretically. Ground state helium atoms are excited to the 1s4p, 1s5p and 1s6p 1P states by synchrotron radiation and ionized by a synchronized infrared pulsed picosecond laser. The photoelectron angular distributions of the emitted electrons are measured using a velocity map imaging (VMI) spectrometer. The measured asymmetry parameters of the angular distribution allow the phase differences and the ratios of the dipole matrix elements of the 1sɛs and 1sɛd channels to be determined. The experimental results agree with the calculated values obtained in a configuration-interaction calculation with a Coulomb-Sturmian basis set. The effects of the radiative decay of the intermediate state and the static electric field of the VMI spectrometer on the measurements are discussed.

  20. Disentangling Multichannel Photodissociation Dynamics in Acetone by Time-Resolved Photoelectron-Photoion Coincidence Spectroscopy.

    PubMed

    Maierhofer, Paul; Bainschab, Markus; Thaler, Bernhard; Heim, Pascal; Ernst, Wolfgang E; Koch, Markus

    2016-08-18

    For the investigation of photoinduced dynamics in molecules with time-resolved pump-probe photoionization spectroscopy, it is essential to obtain unequivocal information about the fragmentation behavior induced by the laser pulses. We present time-resolved photoelectron-photoion coincidence (PEPICO) experiments to investigate the excited-state dynamics of isolated acetone molecules triggered by two-photon (269 nm) excitation. In the complex situation of different relaxation pathways, we unambiguously identify three distinct pump-probe ionization channels. The high selectivity of PEPICO detection allows us to observe the fragmentation behavior and to follow the time evolution of each channel separately. For channels leading to fragment ions, we quantitatively obtain the fragment-to-parent branching ratio and are able to determine experimentally whether dissociation occurs in the neutral molecule or in the parent ion. These results highlight the importance of coincidence detection for the interpretation of time-resolved photochemical relaxation and dissociation studies if multiple pathways are present. PMID:27459051

  1. Photoelectron-photoion coincidence spectroscopy for multiplexed detection of intermediate species in a flame.

    PubMed

    Krüger, Julia; Garcia, Gustavo A; Felsmann, Daniel; Moshammer, Kai; Lackner, Alexander; Brockhinke, Andreas; Nahon, Laurent; Kohse-Höinghaus, Katharina

    2014-11-01

    Complex reactive processes in the gas phase often proceed via numerous reaction steps and intermediate species that must be identified and quantified to develop an understanding of the reaction pathways and establish suitable reaction mechanisms. Here, photoelectron-photoion coincidence (PEPICO) spectroscopy has been applied to analyse combustion intermediates present in a premixed fuel-rich (ϕ = 1.7) ethene-oxygen flame diluted with 25% argon, burning at a reduced pressure of 40 mbar. For the first time, multiplexing fixed-photon-energy PEPICO measurements were demonstrated in a chemically complex reactive system such as a flame in comparison with the scanning "threshold" TPEPICO approach used in recent pioneering combustion investigations. The technique presented here is capable of detecting and identifying multiple species by their cations' vibronic fingerprints, including radicals and pairs or triplets of isomers, from a single time-efficient measurement at a selected fixed photon energy. Vibrational structures for these species have been obtained in very good agreement with scanning-mode threshold photoelectron spectra taken under the same conditions. From such spectra, the temperature in the ionisation volume was determined. Exemplary analysis of species profiles and mole fraction ratios for isomers shows favourable agreement with results obtained by more common electron ionisation and photoionisation mass spectrometry experiments. It is expected that the multiplexing fixed-photon-energy PEPICO technique can contribute effectively to the analysis of chemical reactivity and kinetics in and beyond combustion. PMID:25237782

  2. Photoelectron and photoion spectroscopy of atoms, nanoparticles, and nanoplasmas irradiated with strong femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Hickstein, Daniel D.

    Modern femtosecond lasers can produce pulses of light that are shorter than the vibrational periods in molecules and have electric fields stronger than the Coulomb field that binds electrons in atoms. These short pulse lasers enable the observation of chemical reactions, the production of attosecond bursts of high-energy photons, and the precision-machining of solid materials with minimal heat transport to the material. In this thesis, I describe three experiments that provide new insight into strong-field (1014 Watts/cm2) femtosecond laser-matter interactions in three important regimes. First, I discuss the strong-field ionization of gas-phase atoms, identify a new structure in the photoelectron angular distribution of xenon gas, and explain this structure as a result of field-driven electrons colliding with the Coulomb potential of the ion. Second, I describe a new method to perform photoelectron and photoion spectroscopy on single, isolated nanoparticles and demonstrate this technique by observing the directional ion ejection that takes place in the laser ablation of nanostructures. Finally, I present the first experimental observations of shock wave propagation in nanoscale plasmas. These findings will guide future efforts to probe the structure of atoms and molecules on the femtosecond timescale, design nanomaterials that enhance light on the subwavelength scale, and produce high-energy ions from plasmas.

  3. Rovibronically Selected and Resolved Laser Photoionization and Photoelectron Studies of Transition Metal Carbides, Nitrides, and Oxides.

    NASA Astrophysics Data System (ADS)

    Luo, Zhihong; Chang, Yih-Chung; Huang, Huang; Ng, Cheuk-Yiu

    2014-06-01

    Transition metal (M) carbides, nitrides, and oxides (MX, X = C, N, and O) are important molecules in astrophysics, catalysis, and organometallic chemistry. The measurements of the ionization energies (IEs), bond energies, and spectroscopic constants for MX/MX+ in the gas phase by high-resolution photoelectron methods represent challenging but profitable approaches to gain fundamental understandings of the electronic structures and bonding properties of these compounds and their cations. We have developed a two-color laser excitation scheme for high-resolution pulse field ionization photoelectron (PFI-PE) measurements of MX species. By exciting the neutral MX species to a single rovibronic state using a visible laser prior to photoionization by a UV laser, we have obtained fully rotational resolved PFI-PE spectra for TiC+, TiO+, VCH+, VN+, CoC+, ZrO+, and NbC+. The unambiguous rotational assignments of these spectra have provided highly accurate IE values for TiC, TiO, VCH, VN, CoC, ZrO, and NbC, and spectroscopic constants for their cations.

  4. Rovibronically selected and resolved two-color laser photoionization and photoelectron study of cobalt carbide cation

    NASA Astrophysics Data System (ADS)

    Huang, Huang; Chang, Yih Chung; Luo, Zhihong; Shi, Xiaoyu; Lam, Chow-Shing; Lau, Kai-Chung; Ng, C. Y.

    2013-03-01

    We have conducted a two-color visible-ultraviolet (VIS-UV) resonance-enhanced laser photoionization efficiency and pulsed field ionization-photoelectron (PFI-PE) study of gaseous cobalt carbide (CoC) near its ionization onset in the total energy range of 61 200-64 510 cm-1. The cold gaseous CoC sample was prepared by a laser ablation supersonically cooled beam source. By exciting CoC molecules thus generated to single N' rotational levels of the intermediate CoC*(2Σ+; v') state using a VIS dye laser prior to UV laser photoionization, we have obtained N+ rotationally resolved PFI-PE spectra for the CoC+(X1Σ+; v+ = 0 and 1) ion vibrational bands free from interference by impurity species except Co atoms produced in the ablation source. The rotationally selected and resolved PFI-PE spectra have made possible unambiguous rotational assignments, yielding accurate values for the adiabatic ionization energy of CoC(X2Σ+), IE(CoC) = 62 384.3 ± 0.6 cm-1 (7.73467 ± 0.00007 eV), the vibrational frequency ωe+ = 985.6 ± 0.6 cm-1, the anharmonicity constant ωe+χe+ = 6.3 ± 0.6 cm-1, the rotational constants (Be+ = 0.7196 ± 0.0005 cm-1, αe+ = 0.0056 ± 0.0008 cm-1), and the equilibrium bond length re+ = 1.534 Å for CoC+(X1Σ+). The observation of the N+ = 0 level in the PFI-PE measurement indicates that the CoC+ ground state is of 1Σ+ symmetry. Large ΔN+ = N+ - N' changes up to 6 are observed for the photoionization transitions CoC+(X1Σ+; v+ = 0-2; N+) ← CoC*(2Σ+; v'; N' = 6, 7, 8, and 9). The highly precise energetic and spectroscopic data obtained in the present study have served as a benchmark for testing theoretical predictions based on state-of-the-art ab initio quantum calculations at the CCSDTQ/CBS level of theory as presented in the companion article.

  5. Efficient representations of continuum states for photoionization processes from atomic and molecular targets

    NASA Astrophysics Data System (ADS)

    Yip, Frank L.

    The investigation of single and double photoionization effects in small atoms and molecules provides a means to probe fundamental quantum mechanical phenomena concerning electron correlation and interference effects. To consider these concepts accurately from first principles requires the construction of the exact final continuum states of a many body problem in atomic double photoionization and of the complicated continuum states in molecular single photoionization. Methods designed for incorporating exterior complex scaling (ECS) have proven very successful towards accomplishing these goals, providing a rigorous framework for describing continuum states involving any number of outgoing electrons with numerical exactness. Furthermore, such methods render solutions that can be interrogated to extract the full richness of information about the photoionization process from the wave function. This work aims to demonstrate the use of exterior complex scaling by first exactly solving the three-body breakup problem of the atomic hydride anion. H-- is the simplest atomic system and is most sensitive to electron correlation effects. The application of ECS with an efficient finite-element discrete variable representation proves quite capable and well-suited for this atomic Coulomb breakup problem. The evolution of this framework to treat molecular problems efficiently with exactness is furthered by the design of a hybrid basis method. The incorporation of analytic Gaussian basis sets ubiquitous in bound state molecular descriptions seems natural for considering molecular continuum states. The hybrid method is described in full detail and applied to completely describe photoionization of molecular H+2 and Li+2 . Photoionization of simple molecular systems offers significantly more complexity in the resulting angular distributions of the ejected electron as the target geometry becomes less atomic-like, i.e., as the internuclear separation increases. In this regard

  6. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    DOE PAGES

    Wang, Xu; Le, Anh -Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.

    2016-03-30

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. Lastly, amore » simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method.« less

  7. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules.

    PubMed

    Wang, Xu; Le, Anh-Thu; Yu, Chao; Lucchese, R R; Lin, C D

    2016-01-01

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. A simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method. PMID:27025410

  8. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    PubMed Central

    Wang, Xu; Le, Anh-Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.

    2016-01-01

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. A simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method. PMID:27025410

  9. Double Photoionization of Aligned Molecular Hydrogen

    SciTech Connect

    Vanroose, Wim; Horner, Daniel A.; Martin, Fernando; Rescigno,Thomas N.; McCurdy, C. William

    2006-07-21

    We present converged, completely ab initio calculations ofthe triple differential cross sections for double photoionization ofaligned H2 molecules for a photon energy of 75.0 eV. The method ofexterior complex scaling, implemented with both the discrete variablerepresentation and B-splines, is used to solve the Schroedinger equationfor a correlated continuum wave function corresponding to a single photonhaving been absorbed by a correlated initial state. Results for a fixedinternuclear distance are compared with recent experiments and show thatintegration over experimental angular and energy resolutions is necessaryto produce good qualitative agreement, but does not eliminate somediscrepancies. Limitations of current experimental resolution are shownto sometimes obscure interesting details of the crosssection.

  10. Near-Threshold, Vibrationally-Resolved Photoionization of Molecular Nitrogen

    NASA Astrophysics Data System (ADS)

    Vangyseghem, Gaetan; Gorczyca, Thomas; Ballance, Connor

    2016-05-01

    Photoionization of molecular nitrogen N2 is investigated near the first ionization threshold using an R-matrix, multi-channel quantum defect theory (MQDT) approach. Building on an existing fixed-nuclei R-matrix photoionization model, which, in turn, is built on the UKRmol suite of codes, photoionization cross sections, as well as scattering and dipole matrices, are computed in the Born-Oppenheimer approximation. By varying the internuclear separation, potential energy curves have been constructed for the N2 and N 2 + states and compared to quantum chemistry calculations. Using these fixed-nuclei potential energy curves, and corresponding vibronic eigenenergies and eigenfunctions, a frame transformation is enacted on the fixed-nuclei scattering and dipole matrices, allowing for the calculation of vibrationally-resolved photoionization cross sections. The resultant photoionization cross sections are compared to high-resolution experimental data near threshold, a region complicated by multiple vibrationally-resolved, interacting Rydberg series.

  11. Dissociative Ionization Mechanism and Appearance Energies in Adipic Acid Revealed by Imaging Photoelectron Photoion Coincidence, Selective Deuteration, and Calculations.

    PubMed

    Heringa, Maarten F; Slowik, Jay G; Prévôt, André S H; Baltensperger, Urs; Hemberger, Patrick; Bodi, Andras

    2016-05-26

    Adipic acid, a model compound for oxygenated organic aerosol, has been studied at the VUV beamline of the Swiss Light Source. Internal energy selected cations were prepared by threshold photoionization using vacuum ultraviolet synchrotron radiation and imaging photoelectron photoion coincidence spectroscopy (iPEPICO). The threshold photoelectron spectrum yields a vertical ionization energy (IE) of 10.5 eV, significantly above the calculated adiabatic IE of 8.6 eV. The cationic minimum is accessible after vertical ionization by H-transfer from one of the γ-carbons to a carbonyl oxygen and is sufficiently energetic to decay by water loss at the ionization onset. The slope of the breakdown curves, quantum chemical calculations, and selective deuteration of the carboxylic hydrogens establish the dissociative photoionization mechanism. After ionization, one γ-methylene hydrogen and the two carboxylic hydrogens are randomized prior to H2O loss. On the basis of the deuteration degree in the H2O + CO-loss product at higher energies, a direct water-loss channel without complete randomization also exists. The breakdown diagram and center of gravity of the H2O + CO-loss peak were modeled to obtain 0 K appearance energies of 10.77, 10.32, and 11.53 eV for H2O + CO loss, CH2COOH loss, and H2O + CH2COOH loss from adipic acid. These agree well with the CBS-QB3 calculated values of 10.68, 10.45, and 11.57 eV, respectively, which shows that threshold photoionization can yield energetics data as long as the dissociation is statistical, even when the parent ion cannot be observed. The results can be used as a starting point for a deeper understanding of the ionization and low-energy fragmentation of organic aerosol components. PMID:27100102

  12. Interference asymmetry of molecular frame photoelectron angular istributions in bichromatic UV ionization processes

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2016-03-01

    We investigate molecular photoionization by ultrafast bichromatic linearly polarized UV laser pulses at frequencies 2{ω }1={ω }2 perpendicular to the internuclear axis R involving π orbital excitation. Results from numerical solutions of time dependent Schrödinger equations for aligned {{{H}}}2+ show that molecular frame photoelectron angular distributions (MFPADs) exhibit signatures of asymmetry perpendicular to the molecular symmetry axis, arising from interference of coherent electron wave packets created by respectively one {ω }2 and two-photon 2{ω }1 absorption. A resonant excitation process between the ground 1s{σ }{{g}} state and the excited 2p{π }{{u}} state is triggered by the {ω }1 pulse. The asymmetry of MFPADs varies periodically with pulse intensity I 0 and duration T, which we attribute to coherent resonant Rabi oscillations in electronic state population. A perturbative model is adopted to qualitatively describe and analyze these effects in both resonant and nonresonant photoionization processes.

  13. Communication: State-to-state photoionization and photoelectron study of vanadium methylidyne radical (VCH)

    SciTech Connect

    Luo, Zhihong; Zhang, Zheng; Huang, Huang; Chang, Yih-Chung; Ng, C. Y.

    2014-05-14

    By employing the infrared (IR)-ultraviolet (UV) laser excitation scheme, we have obtained rotationally selected and resolved pulsed field ionization-photoelectron (PFI-PE) spectra for vanadium methylidyne cation (VCH{sup +}). This study supports that the ground state electronic configuration for VCH{sup +} is …7σ{sup 2}8σ{sup 2}3π{sup 4}9σ{sup 1} (X{sup ~2}Σ{sup +}), and is different from that of …7σ{sup 2}8σ{sup 2}3π{sup 4}1δ{sup 1} (X{sup ~2}Δ) for the isoelectronic TiO{sup +} and VN{sup +} ions. This observation suggests that the addition of an H atom to vanadium carbide (VC) to form VCH has the effect of stabilizing the 9σ orbital relative to the 1δ orbital. The analysis of the state-to-state IR-UV-PFI-PE spectra has provided precise values for the ionization energy of VCH, IE(VCH) = 54 641.9 ± 0.8 cm{sup −1} (6.7747 ± 0.0001 eV), the rotational constant B{sup +} = 0.462 ± 0.002 cm{sup −1}, and the v{sub 2}{sup +} bending (626 ± 1 cm{sup −1}) and v{sub 3}{sup +} V–CH stretching (852 ± 1 cm{sup −1}) vibrational frequencies for VCH{sup +}(X{sup ~2}Σ{sup +}). The IE(VCH) determined here, along with the known IE(V) and IE(VC), allows a direct measure of the change in dissociation energy for the V–CH as well as the VC–H bond upon removal of the 1δ electron of VCH(X{sup ~3}Δ{sub 1}). The formation of VCH{sup +}(X{sup ~2}Σ{sup +}) from VCH(X{sup ~3}Δ{sub 1}) by photoionization is shown to strengthen the VC–H bond by 0.3559 eV, while the strength of the V–CH bond remains nearly unchanged. This measured change of bond dissociation energies reveals that the highest occupied 1δ orbital is nonbonding for the V–CH bond; but has anti-bonding or destabilizing character for the VC–H bond of VCH(X{sup ~3}Δ{sub 1})

  14. Dynamical Relativistic Effects in Photoionization: Spin-Orbit-Resolved Angular Distributions of Xenon 4d Photoelectrons near the Cooper Minimum

    SciTech Connect

    Wang, H.; Snell, G.; Hemmers, O.; Sant'Anna, M. M.; Sellin, I.; Berrah, N.; Lindle, D. W.; Deshmukh, P. C.; Haque, N.; Manson, S. T.

    2001-09-17

    Two decades ago, it was predicted [Y.S.Kim et al., Phys.Rev.Lett.46, 1326 (1981)] that relativistic effects should alter the dynamics of the photoionization process in the vicinity of Cooper minima. The present experimental and theoretical study of the angular distributions of Xe 4d{sub 3/2} and 4d{sub 5/2} photoelectrons demonstrates this effect for the first time. The results clearly imply that relativistic effects are likely to be important for intermediate-Z atoms at most energies.

  15. K-shell photoionization of CO: I. Angular distributions of photoelectrons from fixed-in-space molecules

    NASA Astrophysics Data System (ADS)

    Motoki, S.; Adachi, J.; Hikosaka, Y.; Ito, K.; Sano, M.; Soejima, K.; Yagishita, A.; Raseev, G.; Cherepkov, N. A.

    2000-10-01

    Angular distributions of photoelectrons from both C and O K-shells of the fixed-in-space CO molecule have been measured using the angle-resolved photoelectron-photoion coincidence technique. The measurements have been performed at several photon energies from the ionization thresholds up to about 30 eV above them, where the σ* shape resonances occur. Experimental results are compared with the multiple-scattering calculations of Dill et al (1976 J. Chem. Phys. 65 3158) and with our new calculations in the relaxed-core Hartree-Fock approximation. Our calculations are in a better agreement with the experimental data though numerical discrepancies remain. The experimental angular distributions are fitted by the expansion in Legendre polynomials containing up to ten terms and the extracted parameters are compared with the corresponding theoretical values.

  16. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    DOE PAGES

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean -Francois; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean -Christophe

    2015-04-23

    In this study, we present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X3Σ– ground state of the OH+ and OD+ cations have been extractedmore » and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.« less

  17. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    SciTech Connect

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean-François; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean-Christophe

    2015-04-28

    We present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X{sup 3}Σ{sup −} ground state of the OH{sup +} and OD{sup +} cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  18. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    SciTech Connect

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean -Francois; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean -Christophe

    2015-04-23

    In this study, we present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X3Σ ground state of the OH+ and OD+ cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  19. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    NASA Astrophysics Data System (ADS)

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean-François; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean-Christophe

    2015-04-01

    We present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X3Σ- ground state of the OH+ and OD+ cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  20. A hybridGaussian-discrete variable representation approach to molecular continuum processes II: application to photoionization of diatomic Li2+

    SciTech Connect

    Rescigno, Thomas N; Yip, Frank L.; McCurdy, C. William; Rescigno, Thomas N.

    2008-08-01

    We describe an approach for studying molecular photoionization with a hybrid basis that combines the functionality of analytic basis sets to represent electronic coordinates near the nuclei of a molecule with numerically-defined grid-based functions. We discuss the evaluation of the various classes of two-electron integrals that occur in a hybrid basis consisting of Gaussian type orbitals (GTOs) and discrete variable representation (DVR) functions. This combined basis is applied to calculate single photoionization cross sections for molecular Li_2+, which has a large equilibrium bond distance (R=5.86a_0). The highly non-spherical nature of Li_2+ molecules causes higher angular momentum components to contribute significantly to the cross section even at low photoelectron energies, resulting in angular distributions that appear to be f-wave dominated near the photoionization threshold. At higher energies, where the de Broglie wavelength of the photoelectron becomes comparable with the bond distance, interference effects appear in the photoionization cross section. These interference phenomena appear at much lower energies than would be expected for diatomic targets with shorter internuclear separations.

  1. Molecular-frame photoelectron angular distributions Molecular-frame photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Lucchese, Robert R.; Stolow, Albert

    2012-10-01

    Angle-resolved photoelectron measurements in molecular ionization continue to grow in importance due to their sensitivity to molecular dynamics combined with their avoidance of deleterious averaging over molecular orientation. This special issue contains only regularly refereed articles and provides an account of current experimental and theoretical studies of such molecular-frame photoelectron angular distributions (MFPADs). Recent experimental activity in this field has been stimulated by advances in light sources such as x-ray free electron lasers, attosecond XUV laser pulses and phase-stable ultrashort strong laser fields. This effort is further amplified by recent developments in coincidence detection and molecular-frame alignment/orientation techniques. Beyond perturbative light-matter interactions, strong field processes such as tunnel ionization, above threshold ionization and rescattering phenomena such as high harmonic generation and laser-induced electron diffraction are beginning to probe molecular-frame photoelectron-molecule scattering dynamics. Theoretical developments are playing an equally important role in furthering molecular-frame photoelectron science. This issue contains several purely theoretical papers that aim to provide insight into possible schemes for using MFPADs in the study of molecular dynamics. Because the details of the electron-molecule scattering dynamics are important to the interpretation of experimental data, significant progress is made by a close collaboration between theory and experiment. There are a number of such contributions in this issue that combine theory and experiment to obtain a detailed understanding of the observed processes. One recurring theme is the use of measured MFPADs as probes of the molecular state and to uncover information about the dynamics of molecular systems. Contributions in this issue consider using MFPADs to investigate molecular geometry or the rotational, vibrational or electronic state of a

  2. Resonance behavior of atomic and molecular photoionization amplitudes

    SciTech Connect

    Cherepkov, N. A.; Kuznetsov, V. V.; Semenov, S. K.

    2007-07-15

    The behavior of the partial photoionization amplitudes with a given orbital angular momentum l in the complex plane in resonances is studied. In the autoionization resonances the trajectory of the amplitude in the complex plane corresponds to a circle. With increasing photoelectron energy the amplitude moves about a circle in the counterclockwise direction. The new expressions for the partial amplitudes in the resonance are proposed which are similar to the Fano form but contain the 'partial' profile parameters which are connected with the Fano parameter q by a simple relation. In the giant dipole resonances the amplitudes in the complex plane also move about a circle in the counterclockwise direction provided the Coulomb phase is excluded from the amplitude. In the correlational resonances created by channel interactions with the giant dipole resonance the trajectories of the amplitudes acquire a loop about which the amplitudes move in the counterclockwise direction. Very similar behavior of partial photoionization amplitudes in the complex plane is demonstrated also for the dipole transitions from the K shells of the N{sub 2} molecule in the {sigma}* shape resonance.

  3. Probing photoelectron multiple interferences via Fourier spectroscopy in energetic photoionization of Xe-C{sub 60}

    SciTech Connect

    Potter, Andrea; McCune, Matthew A.; De, Ruma; Chakraborty, Himadri S.; Madjet, Mohamed E.

    2010-09-15

    Considering the photoionization of the Xe-C{sub 60} endohedral compound, we study in detail the ionization cross sections of various levels of the system at energies higher than the plasmon resonance region. Five classes of single-electron levels are identified depending on their spectral character. Each class engenders distinct oscillations in the cross section, emerging from the interference between active ionization modes specific to that class. Analysis of the cross sections based on their Fourier transforms unravels oscillation frequencies that carry unique fingerprints of the emitting level.

  4. ATOMIC AND MOLECULAR PHYSICS: An alternative view of condensed-phase photoionization

    NASA Astrophysics Data System (ADS)

    Ma, Xiao-Guang; Yang, Chuan-Lu; Gong, Yu-Bing; Wang, Mei-Shan

    2009-12-01

    This paper proposes an accurate valuable interpretation scheme to study the evolvement of the photoionization processes from the isolated to the condensed atoms by a unique ab initio method. The variations of the photoionization cross sections of the atomic sodium with the photoelectron energy and the boundary radius of the atomic configuration space are studied in this new scheme by the R-matrix method. The discrepancy in the photoionization spectra of the isolated and the condensed sodium has been explained quantitatively and understood successfully by this alternative view in detail for the first time.

  5. Excited state dynamics in SO2. I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy.

    PubMed

    Wilkinson, Iain; Boguslavskiy, Andrey E; Mikosch, Jochen; Bertrand, Julien B; Wörner, Hans Jakob; Villeneuve, David M; Spanner, Michael; Patchkovskii, Serguei; Stolow, Albert

    2014-05-28

    The excited state dynamics of isolated sulfur dioxide molecules have been investigated using the time-resolved photoelectron spectroscopy and time-resolved photoelectron-photoion coincidence techniques. Excited state wavepackets were prepared in the spectroscopically complex, electronically mixed (B̃)(1)B1/(Ã)(1)A2, Clements manifold following broadband excitation at a range of photon energies between 4.03 eV and 4.28 eV (308 nm and 290 nm, respectively). The resulting wavepacket dynamics were monitored using a multiphoton ionisation probe. The extensive literature associated with the Clements bands has been summarised and a detailed time domain description of the ultrafast relaxation pathways occurring from the optically bright (B̃)(1)B1 diabatic state is presented. Signatures of the oscillatory motion on the (B̃)(1)B1/(Ã)(1)A2 lower adiabatic surface responsible for the Clements band structure were observed. The recorded spectra also indicate that a component of the excited state wavepacket undergoes intersystem crossing from the Clements manifold to the underlying triplet states on a sub-picosecond time scale. Photoelectron signal growth time constants have been predominantly associated with intersystem crossing to the (c̃)(3)B2 state and were measured to vary between 750 and 150 fs over the implemented pump photon energy range. Additionally, pump beam intensity studies were performed. These experiments highlighted parallel relaxation processes that occurred at the one- and two-pump-photon levels of excitation on similar time scales, obscuring the Clements band dynamics when high pump beam intensities were implemented. Hence, the Clements band dynamics may be difficult to disentangle from higher order processes when ultrashort laser pulses and less-differential probe techniques are implemented.

  6. Photoionization of He above the N =2 threshold. II. Angular distribution of photoelectrons and asymmetry parameter

    SciTech Connect

    Sanchez, I.; Martin, F. )

    1992-04-01

    We report theoretical calculations for the {beta}{sub 2{ital p}}-asymmetry parameter in the photoionization of He(1{ital s}{sup 2}) above the {ital N}=2 ionization threshold. We use an extension of a method recently proposed (I. Sanchez and F. Martin, Phys. Rev. A 44, 7318 (1991)) that makes use of a Feshbach partitioning of the final-state wave function and an {ital L}{sup 2} representation of the coupled continuum states. Partial differential cross sections at emission angles 0{degree} and 90{degree} are also provided. Our results are in good agreement with the experimental data, thus showing the accuracy of the present method to study electron angular-distribution properties.

  7. Probing confinement resonances by photoionizing Xe inside a C60+ molecular cage

    NASA Astrophysics Data System (ADS)

    Phaneuf, R. A.; Kilcoyne, A. L. D.; Aryal, N. B.; Baral, K. K.; Thomas, C. M.; Esteves-Macaluso, D. A.; Lomsadze, R.; Gorczyca, T. W.; Ballance, C. P.; Manson, S. T.; Hasoglu, M. F.; Hellhund, J.; Schippers, S.; Müller, A.

    2014-05-01

    Double photoionization accompanied by loss of n C atoms (n = 0 , 2 , 4 , 6) was investigated by merging beams of Xe@C60+ ions and synchrotron radiation and measuring the yields of product ions. The giant 4 d dipole resonance of the caged Xe atom has a prominent signature in the cross section for these product channels, which together account for 6 . 2 +/- 1 . 4 of the total Xe 4 d oscillator strength of 10. Compared to that for a free Xe atom, the oscillator strength is redistributed in photon energy due to multipath interference of outgoing Xe 4 d photoelectron waves that may be transmitted or reflected by the spherical C60+ molecular cage, yielding so-called confinement resonances. The data are compared with an earlier measurement and with theoretical predictions for this single-molecule photoelectron interferometer system. Relativistic R-matrix calculations for the Xe atom in a spherical potential shell representing the fullerene cage show the sensitivity of the interference pattern to the molecular geometry.

  8. Probing confinement resonances by photoionizing Xe inside a C60+ molecular cage

    NASA Astrophysics Data System (ADS)

    Phaneuf, R. A.; Kilcoyne, A. L. D.; Aryal, N. B.; Baral, K. K.; Esteves-Macaluso, D. A.; Thomas, C. M.; Hellhund, J.; Lomsadze, R.; Gorczyca, T. W.; Ballance, C. P.; Manson, S. T.; Hasoglu, M. F.; Schippers, S.; Müller, A.

    2013-11-01

    Double photoionization accompanied by loss of n C atoms (n=0, 2, 4, 6) was investigated by merging beams of Xe@C60+ ions and synchrotron radiation and measuring the yields of product ions. The giant 4d dipole resonance of the caged Xe atom has a prominent signature in the cross section for these product channels, which together account for 6.2 ± 1.4 of the total Xe 4d oscillator strength of 10. Compared to that for a free Xe atom, the oscillator strength is redistributed in photon energy due to multipath interference of outgoing Xe 4d photoelectron waves that may be transmitted or reflected by the spherical C60+ molecular cage, yielding so-called confinement resonances. The data are compared with an earlier measurement and with theoretical predictions for this single-molecule photoelectron interferometer system. Relativistic R-matrix calculations for the Xe atom in a spherical potential shell representing the fullerene cage show the sensitivity of the interference pattern to the molecular geometry.

  9. Dissociation of internal energy-selected methyl bromide ion revealed from threshold photoelectron-photoion coincidence velocity imaging

    NASA Astrophysics Data System (ADS)

    Tang, Xiaofeng; Zhou, Xiaoguo; Sun, Zhongfa; Liu, Shilin; Liu, Fuyi; Sheng, Liusi; Yan, Bing

    2014-01-01

    Dissociative photoionization of methyl bromide (CH3Br) in an excitation energy range of 10.45-16.90 eV has been investigated by using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging. The coincident time-of-flight mass spectra indicate that the ground state X2E of CH3Br+ is stable, and both A2A1 and B2E ionic excited states are fully dissociative to produce the unique fragment ion of CH3+. From TPEPICO 3D time-sliced velocity images of CH3+ dissociated from specific state-selected CH3Br+ ion, kinetic energy release distribution (KERD) and angular distribution of CH3+ fragment ion are directly obtained. Both spin-orbit states of Br(2P) atom can be clearly observed in fast dissociation of CH3Br+(A2A1) ion along C-Br rupture, while a KERD of Maxwell-Boltzmann profile is obtained in dissociation of CH3Br+(B2E) ion. With the aid of the re-calculated potential energy curves of CH3Br+ including spin-orbit coupling, dissociation mechanisms of CH3Br+ ion in A2A1 and B2E states along C-Br rupture are revealed. For CH3Br+(A2A1) ion, the CH3+ + Br(2P1/2) channel is occurred via an adiabatic dissociation by vibration, while the Br(2P3/2) formation is through vibronic coupling to the high vibrational level of X2E state followed by rapid dissociation. C-Br bond breaking of CH3Br+(B2E) ion can occur via slow internal conversion to the excited vibrational level of the lower electronic states and then dissociation.

  10. Photoionization Dynamics of Small Molecules

    SciTech Connect

    Dehmer, Joseph L.; Dill, Dan; Parr, Albert C.

    1985-01-01

    The last decade has witnessed remarkable progress in characterizing dynamical aspects of the molecular photoionization process. The general challenge is to gain physical insight into those processes occuring during photo excitation and eventual escape of the photoelectron through the anisotropic molecular field, in terms of various observables such as photoionization cross-sections and branching ratios, photoelectron angular distributions and even newer probes mentioned below. Much of the progress in this field has mirrored earlier work in atomic photoionization dynamics where many key ideas were developed (e.g., channel interaction, quantum defect analysis, potential barrier phenomena and experimental techniques). However, additional concepts and techniques were required to deal with the strictly molecular aspects of the problem, particularly the anisotropy of the multicenter molecular field and the interaction among rovibronic modes.

  11. A HIGH-RESOLUTION PHOTOIONIZATION AND PHOTOELECTRON STUDY OF {sup 58}Ni USING A VACUUM ULTRAVIOLET LASER

    SciTech Connect

    Shi Xiaoyu; Huang Huang; Jacobson, Brian; Chang, Yih-Chung; Ng, C. Y.; Yin Qingzhu

    2012-03-01

    In order to provide high-resolution spectroscopic data of nickel ({sup 58}Ni) and its cation ({sup 58}Ni{sup +}) for the assignment of vacuum ultraviolet (VUV) stellar spectra, we have obtained the photoionization efficiency (PIE) spectra of {sup 58}Ni by using a supersonically cooled laser ablation transition-metal beam source and a broadly tunable VUV laser in the range of 61,100-73,600 cm{sup -1}, covering the photoionization transitions: Ni{sup +} (3d{sup 92} D) <- Ni (3d{sup 8}4s{sup 23} D), Ni{sup +}(3d{sup 92} D) <- Ni(3d{sup 8}4s{sup 23} F), and Ni{sup +} (3d{sup 8}4s{sup 4} F) <- Ni(3d{sup 8}4s{sup 23} F). We have also measured the VUV laser pulsed-field-ionization-photoelectron (PFI-PE) spectra of {sup 58}Ni in these regions. The VUV-PFI-PE measurement has allowed the determination of a precise value of 61,619.89 {+-} 0.8 cm{sup -1} (7.6399 {+-} 0.0001 eV) for the ionization energy (IE) of {sup 58}Ni. Due to the narrow VUV laser optical bandwidth of 0.4 cm{sup -1} used in the present study, many complex autoionizing resonances exhibiting Fano line shape profiles are resolved in the PIE spectra. Four autoionizing Rydberg series originating from two-electron and one-electron excitations from the Ni(3d{sup 8}4s{sup 23} F{sub 4}) ground state to converge to the respective Ni{sup +}({sup 2} D{sub 3/2}) and Ni{sup +}({sup 4} F{sub J} ) (J = 9/2, 7/2, and 5/2) ion states are identified. The Rydberg analysis, along with VUV-PFI-PE measurements, has yielded highly precise IE values for the formation of these excited ionic states from the Ni(3d{sup 8}4s{sup 23} F{sub 4}) ground state. The IE values, relative photoionization cross sections, and autoionizing Rydberg resonances observed in the present study are relevant to astrophysics by enhancing the atomic database of iron group transition metal atoms and for understanding the Ni and Ni{sup +} contribution to the VUV opacity in the solar atmosphere.

  12. Photoionization and photofragmentation of the C60+ molecular ion

    NASA Astrophysics Data System (ADS)

    Baral, K. K.; Aryal, N. B.; Esteves-Macaluso, D. A.; Thomas, C. M.; Hellhund, J.; Lomsadze, R.; Kilcoyne, A. L. D.; Müller, A.; Schippers, S.; Phaneuf, R. A.

    2016-03-01

    Cross-section measurements are reported for single and double photoionization of C60+ ions in the photon energy range 18-150 eV accompanied by the loss of zero to seven pairs of carbon atoms, as well as for fragmentation without ionization resulting in loss of two to eight pairs of C atoms in the photon energy range 18-65 eV. Absolute measurements were performed by merging a beam of C60+ molecular ions with a beam of monochromatized synchrotron radiation. Product channels involving dissociation yielding smaller fullerene fragment ions account for nearly half of the total measured oscillator strength in this energy range. The sum of cross sections for the measured product channels is compared to a published calculation of the total photoabsorption cross section of neutral C60 based on time-dependent density-functional theory. This comparison and an accounting of oscillator strengths indicate that with the exception of C58+, the most important product channels resulting from photoabsorption were accounted for in the experiment. Threshold energies for the successive removal of carbon atom pairs accompanying photoionization are also determined from the measurements.

  13. Photoion-pair formation and photoelectron-induced dissociative attachment in C2H2: D0(HCC-H)

    NASA Astrophysics Data System (ADS)

    Ruscic, B.; Berkowitz, J.

    1990-10-01

    The formation of C2H- is observed in two broad resonance bands when C2H2 is irradiated with vuv light. The higher-energy band has partially resolved structure, approximately linear pressure dependence, and a threshold at 16.335±0.021 eV. It is attributed to photoion-pair formation (C2H-+H+) consequent upon predissociation of one or more Rydberg states. This threshold, together with IP(H) and EA(C2H), gives D0(HCC-H)≤5.706±0.022 eV≡131.6±0.5 kcal/mol, or ΔH0f0 (C2H)≤134.5±0.5 kcal/mol. The lower-energy band has an approximately quadratic pressure dependence and curved step-like structure. It is attributed to photoelectron-induced dissociative attachment mediated by a πg shape resonance. The threshold, at 878.5±2.0 Å, corresponds to a photoelectron energy of 2.715±0.032 eV. This threshold combined with EA(C2H)=2.969±0.010 eV, yields D0(HCC-H)≤5.684±0.033 eV≡131.1±0.7 kcal/mol, or ΔH0f0 (C2H)=134.0±0.7 kcal/mol.

  14. Molecular Photoionization Calculations Using the Complex Basis Function Method.

    NASA Astrophysics Data System (ADS)

    Yu, Chin-Hui

    The complex basis function method (CBF) using both real and complex basis functions has been applied to the calculation of photoionization cross sections. The CBF method requires less computational resources than rigorous full-scattering methods and is effective for the evaluation of shape-resonance features. Neither the number of electrons in the system nor the molecular geometry is restricted. Moreover, the cross section obtained by the CBF method satisfies a variational principle and provides a practical diagnostic tool for the calculation of cross sections. The photoionization cross sections of H _sp{2}{+}, H _2, N_2, CO _2, and SF_6 have been computed using the CBF method. The computed partial cross sections for linear molecules agreed fairly well with other theoretical and experimental values. Particularly encouraging is the nearly perfect agreement of the CBF results with the results by rigorous full-scattering methods in the regions of sharp resonance features such as the K-shell ionization of N_2 and the 4sigma_{rm g} --> ksigma_ {rm u} transition of CO _2. The effect of averaging over all vibrational modes on the ionization cross sections for the 4 sigma_{rm g} orbital in CO_2 has also been studied for the first time. The resonance peak in the totally vibrationally averaged cross sections was reduced by 20%, but still represents a feature which has not yet been detected experimentally. The photoionization of SF_6 valence shells, 1t_{1rm g} , 5t_{1rm u}, 1t_{2rm u}, 3e _{rm g}, 1t_ {2rm g}, 4t_{1 rm u}, and 5a_{1 rm g}, has also been studied for the continuum symmetries a_{1rm g }, t_{1rm u} , e_{rm g}, and t_{2rm g}. The CBF results of SF_6 are numerically stable and essentially approach the static-exchange limit. These static-exchange partial cross sections, however, do not compare well with the experimental measurements. The discrepancy may be attributed to the physical approximations made in the theoretical model and to the quality of the ground -state

  15. Dissociation of internal energy-selected methyl bromide ion revealed from threshold photoelectron-photoion coincidence velocity imaging

    SciTech Connect

    Tang, Xiaofeng; Zhou, Xiaoguo E-mail: yanbing@jlu.edu.cn; Liu, Shilin; Sun, Zhongfa; Liu, Fuyi; Sheng, Liusi; Yan, Bing E-mail: yanbing@jlu.edu.cn

    2014-01-28

    Dissociative photoionization of methyl bromide (CH{sub 3}Br) in an excitation energy range of 10.45–16.90 eV has been investigated by using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging. The coincident time-of-flight mass spectra indicate that the ground state X{sup 2}E of CH{sub 3}Br{sup +} is stable, and both A{sup 2}A{sub 1} and B{sup 2}E ionic excited states are fully dissociative to produce the unique fragment ion of CH{sub 3}{sup +}. From TPEPICO 3D time-sliced velocity images of CH{sub 3}{sup +} dissociated from specific state-selected CH{sub 3}Br{sup +} ion, kinetic energy release distribution (KERD) and angular distribution of CH{sub 3}{sup +} fragment ion are directly obtained. Both spin-orbit states of Br({sup 2}P) atom can be clearly observed in fast dissociation of CH{sub 3}Br{sup +}(A{sup 2}A{sub 1}) ion along C–Br rupture, while a KERD of Maxwell-Boltzmann profile is obtained in dissociation of CH{sub 3}Br{sup +}(B{sup 2}E) ion. With the aid of the re-calculated potential energy curves of CH{sub 3}Br{sup +} including spin-orbit coupling, dissociation mechanisms of CH{sub 3}Br{sup +} ion in A{sup 2}A{sub 1} and B{sup 2}E states along C–Br rupture are revealed. For CH{sub 3}Br{sup +}(A{sup 2}A{sub 1}) ion, the CH{sub 3}{sup +} + Br({sup 2}P{sub 1/2}) channel is occurred via an adiabatic dissociation by vibration, while the Br({sup 2}P{sub 3/2}) formation is through vibronic coupling to the high vibrational level of X{sup 2}E state followed by rapid dissociation. C–Br bond breaking of CH{sub 3}Br{sup +}(B{sup 2}E) ion can occur via slow internal conversion to the excited vibrational level of the lower electronic states and then dissociation.

  16. High-resolution threshold photoelectron-photoion coincidence experiments performed on beamline 9.0.2.2: Kinetic energy release study of the process SF{sub 6} + hv {yields} SF{sub 5}{sup +} F + e{sup -}

    SciTech Connect

    Evans, M.; Ng, C.Y.; Hsu, C.W.; Heimann, P.

    1997-04-01

    Vacuum ultraviolet (VUV) photoionization mass spectrometry has been used extensively to determine the energetics of neutral radicals and radical cations, as well as to study the dynamics of the dissociative photoionization process. Very often these measurements are concerned with determining the appearance energy (AE) for a dissociative ionization process, as well as determining the heats of formation of the species involved. One such photoionization mass spectrometric technique employed on End Station 2 of the Chemical Dynamics Beamline (9.0.2.2) at the Advanced Light Source is the threshold photoelectron-photoion coincidence (TPEPICO) method. TPEPICO involves measuring the time-of-flight (TOF) mass spectrum of a given cation in coincidence with threshold photoelectrons at a known photoionization energy.

  17. Theoretical study of asymmetric molecular-frame photoelectron angular distributions for C 1s photoejection from CO2

    SciTech Connect

    Rescigno, Thomas N; Miyabe, S.; McCurdy, C.W.; Orel, A.E.

    2009-02-18

    We report the results of ab initio calculations of cross sections and molecular-frame photoelectron angular distributions for C 1s ionization of CO2, and propose a mechanism for the recently observed asymmetry of those angular distributions with respect to the CO^+and O^+ions produced by subsequent Auger decay. The fixed-nuclei, photoionization amplitudes were constructed using variationally obtained electron-molecular ion scattering wave functions. We have also carried out electronic structure calculations which identify a dissociative state of the CO2^++ dication that is likely populated following Auger decay and which leads to O^+ + CO^+ fragment ions. We show that a proper accounting of vibrational motion in the computation of the photoelectron angular distributions, along with reasonable assumptions about the nuclear dissociation dynamics, gives results in good agreement with recent experimental observations. We also demonstrate that destructive interference between different partial waves accounts for sudden changes with photon energy in the observed angular distributions.

  18. Absolute cross sections for molecular photoabsorption, partial photoionization, and ionic photofragmentation process

    SciTech Connect

    Gallagher, J.W.; Brion, C.E.; Samson, J.A.R.; Langhoff, P.W.

    1988-01-01

    A compilation is provided of absolute total photoabsorption and partial-channel photoionization cross sections for the valence shells of selected molecules, including diatomics (H2, N2, O2, CO, NO) and triatomics (CO2, N2O), simple hydrides (H2O, NH3, CH4), hydrogen halides (HF, HCl, HBr, HI), sulfur compounds (H2S, CS2, OCS, SO2, SF6),and chlorine compounds (Cl2, CCl4). The partial-channel cross sections presented refer to production of the individual electronic states of molecular ions and also to production of parent and specific fragment ions, as functions of incident photon energy, typically from approximately 20 to 100 eV. Photoelectron anisotropy factors, which together with electronic partial cross sections provide cross sections differential in photon energy and in ejection angle, are also reported. There is generally good agreement between cross sections measured by the physically distinct optical and dipole electron-impact methods. The cross sections and anisotropy factors also compare favorably with selection ab initio and model potential (X-alpha) calculations which provide a basis for interpretation of the measurements.

  19. Molecular photoionization processes of astrophysical and aeronomical interest

    NASA Technical Reports Server (NTRS)

    Langhoff, P. W.

    1985-01-01

    An account is given of aspects of photoionization processes in molecules, with particular reference to recent theoretical and experimental studies of partial cross sections for production of specific final electronic states and of parent and fragment ions. Such cross sections help provide a basis for specifying the state of excitation of the ionized medium, are useful for estimating the kinetic energy distributions of photoejected electrons and fragment ions, provide parent-and fragment-ion yields, and clarify the possible origins of neutral fragments in highly excited rovibronic states. A descriptive account is given of photoionization phenomena, including tabulation of valence- and inner-shell potentials for some molecules of astrophysical and aeronomical interest. Cross sectional expressions are given. Various approximations currently employed in computational studies are described briefly, threshold laws and high-energy limits are indicated, and distinction is drawn between resonant and direct photoionization phenomena. Recent experimental and theoretical studies of partial photoionization cross sections in selected compounds of astrophysical and aeronomical relevance are described and discussed.

  20. Assignment of Rovibrational Transitions of Propyne in the Region of 2934–2952 cm⁻1 Measured by Two-color IR–vacuum Ultraviolet laser photoion-photoelectron methods

    SciTech Connect

    Xing, Xi; Reed, Beth; Lau, Kai Chung; Baek, Sun-Jong; Bahng, Mi-Kyung; Ng, Cheuk-Yiu

    2007-07-27

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The infrared (IR) spectrum of propyne in the region of 2934–2952 cm-1 has been recorded by the IR–vacuum ultraviolet (VUV)–photoion method. The spectrum is shown to consist of two near-resonant, but noncoupled vibrational bands: the v2 symmetric methyl C–H stretching vibrational band and a combination vibrational band vcs. The previously unobserved Q line of the vcs band is observed. The rotational transition lines of the v₂=1 band produces IR-VUV–pulsed field ionization–photoelectron (IR-VUV-PFI-PE) signal at the C₃H₄ + (v₂⁺=1) photoionization threshold. The rotational transition lines associated with the vcs band do not produce IR-VUV-PFI-PE signal. Rotational transition lines of both vibrational bands are assigned and simulated; and ab initio calculations further confirm the assignment.

  1. Two-center interference in molecular photoelectron energy spectra with intense attosecond circularly polarized XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bian, Xue-Bin; Bandrauk, André D.

    2014-08-01

    We study two-center electron interference in molecular photoionization processes by intense attosecond circularly polarized extreme ultraviolet (XUV) laser pulses in both symmetric H2+ and nonsymmetric HHe2+ one-electron diatomic systems. Simulations from numerical solutions of time-dependent Schrödinger equations for the oriented symmetric molecular ion H2+ exhibit a signature of interference with double peaks (minima) in molecular attosecond photoelectron energy spectra (MAPES) at critical angles ϑc between the continuum electron momentum pe and the molecular internuclear R axis. The interference patterns are shown to be influenced by the molecular Coulomb potential, leading to a shift of the critical angle ϑc. Dependence of the two-center interference on the pulse ellipticity is also investigated. Furthermore, it is found that the interference phenomena are critically sensitive to the molecular orbital symmetry. For the nonsymmetric molecular ion HHe2+, such double peaks in MAPES also occur, thus suggesting a method for imaging orbitals in molecules by intense ultrashort circularly polarized XUV pulses on the attosecond time scale.

  2. Complete determination of the photoionization dynamics of a polyatomic molecule. II. Determination of radial dipole matrix elements and phases from experimental photoelectron angular distributions from A1Au acetylene.

    PubMed

    Hockett, Paul; Reid, Katharine L

    2007-10-21

    We present a fit to photoelectron angular distributions (PADs) measured following the photoionization of rotationally selected A1Au state acetylene. In the case of the 4(1)2Sigmau- vibronic state of the ion, we are able to use this fit to make a complete determination of the radial dipole matrix elements and phases connecting the prepared level to each photoelectron partial wave. We have also investigated other Renner-Teller subbands with a view to disentangling geometrical and dynamical contributions to the resulting PADs.

  3. Rotationally resolved state-to-state photoionization and photoelectron study of titanium carbide and its cation (TiC/TiC⁺).

    PubMed

    Luo, Zhihong; Huang, Huang; Chang, Yih-Chung; Zhang, Zheng; Yin, Qing-Zhu; Ng, C Y

    2014-10-14

    Titanium carbide and its cation (TiC/TiC(+)) have been investigated by the two-color visible (VIS)-ultraviolet (UV) resonance-enhanced photoionization and pulsed field ionization-photoelectron (PFI-PE) methods. Two visible excitation bands for neutral TiC are observed at 16,446 and 16,930 cm(-1). Based on rotational analyses, these bands are assigned as the respective TiC((3)Π1) ← TiC(X(3)Σ(+)) and TiC((3)Σ(+)) ← TiC(X(3)Σ(+)) transition bands. This assignment supports that the electronic configuration and term symmetry for the neutral TiC ground state are …7σ(2)8σ(1)9σ(1)3π(4) (X(3)Σ(+)). The rotational constant and the corresponding bond distance of TiC(X(3)Σ(+); v″ = 0) are determined to be B0″ = 0.6112(10) cm(-1) and r0″ = 1.695(2) Å, respectively. The rotational analyses of the VIS-UV-PFI-PE spectra for the TiC(+)(X; v(+) = 0 and 1) vibrational bands show that the electronic configuration and term symmetry for the ionic TiC(+) ground state are …7σ(2)8σ(1)3π(4) (X(2)Σ(+)) with the v(+) = 0 → 1 vibrational spacing of 870.0(8) cm(-1) and the rotational constants of B(e)(+) = 0.6322(28) cm(-1), and α(e)(+) = 0.0085(28) cm(-1). The latter rotational constants yield the equilibrium bond distance of r(e)(+) = 1.667(4) Å for TiC(+)(X(2)Σ(+)). The cleanly rotationally resolved VIS-UV-PFI-PE spectra have also provided a highly precise value of 53 200.2(8) cm(-1) [6.5960(1) eV] for the adiabatic ionization energy (IE) of TiC. This IE(TiC) value along with the known IE(Ti) has made possible the determination of the difference between the 0 K bond dissociation energy (D0) of TiC(+)(X(2)Σ(+)) and that of TiC(X(3)Σ(+)) to be D0(Ti(+)-C) - D0(Ti-C) = 0.2322(2) eV. Similar to previous experimental observations, the present state-to-state PFI-PE study of the photoionization transitions, TiC(+)(X(2)Σ(+); v(+) = 0 and 1, N(+)) ← TiC((3)Π1; v', J'), reveals a strong decreasing trend for the photoionization cross section as |ΔN(+)| = |N

  4. Role of nuclear dynamics in the Asymmetric molecular-frame photoelectron angular distributions for C 1s photoejection from CO{sub 2}

    SciTech Connect

    Miyabe, Shungo; Haxton, Dan; Rescigno, Tom; McCurdy, Bill

    2010-11-30

    We report the results of semiclassical calculations of the asymmetric molecular-frame photoelectron angular distributions for C 1s ionization of CO{sub 2} measured with respect to the CO{sup +} and O{sup +} ions produced by subsequent Auger decay, and show how the decay event can be used to probe ultrafast molecular dynamics of the transient cation. The fixed-nuclei photoionization amplitudes were constructed using variationally obtained electron-molecular ion scattering wave functions. The amplitudes are then used in a semiclassical manner to investigate their dependence on the nuclear dynamics of the cation. The method introduced here can be used to study other core-level ionization events.

  5. Rotationally resolved state-to-state photoionization and photoelectron study of titanium carbide and its cation (TiC/TiC{sup +})

    SciTech Connect

    Luo, Zhihong; Huang, Huang; Chang, Yih-Chung; Zhang, Zheng; Ng, C. Y.; Yin, Qing-Zhu

    2014-10-14

    Titanium carbide and its cation (TiC/TiC{sup +}) have been investigated by the two-color visible (VIS)-ultraviolet (UV) resonance-enhanced photoionization and pulsed field ionization-photoelectron (PFI-PE) methods. Two visible excitation bands for neutral TiC are observed at 16 446 and 16 930 cm{sup −1}. Based on rotational analyses, these bands are assigned as the respective TiC({sup 3}Π{sub 1}) ← TiC(X{sup 3}Σ{sup +}) and TiC({sup 3}Σ{sup +}) ← TiC(X{sup 3}Σ{sup +}) transition bands. This assignment supports that the electronic configuration and term symmetry for the neutral TiC ground state are …7σ{sup 2}8σ{sup 1}9σ{sup 1}3π{sup 4} (X{sup 3}Σ{sup +}). The rotational constant and the corresponding bond distance of TiC(X{sup 3}Σ{sup +}; v″ = 0) are determined to be B{sub 0}″ = 0.6112(10) cm{sup −1} and r{sub 0}″ = 1.695(2) Å, respectively. The rotational analyses of the VIS-UV-PFI-PE spectra for the TiC{sup +}(X; v{sup +} = 0 and 1) vibrational bands show that the electronic configuration and term symmetry for the ionic TiC{sup +} ground state are …7σ{sup 2}8σ{sup 1}3π{sup 4} (X{sup 2}Σ{sup +}) with the v{sup +} = 0 → 1 vibrational spacing of 870.0(8) cm{sup −1} and the rotational constants of B{sub e}{sup +} = 0.6322(28) cm{sup −1}, and α{sub e}{sup +} = 0.0085(28) cm{sup −1}. The latter rotational constants yield the equilibrium bond distance of r{sub e}{sup +} = 1.667(4) Å for TiC{sup +}(X{sup 2}Σ{sup +}). The cleanly rotationally resolved VIS-UV-PFI-PE spectra have also provided a highly precise value of 53 200.2(8) cm{sup −1} [6.5960(1) eV] for the adiabatic ionization energy (IE) of TiC. This IE(TiC) value along with the known IE(Ti) has made possible the determination of the difference between the 0 K bond dissociation energy (D{sub 0}) of TiC{sup +}(X{sup 2}Σ{sup +}) and that of TiC(X{sup 3}Σ{sup +}) to be D{sub 0}(Ti{sup +}−C) − D{sub 0}(Ti−C) = 0.2322(2) eV. Similar to previous experimental

  6. ATOMIC AND MOLECULAR PHYSICS: Jet-like structures in photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Zhang, Jing-Tao; Ren, Xiang-He; Xu, Zhi-Zhan

    2009-11-01

    The photoelectron angular distributions (PADs) of hydrogen atoms in an intense laser field of linear polarization are studied using the S-matrix theory in the length gauge. The PADs show main lobes along the laser polarization and jet-like structures sticking from the waist of main lobes. Our previous prediction, based on a nonperturbative scattering theory of photoionization developed by Guo et al, showing that the number of jets on one side of PADs may increase by one, three, or other odd numbers and may decrease by one when one more photon is absorbed, is confirmed by this treatment. Within the strong-field approximation, good agreement is obtained between these two quite different treatments. We further study the influence of the Coulomb attraction to PADs, by taking a Coulomb-Volkov state as the continuum state of photoelectrons. We find that under the influence of the Coulomb attraction, the PADs change greatly but the predicted phenomena still appear. This study verifies that the jet-like structures have no relation with the angular momentum of photoelectrons.

  7. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    SciTech Connect

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.; Maryland Univ., College Park, MD . Dept. of Chemistry and Biochemistry; Lawrence Berkeley Lab., CA )

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeI{alpha} (584{angstrom}) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As{sub 2}, As{sub 4}, and ZnCl{sub 2} are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab.

  8. Photoelectron Spectra

    ERIC Educational Resources Information Center

    Bock, Hans; Mollere, Phillip D.

    1974-01-01

    Presents an experimental approach to teaching molecular orbital models. Suggests utilizing photoelectron spectroscopy and molecular orbital theory as complementary approaches to teaching the qualitative concepts basic to molecular orbital theory. (SLH)

  9. A high-resolution vacuum ultraviolet photoionization, photoelectron, and pulsed field ionization study of CS{sub 2} near the CS{sub 2}{sup +}(X{sup 2}{Pi}{sub 3/2,1/2}) thresholds

    SciTech Connect

    Huang, J.; Cheung, Y.; Evans, M.; Liao, C.; Ng, C.Y.; Hsu, C.; Heimann, P.; Lefebvre-Brion, H.; Cossart-Magos, C.

    1997-01-01

    High-resolution photoionization efficiency (PIE) and pulsed field ionization photoelectron (PFI-PE) spectra for CS{sub 2} have been measured using coherent vacuum ultraviolet (VUV) laser radiation in the energy range of 81050{endash}82100 cm{sup {minus}1}. The PIE and threshold photoelectron (TPE) spectra for CS{sub 2} in the energy range of 80850{endash}82750 cm{sup {minus}1} have also been obtained using synchrotron radiation. The analysis of the PIE spectra reveals three Rydberg series converging to the excited CS{sub 2}{sup +}({sup 2}{Pi}{sub 1/2}) spin{endash}orbit state. These series, with quantum defects of 1.430, 1.616, and 0.053, are associated with the [{sup 2}{Pi}{sub 1/2}]np{sigma}{sub u}, [{sup 2}{Pi}{sub 1/2}]np{pi}{sub u}, and [{sup 2}{Pi}{sub 1/2}]nf{sub u} configurations. The Stark shift effect on the ionization threshold of CS{sub 2} has been examined as a function of dc electric fields (F) in the range of 0.65{endash}1071 V/cm. The observed F dependence of the Stark shift for the ionization onset of CS{sub 2} is consistent with the prediction by the classical adiabatic field ionization formula. The extrapolation of the ionization onset to zero F yields accurate values for IE[CS{sub 2}{sup +}({tilde X}{sup 2}{Pi}{sub 3/2})]. In order to determine accurate IEs and to probe autoionizing structures for molecular species by PIE measurements, it is necessary to minimize the electric field used for ion extraction. Assignment of Renner{endash}Teller structures resolved in the VUV PFI-PE spectrum is guided by the recent nonresonant two-photon (N2P) PFI-PE and theoretical studies. Analysis of the PFI-PE spectrum also yields accurate values for IE[CS{sub 2}{sup +}({tilde X}{sup 2}{Pi}{sub 3/2,1/2})]. Taking average of the IE values determined by VUV-PFI-PE, N2P-PFI-PE, and Stark field extrapolation methods, we obtain a value of 81285.7{plus_minus}2.8 cm{sup {minus}1} for IE[CS{sub 2}{sup +}({tilde X}{sup 2}{Pi}{sub 3/2})]. (Abstract Truncated)

  10. VUV state-selected photoionization of thermally-desorbed biomolecules by coupling an aerosol source to an imaging photoelectron/photoion coincidence spectrometer: case of the amino acids tryptophan and phenylalanine.

    PubMed

    Gaie-Levrel, François; Garcia, Gustavo A; Schwell, Martin; Nahon, Laurent

    2011-04-21

    Gas phase studies of biological molecules provide structural and dynamical information on isolated systems. The lack of inter- or intra-molecular interactions facilitates the interpretation of the experimental results through theoretical calculations, and constitutes an informative complement to the condensed phase. However advances in the field are partially hindered by the difficulty of vaporising these systems, most of which are thermally unstable. In this work we present a newly developed aerosol mass thermodesorption setup, which has been coupled to a Velocity Map Imaging (VMI) analyzer operated in coincidence with a Wiley-McLaren Time of Flight spectrometer, using synchrotron radiation as a single photon ionization source. Although it has been previously demonstrated that thermolabile molecules such as amino acids can be produced intact by the aerosol vaporisation technique, we show how its non-trivial coupling to a VMI analyzer plus the use of electron/ion coincidences greatly improves the concept in terms of the amount of spectroscopic and dynamic information that can be extracted. In this manner, we report on the valence shell ionization of two amino acids, tryptophan and phenylalanine, for which threshold photoelectron spectra have been recorded within the first 3 eV above the first ionization energy using synchrotron radiation emitted from the DESIRS beamline located at SOLEIL in France. Their adiabatic ionization energies (IEs) have been measured at 7.40 ± 0.05 and 8.65 ± 0.02 eV, respectively, and their spectra analyzed using existing theoretical data from the literature. The IE values agree well with previously published ones, but are given here with a considerably reduced uncertainty by up to a factor of 5. The photostability of both amino acids is also described in detail, through the measurement of the state-selected fragmentation pathways via the use of threshold electron/ion coincidences (TPEPICO), with appearance energies for the different

  11. Molecular photoemission studies using synchrotron radiation

    SciTech Connect

    Truesdale, C.M.

    1983-04-01

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems.

  12. Dissociative and double photoionization of CO2 from threshold to 90 A

    NASA Technical Reports Server (NTRS)

    Masuoka, T.; Samson, J. A. R.

    1979-01-01

    The molecular photoionization, dissociative photoionization and double photoionization cross sections for CO2 were measured from their onsets down to 90 A by using various combinations of mass spectrometers (a coincidence time-of-flight mass spectrometer and a magnetic mass spectrometer) and light sources (synchrotron radiation, and glow and spark discharge). It is concluded that the one broad peak and the three shoulders in the total adsorption cross section curve between 640 and 90 A are caused completely by dissociative ionization processes. Several peaks observed in the cross section curve for the total fragmentation CO(+)3, O(+) and C(+) are compared with those in the photoelectron spectrum reported for CO2.

  13. Double photoionization of molecular hydrogen: A theoretical study including the nuclear dissociation

    NASA Astrophysics Data System (ADS)

    Le Rouzo, H.

    1988-03-01

    The double photoionization of molecular hydrogen is theoretically investigated in the 40-100-eV photon energy range. The calculation is ab initio and rests first on the Born-Oppenheimer separation. The exact nuclear wave functions have been used for both (bound) initial and (dissociative) final two-proton states and the Franck-Condon approximation is not invoked. The electronic part of the initial ground state of H2 is highly correlated while the final one is simply a symmetrized product of uncorrelated Coulomb wave functions. Within this framework, the total cross sections obtained in the dipole-velocity formulation agree well with very recent experimental results. In addition, the method is able to provide the kinetic-energy distributions of the fragments (electrons and protons) as functions of the photon energy. The energy distributions of the ejected protons, produced by 60-100-eV impacting photons, are similar in shape to those resulting from electron or proton impact on H2. In contrast, it is found that the most probable two-proton kinetic energy is significantly lowered in the threshold region. On the other hand, the differential electron spectrum gives some insights into the sharing of energy between the s, p, and d ejected electrons. Within the δ approximation, which is shown to be very accurate over the whole photon energy range, the threshold law for the double photoionization of diatomic molecules is derived. It is found that the cross section can be represented, up to 10 eV above threshold, as the convolution of the density probability in the initial vibrational ground state with a series of linear thresholds, similar to those derived in the Wannier-Rau-Peterkop theory for atoms.

  14. Photoelectron momentum distributions of atomic and molecular systems in strong circularly or elliptically polarized laser fields

    NASA Astrophysics Data System (ADS)

    He, Pei-Lun; Takemoto, Norio; He, Feng

    2015-06-01

    Photoelectron momentum distributions of a hydrogen atom in an elliptically polarized laser field and a hydrogen molecular ion in a circularly polarized laser field are studied by simulating the time-dependent Schrödinger equation. We demonstrate that, in both systems, the Coulomb interaction between a liberated electron and its parent ion is essential for the photoelectron momentum angular drift in a laser polarization plane. By decomposing the wave packet into the rescattered and directly ionized components in the case of a hydrogen molecular ion, we reveal that the rescattered component drifts by a larger angle. The drift angle of the photoelectron of the hydrogen atom decreases monotonically with longer wavelength, while a nonmonotonic dependence is shown for H2+. We attribute such nonmonotonicity to the fluctuation of the instant of ionization for H2 + as the laser wavelength is changed.

  15. Photoionization Dynamics in Pure Helium Droplets

    SciTech Connect

    Peterka, Darcy S.; Kim, Jeong Hyun; Wang, Chia C.; Poisson,Lionel; Neumark, Daniel M.

    2007-02-04

    The photoionization and photoelectron spectroscopy of pure He droplets are investigated at photon energies between 24.6 eV (the ionization energy of He) and 28 eV. Time-of-flight mass spectra and photoelectron images were obtained at a series of molecular beam source temperatures and pressures to assess the effect of droplet size on the photoionization dynamics. At source temperatures below 16 K, the photoelectron images are dominated by fast electrons produced via direct ionization of He atoms, with a small contribution from very slow electrons with kinetic energies below 1 meV arising from an indirect mechanism. The fast photoelectrons have as much as 0.5 eV more kinetic energy than those from atomic He at the same photon energy. This result is interpreted and simulated within the context of a 'dimer model', in which one assumes vertical ionization from two nearest neighbor He atoms to the attractive region of the He2+ potential energy curve. Possible mechanism for the slow electrons, which were also seen at energies below IE(He), are discussed, including vibrational autoionizaton of Rydberg states comprising an electron weakly bound to the surface of a large HeN+ core.

  16. Multi-electron coincidence spectroscopy: double photoionization from molecular inner-shell orbitals

    NASA Astrophysics Data System (ADS)

    Lablanquie, P.; Penent, F.; Hikosaka, Y.

    2016-09-01

    The interest of molecular double core holes was predicted in 1986 by Cederbaum et al who showed that their spectroscopy can be more informative than that of single core holes, especially when the holes are located at different sites in the molecule (Cederbaum et al 1986 J. Chem. Phys. 85 6513). Their experimental study of single photon formation had to wait until 2009-2010 with progress in synchrotron sources and the development of efficient multi-electron coincidence experiments based on a magnetic bottle time-of-flight spectrometer. At the same time the advent of x-ray free electron lasers opened the possibilty of creating them in a two-photon process, and motivated new theoretical studies of their properties. We will illustrate here the progress made recently in the field with a few examples, including the formation of double core holes by double core photoionization, their spectroscopy and decay paths, and the related process of simultaneous core ionization and core excitation.

  17. Multi-electron coincidence spectroscopy: double photoionization from molecular inner-shell orbitals

    NASA Astrophysics Data System (ADS)

    Lablanquie, P.; Penent, F.; Hikosaka, Y.

    2016-09-01

    The interest of molecular double core holes was predicted in 1986 by Cederbaum et al who showed that their spectroscopy can be more informative than that of single core holes, especially when the holes are located at different sites in the molecule (Cederbaum et al 1986 J. Chem. Phys. 85 6513). Their experimental study of single photon formation had to wait until 2009–2010 with progress in synchrotron sources and the development of efficient multi-electron coincidence experiments based on a magnetic bottle time-of-flight spectrometer. At the same time the advent of x-ray free electron lasers opened the possibilty of creating them in a two-photon process, and motivated new theoretical studies of their properties. We will illustrate here the progress made recently in the field with a few examples, including the formation of double core holes by double core photoionization, their spectroscopy and decay paths, and the related process of simultaneous core ionization and core excitation.

  18. Laser-induced photoionization of molecular hydrogen: A technique to measure revibrational ground state populations

    NASA Astrophysics Data System (ADS)

    Marinero, E. E.; Rettner, C. T.; Zare, R. N.

    1982-09-01

    Using tunable anti-Stokes orders of a frequency-doubled dye laser, rotationally-selective excited-state populations in H2 are prepared by two-photon excitation. The ensuing photoionization allows direct determination of (v'', J'') populations.

  19. Inversion of strong-field photoelectron spectra for molecular orbital imaging

    NASA Astrophysics Data System (ADS)

    Puthumpally-Joseph, R.; Viau-Trudel, J.; Peters, M.; Nguyen-Dang, T. T.; Atabek, O.; Charron, E.

    2016-08-01

    Imaging structures at the molecular level is a developing interdisciplinary research field that spans the boundaries of physics and chemistry. High-spatial-resolution images of molecules can be obtained with photons or ultrafast electrons. In addition, images of valence molecular orbitals can be extracted via tomographic techniques based on the coherent extreme UV radiation emitted by a molecular gas exposed to an intense ultrashort infrared laser pulse. In this paper, we demonstrate that similar information can be obtained by inverting energy-resolved photoelectron spectra using a simplified analytical model.

  20. Few-femtosecond sensitivity of ultrafast molecular dynamics with time-resolved photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Champenois, Elio G.; Cryan, James P.; Larsen, Kirk; Shivaram, Niranjan H.; Belkacem, Ali

    2016-05-01

    We explore ultrafast dynamics involving non-adiabatic couplings following valence electronic excitation of small molecular systems. By measuring the time-resolved photoelectron spectra (TRPES) resulting from ionization with ultraviolet light, the excited wave packet can be tracked with state specificity. If the nuclear motion is dominated by a limited number of degrees of freedom, the TRPES also yields information about the molecular geometry. Even with limited temporal resolution, the onset times of the signal at different photoelectron energies can lead to few-femtosecond sensitivity. Applying this technique to ethylene (C2 H4) excited to the ππ* state, ultrafast motion along the twist coordinate is observed along with transient population to the π 3 s state through non-adiabatic coupling. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Divison under Contract No. DE-AC02-05CH11231.

  1. Quantitative interpretation of molecular dynamics simulations for X-ray photoelectron spectroscopy of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Olivieri, Giorgia; Parry, Krista M.; Powell, Cedric J.; Tobias, Douglas J.; Brown, Matthew A.

    2016-04-01

    Over the past decade, energy-dependent ambient pressure X-ray photoelectron spectroscopy (XPS) has emerged as a powerful analytical probe of the ion spatial distributions at the vapor (vacuum)-aqueous electrolyte interface. These experiments are often paired with complementary molecular dynamics (MD) simulations in an attempt to provide a complete description of the liquid interface. There is, however, no systematic protocol that permits a straightforward comparison of the two sets of results. XPS is an integrated technique that averages signals from multiple layers in a solution even at the lowest photoelectron kinetic energies routinely employed, whereas MD simulations provide a microscopic layer-by-layer description of the solution composition near the interface. Here, we use the National Institute of Standards and Technology database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to quantitatively interpret atom-density profiles from MD simulations for XPS signal intensities using sodium and potassium iodide solutions as examples. We show that electron inelastic mean free paths calculated from a semi-empirical formula depend strongly on solution composition, varying by up to 30% between pure water and concentrated NaI. The XPS signal thus arises from different information depths in different solutions for a fixed photoelectron kinetic energy. XPS signal intensities are calculated using SESSA as a function of photoelectron kinetic energy (probe depth) and compared with a widely employed ad hoc method. SESSA simulations illustrate the importance of accounting for elastic-scattering events at low photoelectron kinetic energies (<300 eV) where the ad hoc method systematically underestimates the preferential enhancement of anions over cations. Finally, some technical aspects of applying SESSA to liquid interfaces are discussed.

  2. Quantitative interpretation of molecular dynamics simulations for X-ray photoelectron spectroscopy of aqueous solutions.

    PubMed

    Olivieri, Giorgia; Parry, Krista M; Powell, Cedric J; Tobias, Douglas J; Brown, Matthew A

    2016-04-21

    Over the past decade, energy-dependent ambient pressure X-ray photoelectron spectroscopy(XPS) has emerged as a powerful analytical probe of the ion spatial distributions at the vapor (vacuum)-aqueous electrolyteinterface. These experiments are often paired with complementary molecular dynamics (MD) simulations in an attempt to provide a complete description of the liquidinterface. There is, however, no systematic protocol that permits a straightforward comparison of the two sets of results. XPS is an integrated technique that averages signals from multiple layers in a solution even at the lowest photoelectron kinetic energies routinely employed, whereas MD simulations provide a microscopic layer-by-layer description of the solution composition near the interface. Here, we use the National Institute of Standards and Technology database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to quantitatively interpret atom-density profiles from MD simulations for XPS signal intensities using sodium and potassium iodide solutions as examples. We show that electron inelastic mean free paths calculated from a semi-empirical formula depend strongly on solution composition, varying by up to 30% between pure water and concentrated NaI. The XPS signal thus arises from different information depths in different solutions for a fixed photoelectron kinetic energy. XPS signal intensities are calculated using SESSA as a function of photoelectron kinetic energy (probe depth) and compared with a widely employed ad hoc method. SESSA simulations illustrate the importance of accounting for elastic-scattering events at low photoelectron kinetic energies (<300 eV) where the ad hoc method systematically underestimates the preferential enhancement of anions over cations. Finally, some technical aspects of applying SESSA to liquidinterfaces are discussed. PMID:27389231

  3. Classical two-slit interference effects in double photoionization of molecular hydrogen at high energies

    NASA Astrophysics Data System (ADS)

    Horner, D. A.; Miyabe, S.; Rescigno, T. N.; McCurdy, C. W.; Morales, F.; Martín, F.

    2009-11-01

    We report a thorough theoretical study of one photon double ionization of H2 ([6]). We suggest that interference effects reported in one photon ionization will be reproducible in the case of double ionization when one of the photons carries most of the available energy and the other electron is not observed. These calculations reproduce recent double photoionization experiments of HH2 ([3]).

  4. Rotationally resolved photoionization with coherent VUV radiation

    SciTech Connect

    Wiedmann, R.T.; Tonkyn, R.G.; White, M.G.

    1992-09-01

    Pulsed field ionization (PFI) has been used in conjunction with coherent VUV radiation to investigate the rotational state distributions of molecular cations following single photon ionization. The rotational state distributions for several linear cations (O{sub 2}, NO, OH(OD), HCl and N{sub 2}0) can be interpreted predominately on the basis of the near-threshold, one-electron photoionization dynamics; however, field-induced autoionization is often the dominate ionization pathway for rotational branches involving negative changes in core angular momentum. For photoionization of the H{sub 2}X (X = 0, S) non-linear triatomic molecules, transitions between asymmetric top levels involving the rotational angular momentum projections, K{sub a} and K{sub c} permit resolution of the photoelectron continua according to symmetry. The observed spectra clearly demonstrate the importance of the non-spherical nature of the molecular ion potential which leads to photoelectron final states which are unexpected from atomic-like analogies.

  5. Rotationally resolved photoionization with coherent VUV radiation

    SciTech Connect

    Wiedmann, R.T.; Tonkyn, R.G.; White, M.G.

    1992-01-01

    Pulsed field ionization (PFI) has been used in conjunction with coherent VUV radiation to investigate the rotational state distributions of molecular cations following single photon ionization. The rotational state distributions for several linear cations (O{sub 2}, NO, OH(OD), HCl and N{sub 2}0) can be interpreted predominately on the basis of the near-threshold, one-electron photoionization dynamics; however, field-induced autoionization is often the dominate ionization pathway for rotational branches involving negative changes in core angular momentum. For photoionization of the H{sub 2}X (X = 0, S) non-linear triatomic molecules, transitions between asymmetric top levels involving the rotational angular momentum projections, K{sub a} and K{sub c} permit resolution of the photoelectron continua according to symmetry. The observed spectra clearly demonstrate the importance of the non-spherical nature of the molecular ion potential which leads to photoelectron final states which are unexpected from atomic-like analogies.

  6. Exploring Ultrafast Molecular Dynamics using Photoelectron Spectra from UV/XUV Pump-Probe Experiments

    NASA Astrophysics Data System (ADS)

    Champenois, Elio; Cryan, James; Shivaram, Niranjan; Wright, Travis; Belkacem, Ali

    2015-05-01

    The motion of atoms in molecules can drive electron dynamics via non-adiabatic couplings. In small molecules such as Ethylene, Carbon Dioxide, and Nitrophenol, this can lead to isomerization, electronic relaxation, or other time-dependent effects following excitation from a bonding to an anti-bonding molecular orbital. To study these mechanisms, we use ultraviolet photons of various energies from a bright High Harmonic Generation source to first initiate dynamics and subsequently probe the system through ionization. We record the kinetic energy and angular distribution of the resultant photoelectrons using a Velocity Map Imaging spectrometer, allowing us to track the evolution of the electronic state.

  7. Classical two-split interference effects in double photoionization of molecular hydrogen at high energies

    SciTech Connect

    Horner, Daniel A; Miyabe, S; Rescigno, T N; Mccurdy, C W; Morales, F; Martin, F

    2009-01-01

    The authors report a thorough theoretical study of one photon double ionization of H{sub 2}. They suggest that interference effects reported in one photon ionization will be reproducible in the case of double ionization when one of the photons carriers most of the available energy and the other electron is not observed. These calculations reproduce recent double photoionization experiments of H{sub 2}.

  8. Spin–orbit interaction mediated molecular dissociation

    SciTech Connect

    Kokkonen, E. Jänkälä, K.; Kettunen, J. A.; Heinäsmäki, S.; Karpenko, A.; Huttula, M.; Löytynoja, T.

    2014-05-14

    The effect of the spin–orbit interaction to photofragmentation is investigated in the mercury(II) bromide (HgBr{sub 2}) molecule. Changes in the fragmentation between the two spin–orbit components of Hg 5d photoionization, as well as within the molecular-field-splitted levels of these components are observed. Dissociation subsequent to photoionization is studied with synchrotron radiation and photoelectron-photoion coincidence spectroscopy. The experimental results are accompanied by relativistic ab initio analysis of the photoelectron spectrum.

  9. Combustion chemistry of the propanol isomers : investigated by electron ionization and VUV-photoionization molecular-beam mass spectrometry.

    SciTech Connect

    Wang, J.; Kohse-Hoinghaus, Katharina; Cool, Terrill A.; Taatjes, Craig A.; Struckmeier, Ulf; OBwald, Patrick; Morel, Aude; Westmoreland, Phillip R.; Kasper, Tina Silvia

    2008-10-01

    The combustion of 1-propanol and 2-propanol was studied in low-pressure, premixed flat flames using two independent molecular-beam mass spectrometry (MBMS) techniques. For each alcohol, a set of three flames with different stoichiometries was measured, providing an extensive data base with in total twelve conditions. Profiles of stable and intermediate species, including several radicals, were measured as a function of height above the burner. The major-species mole fraction profiles in the 1-propanol flames and the 2-propanol flames of corresponding stoichiometry are nearly identical, and only small quantitative variations in the intermediate species pool could be detected. Differences between flames of the isomeric fuels are most pronounced for oxygenated intermediates that can be formed directly from the fuel during the oxidation process. The analysis of the species pool in the set of flames was greatly facilitated by using two complementary MBMS techniques. One apparatus employs electron ionization (EI) and the other uses VUV light for single-photon ionization (VUV-PI). The photoionization technique offers a much higher energy resolution than electron ionization and as a consequence, near-threshold photoionization-efficiency measurements provide selective detection of individual isomers. The EI data are recorded with a higher mass resolution than the PI spectra, thus enabling separation of mass overlaps of species with similar ionization energies that may be difficult to distinguish in the photoionization data. The quantitative agreement between the EI- and PI-datasets is good. In addition, the information in the EI- and PI-datasets is complementary, aiding in the assessment of the quality of individual burner profiles. The species profiles are supplemented by flame temperature profiles. The considerable experimental efforts to unambiguously assign intermediate species and to provide reliable quantitative concentrations are thought to be valuable for improving

  10. Combustion chemistry of the propanol isomers - investigated by electron ionization and VUV-photoionization molecular-beam mass spectrometry

    SciTech Connect

    Kasper, T.; Osswald, P.; Struckmeier, U.; Kohse-Hoeinghaus, K.; Taatjes, C.A.; Wang, J.; Cool, T.A.; Law, M.E.; Morel, A.; Westmoreland, P.R.

    2009-06-15

    The combustion of 1-propanol and 2-propanol was studied in low-pressure, premixed flat flames using two independent molecular-beam mass spectrometry (MBMS) techniques. For each alcohol, a set of three flames with different stoichiometries was measured, providing an extensive data base with in total twelve conditions. Profiles of stable and intermediate species, including several radicals, were measured as a function of height above the burner. The major-species mole fraction profiles in the 1-propanol flames and the 2-propanol flames of corresponding stoichiometry are nearly identical, and only small quantitative variations in the intermediate species pool could be detected. Differences between flames of the isomeric fuels are most pronounced for oxygenated intermediates that can be formed directly from the fuel during the oxidation process. The analysis of the species pool in the set of flames was greatly facilitated by using two complementary MBMS techniques. One apparatus employs electron ionization (EI) and the other uses VUV light for single-photon ionization (VUV-PI). The photoionization technique offers a much higher energy resolution than electron ionization and as a consequence, near-threshold photoionization-efficiency measurements provide selective detection of individual isomers. The EI data are recorded with a higher mass resolution than the PI spectra, thus enabling separation of mass overlaps of species with similar ionization energies that may be difficult to distinguish in the photoionization data. The quantitative agreement between the EI- and PI-datasets is good. In addition, the information in the EI- and PI-datasets is complementary, aiding in the assessment of the quality of individual burner profiles. The species profiles are supplemented by flame temperature profiles. The considerable experimental efforts to unambiguously assign intermediate species and to provide reliable quantitative concentrations are thought to be valuable for improving

  11. A Study on the Structure and Photodetachment Dynamics of Copper Based Molecular Anions Using Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Holtgrewe, Nicholas Stephen

    This dissertation represents a study of the effects of electron molecule interactions in the detachment and dissociation dynamics of copper based molecular anions. Results are presented on the photodetachment of small copper oxide CuOn-- (n = 1, 2) and copper fluoride CuFn-- (n = 1, 2) molecular anions. Effects of different resonances are explored using the photoelectron angular distributions (PADs) and the relative intensity variations in vibrational channel cross sections. The specific resonances studied include dipole bound resonances, in which the electric dipole moment of the neutral molecule captures the outgoing electron, and electronic Feshbach resonances, in which the anion undergoes absorption to an excited anion state (lying energetically above the neutral) followed by relaxation via autodetachment into the electronic continuum. In addition to electron scattering resonances, the effects of dissociation dynamics on linear CuO2-- are studied, wherein the linear anion isomer was found to dissociate to Cu-- fragments. This dissociation process is interpreted with experimental data acquired from nanosecond photoelectron images and a femtosecond time resolved study.

  12. A multireference configuration interaction study of CuB and CuAl molecular constants and photoionization spectra.

    PubMed

    Ferrão, Luiz F A; Spada, Rene F K; Roberto-Neto, Orlando; Machado, Francisco B C

    2013-09-28

    Accurate potential energy curves and molecular constants for the low-lying electronic states of CuX(y) (X = B, Al; y = 0, +1) were investigated using the complete active space self-consistent field/multireference configuration interaction (MRCI) methodology with aug-cc-pV5Z basis set. The photoionization spectra of CuX were computed, showing electron detachment in the region of far ultraviolet. The results complement the previous theoretical characterizations and the few experimental studies. A comparative analysis was carried out concerning the different choices of reference configuration state functions in the MRCI calculations with and without the contribution of scalar relativistic effects. The results obtained with a small reference set adequately constructed are competitive to those using a much larger number of configuration state functions, and also the scalar relativistic effects improve significantly the molecular constants in this kind of system containing a 3d metal atom.

  13. Spectral investigations of photoionized plasmas induced in atomic and molecular gases using nanosecond extreme ultraviolet (EUV) pulses

    SciTech Connect

    Bartnik, A.; Fiedorowicz, H.; Wachulak, P.

    2014-07-15

    In this paper, results of spectral investigations of low temperature photoionized plasmas, created by irradiation of gases with intense pulses of extreme ultraviolet (EUV) radiation from a laser-produced plasma (LPP) source, are presented. The LPP source was based on a double-stream KrXe/He gas-puff target irradiated with 4 ns/0.8 J/10 Hz Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region λ ≈ 10–12 nm; however, spectrally integrated intensity at longer wavelengths was also significant. The EUV beam was focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in formation of photoionized plasmas emitting radiation in the EUV range. Radiation spectra, measured for plasmas produced in various gases, are dominated by emission lines, originating from single charged ions. Significant differences in spectral intensities and distributions between plasmas created in neon and molecular gases were observed.

  14. Spectral investigations of photoionized plasmas induced in atomic and molecular gases using nanosecond extreme ultraviolet (EUV) pulses

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Fiedorowicz, H.; Wachulak, P.

    2014-07-01

    In this paper, results of spectral investigations of low temperature photoionized plasmas, created by irradiation of gases with intense pulses of extreme ultraviolet (EUV) radiation from a laser-produced plasma (LPP) source, are presented. The LPP source was based on a double-stream KrXe/He gas-puff target irradiated with 4 ns/0.8 J/10 Hz Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region λ ≈ 10-12 nm; however, spectrally integrated intensity at longer wavelengths was also significant. The EUV beam was focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in formation of photoionized plasmas emitting radiation in the EUV range. Radiation spectra, measured for plasmas produced in various gases, are dominated by emission lines, originating from single charged ions. Significant differences in spectral intensities and distributions between plasmas created in neon and molecular gases were observed.

  15. Classical Two-Slit Interference Effects in Double Photoionization of Molecular Hydrogen at High Energies

    NASA Astrophysics Data System (ADS)

    Horner, D. A.; Miyabe, S.; Rescigno, T. N.; McCurdy, C. W.; Morales, F.; Martín, F.

    2008-10-01

    Recent experiments on double photoionization of H2 with photon energies between 160 and 240 eV have revealed body-frame angular distributions that suggest classical two-slit interference effects may be present when one electron carries most of the available energy and the second electron is not observed. We report precise quantum mechanical calculations that reproduce the experimental findings. They reveal that the interpretation in terms of classical diffraction is only appropriate at substantially higher photon energies. At the energies considered in the experiment we offer an alternative explanation based on the mixing of two nondiffractive contributions by circularly polarized light.

  16. Classical two-slit interference effects in double photoionization of molecular hydrogen at high energies

    SciTech Connect

    Horner, Daniel A.; Miyabe, Shungo; Rescigno, Thomas N; McCurdy, C. William; Morales, Felipe; Martin, Fernando

    2008-07-06

    Recent experiments on double photoionization of H$_2$ with photon energies between 160 and 240 eV have revealed body-frame angular distributions that suggest classical two-slit interference effects may be present when one electron carries most of the available energy and the second electron is not observed. We report precise quantum mechanical calculations that reproduce the experimental findings. They reveal that the interpretation in terms of classical diffraction is only appropriate atsubstantially higher photon energies. At the energies considered in the experiment we offer an alternative explanation based on the mixing of two non-diffractive contributions by circularly polarized light.

  17. Atomic and Molecular Photoelectron and Auger Electron SpectroscopyStudies Using Synchrotron Radiation

    SciTech Connect

    Southworth, Stephen H.

    1982-01-01

    Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were a 130 measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra o f the ejected electrons. The ''a double-angle-TOF'' method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collect ion efficiency and the elimination of certain systematic errors. Several results were obtained for Xe using photon energies in the range hv {approx_equal} 60-190 eV, where excitation and ionization of the inner-subshell 4d electrons dominates. The 4d asymmetry parameter {beta} exhibits strong oscillations with energy, in agreement with several theoretical calculations. As predicted, the 5p asymmetry parameter was observed to deviate strongly from that calculated using the independent-electron model, due to intershell correlation with the 4d electrons.

  18. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    SciTech Connect

    Niu, B.

    1992-09-01

    High resolution He I{alpha} photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a ``soft`` mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  19. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    SciTech Connect

    Niu, B.

    1992-09-01

    High resolution He I[alpha] photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a soft'' mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  20. Thickness determination of molecularly thin lubricant films by angle-dependent X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Pang, Chongjun; Bai, Mingwu

    2007-03-01

    An angle-dependent X-ray photoelectron spectroscopy (XPS) method used to measure the thickness of molecularly thin lubricants was developed. The method was built based on an island model of patched overlayer on a flat substrate by using the photoemission signal solely from the lubricant film. Typical molecularly thin Zdol films on the CHx overcoat of unused commercial magnetic disks were measured to verify the metrology. The lubricant thickness determined by the metrology was equal to the recent result by thermostatic high vacuum atomic force microscopy. The measured deduction in the thickness of the molecularly thin lubricant films, successively irradiated by the monochromatic source operated at 14 kV/250 W, was as low as 1 Ǻ during the first irradiation hour. XPS spectra showed that no hydrocarbons, water or oxygen were adsorbed over the Zdol outer surfaces in the tested XPS conditions. The inelastic mean free path (IMFP) of C 1s in Zdol or in CHx was found to be independent of take off angle (TOA) when TOA < 40°. The IMFP of C 1s in Zdol was ˜63.5 Ǻ and the lubricant island thickness was ˜35 Ǻ.

  1. Photoion mass spectroscopy and valence photoionization of hypoxanthine, xanthine and caffeine

    NASA Astrophysics Data System (ADS)

    Feyer, Vitaliy; Plekan, Oksana; Richter, Robert; Coreno, Marcello; Prince, Kevin C.

    2009-03-01

    Photoionization mass spectra of hypoxanthine, xanthine and caffeine were measured using the photoelectron-photoion coincidence technique and noble gas resonance radiation at energies from 8.4 to 21.2 eV for ionization. The fragmentation patterns for these compounds show that hydrogen cyanide is the main neutral loss species at higher photon energies, while photoionization below 16.67 eV led predominantly to the parent ion. The valence photoelectron spectra of this family of molecules were measured over an extended energy range, including the inner C, N and O 2s valence orbitals. The observed ion fragments were related to ionization of the valence orbitals.

  2. Breakdown of ionic character of molecular alkali bromides in inner-valence photoionization

    SciTech Connect

    Karpenko, A. Iablonskyi, D.; Kettunen, J. A.; Cao, W.; Huttula, M.; Aksela, H.; Urpelainen, S.

    2014-05-28

    The inner-valence region of alkali bromide XBr (X=Li, Na, K, Rb) vapours has been studied experimentally by means of synchrotron radiation excited photoelectron spectroscopy. Experimental spectra were analyzed by comparing them with available theoretical results and previous experiments. Ionic character of alkali bromides is seen to change in the inner-valence region with increasing atomic number of the alkali atom. A mechanism involving mixing between Br 4s and Rb 4p orbitals has been suggested to account for the fine structure observed in inner-valence ionization region of RbBr.

  3. Photoelectron angular distributions for states of any mixed character: an experiment-friendly model for atomic, molecular, and cluster anions.

    PubMed

    Khuseynov, Dmitry; Blackstone, Christopher C; Culberson, Lori M; Sanov, Andrei

    2014-09-28

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO(-) photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.

  4. Photoelectron angular distributions for states of any mixed character: An experiment-friendly model for atomic, molecular, and cluster anions

    SciTech Connect

    Khuseynov, Dmitry; Blackstone, Christopher C.; Culberson, Lori M.; Sanov, Andrei

    2014-09-28

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO{sup −} photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.

  5. Exploring the aqueous vertical ionization of organic molecules by molecular simulation and liquid microjet photoelectron spectroscopy.

    PubMed

    Tentscher, Peter R; Seidel, Robert; Winter, Bernd; Guerard, Jennifer J; Arey, J Samuel

    2015-01-01

    To study the influence of aqueous solvent on the electronic energy levels of dissolved organic molecules, we conducted liquid microjet photoelectron spectroscopy (PES) measurements of the aqueous vertical ionization energies (VIEaq) of aniline (7.49 eV), veratrole alcohol (7.68 eV), and imidazole (8.51 eV). We also reanalyzed previously reported experimental PES data for phenol, phenolate, thymidine, and protonated imidazolium cation. We then simulated PE spectra by means of QM/MM molecular dynamics and EOM-IP-CCSD calculations with effective fragment potentials, used to describe the aqueous vertical ionization energies for six molecules, including aniline, phenol, veratrole alcohol, imidazole, methoxybenzene, and dimethylsulfide. Experimental and computational data enable us to decompose the VIEaq into elementary processes. For neutral compounds, the shift in VIE upon solvation, ΔVIEaq, was found to range from ≈-0.5 to -0.91 eV. The ΔVIEaq was further explained in terms of the influence of deforming the gas phase solute into its solution phase conformation, the influence of solute hydrogen-bond donor and acceptor interactions with proximate solvent molecules, and the polarization of about 3000 outerlying solvent molecules. Among the neutral compounds, variability in ΔVIEaq appeared largely controlled by differences in solute-solvent hydrogen-bonding interactions. Detailed computational analysis of the flexible molecule veratrole alcohol reveals that the VIE is strongly dependent on molecular conformation in both gas and aqueous phases. Finally, aqueous reorganization energies of the oxidation half-cell ionization reaction were determined from experimental data or estimated from simulation for the six compounds aniline, phenol, phenolate, veratrole alcohol, dimethylsulfide, and methoxybenzene, revealing a surprising constancy of 2.06 to 2.35 eV. PMID:25516011

  6. Photoionization of atoms and molecules. [of hydrogen, helium, and xenon

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1976-01-01

    A literature review on the present state of knowledge in photoionization is presented. Various experimental techniques that have been developed to study photoionization, such as fluorescence and photoelectron spectroscopy, mass spectroscopy, are examined. Various atoms and molecules were chosen to illustrate these techniques, specifically helium and xenon atoms and hydrogen molecules. Specialized photoionization such as in positive and negative ions, excited states, and free radicals is also treated. Absorption cross sections and ionization potentials are also discussed.

  7. Imaging molecular structure through femtosecond photoelectron diffraction on aligned and oriented gas-phase molecules.

    PubMed

    Boll, Rebecca; Rouzée, Arnaud; Adolph, Marcus; Anielski, Denis; Aquila, Andrew; Bari, Sadia; Bomme, Cédric; Bostedt, Christoph; Bozek, John D; Chapman, Henry N; Christensen, Lauge; Coffee, Ryan; Coppola, Niccola; De, Sankar; Decleva, Piero; Epp, Sascha W; Erk, Benjamin; Filsinger, Frank; Foucar, Lutz; Gorkhover, Tais; Gumprecht, Lars; Hömke, André; Holmegaard, Lotte; Johnsson, Per; Kienitz, Jens S; Kierspel, Thomas; Krasniqi, Faton; Kühnel, Kai-Uwe; Maurer, Jochen; Messerschmidt, Marc; Moshammer, Robert; Müller, Nele L M; Rudek, Benedikt; Savelyev, Evgeny; Schlichting, Ilme; Schmidt, Carlo; Scholz, Frank; Schorb, Sebastian; Schulz, Joachim; Seltmann, Jörn; Stener, Mauro; Stern, Stephan; Techert, Simone; Thøgersen, Jan; Trippel, Sebastian; Viefhaus, Jens; Vrakking, Marc; Stapelfeldt, Henrik; Küpper, Jochen; Ullrich, Joachim; Rudenko, Artem; Rolles, Daniel

    2014-01-01

    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray free-electron laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C(8)H(5)F) and dissociating, laser-aligned 1,4-dibromobenzene (C(6)H(4)Br(2)) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.

  8. Fourier transform photoelectron diffraction and its application to molecular orbitals and surface structure

    SciTech Connect

    Zhou, Xin

    1998-11-30

    Photoemission intensities from the molecular orbitals of c(2x2)CO/Pt(111) over a wide photon energy range were measured and analyzed by the same methods developed for structural studies using core levels. The 4{sigma} orbital center of gravity is found to be concentrated between the C and O atoms, while that of the 5{sigma} orbital lies between the C atom and the Pt surface. The C 1s photoelectron diffraction was used to determine the adsorption geometry. The earlier ambiguity that multiple scattering is needed to correctly model a {chi} curve while single scattering is sufficient for understanding major peaks in the ARPEFS-FTS is clarified by studying the clean Ni(111) surface. In the normal emission case, several different combinations of scattering events have similar path length differences (PLDs), and can either cancel each other or enhance the corresponding FT peak. In the off-normal case the degeneracy is greatly reduced due to the lower degree of symmetry. In normal emission AR PEFS, up to third order multiple scattering is needed to describe fully both the {chi} curve and its FT spectrum. To improve the spectral resolution in the ARPEFS-FT analysis, several new spectral analysis methods are introduced. With both autocorrelation autoregression (ACAR) and autocorrelation eigenvector (ACE), we can produce a reliable power spectrum by following the order-closing procedure. The best spectra are usually obtained when the autocorrelation sequence is computed with lags up to half the data range. A simple way of determining surface adsorption sites is proposed as follows: First use a single scattering cluster for possible adsorption sites to construct the geometrical PLDs from the strong backscattering events; then compare these PLDs with those obtained from the ARPEFS-FT analysis of the experimental data. After the preferred adsorption site is determined, fine tune the interlayer distances according to the positional R-factor.

  9. Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations

    NASA Astrophysics Data System (ADS)

    Germann, Matthias; Willitsch, Stefan

    2016-07-01

    Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structure that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.

  10. Gadolinium photoionization process

    DOEpatents

    Paisner, J.A.; Comaskey, B.J.; Haynam, C.A.; Eggert, J.H.

    1993-04-13

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  11. Gadolinium photoionization process

    DOEpatents

    Paisner, Jeffrey A.; Comaskey, Brian J.; Haynam, Christopher A.; Eggert, Jon H.

    1993-01-01

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  12. Correlation between photoeletron and photoion in ultrafast multichannel photoionization of Ar

    SciTech Connect

    Itakura, R.; Fushitani, M.; Hishikawa, A.; Sako, T.

    2015-12-31

    We theoretically investigate coherent dynamics of ions created through ultrafast multichannel photoionization from a viewpoint of photoelectron-photoion correlation. The model calculation on single-photon ionization of Ar reveals that the coherent hole dynamics in Ar{sup +} associated with a superposition of the spin-orbit states {sup 2}PJ (J = 3/2 and 1/2) can be identified by monitoring only the photoion created by a Fourier-transform limited extreme ultraviolet (EUV) pulse with the fs pulse duration, while the coherence is lost by a chirped EUV pulse. It is demonstrated that by coincidence detection of the photoelectron and photoion the coherent hole dynamics can be extracted even in the case of ionization by a chirped EUV pulse with the sufficiently wide bandwidth.

  13. Revealing Deactivation Pathways Hidden in Time-Resolved Photoelectron Spectra

    PubMed Central

    Ruckenbauer, Matthias; Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2016-01-01

    Time-resolved photoelectron spectroscopy is commonly employed with the intention to monitor electronic excited-state dynamics occurring in a neutral molecule. With the help of theory, we show that when excited-state processes occur on similar time scales the different relaxation pathways are completely obscured in the total photoionization signal recorded in the experiment. Using non-adiabatic molecular dynamics and Dyson norms, we calculate the photoionization signal of cytosine and disentangle the transient contributions originating from the different deactivation pathways of its tautomers. In the simulations, the total signal from the relevant keto and enol tautomers can be decomposed into contributions either from the neutral electronic state populations or from the distinct mechanistic pathways across the multiple potential surfaces. The lifetimes corresponding to these contributions cannot be extracted from the experiment, thereby illustrating that new experimental setups are necessary to unravel the intricate non-adiabatic pathways occurring in polyatomic molecules after irradiation by light. PMID:27762396

  14. ATOMIC AND MOLECULAR PHYSICS: Interference effects on the photoionization cross sections between two neighbouring atoms: nitrogen as an example

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Hua; Yuan, Jian-Min

    2009-12-01

    Interference effects on the photoionization cross sections between two neighbouring atoms are considered based on the coherent scattering of the ionized electrons by the two nuclei when their separation is less than or comparable to the de Broglie wave length of the ionized electrons. As an example, the single atomic nitrogen ionization cross section and the total cross sections of two nitrogen atoms with coherently added photoionization amplitudes are calculated from the threshold to about 60 Å (1 Å = 0.1 nm) of the photon energy. The photoionization cross sections of atomic nitrogen are obtained by using the close-coupling R-matrix method. In the calculation 19 states are included. The ionization energy of the atomic nitrogen and the photoionization cross sections agree well with the experimental results. Based on the R-matrix results of atomic nitrogen, the interference effects between two neighbouring nitrogen atoms are obtained. It is shown that the interference effects are considerable when electrons are ionized just above the threshold, even for the separations between the two atoms are larger than two times of the bond length of N2 molecules. Therefore, in hot and dense samples, effects caused by the coherent interference between the neighbours are expected to be observable for the total photoionization cross sections.

  15. Progress toward time-resolved molecular imaging: A theoretical study of optimal parameters in static photoelectron holography

    NASA Astrophysics Data System (ADS)

    Sun, S. X.-L.; Kaduwela, A. P.; Gray, A. X.; Fadley, C. S.

    2014-05-01

    The availability of short-pulse free-electron lasers has led to the idea of using photoelectron holography as a method of directly imaging molecular dissociations or reactions in real time, as, e.g., in a recent theoretical study by Krasniqi et al., [F. Krasniqi, B. Najjari, L. Strüder, D. Rolles, A. Voitkiv, and J. Ullrich, Phys. Rev. A 81, 033411 (2010), 10.1103/PhysRevA.81.033411]. In this paper, we extend this earlier work and in particular look at two critical questions concerning the optimum type of data required for such holographic imaging: the choice of photoelectron kinetic energy (e.g., ˜300 eV versus ˜1700 eV as in the prior study), and the use of a single energy or multiple energies. After verifying that our calculations fully duplicate those in this prior paper, we show that using lower energies is preferable to using higher energies for image quality, a conclusion consistent with prior photoelectron holography studies at surfaces, and that multiple lower energies in which the hologram effectively spans a volume in kspace yields the best quality images that should be useful for such "molecular movies." Although the amount of data required for such multi-energy holography is roughly an order of magnitude higher than that for single energy, the reduction of artifacts and the improved quality of the images suggest this as the optimum ultimate future strategy for such dynamic imaging.

  16. Recent developments in photoelectron dynamics using synchrotron radiation

    SciTech Connect

    Carlson, T.A.; Krause, M.O.; Taylor, J.W.; Keller, P.R.; Piancastelli, M.N.; Grimm, F.A.; Whitley, T.A.

    1982-01-01

    Through a collaborative effort of members of the Oak Ridge National Laboratory and Universities of Wisconsin and Tennessee, a comprehensive study of atoms and molecules using angle-resolved photoelectron spectroscopy and synchrotron radiation is underway at the Synchrotron Radiation Center, Stoughton, Wisconsin. Over 50 molecules and atoms have been investigated. These results, coupled with theory, aim at a better understanding of the dynamics of photoionization and of the wave functions that control these processes. In particular, attention is given to the following topics: metal atomic vapors, generalization of molecular orbital types, autoionization, shape resonances, core shell effects, satellite structure, and the Cooper minimum.

  17. An experimental and theoretical study of toluene pyrolysis with tunable synchrotron VUV photoionization and molecular-beam mass spectrometry

    SciTech Connect

    Zhang, Taichang; Zhang, Lidong; Hong, Xin; Zhang, Kuiwen; Qi, Fei; Law, Chung K.; Ye, Taohong; Zhao, Pinghui; Chen, Yiliang

    2009-11-15

    An experimental study of toluene pyrolysis (1.24 vol.% toluene in argon) was performed at low pressure (1.33 kPa) in the temperature range of 1200-1800 K. The pyrolysis process was detected with the tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry (MBMS). Species up to m/z = 202 (C{sub 16}H{sub 10}), containing many radicals (CH{sub 3}, C{sub 3}H{sub 3}, C{sub 5}H{sub 3}, C{sub 5}H{sub 5}, C{sub 7}H{sub 5}, C{sub 7}H{sub 7}, C{sub 9}H{sub 7}, C{sub 11}H{sub 7} and C{sub 13}H{sub 9}) and isomers, such as C{sub 3}H{sub 4} (propyne and allene), C{sub 4}H{sub 4} (vinylacetylene and 1,2,3-butatriene), C{sub 5}H{sub 5} (cyclopentadienyl radical and pent-1-en-4-yn-3-yl radical), C{sub 6}H{sub 4} (3-hexene-1,5-diyne and benzyne), C{sub 6}H{sub 6} (benzene and fulvene), C{sub 7}H{sub 8} (toluene and 5-methylene-1,3-cyclohexadiene) and so on, were identified from near-threshold measurements of photoionization mass spectra, and the mole fraction profiles of the pyrolysis products were evaluated from measurements of temperature scan. Experimental results indicate that the reaction C{sub 7}H{sub 8} {yields} C{sub 7}H{sub 7} and the subsequent reactions are dominant at comparatively low temperature (<1440 K), while the reaction C{sub 7}H{sub 8} {yields} C{sub 6}H{sub 5} and subsequent reactions gradually become competitive and important with increasing temperature. Furthermore the barriers of the decomposition pathways of toluene and benzyl radical determined by quantum mechanical calculation are in good agreement with the initial formation temperatures of the species. Based on the mole fractions and formation temperatures of the detected pyrolysis species, a simple reaction network is deduced. At relatively high temperatures, H-abstraction is prevalent and the mole fraction of C{sub 2}H{sub 2} is so high that many aromatics are formed through the hydrogen-abstraction/C{sub 2}H{sub 2}-addition (HACA) mechanism. Moreover the

  18. Ultraviolet photoionization in CO2 TEA lasers

    NASA Astrophysics Data System (ADS)

    Scott, S. J.; Smith, A. L. S.

    1988-07-01

    The effects of gas composition and spark parameters on the UV emission in CO2 TEA laser gas mixtures were investigated together with the nature of photoionization process and the photoelectron-loss mechanism. A linear relationship was found between N2 concentration and photoionization (with no such dependence on C concentration, from CO and CO2), but the increases in photoionization that could be effected by optimizing the spark discharge circuit parameters were much higher than those produced by changes in gas composition. UV emission was directly proportional to the amount of stored electrical energy in the spark-discharge circuit and to the cube of the peak current produced in the spark by the discharge of this energy. Photoionization was also found to be proportional to the spark electrode gap. It was found that free-space sparks gave a considerably broader emission pattern than a surface-guided notched spark.

  19. Probing and extracting the structure of vibrating SF6 molecules with inner-shell photoelectrons

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc-Ty; Lucchese, R. R.; Lin, C. D.; Le, Anh-Thu

    2016-06-01

    We propose a scheme for probing the structure of vibrating molecules with photoelectrons generated from ultrashort soft-x-ray pulses. As an example we analyze below-100-eV photoelectrons liberated from the S (2 p ) orbital of vibrating SF6 molecules to image very small structural changes of molecular vibration. In particular, photoionization cross sections and photoelectron angular distributions (PAD) at nonequilibrium geometries can be retrieved accurately with photoelectrons near the shape resonance at 13 eV. This is achieved with a pump-probe scheme, in which the symmetric stretch mode is first Raman excited predominantly by a relatively short laser pulse and then later probed at different time delays by a few-femtosecond soft-x-ray pulse with photon energy near 200 eV.

  20. Merging quantum-chemistry with B-splines to describe molecular photoionization

    NASA Astrophysics Data System (ADS)

    Argenti, L.; Marante, C.; Klinker, M.; Corral, I.; Gonzalez, J.; Martin, F.

    2016-05-01

    Theoretical description of observables in attosecond pump-probe experiments requires a good representation of the system's ionization continuum. For polyelectronic atoms and molecules, however, this is still a challenge, due to the complicated short-range structure of correlated electronic wavefunctions. Whereas quantum chemistry packages (QCP) implementing sophisticated methods to compute bound electronic molecular states are well established, comparable tools for the continuum are not widely available yet. To tackle this problem, we have developed a new approach that, by means of a hybrid Gaussian-B-spline basis, interfaces existing QCPs with close-coupling scattering methods. To illustrate the viability of this approach, we report results for the multichannel ionization of the helium atom and of the hydrogen molecule that are in excellent agreement with existing accurate benchmarks. These findings, together with the flexibility of QCPs, make of this approach a good candidate for the theoretical study of the ionization of poly-electronic systems. FP7/ERC Grant XCHEM 290853.

  1. Dissociation of strong acid revisited: X-ray photoelectron spectroscopy and molecular dynamics simulations of HNO3 in water

    SciTech Connect

    Lewis, Tanza; Winter, Berndt; Stern, Abraham C.; Baer, Marcel D.; Mundy, Christopher J.; Tobias, Douglas J.; Hemminger, J. C.

    2011-08-04

    Molecular-level insight into the dissociation of nitric acid in water is obtained from photoelectron X-ray spectroscopy and first-principles molecular dynamics (MD) simulations. Our combined studies reveal surprisingly abrupt changes in solvation configurations of undissociated nitric acid at approximately 4 M concentration. Experimentally, this is inferred from N1s binding energy shifts of HNO3(aq) as a function of concentration, and is associated with variations in the local electronic structure of the nitrogen atom. It also shows up as a discontinuity in the degree of dissociation as a function of concentration, determined here from the N1s photoelectron signal intensity, which can be separately quantified for undissociated HNO3(aq) and dissociated NO3-(aq). Intermolecular interactions within the nitric acid solution are discussed on the basis of MD simulations, which reveal that molecular HNO3 interacts remarkably weakly with solvating water molecules at low concentration; around 4 M there is a turnover to a more structured solvation shell, accompanied by an increase in hydrogen bonding between HNO3 and water. We suggest that the driving force behind the more structured solvent configuration of HNO3 is the overlap of nitric acid solvent shells that sets in around 4 M concentration. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  2. Following the molecular motion of near-resonant excited CO on Pt(111): A simulated x-ray photoelectron diffraction study based on molecular dynamics calculations

    PubMed Central

    Greif, Michael; Nagy, Tibor; Soloviov, Maksym; Castiglioni, Luca; Hengsberger, Matthias; Meuwly, Markus; Osterwalder, Jürg

    2015-01-01

    A THz-pump and x-ray-probe experiment is simulated where x-ray photoelectron diffraction (XPD) patterns record the coherent vibrational motion of carbon monoxide molecules adsorbed on a Pt(111) surface. Using molecular dynamics simulations, the excitation of frustrated wagging-type motion of the CO molecules by a few-cycle pulse of 2 THz radiation is calculated. From the atomic coordinates, the time-resolved XPD patterns of the C 1s core level photoelectrons are generated. Due to the direct structural information in these data provided by the forward scattering maximum along the carbon-oxygen direction, the sequence of these patterns represents the equivalent of a molecular movie. PMID:26798798

  3. Dissociative Photoionization of Diethyl Ether.

    PubMed

    Voronova, Krisztina; Mozaffari Easter, Chrissa M; Covert, Kyle J; Bodi, Andras; Hemberger, Patrick; Sztáray, Bálint

    2015-10-29

    The dissociative photoionization of internal energy selected diethyl ether ions was investigated by imaging photoelectron photoion coincidence spectroscopy. In a large, 5 eV energy range Et2O(+) cations decay by two parallel and three sequential dissociative photoionization channels, which can be modeled well using statistical theory. The 0 K appearance energies of the CH3CHOCH2CH3(+) (H-loss, m/z = 73) and CH3CH2O═CH2(+) (methyl-loss, m/z = 59) fragment ions were determined to be 10.419 ± 0.015 and 10.484 ± 0.008 eV, respectively. The reemergence of the hydrogen-loss ion above 11 eV is attributed to transition-state (TS) switching, in which the second, outer TS is rate-determining at high internal energies. At 11.81 ± 0.05 eV, a secondary fragment of the CH3CHOCH2CH3(+) (m/z = 73) ion, protonated acetaldehyde, CH3CH═OH(+) (m/z = 45) appears. On the basis of the known thermochemical onset of this fragment, a reverse barrier of 325 meV was found. Two more sequential dissociation reactions were examined, namely, ethylene and formaldehyde losses from the methyl-loss daughter ion. The 0 K appearance energies of 11.85 ± 0.07 and 12.20 ± 0.08 eV, respectively, indicate no reverse barrier in these processes. The statistical model of the dissociative photoionization can also be used to predict the fractional ion abundances in threshold photoionization at large temperatures, which could be of use in, for example, combustion diagnostics. PMID:26444101

  4. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics

    PubMed Central

    Fushitani, Mizuho; Hishikawa, Akiyoshi

    2016-01-01

    We present applications of extreme ultraviolet (XUV) single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N2 molecules. PMID:27795976

  5. Mass-Selective Laser Photoionization.

    ERIC Educational Resources Information Center

    Smalley, R. E.

    1982-01-01

    Discusses the nature and applications of mass-selective laser photoionization. The ionization can be done with a single intense laser pulse lasting a few billionths of a second with no molecular fragmentation. Applications focus on: (1) benzene clusters, excimers, and exciplexes; (2) metal clusters; and (3) triplet formation and decay. (Author/JN)

  6. Near threshold studies of photoelectron satellites

    SciTech Connect

    Heimann, P.A.

    1986-11-01

    Photoelectron spectroscopy and synchrotron radiation have been used to study correlation effects in the rare gases: He, Ne, Ar, Kr, and Xe. Two kinds of time-of-flight electron analyzers were employed to examine photoionization very close to threshold and at higher kinetic energies. Partial cross sections and angular distributions have been measured for a number of photoelectron satellites. The shake-off probability has been determined at some inner-shell resonances. 121 refs., 28 figs., 13 tabs.

  7. Attosecond Delays in Resonant Photoionization

    NASA Astrophysics Data System (ADS)

    Maquet, Alfred

    2015-05-01

    Attosecond delays in the photoionization of atomic states have been evidenced in recent experiments performed in the 2010's. The delays were associated to the emission of photoelectron wave packets ejected from different atomic states, in the combined presence of attosecond pulses of XUV radiation and of a synchronized IR laser pulse, the latter being used as a reference ``clock''. These experiments were performed at XUV frequencies connecting the ground state to a ``flat'' continuum. Theoretical treatments were able to relate the measured delays to Wigner's definition of time delays in terms of the energy derivative of the phase-shift attached to the continuum wave functions of the photoelectrons. Attention has recently shifted towards the case of resonant photoionization in the course of which the XUV frequency is tuned close to a resonance of the target system. The case of a transition towards an autoionizing states of the target is particularly interesting as it makes evident the role of electronic correlations. Here, we shall present recent advances realized in the theoretical interpretation of this new class of experiments.

  8. Time-dependent photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyang

    1999-09-01

    I show that the angular distribution of electrons photoionized from gas phase targets by short light pulses is time-dependent, when the orbital momentum composition of the photocurrent changes with excitation energy so evolves with the time of detection. A theory of time- dependent photoionization is outlined and general formulas of time-dependent photoelectron flux and angular distribution are given. Two general propagator methods suitable to describe the time-dependent photoionization and scattering processes are developed. The photoionization process is viewed as a local excitation followed by a half scattering. The local excitation process is solved theoretically in a small region around the target core. This approach has been generalized to describe the evolution of a wavepacket in an unbound system. An asymptotic propagator theorem is discovered and used to derive analytic expressions for asymptotic propagators. The origin of the time dependence is explored by parameterizing the time delay and orbital momentum coupling in a two channel model. K-shell photoionization of N2 and CO are calculated with this time- dependent photoionization theory, implemented using a multiple scattering model. Numerical results demonstrate that the time dependence of photoelectron angular distributions is a realistic effect.

  9. Vacuum Ultraviolet Photoionization of Complex Chemical Systems

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-01

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  10. Vacuum Ultraviolet Photoionization of Complex Chemical Systems.

    PubMed

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-27

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed. PMID:26980311

  11. Vacuum Ultraviolet Photoionization of Complex Chemical Systems.

    PubMed

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-27

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  12. Effects of dimerization on the photoelectron angular distribution parameters from chiral camphor enantiomers obtained with circularly polarized vacuum-ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Nahon, Laurent; Garcia, Gustavo A.; Soldi-Lose, Héloïse; Daly, Steven; Powis, Ivan

    2010-09-01

    As an intermediate state of matter between the free monomeric gas phase and the solid state, clusters may exhibit a specific electronic structure and photoionization dynamics that can be unraveled by different types of electron spectroscopies. From mass-selected ion yield scans measured for photoionization of (R)-camphor, the ionization potentials (IPs) of the monomer (8.66±0.01 eV), and of the homochiral dimer (⩽8.37±0.01 eV) and trimer (⩽8.30±0.01 eV) were obtained. These spectra, combined with threshold photoelectron spectroscopy and velocity map ion imaging, allow us to show that the camphor monomer and dimer photoionization channels are decoupled, i.e., that the highest occupied molecular orbital (HOMO) of the dimer does not undergo a dissociative ionization process that would lead to a spurious contribution to the monomer ion channel. Therefore mass selection, as achieved in our imaging photoelectron-photoion coincidence experiments, leads to size selection of the nascent monomer or dimer species. Since both the monomer and dimer are chiral, their photoelectron angular distribution (PAD) not only involves the usual β anisotropy parameter but also a chiral asymmetry parameter b1 that can generate a forward-backward asymmetry in the PAD. This has been investigated using circularly polarized light (CPL) to record the photoelectron circular dichroism (PECD) in the near-threshold vacuum-ultraviolet (VUV) photoionization region. Analysis of size-selected electron images recorded with left- and right-handed CPL shows that over the first 1.5 eV above the HOMO orbital ionization potentials (IPs), the β parameter is not affected by the dimerization process, while the chiral b1 parameter shows clear differences between the monomer and the dimer, confirming that PECD is a subtle long-range probe of the molecular potential.

  13. Shape resonant features in the photoionization spectra of NO

    SciTech Connect

    Wallace, Scott; Dill, Dan; Dehmer, Joseph L.

    1982-01-01

    Calculations of core and valence level photoionization spectra of NO are presented and compared with available experimental data. A low-lying continuum shape resonance is identified in the sigma photoionization channel, which is the analog of similar states found in other first-row diatomic molecules. Both partial cross sections and photoelectron angular distributions are discussed, and the effect of nuclear motion on these observables is treated.

  14. Photoionization from excited states of helium

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The cross sections for photoionization from the 2 1S, 2 3S, 2 1P and 2 3P excited states of helium are calculated for photoelectron energies below the n = 2 threshold of He(+) using Hylleraas bound state wave functions and 1s-2s-2p close coupling final state wave functions. The resonant structures associated with the lowest-lying 1S, 1P, 3P, and 1D autoionizing states of helium are found to be characterized by large values of the line profile parameter q. The cross sections and the photoelectron angular distribution asymmetry parameters for the P-states are calculated for various polarization states of the target atom and the incident photon. Experiments which would lead to the separate determinations of the S- and D- wave partial photoionization cross sections are discussed.

  15. Time-resolved photoelectron spectroscopy: from wavepackets to observables.

    PubMed

    Wu, Guorong; Hockett, Paul; Stolow, Albert

    2011-11-01

    Time-resolved photoelectron spectroscopy (TRPES) is a powerful tool for the study of intramolecular dynamics, particularly excited state non-adiabatic dynamics in polyatomic molecules. Depending on the problem at hand, different levels of TRPES measurements can be performed: time-resolved photoelectron yield; time- and energy-resolved photoelectron yield; time-, energy-, and angle-resolved photoelectron yield. In this pedagogical overview, a conceptual framework for time-resolved photoionization measurements is presented, together with discussion of relevant theory for the different aspects of TRPES. Simple models are used to illustrate the theory, and key concepts are further amplified by experimental examples. These examples are chosen to show the application of TRPES to the investigation of a range of problems in the excited state dynamics of molecules: from the simplest vibrational wavepacket on a single potential energy surface; to disentangling intrinsically coupled electronic and nuclear motions; to identifying the electronic character of the intermediate states involved in non-adiabatic dynamics by angle-resolved measurements in the molecular frame, the most complete measurement.

  16. Surface behavior of hydrated guanidinium and ammonium ions: a comparative study by photoelectron spectroscopy and molecular dynamics.

    PubMed

    Werner, Josephina; Wernersson, Erik; Ekholm, Victor; Ottosson, Niklas; Ohrwall, Gunnar; Heyda, Jan; Persson, Ingmar; Söderström, Johan; Jungwirth, Pavel; Björneholm, Olle

    2014-06-26

    Through the combination of surface sensitive photoelectron spectroscopy and molecular dynamics simulation, the relative surface propensities of guanidinium and ammonium ions in aqueous solution are characterized. The fact that the N 1s binding energies differ between these two species was exploited to monitor their relative surface concentration through their respective photoemission intensities. Aqueous solutions of ammonium and guanidinium chloride, and mixtures of these salts, have been studied in a wide concentration range, and it is found that the guanidinium ion has a greater propensity to reside at the aqueous surface than the ammonium ion. A large portion of the relative excess of guanidinium ions in the surface region of the mixed solutions can be explained by replacement of ammonium ions by guanidinium ions in the surface region in combination with a strong salting-out effect of guanidinium by ammonium ions at increased concentrations. This interpretation is supported by molecular dynamics simulations, which reproduce the experimental trends very well. The simulations suggest that the relatively higher surface propensity of guanidinium compared with ammonium ions is due to the ease of dehydration of the faces of the almost planar guanidinium ion, which allows it to approach the water-vapor interface oriented parallel to it.

  17. Alignment dependence of photoelectron momentum distributions of atomic and molecular targets probed by few-cycle circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Abu-samha, M.; Madsen, Lars Bojer

    2016-08-01

    We present theoretical photoelectron momentum distributions (PMDs) for ionization from Ar(3 p ) and H2+ (σg) orbitals by few-cycle, high-intensity, near-infrared laser fields circularly polarized in the x y plane. The three-dimensional time-dependent Schrödinger equation is solved numerically within the single-active-electron approximation for Ar and within the fixed nuclei approximation for H2+ . The PMDs are investigated for alignment of the probed target orbitals relative to the polarization plane of the laser field. In the atomic case, the PMDs in the polarization plane for aligned 3 p Ar orbitals are, up to an overall scaling factor, insensitive to alignment of the probed orbital, while the lateral PMDs show a signature of the orbital node when that node is sufficiently close to the polarization plane. For the molecular case of H2+ (σg), our results show a significant impact of alignment on the PMDs due to the anisotropic molecular potential and the alignment-dependent coupling between the ground state and excited states.

  18. Density-matrix formalism for the photoion-electron entanglement in atomic photoionization

    SciTech Connect

    Radtke, T.; Fritzsche, S.; Surzhykov, A.

    2006-09-15

    The density-matrix theory, based on Dirac's relativistic equation, is applied for studying the entanglement between the photoelectron and residual ion in the course of the photoionization of atoms and ions. In particular, emphasis is placed on deriving the final-state density matrix of the overall system 'photoion+electron', including interelectronic effects and the higher multipoles of the radiation field. This final-state density matrix enables one immediately to analyze the change of entanglement as a function of the energy, angle and the polarization of the incoming light. Detailed computations have been carried out for the 5s photoionization of neutral strontium, leading to a photoion in a 5s {sup 2}S J{sub f}=1/2 level. It is found that the photoion-electron entanglement decreases significantly near the ionization threshold and that, in general, it depends on both the photon energy and angle. The possibility to extract photoion-electron pairs with a well-defined degree of entanglement may have far-reaching consequences for quantum information and elsewhere.

  19. Photoinduced Reconfiguration Cycle in a Molecular Adsorbate Layer Studied by Femtosecond Inner-Shell Photoelectron Spectroscopy

    SciTech Connect

    Dachraoui, H.; Michelswirth, M.; Bartz, P.; Pfeiffer, W.; Heinzmann, U.; Siffalovic, P.; Schaefer, C.; Schnatwinkel, B.; Mattay, J.; Drescher, M.

    2011-03-11

    A time-resolved study of core-level chemical shifts in a monolayer of aromatic molecules reveals complex photoinduced reaction dynamics. The combination of electron spectroscopy for chemical analysis and ultrashort pulse excitation in the extreme ultraviolet allows performing time-correlated 4d-core-level spectroscopy of iodine atoms that probe the local chemical environment in the adsorbate molecule. The selectivity of the method unveils metastable molecular configurations that appear about 50 ps after the excitation and are efficiently quenched back to the ground state.

  20. Photoionization Dynamics and Ion State Distributions in Single-Photon and Resonance-Enhanced Multiphoton Ionization of Molecules.

    NASA Astrophysics Data System (ADS)

    Braunstein, Matthew

    This thesis presents results of theoretical studies of single-photon ionization and resonance enhanced multiphoton ionization (REMPI) of several small molecules. The first part of the thesis examines shape resonances in the photoionization of O_2. Studies reported here include investigations of branching ratios of electronic multiplet states in the 3sigma _{g} and 1pi_ {u} photoionization of O_2 and a comparison of photoionization of the singlet states, a ^1Delta_{g} and d ^1prod_{g } (3ssigma_{g} 1pi_{g}), with that of the ground state of O_2. These studies show that the electronic exchange interaction between the ion core and the photoelectron in shape resonant energy regions profoundly affects the electronic state distributions of the molecular ion. We also report vibrational branching ratios in the single-photon ionization of O_2 , and in REMPI of O_2 via the G^3prod_{g} Rydberg state. In these studies, we find that a shape resonance causes a dependence of the electronic transition moment on the molecular geometry leading to non-Franck -Condon ion vibrational distributions and a dependence of the rotational branch intensity on the ion vibrational state. The second part of this thesis examines shape resonances in other molecules, focusing on the more general aspects of the photoionization dynamics. Here we present studies of the vibrational state distributions in the 7 sigma photoionization of the polyatomic N_2O, where a shape resonance causes non-Franck-Condon vibrational state distributions, the degree of which depends on the nuclear displacements involved and whether the shape resonance is localized on a particular bond. We also study the photoionization dynamics of the valence shell of Cl_2, where a shape resonance is also seen. Finally, we present studies of the K-shell ionization of CO. Studies in this energy region have assumed a new importance with the development of tunable X-ray synchrotron sources. Here, electronic relaxation in the production of a K

  1. Application of a VMI spectrometer to near-threshold photoionization with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    O'Keeffe, P.; Bolognesi, P.; Mihelic, A.; Richter, R.; Moise, A.; Ovcharenko, E.; King, G. C.; Avaldi, L.

    2011-04-01

    A new developed velocity map imaging spectrometer has been used to study the photoionization of atoms near threshold. The application of the spectrometer to the measurement of the angular distributions of the photoelectrons emitted in the photoionization of the Ne 2p3/2 state between the 2p spin orbit thresholds and of polarised Ne atoms are presented.

  2. Photoionization of highly charged ions from ultra-intense, ultraviolet and near-infrared radiation fields

    NASA Astrophysics Data System (ADS)

    Ekanayake, Nagitha

    High intensity laser light was instrumental for notable advances across an exceptional range of disciplines including plasma physics, quantum control, attosecond science, molecular dynamics, inertial confinement fusion, and optical science. Current laser technology has brought about the next generation of ultra-high intensities (1019 W/cm2). Our common understanding of light-matter interactions breaks down at these extreme intensities, especially when the liberated photoelectron becomes relativistic and the effect of the laser magnetic field is no longer negligible. As the ultrastrong laser science frontier involves unprecedented energy scales from 1 keV to 1 MeV and opens up an abundance of new high energy atomic and molecular processes, photoionization dynamics of atoms and molecules in super- and ultra-high intensity fields become an area of interest. The work presented in this dissertation is carried out to provide a better answer to the fundamental question "How atoms and molecules interact with super- and ultra-intense light fields?" In particular, the presented work will cover quantitative measurements of ionization products, ions and photoelectrons, from strong- (1013 -- 1016 W/cm2) to ultra-strong (10 16 -- 1019 W/cm2) field ionization of noble gas atoms (Ne, Kr, and Xe) and hydrocarbon molecules (CH4). In order to understand the molecular ionization processes at extreme intensities the ellipticity dependence of the ultrafast photoionization for Cn+ fragments from methane is investigated. The study extends from the strong field (C+, C2+) at 10 14 W/cm2 to the ultrastrong field (C5+) at 1018 W/cm2. The first precision measurements of ionization of Ne and Kr at 400 nm are presented from 1013 to 1017 W/cm2 for charge states up to Kr 8+. The findings indicate that ultraviolet to vacuum ultraviolet wavelengths can give the largest recollision for higher charge states. Experimental photoelectron measurements from single atom photoionization of noble gases

  3. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    SciTech Connect

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections.

  4. Photoelectron Holography

    NASA Astrophysics Data System (ADS)

    Huismans, Ymkje

    2011-05-01

    New techniques using High Harmonic Generation (HHG) or attosecond pulses have proven to be successful in following the ultrafast motion of electrons and holes inside a molecule,. We introduce a complementary technique; photoelectron holography. This uses the phase and amplitude of the rescattered electrons to encode the structure and dynamics of the studied atom or molecule. Since photoelectron holography benefits from longer wavelengths, i.e. small photon energies, it is very suitable for systems with a small ionization potential. To demonstrate photoelectron holography, both measurements and calculations on atomic Xenon will be shown. Metastable Xenon was ionized with 7 μm light from the FELICE-free electron laser. The three dimensional momentum distribution of the photoelectrons was recorded by a Velocity Map Imaging (VMI)-spectrometer. In these momentum maps interference structures are observed that can be identified as an interference of direct and scattered electrons; a hologram of Xenon. Semi-classical calculations have demonstrated that in the hologram dynamical information of the electron and the atom is stored with a femtosecond to attosecond time resolution. Supervisor: Prof. Dr. M.J.J. Vrakking

  5. High efficiency photoionization detector

    DOEpatents

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  6. High efficiency photoionization detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  7. Hyphenation of a carbon analyzer to photo-ionization mass spectrometry to unravel the organic composition of particulate matter on a molecular level.

    PubMed

    Grabowsky, Jana; Streibel, Thorsten; Sklorz, Martin; Chow, Judith C; Watson, John G; Mamakos, Athanasios; Zimmermann, Ralf

    2011-12-01

    The carbonaceous fraction of airborne particulate matter (PM) is of increasing interest due to the adverse health effects they are linked to. Its analytical ascertainment on a molecular level is still challenging. Hence, analysis of carbonaceous fractions is often carried out by determining bulk parameters such as the overall content of organic compounds (OC) and elemental carbon (EC) as well as the total carbon content, TC (sum of OC and EC), however, no information about the individual substances or substance classes, of which the single fractions consist can be obtained. In this work, a carbon analyzer and a photo-ionization time-of-flight mass spectrometer (PI-TOF-MS) were hyphenated to investigate individual compounds especially from the OC fractions. The carbon analyzer enables the stepwise heating of particle samples and provides the bulk parameters. With the PI-TOF-MS, it is possible to detect the organic compounds released during the single-temperature steps due to soft ionization and fast detection of the molecular ions. The hyphenation was designed, built up, characterized by standard substances, and applied to several kinds of samples, such as ambient aerosol, gasoline, and diesel emission as well as wood combustion emission samples. The ambient filter sample showed a strong impact of wood combustion markers. This was revealed by comparison to the product pattern of the similar analysis of pure cellulose and lignin and the wood combustion PM. At higher temperatures (450 °C), a shift to smaller molecules occurred due to the thermal decomposition of larger structures of oligomeric or polymeric nature comparable to lignocelluloses and similar oxygenated humic-like substances. Finally, particulate matter from gasoline and diesel containing 10% biodiesel vehicle exhaust has been analyzed. Gasoline-derived PM exhibited large polycyclic aromatic hydrocarbons, whereas diesel PM showed a much higher total organic content. The detected pattern revealed a strong

  8. Spin effects in double photoionization of lithium

    SciTech Connect

    Kheifets, A. S.; Fursa, D. V.; Hines, C. W.; Bray, I.; Colgan, J.; Pindzola, M. S.

    2010-02-15

    We apply the nonperturbative convergent close-coupling (CCC) and time-dependent close coupling (TDCC) formalisms to calculate fully differential energy and angular resolved cross sections of double photoionization (DPI) of lithium. The equal energy sharing case is considered in which dynamics of the DPI process can be adequately described by two symmetrized singlet and triplet amplitudes. The angular width of these amplitudes serves as a measure of the strength of the angular correlation between the two ejected electrons. This width is interpreted in terms of the spin of the photoelectron pair.

  9. Two-electron photoionization of ground-state lithium

    SciTech Connect

    Kheifets, A. S.; Fursa, D. V.; Bray, I.

    2009-12-15

    We apply the convergent close-coupling (CCC) formalism to single-photon two-electron ionization of the lithium atom in its ground state. We treat this reaction as single-electron photon absorption followed by inelastic scattering of the photoelectron on a heliumlike Li{sup +} ion. The latter scattering process can be described accurately within the CCC formalism. We obtain integrated cross sections of single photoionization leading to the ground and various excited states of the Li{sup +} ion as well as double photoionization extending continuously from the threshold to the asymptotic limit of infinite photon energy. Comparison with available experimental and theoretical data validates the CCC model.

  10. Photoionization and Recombination

    NASA Technical Reports Server (NTRS)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  11. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    PubMed

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  12. Quantum control of molecular tunneling ionization in the spatiotemporal domain

    SciTech Connect

    Ohmura, Hideki; Saito, Naoaki; Morishita, Toru

    2011-06-15

    We report on a method that can control molecular photoionization in both space and time domains. The directionally asymmetric molecular tunneling ionization induced by intense (5.0 x 10{sup 13} W/cm{sup 2}) phase-controlled two-color laser pulses consisting of fundamental and second-harmonic light achieves the selective ionization of asymmetric molecules in the space domain, and manipulates the birth time and direction of photoelectron emission on an attosecond time scale. This method provides a powerful tool for tracking the quantum dynamics of photoelectrons by using phase-dependent oriented molecules as a phase reference in simultaneous ion-electron detection.

  13. Double Photoionization Near Threshold

    NASA Technical Reports Server (NTRS)

    Wehlitz, Ralf

    2007-01-01

    The threshold region of the double-photoionization cross section is of particular interest because both ejected electrons move slowly in the Coulomb field of the residual ion. Near threshold both electrons have time to interact with each other and with the residual ion. Also, different theoretical models compete to describe the double-photoionization cross section in the threshold region. We have investigated that cross section for lithium and beryllium and have analyzed our data with respect to the latest results in the Coulomb-dipole theory. We find that our data support the idea of a Coulomb-dipole interaction.

  14. ATOMIC AND MOLECULAR PHYSICS: Theoretical Investigation of Femtosecond-Resolved Photoelectron Spectra of the Li2 Molecule

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Fang; Liu, Rui-Qiong; Ding, Jun-Xia

    2009-07-01

    The time-dependent quantum wave packet method is used to investigate the dynamics for the Li2 molecule, and the time-resolved photoelectron spectra (TRPES) of the Li2 molecule are calculated. At the short delay time, the particular phenomenon of TRPES with four peaks is qualitatively interpreted in a dressed state picture by analyzing wave packet motion on light-induced potential (LIP). The significant difference in the electronic structure of between the inner and outer turning points has an impact on the TRPES. The control for the first excited state of the initial wave packet is discussed.

  15. Quantum optimal control of photoelectron spectra and angular distributions

    NASA Astrophysics Data System (ADS)

    Goetz, R. Esteban; Karamatskou, Antonia; Santra, Robin; Koch, Christiane P.

    2016-01-01

    Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on, e.g., charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.

  16. Interior and Interfacial Aqueous Solvation of Benzene Dicarboxylate Dianions and Their Methylated Analogues: A Combined Molecular Dynamics and Photoelectron Spectroscopy Study

    SciTech Connect

    Minofar, Babak; Vrbka, Lubos; Mucha, Martin; Jungwirth, Pavel; Yang, Xin; Wang, Xue B.; Fu, Youjun; Wang, Lai S.

    2005-06-16

    Aqueous solvation of benzene dicarboxylate dianions (BCD2-) was studied by means of photoelectron spectroscopy and molecular dynamics simulations. Photoelectron spectra of hydrated ortho-, and para-BCD2- with up to 25 water molecules were obtained. An even-odd effect was observed for the p-BCD2- system as a result of the alternate solvation of the two negative charges. However, the high polarizability of the benzene ring makes the two carboxylate groups interact with each other in p-BCD2-, suppressing the strength of this even-odd effect compared with the linear dicarboxylate dianions linked by an aliphatic chain. No even-odd effect was observed for the o-BCD2- system, because each solvent molecule can interact with the two carboxylate groups at the same time due to their proximity. For large solvated clusters, the spectral features of the solute decreased while the solvent features became dominant, suggesting that both o- and p-BCD2- are situated in the center of the solvated clusters. Molecular dynamics simulations with both non-polarizable and polarizable force fields confirmed that all three isomers (o-, m-, and p-BCD2-) solvate in the aqueous bulk. However, upon methylation the hydrophobic forces overwhelm electrostatic interactions and, as a result, the calculations predict that the tetra-methyl o-BCD2- is located at the water surface with the carboxylate groups anchored in the liquid and the methylated benzene ring tilted away from the aqueous phase.

  17. The role of multichannel effects in the photoionization of the NO2 molecule: an ab initio R-matrix study

    NASA Astrophysics Data System (ADS)

    Brambila, Danilo S.; Harvey, Alex G.; Mašín, Zdeněk; Gorfinkiel, Jimena D.; Smirnova, Olga

    2015-12-01

    We present the first ab initio photoionization calculations for the NO2 molecule in its equilibrium geometry using the multichannel R-matrix method and a multiconfigurational description of the system. We focus on the role of correlation in NO2 photoionization and find that it plays a key role, both at the level of partial cross sections and asymmetry parameters. For the most sophisticated model used here, we achieve excellent agreement with the experimental data of Baltzer et al (2009 Chem. Phys. 237 451-70) for the asymmetry parameters of angle-resolved photo-electron spectra. We also present and analyse the angle-resolved photoionization dipoles for photon energies up to 90 eV and for the two lowest-energy ionization channels. Our results should advance the analysis of experiments in the field of attosecond spectroscopy, especially high harmonic generation, where angle-resolved photorecombination dipoles become crucial for the interpretation of experiments, even for randomly oriented molecular ensembles, due to coherent addition of signals from different orientations.

  18. Molecular photoelectron angular distribution rotations in multi-photon resonant ionization of H{sub 2}{sup +} by circularly polarized ultraviolet laser pulses

    SciTech Connect

    Yuan, Kai-Jun Chelkowski, Szczepan; Bandrauk, André D.

    2015-04-14

    We study effects of pulse durations on molecular photoelectron angular distributions (MPADs) in ultrafast circular polarization ultraviolet resonant ionization processes. Simulations performed on aligned H{sub 2}{sup +} by numerically solving time dependent Schrödinger equations show rotations of MPADs with respect to the molecular symmetry axes. It is found that in multi-photon resonant ionization processes, rotation angles are sensitive to pulse durations, which we attribute to the coherent resonant excitation between the ground state and the intermediate excited electronic state induced by Rabi oscillations. Multi-photon nonresonant and single photon ionization processes are simulated and compared which exhibit a constant rotation angle. An asymmetry parameter is introduced to describe the pulse duration sensitivity by perturbation theory models. Influence of pulse frequency detunings on MPADs is also investigated where oscillations of rotations are absent at long pulse durations due to nonresonance excitation.

  19. Photoionization and ion cyclotron resonance studies of the ion chemistry of ethylene oxide

    NASA Technical Reports Server (NTRS)

    Corderman, R. R.; Williamson, A. D.; Lebreton, P. R.; Buttrill, S. E., Jr.; Beauchamp, J. L.

    1976-01-01

    The formation of the ethylene oxide molecular ion and its subsequent ion-molecule reactions leading to the products C2H5O(+) and C3H5O(+) have been studied using time-resolved photoionization mass spectroscopy, ion cyclotron resonance spectroscopy, and photoelectron spectroscopy. An examination of the effects of internal energy on reactivity shows that the ratio of C3H5O(+) to C2H5O(+) increases by an order of magnitude with a single quantum of vibrational energy. The formation of (C2H4O/+/)-asterisk in a collision-induced isomerization is found which yields a ring-opened structure by C-C bond cleavage. The relaxed ring-opened C2H4O(+) ion reacts with neutral ethylene oxide by CH2(+) transfer to yield an intermediate product ion C3H6O(+) which gives C3H5O(+) by loss of H.

  20. Energetic photoelectrons and the polar rain

    NASA Technical Reports Server (NTRS)

    Decker, Dwight T.; Jasperse, J. R.; Winningham, J. D.

    1990-01-01

    In the daytime midlatitudes, the Low Altitude Plasma Instrument (LAPI) on board the Dynamics Explorer 2 satellite has observed photoelectrons with energies as high as 850 eV. These energetic photoelectrons are an extension of the 'classical' photoelectrons (less than 60 eV) and result from photoionization of neutrals by soft solar X-rays. Since these photoelectrons are produced wherever the solar flux is incident on the earth's atmosphere, they should be present in sunlit polar cap. But in the polar cap, over these same energies, there is a well-known electron population: the polar rain, a low intensity electron flux of magnetospheric origin. Thus, in the sunlit polar cap, an energetic population of electrons should consist of both an ionospheric (photoelectron) and a magnetospheric (polar rain) component. Using numerical solutions of an electron transport equation with appropriate boundary conditions and sunlit polar cap LAPI data, it is shown that the two populations (photoelectron and polar rain) are indeed present and are both needed to explain polar cap observations.

  1. Angular Correlation between Photoelectrons and Auger Electrons from K-Shell Ionization of Neon

    SciTech Connect

    Landers, A. L.; Robicheaux, F.; Bhandary, A.; Jahnke, T.; Schoeffler, M.; Titze, J.; Akoury, D.; Doerner, R.; Osipov, T.; Lee, S. Y.; Adaniya, H.; Hertlein, M.; Weber, Th.; Prior, M. H.; Belkacem, A.; Ranitovic, P.; Bocharova, I.; Cocke, C. L.

    2009-06-05

    We have used cold target recoil ion momentum spectroscopy to study the continuum correlation between the photoelectron of core-photoionized neon and the subsequent Auger electron. We observe a strong angular correlation between the two electrons. Classical trajectory Monte Carlo calculations agree quite well with the photoelectron energy distribution that is shifted due to the potential change associated with Auger decay. However, a striking discrepancy results in the distribution of the relative angle between Auger and photoelectron. The classical model predicts a shift in photoelectron flux away from the Auger emission direction, and the data strikingly reveal that the flux is lost rather than diverted, indicating that the two-step interpretation of photoionization followed by Auger emission is insufficient to fully describe the core-photoionization process.

  2. Indirect double photoionization of water

    NASA Astrophysics Data System (ADS)

    Resccigno, T. N.; Sann, H.; Orel, A. E.; Dörner, R.

    2011-05-01

    The vertical double ionization thresholds of small molecules generally lie above the dissociation limits corresponding to formation of two singly charged fragments. This gives the possibility of populating singly charged molecular ions by photoionization in the Franck-Condon region at energies below the lowest dication state, but above the dissociation limit into two singly charged fragment ions. This process can produce a superexcited neutral fragment that autoionizes at large internuclear separation. We study this process in water, where absorption of a photon produces an inner-shell excited state of H2O+ that fragments to H++OH*. The angular distribution of secondary electrons produced by OH* when it autoionizes produces a characteristic asymmetric pattern that reveals the distance, and therefore the time, at which the decay takes place. LBNL, Berkeley, CA, J. W. Goethe Universität, Frankfurt, Germany. Work performed under auspices of US DOE and supported by OBES, Div. of Chemical Sciences.

  3. X-Ray Photoelectron Spectroscopy Study of GaAs (001) and InP (001) Cleaning Procedures Prior to Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Contour, J. P.; Massies, J.; Saletes, A.

    1985-07-01

    The effect of chemical etching by H2S04/H202/H20 (5/1/1) mixtures and of mechanopolishing by bromine-methanol diluted solution on GaAs (001) and InP (001) substrates for molecular beam epitaxy (MBE) has been studied using X-ray photoelectron spectroscopy (XPS). The final rinse in running deionized water does not produce any passivating oxide layer on the substrate surface. Oxidation observed on GaAs and InP after these cleaning procedures occurs during substrate handling in air. The H2S04/H202/H20 mixture produces arsenic rich surface layers having an atomic ratio As/Ga of 1.15, whereas the bromine-methanol mechanopolishing leads to an arsenic or phosphorus depleted surface with atomic ratios As/Ga=0.7 and P/In=0.65.

  4. X-ray photoelectron spectroscopic study of the oxide removal mechanism of GaAs /100/ molecular beam epitaxial substrates in in situ heating

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Lewis, B. F.; Grunthaner, F. J.

    1983-01-01

    A standard cleaning procedure for GaAs (100) molecular beam epitaxial (MBE) substrates is a chemical treatment with a solution of H2SO4/H2O2/H2O, followed by in situ heating prior to MBE growth. X-ray photoelectron spectroscopic (XPS) studies of the surface following the chemical treatment show that the oxidized As is primarily As(+ 5). Upon heating to low temperatures (less than (350 C) the As(+ 5) oxidizes the substrate to form Ga2O3 and elemental As, and the As(+ 5) is reduced to As(+ 3) in the process. At higher temperatures (500 C), the As(+ 3) and elemental As desorb, while the Ga(+ 3) begins desorbing at about 600 C.

  5. Vibrational branching ratios in the photoelectron spectra of N2 and CO: interference and diffraction effects.

    PubMed

    Plésiat, Etienne; Decleva, Piero; Martín, Fernando

    2012-08-21

    We present a detailed account of existing theoretical methods specially designed to provide vibrationally resolved photoionization cross sections of simple molecules within the Born-Oppenheimer approximation, with emphasis on newly developed methods based on density functional theory. The performance of these methods is shown for the case of N(2) and CO photoionization. Particular attention is paid to the region of high photon energies, where the electron wavelength is comparable to the bond length and, therefore, two-center interferences and diffraction are expected to occur. As shown in a recent work [Canton et al., Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 7302-7306], the main experimental difficulty, which is to extract the relatively small diffraction features from the rapidly decreasing cross section, can be easily overcome by determining ratios of vibrationally resolved photoelectron spectra and existing theoretical calculations. From these ratios, one can thus get direct information about the molecular geometry. In this work, results obtained in a wide range of photon energies and for many different molecular orbitals of N(2) and CO are discussed and compared with the available experimental measurements. From this comparison, limitations and further possible improvements of the existing theoretical methods are discussed. The new results presented in the manuscript confirm that the conclusions reported in the above reference are of general validity.

  6. Two-electron photoionization of endohedral atoms

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Liverts, E. Z.; Mandelzweig, V. B.

    2006-10-01

    Using He@C60 as an example, we demonstrate that the static potential of the fullerene core essentially alters the cross section of the two-electron ionization differential in one-electron energy dσ++(ω)/dɛ . We found that at high photon energy prominent oscillations appear in it due to reflection of the second slow electron wave on the C60 shell, which “dies out” at relatively high ɛ values, of about 2-3 two-electron ionization potentials. The results were presented for ratios RC60(ω,ɛ)≡dσ++(ω,ɛ)/dσa++(ω,ɛ) , where dσa++(ω,ɛ)/dɛ is the two-electron differential photoionization cross section. We have calculated the ratio Ri,ful=σi++(ω)/σia++(ω) , that accounts for reflection of both photoelectrons by the C60 shell. We have also calculated the value of two-electron photoionization cross section σ++(ω) and found that this value is close to that of an isolated He atom. Results similar to He@C60 are presented for He@C70 and He@C76 .

  7. Two-electron photoionization of endohedral atoms

    NASA Astrophysics Data System (ADS)

    Amusia, Miron; Liverts, Evgeny; Mandelzweig, Victor

    2006-05-01

    Using He@C60 as an example, we demonstrate that static potential of the fullerene core essentially alters the differential in one-electron energy cross section of the two-electron ionization dσ^++(,)/dɛ. We found that at high photon energy prominent oscillations appear in it due to reflection of the second, slow electron wave on the C60 shell, which dies out at relatively high ɛ values, of about 23 two-electron ionization potentials. The results were presented for ratios RC60(φ,ɛ)≡dσ^++(φ,ɛ)/dσ^a++(,), where d&a++circ;(,) /dɛ is the two-electron differential photoionization cross-section. We have calculated also the ratio Ri,ful=σi^++(φ)/σi^a++(φ), that accounts reflection of both photoelectrons by the C60 shell. We have calculated also the value of two-electron photoionization cross section σ^++(φ) and found that this value is close to that of an isolated He atom.

  8. Double Photoionization of He and H2

    NASA Astrophysics Data System (ADS)

    Colgan, J.; Pindzola, M. S.; Robicheaux, F.

    2006-01-01

    Photoionization cross sections for both atomic helium and molecular hydrogen have recently been calculated using a time-dependent close-coupling method. The total electronic wavefunction for the two electron system is expanded in six dimensions, where four dimensions are represented on a radial and angular lattice and a coupled channels expansion is used to represent the other two dimensions. The double photoionization cross sections obtained for both He and H2 for a range of photon energies above the complete fragmentation threshold were compared with absolute experimental measurements. Very good agreement is found with experiment. Our method is also capable of being extended to calculations of single and triple differential cross sections of H2.

  9. Photoionization and electron-ion recombination of Ti I

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2016-07-01

    Study of the inverse processes of photoionization and electron-ion recombination of (Ti I + h ν ⇋ Ti II + e) using the unified method is reported. The method, based on close coupling (CC) approximation and R-matrix method, subsumes both the radiative recombination (RR) and dielectronic recombination (DR) in a unified manner and provides state-specific and total electron-ion recombination rate coefficients which are self-consistent with the state-specific photoionization cross sections. The present results include state-specific electron-ion recombination rates (αRC(i))and partial photoionization cross sections (σPI(i)) leaving the ion in the ground state of 813 bound states with n ≤ 10 and l ≤ 9 of Ti I. Various features of state-specific and total electron-ion recombination with temperature, and the corresponding photoionization cross sections with energies are discussed with illustrations. Due to closely lying excited states near the ground state of the core, photoionization cross sections show presence of narrow Rydberg resonances in low energy region near the ionization threshold. Many excited states also show broad and enhanced Seaton resonances due to PEC (photo-excitation-of-core) which contribute to the high temperature recombination. The total recombination rate coefficient is found to show a low hump around temperature 280 K and a high dielectronic recombination peak at temperature 25,000 K. Total spectrum of recombination cross sections and rates with photoelectron energy are also presented for experimental observation. Calculations were carried out using a CC wave function expansion of 36 states of the core ion Ti II. The large set of data for recombination rates and partial photoionization cross sections with resonances should provide a complete and accurate modelings of plasmas.

  10. Imaging molecules from within: Ultrafast angstroem-scale structure determination of molecules via photoelectron holography using free-electron lasers

    SciTech Connect

    Krasniqi, F.; Rolles, D.; Najjari, B.; Voitkiv, A.; Strueder, L.; Ullrich, J.

    2010-03-15

    A scheme based on (i) upcoming brilliant x-ray free-electron laser (FEL) sources, (ii) innovative energy and angular-dispersive large-area electron imagers, and (iii) the well-known photoelectron holography is elaborated that provides time-dependent three-dimensional structure determination of small to medium-sized molecules with Angstroem spatial and femtosecond time resolution. Inducing molecular dynamics, wave-packet motion, dissociation, passage through conical intersections, or isomerization by a pump pulse this motion is visualized by the x-ray FEL probe pulse launching keV photoelectrons within a few femtoseconds from specific and well-defined sites, deep core levels of individual atoms, inside the molecule. On their way out, the photoelectrons are diffracted generating a hologram on the detector that encodes the molecular structure at the instant of photoionization, thus providing 'femtosecond snapshot images of the molecule from within'. Detailed calculations in various approximations of increasing sophistication are presented and three-dimensional retrieval of the spatial structure of the molecule with Angstroem spatial resolution is demonstrated. Due to the large photoabsorption cross sections the method extends x-ray-diffraction-based time-dependent structure investigations envisioned at FEL's to new classes of samples that are not accessible by any other method. Among them are dilute samples in the gas phase such as aligned, oriented, or conformer-selected molecules, ultracold ensembles and/or molecular or cluster objects containing mainly light atoms that do not scatter x rays efficiently.

  11. Photoionization of FE3+ Ions

    SciTech Connect

    Ovchinnikov, O.; Schlachter, F.

    2003-01-01

    Photoionization of Fe3+ ions was studied for the first time using synchrotron radiation from the Advanced Light Source (ALS) and the merged-beams technique. Fe3+ ions were successfully produced using ferrocene in an electron cyclotron resonance ion source (ECR). The measured yield of Fe4+ photoions as a function of photon energy revealed the presence of resonances that correspond to excitation of autoionizing states. These resonances are superimposed upon the photoion yield produced by direct photoionization, which is a smooth, slowly decreasing function of energy. The spectra for the photoionization of Fe3+ will be analyzed and compared with theory. The data collected will also serve to test models for the propagation of light through ionized matter.

  12. Site-specific fragmentation caused by core-level photoionization: Effect of chemisorption

    NASA Astrophysics Data System (ADS)

    Nagaoka, Shin-ichi; Mase, Kazuhiko; Nakamura, Arinobu; Nagao, Masashi; Yoshinobu, Jun; Tanaka, Shin-ichiro

    2002-08-01

    We used the energy-selected-photoelectron photoion coincidence (ESPEPICO) method to study site-specific fragmentation caused by C:1s photoionization of 1,1,1-trifluoro-2-propanol-d1 [CF3)CD(OHCH3, TFIP-d1] on a Si(100) surface. High-resolution electron energy loss spectroscopy showed that TFIP-d1 is dissociatively chemisorbed like (CF3)(CH3))CDO-Si(100, and different chemical shifts at the three carbon sites were observed by photoelectron spectroscopy. The site-specific fragmentation evident in the ESPEPICO spectra of the sub-monolayer at room temperature indicates that the TFIP-d1 there has an O-Si bond oriented in the trans position with respect to the C-CF3 bond. Here we discuss the fragmentation processes in light of the results obtained with the ESPEPICO method and the Auger-electron photoion coincidence method.

  13. 2008 Photoions, Photoionization & Photodetachment Gordon Research Conference January 27-February 1, 2008

    SciTech Connect

    Klaus Muller-Dethefs Nancy Ryan GRay

    2009-03-31

    This conference brings together scientists interested in a range of basic phenomena linked to the ejection and scattering of electrons from atoms, molecules, clusters, liquids and solids by absorption of light. Photoionization, a highly sensitive probe of both structure and dynamics, can range from perturbative single-photon processes to strong-field highly non-perturbative interactions. It is responsible for the formation and destruction of molecules in astrophysical and plasma environments and successfully used in advanced analytical techniques. Positive ions, which can be produced and studied most effectively using photoionization, are the major components of all plasmas, vital constituents of flames and important intermediates in many chemical reactions. Negative ions are significant as transient species and, when photodetached, the corresponding neutral species often undergoes remarkable, otherwise non-observable, dynamics. The scope of the meeting spans from novel observations in atomic and molecular physics, such as Coulomb Crystals, highly excited states and cold Rydberg plasmas, to novel energy resolved or ultrafast time-resolved experiments, photoionization in strong laser fields, theoretical method development for electron scattering, photoionization and photodetachment and more complex phenomena such as charge transfer and DNA and protein conductivity, important for biological and analytical applications.

  14. Photoionization cross sections and oscillator strengths of neutral cesium

    NASA Astrophysics Data System (ADS)

    Haq, S. U.; Nadeem, Ali; Nawaz, M.

    2012-11-01

    The absolute photoionization cross sections from the 6p 2P1/2 excited state of cesium at threshold and above the threshold region have been measured using the saturation absorption technique. The photoionization cross section at the ionization threshold is determined as 22.6±3.6 Mb, whereas in the region above threshold its value ranges from 22 to 20 Mb for photoelectron energies up to 0.1 eV. A comparison of the photoionization cross sections with earlier reported theoretical and experimental data have been presented and are in good agreement within the uncertainty. In addition, the oscillator strengths of the 6p 2P1/2→n d 2D3/2 (21≤n≤60) Rydberg transitions of cesium have been calibrated using the threshold value of the photoionization cross section. A complete picture of the oscillator strengths from the present work and previously reported data from n=5-60 is presented.

  15. Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions

    NASA Technical Reports Server (NTRS)

    Dill, D.; Starace, A. F.; Manson, S. T.

    1975-01-01

    A summary of the angular momentum transfer formulation of the differential photoionization cross section is presented and photoionization amplitudes in LS coupling are considered. The application of the theoretical concepts and relations developed is illustrated with the aid of an example involving the calculation of the angular distribution of photoelectrons ionized from atomic sulfur according to a certain reaction. The investigation shows that anisotropic electron-ion interactions in atomic sulfur lead to measurable differences between photoelectron angular distribution asymmetry parameters corresponding to alternative ionic term levels.

  16. Coherent control of photoionization of atomic barium

    NASA Astrophysics Data System (ADS)

    Yamazaki, Rekishu

    We present the results of our study on coherent control of photoionization of atomic barium. Our study focused on the understanding of the controllability, especially due to the effect of the coherent interaction between the atomic system and the laser field. The first half of the study investigates the mechanisms of the control behind the previously observed laser phase-insensitive product state control. The controllability of this excitation scheme, two-color two-photon resonantly enhanced excitation, was analyzed from two aspects, the role of ac Stark shift introduced by the strong laser field and the multi-pathway quantum mechanical interferences. We have analyzed the excitation scheme from the analysis of the photoelectron angular distribution measured using the excitation scheme and the monitoring of the intermediate state population. Analysis of the data as well as the numerical simulation showed clear understanding of the role of two mechanisms in the product state control reported. We also investigated the control of the phase lag during the product state control. We conducted the control of the phase lag in the study of asymmetric photoelectron angular distribution, which arises from the concurrent even-odd parity outgoing electron wave excitation. The phase lag was controlled in full range, 2pi, and the results were analyzed in terms of the role of autoionizing resonance structures as well as the nature of outgoing electron waves at different locations of the autoionizing resonances.

  17. X-ray photoelectron and Auger electron spectroscopic study of the adsorption of molecular iodine on uranium metal and uranium dioxide

    SciTech Connect

    Dillard, J.G.; Moers, H.; Klewe-Nebenius, H.; Kirch, G.; Pfennig, G.; Ache, H.J.

    1984-08-30

    The adsorption of molecular iodine on uranium metal and on uranium dioxide has been investigated at 25/sup 0/C. Clean surfaces were prepared in an ultrahigh vacuum apparatus and were characterized by X-ray photoelectron (XPS) and X-ray and electron-induced Auger electron spectroscopies (AES). Adsorption of I/sub 2/ was studied for exposures up to 100 langmuirs (1 langmuir = 10/sup -6/ torr s) on uranium metal and to 75 langmuirs on uranium dioxide. Above about 2-langmuir I/sub 2/ exposure on uranium, spectroscopic evidence is obtained to indicate the beginning of UI/sub 3/ formation. Saturation coverage for I/sub 2/ adsorption on uranium dioxide occurs at approximately 10-15 langmuirs. Analysis of the XPS and AES results as well as studies of spectra as a function of temperature lead to the conclusions that a dissociative chemisorption/reaction process occurs on uranium metal while nondissociative adsorption occurs on uranium dioxide. Variations in the iodine Auger kinetic energy and in the Auger parameter are interpreted in light of extra-atomic relaxation processes. 42 references, 10 figures, 1 table.

  18. In situ synchrotron radiation photoelectron spectroscopy study of the oxidation of the Ge(100)-2 × 1 surface by supersonic molecular oxygen beams

    SciTech Connect

    Yoshigoe, Akitaka; Teraoka, Yuden; Okada, Ryuta; Yamada, Yoichi; Sasaki, Masahiro

    2014-11-07

    In situ synchrotron radiation photoelectron spectroscopy was performed during the oxidation of the Ge(100)-2 × 1 surface induced by a molecular oxygen beam with various incident energies up to 2.2 eV from the initial to saturation coverage of surface oxides. The saturation coverage of oxygen on the clean Ge(100) surface was much lower than one monolayer and the oxidation state of Ge was +2 at most. This indicates that the Ge(100) surface is so inert toward oxidation that complete oxidation cannot be achieved with only pure oxygen (O{sub 2}) gas, which is in strong contrast to Si surfaces. Two types of dissociative adsorption, trapping-mediated and direct dissociation, were confirmed by oxygen uptake measurements depending on the incident energy of O{sub 2}. The direct adsorption process can be activated by increasing the translational energy, resulting in an increased population of Ge{sup 2+} and a higher final oxygen coverage. We demonstrated that hyperthermal O{sub 2} beams remarkably promote the room-temperature oxidation with novel atomic configurations of oxides at the Ge(100) surface. Our findings will contribute to the fundamental understanding of oxygen adsorption processes at 300 K from the initial stages to saturated oxidation.

  19. Photoion Auger-electron coincidence measurements near threshold

    SciTech Connect

    Levin, J.C.; Biedermann, C.; Keller, N.; Liljeby, L.; Short, R.T.; Sellin, I.A. . Dept. of Physics Oak Ridge National Lab., TN ); Lindle, D.W. , Gaithersburg, MD )

    1990-01-01

    The vacancy cascade which fills an atomic inner-shell hole is a complex process which can proceed by a variety of paths, often resulting in a broad distribution of photoion charge states. We have measured simplified argon photoion charge distributions by requiring a coincidence with a K-LL or K-LM Auger electron, following K excitation with synchrotron radiation, as a function of photon energy, and report here in detail the argon charge distributions coincident with K-L{sub 1}L{sub 23} Auger electrons. The distributions exhibit a much more pronounced photon-energy dependence than do the more complicated non-coincident spectra. Resonant excitation of the K electron to np levels, shakeoff of these np electrons by subsequent decay processes, double-Auger decay, and recapture of the K photoelectron through postcollision interaction occur with significant probability. 17 refs.

  20. Communication: The influence of vibrational parity in chiral photoionization dynamics

    SciTech Connect

    Powis, Ivan

    2014-03-21

    A pronounced vibrational state dependence of photoelectron angular distributions observed in chiral photoionization experiments is explored using a simple, yet realistic, theoretical model based upon the transiently chiral molecule H{sub 2}O{sub 2}. The adiabatic approximation is used to separate vibrational and electronic wavefunctions. The full ionization matrix elements are obtained as an average of the electronic dipole matrix elements over the vibrational coordinate, weighted by the product of neutral and ion state vibrational wavefunctions. It is found that the parity of the vibrational Hermite polynomials influences not just the amplitude, but also the phase of the transition matrix elements, and the latter is sufficient, even in the absence of resonant enhancements, to account for enhanced vibrational dependencies in the chiral photoionization dynamics.

  1. Indirect versus direct photoionization with ultrashort pulses: interferences and time-resolved bond-length changes

    NASA Astrophysics Data System (ADS)

    Gräfe, S.; Engel, V.

    2004-02-01

    The photoionization of NaI molecules with femtosecond laser pulses leads to photoelectron distributions which vary with the delay between a pump- and a probe-pulse. If the vibrational wave packet as prepared in the pump-transition is located in a region where the bonding character is ionic, the photoelectron, due to its localization on the iodine atom, may be ejected directly or be scattered from the Na + ion. This leads to structures in the photoelectron spectrum which, in turn, reflect temporal bond-length changes.

  2. Chiral signatures in angle-resolved valence photoelectron spectroscopy of pure glycidol enantiomers.

    PubMed

    Garcia, Gustavo A; Nahon, Laurent; Harding, Chris J; Powis, Ivan

    2008-03-28

    Photoionization of the chiral molecule glycidol has been investigated in the valence region. Photoelectron circular dichroism (PECD) curves have been obtained at various photon energies by using circularly polarized VUV synchrotron radiation and a velocity map imaging technique to record angle-resolved photoelectron spectra (PES). The measured chiral asymmetries vary dramatically with the photon energy as well as with the ionized orbital, improving the effective orbital resolution of the PECD spectrum with respect to the PES. Typical asymmetry factors of 5% are observed, but the peak values measured range up to 15%. The experimental results are interpreted by continuum multiple scattering (CMS-Xalpha) calculations for several thermally accessible glycidol conformers. We find that a nearly quantitative agreement between theory and experiments can be achieved for the ionization of several molecular orbitals. Owing to the sensitivity of PECD to molecular conformation this allows us to identify the dominant conformer. The influence of intramolecular hydrogen bond orbital polarization is found to play a small yet significant role in determining the chiral asymmetry in the electron angular distributions.

  3. Absolute photoionization cross-section of the methyl radical.

    SciTech Connect

    Taatjes, C. A.; Osborn, D. L.; Selby, T.; Meloni, G.; Fan, H.; Pratt, S. T.; Chemical Sciences and Engineering Division; SNL

    2008-01-01

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH{sub 3} photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; {sigma}{sub CH}(10.2 eV) = (5.7 {+-} 0.9) x 10{sup -18} cm{sup 2} and {sigma}{sub CH{sub 3}}(11.0 eV) = (6.0 {+-} 2.0) x 10{sup -18} cm{sup 2}. The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH{sub 3} and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.460 eV, (5.5 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.466 eV, and (4.9 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  4. VUV photoionization and dissociative photoionization spectroscopy of the interstellar molecule aminoacetonitrile: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Bellili, A.; Schwell, M.; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Mogren Al-Mogren, M.; Guillemin, J.-C.; Poisson, L.; Hochlaf, M.

    2015-09-01

    Aminoacetonitrile (AAN) is a key compound in astrochemistry and astrobiology. We present a combined theoretical and experimental investigation concerning the single photoionization of gas-phase AAN and the fragmentation pathways of the resulting cation. At present, we measured photoelectron photoion coincidence (PEPICO) spectra in the 9.8-13.6 eV energy regime using synchrotron radiation as exciting light source. In order to interpret the VUV experimental data obtained, we explored the ground potential energy surface (PES) of AAN and of its cation using standard and explicitly correlated quantum chemical methodologies. This allowed us to deduce accurate thermochemical data for this molecule. We also determined, for the first time, the adiabatic ionization energy of AAN to lie at AIE = (10.085 ± 0.03) eV. The unimolecular decomposition pathways of the resulting AAN+ parent cation are also investigated. The appearance energies of five fragments are determined for the first time, with 30 meV accuracy. Interestingly, our work shows the possibility of the formation of both HCN and HNC isomeric forms. The implications for the evolution of prebiotic molecules under VUV irradiation are briefly discussed.

  5. Electronic structure of metal clusters. 4. Photoelectron spectra and molecular orbital calculations on cobalt, iron, ruthenium, and osmium sulfide nonacarbonyl clusters

    SciTech Connect

    Chesky, P.T.; Hall, M.B.

    1983-10-01

    Gas-phase, ultraviolet photoelectron (PE) spectra and molecular orbital (MO) calculations are reported for SCo/sub 3/(CO)/sub 9/, SH/sub n-//sub 1/Fe/sub n/Co/sub 3//sub -n/(CO)/sub 9/ (n = 1-3), S/sub 2/Fe/sub 3/(CO)/sub 9/, and SH/sub 2/M/sub 3/(CO)/sub 9/ (M = Fe, Ru, Os). The first PE spectra reported for mixed-metal clusters are included in this series. As Co atoms are replaced by the isoelectronic FeH unit, the spectra show the loss of a Co band and the appearance of an Fe band. This phenomenon suggests that the d bands localize upon ionization. In a comparison with the PE spectrum of M/sub 3/(CO)/sub 12/ (M = Fe, Ru, Os), the major spectral changes for SH/sub 2/M/sub 3/(CO)/sub 9/ (M = Fe, Ru, Os) are the loss of a band corresponding to direct M-M interactions and the appearance of bands due to a mixture of energy-equivalent M-H-M and M-S interactions. The spectra also show a substantial rearrangement of the bands due to the t/sub 2g/-like electrons, which are usually considered M-CO ..pi.. bonding. An antibonding interaction between a S orbital and the t/sub 2g/-like orbitals is responsible for a unique band in the spectra which occurs at high ionization energy between the M-M bonding band and the main t/sub 2//sub g/-like band. 12 figures, 9 tables

  6. Photoionization of sodium atoms and electron scattering from ionized sodium

    NASA Technical Reports Server (NTRS)

    Dasgupta, A.; Bhatia, A. K.

    1985-01-01

    The polarized-orbital method of Temkin (1957) is applied using polarized orbitals determined from Sternheimer's equation to compute the photoionization cross sections of Na atoms from threshold to about 60 eV. The approximations involved in the analysis are explained in detail; the explicit forms of the integrals and matrix expressions are given in appendices; and the results are presented in tables and graphs. Good agreement is found with the results of Chang and Kelly (1975), and the possibility that small amounts of molecular vapor in Na-photoionization experiments are responsible for the discrepancies between calculated and measured cross sections is considered.

  7. Photoionization studies of the 2p resonances of atomic calcium

    NASA Astrophysics Data System (ADS)

    Obst, B.; Hansen, J. E.; Sonntag, B.; Wernet, Ph.; Zimmermann, P.

    2002-06-01

    The Ca 2p resonances at 345-355 eV were studied by photoion and photoelectron spectroscopy using monochromatized synchrotron radiation and atomic-beam technique. The analysis of the excitation and decay of these resonances shows strong configuration mixing between the different subshells of the valence electrons 4s, 3d, and 4p. In the case of the 2p-13/2 resonance structure at 348 eV there are two excited states with nearly equal contributions from the configuration 2p53d4s2 and 2p53d24s, which gives rise to strong variations of the resonantly enhanced 3p4(3d,4s)3 photoelectron lines when scanning the photon energy across the resonance.

  8. Decoherence in attosecond photoionization.

    PubMed

    Pabst, Stefan; Greenman, Loren; Ho, Phay J; Mazziotti, David A; Santra, Robin

    2011-02-01

    The creation of superpositions of hole states via single-photon ionization using attosecond extreme-ultraviolet pulses is studied with the time-dependent configuration-interaction singles (TDCIS) method. Specifically, the degree of coherence between hole states in atomic xenon is investigated. We find that interchannel coupling not only affects the hole populations, but it also enhances the entanglement between the photoelectron and the remaining ion, thereby reducing the coherence within the ion. As a consequence, even if the spectral bandwidth of the ionizing pulse exceeds the energy splittings among the hole states involved, perfectly coherent hole wave packets cannot be formed. For sufficiently large spectral bandwidth, the coherence can only be increased by increasing the mean photon energy.

  9. Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling

    SciTech Connect

    Grell, Gilbert; Bokarev, Sergey I. Kühn, Oliver; Winter, Bernd; Seidel, Robert; Aziz, Emad F.; Aziz, Saadullah G.

    2015-08-21

    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H{sub 2}O){sub 6}]{sup 2+} complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments.

  10. Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Grell, Gilbert; Bokarev, Sergey I.; Winter, Bernd; Seidel, Robert; Aziz, Emad F.; Aziz, Saadullah G.; Kühn, Oliver

    2015-08-01

    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H2O)6]2+ complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments.

  11. Solvation of the Azide Anion (N3-)in Water Clusters and Aqueous Interfaces: A Combined Investigation by Photoelectron Spectroscopy, Density Functional Calculations, and Molecular Dynamics Simulations

    SciTech Connect

    Yang, Xin; Boggavarapu, Kiran; Wang, Xuebin; Wang, Lai S.; Mucha, M; Jungwirth, Pavel

    2004-09-30

    We report a photoelectron spectroscopy and computational study of hydrated N3- anion clusters, N3-(H2O)n (n=0-16), in the gas phase. Photoelectron spectra of the solvated azide anions were observed to consist of a single peak, similar to that of the bare N3-, but the spectral width was observed to broaden as a function of cluster size due to solvent relaxation upon electron detachment. The adiabatic and vertical electron detachment energies were measured as a function of solvent number. The measured electron binding energies indicate that the first four solvent molecules have much stronger interactions with the solute anion, forming the first solvation shell.

  12. Quantum beat oscillations in the two-color-photoionization continuum of neon and their dependence on the intensity of the ionizing laser pulse

    SciTech Connect

    Geiseler, Henning; Rottke, Horst; Steinmeyer, Guenter; Sandner, Wolfgang

    2011-09-15

    We investigate quantum beat oscillations in the photoionization continuum of Ne atoms that are photoionized by absorption of two photons via a group of excited bound states using ultrashort extreme ultraviolet and infrared laser pulses. The extreme ultraviolet pulse starts an excited-state wave packet that is photoionized by a high-intensity infrared pulse after a variable time delay. We analyze the continuum quantum beats from this two-step photoionization process and their dependence on the photoelectron kinetic energy. We find a pronounced dependence of the quantum beat amplitudes on the photoelectron kinetic energy. The dependence changes significantly with the applied infrared laser-pulse intensity. The experimental results are in good qualitative agreement with a model calculation that is adapted to the experimental situation. It accounts for the intensity dependence of the quantum beat structure through the coupling of the excited-state wave packet to other bound Ne states induced by the high-intensity infrared laser pulse.

  13. Relativistic effects in the photoionization of hydrogen-like ions with screened Coulomb interaction

    SciTech Connect

    Xie, L. Y.; Wang, J. G.; Janev, R. K.

    2014-06-15

    The relativistic effects in the photoionization of hydrogen-like ion with screened Coulomb interaction of Yukawa type are studied for a broad range of screening lengths and photoelectron energies. The bound and continuum wave functions have been determined by solving the Dirac equation. The study is focused on the relativistic effects manifested in the characteristic features of photoionization cross section for electric dipole nl→ε,l±1 transitions: shape resonances, Cooper minima and cross section enhancements due to near-zero-energy states. It is shown that the main source of relativistic effects in these cross section features is the fine-structure splitting of bound state energy levels. The relativistic effects are studied in the photoionization of Fe{sup 25+} ion, as an example.

  14. PHOTOIONIZATION IN THE SOLAR WIND

    SciTech Connect

    Landi, E.; Lepri, S. T.

    2015-10-20

    In this work we investigate the effects of photoionization on the charge state composition of the solar wind. Using measured solar EUV and X-ray irradiance, the Michigan Ionization Code and a model for the fast and slow solar wind, we calculate the evolution of the charge state distribution of He, C, N, O, Ne, Mg, Si, S, and Fe with and without including photoionization for both types of wind. We find that the solar radiation has significant effects on the charge state distribution of C, N, and O, causing the ionization levels of these elements to be higher than without photoionization; differences are largest for oxygen. The ions commonly observed for elements heavier than O are much less affected, except in ICMEs where Fe ions more ionized than 16+ can also be affected by the solar radiation. We also show that the commonly used O{sup 7+}/O{sup 6+} density ratio is the most sensitive to photoionization; this sensitivity also causes the value of this ratio to depend on the phase of the solar cycle. We show that the O{sup 7+}/O{sup 6+} ratio needs to be used with caution for solar wind classification and coronal temperature estimates, and recommend the C{sup 6+}/C{sup 4+} ratio for these purposes.

  15. Hartree-Fock calculation of the differential photoionization cross sections of small Li clusters.

    PubMed

    Galitskiy, S A; Artemyev, A N; Jänkälä, K; Lagutin, B M; Demekhin, Ph V

    2015-01-21

    Cross sections and angular distribution parameters for the single-photon ionization of all electron orbitals of Li2-8 are systematically computed in a broad interval of the photoelectron kinetic energies for the energetically most stable geometry of each cluster. Calculations of the partial photoelectron continuum waves in clusters are carried out by the single center method within the Hartree-Fock approximation. We study photoionization cross sections per one electron and analyze in some details general trends in the photoionization of inner and outer shells with respect to the size and geometry of a cluster. The present differential cross sections computed for Li2 are in a good agreement with the available theoretical data, whereas those computed for Li3-8 clusters can be considered as theoretical predictions.

  16. Ultrafast Dynamics in Postcollision Interaction after Multiple Auger Decays in Argon 1s Photoionization

    NASA Astrophysics Data System (ADS)

    Guillemin, R.; Sheinerman, S.; Bomme, C.; Journel, L.; Marin, T.; Marchenko, T.; Kushawaha, R. K.; Trcera, N.; Piancastelli, M. N.; Simon, M.

    2012-07-01

    Argon 1s photoionization followed by multiple Auger decays is investigated both experimentally, by means of photoelectron-ion coincidences, and theoretically. A strong influence of the different Auger decays on the photoelectron spectra is observed through postcollision interaction which shifts the maximum of the energy distribution and distorts the spectral shape. A good agreement between the calculated and measured spectra for selected Arn+ ions (n=1-5) allows one to estimate the widths (lifetimes) of the intermediate states for each specific decay pathway.

  17. Photoionization cross sections for atomic chlorine using an open-shell random phase approximation

    NASA Technical Reports Server (NTRS)

    Starace, A. F.; Armstrong, L., Jr.

    1975-01-01

    The use of the Random Phase Approximation with Exchange (RPAE) for calculating partial and total photoionization cross sections and photoelectron angular distributions for open shell atoms is examined for atomic chlorine. Whereas the RPAE corrections in argon (Z=18) are large, it is found that those in chlorine (Z=17) are much smaller due to geometric factors. Hartree-Fock calculations with and without core relaxation are also presented. Sizable deviations from the close coupling results of Conneely are also found.

  18. Probing photoelectron angular distributions in molecules with polarization-controlled two-color above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Leitner, Torsten; Taïeb, Richard; Meyer, Michael; Wernet, Philippe

    2015-06-01

    We present polarization-controlled multiphoton two-color above-threshold ionization (TCATI) of molecules. The intensity modulations of valence photoelectron intensities of molecules arising from varying the relative orientation of the linear polarization vectors of femtosecond infrared (IR) and vacuum-ultraviolet (VUV) radiation in TCATI of the highest occupied molecular orbitals of H2O , O2, and N2 are reported. The results on the molecular systems are compared to the 3 p photoionization of atomic Ar, which serves as a reference system. Modeling the large differences of the modulation amplitudes within the soft-photon approximation enables us to extract the one-photon-ionization anisotropy parameter β2. Accounting only for the first sideband due to two-photon TCATI by one VUV and one IR photon we find satisfactory agreement between experiment and simulation for H2O and O2. However, the model fails for N2 and possible reasons are discussed. We discuss that the described approach may represent an alternative way of determining photoelectron angular distributions from valence shells of molecules and indicate future directions for modeling TCATI of molecules.

  19. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    USGS Publications Warehouse

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  20. Double momentum spectrometer for ion-electron vector correlations in dissociative photoionization

    SciTech Connect

    Bomme, C.; Guillemin, R.; Marin, T.; Journel, L.; Marchenko, T.; Pilette, B.; Avila, A.; Ringuenet, H.; Kushawaha, R. K.; Simon, M.; Dowek, D.; Trcera, N.

    2013-10-15

    We have developed a new momentum spectrometer dedicated to momentum vector correlations in the context of deep core photoionization of atomic and molecular species in the gas phase. In this article, we describe the design and operation of the experimental setup. The capabilities of the apparatus are illustrated with a set of measurements done on the sulphur core 1s photoionization of gas-phase CS{sub 2}.

  1. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    PubMed

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-01

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.

  2. High-resolution photoelectron spectrometry of selected ns prime and nd prime autoionization resonances in Ar, Kr, and Xe

    SciTech Connect

    Wu, J.Z.; Whitfield, S.B.; Caldwell, C.D. ); Krause, M.O.; van der Meulen, P. ); Fahlman, A. )

    1990-08-01

    Photoionization cross sections ({sigma}) and photoelectron angular distribution parameters ({beta}) across the ({ital ns}{prime},{ital nd}{prime}) autoionization resonances for Ar, Kr, and Xe have been measured with photon resolution widths as low as 0.023 A by means of synchrotron-based photoelectron spectroscopy. The experimental results are compared with those obtained by other experimental techniques and theoretical results. The enhanced resolution allows a redetermination of the width of the {ital ns}{prime} resonances.

  3. Angular distribution of Xe 5s. -->. epsilonp photoelectrons: Disagreement between experiment and theory

    SciTech Connect

    Fahlman, A.; Carlson, T.A.; Krause, M.O.

    1983-04-11

    The angular asymmetry parameter ..beta.. for the Xe 5s..-->..epsilonp photoelectrons has been studied with use of synchrotron radiation (h..nu.. = 28--65 eV). The present results show that the relativistic random-phase approximation theory does not satisfactorily describe the Xe 5s photoionization process close to the Cooper minimum and thus require a renewed theoretical approach. The 5s partial photoionization cross section was obtained over the same photon region and the results agree with experimental values found in the literature.

  4. A photoionization investigation of small, homochiral clusters of glycidol using circularly polarized radiation and velocity map electron-ion coincidence imaging.

    PubMed

    Powis, Ivan; Daly, Steven; Tia, Maurice; de Miranda, Barbara Cunha; Garcia, Gustavo A; Nahon, Laurent

    2014-01-14

    A detailed study of the valence photoionization of small homochiral glycidol (C3O2H6) clusters is carried out with the help of circularly-polarized VUV synchrotron radiation by recording photoionization-based spectroscopic data detected by velocity map electron imaging with coincidence ion selection. We show that information on the stability of cationic as well as neutral chiral clusters can be obtained with enhanced sensitivity by examining the chiral fingerprint encapsulated in Photoelectron Circular Dichroism (PECD) spectra. In particular, by varying the clustering conditions we demonstrate that the PECD signal effectively carries the signature of the neutral precursor species, prior to any fragmentation of the ion, as may be inferred from the below-threshold monomer measurements (including ion imaging). Here the monomer's direct ionization channel is closed and the monomer ion hence must result exclusively as a fragment from dissociative ionization of the dimer (or higher) clusters. At higher photon energies, the mass-selection on the electron spectroscopy data, achieved through filtering the electron images in coincidence with selected ion masses, evidently succeeds in providing a degree of size-selection on the neutral clusters being ionized with, in particular, a clear differentiation of monomer and dimer PECD, showing the strong sensitivity of this chiroptical effect to the non-local long-range molecular potential.

  5. Synchrotron-based valence shell photoionization of CH radical.

    PubMed

    Gans, B; Holzmeier, F; Krüger, J; Falvo, C; Röder, A; Lopes, A; Garcia, G A; Fittschen, C; Loison, J-C; Alcaraz, C

    2016-05-28

    We report the first experimental observations of X(+) (1)Σ(+)←X (2)Π and a(+) (3)Π←X (2)Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg states of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes. PMID:27250306

  6. Synchrotron-based valence shell photoionization of CH radical

    NASA Astrophysics Data System (ADS)

    Gans, B.; Holzmeier, F.; Krüger, J.; Falvo, C.; Röder, A.; Lopes, A.; Garcia, G. A.; Fittschen, C.; Loison, J.-C.; Alcaraz, C.

    2016-05-01

    We report the first experimental observations of X+ 1Σ+←X 2Π and a+ 3Π←X 2Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg states of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.

  7. A discharge flow-photoionization mass spectrometric study of the FO(X 2 Pi i) radical. Photoionization efficiency spectrum and ionization energy

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengyu; Kuo, Szu-Cherng; Klemm, R. Bruce; Monks, Paul S.; Stief, Louis J.

    1994-01-01

    Photoionization efficiency spectra of FO were measured over the wavelength range 80.0-100.0 nm and in the ionization threshold region, 94.0-100.0 nm, using a discharge flow-photoionization mass spectrometer apparatus coupled to a synchrotron radiation source. FO was generated by the reaction of F2P atoms with NO3 and via a F2O2 discharge. A value of 12.78 +/- 0.03 eV was obtained for the adiabatic ionization energy of FO from photoion thresholds which corresponds to FO(+)(X 3 Sigma -) from FO(X 2 Pi i). These results, which are the first to be obtained by direct Photo-ionization mass spectrometry (PIMS) measurements, corroborate those of a photoelectron spectroscopy (PES) study; however, the ionization energy determined here is free from interferences due to other species which complicated the PES measurement. A value of 109.5 +/- 8.0 kJ/mol for Delta f H 0 298(FO) is computed from the present value of IE(FO) and a previous appearance energy measurement, and a value for the proton affinity of FO is calculated to be 511.5 +/- 10.0 kJ/mol.

  8. Compact, Integrated Photoelectron Linacs

    NASA Astrophysics Data System (ADS)

    Yu, David

    2000-12-01

    The innovative compact high energy iniector which has been developed by DULY Research Inc., will have wide scientific industrial and medical applications. The new photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injector and the linac. By focusing the beam with solenoid or permanent magnets, and producing high current with low emittance, extremely high brightness is achieved. In addition to providing a small footprint and improved beam quality in an integrated structure, the compact system considerably simplifies external subsystems required to operate the photoelectron linac, including rf power transport, beam focusing, vacuum and cooling. The photoelectron linac employs an innovative Plane-Wave-Transformer (PWT) design, which provides strong cell-to-cell coupling, relaxes manufacturing tolerance and facilitates the attachment of external ports to the compact structure with minimal field interference. DULY Research Inc. under the support of the DOE Small Business Innovation Research (SBIR) program, has developed, constructed and installed a 20-MeV, S-band compact electron source at UCLA. DULY Research is also presently engaged in the development of an X-band photoelectron linear accelerator in another SBIR project. The higher frequency structure when completed will be approximately three times smaller, and capable of a beam brightness ten times higher than the S-band structure.

  9. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion.

    PubMed

    Winghart, Marc-Oliver; Yang, Ji-Ping; Vonderach, Matthias; Unterreiner, Andreas-Neil; Huang, Dao-Ling; Wang, Lai-Sheng; Kruppa, Sebastian; Riehn, Christoph; Kappes, Manfred M

    2016-02-01

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt2(μ-P2O5H2)4 + 2H](2-) after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet (1)A2u state and concomitant rise in population of the triplet (3)A2u state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet (1)A2u state takes only a few picoseconds, ESETD from the triplet (3)A2u state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt2(μ-P2O5H2)4 + 2H](2-) is the first example of a photoexcited multianion for which ESETD has been observed following ISC.

  10. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion

    NASA Astrophysics Data System (ADS)

    Winghart, Marc-Oliver; Yang, Ji-Ping; Vonderach, Matthias; Unterreiner, Andreas-Neil; Huang, Dao-Ling; Wang, Lai-Sheng; Kruppa, Sebastian; Riehn, Christoph; Kappes, Manfred M.

    2016-02-01

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt2(μ-P2O5H2)4 + 2H]2- after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet 1A2u state and concomitant rise in population of the triplet 3A2u state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet 1A2u state takes only a few picoseconds, ESETD from the triplet 3A2u state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt2(μ-P2O5H2)4 + 2H]2- is the first example of a photoexcited multianion for which ESETD has been observed following ISC.

  11. High-resolution pulsed-field ionization photoelectron spectroscopy using multi-bunch synchrotron radiation

    SciTech Connect

    Hsu, C.W.; Evans, M.; Ng, C.Y.; Heimann, P.

    1997-04-01

    BL9.0.2.2 is the newly constructed experimental End Station 2 at the Chemical Dynamics Beamline 9.0.2 of the Advanced Light Source (ALS). It is dedicated to the high resolution photoionization study of molecules of interest to atmospheric and combustion chemistry. This End Station is equipped with a high resolution scanning monochromator, which has been demonstrated to have a world record resolution of E/{delta}E=70,000. Taking the advantage of the high resolution ALS light, the authors have improved the energy resolution in threshold photoelectron spectroscopy (TPES) to 0.8 meV. The TPES is a popular technique for photoionization experiments at all synchrotron radiation facilities due to its high energy resolution as compared to that of traditional photoelectron spectroscopy (PES). TPES achieves higher energy resolution by preferentially detecting near zero kinetic energy photoelectrons resulting from threshold photoionization. However, the spectra obtained from the TPES technique generally are complicated by the simultaneous detection of electrons with nonzero kinetic energy, which are not fully discriminated against. On the other hand, the spectra obtained from pulsed field ionization photoelectron spectroscopy (PFI-PES) are completely free of the contamination from kinetic electrons. The PFI-PE technique basically involves the detection of the photoelectrons from field ionization of the very high-n Rydberg states, a few cm{sup {minus}1} below the ionization energy (IE), by applying a delayed pulsed electric field. Within a delay of a few microseconds, all the prompt electrons formed from direct ionization will escape from the photoionization region and will not be collected. The authors have recently overcome problems with energy resolution of an electron time-of-flight technique, and incorporated the PFI-PE technique with multi-bunch VUV synchrotron radiation.

  12. Double Potoionization of Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Vanroose, Wim

    2006-05-01

    We report a complete numerical solution of the Schr"odinger equation for the double photoionization of H2, a process where a single photon emits two electrons. The results suggest that the distribution of photoelectrons emitted from aligned molecules reflects electron correlation effects that are purely molecular in origin. It confirms recent experimental results in experiments on oriented hydrogen molecules. These experiments observed that the ejection pattern of the electrons depends sensitively on the bond distance between the two nuclei as well as the orientation with respect to the polarization of the photon. We give an overview of the numerical methods we used to solve the exact Schrodinger equation for this problem. We also discuss the different molecular effect we observe in our calculations and compare with experimental observations

  13. Circular dichroism in valence photoelectron spectroscopy of free unoriented chiral molecules: Camphor and bromocamphor

    SciTech Connect

    Lischke, T.; Boewering, N.; Schmidtke, B.; Mueller, N.; Khalil, T.; Heinzmann, U.

    2004-08-01

    The circular dichroism in the photoelectron angular distribution was investigated for valence photoionization of randomly oriented pure enantiomers of camphor and bromocamphor molecules using circularly polarized light in the vacuum ultraviolet. The forward-backward electron emission spectra were recorded simultaneously with two spectrometers at several opposite angles relative to the propagation direction of the photon beam and compared for each of the two substances. Measurements were also carried out for reversed light helicity and opposite molecular handedness. For the left- and right-handed enantiomers of both molecules we observed asymmetries of comparable magnitude up to several percent. The measured asymmetry parameters vary strongly for different orbital binding energies and also for the selected photon energies in the valence region. The results for both molecules are compared. They suggest a strong influence of the final states on the asymmetry, depending on the chiral geometry of the molecular electronic structure, as well as a significant dependence on the initial states involved. They also confirm theoretical predictions describing the effect in pure electric-dipole approximation.

  14. Simplified Model for Analysing Ion/Photoelectron Images

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Yi; Wang, Bing-Xing; Guo, Wei; Wang, Yan-Qiu; Wang, Li

    2007-07-01

    Based on the Onion-Peeling algorithm (OPA) principle, we present a simplified model for analysing photoion and photoelectron images, which allows the analysis of experimental raw images. A three-dimensional distribution of the nascent charged particles, from which the radial and angular distributions are deduced, can be obtained more easily by this model than by the commonly used procedures. The analysis results of Xe photoelectron images by this model are compared with those from the standard Hankel-Abel inversion. The results imply that this model can be used for complicated (many peaks) and `difficult' (low signal-to-noise) images with cylindrical symmetries, and can provide a reliable reconstruction in some cases when the commonly used Hankel Abel transform method fails.

  15. VUV photodynamics and chiral asymmetry in the photoionization of gas phase alanine enantiomers.

    PubMed

    Tia, Maurice; Cunha de Miranda, Barbara; Daly, Steven; Gaie-Levrel, François; Garcia, Gustavo A; Nahon, Laurent; Powis, Ivan

    2014-04-17

    The valence shell photoionization of the simplest proteinaceous chiral amino acid, alanine, is investigated over the vacuum ultraviolet region from its ionization threshold up to 18 eV. Tunable and variable polarization synchrotron radiation was coupled to a double imaging photoelectron/photoion coincidence (i(2)PEPICO) spectrometer to produce mass-selected threshold photoelectron spectra and derive the state-selected fragmentation channels. The photoelectron circular dichroism (PECD), an orbital-sensitive, conformer-dependent chiroptical effect, was also recorded at various photon energies and compared to continuum multiple scattering calculations. Two complementary vaporization methods-aerosol thermodesorption and a resistively heated sample oven coupled to an adiabatic expansion-were applied to promote pure enantiomers of alanine into the gas phase, yielding neutral alanine with different internal energy distributions. A comparison of the photoelectron spectroscopy, fragmentation, and dichroism measured for each of the vaporization methods was rationalized in terms of internal energy and conformer populations and supported by theoretical calculations. The analytical potential of the so-called PECD-PICO detection technique-where the electron spectroscopy and circular dichroism can be obtained as a function of mass and ion translational energy-is underlined and applied to characterize the origin of the various species found in the experimental mass spectra. Finally, the PECD findings are discussed within an astrochemical context, and possible implications regarding the origin of biomolecular asymmetry are identified.

  16. A novel aerosol mass spectrometric approach - Analysis of the organic molecular signature of PM by coupling of thermal EC/OC-carbon analysis to photo-ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Grabowski, J.; Streibel, T.; Sklorz, M.; Chow, J.

    2012-12-01

    Carbonaceous material in airborne particulate matter (PM) is of increasing interest e.g. due to its adverse health effects and its potential influence on the climate. Its analytical assessment on a molecular level is still very challenging. Hence, analysis of carbonaceous fractions for many studies is often solely carried out by determining sum parameters such as the overall content of organic carbon (OC) and elemental carbon (EC) as well as the total carbon content, TC (sum of OC and EC). The used thermal procedure, however, allows getting additional interesting information: By defining different thermal OC fractions (i.e. temperature steps) also information on the refractory properties of the carbonaceous material is obtained. In this context it is particularly interesting to investigate the release and formation behaviors of the molecular species responsible for the different OC and EC fractions. Thus after initial promising results of pre-studies [1,2] in the current work an EC/OC carbon analyzer (Model DRI 2000) and a homebuilt photo-ionization time-of-flight mass spectrometer (PI-TOFMS) were hyphenated and applied to investigate individual organic compounds especially from the different OC fractions. The carbon analyzer enables the stepwise heating of PM loaded filter samples and provides the sum values of the "carbon" release ("Improve protocol" [2]: OC1 - 120 °C, OC2 - 250°C, OC3 - 450°C OC4 - 550°C). With the on-line coupled PI-TOFMS evolved organic compounds, as released during the thermal program, are detectable in real time. This is possible by MS with soft photo ionization methods (SPI - single photon ionization and REMPI - resonance-enhanced multi photon ionization). Soft ionization suppresses fragmentation upon the ionization step and generates molecular signatures in the MS. The EC/OC-analyzer-PI-TOFMS instrument was applied to several types of PM samples, such as ambient aerosol, emission samples (gasoline/diesel car, wood combustion) or

  17. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: Charge transfer reaction of N2+(X 2Σg+; v+ = 0-2; N+ = 0-9) + Ar

    NASA Astrophysics Data System (ADS)

    Chang, Yih Chung; Xu, Yuntao; Lu, Zhou; Xu, Hong; Ng, C. Y.

    2012-09-01

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N2+(v+, N+) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N2+(X 2Σg+, v+ = 0-2, N+ = 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N2+ PFI-PI beam can be formed with a laboratory kinetic energy resolution of ΔElab = ± 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (Ecm's) down to thermal energies. Absolute total rovibrationally selected cross sections σ(v+ = 0-2, N+ = 0-9) for the N2+(X 2Σg+; v+ = 0-2, N+ = 0-9) + Ar CT reaction have been measured in the Ecm range of 0.04-10.0 eV, revealing strong vibrational enhancements and Ecm-dependencies of σ(v+ = 0-2, N+ = 0-9). The thermochemical threshold at Ecm = 0.179 eV for the formation of Ar+ from N2+(X; v+ = 0, N+) + Ar was observed by the measured σ(v+ = 0), confirming the narrow ΔEcm spread achieved in the present study. The σ(v+ = 0-2; N+) values obtained here are compared with previous experimental and theoretical results. The theoretical predictions calculated based on the Landau-Zener-Stückelberg formulism are found to be in fair

  18. ATOMIC AND MOLECULAR PHYSICS: X-ray absorption near the edge structure and X-ray photoelectron spectroscopy studies on pyrite prepared by thermally sulfurizing iron films

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Liu, Ying-Shu; Wang, Bao-Yi; Wei, Long; Kui, Re-Xi; Qian, Hai-Jie

    2009-07-01

    This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by x-ray absorption near edge structure spectra and x-ray photoelectron spectroscopy on a 4B9B beam line at the Beijing Synchrotron Radiation Facility. The band gap of the pyrite agrees well with the optical band gap obtained by a spectrophotometer. The octahedral symmetry of pyrite leads to the splitting of the d orbit into t2g and eg levels. The high spin and low spin states were analysed through the difference of electron exchange interaction and the orbital crystal field. Only when the crystal field splitting is higher than 1.5 eV, the two weak peaks above the white lines can appear, and this was approved by experiments in the present work.

  19. High-Resolution Photoelectron Spectroscopy of 2-BUTYNE

    NASA Astrophysics Data System (ADS)

    Jacovella, Ugo; Gans, Berenger; Merkt, Frederic

    2013-06-01

    Using a coherent narrow-band vacuum-ultraviolet (VUV) laser source (bandwitdh of 0.008 cm^{-1}) coupled to a photoionization and pulse-field-ionization zero-kinetic-energy photoelectron (PFI-ZEKE) spectrometer, the threshold photoionization of polyatomic molecules can be studied at high resolution. We present a new measurement of the PFI-ZEKE photoelectron spectrum of the origin band of the X^+ ^2E_{2(d)} ← X ^1{A}_{1(s)} ionizing transition of 2-butyne at a resolution of 0.15 cm^{-1}. Despite this high resolution, the spectral congestion originating from the combined effects of the internal rotation, the spin-orbit coupling and the Jahn-Teller effect prevented the full resolution of the rotational structure of the photoelectron spectrum. Combined with the known structure of the X ^1A_{1(s)} ground state of 2-butyne, including the free internal rotation, the spectrum was used to derive information on the X^+ ^2E_{2(d)} ground state of the 2-butyne radical cation. The rotational branch structure of the spectrum points at a complex energy-level structure of the cation and at the importance of a shape resonance enhancing g photoelectron partial waves. U. Hollenstein, H. Palm, and F. Merkt, Rev. Sci. Instrum. 71, 4023 (2000). H. C. Longuet-Higgins Mol. Phys. 6, 445 (1963). J. T. Hougen J. Chem. Phys. 37, 1433 (1962). P. R. Bunker Mol. Phys. 8, 81 (1964). H. Xu, U. Jacovella, B. Ruscic, S. T. Pratt and R. R. Lucchese J. Chem. Phys. 136, 154303 (2012).

  20. Tunable wavelength soft photoionization of ionic liquid vapors

    SciTech Connect

    Strasser, Daniel; Goulay, Fabien; Belau, Leonid; Kostko, Oleg; Koh, Christine; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Ahmed, Musahid; Leone, Stephen R.

    2009-11-11

    Combined data of photoelectron spectra and photoionization efficiency curves in the near threshold ionization region of isolated ion-pairs from [emim][Tf2N], [emim][Pf2N]and [dmpim][Tf2N]ionic liquid vapors reveal small shifts in the ionization energies of ion-pair systems due to cation and anion substitutions. Shifts towards higher binding energy following anion substitution are attributed to increased electronegativity of the anion itself, while shifts towards lower binding energies following cation substitution are attributed to an increase in the cation-anion distance that causes a lower Coulombic binding potential. The predominant ionization mechanism in the near threshold photon energy region is identified as dissociative ionization, involving dissociation of the ion-pair and the production of intact cations as the positively charged products.

  1. Biomedical applications of laser photoionization

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Moore, Larry J.; Fassett, John R.; O'Haver, Thomas C.

    1991-07-01

    Trace elements are important for many essential metabolic functions. Zinc is a structural/functional component in more than 200 enzymes active in the biochemistry of cell division and tissue growth, neurology and endocrine control. Calcium is involved in intracellular control mechanisms and in skeletal bone building and resorption processes related to osteoporosis. Sensitive and selective laser photoionization is being developed to understand mechanisms in smaller samples and biological units approaching the cellular domain. Zinc has an ionization potential of 9.4 eV, or 75766.8 cm-1. Several processes are being explored, including two-photon resonant, three- photon ionization utilizing sequential UV transitions, e.g., 4s2 1S0 yields 4s4p 3P1 and 4s4p 3P1 yields 4s5d 3D1. Preliminary zinc stable isotope ratio data obtained by thermal atomization and laser photoionization agree with accepted values within 2 to 5%, except for anomalous 67Zn. Photoionization of calcium is being studied for isotope enrichment and ratio measurement using narrow and medium bandwidth lasers. Several ionization pathways, e.g., 4s2 1S0 - 2hv1 yields 4s10s - hv2 yields Ca+ (4s2S), are being investigated for isotopically selective ionization. Auto-ionization pathways are explored for greater efficiency in isotopic analysis. All studies have utilized a Nd:YAG- pumped laser system with one or two frequency-doubled tunable dye lasers coupled either to a magnetic sector or time-of-flight mass spectrometer.

  2. IONIS: Approximate atomic photoionization intensities

    NASA Astrophysics Data System (ADS)

    Heinäsmäki, Sami

    2012-02-01

    A program to compute relative atomic photoionization cross sections is presented. The code applies the output of the multiconfiguration Dirac-Fock method for atoms in the single active electron scheme, by computing the overlap of the bound electron states in the initial and final states. The contribution from the single-particle ionization matrix elements is assumed to be the same for each final state. This method gives rather accurate relative ionization probabilities provided the single-electron ionization matrix elements do not depend strongly on energy in the region considered. The method is especially suited for open shell atoms where electronic correlation in the ionic states is large. Program summaryProgram title: IONIS Catalogue identifier: AEKK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1149 No. of bytes in distributed program, including test data, etc.: 12 877 Distribution format: tar.gz Programming language: Fortran 95 Computer: Workstations Operating system: GNU/Linux, Unix Classification: 2.2, 2.5 Nature of problem: Photoionization intensities for atoms. Solution method: The code applies the output of the multiconfiguration Dirac-Fock codes Grasp92 [1] or Grasp2K [2], to compute approximate photoionization intensities. The intensity is computed within the one-electron transition approximation and by assuming that the sum of the single-particle ionization probabilities is the same for all final ionic states. Restrictions: The program gives nonzero intensities for those transitions where only one electron is removed from the initial configuration(s). Shake-type many-electron transitions are not computed. The ionized shell must be closed in the initial state. Running time: Few seconds for a

  3. Photoionization of the outer electrons in noble gas endohedral atoms

    SciTech Connect

    Amusia, M. Ya. Baltenkov, A. S.; Chernysheva, L. V.

    2008-08-15

    We suggest a prominent modification of the outer shell photoionization cross section in noble gas (NG) endohedral atoms NG-C{sub n} under the action of the electron shell of fullerene C{sub n}. This shell leads to two important effects: a strong enhancement of the cross section due to fullerene shell polarization under the action of the incoming electromagnetic wave and to prominent oscillation of this cross section due to the reflection of a photoelectron from the NG by the fullerene shell. Both factors lead to powerful maxima in the outer shell ionization cross sections of NG-C{sub n}, which we call giant endohedral resonances. The oscillator strength reaches a very large value in the atomic scale, 25. We consider atoms of all noble gases except He. The polarization of the fullerene shell is expressed in terms of the total photoabsorption cross section of the fullerene. The photoelectron reflection is taken into account in the framework of the so-called bubble potential, which is a spherical {delta}-type potential. It is assumed in the derivations that the NG is centrally located in the fullerene. It is also assumed, in accordance with the existing experimental data, that the fullerene radius R{sub C} is much larger than the atomic radius r{sub A} and the thickness {delta}{sub C} of the fullerene shell. As was demonstrated recently, these assumptions allow us to represent the NG-C{sub n} photoionization cross section as a product of the NG cross section and two well-defined calculated factors.

  4. Ultrafast Molecular Dynamics probed by Vacuum Ultraviolet Pulses

    NASA Astrophysics Data System (ADS)

    Cryan, James; Champenois, Elio; Shivaram, Niranjan; Wright, Travis; Yang, Chan-Shan; Falcone, Roger; Belkacem, Ali

    2014-05-01

    We present time-resolved measurements of the relaxation dynamics in small molecular systems (CO2 and C2H4) following ultraviolet (UV) photo-excitation. We probe these excitations through photoionization and velocity map imaging (VMI) spectroscopy. Vacuum and extreme ultraviolet (VUV/XUV) pump and probe pulses are created by exploiting strong-field high harmonic generation (HHG) from our state-of-the-art 30 mJ, 1 kHz laser system. Three dimensional photoelectron and photoion momentum images recorded with our VMI spectrometer reveal non-Born Oppenheimer dynamics in the vicinity of a conical intersection, and allow us track the state of the system as a function of time. We also present initial experiments with the goal of controlling the dynamics near a conical intersection using a strong-field IR pulse. Finally, we will show progress towards measurements of time-resolved molecular frame photoelectron angular distributions (TRMFPADs) by applying our VUV/XUV pulse sequence to an aligned molecular ensemble. Supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.

  5. Approximations for photoelectron scattering

    NASA Astrophysics Data System (ADS)

    Fritzsche, V.

    1989-04-01

    The errors of several approximations in the theoretical approach of photoelectron scattering are systematically studied, in tungsten, for electron energies ranging from 10 to 1000 eV. The large inaccuracies of the plane-wave approximation (PWA) are substantially reduced by means of effective scattering amplitudes in the modified small-scattering-centre approximation (MSSCA). The reduced angular momentum expansion (RAME) is so accurate that it allows reliable calculations of multiple-scattering contributions for all the energies considered.

  6. Coherence and Intramolecular Scattering in Molecular Photoionization

    NASA Astrophysics Data System (ADS)

    Becker, U.

    2006-11-01

    In something akin to a double-slit experiment, it could be shown for the first time that electrons display characteristics of both waves- and particles at the same time and, with virtually the push of a button, can be switched back and forth between these states. The experiments provides evidence that disruption of the reflective symmetry of these molecules by introducing two different heavy isotopes, in this case N-14 and N-15, leads to a partial loss of coherence. The electrons begin to partially localise on one of the two, now distinguishable, atoms. The results could have implications for the building and control of "artificial molecules", which are made of semiconductor quantum dots and are a possible component of quantum computers.

  7. Measurements of meteor smoke particles during the ECOMA-2006 campaign: 1. Particle detection by active photoionization

    NASA Astrophysics Data System (ADS)

    Rapp, Markus; Strelnikova, Irina

    2009-03-01

    We present a new design of an in situ detector for the study of meteor smoke particles (MSPs) in the middle atmosphere. This detector combines a classical Faraday cup with a xenon-flashlamp for the active photoionization/photodetachment of MSPs and the subsequent detection of corresponding photoelectrons. This instrument was successfully launched in September 2006 from the Andøya Rocket Range in Northern Norway. A comparison of photocurrents measured during this rocket flight and measurements performed in the laboratory proves that observed signatures are truly due to photoelectrons. In addition, the observed altitude cut-off at 60 km (i.e., no signals were observed below this altitude) is fully understood in terms of the mean free path of the photoelectrons in the ambient atmosphere. This interpretation is also proven by a corresponding laboratory experiment. Consideration of all conceivable species which can be ionized by the photons of the xenon-flashlamp demonstrates that only MSPs can quantitatively explain the measured currents below an altitude of 90 km. Above this altitude, measured photocurrents are most likely due to photoionization of nitric oxide. In conclusion, our results demonstrate that the active photoionization and subsequent detection of photoelectrons provides a promising new tool for the study of MSPs in the middle atmosphere. Importantly, this new technique does not rely on the a priori charge of the particles, neither is the accessible particle size range severely limited by aerodynamical effects. Based on the analysis described in this study, the geophysical interpretation of our measurements is presented in the companion paper by Strelnikova, I., et al. [2008. Measurements of meteor smoke particles during the ECOMA-2006 campaign: 2. results. Journal of Atmospheric and Solar-Terrestrial Physics, this issue, doi:10.1016/j.jastp.2008.07.011].

  8. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Hao, Xiaolei; Chen, Yongju; Yu, Shaogang; Xu, Songpo; Wang, Yanlan; Sun, Renping; Lai, Xuanyang; Wu, Chengyin; Gong, Qihuang; He, Xiantu; Liu, Xiaojun; Chen, Jing

    2016-06-01

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

  9. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics

    PubMed Central

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-01-01

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends. PMID:27256904

  10. Double photoionization of SO 2 and fragmentation spectroscopy of SO 2++ studied by a photoion-photoion coincidence method

    NASA Astrophysics Data System (ADS)

    Dujardin, Gérald; Leach, Sydney; Dutuit, Odile; Guyon, Paul-Marie; Richard-Viard, Martine

    1984-08-01

    Doubly charged sulphur dioxide cations (SO 2++) are produced by photoionization with synchrotron radiation from ACO in the excitation-energy range 34-54 eV. A new photoion-photoion coincidence (PIPICO) experiment is described in which coincidences between photoion fragments originating from the dissociation of the doubly charged parent cation are counted. This PIPICO method enables us to study the fragmentation of individual electronically excited states of SO 2++ and to determine the corresponding absolute double-photoionization partial cross sections as a function of the excitation energy. A tentative assignment of the three observed α, β and γ SO 2++ states is given. The dissociation processes of the α and β states into the products SO + + O + are found to be non-statistical in nature; the γ state dissociates completely into three atomic fragments S + + O + + O. Three main observed features of the double-photoionization cross-section curves are discussed in the text: appearance potentials, linear threshold laws, and constant double-photoionization cross sections relative to the total ionization cross section at high energies.

  11. Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. I. Formal theory

    NASA Astrophysics Data System (ADS)

    Mikosch, Jochen; Patchkovskii, Serguei

    2013-10-01

    We derive a formal theory of noisy Poisson processes with multiple outcomes. We obtain simple, compact expressions for the probability distribution function of arbitrarily complex composite events and its moments. We illustrate the utility of the theory by analyzing properties of coincidence and covariance photoelectron-photoion detection involving single-ionization events. The results and techniques introduced in this work are directly applicable to more general coincidence and covariance experiments, including multiple ionization and multiple-ion fragmentation pathways.

  12. Photoionization of cold gas phase coronene and its clusters: Autoionization resonances in monomer, dimer, and trimer and electronic structure of monomer cation

    NASA Astrophysics Data System (ADS)

    Bréchignac, Philippe; Garcia, Gustavo A.; Falvo, Cyril; Joblin, Christine; Kokkin, Damian; Bonnamy, Anthony; Parneix, Pascal; Pino, Thomas; Pirali, Olivier; Mulas, Giacomo; Nahon, Laurent

    2014-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail. Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory.

  13. Photoionization of cold gas phase coronene and its clusters: Autoionization resonances in monomer, dimer, and trimer and electronic structure of monomer cation

    SciTech Connect

    Bréchignac, Philippe Falvo, Cyril; Parneix, Pascal; Pino, Thomas; Pirali, Olivier; Garcia, Gustavo A.; Nahon, Laurent; Joblin, Christine; Kokkin, Damian; Bonnamy, Anthony; Mulas, Giacomo

    2014-10-28

    Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail. Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory.

  14. Spin-Orbit Activated Interchannel Coupling Effect in Dipole and Quadrupole Photoionization

    NASA Astrophysics Data System (ADS)

    Kumar, S. Sunil; Deschmukh, P. C.; Banerjee, T.; Manson, S. T.

    2008-05-01

    Spin-orbit activated interchannel coupling has been found to affect photoelectron parameters in both the dipole and quadrupole manifolds [1-3]. This effect has been reported in the dipole photoionization parameters of 3d subshells of Xe [1], Ba [1, 3] and Cs [1, 3] and quadrupole spin-polarization parameters of Xe 3d [2]. In the present work, dipole and quadrupole photoionization from 4d and 4p subshells of Xe and 5d and 5p subshells of Rn have been investigated. The effect is significant in dipole photoionization of Xe 4d and Rn 5d, and in quadrupole photoionization of Xe 4p and of Rn 5p states. [1] M. Ya. Amusia, L. V. Chernysheva, S. T. Manson, A. M. Msezane, and V. Radojevic, Phys. Rev. Lett. 88 093002 (2002). [2] M. Ya. Amusia, N. A. Cherepkov, L. V. Chernysheva, Z. Felfli and A. Z. Msezane, J. Phys. B 38 1133 (2005). [3] T. Richter, E. Heinecke, P. Zimmermann, K. Godehusen, M. Yalcinkaya, D. Cubaynes, and M. Meyer, Phys. Rev. Lett. 98 143002 (2007).

  15. DISSOCIATIVE PHOTOIONIZATION OF POLYCYCLIC AROMATIC HYDROCARBON MOLECULES CARRYING AN ETHYNYL GROUP

    SciTech Connect

    Rouillé, G.; Krasnokutski, S. A.; Fulvio, D.; Jäger, C.; Henning, Th.; Garcia, G. A.; Tang, X.-F.; Nahon, L.

    2015-09-10

    The life cycle of the population of interstellar polycyclic aromatic hydrocarbon (PAH) molecules depends partly on the photostability of the individual species. We have studied the dissociative photoionization of two ethynyl-substituted PAH species, namely, 9-ethynylphenanthrene and 1-ethynylpyrene. Their adiabatic ionization energy and the appearance energy of fragment ions have been measured with the photoelectron photoion coincidence spectroscopy technique. The adiabatic ionization energy has been found at 7.84 ± 0.02 eV for 9-ethynylphenanthrene and at 7.41 ± 0.02 eV for 1-ethynylpyrene. These values are similar to those determined for the corresponding non-substituted PAH molecules phenanthrene and pyrene. The appearance energy of the fragment ion indicative of the loss of a H atom following photoionization is also similar for either ethynyl-substituted PAH molecule and its non-substituted counterpart. The measurements are used to estimate the critical energy for the loss of a H atom by the PAH cations and the stability of ethynyl-substituted PAH molecules upon photoionization. We conclude that these PAH derivatives are as photostable as the non-substituted species in H i regions. If present in the interstellar medium, they may play an important role in the growth of interstellar PAH molecules.

  16. Photoelectronic characterization of heterointerfaces.

    SciTech Connect

    Brumbach, Michael Todd

    2012-02-01

    In many devices such as solar cells, light emitting diodes, transistors, etc., the performance relies on the electronic structure at interfaces between materials within the device. The objective of this work was to perform robust characterization of hybrid (organic/inorganic) interfaces by tailoring the interfacial region for photoelectron spectroscopy. Self-assembled monolayers (SAM) were utilized to induce dipoles of various magnitudes at the interface. Additionally, SAMs of molecules with varying dipolar characteristics were mixed into spatially organized structures to systematically vary the apparent work function. Polymer thin films were characterized by depositing films of varying thicknesses on numerous substrates with and without interfacial modifications. Hard X-ray photoelectron spectroscopy (HAXPES) was performed to evaluate a buried interface between indium tin oxide (ITO), treated under various conditions, and poly(3-hexylthiophene) (P3HT). Conducting polymer films were found to be sufficiently conducting such that no significant charge redistribution in the polymer films was observed. Consequently, a further departure from uniform substrates was taken whereby electrically disconnected regions of the substrate presented ideally insulating interfacial contacts. In order to accomplish this novel strategy, interdigitated electrodes were used as the substrate. Conducting fingers of one half of the electrodes were electrically grounded while the other set of electrodes were electronically floating. This allowed for the evaluation of substrate charging on photoelectron spectra (SCOPES) in the presence of overlying semiconducting thin films. Such an experiment has never before been reported. This concept was developed out of the previous experiments on interfacial modification and thin film depositions and presents new opportunities for understanding chemical and electronic changes in a multitude of materials and interfaces.

  17. Valence-band electronic structure of iron phthalocyanine: An experimental and theoretical photoelectron spectroscopy study

    NASA Astrophysics Data System (ADS)

    Brena, Barbara; Puglia, Carla; de Simone, Monica; Coreno, Marcello; Tarafder, Kartick; Feyer, Vitaly; Banerjee, Rudra; Göthelid, Emmanuelle; Sanyal, Biplab; Oppeneer, Peter M.; Eriksson, Olle

    2011-02-01

    The electronic structure of iron phthalocyanine (FePc) in the valence region was examined within a joint theoretical-experimental collaboration. Particular emphasis was placed on the determination of the energy position of the Fe 3d levels in proximity of the highest occupied molecular orbital (HOMO). Photoelectron spectroscopy (PES) measurements were performed on FePc in gas phase at several photon energies in the interval between 21 and 150 eV. Significant variations of the relative intensities were observed, indicating a different elemental and atomic orbital composition of the highest lying spectral features. The electronic structure of a single FePc molecule was first computed by quantum chemical calculations by means of density functional theory (DFT). The hybrid Becke 3-parameter, Lee, Yang and Parr (B3LYP) functional and the semilocal 1996 functional of Perdew, Burke and Ernzerhof (PBE) of the generalized gradient approximation (GGA-)type, exchange-correlation functionals were used. The DFT/B3LYP calculations find that the HOMO is a doubly occupied π-type orbital formed by the carbon 2p electrons, and the HOMO-1 is a mixing of carbon 2p and iron 3d electrons. In contrast, the DFT/PBE calculations find an iron 3d contribution in the HOMO. The experimental photoelectron spectra of the valence band taken at different energies were simulated by means of the Gelius model, taking into account the atomic subshell photoionization cross sections. Moreover, calculations of the electronic structure of FePc using the GGA+U method were performed, where the strong correlations of the Fe 3d electronic states were incorporated through the Hubbard model. Through a comparison with our quantum chemical calculations we find that the best agreement with the experimental results is obtained for a Ueff value of 5 eV.

  18. Vector potential photoelectron microscopy

    SciTech Connect

    Browning, R.

    2011-10-15

    A new class of electron microscope has been developed for the chemical microanalysis of a wide range of real world samples using photoelectron spectroscopy. Highly structured, three-dimensional samples, such as fiber mats and fracture surfaces can be imaged, as well as insulators and magnetic materials. The new microscope uses the vector potential field from a solenoid magnet as a spatial reference for imaging. A prototype instrument has demonstrated imaging of uncoated silk, magnetic steel wool, and micron-sized single strand tungsten wires.

  19. Parallelizing the XSTAR Photoionization Code

    NASA Astrophysics Data System (ADS)

    Noble, M. S.; Ji, L.; Young, A.; Lee, J. C.

    2009-09-01

    We describe two means by which XSTAR, a code which computes physical conditions and emission spectra of photoionized gases, has been parallelized. The first is pvmxstar, a wrapper which can be used in place of the serial xstar2xspec script to foster concurrent execution of the XSTAR command line application on independent sets of parameters. The second is pmodel, a plugin for the Interactive Spectral Interpretation System (ISIS) which allows arbitrary components of a broad range of astrophysical models to be distributed across processors during fitting and confidence limits calculations, by scientists with little training in parallel programming. Plugging the XSTAR family of analytic models into pmodel enables multiple ionization states (e.g., of a complex absorber/emitter) to be computed simultaneously, alleviating the often prohibitive expense of the traditional serial approach. Initial performance results indicate that these methods substantially enlarge the problem space to which XSTAR may be applied within practical timeframes.

  20. Shape resonances in the photoionization of CF4

    SciTech Connect

    Stephens, J. A.; Dill, Dan; Dehmer, Joseph L.

    1986-01-01

    Calculations of photoionization cross sections and photoelectron angular distributions have been performed for all occupied orbitals of CF4 using the multiple-scattering model. Results are compared with very recent experiments which employ synchrotron radiation to measure these quantities, namely the measurements of Truesdale e t a l. for the carbonK shell, and measurements of Carlson e t a l. and Novak e t a l. for the five outermost valence levels. The calculations predict intense shape resonances below 3 eV in continua of a1 and t2 final state symmetry. Qualitative agreement is attained on comparing much of the theory with experiment, notably the five outer valence levels, which serves to establish a one-electron picture of the photoionization dynamics of CF4.

  1. Off-resonance photoemission dynamics studied by recoil frame F1s and C1s photoelectron angular distributions of CH{sub 3}F

    SciTech Connect

    Stener, M. Decleva, P.; Mizuno, T.; Yagishita, A.; Yoshida, H.

    2014-01-28

    F1s and C1s photoelectron angular distributions are considered for CH{sub 3}F, a molecule which does not support any shape resonance. In spite of the absence of features in the photoionization cross section profile, the recoil frame photoelectron angular distributions (RFPADs) exhibits dramatic changes depending on both the photoelectron energy and polarization geometry. Time-dependent density functional theory calculations are also given to rationalize the photoionization dynamics. The RFPADs have been compared with the theoretical calculations, in order to assess the accuracy of the theoretical method and rationalize the experimental findings. The effect of finite acceptance angles for both ionic fragments and photoelectrons has been included in the calculations, as well as the effect of rotational averaging around the fragmentation axis. Excellent agreement between theory and experiment is obtained, confirming the good quality of the calculated dynamical quantities (dipole moments and phase shifts)

  2. 2006 Photoions, Photoionization & Photodetachment held on January 29-February 3, 2006

    SciTech Connect

    Robert Continetti Nancy Ryan Gray

    2006-09-06

    The 4th Gordon Conference on Photoions, Photoionization and Photodetachment will be held January 29-February 3, 2006 at the Santa Ynez Valley Marriott in Buellton, California. This meeting will continue to cover fundamentals and applications of photoionization and photodetachment, including valence and core-level phenomena and applications to reaction dynamics, ultrashort laser pulses and the study of exotic molecules and anions. Further information will be available soon at the Gordon Conference Website, and will be announced.

  3. Experimental observation of guanine tautomers with VUV photoionization

    SciTech Connect

    Zhou, Jia; Kostko, Oleg; Nicolas, Christophe; Tang, Xiaonan; Belau, Leonid; de Vries, Mattanjah S.; Ahmed, Musahid

    2008-12-01

    Two methods of preparing guanine in the gas phase, thermal vaporization and laser desorption, have been investigated. The guanine generated by each method is entrained in a molecular beam, single photon ionized with tunable VUV synchrotron radiation, and analyzed using reflectron mass spectrometry. The recorded photoionization efficiency (PIE) curves show a dramatic difference for experiments performed via thermal vaporization compared to laser desorption. The calculated vertical and adiabatic ionization energies for the eight lowest lying tautomers of guanine suggest the experimental observations arise from different tautomers being populated in the two different experimental methods.

  4. Photoionization and fragmentaton of (N2O)n clusters

    NASA Astrophysics Data System (ADS)

    Kamke, W.; Kamke, B.; Kiefl, H. U.; Hertel, I. V.

    1986-02-01

    A supersonic molecular beam and monochromatized synchrotron radiation are presently used to measure photoionization efficiency curves for (N2O)n, at n = 1-6, in the 55-110 nm wavelength region. By measuring the energy loss of cluster ions which fragment in a field free drift region of the ion source, it becomes possible to detect delayed unimolecular and collision-induced fragmentations of the cluster ions. From a study of the dependence of the 'metastable' signals on background pressure, it appears that only the removal of a single N2O molecule at a time can occur by unimolecular decay.

  5. Satellite structure in the Argon 1s photoelectron spectrum

    SciTech Connect

    Azuma, Y.; LeBrun, T.; MacDonald, M.; Southworth, S.H.

    1995-08-01

    Atomic inner-shell photoelectron spectra typically display several relatively weak {open_quotes}satellite peaks{close_quotes} at higher ionization energy than the primary peak. Such satellite peaks are associated with final-state configurations corresponding to ionization of an inner-shell electron and excitation or ionization of one or more valence electrons. The observation of satellite peaks demonstrates that the independent-electron picture is inadequate to describe atomic structure and the photoionization process. The measured energies and intensities of photoelectron satellites provide sensitive tests of many-electron theoretical models. We recorded the Ar 1s photoelectron spectrum on beam line X-24A at an X-ray energy of 3628 eV. The primary peak at 3206 eV ionization energy was recorded at an observed resolution of 1.8 eV (FWHM). The satellite structure shows remarkable similarity to that recorded in the suprathreshold region of the Ar K photoabsorption cross section, demonstrating the manner in which these techniques complement each other. Surprisingly, while the region just above the K threshold in Ar was the subject of several theoretical studies using multi-configuration calculations, we find good agreement between our results and those of Dyall and collaborators using a shake model.

  6. Confinement Resonances in Photoionization of Xe-C{sub 60}{sup +}

    SciTech Connect

    Kilcoyne, A. L. D.; Aguilar, A.; Mueller, A.; Schippers, S.; Cisneros, C.; Alna'Washi, G.; Aryal, N. B.; Baral, K. K.; Esteves, D. A.; Thomas, C. M.; Phaneuf, R. A.

    2010-11-19

    Experimental evidence is presented for confinement resonances associated with photoabsorption by a Xe atom in a C{sub 60} cage. The giant 4d resonance in photoionization of Xe is predicted to be redistributed into four components due to multipath interference of photoelectron waves reflected by the cage. The measurements were made in the photon energy range 60-150 eV by merging a beam of synchrotron radiation with a mass/charge selected Xe-C{sub 60}{sup +} ion beam. The phenomenon was observed in the Xe-C{sub 583}{sup +} product ion channel.

  7. Strong nondipole effect created by multielectron correlation in 5s photoionization of xenon

    SciTech Connect

    Ricz, S.; Koever, A.; Varga, D.; Ricsoka, T.; Sankari, R.; Jurvansuu, M.; Nikkinen, J.; Aksela, H.; Aksela, S.

    2003-01-01

    The angular distribution of the Xe 5s photoelectrons was measured in the 90-225 eV photon energy range using linearly polarized synchrotron radiation. The experimentally determined angular distribution parameters were compared with theoretical values obtained from calculations based on the random-phase approximation and the time-dependent density-functional theory. Experiment shows that the dipole ({beta}) and nondipole ({gamma}) parameters vary strongly as a function of the photon energy, in accordance with calculations that account for the interchannel coupling. Nondipole effects observed clearly in experiment confirm the role of multielectron correlation in describing the 5s photoionization of Xe far from the ionization threshold.

  8. Complete Photo-Induced Breakup of the H2 Molecule as a Probe of Molecular Electron Correlation

    NASA Astrophysics Data System (ADS)

    Vanroose, Wim; Martín, Fernando; Rescigno, Thomas N.; McCurdy, C. William

    2005-12-01

    Despite decades of progress in quantum mechanics, electron correlation effects are still only partially understood. Experiments in which both electrons are ejected from an oriented hydrogen molecule by absorption of a single photon have recently demonstrated a puzzling phenomenon: The ejection pattern of the electrons depends sensitively on the bond distance between the two nuclei as they vibrate in their ground state. Here, we report a complete numerical solution of the Schrödinger equation for the double photoionization of H2. The results suggest that the distribution of photoelectrons emitted from aligned molecules reflects electron correlation effects that are purely molecular in origin.

  9. Complete Photo-Induced Breakup of the H2 Molecule as a Probe ofMolecular Electron Correlation

    SciTech Connect

    Vanroose, Wim; Martin, Fernando; Rescigno, Thomas N.; McCurdy, C.William

    2005-11-17

    Despite decades of progress in quantum mechanics, electron correlation effects are still only partially understood. Experiments in which both electrons are ejected from an oriented hydrogen molecule by absorption of a single photon have recently demonstrated a puzzling phenomenon: The ejection pattern of the electrons depends sensitively on the bond distance between the two nuclei as they vibrate in their ground state. Here we report a complete numerical solution of the Schrodinger equation for the double photoionization of H2. The results suggest that the distribution of photoelectrons emitted from aligned molecules reflects electron correlation effects that are purely molecular in origin.

  10. Spin-resolved photoionization studies

    NASA Astrophysics Data System (ADS)

    Snell, G.; Berrah, N.; Langer, B.; Bozek, J. D.

    2000-06-01

    We performed spin-polarization measurements of the Xe N_45O_23O_23, Kr M_45N_23N_23 and Ar L_23M_23M_23 Auger electron with circularly polarized light from the ALS fom threshold up to 540 eV photon energy. The spin-resolved electron spectra were recorded by a new spectrometer system that combines our time-of flight spectrometers with a retarding field Mott polarimeter of the Burnett et al. design.footnote C. Burnett, T. J. Monroe, and F. B. Dunning, Rev. Sci. Instrum. 65,1893 (1994). From our measurements, the orientation parameter A_10 of the Xe 4d-1, Kr 3d-1 and Ar 2p-1 hole states were obtained over a broad photon energy range covering the shape resonance (≈ 100 eV) and the Cooper minimum (≈ 175 eV) of the photoionization cross section. Our measurements are the first direct experimental proof that in the Cooper minimum of a d-subshell photoionziation the outgoing electrons have a purely p character. This work was funded by DOE/BES/Chem.Sci.

  11. 2001 Gordon Research Conference on Photoions, Photoionization and Photodetachment. Final progress report [agenda and attendees list

    SciTech Connect

    Johnson, Mark

    2001-07-13

    The Gordon Research Conference on Photoions, Photoionization and Photodetachment was held at Williams College, Williamstown, Massachusetts, July 8-13, 2001. The 72 conference attendees represented the spectrum of endeavor in this field, coming from academia, industry, and government laboratories, and including US and foreign scientists, senior researchers, young investigators, and students. Emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate discussion about the key issues in the field today. Time for formal presentations was limited. Sessions included the following topics: Vibrational structure, Time resolved studies: nuclear wavepackets, Valence photoionization, Clusters and networks, Resonance structures and decay mechanisms, Ultrafast photoionization, Threshold photoionization, Molecule fixed properties, and Collisional phenomena.

  12. Rotational Doppler effect in x-ray photoionization

    SciTech Connect

    Sun Yuping; Wang Chuankui; Gel'mukhanov, Faris

    2010-11-15

    The energy of the photoelectron experiences a red or blue Doppler shift when the molecule recedes from the detector or approaches him. This results in a broadening of the photoelectron line due to the translational thermal motion. However, the molecules also have rotational degrees of freedom and we show that the translational Doppler effect has its rotational counterpart. This rotational Doppler effect leads to an additional broadening of the spectral line of the same magnitude as the Doppler broadening caused by translational thermal motion. The rotational Doppler broadening as well as the rotational recoil broadening is sensitive to the molecular orbital from which the photoelectron is ejected. This broadening should be taken into account in analysis of x-ray photoemission spectra of super-high resolution and it can be directly observed using x-ray pump-probe spectroscopy.

  13. The Multiplexed Chemical Kinetic Photoionization Mass Spectrometer: A New Approach To Isomer-resolved Chemical Kinetics

    SciTech Connect

    Osborne, David L.; Zou, Peng; Johnsen, Howard; Hayden, Carl C.; Taatjes, Craig A.; Knyazev, Vadim D.; North, Simon W.; Peterka, Darcy S.; Ahmed, Musahid; Leone, Stephen R.

    2008-08-28

    We have developed a multiplexed time- and photon-energy?resolved photoionizationmass spectrometer for the study of the kinetics and isomeric product branching of gasphase, neutral chemical reactions. The instrument utilizes a side-sampled flow tubereactor, continuously tunable synchrotron radiation for photoionization, a multi-massdouble-focusing mass spectrometer with 100percent duty cycle, and a time- and positionsensitive detector for single ion counting. This approach enables multiplexed, universal detection of molecules with high sensitivity and selectivity. In addition to measurement of rate coefficients as a function of temperature and pressure, different structural isomers can be distinguished based on their photoionization efficiency curves, providing a more detailed probe of reaction mechanisms. The multiplexed 3-dimensional data structure (intensity as a function of molecular mass, reaction time, and photoionization energy) provides insights that might not be available in serial acquisition, as well as additional constraints on data interpretation.

  14. The 2p photoionization of ground-state sodium in the vicinity of Cooper minima

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobin; Shi, Yinglong; Dong, Chenzhong

    2016-07-01

    The photoionization processes of ground-state sodium have been investigated with the multiconfiguration Dirac-Fock method. The results are in good or at least reasonable agreement with available experimental and theoretical data. In the energy region near the threshold, the cross sections show non-monotonic changes because of Cooper minima, which due to the sign changes of dominant dipole matrix elements and are very sensitive to electron correlations. As the energy increases continuously, the radial wave functions of the photoelectrons will move towards the nucleus. The values of the cross sections, and hence the Cooper minima, mainly depend on the relative positions of the one-electron radial wave functions of the initial bound electrons 2{p}1/{2,3/2} and the continuum photoelectrons.

  15. Modeling photoionization of aqueous DNA and its components.

    PubMed

    Pluhařová, Eva; Slavíček, Petr; Jungwirth, Pavel

    2015-05-19

    Radiation damage to DNA is usually considered in terms of UVA and UVB radiation. These ultraviolet rays, which are part of the solar spectrum, can indeed cause chemical lesions in DNA, triggered by photoexcitation particularly in the UVB range. Damage can, however, be also caused by higher energy radiation, which can ionize directly the DNA or its immediate surroundings, leading to indirect damage. Thanks to absorption in the atmosphere, the intensity of such ionizing radiation is negligible in the solar spectrum at the surface of Earth. Nevertheless, such an ionizing scenario can become dangerously plausible for astronauts or flight personnel, as well as for persons present at nuclear power plant accidents. On the beneficial side, ionizing radiation is employed as means for destroying the DNA of cancer cells during radiation therapy. Quantitative information about ionization of DNA and its components is important not only for DNA radiation damage, but also for understanding redox properties of DNA in redox sensing or labeling, as well as charge migration along the double helix in nanoelectronics applications. Until recently, the vast majority of experimental and computational data on DNA ionization was pertinent to its components in the gas phase, which is far from its native aqueous environment. The situation has, however, changed for the better due to the advent of photoelectron spectroscopy in liquid microjets and its most recent application to photoionization of aqueous nucleosides, nucleotides, and larger DNA fragments. Here, we present a consistent and efficient computational methodology, which allows to accurately evaluate ionization energies and model photoelectron spectra of aqueous DNA and its individual components. After careful benchmarking, the method based on density functional theory and its time-dependent variant with properly chosen hybrid functionals and polarizable continuum solvent model provides ionization energies with accuracy of 0.2-0.3 e

  16. Modeling photoionization of aqueous DNA and its components.

    PubMed

    Pluhařová, Eva; Slavíček, Petr; Jungwirth, Pavel

    2015-05-19

    Radiation damage to DNA is usually considered in terms of UVA and UVB radiation. These ultraviolet rays, which are part of the solar spectrum, can indeed cause chemical lesions in DNA, triggered by photoexcitation particularly in the UVB range. Damage can, however, be also caused by higher energy radiation, which can ionize directly the DNA or its immediate surroundings, leading to indirect damage. Thanks to absorption in the atmosphere, the intensity of such ionizing radiation is negligible in the solar spectrum at the surface of Earth. Nevertheless, such an ionizing scenario can become dangerously plausible for astronauts or flight personnel, as well as for persons present at nuclear power plant accidents. On the beneficial side, ionizing radiation is employed as means for destroying the DNA of cancer cells during radiation therapy. Quantitative information about ionization of DNA and its components is important not only for DNA radiation damage, but also for understanding redox properties of DNA in redox sensing or labeling, as well as charge migration along the double helix in nanoelectronics applications. Until recently, the vast majority of experimental and computational data on DNA ionization was pertinent to its components in the gas phase, which is far from its native aqueous environment. The situation has, however, changed for the better due to the advent of photoelectron spectroscopy in liquid microjets and its most recent application to photoionization of aqueous nucleosides, nucleotides, and larger DNA fragments. Here, we present a consistent and efficient computational methodology, which allows to accurately evaluate ionization energies and model photoelectron spectra of aqueous DNA and its individual components. After careful benchmarking, the method based on density functional theory and its time-dependent variant with properly chosen hybrid functionals and polarizable continuum solvent model provides ionization energies with accuracy of 0.2-0.3 e

  17. Angle-resolved photoelectron spectroscopy of atomic oxygen

    NASA Astrophysics Data System (ADS)

    van der Meulen, P.; Krause, M. O.; de Lange, C. A.

    1991-06-01

    Using synchrotron-radiation-based, angle-resolved photoelectron spectroscopy, the relative partial photoionization cross sections for the production of the 4 S 0 and 2 D 0 ionic states in atomic oxygen, as well as the corresponding asymmetry parameters, are measured from threshold at 13.62 to about 30 eV. The cross sections are placed on an absolute scale using previous data obtained with an electron spectroscopy modulation method. Attention is focused on the numerous autoionization resonances below the 2p -12D0, 2p -12P0, and 2s -14Pe limits. The behavior of the asymmetry parameters across these resonances is observed for the first time. The 2s2p4(4Pe)3p(3S0,3P0,3D0) resonances are fitted by a Fano-type profile to obtain accurate values for the position, width, and q parameter.

  18. Atomic Auger Doppler effects upon emission of fast photoelectrons.

    PubMed

    Simon, Marc; Püttner, Ralph; Marchenko, Tatiana; Guillemin, Renaud; Kushawaha, Rajesh K; Journel, Loïc; Goldsztejn, Gildas; Piancastelli, Maria Novella; Ablett, James M; Rueff, Jean-Pascal; Céolin, Denis

    2014-01-01

    Studies of photoemission processes induced by hard X-rays including production of energetic electrons have become feasible due to recent substantial improvement of instrumentation. Novel dynamical phenomena have become possible to investigate in this new regime. Here we show a significant change in Auger emission following 1s photoionization of neon, which we attribute to the recoil of the Ne ion induced by the emission of a fast photoelectron. Because of the preferential motion of the ionized Ne atoms along two opposite directions, an Auger Doppler shift is revealed, which manifests itself as a gradual broadening and doubling of the Auger spectral features. This Auger Doppler effect should be a general phenomenon in high-energy photoemission of both isolated atoms and molecules, which will have to be taken into account in studies of other recoil effects such as vibrational or rotational recoil in molecules, and may also have consequences in measurements in solids. PMID:24906107

  19. Photoelectron Spectroscopy for Chemical Analysis.

    PubMed

    Rensmo, Håkan; Siegbahn, Hans

    2015-01-01

    Photoelectron spectroscopy started its modern development in the fifties based on techniques for studies of nuclear decay. Since then, photoelectron spectroscopy has undergone a dramatic expansion of application and is now a prime research tool in basic and applied science. This progress has been largely due to the concomitant development of photon sources, sample handling and electron energy analyzers. The present article describes some of the salient features of modern photoelectron spectroscopy and its applications with particular emphasis on energy relevant issues. PMID:26507085

  20. EUV optics in photoionization experiments

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Wachulak, Przemysław; Fiedorowicz, Henryk; Fok, Tomasz; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Anna; Szczurek, Mirosław; Pina, Ladislav; Sveda, Libor

    2013-05-01

    In this work photoionized plasmas were created by irradiation of He, Ne and Ar gases with a focused EUV beam from one of two laser-plasma sources employing Nd:YAG laser systems of different parameters. First of them was a 10-Hz laser-plasma EUV source, based on a double-stream gas-puff target, irradiated with the 3-ns/0.8J laser pulse. EUV radiation in this case was focused using a gold-plated grazing incidence ellipsoidal collector in the wavelength range λ = 9÷70 nm. The most intense emission was in the relatively narrow spectral region centred at λ = 11 +/- 1 nm. The second source was based on a 10 ns/10 J/10 Hz laser system. In this case EUV radiation was focused using a gold-plated grazing incidence multifoil collector or a Mo-coated ellipsoidal collector. The most intense emission in this case was in the 5 ÷ 15 nm spectral region. Radiation fluence ranged from 60 mJ/cm2 to 400 mJ/cm2. Different gases were injected into the interaction region, perpendicularly to an optical axis of the irradiation system, using an auxiliary gas puff valve. Irradiation of the gases resulted in ionization and excitation of atoms and ions. Spectra in EUV range were measured using a grazing incidence, flat-field spectrometer (McPherson Model 251), equipped with a 450 lines/mm toroidal grating. In all cases the most intense emission lines were assigned to singly charged ions. The other emission lines belong to atoms or doubly charged ions. The spectra were excited in low density gases of the order of 1 ÷ 10% atmospheric density.

  1. Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions

    NASA Technical Reports Server (NTRS)

    Dill, D.; Starace, A. F.; Manson, S. T.

    1974-01-01

    The photoelectron asymmetry parameter beta in LS-coupling is obtained as an expansion into contributions from alternative angular momentum transfers j sub t. The physical significance of this expansion of beta is shown to be that: (1) the electric dipole interaction transfers to the atom a charcteristic single angular momentum j sub t = sub o, where sub o is the photoelectron's initial orbital momentum; and (2) angular momentum transfers indicate the presence of anisotropic interaction of the outgoing photoelectron with the residual ion. For open shell atoms the photoelectron-ion interaction is generally anisotropic; photoelectron phase shifts and electric dipole matrix elements depend on both the multiplet term of the residual ion and the total orbital momentum of the ion-photoelectron final state channel. Consequently beta depends on the term levels of the residual ion and contains contributions from all allowed values of j sub t. Numerical calculations of the asymmetry parameters and partial cross sections for photoionization of atomic sulfur are presented.

  2. Single and double photoionizations of methanal (formaldehyde)

    NASA Astrophysics Data System (ADS)

    Hochlaf, M.; Eland, J. H. D.

    2005-10-01

    Single and double photoionization spectra of formaldehyde have been measured at 40.81 and 48.37 eV photon energy and the spectrum of the doubly charged cation has been interpreted using high-level electronic structure calculations. The adiabatic double-ionization energy is determined as 31.7±0.25eV and the vertical ionization energy is 33 eV. The five lowest excited electronic states are identified and located. The potential-energy surfaces of the accessible states explain the lack of stable H2CO2+ dications and the lack of vibrational structure. The experimental double-ionization spectrum can be decomposed into two distinct contributions, one from direct photoionization and the second from indirect double photoionization by an inner-valence shell Auger effect.

  3. Total quadruple photoionization cross section of beryllium

    SciTech Connect

    Emmanouilidou, Agapi

    2007-11-15

    In a quasiclassical framework, we formulate the quadruple ionization by single-photon absorption of the Coulomb five-body problem. We present the quadruple photoionization total cross section of the ground state of beryllium for energies up to 620 eV. Our results for energies close to threshold are in agreement with the Wannier threshold law for four-electron escape. In addition, the agreement of our results with a shape formula provides support for the overall shape of our total quadruple cross section. Finally, we find that the photon energy where the maximum of the total photoionization cross section occurs for single, double, triple, and quadruple photoionization of H, He, Li, and Be, respectively, seems to follow a linear relation with the threshold energy for complete breakup of the respective element.

  4. Comparative analysis of theories of relativistic photoionization

    NASA Astrophysics Data System (ADS)

    Hafizi, Bahman; Gordon, Daniel; Palastro, John

    2015-11-01

    Laser-plasma experiments routinely rely on photoionization for plasma formation. For large laser intensities or for high-Z atoms relativistic effects become important. We investigate a unique regime of relativistic photoionization from high-Z atoms where relativistic effects modify both the bound and continuum electronic states. Theories of photoionization are based on the imaginary time method and the S-matrix method, amongst others. We compare the results of these approaches for both the Dirac and the Klein-Gordon equations. Analytical results for the momentum distribution of ejected electrons and ionization rate are presented and compared with those from numerical solutions. Work supported by the Department of Energy and the NRL Base Program.

  5. Photodissociation and photoionization of organosulfur radicals

    SciTech Connect

    Hsu, Chia-Wei

    1994-05-27

    The dynamics of S({sup 3}P{sub 2,1,0}, {sup 1}D{sub 2}) production from the 193 nm photodissociation of CH{sub 3}SCH{sub 3}, H{sub 2}S and CH{sub 3}SH have been studied using 2 + 1 resonance-enhanced multiphoton ionization (REMPI) techniques. The 193 nm photodissociation cross sections for the formation of S from CH{sub 3}S and HS initially prepared in the photodissociation of CH{sub 3}SCH{sub 3} and H{sub 2}S are estimated to be 1 {times} 10{sup {minus}18} and 1.1 {times} 10{sup {minus}18} cm{sup 2}, respectively. The dominant product from CH{sub 3}S is S({sup 1}D), while that from SH is S({sup 3}P). Possible potential energy surfaces involved in the 193 nm photodissociation of CH{sub 3}S({tilde X}) and SH(X) have been also examined. Threshold photoelectron (PE) spectra for SH and CH{sub 3}S formed in the ultraviolet photodissociation of H{sub 2}S and CH{sub 3}SH, respectively, have been measured using the nonresonant two-photon pulsed field ionization (N2P-PFI) technique. The rotationally resolved N2P-PFI-PE spectrum obtained for SH indicates that photoionization dynamics favors the rotational angular momentum change {Delta}N < 0 with the {Delta}N value up to {minus}3, an observation similar to that found in the PFI-PE spectra of OH (OD) and NO. The ionization energies for SH(X{sup 2}{product}{sub 3,2}) and CH{sub 3}S({tilde X}{sup 2}E{sub 3/2}) are determined to be 84,057.5 {plus_minus} 3 cm{sup {minus}1} and 74,726 {plus_minus} 8 cm{sup {minus}1} respectively. The spin-orbit splittings for SH(X{sup 2}{product}{sub 3/2,1/2}) and CH{sub 3}S({tilde X}{sup 2}E{sub 3/2,1/2}) are found to be 377 {plus_minus} 2 and 257 {plus_minus} 5 cm{sup {minus}1}, respectively, in agreement with previous measurements. The C-S stretching frequency for CH{sub 3}S{sup +}({tilde X}{sup 3}A{sub 2}) is 733 {plus_minus} 5 cm{sup {minus}1}. This study illustrates that the PFI-PE detection method can be a sensitive probe for the nascent internal energy distribution of photoproducts.

  6. Rotationally resolved photoelectron spectra in resonance enhanced multiphoton ionization of HCl via the F 1Δ2 Rydberg state

    NASA Astrophysics Data System (ADS)

    Wang, Kwanghsi; McKoy, V.

    1991-12-01

    Results of studies of rotational ion distributions in the X 2Π3/2 and X 2Π1/2 spin-orbit states of HCl+ resulting from (2+1') resonance enhanced multiphoton ionization (REMPI) via the S(0) branch of the F 1Δ2 Rydberg state are reported and compared with measured threshold-field-ionization zero-kinetic-energy spectra reported recently [K. S. Haber, Y. Jiang, G. Bryant, H. Lefebvre-Brion, and E. R. Grant, Phys. Rev. A (in press)]. These results show comparable intensities for J+=3/2 of the X 2Π3/2 ion and J+=1/2 of the X 2Π1/2 ion. Both transitions require an angular momentum change of ΔN=-1 upon photoionization. To provide further insight into the near-threshold dynamics of this process, we also show rotationally resolved photoelectron angular distributions, alignment of the ion rotational levels, and rotational distributions for the parity components of the ion rotational levels. About 18% population is predicted to occur in the (+) parity component, which would arise from odd partial-wave contributions to the photoelectron matrix element. This behavior is similar to that in (2+1) REMPI via the S(2) branch of the F 1Δ2 state of HBr and was shown to arise from significant l mixing in the electronic continuum due to the nonspherical molecular ion potential. Rotational ion distributions resulting from (2+1) REMPI via the S(10) branch of the F 1Δ2 state are also shown.

  7. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Soshnikov, D. Yu.; Holland, D. M. P.; Powis, I.; Antonsson, E.; Patanen, M.; Nicolas, C.; Miron, C.; Wormit, M.; Dreuw, A.; Trofimov, A. B.

    2015-10-01

    The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n5 with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.

  8. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study

    SciTech Connect

    Schneider, M.; Wormit, M.; Dreuw, A.; Soshnikov, D. Yu.; Trofimov, A. B.; Holland, D. M. P.; Powis, I.; Antonsson, E.; Patanen, M.; Nicolas, C.; Miron, C.

    2015-10-14

    The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n{sup 5} with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.

  9. Effect of strongly coupled plasma on photoionization cross section

    NASA Astrophysics Data System (ADS)

    Das, Madhusmita

    2014-01-01

    The effect of strongly coupled plasma on the ground state photoionization cross section is studied. In the non relativistic dipole approximation, cross section is evaluated from bound-free transition matrix element. The bound and free state wave functions are obtained by solving the radial Schrodinger equation with appropriate plasma potential. We have used ion sphere potential (ISP) to incorporate the plasma effects in atomic structure calculation. This potential includes the effect of static plasma screening on nuclear charge as well as the effect of confinement due to the neighbouring ions. With ISP, the radial equation is solved using Shooting method approach for hydrogen like ions (Li+2, C+5, Al+12) and lithium like ions (C+3, O+5). The effect of strong screening and confinement is manifested as confinement resonances near the ionization threshold for both kinds of ions. The confinement resonances are very much dependent on the edge of the confining potential and die out as the plasma density is increased. Plasma effect also results in appearance of Cooper minimum in lithium like ions, which was not present in case of free lithium like ions. With increasing density the position of Cooper minimum shifts towards higher photoelectron energy. The same behaviour is also true for weakly coupled plasma where plasma effect is modelled by Debye-Huckel potential.

  10. Effect of strongly coupled plasma on photoionization cross section

    SciTech Connect

    Das, Madhusmita

    2014-01-15

    The effect of strongly coupled plasma on the ground state photoionization cross section is studied. In the non relativistic dipole approximation, cross section is evaluated from bound-free transition matrix element. The bound and free state wave functions are obtained by solving the radial Schrodinger equation with appropriate plasma potential. We have used ion sphere potential (ISP) to incorporate the plasma effects in atomic structure calculation. This potential includes the effect of static plasma screening on nuclear charge as well as the effect of confinement due to the neighbouring ions. With ISP, the radial equation is solved using Shooting method approach for hydrogen like ions (Li{sup +2}, C{sup +5}, Al{sup +12}) and lithium like ions (C{sup +3}, O{sup +5}). The effect of strong screening and confinement is manifested as confinement resonances near the ionization threshold for both kinds of ions. The confinement resonances are very much dependent on the edge of the confining potential and die out as the plasma density is increased. Plasma effect also results in appearance of Cooper minimum in lithium like ions, which was not present in case of free lithium like ions. With increasing density the position of Cooper minimum shifts towards higher photoelectron energy. The same behaviour is also true for weakly coupled plasma where plasma effect is modelled by Debye-Huckel potential.

  11. Branching ratio deviations from statistical behavior in core photoionization

    NASA Astrophysics Data System (ADS)

    Di Tommaso, Devis; Decleva, Piero

    2005-08-01

    Accurate calculations of carbon 1s photoionization cross sections have been performed at the density functional level with the B-spline linear combination of atomic orbitals approach. The molecules considered are FCCH, FCCCH3, FCCCN, F2CCH2, CF3COOCH2CH3, and C3H5O. The variation of the branching ratios relative to inequivalent C 1s ionizations have been evaluated from threshold to about 100 eV photoelectron kinetic energy. Large deviations from the statistical ratios are observed at low energies, which remain often significant several tens of eV above threshold. The importance of taking into account core branching ratios for peak deconvolution and quantitative analysis, as well as an additional tool for structural information, is pointed out. Strong shape resonant effects are found to largely cancel in branching ratios. Their nature and variation along the series is analyzed in the framework of excitations into σ* valence orbitals.

  12. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  13. Photoionization of Atomic Oxygen and Nitrogen

    NASA Technical Reports Server (NTRS)

    Dalgarno, Alexander

    1960-01-01

    A knowledge of the photoionization cross sections of atomic oxygen and atomic nitrogen from the spectral heads down to the x-ray region is necessary for the interpretaton of the behavior of the ionized layers. In this note we examine the available theoretical and experimental data and obtain sets of recommended values.

  14. Solvated Electrons in Clusters: Magic Numbers for the Photoelectron Anisotropy.

    PubMed

    West, Adam H C; Yoder, Bruce L; Luckhaus, David; Signorell, Ruth

    2015-12-17

    This paper reports on a curiosity concerning magic numbers in neutral molecular clusters, namely on magic numbers related to the photoelectron anisotropy in angle-resolved photoelectron spectra. With a combination of density functional calculations and experiment, we search for magic numbers in Na(H2O)n, Na(NH3)n, Na(CH3OH)n, and Na(CH3OCH3)n clusters. In clusters of high symmetry, the highest occupied molecular orbital can be delocalized over an extended region, forming a symmetric charge distribution of high s character, which results in a pronounced anisotropy in the photoelectron angular distribution. We find magic numbers at n = 6 and 4 for sodium-doped dimethyl ether and ammonia clusters, respectively, but not for sodium-doped water and methanol clusters, which is likely a consequence of the degree of hydrogen bonding and the number of structural isomers.

  15. Vibrational branching ratios and asymmetry parameters in the photoionization of CO2 in the region between 650 Å and 840 Å

    National Institute of Standards and Technology Data Gateway

    SRD 119 Vibrational branching ratios and asymmetry parameters in the photoionization of CO2 in the region between 650 Å and 840 Å (Web, free access)   CO2 is studied using dispersed synchrotron radiation in the 650 Å to 850 Å spectral region. The vibrationally resolved photoelectron spectra are analyzed to generate relative vibrational transition amplitudes and the angular asymmetry parameters describing the various transitions observed.

  16. Investigation of low-Z Coster-Kronig transitions by means of Auger and photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Yin, L. I.; Tsang, T.; Adler, I.

    1972-01-01

    Experimental intensity ratios of Auger transitions for Co, Ni, Cu, and Zn as well as the relative L sub 2 and L sub 3 level widths of Cu and Zn, derived from their photoelectron spectra, are presented. Evidence is presented that a great deal of vacancy reorganization took place following photoionization and prior to Auger emission. These reorganizations are assumed to be due to Coster-Kronig transitions f sub 23. These results are compared with theoretical calculations and agree with predicted discontinuity at Z = 30 where f sub 23 transitions become energetically impossible.

  17. Velocity-map imaging of near-threshold photoelectrons in Ne and Ar

    NASA Astrophysics Data System (ADS)

    O'Keeffe, P.; Bolognesi, P.; Richter, R.; Moise, A.; Ovcharenko, Y.; King, G. C.; Avaldi, L.

    2011-08-01

    The photoionization of Ne and Ar has been studied in the region between the 2P3/2 and 2P1/2 thresholds using a velocity-map imaging (VMI) spectrometer. The VMI technique provides a two-dimensional overview of the ionization cross section versus photon energy and emission angle. In these regions the neutral Rydberg states converging to the 2P1/2 ion state affect both the ionization cross section and the asymmetry parameter of the photoelectron angular distribution, which both display Fano line shapes. The results are compared with relativistic multichannel quantum-defect calculations.

  18. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments

    SciTech Connect

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo E-mail: xfzheng@mail.ahnu.edu.cn; Zheng, Xianfeng E-mail: xfzheng@mail.ahnu.edu.cn; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-15

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ∼1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 6{sup 1} and 6{sup 1}1{sup 1} vibronic levels in the S{sub 1} state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1′) REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62 271 ± 3 cm{sup −1}). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique.

  19. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments.

    PubMed

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo; Zheng, Xianfeng; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-01

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ∼1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 6(1) and 6(1)1(1) vibronic levels in the S1 state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1') REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62,271 ± 3 cm(-1)). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique. PMID:26133827

  20. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments

    NASA Astrophysics Data System (ADS)

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo; Zheng, Xianfeng; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-01

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ˜1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 61 and 6111 vibronic levels in the S1 state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1') REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62 271 ± 3 cm-1). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique.

  1. Photoionization of endohedral fullerenes using soft x-ray coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Obaid, Razib; Xiong, Hui; Ablikim, Utuq; Augustin, Sven; Schnorr, Kirsten; Battistoni, Andrea; Wolf, Thomas; Carroll, Ann Marie; Bilodeau, Rene; Osipov, Timur; Rolles, Daniel; Berrah, Nora

    2016-05-01

    Endohedral fullerenes are a model system to understand the reorganization dynamics of highly charged molecular systems with delocalized electronic clouds in the multiphoton excitation regime. Previous experiments at the Linac Coherent Light Source (LCLS) using free-electron laser (FEL) and ultrafast IR laser pulses studied this feature in Ho3N@C80. The question remains whether these dynamics can be studied in the site-specific single photo-ionization regime. Ho3N@C80 is particularly interesting since the inner molecule, Ho3N, is unstable in its natural form. The presence of the encapsulating cage, with the charge exchange characteristics of Holmium, stabilizes the whole molecule. In this study, we will present the charge fragmentation dynamics of this species in the single photoionization process of inner shell electrons (4d) of Holmium using the Advanced Light Source (ALS) at LBNL. Photoion-photoion correlation data, alongside with qualitative electron data will be presented. Funded by the DoE-BES, Grant No. DE-SC0012376.

  2. Laboratory simulations of photoelectron sheaths

    NASA Astrophysics Data System (ADS)

    Dove, A.; Wang, X.; Robertson, S. H.; Poppe, A.; Horanyi, M.

    2011-12-01

    Surfaces of airless natural bodies, such as the Moon and asteroids, and spacecraft in space are exposed to solar ultraviolet radiation that creates a photoelectron sheath that dominates the near-surface plasma environment. In order to reproduce and investigate this photoelectron layer, we conduct experiments in vacuum with Xe excimer lamps that emit UV light at ~172 nm (7.21 eV) which is of sufficient intensity to create a photoelectron layer with a characteristic length on the order of several centimeters. We utilize surfaces, such as Zr and CeO2 that have a low work function and a high photoelectron emission yield to maximize the electron density. In order to repel stray electrons that are produced by other surfaces in the chamber, and to define a reference potential, a negatively biased grid is placed 7.5 cm above the surface. The surface and the grid are used as a retarding potential analyzer to determine the energy distribution of the electrons emitted from the surface. When the grid is biased to -20 V, the emitted electrons have an approximately Maxwellian energy distribution with a characteristic temperature of 1.4 ± 0.3 eV. A Langmuir probe is also used as a diagnostic tool to find the effective electron temperature and electron density within the pure electron plasma, and is moved in order to probe different heights above the surface. The derived densities and potentials are compared with those predicted by 1-D PIC code simulations.

  3. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  4. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  5. Atomic ionization by intense laser pulses of short duration: Photoelectron energy and angular distributions

    SciTech Connect

    Dondera, M.

    2010-11-15

    We introduce an adequate integral representation of the wave function in the asymptotic region, valid for the stage postinteraction between a one-electron atom and a laser pulse of short duration, as a superposition of divergent radial spherical waves. Starting with this representation, we derive analytic expressions for the energy and angular distributions of the photoelectrons and we show their connection with expressions used before in the literature. Using our results, we propose a method to extract the photoelectron distributions from the time dependence of the wave function at large distances. Numerical results illustrating the method are presented for the photoionization of hydrogenlike atoms from the ground state and several excited states by extreme ultraviolet pulses with a central wavelength of 13.3 nm and several intensities around the value I{sub 0}{approx_equal}3.51x10{sup 16} W/cm{sup 2}.

  6. Photoionization models of the CALIFA HII regions

    NASA Astrophysics Data System (ADS)

    Morisset, C.; Delgado-Inglada, G.; Sánchez, S. F.

    2016-06-01

    We present here a short summary of a forthcoming paper on photoionization models based on CALIFA observations of HII regions. For each of the ˜ 20,000 sources of the CALIFA H ii regions catalog, a grid of photoionization models is computed assuming the ionizing SED being described by the underlying stellar population obtained from spectral synthesis modeling. The nebular metallicity (associated to O/H) is defined using the classical strong line method O3N2. The remaining free parameters are the abundance ratio N/O and the ionization parameter U, which are determined by looking for the model fitting [N II]/Hα and [O III]/Hβ. The models are also selected to fit [O II]/Hβ. This process leads to a set of ˜ 3,200 models that reproduce simultaneously the three observations. We determine new relations between the nebular parameters, like the ionization parameter U and the [O II]/[O III] or [S II]/[S III] line ratios. A new relation between N/O and O/H is obtained, mostly compatible with previous empirical determinations (and not with previous results obtained using photoionization models). A new relation between U and O/H is also determined. All the models are publicly available on the Mexican Millions Models database 3MdB.

  7. Photoionization of atoms and small molecules using synchrotron radiation. [SF/sub 6/, SiF/sub 4/

    SciTech Connect

    Ferrett, T.A.

    1986-11-01

    The combination of synchrotron radiation and time-of-flight electron spectroscopy has been used to study the photoionization dynamics of atoms (Li) and small molecules (SF/sub 6/, SiF/sub 4/, and SO/sub 2/). Partial cross sections and angular distribution asymmetry parameters have been measured for Auger electrons and photoelectrons as functions of photon energy. Emphasis is on the basic understanding of electron correlation and resonant effects as manifested in the photoemission spectra for these systems. 254 refs., 46 figs., 10 tabs.

  8. Quadrupole photoionization of hydrogen atoms in Debye plasmas

    SciTech Connect

    Lin, C. Y.; Ho, Y. K.

    2010-09-15

    Although a great deal of effort has been devoted to investigating dipole photoionization of plasma-embedded atoms, far less is known about the corresponding quadrupole transitions. In the present work, quadrupole photoionization processes for the ground and excited states of hydrogen atoms in Debye plasma are explored using the method of complex coordinate rotation. The plasma shielding effects on the quadrupole photoionization cross sections are reported for a variety of Debye screening lengths and compared to the dipole results accordingly. Under the perturbation of plasma screening, shape resonances and Cooper-type minima occurring in both dipole and quadrupole photoionization cross sections are presented and discussed. Comparisons are made to other theoretical calculations for the dipole photoionization with good agreement. The present quadrupole results are the first predictions for hydrogen photoionization in Debye plasmas.

  9. Theoretical Studies on Photoionization Cross Sections of Solid Gold

    NASA Astrophysics Data System (ADS)

    Ma, Xiao-Guang; Sun, Wei-Guo; Cheng, Yan-Song

    2005-01-01

    Accurate expression for photoabsorption (photoionization) cross sections of high density system proposed recently is used to study the photoionization of solid gold. The results show that the present theoretical photoionization cross sections have good agreement both in structure and in magnitude with the experimental results of gold crystal. The studies also indicate that both the real part ε' and the imaginary part ε'' of the complex dielectric constant ε, and the dielectric influence function of a nonideal system have rich structures in low energy side with a range about 50 eV, and suggest that the influence of particle interactions of surrounding particles with the photoionized particle on the photoionization cross sections can be easily investigated using the dielectric influence function. The electron overlap effects are suggested to be implemented in the future studies to improve the accuracy of theoretical photoionization cross sections of a solid system.

  10. Double and triple photoionization of Li and Be

    SciTech Connect

    Colgan, J.; Pindzola, M.S.; Robicheaux, F.

    2005-08-15

    We present calculations for the double photoionization (with excitation) and the triple photoionization of Li and Be. We extend and more fully discuss the previous calculations made for Li by Colgan et al. [Phys. Rev. Lett. 93, 053201 (2004)] and present calculations for Be. The Be triple photoionization cross sections are compared with previous double shake-off model calculations of Kheifets and Bray [J. Phys. B 36, L211 (2003)], and our calculations are found to be significantly lower.

  11. Measurements of isotope effects in the photoionization of N2 and implications for Titan's atmosphere

    SciTech Connect

    Croteau, Philip; Randazzo, John B.; Kostko, Oleg; Ahmed, Musahid; Liang, Mao-Chang; Yung, Yuk L.; Boering, Kristie A.

    2010-12-30

    Isotope effects in the non-dissociative photoionization of molecular nitrogen (N2 + h nu -> N2+ + e-) may play a role in determining the relative abundances of isotopic species containing nitrogen in interstellar clouds and planetary atmospheres but have not been previously measured. Measurements of the photoionization efficiency spectra of 14N2, 15N14N, and 15N2 from 15.5 to 18.9 eV (65.6-80.0 nm) using the Advanced Light Source at Lawrence Berkeley National Laboratory show large differences in peak energies and intensities, with the ratio of the energy-dependent photoionization cross-sections, sigma(14N2)/sigma(15N14N), ranging from 0.4 to 3.5. Convolving the cross-sections with the solar flux and integrating over the energies measured, the ratios of photoionization rate coefficients are J(15N14N)/J(14N2)=1.00+-0.02 and J(15N2)/J(14N2)=1.00+-0.02, suggesting that isotopic fractionation between N2 and N2+ should be small under such conditions. In contrast, in a one-dimensional model of Titan's atmosphere, isotopic self-shielding of 14N2 leads to values of J(15N14N)/J(14N2) as large as ~;;1.17, larger than under optically thin conditions but still much smaller than values as high as ~;;29 predicted for N2 photodissociation. Since modeled photodissociation isotope effects overpredict the HC15N/HC14N ratio in Titan's atmosphere, and since both N atoms and N2+ ions may ultimately lead to the formation of HCN, estimates of the potential of including N2 photoionization to contribute to a more quantitative explanation of 15N/14N for HCN in Titan's atmosphere are explored.

  12. LETTER TO THE EDITOR: Time-dependent close-coupling calculations for the double photoionization of He and H2

    NASA Astrophysics Data System (ADS)

    Colgan, J.; Pindzola, M. S.; Robicheaux, F.

    2004-12-01

    Photoionization cross sections for both atomic helium and molecular hydrogen are calculated using a time-dependent close-coupling method. The total electronic wavefunction for the two-electron system is expanded in six dimensions, where four dimensions are represented on a radial and angular lattice and a coupled channels expansion is used to represent the other two dimensions. Double photoionization cross sections are obtained for both He and H2 for a range of photon energies above the complete fragmentation threshold. Comparisons are made with absolute experimental measurements.

  13. Spin- and angle-resolved spectroscopy of S 2p photoionization in the hydrogen sulfide molecule

    SciTech Connect

    Turri, G.; Snell, G.; Canton, S.E.; Bilodeau, R.C.; Langer, B.; Martins, M.; Kukk, E.; Cherepkov, N.; Bozek, J.D.; Kilcoyne, A.L.; Berrah, N.

    2004-08-01

    Angle- and spin-resolved photoelectron spectroscopy with circularly and linearly polarized synchrotron radiation were used to study the electronic structure of the hydrogen sulfide molecule. A strong effect of the molecular environment appears in the spin-resolved measurements and, although less clearly, in the angular distribution of the sulfur 2p photoelectrons. The anisotropy and spin parameters of the three main spectral components have been obtained. The validity of simple atomic models in explaining the results is discussed.

  14. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Seidel, Robert; Winter, Bernd; Bradforth, Stephen E.

    2016-05-01

    The valence orbital electron binding energies of water and of embedded solutes are crucial quantities for understanding chemical reactions taking place in aqueous solution, including oxidation/reduction, transition-metal coordination, and radiation chemistry. Their experimental determination based on liquid-photoelectron spectroscopy using soft X-rays is described, and we provide an overview of valence photoelectron spectroscopy studies reported to date. We discuss principal experimental aspects and several theoretical approaches to compute the measured binding energies of the least tightly bound molecular orbitals. Solutes studied are presented chronologically, from simple electrolytes, via transition-metal ion solutions and several organic and inorganic molecules, to biologically relevant molecules, including aqueous nucleotides and their components. In addition to the lowest vertical ionization energies, the measured valence photoelectron spectra also provide information on adiabatic ionization energies and reorganization energies for the oxidation (ionization) half-reaction. For solutes with low solubility, resonantly enhanced ionization provides a promising alternative pathway.

  15. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy.

    PubMed

    Seidel, Robert; Winter, Bernd; Bradforth, Stephen E

    2016-05-27

    The valence orbital electron binding energies of water and of embedded solutes are crucial quantities for understanding chemical reactions taking place in aqueous solution, including oxidation/reduction, transition-metal coordination, and radiation chemistry. Their experimental determination based on liquid-photoelectron spectroscopy using soft X-rays is described, and we provide an overview of valence photoelectron spectroscopy studies reported to date. We discuss principal experimental aspects and several theoretical approaches to compute the measured binding energies of the least tightly bound molecular orbitals. Solutes studied are presented chronologically, from simple electrolytes, via transition-metal ion solutions and several organic and inorganic molecules, to biologically relevant molecules, including aqueous nucleotides and their components. In addition to the lowest vertical ionization energies, the measured valence photoelectron spectra also provide information on adiabatic ionization energies and reorganization energies for the oxidation (ionization) half-reaction. For solutes with low solubility, resonantly enhanced ionization provides a promising alternative pathway.

  16. The role of photoionization in negative corona discharge

    NASA Astrophysics Data System (ADS)

    Lu, B. X.; Sun, H. Y.

    2016-09-01

    The effect of photoionization on the negative corona discharge was simulated based on the needle to plane air gaps. The Trichel pulse, pulse train, electron density and the distribution of electric field will be discussed in this manuscript. Effect of photoionization on the magnitude and interval of the first pulse will be discussed for different applied voltages. It is demonstrated that the peak of the first pulse current could be weakened by photoionization and a critical voltage of the first pulse interval influenced by photoionization was given.

  17. 2012 ATOMIC AND MOLECULAR INTERACTIONS GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR, JULY 15-20, 2012

    SciTech Connect

    Zwier, Timothy

    2012-07-20

    At the 2012 Atomic and Molecular Interactions Gordon Conference, there will be talks in several broadly defined and partially overlapping areas:  Intramolecular and single-collision reaction dynamics;  Photophysics and photochemistry of excited states;  Clusters, aerosols and solvation;  Interactions at interfaces;  Conformations and folding of large molecules;  Interactions under extreme conditions of temperature and pressure. The theme of the Gordon Research Seminar on Atomic & Molecular Interactions, in keeping with the tradition of the Atomic and Molecular Interactions Gordon Research Conference, is far-reaching and involves fundamental research in the gas and condensed phases along with application of these ideas to practical chemical fields. The oral presentations, which will contain a combination of both experiment and theory, will focus on four broad categories:  Ultrafast Phenomena;  Excited States, Photoelectrons, and Photoions;  Chemical Reaction Dynamics;  Biomolecules and Clusters.

  18. Formation and electron-ion recombination of N4(+) following photoionization in near-atmospheric pressure N2.

    PubMed

    Adams, S F; DeJoseph, C A; Williamson, J M

    2009-04-14

    The time dependent behavior of molecular nitrogen ions has been investigated following pulsed photoionization of near atmospheric pressure N(2) using multiphoton laser techniques and kinetic modeling. Multiple fluorescence bands, some unreported previously, with various temporal behaviors were observed after ultraviolet laser photoionization of N(2)(X (1)Sigma(g)). The initial N(2) ionization was generated via resonance-enhanced multiphoton ionization with focused radiation in the 275-290 nm range, where several resonant transitions are accessible. The observed optical fluorescence bands appeared to be unique to the near-atmospheric pressure N(2) condition and were shown by the evidence in this work to be the result of collisional formation and recombination of N(4)(+). Measured time dependent fluorescence spectra during and after pulsed laser photoionization of N(2), together with a coupled rate equation model, allowed for the determination of the absolute densities of N(2)(+) and N(4)(+) as these species evolved. PMID:19368454

  19. Photoionization spectrum of liquid benzene

    SciTech Connect

    Saik, V. O.; Lipsky, S. )

    1994-11-17

    The photocurrent from neat liquid benzene has been studied for excitation energies from threshold to 10.3 eV and for externally applied electric fields from 1 to 50 kV/cm. Using a power law fit to the energy dependence of the threshold current, an onset of [epsilon][sub t] = 7.65 [+-] 0.1 eV has been obtained. The field dependence was fit to an exponential radial probability density for thermalized ion-pair separation distances with an average separation distance of [r] = 23 [+-] 2 A at an excitation energy, [epsilon] of 8.86 eV (1.2 eV above threshold). Photocurrent was too weak to establish a dependence of [r] on excitation energy. The quantum yield for photocurrent at 8.86 eV was determined by comparison with the photocurrent from TMPD in 2,2,4-trimethylpentane (isooctane) to be 6.5 [times] 10[sup [minus]4] at zero field. From this, the intrinsic molecular ionization probability at [epsilon] = 8.86 eV was determined to be 0.6 [+-] 0.3. 30 refs., 5 figs.

  20. Angular resolved photoionization of C60 by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Li, Hui; Wang, Zhenhua; Suessmann, Frederik; Zherebtsov, Sergey; Skruszewicz, Slawomir; Tiggesbaeumker, Josef; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Cocke, C.; Kling, Matthias; JRM laboratory, Kansas State University Team; University of Rostock Collaboration; Max-Planck InstitutQuantumoptik Collaboration

    2013-03-01

    Neutral C60 molecules are ionized by intense femtosecond laser pulses around the wavelength of 800 nm with pulse durations 4 fs and 30 fs. We measure photoelectrons utilizing velocity-map imaging (VMI) and analyze the photoelectron angular distributions. For particular photoelectron energies, these distributions might reflect the excitation and ionization of superatomic molecular orbitals (SAMOs) which have been theoretically predicted and only recently experimentally observed. SAMOs arise from the hollow core spherical structures of the C60 molecules and differ from Rydberg states of C60 by their potential to exhibit electron density within the C60 cage. We have recorded the carrier envelope phase (CEP) dependence of the electron emission for 4 fs pulses using single shot CEP-tagging. The CEP-dependent asymmetry in the electron emission is observed to strongly depend on the laser polarization. Furthermore, the amplitudes and phases of the CEP-dependent electron emission are analyzed and show that thermal electron emission can be avoided enabling a more direct comparison to theory.

  1. Long Duration Directional Drives for Star Formation and Photoionization

    SciTech Connect

    Kane, J. O.; Martinez, D. A.; Pound, M. W.; Heeter, R. F.; Villette, B.; Casner, A.; Mancini, R. C.

    2015-06-18

    This research will; confirm the possibility of studying the structure and evolution of star-forming regions of molecular clouds in the laboratory; test the cometary model for the formation of the pillar structures in molecular clouds; assess the effect of magnetic fields on the evolution of structures in molecular clouds; and develop and demonstrate a new, long-duration (60-100 ns), directional source of x-ray radiation that can be used for the study of deeply nonlinear hydrodynamics, hydrodynamic instabilities that occur in the presence of directional radiation, shock-driven and radiatively-driven collapse of dense cores, and photoionization. Due to the iconic status of the pillars of the Eagle Nebula, this research will bring popular attention to plasma physics, HED laboratory physics, and fundamental science at NIF and other experimental facilities. The result will be to both to bring new perspectives to the studies of hydrodynamics in inertial confinement fusion and HED scenarios in general, and to promote interest in the STEM disciplines.

  2. Photoelectron spectra of 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil

    NASA Astrophysics Data System (ADS)

    Ruckenbauer, Matthias; Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2016-02-01

    Ground- and excited-state UV photoelectron spectra of thiouracils (2-thiouracil, 4-thiouracil, and 2,4-dithiouracil) have been simulated using multireference configuration interaction calculations and Dyson norms as a measure for the photoionization intensity. Except for a constant shift, the calculated spectrum of 2-thiouracil agrees very well with experiment, while no experimental spectra are available for the two other compounds. For all three molecules, the photoelectron spectra show distinct bands due to ionization of the sulphur and oxygen lone pairs and the pyrimidine π system. The excited-state photoelectron spectra of 2-thiouracil show bands at much lower energies than in the ground state spectrum, allowing to monitor the excited-state population in time-resolved UV photoelectron spectroscopy experiments. However, the results also reveal that single-photon ionization probe schemes alone will not allow monitoring all photodynamic processes existing in 2-thiouracil. Especially, due to overlapping bands of singlet and triplet states the clear observation of intersystem crossing will be hampered.

  3. Observation of Interference between Two Distinct Autoionizing States in Dissociative Photoionization of H2

    NASA Astrophysics Data System (ADS)

    Reddish, T. J.; Padmanabhan, A.; MacDonald, M. A.; Zuin, L.; Fernández, J.; Palacios, A.; Martín, F.

    2012-01-01

    Dissociative photoionization (DPI) of randomly oriented H2 molecules has been studied using linearly polarized synchrotron radiation at selected photon energies of 31, 33, and 35 eV. Large amplitude oscillations in the photoelectron asymmetry parameter β, as a function of electron energy, have been observed. The phase of these β oscillations are in excellent agreement with the results of recent close coupling calculations [Fernández and Martín, New J. Phys. 11, 043020 (2009)NJOPFM1367-263010.1088/1367-2630/11/4/043020]. We show that the oscillations are the signature of interferences between the 1Q1Σu+1 and 1Q2Πu1 doubly excited states decaying at different internuclear distances. The oscillations thus provide information about the classical paths followed by the nuclei. The presence of such oscillations is predicted to be a general phenomenon in DPI.

  4. Angular anisotropy in valence photoionization of Na clusters: theoretical investigation using jellium model

    NASA Astrophysics Data System (ADS)

    Jänkälä, Kari

    2013-03-01

    Calculation of the behaviour of photoelectron angular anisotropy in valence ionization of initially neutral NaX (X = 34-58) clusters is provided. The calculations are carried out for 1p, 1d and 1g jellium orbitals as a function of photon energy. The adapted theoretical framework is spherical jellium model using Woods-Saxon potential, which is modified to account for the long-range Coulomb tail in the final state. We discuss on the observed dramatic variations of the angular anisotropy parameter β as a function incident photon energy. It is shown that the behaviour is connected to the oscillation of the valence photoionization cross sections, that is a specific interference property of such metallic clusters whose valence structure can be described using the jellium model. ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters, edited by Kristiaan Temst, Margriet J. Van Bael, Ewald Janssens, H.-G. Boyen and Françoise Remacle.

  5. Probing the energy flow in Bessel light beams using atomic photoionization

    NASA Astrophysics Data System (ADS)

    Surzhykov, A.; Seipt, D.; Fritzsche, S.

    2016-09-01

    The growing interest in twisted light beams also requires a better understanding of their complex internal structure. Particular attention is currently being given to the energy circulation in these beams as usually described by the Poynting vector field. In the present study we propose to use the photoionization of alkali-metal atoms as a probe process to measure (and visualize) the energy flow in twisted light fields. Such measurements are possible since the angular distribution of photoelectrons, emitted from a small atomic target, appears sensitive to and is determined by the local direction of the Poynting vector. To illustrate the feasibility of the proposed method, detailed calculations were performed for the ionization of sodium atoms by nondiffractive Bessel beams.

  6. Experimental and theoretical study of 3p photoionization and subsequent Auger decay in atomic chromium

    NASA Astrophysics Data System (ADS)

    Keskinen, J.; Huttula, S.-M.; Mäkinen, A.; Patanen, M.; Huttula, M.

    2015-12-01

    3p photoionization and subsequent low kinetic energy Coster-Kronig and super Coster-Kronig Auger decay have been studied in atomic chromium. The binding energies, line widths, and relative intensities for the transitions seen in the synchrotron radiation excited 3p photoelectron spectrum are determined. The high resolution M2,3 M4,5 M4,5 and M2,3 M4,5 N1 Auger electron spectra following the electron impact excited 3p ionization are presented and the kinetic energies, relative intensities, and identifications are given for the main lines. The experimental findings are compared with the theoretical predictions obtained from Hartree-Fock and multiconfiguration Dirac-Fock approaches.

  7. Valence photoionization of small alkaline earth atoms endohedrally confined in C60

    NASA Astrophysics Data System (ADS)

    Javani, M. H.; McCreary, M. R.; Patel, A. B.; Madjet, M. E.; Chakraborty, H. S.; Manson, S. T.

    2012-07-01

    A theoretical study of photoionization from the outermost orbitals of Be, Mg and Ca atoms endohedrally confined in C60 is reported. The fullerene ion core, comprised of sixty C4+, is smudged into a continuous jellium charge distribution, while the delocalized cloud of carbon valence electrons plus the encaged atom are treated in the time-dependent local density approximation (TDLDA). Systematic evolution of the mixing of outer atomic level with states of the C60 valence band is found along the sequence. This is found to influence the plasmonic enhancement of atomic photoionization at low energies and the geometry-revealing confinement oscillations at high energies in significantly different ways: (a) the extent of enhancement is mainly determined by the strength of atomic ionization, giving the strongest enhancement for Be even though Ca suffers the largest mixing. But (b) strongest collateral oscillations are uncovered for Ca, since, relative to Be and Mg, the mixing causes the highest photoelectron production at confining boundaries of Ca. The study paints the first comparative picture of the atomic valence photospectra for alkaline earth metallofullerenes in a dynamical many-electron framework.

  8. Photoionization of Li and radiative recombination of Li{sup +} in Debye plasmas

    SciTech Connect

    Qi, Y. Y.; Wu, Y.; Wang, J. G.

    2009-03-15

    The photoionization cross sections in the photoelectron energy below 2 Ry are calculated for the ground and n{<=}4 excited states of Li embedded in plasma environments and the radiative-recombination (RR) rate coefficients for Li{sup +} were presented for temperature T=100-32 000 K in a wide range of plasma parameters. The plasma screening interaction is described by the Debye-Hueckel model and the energy levels and wave functions including both the bound and continuum states are calculated by solving the Schroedinger equation numerically in a symplectic integration scheme. The screening of Coulomb interactions remarkably changes the photoionization cross sections near the ionization threshold, and especially for the ns states, the Cooper minimum is uncovered and shifted to the higher energy as the screening interaction increases. The RR rate coefficients at low temperature have a complex variation on the Debye lengths; whereas at higher temperature the RR rate coefficients decrease with the increasing of screening effects. Comparison of present results with those of other authors when available is made.

  9. Assignment of benzodiazepine UV absorption spectra by the use of photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Khvostenko, O. G.; Tzeplin, E. E.; Lomakin, G. S.

    2002-04-01

    Correlations between singlet transition energies and energy gaps of corresponding pairs of occupied and unoccupied molecular orbitals were revealed in a series of benzodiazepines. The occupied orbital energies were taken from the photoelectron spectra of the compound investigated, the unoccupied ones were obtained from MNDO/d calculations, and the singlet energies were taken from the UV absorption spectra. The correspondence of the singlet transitions to certain molecular orbitals was established using MNDO/d calculations and comparing between UV and photoelectron spectra. It has been concluded that photoelectron spectroscopy can be applied for interpretation of UV absorption spectra of various compounds on the basis of similar correlations.

  10. Photoionization cross section measurements of the excited states of cobalt in the near-threshold region

    SciTech Connect

    Zheng, Xianfeng Zhou, Xiaoyu; Cheng, Zaiqi; Jia, Dandan; Qu, Zehua; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2014-10-15

    We present measurements of photoionization cross-sections of the excited states of cobalt using a two-color, two-step resonance ionization technique in conjunction with a molecular beam time of flight (TOF) mass spectrometer. The atoms were produced by the laser vaporization of a cobalt rod, coupled with a supersonic gas jet. The absolute photoionization cross-sections at threshold and near-threshold regions (0-1.2 eV) were measured, and the measured values ranged from 4.2±0.7 Mb to 10.5±1.8 Mb. The lifetimes of four odd parity energy levels are reported for the first time.

  11. Double photoionization of helium with synchrotron x-rays: Proceedings

    SciTech Connect

    Not Available

    1994-01-01

    This report contains papers on the following topics: Overview and comparison of photoionization with charged particle impact; The ratio of double to single ionization of helium: the relationship of photon and bare charged particle impact ionization; Double photoionization of helium at high energies; Compton scattering of photons from electrons bound in light elements; Electron ionization and the Compton effect in double ionization of helium; Elimination of two atomic electrons by a single energy photon; Double photoionization of helium at intermediate energies; Double Photoionization: Gauge Dependence, Coulomb Explosion; Single and Double Ionization by high energy photon impact; The effect of Compton Scattering on the double to single ionization ratio in helium; and Double ionization of He by photoionization and Compton scattering. These papers have been cataloged separately for the database.

  12. Studies of x-ray emission properties of photoionized plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Feilu; Han, Bo; Jin, Rui; Salzmann, David; Liang, Guiyun; Wei, Huigang; Zhong, Jiayong; Zhao, Gang; Li, Jia-ming

    2016-03-01

    In this paper three aspects of photoionized plasmas are discussed in both laboratory and astrophysical contexts. First, the importance of accurate atomic/ionic data for the analysis of photoionized plasmas is shown. Second, an overview of present computer codes for the analysis of photoionized plasmas is given. We introduce our computer model, radiative-collisional code based on the flexible atomic code (RCF), for calculations of the properties of such plasmas. RCF uses database generated by the flexible atomic code. Using RCF it is shown that incorporating the satellite lines from doubly excited Li-like ions into the He{}α triplet lines is necessary for reliable analysis of observational spectra from astrophysical objects. Finally, we introduce a proposal to generate photoionized plasmas by x-ray free electron laser, which may facilitate the simulation in lab of astrophysical plasmas in photoionization equilibrium.

  13. Infrared Vacuum-Ultraviolet Laser Pulsed Field Ionization-Photoelectron Study of CH₃Br⁺(X˜ 2E3/2)

    SciTech Connect

    Xing, X.; Wang, P.; Reed, Beth; Baek, Sun-Jong; Ng, Cheuk-Yiu

    2008-10-02

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. By preparing methyl bromide (CH₃Br) in selected rotational levels of the CH₃Br(X˜ 1A1; V1 = 1) state with infrared (IR) laser excitation prior to vacuum-ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) measurements, we have observed rotationally resolved photoionization transitions to the CH₃Br⁺(X˜ 2E3/2; V1 + = 1) state, where V1 and V1 + are the symmetric C-H stretching vibrational mode for the neutral and cation, respectively. The VUV-PFI-PE origin band for CH₃Br⁺(X˜ 2E3/2) has also been measured. The simulation of these IR-VUV-PFI-PE and VUV-PFI-PE spectra have allowed the determination of the V1 + vibrational frequency (2901.8 ( 0.5 cm-1) and the ionization energies of the origin band (85 028.3 ( 0.5 cm-1) and the V1 + ) 1 r V1 ) 1 band (84 957.9 ( 0.5 cm-1).

  14. First Principles Study of Double Photoionization of H2 UsingExterior Complex Scaling

    SciTech Connect

    Rescigno, Thomas N.; Vanroose, Wim; Horner, Daniel A.; Martin,Fernando; McCurdy, C. William

    2006-07-21

    Exterior complex scaling provides a practical path forfirst-principles studies of atomic and molecular ionizationproblemssince it avoids explicit enforcement of asymptotic boundary conditionsfor 3-body Coulomb breakup. We have used the method of exterior complexscaling, implemented with both the discrete variable representation andB-splines, to obtain the first-order wave function for molecular hydrogencorresponding to a single photon having been absorbed by a correlatedinitial state. These wave functions are used to construct convergedtriple differential cross sections for double photoionization of alignedH2 molecules.

  15. Double photoionization of doubly-excited lithium

    NASA Astrophysics Data System (ADS)

    Armstrong, G.; Pindzola, M. S.; Kheifets, A.; Schuricke, M.; Veeravalli, G.; Dornes, Ch.; Zhu, G.; Joachimsmeyer, K.; Treusch, R.; Dorn, A.; Colgan, J.

    2012-06-01

    We present triple differential cross sections and recoil ion momentum distributions for double photoionization of the 1s2s2p state of lithium. Double ionization of lithium may be treated as a two-active-electron process, where the ``active'' 2s and 2p electrons move in the field of the ``frozen-core'' Li^2+ 1s state.The time-dependent close-coupling (TDCC) method is used to solve the two-electron time-dependent Schr"odinger equation in full dimensionality. This work is motivated by recent FLASH experiments, which have obtained recoil-ion momentum distributions at a photon energy of 59 eV, where the 1s2s2p state is first reached via a 1s-2p photoexcitation from the initial ground state, and may then be doubly-ionized after the absorption of a second photon. The TDCC calculations in this work treat the subsequent photoionization of this doubly-excited state. The results are compared to those obtained by the convergent close-coupling method and to measurement, and provide a first comparison between theory and experiment in this fundamental few-photon few-body problem.

  16. Electronic structure and spectroscopy of nucleic acid bases: Ionization energies, ionization-induced structural changes, and photoelectron spectra

    SciTech Connect

    Bravaya, Ksenia B.; Kostko, Oleg; Dolgikh, Stanislav; Landau, Arie; Ahmed, Musahid; Krylov, Anna I.

    2010-08-02

    We report high-level ab initio calculations and single-photon ionization mass spectrometry study of ionization of adenine (A), thymine (T), cytosine (C) and guanine (G). For thymine and adenine, only the lowest-energy tautomers were considered, whereas for cytosine and guanine we characterized five lowest-energy tautomeric forms. The first adiabatic and several vertical ionization energies were computed using equation-of-motion coupled-cluster method for ionization potentials with single and double substitutions. Equilibrium structures of the cationic ground states were characterized by DFT with the {omega}B97X-D functional. The ionization-induced geometry changes of the bases are consistent with the shapes of the corresponding molecular orbitals. For the lowest-energy tautomers, the magnitude of the structural relaxation decreases in the following series G > C > A > T, the respective relaxation energies being 0.41, 0.32, 0.25 and 0.20 eV. The computed adiabatic ionization energies (8.13, 8.89, 8.51-8.67 and 7.75-7.87 eV for A,T,C and G, respectively) agree well with the onsets of the photoionization efficiency (PIE) curves (8.20 {+-} 0.05, 8.95 {+-} 0.05, 8.60 {+-} 0.05 and 7.75 {+-} 0.05 eV). Vibrational progressions for the S{sub 0}-D{sub 0} vibronic bands computed within double-harmonic approximation with Duschinsky rotations are compared with previously reported experimental photoelectron spectra.

  17. Photoionization research on atomic beams. 2: The photoionization cross section of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Comes, F. J.; Speier, F.; Elzer, A.

    1982-01-01

    An experiment to determine the absolute value of the photo-ionization cross section of atomic oxygen is described. The atoms are produced in an electrical discharge in oxygen gas with 1% hydrogen added. In order to prevent recombination a crossed beam technique is employed. The ions formed are detected by a time-of-flight mass spectrometer. The concentration of oxygen atoms in the beam is 57%. The measured photoionization cross section of atomic oxygen is compared with theoretical data. The results show the participation of autoionization processes in ionization. The cross section at the autoionizing levels detected is considerably higher than the absorption due to the unperturbed continuum. Except for wavelengths where autoionization occurs, the measured ionization cross section is in fair agreement with theory. This holds up to 550 A whereas for shorter wavelengths the theoretical values are much higher.

  18. Synchrotron photoionization measurements of combustion intermediates: the photoionization efficiency of HONO

    NASA Astrophysics Data System (ADS)

    Taatjes, Craig A.; Osborn, David L.; Cool, Terrill A.; Nakajima, Koichi

    2004-08-01

    The HONO radical has recently been observed by photoionization mass spectrometry in low-pressure hydrogen-oxygen flames doped with NO 2. The photoionization efficiency (PIE) spectrum has been measured between 10.83 and 11.63 eV. A Franck-Condon simulation using calculated geometries and force constants of the cation and neutral, and including the effects of Duschinsky rotation, is presented to describe the PIE as a function of photon energy. The simulated PIE is used as a fitting function to estimate the adiabatic ionization potential from the experimental data. The apparent ionization threshold of (10.97 ± 0.03) eV is in excellent agreement with calculated values and is consistent with published bracketing determinations of the proton affinity of NO 2.

  19. Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol-Water Clusters

    SciTech Connect

    Kostko, Oleg; Belau, Leonid; Wilson, Kevin R.; Ahmed, Musahid

    2008-04-24

    In this work, we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH+(n = 1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH n(H2O)H+ (n = 2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH+, (CH3OH)2+, (CH3OH)nH+ (n = 1-9), and (CH3OH)n(H2O)H+ (n = 2-9) as a function of photon energy. With an increasein the water content in the molecular beam, there is an enhancement of photoionization intensity for the methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  20. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    SciTech Connect

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-05-12

    In this work we report on thevacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuumultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  1. Interference effect in the dipole and nondipole anisotropy parameters of the Kr 4p photoelectrons in the vicinity of the Kr (3d){sup -1{yields}}np resonant excitations

    SciTech Connect

    Ricz, S.; Ricsoka, T.; Holste, K.; Borovik, A. Jr.; Bernhardt, D.; Schippers, S.; Mueller, A.; Koever, A.; Varga, D.

    2010-04-15

    The angular distribution of the Kr 4p photoelectrons was investigated in the photon energy range of the (3d){sup -1{yields}}np resonant excitations. The experimental dipole ({beta}) and nondipole ({gamma} and {delta}) anisotropy parameters were determined for the spin-orbit components of the Kr 4p shell. A simple theoretical model was developed for the description of the photoionization and excitation processes. An interference effect was observed between the direct photoionization and the resonant excitation participator Auger decay processes in the photon energy dependence of the experimental anisotropy parameters.

  2. Femtosecond photoelectron point projection microscope

    SciTech Connect

    Quinonez, Erik; Handali, Jonathan; Barwick, Brett

    2013-10-15

    By utilizing a nanometer ultrafast electron source in a point projection microscope we demonstrate that images of nanoparticles with spatial resolutions of the order of 100 nanometers can be obtained. The duration of the emission process of the photoemitted electrons used to make images is shown to be of the order of 100 fs using an autocorrelation technique. The compact geometry of this photoelectron point projection microscope does not preclude its use as a simple ultrafast electron microscope, and we use simple analytic models to estimate temporal resolutions that can be expected when using it as a pump-probe ultrafast electron microscope. These models show a significant increase in temporal resolution when comparing to ultrafast electron microscopes based on conventional designs. We also model the microscopes spectroscopic abilities to capture ultrafast phenomena such as the photon induced near field effect.

  3. Dynamics of electron emission in double photoionization processes near the krypton 3d threshold

    NASA Astrophysics Data System (ADS)

    Penent, F.; Sheinerman, S.; Andric, L.; Lablanquie, P.; Palaudoux, J.; Becker, U.; Braune, M.; Viefhaus, J.; Eland, J. H. D.

    2008-02-01

    Two-electron emission following photoabsorption near the Kr 3d threshold is investigated both experimentally and theoretically. On the experimental side, electron/electron coincidences using a magnetic bottle time-of-flight spectrometer allow us to observe the complete double photo ionization (DPI) continua of selected Kr2+ final states, and to see how these continua are affected by resonant processes in the vicinity of the Kr 3d threshold. The analysis is based on a quantum mechanical approach that takes into account the contribution of three different processes: (A) Auger decay of the inner 3d vacancy with the associated post-collision interaction (PCI) effects, (B) capture of slow photoelectrons into discrete states followed by valence multiplet decay (VMD) of the excited ionic states and (C) valence shell DPI. The dominant process for each Kr2+(4p-2) final state is the photoionization of the inner shell followed by Auger decay of the 3d vacancies. Moreover, for the 4p-2(3P) and 4p-2(1D) final ionic states an important contribution comes from the processes of slow photoelectron capture followed by VMD as well as from double ionization of the outer shell involving also VMD.

  4. Internal energy selection in vacuum ultraviolet photoionization of ethanol and ethanol dimers

    NASA Astrophysics Data System (ADS)

    Bodi, Andras

    2013-10-01

    Internal energy selected ethanol monomer and ethanol dimer ions were prepared by threshold photoionization of a supersonic molecular beam seeded with ethanol. The dissociative photoionization processes of the monomer, the lowest-energy CH3-loss channel of the dimer, and the fragmentation of larger clusters were found to be disjunct from the ionization onset to about 12 eV, which made it possible to determine the 0 K appearance energy of C-C bond breaking in the H-donor unit of the ethanol dimer cation as 9.719 ± 0.004 eV. This reaction energy is used together with ab initio calculations in a thermochemical cycle to determine the binding energy change from the neutral ethanol dimer to a protonated ethanol-formaldehyde adduct. The cycle also shows general agreement between experiment, theory, and previously published enthalpies of formation. The role of the initial ionization site, or rather the initial photoion state, is also discussed based on the dimer breakdown diagram and excited state calculations. There is no evidence for isolated state behavior, and the ethanol dimer dissociative photoionization processes appear to be governed by statistical theory and the ground electronic state of the ion. In the monomer breakdown diagram, the smoothly changing branching ratio between H and CH3 loss is at odds with rate theory predictions, and shows that none of the currently employed few-parameter rate models, appropriate for experimental rate curve fitting, yields a correct description for this process in the experimental energy range.

  5. Vacuum-Ultraviolet Photoionization and Mass Spectrometric Characterization of Lignin Monomers Coniferyl and Sinapyl Alcohols

    SciTech Connect

    Takahashi, Lynelle K.; Zhou, Jia; Kostko, Oleg; Golan, Amir; Leone, Stephen R.; Ahmed, Musahid

    2011-02-09

    The fragmentation mechanisms of monolignols under various energetic processes are studied with jet-cooled thermal desorption molecular beam (TDMB) mass spectrometry (MS), 25 keV Bi3+ secondary ion MS (SIMS), synchrotron vacuum-ultraviolet secondary neutral MS (VUV-SNMS) and theoretical methods. Experimental and calculated appearance energies of fragments observed in TDMB MS indicate that the coniferyl alcohol photoionization mass spectra contain the molecular parent and several dissociative photoionization products. Similar results obtained for sinapyl alcohol are also discussed briefly. Ionization energies of 7.60 eV ? 0.05 eV for coniferyl alcohol and<7.4 eV for both sinapyl and dihydrosinapyl alcohols are determined. The positive ion SIMS spectrum of coniferyl alcohol shares few characteristic peaks (m/z = 137 and 151) with the TDMB mass spectra, shows extensive fragmentation, and does not exhibit clear molecular parent signals. VUV-SNMS spectra, on the other hand, are dominated by the parent ion and main fragments also present in the TDMB spectra. Molecular fragmentation in VUV-SNMS spectra can be reduced by increasing the extraction delay time. Some features resembling the SIMS spectra are also observed in the desorbed neutral products. The monolignol VUV-SNMS peaks shared with the TDMB mass spectra suggest that dissociative photoionization of ion-sputtered neutral molecules predominate in the VUV-SNMS mass spectra, despite the extra internal energy imparted in the initial ion impact. The potential applications of these results to imaging mass spectrometry of bio-molecules are discussed.

  6. Absorption spectroscopy of a laboratory photoionized plasma experiment at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.; Golovkin, I. E.; MacFarlane, J. J.

    2014-03-15

    The Z facility at the Sandia National Laboratories is the most energetic terrestrial source of X-rays and provides an opportunity to produce photoionized plasmas in a relatively well characterised radiation environment. We use detailed atomic-kinetic and spectral simulations to analyze the absorption spectra of a photoionized neon plasma driven by the x-ray flux from a z-pinch. The broadband x-ray flux both photoionizes and backlights the plasma. In particular, we focus on extracting the charge state distribution of the plasma and the characteristics of the radiation field driving the plasma in order to estimate the ionisation parameter.

  7. Photoionization in negative streamers: Fast computations and two propagation modes

    SciTech Connect

    Luque, Alejandro; Ebert, Ute; Montijn, Carolynne; Hundsdorfer, Willem

    2007-02-19

    Streamer discharges play a central role in electric breakdown of matter in pulsed electric fields, both in nature and in technology. Reliable and fast computations of the minimal model for negative streamers in simple gases such as nitrogen have recently been developed. However, photoionization was not included; it is important in air and poses a major numerical challenge. The authors here introduce a fast and reliable method to include photoionization into our numerical scheme with adaptive grids, and they discuss its importance for negative streamers. In particular, they identify different propagation regimes where photoionization does or does not play a role.0.

  8. Ultrafast internal conversion of aromatic molecules studied by photoelectron spectroscopy using Sub-20 fs laser pulses.

    PubMed

    Suzuki, Toshinori

    2014-01-01

    This article describes our recent experimental studies on internal conversion via a conical intersection using photoelectron spectroscopy. Ultrafast S2(ππ*)-S1(nπ*) internal conversion in pyrazine is observed in real time using sub-20 fs deep ultraviolet pulses (264 and 198 nm). While the photoelectron kinetic energy distribution does not exhibit a clear signature of internal conversion, the photoelectron angular anisotropy unambiguously reveals the sudden change of electron configuration upon internal conversion. An explanation is presented as to why these two observables have different sensitivities to internal conversion. The 198 nm probe photon energy is insufficient for covering the entire Franck-Condon envelopes upon photoionization from S2/S1 to D1/D0. A vacuum ultraviolet free electron laser (SCSS) producing 161 nm radiation is employed to solve this problem, while its pulse-to-pulse timing jitter limits the time resolution to about 1 ps. The S2-S1 internal conversion is revisited using the sub-20 fs 159 nm pulse created by filamentation four-wave mixing. Conical intersections between D1(π-1) and D0(n-1) and also between the Rydberg state with a D1 ion core and that with a D0 ion core of pyrazine are studied by He(I) photoelectron spectroscopy, pulsed field ionization photoelectron spectroscopy and one-color resonance-enhanced multiphoton ionization spectroscopy. Finally, ultrafast S2(ππ*)-S1(ππ*) internal conversion in benzene and toluene are compared with pyrazine. PMID:24566311

  9. Ultrafast internal conversion of aromatic molecules studied by photoelectron spectroscopy using Sub-20 fs laser pulses.

    PubMed

    Suzuki, Toshinori

    2014-02-21

    This article describes our recent experimental studies on internal conversion via a conical intersection using photoelectron spectroscopy. Ultrafast S2(ππ*)-S1(nπ*) internal conversion in pyrazine is observed in real time using sub-20 fs deep ultraviolet pulses (264 and 198 nm). While the photoelectron kinetic energy distribution does not exhibit a clear signature of internal conversion, the photoelectron angular anisotropy unambiguously reveals the sudden change of electron configuration upon internal conversion. An explanation is presented as to why these two observables have different sensitivities to internal conversion. The 198 nm probe photon energy is insufficient for covering the entire Franck-Condon envelopes upon photoionization from S2/S1 to D1/D0. A vacuum ultraviolet free electron laser (SCSS) producing 161 nm radiation is employed to solve this problem, while its pulse-to-pulse timing jitter limits the time resolution to about 1 ps. The S2-S1 internal conversion is revisited using the sub-20 fs 159 nm pulse created by filamentation four-wave mixing. Conical intersections between D1(π-1) and D0(n-1) and also between the Rydberg state with a D1 ion core and that with a D0 ion core of pyrazine are studied by He(I) photoelectron spectroscopy, pulsed field ionization photoelectron spectroscopy and one-color resonance-enhanced multiphoton ionization spectroscopy. Finally, ultrafast S2(ππ*)-S1(ππ*) internal conversion in benzene and toluene are compared with pyrazine.

  10. Photoionization profiles of metal clusters and the Fowler formula

    NASA Astrophysics Data System (ADS)

    Prem, Abhinav; Kresin, Vitaly V.

    2012-02-01

    Metal-cluster ionization potentials are important characteristics of these “artificial atoms,” but extracting these quantities from cluster photoabsorption spectra, especially in the presence of thermal smearing, remains a big challenge. Here we demonstrate that the classic Fowler theory of surface photoemission does an excellent job of fitting the photoabsorption profile shapes of neutral Inn=3-34 clusters [Wucher , New J. Phys.NJOPFM1367-263010.1088/1367-2630/10/10/103007 10, 103007 (2008)]. The deduced ionization potentials extrapolate precisely to the bulk work function, and the internal cluster temperatures are in close agreement with values expected for an ensemble of freely evaporating clusters. Supplementing an earlier application to potassium clusters, these results suggest that the Fowler formalism, which is straightforward and physical, may be of significant utility in metal-cluster spectroscopy. It is hoped also that the results will encourage a comprehensive theoretical analysis of the applicability of bulk-derived models to cluster photoionization behavior, and of the transition from atomic and molecular-type to surface-type photoemission.

  11. Early events in radiation chemistry and in photoionization

    SciTech Connect

    Trifunac, A.D.; Loffredo, D.M.; Liu, A.-D.

    1992-01-01

    Real-time studies of aliphatic and aromatic hydrocarbons by pulse radiolysis and laser photoionization reveal the chemistry of the ionic species in the condensed phase. The occurrence of radical cation reactions with solvent molecules provides the core mechanism capable of explaining a wide range of observations in photoionization and radiation chemistry. The study of products and transients in photoionization of aromatic solutes in hydrocarbon and alcohol solvent illustrates several details of this high-energy'' chemistry. A reaction pathway involving ion-molecule reaction of excited ions is indicated for a series of polycyclic aromatic hydrocarbons photoionized using intense excimer laser (248 and 308 nm) pulses in hydrocarbon and alcohol solutions. We have found that condensed-phase ion-molecule reactions in radiolysis are ubiquitous and we speculate on their overall role in hydrocarbon radiolysis.

  12. Early events in radiation chemistry and in photoionization

    SciTech Connect

    Trifunac, A.D.; Loffredo, D.M.; Liu, A.-D.

    1992-12-31

    Real-time studies of aliphatic and aromatic hydrocarbons by pulse radiolysis and laser photoionization reveal the chemistry of the ionic species in the condensed phase. The occurrence of radical cation reactions with solvent molecules provides the core mechanism capable of explaining a wide range of observations in photoionization and radiation chemistry. The study of products and transients in photoionization of aromatic solutes in hydrocarbon and alcohol solvent illustrates several details of this ``high-energy`` chemistry. A reaction pathway involving ion-molecule reaction of excited ions is indicated for a series of polycyclic aromatic hydrocarbons photoionized using intense excimer laser (248 and 308 nm) pulses in hydrocarbon and alcohol solutions. We have found that condensed-phase ion-molecule reactions in radiolysis are ubiquitous and we speculate on their overall role in hydrocarbon radiolysis.

  13. Photoionization of potassium atoms from the ground and excited states

    SciTech Connect

    Zatsarinny, O.; Tayal, S. S.

    2010-04-15

    The Dirac-based B-spline R-matrix method is used to investigate the photoionization of atomic potassium from the 4s ground and 4p, 5s-7s, 3d-5d excited states. The effect of the core polarization by the outer electron is included through the polarized pseudostates. Besides the dipole core polarization, we also found a noticeable influence of the quadrupole core polarization. We obtained excellent agreement with experiment for cross sections of the 4s photoionization, including accurate description of the near-threshold Cooper-Seaton minimum. We also obtained close agreement with experiment for the 4p photoionization, but there are unexpectedly large discrepancies with available experimental data for photoionization of the 5d and 7s excited states.

  14. Unified ab initio treatment of attosecond photoionization and Compton scattering

    NASA Astrophysics Data System (ADS)

    Yudin, G. L.; Bondar, D. I.; Patchkovskii, S.; Corkum, P. B.; Bandrauk, A. D.

    2009-10-01

    We present a new theoretical approach to attosecond laser-assisted photo- and Compton ionization. Attosecond x-ray absorption and scattering are described by \\hat{\\mathscr{S}}^{(1,2)} -matrices, which are coherent superpositions of 'monochromatic' \\skew{3}\\hat{S}^{(1,2)} -matrices in a laser-modified Furry representation. Besides refining the existing theory of the soft x-ray photoelectron attosecond streak camera and spectral phase interferometry (ASC and ASPI), we formulate a theory of hard x-ray photoelectron and Compton ASC and ASPI. The resulting scheme has a simple structure and leads to closed-form expressions for ionization amplitudes. We investigate Compton electron interference in the separable Coulomb-Volkov continuum with both Coulomb and laser fields treated non-perturbatively. We find that at laser-field intensities below 1013 Wcm-2 normalized Compton lines almost coincide with the lines obtained in the laser-free regime. At higher intensities, attosecond interferences survive integration over electron momenta, and feature prominently in the Compton lines themselves. We define a regime where the electron ground-state density can be measured with controllable accuracy in an attosecond time interval. The new theory provides a firm basis for extracting photo- and Compton electron phases and atomic and molecular wavefunctions from experimental data.

  15. Photoionization of noble-gas atoms by ultrashort electromagnetic pulses

    SciTech Connect

    Astapenko, V. A. Svita, S. Yu.

    2014-11-15

    The photoionization of atoms of noble gases (Ar, Kr, and Xe) by ultrashort electromagnetic pulses of a corrected Gaussian shape is studied theoretically. Computations are performed in the context of perturbation theory using a simple expression for the total probability of photoionization of an atom by electromagnetic pulses. The features of this process are revealed and analyzed for various ranges of the parameters of the problem.

  16. Single and double photoionization of Be and Mg

    NASA Astrophysics Data System (ADS)

    Pindzola, M. S.; Ballance, C. P.; Abdel-Naby, Sh A.; Robicheaux, F.; Armstrong, G. S. J.; Colgan, J.

    2013-02-01

    A new version of the time-dependent close-coupling method is used to calculate the single and double photoionization of the Be and Mg atoms. Total cross sections are calculated using an implicit time propagator with a core orthogonalization method on a variable radial mesh. The double to single photoionization cross section ratios are found to be in good agreement with experiment for both Be and Mg.

  17. Double photoionization of He and H{sub 2} at unequal energy sharing

    SciTech Connect

    Kheifets, A.S.; Bray, Igor

    2005-08-15

    A recently developed single-center model of double photoionization (DPI) of the H{sub 2} molecule [Kheifets, Phys. Rev. A 71, 022704 (2005)] has been extended to represent the DPI process at unequal energy sharing. The model is applied to describe the shape of the fully-differential cross-section (FDCS) of a randomly oriented hydrogen molecule in the isotopic form of D{sub 2} at the kinematics of recent experiments. Comparison with analogous FDCS for the He atom helps to elucidate the molecular effects.

  18. Zero kinetic energy photoelectron spectroscopy of triphenylene

    SciTech Connect

    Harthcock, Colin; Zhang, Jie; Kong, Wei

    2014-06-28

    We report vibrational information of both the first electronically excited state and the ground cationic state of jet-cooled triphenylene via the techniques of resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. The first excited electronic state S{sub 1} of the neutral molecule is of A{sub 1}′ symmetry and is therefore electric dipole forbidden in the D{sub 3h} group. Consequently, there are no observable Franck-Condon allowed totally symmetric a{sub 1}′ vibrational bands in the REMPI spectrum. All observed vibrational transitions are due to Herzberg-Teller vibronic coupling to the E′ third electronically excited state S{sub 3}. The assignment of all vibrational bands as e′ symmetry is based on comparisons with calculations using the time dependent density functional theory and spectroscopic simulations. When an electron is eliminated, the molecular frame undergoes Jahn-Teller distortion, lowering the point group to C{sub 2v} and resulting in two nearly degenerate electronic states of A{sub 2} and B{sub 1} symmetry. Here we follow a crude treatment by assuming that all e′ vibrational modes resolve into b{sub 2} and a{sub 1} modes in the C{sub 2v} molecular frame. Some observed ZEKE transitions are tentatively assigned, and the adiabatic ionization threshold is determined to be 63 365 ± 7 cm{sup −1}. The observed ZEKE spectra contain a consistent pattern, with a cluster of transitions centered near the same vibrational level of the cation as that of the intermediate state, roughly consistent with the propensity rule. However, complete assignment of the detailed vibrational structure due to Jahn-Teller coupling requires much more extensive calculations, which will be performed in the future.

  19. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    NASA Astrophysics Data System (ADS)

    Lehmann, C. Stefan; Ram, N. Bhargava; Powis, Ivan; Janssen, Maurice H. M.

    2013-12-01

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  20. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    SciTech Connect

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M.; Powis, Ivan

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  1. Experimental Investigations of the Lunar Photoelectron Sheath

    NASA Astrophysics Data System (ADS)

    Dove, A.; Sternovsky, Z.; Wang, X.; Robertson, S. H.; Lapanse, C.; Horanyi, M.; Collette, A.

    2010-12-01

    Solar ultraviolet radiation incident upon the dayside lunar surface produces a photoelectron gas that dominates the near-surface plasma environment, with a typical density of 60 cm-3 and a characteristic scale-length of ~1 m. It has traditionally been difficult to produce a photoelectron gas with sufficient density in a laboratory settings to study its properties. In our initial experiments, the characterization of the photoelectron density above a Zr surface (work function W=4.4 eV) illuminated by Xe excimer lamps (peak emission at a wavelength of 172 nm) indicated that a sheath with a Debye length on the order of 10 cm formed. We characterize the photoelectron population above the surface by utilizing an emissive probe to map the electric potential distribution above the surface, and a Langmuir probe to determine the number density and temperature of the photoelectrons. A grid is placed 7.5 cm above the Zr surface to repel photoelectrons emitted from the chamber walls. Emissive probe measurements show a potential dip of about 2 V extending ~1 cm above the zirconium surface. The size of this potential well is dependent on the number of lamps illuminating the surface, as the density of photoelectrons above the surface increases with greater illumination. The electrons in the sheath have a Maxwellian distribution with an electron temperature around 1 eV (maximum energies are expected to be approximately 2.8 eV). We will use this experimental apparatus to characterize the photoelectron sheath above other surfaces; powders, such as CeO2 have similar work functions, but different photoelectric yields. Lunar soil simulants are expected to have approximately an order of magnitude smaller yield than metallic surfaces, which will act to increase the characteristic length of the photoelectron sheath above the surface. The experiments and accompanying computer simulations are used to guide the development of new instrument concepts for future in situ plasma measurements on

  2. Photoelectron angular distributions in bichromatic atomic ionization induced by circularly polarized VUV femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Douguet, Nicolas; Grum-Grzhimailo, Alexei N.; Gryzlova, Elena V.; Staroselskaya, Ekaterina I.; Venzke, Joel; Bartschat, Klaus

    2016-03-01

    We investigate two-pathway interferences between nonresonant one-photon and resonant two-photon ionization of atomic hydrogen. In particular, we analyze in detail the photoionization mediated by the fundamental frequency and the second harmonic of a femtosecond VUV pulse when the fundamental is tuned near an intermediate atomic state. Following our recent study [Phys. Rev. A 91, 063418 (2015), 10.1103/PhysRevA.91.063418] of such effects with linearly polarized light, we analyze a similar situation with circularly polarized radiation. As a consequence of the richer structure in circularly polarized light, characterized by its right-handed or left-handed helicity, we present and discuss various important features associated with the photoelectron angular distribution.

  3. Electron-ion interaction effects in attosecond time-resolved photoelectron spectra

    SciTech Connect

    Zhang, C.-H.; Thumm, U.

    2010-10-15

    Photoionization by attosecond extreme ultraviolet (xuv) pulses into the laser-dressed continuum of the ionized atom is commonly described in strong-field approximation, neglecting the Coulomb interaction between the emitted photoelectron (PE) and the residual ion. By solving the time-dependent Schroedinger equation, we identify a temporal shift {delta}{tau} in streaked PE spectra, which becomes significant at low PE energies. Within an eikonal approximation, we trace this shift to the combined action of Coulomb and laser forces on the released PE, suggesting the experimental and theoretical scrutiny of their coupling in streaked PE spectra. Further, we examined the effect of initial state polarization by the laser pulse on the xuv streaked spectrum.

  4. Negative Ion Photoelectron Spectra of Halomethyl Anions

    NASA Astrophysics Data System (ADS)

    Vogelhuber, Kristen M.; Wren, Scott W.; McCoy, Anne B.; Ervin, Kent M.; Lineberger, W. Carl

    2009-06-01

    Halomethyl anions undergo a significant geometry change upon electron photodetachment, resulting in multiple extended vibrational progressions in the photoelectron spectra. The normal mode analysis that successfully models photoelectron spectra when geometry changes are modest is unable to reproduce the experimental data using physically reasonable parameters. A three-dimensional anharmonic coupled-mode analysis was employed to accurately reproduce the observed vibrational structure. We present the 364 nm negative ion photoelectron spectra of the halomethyl anions CHX_2^- and CDX_2^- (X = Cl, Br, I) and report electron affinities, vibrational frequencies, and geometries.

  5. Intergalactic magnetogenesis at Cosmic Dawn by photoionization

    NASA Astrophysics Data System (ADS)

    Durrive, J.-B.; Langer, M.

    2015-10-01

    We present a detailed analysis of an astrophysical mechanism that generates cosmological magnetic fields during the Epoch of Reionization. It is based on the photoionization of the intergalactic medium by the first sources formed in the Universe. First the induction equation is derived, then the characteristic length and time-scales of the mechanism are identified, and finally numerical applications are carried out for first stars, primordial galaxies and distant powerful quasars. In these simple examples, the strength of the generated magnetic fields varies between the order of 10-23 G on hundreds of kiloparsecs and 10-19 G on hundreds of parsecs in the neutral intergalactic medium between the Strömgren spheres of the sources. Thus, this mechanism contributes to the premagnetization of the whole Universe before large-scale structures are in place. It operates with any ionizing source, at any time during the Epoch of Reionization. Finally, the generated fields possess a characteristic spatial configuration which may help discriminate these seeds from those produced by different mechanisms.

  6. Vacuum ultraviolet photoionization of carbohydrates and nucleotides.

    PubMed

    Shin, Joong-Won; Bernstein, Elliot R

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5(')-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results. PMID:25669546

  7. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    SciTech Connect

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  8. Vacuum ultraviolet photoionization of carbohydrates and nucleotides.

    PubMed

    Shin, Joong-Won; Bernstein, Elliot R

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5(')-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  9. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-01

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5'-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  10. Extreme ultraviolet-induced photoionized plasmas

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Wachulak, Przemyslaw; Fiedorowicz, Henryk; Fok, Tomasz; Jarocki, Roman; Szczurek, Miroslaw

    2014-05-01

    In this work photoionized plasmas were created by irradiation of He or Ne gases with a focused extreme ultraviolet (EUV) beam from one of two laser-plasma sources employing Nd:YAG laser systems. The first of them was a 10 Hz laser-plasma EUV source, based on a double-stream gas-puff target, irradiated with a 3 ns per 0.8 J laser pulse. EUV radiation in this case was focused using a gold-plated grazing incidence ellipsoidal collector. The second source was based on a 10 ns per 10 J per 10 Hz laser system. In this case EUV radiation was focused using a gold-plated grazing incidence multifoil collector. Gases were injected into the interaction region, perpendicularly to an optical axis of the irradiation system, using an auxiliary gas puff valve. Spectral measurements in the EUV range were performed. In all cases the most intense emission lines were assigned to singly charged ions. The other emission lines belong to atoms or doubly charged ions.

  11. Cooling and Heating Functions of Photoionized Gas

    NASA Astrophysics Data System (ADS)

    Gnedin, Nickolay Y.; Hollon, Nicholas

    2012-10-01

    Cooling and heating functions of cosmic gas are crucial ingredients for any study of gas dynamics and thermodynamics in the interstellar and intergalactic media. As such, they have been studied extensively in the past under the assumption of collisional ionization equilibrium. However, for a wide range of applications, the local radiation field introduces a non-negligible, often dominant, modification to the cooling and heating functions. In the most general case, these modifications cannot be described in simple terms and would require a detailed calculation with a large set of chemical species using a radiative transfer code (the well-known code Cloudy, for example). We show, however, that for a sufficiently general variation in the spectral shape and intensity of the incident radiation field, the cooling and heating functions can be approximated as depending only on several photoionization rates, which can be thought of as representative samples of the overall radiation field. This dependence is easy to tabulate and implement in cosmological or galactic-scale simulations, thus economically accounting for an important but rarely included factor in the evolution of cosmic gas. We also show a few examples where the radiation environment has a large effect, the most spectacular of which is a quasar that suppresses gas cooling in its host halo without any mechanical or non-radiative thermal feedback.

  12. Time delay in photoionization near Cooper minima

    NASA Astrophysics Data System (ADS)

    Jose, Jobin; Kannur, Sindhu; Kumar, Ashish; Varma, Hari R.; Deshmukh, Pranawa C.; Manson, Steven T.

    2012-06-01

    The connection between the energy dependence of the scattering phase shift and time delay is known [1]. With the developments of techniques in attosecond physics, it has become possible to measure the time delay between photoemission from different subshells [2, 3]. There have been several nonrelativistic calculations of the time delay between photoelectrons from different subshells [4, 5] that confirmed the need to include many-electron correlations. In the present work, the RRPA [6], which includes both relativity and many of the important electron correlation effects, is employed to calculate the time delay between photoelectrons from the valance ns, np3/2 and np1/2 subshells of noble gas atoms in the dipole approximation, and particularly dramatic variations occur in the vicinity of Cooper minimum [7] owing to the rapid variation of the scattering phase shift in the vicinity of Cooper minima, including effects that occur only due to relativistic splittings. These effects appear to be amenable to experimental investigation.[4pt] [1] E. P. Wigner, Phys. Rev. 98, 145 (1955). [2] M. Schultze et al, Science 328, 1658 (2010). [3] K. Klunder et al, Phys. Rev. Lett. 106, 143002 (2011). [4] A. S. Kheifets and I. A. Ivanov, Phys. Rev. Lett. 105, 233002 (2010). [5] C. H. Zhang and U. Thumm, Phys. Rev. A 82, 043405 (2010). [6] W. R. Johnson and C. D. Lin, Phys. Rev. A 20, 964 (1979). [7] J. W. Cooper, Phys. Rev. 128, 681 (1962).

  13. Prominent conjugate processes in the PCI recapture of photoelectrons revealed by high resolution Auger electron measurements of Xe

    NASA Astrophysics Data System (ADS)

    Azuma, Yoshiro; Kosugi, Satoshi; Suzuki, Norihiro; Shigemasa, Eiji; Iwayama, Hiroshi; Koike, Fumihiro

    2016-05-01

    The Xe (N5O2 , 3O2 , 3) Auger electron spectrum originating from 4d5/ 2 - 1 photoionization was measured with the photon energy tuned very close above the ionization threshold. As the photon energy approached the 4d5/ 2 - 1 photoionization threshold, Rydberg series structures including several angular momentum components were formed within the Auger profile by the recapture of the photoelectrons into high-lying final ion orbitals. Our spectrum with resolution much narrower than the lifetime width of the corresponding core excited state allowed us to resolve detailed structures due to the orbital angular momenta very clearly. Unexpectedly, conjugate peaks originating from the exchange of angular momentum between the photoelectron and the Auger electron through Post-Collision-Interaction were found to dominate the spectrum. The new assignments were in accord with the quantum defect values obtained for the high Rydberg series for singly charged ionic Xe + 5 p(1S0) ml. This work was supported by Japan Society for the Promotion of Science through Grants-in-Aid for Scientific Research No. 23600009.

  14. Imaging electron dynamics with time- and angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Popova-Gorelova, Daria; Küpper, Jochen; Santra, Robin

    2016-07-01

    We theoretically study how time- and angle-resolved photoemission spectroscopy can be applied for imaging coherent electron dynamics in molecules. We consider a process in which a pump pulse triggers coherent electronic dynamics in a molecule by creating a valence electron hole. An ultrashort extreme ultraviolet probe pulse creates a second electron hole in the molecule. Information about the electron dynamics is accessed by analyzing angular distributions of photoemission probabilities at a fixed photoelectron energy. We demonstrate that a rigorous theoretical analysis, which takes into account the indistinguishability of transitions induced by the ultrashort, broadband probe pulse and electron hole correlation effects, is necessary for the interpretation of time- and angle-resolved photoelectron spectra. We show how a Fourier analysis of time- and angle-resolved photoelectron spectra from a molecule can be applied to follow its electron dynamics by considering photoelectron distributions from an indole molecular cation with coherent electron dynamics.

  15. Infrared-vacuum Ultraviolet-pulsed Field Ionization-photoelectron Study of CH₃I⁺ Using a High-resolution Infrared Laser

    SciTech Connect

    Xing, Xi; Reed, Beth; Bahng, Mi-Kyung; Baek, Sun-Jong; Wang, Peng; Ng, Cheuk-Yiu

    2008-03-12

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. By using a high-resolution single mode infrared-optical parametric oscillator laser to prepare CH₃I in single (J,K) rotational levels of the v1 (symmetric C–H stretching) =1 vibrational state, we have obtained rovibrationally resolved infrared–vacuum ultraviolet–pulsed field ionization–photoelectron (IR-VUV-PFI-PE) spectra of the CH₃I⁺X˜ 2E3/2 ;v1 +=1;J+ ,P+) band, where (J,K) and (J+ ,P+) represent the respective rotational quantum numbers of CH₃I and CH₃I⁺. The IR-VUV-PFI-PE spectra observed for K=0 and 1 are found to have nearly identical structures. The IR-VUV-PFI-PE spectra for (J,K)=(5,0) and (7, 0) are also consistent with the previous J-selected IR-VUV-PFI-PE measurements. The analysis of these spectra indicates that the photoionization cross section of CH₃I depends strongly on |ΔJ⁺|=|J⁺-J| but not on J and K. This observation lends strong support for the major assumption adopted for the semiempirical simulation scheme, which has been used for the simulation of the origin bands observed in VUV-PFI-PE study of polyatomic molecules. Using the state-to-state photoionization cross sections determined in this IR-VUV study, we have obtained excellent simulation of the VUV-PFI-PE origin band of CH₃I+(X˜ 2E3/2), yielding more precise IE(CH₃I)=76 930.7±0.5 cm-1 and v1 +=2937.8±0.2 cm-1.

  16. Photo-Ionization and Photo-Dissociation of Trapped PAH Cations

    NASA Astrophysics Data System (ADS)

    Joblin, Christine; Zhen, Junfeng; Rodriguez Castillo, Sarah; Mulas, Giacomo; Sabbah, Hassan; Simon, Aude; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M.

    2016-06-01

    In astrophysical environments, polycyclic aromatic hydrocarbons (PAHs) are submitted to VUV photons of energy up to ˜20 eV. In the laboratory, photoelectron-photoion spectroscopy is usually performed using VUV synchrotron radiation, in which the same photon (15-25 eV), is used to ionize and dissociate PAHs. These experiments explore specific conditions and complementary studies in ion traps are required for a wider investigation of interstellar conditions. We have used the LTQ linear ion trap available on the DESIRS VUV beamline at SOLEIL to study the interaction of PAH cations with photons in the 7-20 eV range. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization of eight PAH cations ranging in size from 14 to 24 carbon atoms and with different structures. We found that, at photon energies below ˜13.6 eV, fragmentation dominates for the smaller species, while for larger species ionization is competitive immediately above the second ionization potential. At higher photon energies, all species behave similarly, the ionization yield gradually increases, levelling off between 0.8 and 0.9 at ˜18 eV. We have also recorded the competition between the different dissociation channels as a function of the VUV photon energy, such as the C_2H_2 versus H/H_2 loss. We will discuss how these data can be compared to results of photoelectron spectroscopy performed on neutral PAHs at the VUV beamline at the Swiss Light Source. H.W. Jochims et al., Astron. & Astrophys. 420 (1994), 307-317; P. M. Mayer et al., J. Chem. Phys. 134 (2011), 244312-244312-8 J. Zhen et al., Astron. & Astrophys. (2016), in press B. West et al., J. Phys. Chem. A 118 (2014), 7824-7831; B. West et al., J. Phys. Chem. A 118 (2014), 9870-9878 Acknowledgments: European Research Council grant ERC-2013-SyG, Grant Agreement n. 610256 NANOCOSMOS.

  17. Photoionization of Highly Charged Argon Ions and Their Diagnostic Lines

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2012-06-01

    %TEXT OF YOUR ABSTRACT Lines of highly charged He-like and Li-like ions in the ultraviolet and X-ray regions provide useful diagnostics for the physical and chemical conditions of the astrophysical as well as fusion plasmas. For example, Ar XVII lines in a Syfert galaxy have been measured by the X-ray space observatory Chandra. Results on photoionization of Ar XVI and Ar XVII obtained from relativistic Breit-Pauli R-matrix method and close-coupling approximation will be presented. Important features for level-specific photoionization for the diagnostic w, x, y, z lines of He-like Ar XVII in the ultraviolet region will be illustrated. Although monotonous decay dominates the low energy photoionization for these ions, strong resonances appear in the high energy region indicating higher recombination, inverse process of photoionization, at high temperature. The spectra of the well known 22 diagnostics dielectronic satellite lines of Li-like Ar XVI will be shown produced from the the KLL resonances in photoionization. Acknowledgement: Partially supported by DOE, NSF; Computational work was carried out at the Ohio Supercomputer Center

  18. Photoionization mass spectrometric study of the prebiotic species formamide in the 10-20 eV photon energy range.

    PubMed

    Leach, Sydney; Jochims, Hans-Werner; Baumgärtel, Helmut

    2010-04-15

    A photoion mass spectrometry study of the prebiotic species formamide was carried out using synchrotron radiation over the photon energy range 10-20 eV. Photoion yield curves were measured for the parent ion and seven fragment ions. The ionization energy of formamide was determined as IE (1(2)A') = 10.220 +/- 0.005 eV, in agreement with a value obtained by high resolution photoelectron spectroscopy. The adiabatic energy of the first excited state of the ion, 1(2)A'', was revised to 10.55 eV. A comparison of the ionization energies of related formamides, amino acids, and polypeptides provides useful information on the varied effects of methylation and shows that polymerization does not substantially alter the ionization properties of the amino acid monomer units. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made on the basis of ion appearance energies in conjunction with thermochemical data and the results of earlier electron impact mass spectral studies. Some of the dissociation pathways are considered to involve coupling between the 1(2)A' ground state and the low-lying 1(2)A'' excited state of the cation. Heats of formation are derived for all ions detected and are compared with literature values where they exist. Formation of the HNCO(+) ion occurs by two separate paths, one involving H(2) loss, the other H + H. In the conclusion a brief discussion is given of some astrophysical implications of these results. PMID:20085361

  19. Partial Photoionization Cross Sections and Angular Distributions for Double Excitation of Helium up to the N=13 Threshold

    SciTech Connect

    Czasch, A.; Schoeffler, M.; Hattass, M.; Schoessler, S.; Jahnke, T.; Weber, Th.; Staudte, A.; Titze, J.; Wimmer, C.; Kammer, S.; Weckenbrock, M.; Voss, S.; Grisenti, R.E.; Jagutzki, O.; Schmidt, L.Ph.H.; Schmidt-Boecking, H.; Doerner, R.; Rost, J.M.; Schneider, T.; Liu, C.-N.

    2005-12-09

    Partial photoionization cross sections {sigma}{sub N}(E{sub {gamma}}) and photoelectron angular distributions {beta}{sub N}(E{sub {gamma}}) were measured for the final ionic states He{sup +}(N>4) in the region between the N=8 and N=13 thresholds (E{sub {gamma}}>78.155 eV) using the cold target recoil ion momentum spectroscopy technique (COLTRIMS). Comparison of the experimental data with two independent sets of theoretical predictions reveals disagreement for the branching ratios to the various He{sub N}{sup +} states. The angular distributions just below the double ionization threshold suggest an excitation process for highly excited N states similar to the Wannier mechanism for double ionization.

  20. Electron-ion-ion triple-coincidence spectroscopic study of site-specific fragmentation caused by Si:2p core-level photoionization of F{sub 3}SiCH{sub 2}CH{sub 2}Si(CH{sub 3}){sub 3} vapor

    SciTech Connect

    Nagaoka, S.; Hino, M.; Takemoto, M.; Pruemper, G.; Fukuzawa, H.; Liu, X.-J.; Lischke, T.; Ueda, K.; Tamenori, Y.; Harries, J.; Suzuki, I. H.; Takahashi, O.; Okada, K.; Tabayashi, K.

    2007-02-15

    Site-specific fragmentation caused by Si:2p core-level photoionization of F{sub 3}SiCH{sub 2}CH{sub 2}Si(CH{sub 3}){sub 3} vapor was studied by means of high-resolution energy-selected-electron photoion-photoion triple-coincidence spectroscopy. The ab initio molecular orbital method was used for the theoretical description. F{sub 3}SiCH{sub 2}CH{sub 2}{sup +}-Si(CH{sub 3}){sub 3}{sup +} ion pairs were produced by the 2p photoionization of the Si atoms bonded to the three methyl groups, and SiF{sup +}-containing ion pairs were produced by the 2p photoionization of the Si atoms bonded to the three F atoms.

  1. 2012 MOLECULAR AND IONIC CLUSTERS GORDON RESEARCH CONFERENCE, JANUARY 29 - FEBRUARY 3, 2012

    SciTech Connect

    Anne McCoy

    2012-02-03

    The Gordon Research Conference on 'Molecular and Ionic Clusters' focuses on clusters, which are the initial molecular species found in gases when condensation begins to occur. Condensation can take place solely from molecules interacting with each other, mostly at low temperatures, or when molecules condense around charged particles (electrons, protons, metal cations, molecular ions), producing ion molecule clusters. These clusters provide models for solvation, allow a pristine look at geometric as well as electronic structures of molecular complexes or matter in general, their interaction with radiation, their reactivity, their thermodynamic properties and, in particular, the related dynamics. This conference focuses on new ways to make clusters composed of different kinds of molecules, new experimental techniques to investigate the properties of the clusters and new theoretical methods with which to calculate the structures, dynamical motions and energetics of the clusters. Some of the main experimental methods employed include molecular beams, mass spectrometry, laser spectroscopy (from infrared to XUV; in the frequency as well as the time domain) and photoelectron spectroscopy. Techniques include laser absorption spectroscopy, laser induced fluorescence, resonance enhanced photoionization, mass-selected photodissociation, photofragment imaging, ZEKE photoelectron spectroscopy, etc. From the theoretical side, this conference highlights work on potential surfaces and measurable properties of the clusters. The close ties between experiment, theory and computation have been a hallmark of the Gordon Research Conference on Molecular and Ionic Clusters. In the 2012 meeting, we plan to have sessions that will focus on topics including: (1) The use of cluster studies to probe fundamental phenomena; (2) Finite size effects on structure and thermodynamics; (3) Intermolecular forces and cooperative effects; (4) Molecular clusters as models for solvation; and (5) Studies of

  2. Longitudinal photoelectron momentum shifts induced by absorbing a single XUV photon in diatomic molecules

    NASA Astrophysics Data System (ADS)

    Lao, Di; He, Pei-Lun; He, Feng

    2016-06-01

    The photoelectron momentum shifts along the laser propagation are investigated by the time-dependent perturbation theory for diatomic molecules, such as H2+ , N2, and O2. Such longitudinal momentum shifts characterize the photon momentum sharing in atoms and molecules, and oscillate with respect to photon energies, presenting the double-slit interference structure. The atomic and molecular contributions are disentangled analytically, which gives an intuitive picture of how the double-slit interference structure is formed. Calculation results show that the longitudinal photoelectron momentum distribution depends on the internuclear distance, molecular orientation, and photon energy. The current laser technology is ready to verify these theoretical predictions.

  3. Interchannel coupling effects in the valence photoionization of SF6

    NASA Astrophysics Data System (ADS)

    Jose, Jobin; Lucchese, Robert; Rescigno, Tom

    2014-05-01

    The complex Kohn and polyatomic Schwinger variational techniques have been employed to illustrate the interchannel coupling correlation effects in the valence photoionization dynamics of SF6. Partial photoionization cross sections and asymmetry parameters of six valence subshells (1t1 g, 5t1 u, 1t2 u, 3eg, 1t2 g, 4t1 u) are discussed in the framework of several theoretical and experimental studies. The complex Kohn results are in rather good agreement with experimental results, indicative of the fact that the interchannel coupling effects alter the photoionization dynamics significantly. We find that the dominant effect of interchannel coupling is to reduce the magnitude of shape resonant cross sections near threshold and to induce resonant features in other channels to which resonances are coupled.

  4. Triggering Excimer Lasers by Photoionization from Corona Discharges

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  5. Photoionization of ground and excited states of Ti I

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2015-07-01

    Detailed photoionization of ground and many excited states with autoionizing resonances of neutral Ti are presented. Ti I with 22 electrons forms a large number of bound states, the present work finds a total of 908 bound states with n ⩽ 10 and l ⩽ 8 . Photoionization cross sections (σPI) for all these bound states have been obtained. Calculations were carried out in the close-coupling R-matrix method using a wave function expansion that included 36 states of core ion Ti II. It is found that the resonances enhance the low energy region of photoionization of the ground and low lying excited states. The resonant features will increase the opacity, as expected of astrophysical observation, and hence play important role in determination of abundances in the elements in the astronomical objects. The excited states also show prominent structures of Seaton or photo-excitation-of-core resonances.

  6. High-resolution soft x-ray photoionization studies of selected molecules

    SciTech Connect

    Hudson, E.A.

    1993-08-01

    Near-edge soft x-ray photoionization spectra were measured for CO, SF{sub 6}, H{sub 2}S, and D{sub 2}S in the gas phase, using the Free University of Berlin plane-grating SX-700-II monochromator at the synchrotron radiation source BESSY. Photoionization spectra of carbon monoxide were measured near the carbon and oxygen K edges. Vibrational spacings and bond lengths are derived for several resonances. Results are consistent with equivalent-core model and indicate the different influences of the carbon and oxygen Is core holes. Corresponding spectra of H{sub 2}CO and D{sub 2}CO were also measured. Assignment of complex vibrational structure in valence-shell and Rydberg resonances is facilitated by comparison of spectra for the two isotopic species. Geometric and vibrational parameters are derived for several carbon 1s core-excited states. Isotopic shifts are observed in the energies and linewidths of some core-excited states. Sulfur hexafluoride photoionization spectra, measured near the sulfur L{sub 2,3} edges, show several series of weak, narrow Rydberg resonances. High resolution and good counting statistics allow a complete assignment of these states. Lineshapes of the broad inner-well resonances are analyzed to establish the magnitudes of vibrational and lifetime broadening in these states. Spectra of the H{sub 2}S and D{sub 2}S molecules were also measured near the sulfur L{sub 2,3} edges. Besides lower-energy transitions to inner-well states, a complex manifold of overlapping Rydberg resonances is observed. The rich fine structure of these states arises mainly from removal of orbital degeneracies in molecular field. Additional structure due to vibrational excitations in the final state is identified by comparison of the spectra for the two isotopic species.

  7. Total photoionization cross-sections of excited electronic states by the algebraic diagrammatic construction-Stieltjes-Lanczos method

    SciTech Connect

    Ruberti, M.; Yun, R.; Averbukh, V.; Gokhberg, K.; Kopelke, S.; Cederbaum, L. S.; Tarantelli, F.

    2014-05-14

    Here, we extend the L{sup 2} ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in the ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N{sub 2}, and H{sub 2}O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.

  8. Strong-Field Photoionization as Excited-State Tunneling.

    PubMed

    Serebryannikov, E E; Zheltikov, A M

    2016-03-25

    We show that, in an intense laser field, ultrafast photoionization can occur through quantum pathways that cannot be categorized as multiphoton ionization or ground-state tunneling. In this regime, the subcycle electron-wave-packet dynamics leading to photoionization occurs via electron excited states, from where the electrons tunnel to the continuum within a tiny fraction of the field cycle. For high field intensities, this ionization pathway is shown to drastically enhance the dynamic leakage of the electron wave packet into the continuum, opening an ionization channel that dominates over ground-state electron tunneling. PMID:27058079

  9. Transport of Photoelectrons in the Nightside Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Liemohn, M. W.

    2002-01-01

    Kinetic modeling results are analyzed to examine the transport of photoelectrons through the nightside inner magnetosphere. Two sources are considered, those on the dayside from direct solar illumination and those across the nightside from light scattered by the upper atmosphere and geocorona. A natural filter exists on the nightside for the dayside photoelectrons. Coulomb collisions erode the distribution at low energies and low L shells, and magnetospheric convection compresses the electrons as they drift toward dawn. It is shown that for low-activity levels a band of photoelectrons forms between L = 4 and 6 that extends throughout the nightside local times and into the morning sector. For the scattered light photoelectrons the trapped zone throughout the nightside is populated with electrons of E less than 30 eV. At high L shells near dawn, convective compression on the nightside yields an accelerated population with electrons at energies up to twice the ionospheric energy maximum (that is, roughly 1200 eV for dayside photoelectrons and 60 eV for scattered light electrons). Modeled energy and pitch angle distributions are presented to show the features of these populations.

  10. High-resolution pulsed-field ionization photoelectron study of O{sub 2}

    SciTech Connect

    Hsu, C.W.; Evans, M.; Stimson, S.

    1997-04-01

    There have been numerous photoionization studies of O{sub 2} over the past 10 years. Using the pulsed field ionization (PFI) photoelectron spectroscopy (PES) technique, the electronic ground state of O{sub 2}{sup +} (X{sup 2}{Pi}{sub g}{sup {minus}}) has been well studied on the rotationally resolved level by several groups. However, due to the difficulty of producing photon energies above 18 eV using the tunable lasers, the electronic excited states of O{sub 2}{sup +} have been mostly studied on the vibrationally resolved level using the threshold photoelectron spectroscopy (TPES) and the synchrotron radiation. Recently, the authors developed a new technique for performing the PFI-PE experiments using multi-bunch synchrotron radiation at the Chemical Dynamics Beamline of the Advanced Light Source (ALS). Using the high resolution VUV light from the ALS, they have obtained the PFI-PE spectra of O{sub 2} between 12 and 24 eV. In this abstract, the authors report for the first time the rotationally resolved spectra of O{sub 2}{sup +} (b{sup 4}{Sigma}{sub g}{sup {minus}}, v{sup +}=0).

  11. Ambipolar Electric Field, Photoelectrons, and Their Role in Atmospheric Escape From Hot Jupiters

    NASA Technical Reports Server (NTRS)

    Cohen, O.; Glocer, A.

    2012-01-01

    Atmospheric mass loss from Hot Jupiters can be large due to the close proximity of these planets to their host star and the strong radiation the planetary atmosphere receives. On Earth, a major contribution to the acceleration of atmospheric ions comes from the vertical separation of ions and electrons, and the generation of the ambipolar electric field. This process, known as the "polar wind," is responsible for the transport of ionospheric constituents to Earth's magnetosphere, where they are well observed. The polar wind can also be enhanced by a relatively small fraction of super-thermal electrons (photoelectrons) generated by photoionization.We formulate a simplified calculation of the effect of the ambipolar electric field and the photoelectrons on the ion scale height in a generalized manner. We find that the ion scale height can be increased by a factor of 2-15 due to the polar wind effects. We also estimate a lower limit of an order of magnitude increase of the ion density and the atmospheric mass-loss rate when polar wind effects are included.

  12. Nonadiabatic Dynamics May Be Probed through Electronic Coherence in Time-Resolved Photoelectron Spectroscopy.

    PubMed

    Bennett, Kochise; Kowalewski, Markus; Mukamel, Shaul

    2016-02-01

    We present a hierarchy of Fermi golden rules (FGRs) that incorporate strongly coupled electronic/nuclear dynamics in time-resolved photoelectron spectroscopy (TRPES) signals at different levels of theory. Expansion in the joint electronic and nuclear eigenbasis yields the numerically most challenging exact FGR (eFGR). The quasistatic Fermi Golden Rule (qsFGR) neglects nuclear motion during the photoionization process but takes into account electronic coherences as well as populations initially present in the pumped matter as well as those generated internally by coupling between electronic surfaces. The standard semiclassical Fermi Golden Rule (scFGR) neglects the electronic coherences and the nuclear kinetic energy during the ionizing pulse altogether, yielding the classical Condon approximation. The coherence contributions depend on the phase-profile of the ionizing field, allowing coherent control of TRPES signals. The photoelectron spectrum from model systems is simulated using these three levels of theory. The eFGR and the qsFGR show temporal oscillations originating from the electronic or vibrational coherences generated as the nuclear wave packet traverses a conical intersection. These oscillations, which are missed by the scFGR, directly reveal the time-evolving splitting between electronic states of the neutral molecule in the curve-crossing regime.

  13. Theoretical and Experimental Photoelectron Spectroscopy Characterization of the Ground State of Thymine Cation.

    PubMed

    Majdi, Youssef; Hochlaf, Majdi; Pan, Yi; Lau, Kai-Chung; Poisson, Lionel; Garcia, Gustavo A; Nahon, Laurent; Al-Mogren, Muneerah Mogren; Schwell, Martin

    2015-06-11

    We report on the vibronic structure of the ground state X̃(2)A″ of the thymine cation, which has been measured using a threshold photoelectron photoion coincidence technique and vacuum ultraviolet synchrotron radiation. The threshold photoelectron spectrum, recorded over ∼0.7 eV above the ionization potential (i.e., covering the whole ground state of the cation) shows rich vibrational structure that has been assigned with the help of calculated anharmonic modes of the ground electronic cation state at the PBE0/aug-cc-pVDZ level of theory. The adiabatic ionization energy has been experimentally determined as AIE = 8.913 ± 0.005 eV, in very good agreement with previous high resolution results. The corresponding theoretical value of AIE = 8.917 eV has been calculated in this work with the explicitly correlated method/basis set (R)CCSD(T)-F12/cc-pVTZ-F12, which validates the theoretical approach and benchmarks its accuracy for future studies of medium-sized biological molecules.

  14. AMBIPOLAR ELECTRIC FIELD, PHOTOELECTRONS, AND THEIR ROLE IN ATMOSPHERIC ESCAPE FROM HOT JUPITERS

    SciTech Connect

    Cohen, O.; Glocer, A.

    2012-07-01

    Atmospheric mass loss from Hot Jupiters can be large due to the close proximity of these planets to their host star and the strong radiation the planetary atmosphere receives. On Earth, a major contribution to the acceleration of atmospheric ions comes from the vertical separation of ions and electrons, and the generation of the ambipolar electric field. This process, known as the 'polar wind', is responsible for the transport of ionospheric constituents to Earth's magnetosphere, where they are well observed. The polar wind can also be enhanced by a relatively small fraction of super-thermal electrons (photoelectrons) generated by photoionization. We formulate a simplified calculation of the effect of the ambipolar electric field and the photoelectrons on the ion scale height in a generalized manner. We find that the ion scale height can be increased by a factor of 2-15 due to the polar wind effects. We also estimate a lower limit of an order of magnitude increase of the ion density and the atmospheric mass-loss rate when polar wind effects are included.

  15. Anion photoelectron spectroscopy of radicals and clusters

    SciTech Connect

    Travis, Taylor R.

    1999-12-16

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying {sup 2}{Sigma} and {sup 2}{Pi} states of C{sub 2n}H (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C{sub 2}H and C{sub 4}H. Other radicals studied include NCN and I{sub 3}. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I{sub 3} revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  16. Coherent control of photoelectron wavepacket angular interferograms

    NASA Astrophysics Data System (ADS)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  17. Acid generation efficiency: EUV photons versus photoelectrons

    NASA Astrophysics Data System (ADS)

    Goldfarb, Dario L.; Afzali-Ardakani, Ali; Glodde, Martin

    2016-03-01

    EUV photoacid generation efficiency has been described primarily in terms of the EUV photon absorption by the PAG or the resist matrix and the production of low energy photoelectrons, which are reported as being ultimately responsible for the high quantum efficiencies reported in EUV resists (<1). Such observation led to a number of recent studies on PAGs with variable electron affinity (EA) and reduction potential (Ered) presumably conducive to a differential EUV photoelectron harvesting efficiency. However, such studies either did not disclose the PAG chemical structures, replaced the EUV source with an e-beam source, or lacked a fundamental discussion of the underlying physical mechanisms behind EUV PAG decomposition. In this work, we report the EUV photospeed of a methacrylatebased resist formulated with a battery of openly disclosed isostructural sulfonium PAGs covering a wide range of EA's and Ered's, to unveil any preferential photoelectron scavenging effect. In parallel, several iodonium PAGs are also tested in order to compare the direct EUV photon absorption route to the photoelectron-based decomposition path. Contrarily to what has been widely reported, we have found no direct correlation whatsoever between photospeed and the calculated EA's or experimental Ered's for the isostructural sulfonium PAGs studied. Instead, we found that iodonium PAGs make more efficient use of the available EUV power due to their higher photoabsorption cross-section. Additionally, we determined a cation size effect for both PAG groups, which is able to further modulate the acid generation efficiency. Finally, we present a formal explanation for the unselective response towards photoelectron harvesting based on the stabilization of the PAG cation by bulky substituent groups, the spatial and temporal range of the transient photoelectron and the differences in electron transfer processes for the different systems studied.

  18. Communication: Imaging wavefunctions in dissociative photoionization

    NASA Astrophysics Data System (ADS)

    Scott Hopkins, W.; Mackenzie, Stuart R.

    2011-08-01

    The dissociative ionization dynamics of excited electronic states of the xenon dimer, Xe2, have been studied using velocity map ion imaging (VMI). A one-colour, (2+1) resonant excitation scheme was employed to first excite and then ionize selected vibrational levels of the Xe2 6p 2[1/2]0 0_g^ + Rydberg state. Cationic fragments were then detected by the VMI. The data provide an outstanding example of the reflection principle in photodissociation with the full nodal structure of the Rydberg state wavefunctions clearly observed in the final Xe+ kinetic energy distributions without the need for scanning the excitation energy. Fitting of the observed distributions provides detailed and precise information on the form of the Xe2+ I(1/2g) potential energy curve involved which is in excellent agreement with the results of photoelectron imaging studies [Shubert and Pratt, J. Chem. Phys. 134, 044315 (2011), 10.1063/1.3533361]. Furthermore, the anisotropy of the product angular distributions yields information on the evolution of the electronic character of the ionic state with internuclear separation, R. The combination of the nature of dissociative ionization and the extent of the bound state wavefunctions provide information over an unusually wide range of internuclear separation R (ΔR > 0.75 Å). This would normally require scanning over a considerable energy region but is obtained in these studies at a fixed excitation energy.

  19. Anion photoelectron imaging spectroscopy of glyoxal

    NASA Astrophysics Data System (ADS)

    Xue, Tian; Dixon, Andrew R.; Sanov, Andrei

    2016-09-01

    We report a photoelectron imaging study of the radical-anion of glyoxal. The 532 nm photoelectron spectrum provides the first direct spectroscopic determination of the adiabatic electron affinity of glyoxal, EA = 1.10 ± 0.02 eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy of the radical-anion is determined as VDE = 1.30 ± 0.04 eV. The reported EA and VDE values are attributed to the most stable (C2h symmetry) isomers of the neutral and the anion.

  20. Photoelectron spectroscopy of nitromethane anion clusters

    NASA Astrophysics Data System (ADS)

    Pruitt, Carrie Jo M.; Albury, Rachael M.; Goebbert, Daniel J.

    2016-08-01

    Nitromethane anion and nitromethane dimer, trimer, and hydrated cluster anions were studied by photoelectron spectroscopy. Vertical detachment energies, estimated electron affinities, and solvation energies were obtained from the photoelectron spectra. Cluster structures were investigated using theoretical calculations. Predicted detachment energies agreed with experiment. Calculations show water binds to nitromethane anion through two hydrogen bonds. The dimer has a non-linear structure with a single ionic Csbnd H⋯O hydrogen bond. The trimer has two different solvent interactions, but both involve the weak Csbnd H⋯O hydrogen bond.

  1. Photoelectron-photoabsorption (PePa) database

    NASA Astrophysics Data System (ADS)

    Śmiałek, Małgorzata A.; Mason, Nigel J.

    2016-03-01

    In this paper a recently launched Photoelectron-Photoabsorption Database is presented. The database was developed in order to gather all the photoelectron and photoabsorption spectra measured by various collaborators over the years as well as to ease the access to the data to the potential users. In the paper the main features of the database were described and its outline explained. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  2. Dissociative photoionization of β-pinene: an experimental and theoretical study.

    PubMed

    Sheng, Liusi; Cao, Maoqi; Chen, Jun; Fang, Wenzhen; Li, Yuquan; Ge, Shaolin; Shan, Xiaobin; Liu, Fuyi; Zhao, Yujie; Zhenya Wang, Zhenya Wang

    2014-01-01

    We investigated the photoionization and dissociation photoionization of the β-pinene molecular using time-of-flight mass spectrometry with a tunable vacuum ultraviolet source in the region from 8.00eV to 15.50eV. The experimental ionization energy (IE) value is 8.60eV using electron impact as the ionization source which is not in good agreement with theoretical value (8.41 eV) with a G3MP2 method. We obtained the accurate IE of β-pinene (8.45 ± 0.03eV) derived from the efficiency spectrum which is in good agreement with the theoretical value (8.38eV) of the CBS-QB3 method. We elucidated the dissociation pathways of primary fragment ions from the β-pinene cation on the basis of experimental observations in combination with theoretical calculations. Most of the dissociation pathways occur via a rearrangement reaction prior to dissociation. We also determined the structures of the transition states and intermediates for those isomerization processes.

  3. Vibrationally resolved photoelectron angular distributions for H2 in the range 17 eV<=hν<=39 eV

    NASA Astrophysics Data System (ADS)

    Parr, A. C.; Hardis, J. E.; Southworth, S. H.; Feigerle, C. S.; Ferrett, T. A.; Holland, D. M. P.; Quinn, F. M.; Dobson, B. R.; West, J. B.; Marr, G. V.; Dehmer, J. L.

    1988-01-01

    Vibrationally resolved photoelectron angular distributions have been measured for photoionization of H2 over the range 17 eV<=hν<=39 eV using independent instrumentation at two synchro- tron radiation facilities. The present data greatly extend and add vibrational resolution to earlier variable-wavelength measurements. The average magnitude of the asymmetry parameter continues to lie lower than the best independent-electron calculations. Broad structure is observed for the first time, possibly indicating the effects of channel interaction with dissociative, doubly excited states of H2. Neither the average magnitude nor the gross wavelength-dependent structure vary strongly with the final vibrational channel.

  4. Electronic structure of β-Ga{sub 2}O{sub 3} single crystals investigated by hard X-ray photoelectron spectroscopy

    SciTech Connect

    Li, Guo-Ling; Zhang, Fabi; Guo, Qixin; Cui, Yi-Tao; Oji, Hiroshi; Son, Jin-Young

    2015-07-13

    By combination of hard X-ray photoelectron spectroscopy (HAXPES) and first-principles band structure calculations, the electronic states of β-Ga{sub 2}O{sub 3} were investigated to deepen the understanding of bulk information for this compound. The valence band spectra of HAXPES presented the main contribution from Ga 4sp, which are well represented by photoionization cross section weighted partial density of states. The experimental data complemented with the theoretical study yield a realistic picture of the electronic structure for β-Ga{sub 2}O{sub 3}.

  5. Angle-resolved photoelectron spectroscopy of sequential three-photon triple ionization of neon at 90.5 eV photon energy

    SciTech Connect

    Rouzee, A.; Siu, W.; Huismans, Y.; Johnsson, P.; Gryzlova, E. V.; Fukuzawa, H.; Yamada, A.; Ueda, K.; Louis, E.; Bijkerk, F.; Holland, D. M. P.; Grum-Grzhimailo, A. N.; Kabachnik, N. M.; Vrakking, M. J. J.

    2011-03-15

    Multiple photoionization of neon atoms by a strong 13.7 nm (90.5 eV) laser pulse has been studied at the FLASH free electron laser in Hamburg. A velocity map imaging spectrometer was used to record angle-resolved photoelectron spectra on a single-shot basis. Analysis of the evolution of the spectra with the FEL pulse energy in combination with extensive theoretical calculations allows the ionization pathways that contribute to be assigned, revealing the occurrence of sequential three-photon triple ionization.

  6. Photoionization of furan from the ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nada; Decleva, Piero

    2016-02-01

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.

  7. Photoionization of furan from the ground and excited electronic states.

    PubMed

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero

    2016-02-28

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy. PMID:26931702

  8. Radiative properties measurements of photoionized plasmas on Z

    NASA Astrophysics Data System (ADS)

    Loisel, Guillaume; Bailey, Jim; Nagayama, Taisuke; Hansen, Stephanie; Rochau, Greg; Liedahl, Duane; Fontes, Chris; Flaugh, Matt; Koepke, Mark; Lane, Ted; Mancini, Roberto

    2015-11-01

    Physical descriptions of accretion-powered objects such as black holes, x-ray binaries, or AGN are informed through the interpretation of emergent spectra from the photoionized plasmas that surround them. Line formation in photoionized plasmas is dependent on the details of the radiation transport treatment and the so-called Resonant Auger Destruction hypothesis typically required to interpret the relativistically broadened Fe K α emitted from near the black hole event horizon. The Z facility at Sandia National Laboratories can produced such photoionized plasmas producing 1.6MJ of x-rays from the z-pinch dynamic hohlraum. The extended suite of diagnostics allows for a detailed characterization of plasmas conditions through absorption spectroscopy. present accurate and high-resolution emergent intensity observed from a photoionized silicon plasma for a discrete set of column densities that will help us evaluate understanding for radiation transport in accretion powered objects. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  9. Improved design for the atmospheric pressure photoionization source.

    PubMed

    Tabrizchi, Mahmoud; Bahrami, Hamed

    2011-12-01

    A different design for the atmospheric pressure photoionization (APPI) source, other than commercially available sources, such as PhotoSpray and PhotoMate, has been proposed. Unlike PhotoSpray, this design applies an electric field to separate photoions and electrons. In addition, the UV radiation is parallel to the gas stream toward the mass spectrometer sampling aperture. The total ion current obtained using this geometry, for dopant only, could be an order of magnitude larger than that obtained using the PhotoSpray design. Additionally, to prevent the negative effect of solvent on the photoionization yield, a curtain electrode was mounted in front of the UV lamp to divide the ionization zone into two distinct regions: the dopant and the solvent regions. Dopant was introduced in the vicinity of the lamp, and vaporized solvent was introduced into the solvent region. The curtain electrode prevented the solvent from entering the dopant region where dopant was directly photoionized. This design consumes much less dopant (approximately 1/10 less) than the conventional source, which minimizes the presence of photofragmented radicals and dopant trace contaminants in the ionization region. As a result, unlike PhotoSpray, the mass spectra contained mainly the analyte and solvent peaks. Additionally, the source was tested using an ion mobility spectrometer (IMS). The effect of the curtain electrode on signal intensity and performance of the source using IMS was also proved to be positive. PMID:22017507

  10. 2010 Atomic & Molecular Interactions Gordon Research Conference

    SciTech Connect

    Todd Martinez

    2010-07-23

    The Atomic and Molecular Interactions Gordon Conferences is justifiably recognized for its broad scope, touching on areas ranging from fundamental gas phase and gas-condensed matter collision dynamics, to laser-molecule interactions, photophysics, and unimolecular decay processes. The meeting has traditionally involved scientists engaged in fundamental research in gas and condensed phases and those who apply these concepts to systems of practical chemical and physical interest. A key tradition in this meeting is the strong mixing of theory and experiment throughout. The program for 2010 conference continues these traditions. At the 2010 AMI GRC, there will be talks in 5 broadly defined and partially overlapping areas of intermolecular interactions and chemical dynamics: (1) Photoionization and Photoelectron Dynamics; (2) Quantum Control and Molecules in Strong Fields; (3) Photochemical Dynamics; (4) Complex Molecules and Condensed Phases; and (5) Clusters and Reaction Dynamics. These areas encompass many of the most productive and exciting areas of chemical physics, including both reactive and nonreactive processes, intermolecular and intramolecular energy transfer, and photodissociation and unimolecular processes. Gas phase dynamics, van der Waals and cluster studies, laser-matter interactions and multiple potential energy surface phenomena will all be discussed.

  11. Inner-shell photoionization and core-hole decay of Xe and XeF{sub 2}

    SciTech Connect

    Southworth, Stephen H.; Picón, Antonio; Lehmann, C. Stefan; Wehlitz, Ralf; Cheng, Lan; Stanton, John F.

    2015-06-14

    Photoionization cross sections and partial ion yields of Xe and XeF{sub 2} from Xe 3d{sub 5/2}, Xe 3d{sub 3/2}, and F 1s subshells in the 660–740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF{sub 2} cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionization show that the charge-state distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F{sup +} and F{sup 2+} ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe{sup +} and F{sup +} ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.

  12. A VUV photoionization measurement and ab-initio calculation of the ionization energy of gas phase SiO2

    SciTech Connect

    Kostko, Oleg; Ahmed, Musahid; Metz, Ricardo B.

    2008-12-05

    In this work we report on the detection and vacuum-ultraviolet (VUV) photoionization of gas phase SiO2 generated in situ via laser ablation of silicon in a CO2 molecular beam. The resulting species are investigated by single photon ionization with tunable VUV synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for SiO and SiO2 and ionization energy estimates are revealed from such measurements. A state-to-state ionizationenergy of 12.60 (+-0.05) eV is recorded by fitting two prominent peaks in the PIE curve for the following process: 1SUM O-Si-O --> 2PRODg [O-Si-O]+. Electronic structure calculations aid in the interpretation of the photoionization process and allow for identification of the symmetric stretch of 2PRODg [O-Si-O]+ which is observed in the PIE spectrum to be 0.11 eV (890 cm-1) above the ground state of the cation and agrees with the 892 cm-1 symmetric stretch frequency calculated at the CCSD(T)/aug-cc-pVTZ level.

  13. Femtosecond time-resolved photoelectron imaging on ultrafast electronic dephasing in an isolated molecule

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshinori; Wang, Li; Kohguchi, Hiroshi

    1999-09-01

    Ultrafast dephasing in an intermediate case of molecular radiationless transition has been visualized for the first time by femtosecond time-resolved photoelectron imaging. The decay of photoexcited S1(n,π*) state of pyrazine in 100 ps and the corresponding build-up of triplet states were clearly observed.

  14. Photoionization of Fe7+ from the ground and metastable states

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.; Zatsarinny, O.

    2015-01-01

    The B -spline Breit-Pauli R -matrix method is used to investigate the photoionization of Fe7 + from the ground and metastable states in the energy region from ionization thresholds to 172 eV. The present calculations were designed to resolve the large discrepancies between recent measurements and available theoretical results. The multiconfiguration Hartree-Fock method in connection with B -spline expansions is employed for an accurate representation of the initial- and final-state wave functions. The close-coupling expansion includes 99 fine-structure levels of the residual Fe8 + ion in the energy region up to 3 s23 p54 s states. It includes levels of the 3 s23 p6,3 s23 p53 d ,3 s23 p54 s , and 3 s 3 p63 d configurations and some levels of the 3 s23 p43 d2 configuration which lie in the energy region under investigation. The present photoionization cross sections in the length and velocity formulations exhibit excellent agreement. The present photoionization cross sections agree well with the Breit-Pauli R -matrix calculation by Sossah et al. and the TOPbase data in the magnitude of the background nonresonant cross sections but show somewhat richer resonance structures, which qualitatively agree with the measurements. The calculated cross sections, however, are several times lower than the measured cross sections, depending upon the photon energy. The cross sections for photoionization of metastable states were found to have approximately the same magnitude as the cross sections for photoionization of the ground state, thereby the presence of metastable states in the ion beam may not be the reason for the enhancement of the measured cross sections.

  15. Photoionization of iodine atoms: Angular distributions and relative partial photoionization cross-sections in the energy region 11.0-23.0 eV

    NASA Astrophysics Data System (ADS)

    Eypper, Marie; Innocenti, Fabrizio; Morris, Alan; Dyke, John M.; Stranges, Stefano; West, John B.; King, George C.

    2010-08-01

    Relative partial photoionization cross-sections and angular distribution parameters, β, have been measured for the first, I+(P32)←I(P23/2), and fourth, I+(D12)←I(P23/2), (5p)-1 photoelectron (PE) bands of atomic iodine, by performing angle-resolved constant-ionic-state (CIS) measurements on these PE bands in the photon energy range 11.0-23.0 eV. Three Rydberg series, two ns and one nd series, which converge to the I+ P31 limit at 11.33 eV and four Rydberg series, two ns and two nd series, which converge to the I+ D12 limit at 12.15 eV were observed in the first PE band CIS spectra. The fourth band CIS spectrum showed structure in the 12.9-14.1eV photon energy range, which is also seen in the first band CIS spectra. This structure arises from excitation to ns and nd Rydberg states that are parts of series converging to the I+ S10 limit we reported on earlier, as well as 5s→5p excitations in the photon energy range 17.5-22.5 eV. These atomic iodine CIS spectra show reasonably good agreement with the equivalent spectra obtained for atomic bromine. The β-plots for the first PE band recorded up to the I+ P31 and I+ D12 limits only show resonances corresponding to some of the 5p→nd excitations observed in the first band CIS spectra scanned to the I+ D12 limit (12.15 eV). These plots are interpreted in terms of an angular momentum transfer model with the positive values of β obtained on resonances corresponding to parity allowed jt=1 and 3 channels and the off-resonance negative β values corresponding to parity unfavored channels, where jt is the quantum number for angular momentum transfer between the molecule, and the ion and photoelectron. The β-plots recorded for iodine are significantly different from those obtained for atomic bromine. Comparison of the experimental CIS spectra and β-plots with available theoretical results highlights the need for higher level calculations which include factors such as configuration interaction in the initial and final

  16. Photon momentum sharing between an electron and an ion in photoionization: from one-photon (photoelectric effect) to multiphoton absorption.

    PubMed

    Chelkowski, Szczepan; Bandrauk, André D; Corkum, Paul B

    2014-12-31

    We investigate photon-momentum sharing between an electron and an ion following different photoionization regimes. We find very different partitioning of the photon momentum in one-photon ionization (the photoelectric effect) as compared to multiphoton processes. In the photoelectric effect, the electron acquires a momentum that is much greater than the single photon momentum ℏω/c [up to (8/5) ℏω/c] whereas in the strong-field ionization regime, the photoelectron only acquires the momentum corresponding to the photons absorbed above the field-free ionization threshold plus a momentum corresponding to a fraction (3/10) of the ionization potential Ip. In both cases, due to the smallness of the electron-ion mass ratio, the ion takes nearly the entire momentum of all absorbed N photons (via the electron-ion center of mass). Additionally, the ion takes, as a recoil, the photoelectron momentum resulting from mutual electron-ion interaction in the electromagnetic field. Consequently, the momentum partitioning of the photofragments is very different in both regimes. This suggests that there is a rich, unexplored physics to be studied between these two limits which can be generated with current ultrafast laser technology. PMID:25615323

  17. Photon momentum sharing between an electron and an ion in photoionization: from one-photon (photoelectric effect) to multiphoton absorption.

    PubMed

    Chelkowski, Szczepan; Bandrauk, André D; Corkum, Paul B

    2014-12-31

    We investigate photon-momentum sharing between an electron and an ion following different photoionization regimes. We find very different partitioning of the photon momentum in one-photon ionization (the photoelectric effect) as compared to multiphoton processes. In the photoelectric effect, the electron acquires a momentum that is much greater than the single photon momentum ℏω/c [up to (8/5) ℏω/c] whereas in the strong-field ionization regime, the photoelectron only acquires the momentum corresponding to the photons absorbed above the field-free ionization threshold plus a momentum corresponding to a fraction (3/10) of the ionization potential Ip. In both cases, due to the smallness of the electron-ion mass ratio, the ion takes nearly the entire momentum of all absorbed N photons (via the electron-ion center of mass). Additionally, the ion takes, as a recoil, the photoelectron momentum resulting from mutual electron-ion interaction in the electromagnetic field. Consequently, the momentum partitioning of the photofragments is very different in both regimes. This suggests that there is a rich, unexplored physics to be studied between these two limits which can be generated with current ultrafast laser technology.

  18. Spatial resolution in vector potential photoelectron microscopy

    SciTech Connect

    Browning, R.

    2014-03-15

    The experimental spatial resolution of vector potential photoelectron microscopy is found to be much higher than expected because of the cancellation of one of the expected contributions to the point spread function. We present a new calculation of the spatial resolution with support from finite element ray tracing, and experimental results.

  19. Near threshold behavior of photoelectron satellite intensities

    SciTech Connect

    Shirley, D.A.; Becker, U.; Heimann, P.A.; Langer, B.

    1987-09-01

    The historical background and understanding of photoelectron satellite peaks is reviewed, using He(n), Ne(1s), Ne(2p), Ar(1s), and Ar(3s) as case studies. Threshold studies are emphasized. The classification of electron correlation effects as either ''intrinsic'' or ''dynamic'' is recommended. 30 refs., 7 figs.

  20. The vacuum ultraviolet photoelectron spectrum of difluoramine

    NASA Astrophysics Data System (ADS)

    Colbourne, D.; Frost, D. C.; McDowell, C. A.; Westwood, N. P. C.

    1980-06-01

    The HeI photoelectron spectrum of difluoramine is reported. The seven ionization potentials within the Hel region have been assigned. Extensive vibrational structure on the first band of both HNF 2 and DNF 2, and ab initio calculations of the ionic geometry, indicate that the ground ionic state is planar.

  1. Photoelectron Spectroscopy in Advanced Placement Chemistry

    ERIC Educational Resources Information Center

    Benigna, James

    2014-01-01

    Photoelectron spectroscopy (PES) is a new addition to the Advanced Placement (AP) Chemistry curriculum. This article explains the rationale for its inclusion, an overview of how the PES instrument records data, how the data can be analyzed, and how to include PES data in the course. Sample assessment items and analysis are included, as well as…

  2. Photoelectron spectroscopy and the dipole approximation

    SciTech Connect

    Hemmers, O.; Hansen, D.L.; Wang, H.

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  3. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: theory and experiment.

    PubMed

    Bellili, A; Schwell, M; Bénilan, Y; Fray, N; Gazeau, M-C; Mogren Al-Mogren, M; Guillemin, J-C; Poisson, L; Hochlaf, M

    2014-10-01

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed.

  4. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Bellili, A.; Schwell, M.; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Mogren Al-Mogren, M.; Guillemin, J.-C.; Poisson, L.; Hochlaf, M.

    2014-10-01

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed.

  5. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: Theory and experiment

    SciTech Connect

    Bellili, A.; Hochlaf, M. E-mail: martin.schwell@lisa.u-pec.fr; Schwell, M. E-mail: martin.schwell@lisa.u-pec.fr; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Mogren Al-Mogren, M.; Guillemin, J.-C.; Poisson, L.

    2014-10-07

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed.

  6. High resolution photoelectron spectroscopy of clusters of Group V elements

    SciTech Connect

    Wang, Lai-sheng; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    High resolution HeI (580{angstrom}) photoelectron spectra of As{sub 2}, As{sub 4}, and P{sub 4} were obtained with a newly-built high temperature molecular beam source. Vibrational structure was resolved in the photoelectron spectra of the three cluster species. The Jahn-Teller effect is discussed for the {sup 2}E and {sup 2}T{sub 2} states of P{sub 4}{sup +} and As{sub 4}{sup +}. As a result of the Jahn-Teller effect, the {sup 2}E state splits into two bands, and the {sup 2}T{sub 2} state splits into three bands, in combination with the spin-orbit effect. It was observed that the {nu}{sub 2} normal vibrational mode was involved in the vibronic interaction of the {sup 2}E state, while both the {nu}{sub 2} and {nu}{sub 3} modes were active in the {sup 2}T{sub 2} state. 26 refs., 5 figs., 3 tabs.

  7. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas

    NASA Astrophysics Data System (ADS)

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M.; Orlando, Thomas M.

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation.

  8. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas

    NASA Astrophysics Data System (ADS)

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M.; Orlando, Thomas M.

    2016-09-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation.

  9. Photoelectron Quantum Yields of the Amino Acids

    PubMed Central

    Dam, Rudy J.; Burke, Charles A.; Griffith, O. Hayes

    1974-01-01

    The photoelectron quantum yields of 21 common amino acids and 15 polyamino acids were measured in the 180-240 nm wavelength region. On the average, the quantum yields of these two groups exhibit quite similar wavelength dependence. For λ > 220 nm all amino acid and polyamino acid quantum yields are ≤10-7 electrons/(incident) photon. The mean yields increase to about 5 × 10-7 electrons/photon at 200 nm and 5 × 10-6 electrons/photon at 180 nm. L-tryptophan, L-tyrosine, and poly-L-tryptophan exhibit above average yields between 180 and 200 nm. Comparison with the dye phthalocyanine indicates that the quantum yield of the dye is two orders of magnitude greater than that of the amino acids from 200 to 240 nm, suggesting the feasibility of photoelectron labeling studies of biological surfaces. PMID:4836100

  10. Theory of photoelectron production, transport and energy loss

    NASA Technical Reports Server (NTRS)

    Nagy, A. F.

    1974-01-01

    Current understanding of the theory of ionospheric photoelectron production, transport and energy loss is summarized. The various approaches used in the theoretical calculations of photoelectron fluxes appear to be self consistent and sound; improved values for a number of input parameters are needed now in order to achieve significant improvements and more confidence in the results. The major remaining problem in the present day theory of photoelectron transport and energy loss is centered around the calculations of photoelectron transit through the protonosphere.

  11. Dynamical photoionization observables of the CS molecule: The role of electron correlation

    SciTech Connect

    Ponzi, Aurora; Coriani, Sonia; Decleva, Piero; Angeli, Celestino; Cimiraglia, Renzo

    2014-05-28

    Highly correlated calculations are performed on the primary ionic states and the prominent satellite present in the outer valence photoelectron spectrum of carbon monosulfide (CS). Dyson orbitals are coupled to accurate one particle continuum orbitals to provide a correlated description of energy dependent cross sections, asymmetry parameters, branching ratios, and molecular frame photoelectron angular distributions. The comparison with results obtained at the Hartree-Fock and Density Functional Theory level shows the strong sensitivity of these observables to details of the correlation in the bound states. The behaviour of the well characterized satellite state is analyzed in detail, and shows differences from the relevant primary states, revealing the limitations of a simple intensity borrowing mechanism. The results resolve the intensity disagreement with experiment obtained at the level of the sudden approximation.

  12. Double-photoionization of helium including quadrupole radiation effects

    SciTech Connect

    Colgan, James; Ludlow, J A; Lee, Teck - Ghee; Pindzola, M S; Robicheaux, F

    2009-01-01

    Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.

  13. A non-invasive online photoionization spectrometer for FLASH2

    PubMed Central

    Braune, Markus; Brenner, Günter; Dziarzhytski, Siarhei; Juranić, Pavle; Sorokin, Andrey; Tiedtke, Kai

    2016-01-01

    The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon–matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer. PMID:26698040

  14. A non-invasive online photoionization spectrometer for FLASH2.

    PubMed

    Braune, Markus; Brenner, Günter; Dziarzhytski, Siarhei; Juranić, Pavle; Sorokin, Andrey; Tiedtke, Kai

    2016-01-01

    The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon-matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer. PMID:26698040

  15. Spatially resolved photoionization of ultracold atoms on an atom chip

    SciTech Connect

    Kraft, S.; Guenther, A.; Fortagh, J.; Zimmermann, C.

    2007-06-15

    We report on photoionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 {mu}K in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 {mu}m, two laser beams are focused onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two-photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photoionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is suitable not only to investigate mixtures of Bose-Einstein condensates and ions but also for single-atom detection on an atom chip.

  16. Photon-momentum transfer in multiphoton ionization and in time-resolved holography with photoelectrons

    NASA Astrophysics Data System (ADS)

    Chelkowski, Szczepan; Bandrauk, André D.; Corkum, Paul B.

    2015-11-01

    In most models and theoretical calculations describing multiphoton ionization by infrared light, the dipole approximation is used. This is equivalent to setting the very small photon momentum to zero. Using numerical solutions of the two-dimensional (2-D) time-dependent Schrödinger equation for one electron (H-like) systems, we show that, for linear polarization, the radiation pressure on photoelectrons is very sensitive to the details of the ionization mechanism. The directly ionized photoelectrons, those that never recollide with the parent ion, are driven in the direction of the laser photon momentum, whereas a fraction of slower photoelectrons are pushed in the opposite direction, leading to the counterintuitive shifts observed in recent experiments [Phys. Rev. Lett. 113, 243001 (2014), 10.1103/PhysRevLett.113.243001]. This complex response is due to the interplay between the Lorentz force and the Coulomb attraction from the ion. On average, however, the photoelectron momentum is in the direction of the photon momentum as in the case of circular polarization. The influence of the photon momentum is shown to be discernible in the holographic patterns of time-resolved atomic and molecular holography with photoelectrons, thus suggesting a new research subject in multiphoton ionization.

  17. Symmetry adapted cluster-configuration interaction calculation of the photoelectron spectra of famous biological active steroids

    NASA Astrophysics Data System (ADS)

    Abyar, Fatemeh; Farrokhpour, Hossein

    2014-11-01

    The photoelectron spectra of some famous steroids, important in biology, were calculated in the gas phase. The selected steroids were 5α-androstane-3,11,17-trione, 4-androstane-3,11,17-trione, cortisol, cortisone, corticosterone, dexamethasone, estradiol and cholesterol. The calculations were performed employing symmetry-adapted cluster/configuration interaction (SAC-CI) method using the 6-311++G(2df,pd) basis set. The population ratios of conformers of each steroid were calculated and used for simulating the photoelectron spectrum of steroid. It was found that more than one conformer contribute to the photoelectron spectra of some steroids. To confirm the calculated photoelectron spectra, they compared with their corresponding experimental spectra. There were no experimental gas phase Hesbnd I photoelectron spectra for some of the steroids of this work in the literature and their calculated spectra can show a part of intrinsic characteristics of this molecules in the gas phase. The canonical molecular orbitals involved in the ionization of each steroid were calculated at the HF/6-311++g(d,p) level of theory. The spectral bands of each steroid were assigned by natural bonding orbital (NBO) calculations. Knowing the electronic structures of steroids helps us to understand their biological activities and find which sites of steroid become active when a modification is performing under a biological pathway.

  18. Angle-resolved photoelectron spectroscopy of HCl from a photon energy of 16 to 80 eV

    SciTech Connect

    Carlson, T.A.; Krause, M.O.; Fahlman, A.; Keller, P.R.; Taylor, J.W.; Whitley, T.; Grimm, F.A.

    1983-09-01

    Angle-resolved photoelectron spectroscopy was performed on HCl using synchrotron radiation over a photon energy from 16 to 80 eV. The partial cross sections and angular distribution parameters ..beta.. were obtained for photoionization of both the 2..pi.. and 5sigma orbitals. Multiple scattering X..cap alpha.. calculations were also carried out for the cross sections and ..beta.. values. The calculations, together with previously published results on the cross section using a Hartree--Fock model, were compared with experiment and gave reasonable qualitative agreement. Both experimental and theoretical results were examined with particular regard to the nature of the Cooper minimum, and the differences between the behavior of the minima for the two orbitals are discussed in detail.

  19. Excited-state dynamics of furan studied by sub-20-fs time-resolved photoelectron imaging using 159-nm pulses

    NASA Astrophysics Data System (ADS)

    Spesyvtsev, R.; Horio, T.; Suzuki, Y.-I.; Suzuki, T.

    2015-07-01

    The excited-state dynamics of furan were studied by time-resolved photoelectron imaging using a sub-20-fs deep UV (198 nm) and vacuum UV (159 nm) light source. The 198- and 159-nm pulses produce photoionization signals in both pump-probe and probe-pump pulse sequences. When the 198-nm pulse precedes the 159-nm pulse, it creates the 1A2(3s) Rydberg and 1B2(ππ∗) valence states, and the former decays exponentially with a time constant of about 20 fs whereas the latter exhibits more complex wave-packet dynamics. When the 159-nm pulse precedes the 198-nm pulse, a wave packet is created on the 1A1(ππ∗) valence state, which rapidly disappears from the observation window owing to structural deformation. The 159-nm photoexcitation also creates the 3s and 3px,y Rydberg states non-adiabatically.

  20. Photoelectron sidebands induced by a chirped laser field for shot-by-shot temporal characterization of FEL pulses

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Nan; Morishita, Toru; Fushitani, Mizuho; Hishikawa, Akiyoshi

    2016-02-01

    We theoretically investigate the laser-assisted photoionization of He by an extreme ultra violet (XUV) pulse in the presence of a linearly chirped intense laser pulse by solving the time-dependent Schrödinger equation within the single-active-electron approximation. Analysis based on the time-dependent perturbation theory is also carried out to provide more physical insights. A new scheme is shown to be capable of extracting the arrival time of an XUV free-electron laser (FEL) pulse relative to an external laser pulse as well as the XUV pulse duration from the photoelectron sidebands resulting from XUV ionization in the presence of a chirped laser pulse. This scheme is independent of the energy fluctuation and the timing jittering of the FEL pulse. Therefore it can be implemented in a non-invasive way to characterize FEL pulses on a shot-by-shot basis in time-resolved spectroscopy.

  1. Photoelectron Spectroscopy of U Oxide at LLNL

    SciTech Connect

    Tobin, J G; Yu, S; Chung, B W; Waddill, G D

    2010-03-02

    In our laboratory at LLNL, an effort is underway to investigate the underlying complexity of 5f electronic structure with spin-resolved photoelectron spectroscopy using chiral photonic excitation, i.e. Fano Spectroscopy. Our previous Fano measurements with Ce indicate the efficacy of this approach and theoretical calculations and spectral simulations suggest that Fano Spectroscopy may resolve the controversy concerning Pu electronic structure and electron correlation. To this end, we have constructed and commissioned a new Fano Spectrometer, testing it with the relativistic 5d system Pt. Here, our preliminary photoelectron spectra of the UO{sub 2} system are presented. X-ray photoelectron spectroscopy has been used to characterize a sample of UO{sub 2} grown on an underlying substrate of Uranium. Both AlK{alpha} (1487 eV) and MgK{alpha} (1254 eV) emission were utilized as the excitation. Using XPS and comparing to reference spectra, it has been shown that our sample is clearly UO{sub 2}.

  2. Effect of core polarizability on photoionization cross-section calculations.

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, R. C.

    1972-01-01

    Demonstration of the importance of core polarizability in a case where cancellation is only moderate, with suggestion of an improvement to the scaled Thomas-Fermi (STF) wave functions of Stewart and Rotenberg (1965). The inclusion of dipole polarizability of the core for argon is shown to substantially improve the agreement between the theoretical and experimental photoionization cross sections for the ground-state configuration.

  3. Precision measurements on the photoionization of neutral atomic species

    NASA Astrophysics Data System (ADS)

    Stolte, Wayne

    2016-05-01

    In contrast to studies on rare gas atoms, experimental studies of open-shell atoms offers very challenging problems, such as creation of the atom, low signal, purity and stability. Because of this, studies of inner-shell excitations for open shell atoms are limited. In this talk I will discuss precision experimental measurements for photoionization of atomic oxygen, nitrogen, and chlorine over the last two decades on various beamlines at Lawrence Berkeley National Laboratories, Advanced Light Source.

  4. Differential cross sections of double photoionization of lithium

    SciTech Connect

    Kheifets, A. S.; Fursa, D. V.; Bray, I.; Colgan, J.; Pindzola, M. S.

    2010-08-15

    We extend our previous application of the convergent close-coupling (CCC) and time-dependent close-coupling (TDCC) methods [Phys. Rev. A 81, 023418 (2010)] to describe energy and angular resolved double photoionization (DPI) of lithium at arbitrary energy sharing. By doing so, we are able to evaluate the recoil ion momentum distribution of DPI of Li and make a comparison with recent measurements of Zhu et al. [Phys. Rev. Lett. 103, 103008 (2009)].

  5. X-ray Photoelectron Spectroscopy Database (Version 4.1)

    National Institute of Standards and Technology Data Gateway

    SRD 20 X-ray Photoelectron Spectroscopy Database (Version 4.1) (Web, free access)   The NIST XPS Database gives access to energies of many photoelectron and Auger-electron spectral lines. The database contains over 22,000 line positions, chemical shifts, doublet splittings, and energy separations of photoelectron and Auger-electron lines.

  6. Solvent jet desorption capillary photoionization-mass spectrometry.

    PubMed

    Haapala, Markus; Teppo, Jaakko; Ollikainen, Elisa; Kiiski, Iiro; Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2015-03-17

    A new ambient mass spectrometry method, solvent jet desorption capillary photoionization (DCPI), is described. The method uses a solvent jet generated by a coaxial nebulizer operated at ambient conditions with nitrogen as nebulizer gas. The solvent jet is directed onto a sample surface, from which analytes are extracted into the solvent and ejected from the surface in secondary droplets formed in collisions between the jet and the sample surface. The secondary droplets are directed into the heated capillary photoionization (CPI) device, where the droplets are vaporized and the gaseous analytes are ionized by 10 eV photons generated by a vacuum ultraviolet (VUV) krypton discharge lamp. As the CPI device is directly connected to the extended capillary inlet of the MS, high ion transfer efficiency to the vacuum of MS is achieved. The solvent jet DCPI provides several advantages: high sensitivity for nonpolar and polar compounds with limit of detection down to low fmol levels, capability of analyzing small and large molecules, and good spatial resolution (250 μm). Two ionization mechanisms are involved in DCPI: atmospheric pressure photoionization, capable of ionizing polar and nonpolar compounds, and solvent assisted inlet ionization capable of ionizing larger molecules like peptides. The feasibility of DCPI was successfully tested in the analysis of polar and nonpolar compounds in sage leaves and chili pepper. PMID:25715054

  7. Interchannel coupling effects in the valence photoionization of SF6

    NASA Astrophysics Data System (ADS)

    Jose, J.; Lucchese, R. R.; Rescigno, T. N.

    2014-05-01

    The complex Kohn and polyatomic Schwinger variational techniques have been employed to illustrate the interchannel coupling correlation effects in the valence photoionization dynamics of SF6. Partial photoionization cross sections and asymmetry parameters of six valence subshells (1t1g, 5t1u, 1t2u, 3eg, 1t2g, 4t1u) are discussed in the framework of several theoretical and experimental studies. The complex Kohn results are in rather good agreement with experimental results, indicative of the fact that the interchannel coupling effects alter the photoionization dynamics significantly. We find that the dominant effect of interchannel coupling is to reduce the magnitude of shape resonant cross sections near the threshold and to induce resonant features in other channels to which resonances are coupled. The long-standing issue concerning ordering of the valence orbitals is addressed and confirmed 4t1u61t2g63eg4(5t1u6+1t2u6) 1t1g6 as the most likely ordering.

  8. Absolute photoionization cross-section of the propargyl radical

    SciTech Connect

    Savee, John D.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L.; Soorkia, Satchin; Selby, Talitha M.

    2012-04-07

    Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C{sub 3}H{sub 3}) radical, {sigma}{sub propargyl}{sup ion}(E), relative to the known absolute cross-section of the methyl (CH{sub 3}) radical. We generated a stoichiometric 1:1 ratio of C{sub 3}H{sub 3} : CH{sub 3} from 193 nm photolysis of two different C{sub 4}H{sub 6} isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(26.1{+-}4.2) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(23.4{+-}3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(23.6{+-}3.6) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(25.1{+-}3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.

  9. Photoionization Modeling and the K Lines of Iron

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Palmeri, P.; Bautista, M. A.; Mendoza, C.; Krolik, J. H.

    2004-01-01

    We calculate the efficiency of iron K line emission and iron K absorption in photoionized models using a new set of atomic data. These data are more comprehensive than those previously applied to the modeling of iron K lines from photoionized gases, and allow us to systematically examine the behavior of the properties of line emission and absorption as a function of the ionization parameter, density and column density of model constant density clouds. We show that, for example, the net fluorescence yield for the highly charged ions is sensitive to the level population distribution produced by photoionization, and these yields are generally smaller than those predicted assuming the population is according to statistical weight. We demonstrate that the effects of the many strongly damped resonances below the K ionization thresholds conspire to smear the edge, thereby potentially affecting the astrophysical interpretation of absorption features in the 7-9 keV energy band. We show that the centroid of the ensemble of K(alpha) lines, the K(beta) energy, and the ratio of the K(alpha(sub 1)) to K(alpha(sub 2)) components are all diagnostics of the ionization parameter of our model slabs.

  10. Molecular Properties of the Anti-Aromatic Species Cyclopentadienone, C5H5=0

    NASA Astrophysics Data System (ADS)

    Ormond, Thomas; Ellison, Barney; Daily, John W.; Stanton, John F.; Ahmed, Musahid; Zwier, Timothy S.; Hemberger, Patrick

    2015-06-01

    A common intermediate in the high temperature combustion of benzene is cyclopentadienone, C5H4=O. Cyclopentadienone is considered to be an "anti-aromatic" molecule. It is certainly a metastable species; samples persist at LN2 temperatures but dimerize upon warming to -80°C. It is of great interest to physically characterize this "anti-aromatic" species. The microwave spectrum, the infrared spectrum, the ionization energy, and the electron affinity of cyclopentadienone have been measured. Flash pyrolysis of o-phenylene sulfite (C6H4O2SO) provides molecular beams of C5H4=O entrained in a rare gas carrier. The beams are interrogated with time-of-flight photoionization mass spectrometry, confirming the clean, intense production of C5H4=O. a) Chirped-pulse Fourier transform microwave spectroscopy and CCSD(T) electronic structure calculations have combined to determine the re molecular structure of C5H4=O. b) Guided by CCSD(T) electronic structure calculations, the matrix infrared absorbance spectrum of C5H4=O isolated in a 4 K neon matrix has been used to assign 20 of the 24 fundamental vibrational frequencies. c) Imaging photoelectron photoion coincidence (iPEPICO) spectra of cyclopentadienone establishes the ionization energy, IE(C5H4=O), to be 9.41 ± 0.01 eV. d) Prof. A. Sanov's group has reported the electron affinity, EA(C5H4=O), to be 1.06 ± 0.01 eV. Kidwell et al. J. Phys. Chem. Letts. 2201 (2014) Ormond et al. J. Phys. Chem. A 118, 708 (2014) Ormond et al. Mol. Phys. in press (2015) Khuseynov et al. J. Phys. Chem. A 118, 6965 (2014)

  11. Revealing backward rescattering photoelectron interference of molecules in strong infrared laser fields

    PubMed Central

    Li, Min; Sun, Xufei; Xie, Xiguo; Shao, Yun; Deng, Yongkai; Wu, Chengyin; Gong, Qihuang; Liu, Yunquan

    2015-01-01

    Photoelectrons ionized from atoms and molecules in a strong laser field are either emitted directly or rescattered by the nucleus, both of which can serve as efficiently useful tools for molecular orbital imaging. We measure the photoelectron angular distributions of molecules (N2, O2 and CO2) ionized by infrared laser pulses (1320 nm, 0.2 ~ 1 × 1014 W/cm2) from multiphoton to tunneling regime and observe an enhancement of interference stripes in the tunneling regime. Using a semiclassical rescattering model with implementing the interference effect, we show that the enhancement arises from the sub-laser-cycle holographic interference of the contributions of the back-rescattering and the non-rescattering electron trajectory. It is shown that the low-energy backscattering photoelectron interference patterns have encoded the structural information of the molecular initial orbitals and attosecond time-resolved dynamics of photoelectron, opening new paths in high-resolution imaging of sub-Ångström and sub-femtosecond structural dynamics in molecules. PMID:25687446

  12. Rotationally resolved state-to-state photoelectron study of niobium carbide radical

    SciTech Connect

    Luo, Zhihong; Huang, Huang; Zhang, Zheng; Chang, Yih-Chung; Ng, C. Y.

    2014-07-14

    By employing the two-color visible (VIS)-ultraviolet (UV) laser photoexcitation scheme and the pulsed field ionization-photoelectron (PFI-PE) detection, we have obtained rovibronically selected and resolved photoelectron spectra for niobium carbide cation (NbC{sup +}). The fully rotationally resolved state-to-state VIS-UV-PFI-PE spectra thus obtained allow the unambiguous assignments of rotational photoionization transitions, indicating that the electronic configuration and term symmetry of NbC{sup +}(X{sup ~}) ground state are …10σ{sup 2} 5π{sup 4} 11σ{sup 2} (X{sup ~1}Σ{sup +}). Furthermore, the rotational analysis of these spectra yields the ionization energy of NbC [IE(NbC)] to be 56 369.2 ± 0.8 cm{sup −1} (6.9889 ± 0.0001 eV) and the rotation constant B{sub 0}{sup +} = 0.5681 ± 0.0007 cm{sup −1}. The latter value allows the determination of the bond distance r{sub 0}{sup +} = 1.671 ± 0.001 Å for NbC{sup +}(X{sup ~1}Σ{sup +}). Based on conservation of energy, the IE(NbC) determined in the present study along with the known IE(Nb) gives the difference of 0 K bond dissociation energies (D{sub 0}’s) for NbC{sup +} and NbC, D{sub 0}(NbC{sup +}) − D{sub 0}(NbC) = −1855.4 ± 0.9 cm{sup −1} (−0.2300 ± 0.0001 eV). The energetic values and the B{sub 0}{sup +} constant determined in this work are valuable for benchmarking state-of-the-art ab initio quantum calculations of 4d transition metal-containing molecules.

  13. Electronic and Photoelectron Spectroscopy of Toluene

    NASA Astrophysics Data System (ADS)

    Gardner, Adrian M.; Green, Alistair M.; Tame-Reyes, Victor; Wright, Timothy G.

    2012-06-01

    Electronic and photoelectron spectra of toluene are presented and discussed. The utilization of a recently reported scheme for assigning the normal vibrations of substituted benzenes allows these spectra to be compared to those of other molecules with unprecedented clarity. Changes in vibrational activity within a series of substituted benzene molecules will be discussed, specifically the increased rate of intramolecular vibrational energy redistribution observed in molecules where the substituent is a methyl group. A. M. Gardner and T. G. Wright, J. Chem. Phys., 135, 114305 (2011)

  14. Zero-electron-kinetic-energy photoelectron spectroscopy of transition-metal--ether complexes: Y-O(CH3)2, Y-O(CD3)2, Y-O(CH3)22, and Y-[O(CD3)2]2

    NASA Astrophysics Data System (ADS)

    Rothschopf, Gretchen K.; Li, Shenggang; Yang, Dong-Sheng

    2002-11-01

    The yttrium complexes with one and two dimethyl ethers and their deuterated derivatives are prepared with laser vaporization molecular beam techniques, identified with photoionization time-of-flight mass spectrometry, and investigated with pulsed-field-ionization zero-electronkinetic-energy (ZEKE) photoelectron spectroscopy and ab initio calculations. Adiabatic ionization potentials and yttrium-oxygen stretch and ether-based vibrations are measured for the 1:1 and 1:2 complexes. Fermi interactions are observed from the ZEKE spectra of the 1:1 species. The ground electronic states of the monoligand complexes are determined to be 2A2 for the neutral and 1A1 for the singly charged positive ion, both in C2v symmetry, with yttrium binding to oxygen. The coordination of a second ether forms a diligand complex with a linear oxygen-yttrium-oxygen configuration. This is the first electronic-vibrational spectroscopic study of yttrium-polyatomic molecule complexes and weakly bound metal complexes with two or more polyatomic molecules.

  15. Photoelectron Spectroscopy of Multiply Charged Anions

    SciTech Connect

    Wang, Xue B.; Wang, Lai S.

    2009-07-01

    Multiply charged anions (MCA’s) are common in the condensed phases, but are challenging to study in the gas phase. An experimental technique coupling photoelectron spectroscopy (PES) with electrospray ionization (ESI) has been developed to investigate properties of free MCA’s in the gas phase. In this article, the principles of this technique, and some initial findings about the intrinsic properties of MCA’s are reviewed. Examples chosen include the observation of the repulsive Coulomb barrier that exists universally in MCA’s and its effects on the dynamic stability and photoelectron spectroscopy of MCA’s. Solvation and solvent stabilization of MCA’s has been studied in the gas phase and will also be discussed. A second generation low-temperature ESI-PES apparatus has been developed, which allows ion temperatures to be controlled between 10 to 350 K. New results from the low-temperature ESI-PES instrument will also be reviewed, including doubly charged fullerene anions, inorganic metal complexes, and temperature-induced conformation changes of complex anions.

  16. Angular and energy distributions of fragment ions in dissociative double photoionization of acetylene molecules in the 31.9-50.0 eV photon energy range

    NASA Astrophysics Data System (ADS)

    Falcinelli, Stefano; Alagia, Michele; Farrar, James M.; Kalogerakis, Konstantinos S.; Pirani, Fernando; Richter, Robert; Schio, Luca; Stranges, Stefano; Rosi, Marzio; Vecchiocattivi, Franco

    2016-09-01

    The two-body dissociation reactions of the dication C2H2+2, initiated via double ionization of acetylene molecules by photons in the energy range 31.9-50.0 eV, have been studied by coupling photoelectron-photoion-photoion coincidence and ion imaging techniques. The angular distributions and kinetic energy of product ions, measured in the 31.9-50.0 eV energy range, exhibit significant differences for the three leading dissociation reactions with respect to a previous investigation carried out at a fixed energy of 39.0 eV, providing thus new information on the dynamical evolution of the system. The analysis of the results indicates that such dissociation reactions occur with a different mechanism. In particular, the symmetric dissociation in two CH+ ions is characterized by different dynamics, and the anisotropy of the angular distribution of ionic products increases with photon energy in a more pronounced way than the other two reactions. Moreover, the kinetic energy distribution of the symmetric dissociation reaction exhibits several components that change with photon energy. The new experimental findings cast light on the microscopic evolution of the system and can provide a laboratory reference for new theoretical calculations on specific features of the multidimensional potential energy surface, namely, the structure, energy and symmetry of dication states, the electronic state of dissociation products, energy barriers and their dependence on the geometry of the intermediate state.

  17. Ultrafast electronic dynamics in Helium nanodroplets studied by femtosecond time-resolved EUV photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Gessner, Oliver; Kornilov, Oleg; Wang, Chia; Leonard, Mathew; Healy, Andrew; Leone, Stephen; Neumark, Daniel

    2009-05-01

    Helium nanodroplets constitute a unique cryogenic matrix for the creation, isolation and spectroscopy of regular and exotic species, such as free radicals and molecules in high-spin states. The droplets readily pick up atoms and molecules but interact only very weakly with the respective dopants due to their superfluid nature. Despite the remarkable number of experimental and theoretical studies that have been performed on this new type of matter, neither the electronic structure nor the electron dynamics after EUV excitation are even remotely understood. We have performed the first femtosecond EUV-pump, IR-probe experiment to study the photoionization dynamics of pure Helium nanodroplets below the atomic Helium IP (24.6 eV) in real-time. Using Velocity-Map Imaging (VMI) photoelectron spectroscopy we were able to discern processes with associated timescales ranging from tens of femtoseconds to tens of picoseconds. The results will be discussed in the light of complementary energy-domain studies and theoretical models of the droplet's electronic and nuclear dynamics.

  18. THE PHOTOIONIZED ACCRETION DISK IN HER X-1

    SciTech Connect

    Ji, L.; Schulz, N.; Nowak, M.; Marshall, H. L.; Kallman, T.

    2009-08-01

    We present an analysis of several high-resolution Chandra grating observations of the X-ray binary pulsar Her X-1. With a total exposure of 170 ks, the observations are separated by years and cover three combinations of orbital and superorbital phases. Our goal is to determine distinct properties of the photoionized emission and its dependence on phase-dependent variations of the continuum. We find that the continua can be described by a partial covering model which above 2 keV is consistent with recent results from Rossi X-Ray Timing Explorer studies and at low energies is consistent with recent XMM-Newton and BeppoSAX studies. Besides a power law with fixed index, an additional thermal blackbody of 114 eV is required to fit wavelengths above 12 A ({approx}1 keV). We find that likely all the variability is caused by highly variable absorption columns in the range (1-3) x 10{sup 23} cm{sup -2}. Strong Fe K line fluorescence in almost all observations reveals that dense, cool material is present not only in the outer regions of the disk but interspersed throughout the disk. Most spectra show strong line emission stemming from a photoionized accretion disk corona (ADC). We model the line emission with generic thermal plasma models as well as with the photoionization code XSTAR and investigate changes of the ionization balance with orbital and superorbital phases. Most accretion disk coronal properties such as disk radii, temperatures, and plasma densities are consistent with previous findings for the low state. We find that these properties change negligibly with respect to orbital and superorbital phases. A couple of the higher energy lines exhibit emissivities that are significantly in excess of expectations from a static ADC.

  19. Photoionization of Phosphorus cation induced by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Juárez, Antonio; Aguilar, Alejandro; González, Olmo; Macaluso, David; Antillón, Armando; Morales, Alejandro; Hanstorp, Dag; Covington, Aaron; Chartkunchand, Kiattichart; Hinojosa, Guillermo; Nahar, Sultana; Hernández, Edgar

    2013-09-01

    The photoionization of Phosphorus cation has been measured in the photon energy range of 18 eV to 50 eV with 40 meV resolution. A theoretical investigation is being conducted while more experimentation is being planned. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE Contract No. DE-AC02-05CH11231. AMC acknowledges financial support from the US DOE NNSA through Cooperative Agreement DE-FC52-06NA27616. DGAPA IN 113010, IN106813 and CONACYT CB-2011/167631. GH thanks technical support of ALS staff.

  20. A simple photoionization scheme for characterizing electron and ion spectrometers

    NASA Astrophysics Data System (ADS)

    Wituschek, A.; von Vangerow, J.; Grzesiak, J.; Stienkemeier, F.; Mudrich, M.

    2016-08-01

    We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ˜1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.

  1. The photoionization spectrum of neutral aluminium, Al I

    NASA Technical Reports Server (NTRS)

    Roig, R. A.

    1975-01-01

    The absorption spectrum of Al I has been studied for the wavelength range 1160 to 2000 A by the flash pyrolysis technique. Wavelengths and derived energy levels are reported for 70 new lines converging on the 3s3p(3)P(0) limits of Al II. The autoionization parameters of the 3p(2)P(0)-3p(2)(2)S doublet have been measured. Good agreement is obtained with the experiment of Kohl and Parkinson and the recent calculation of Le Dourneuf et al. The relative photoionization cross section has been measured in the wavelength region 1200 A to 2000 A.

  2. Ab initio calculations of the photoionization of diatomic molecules

    NASA Astrophysics Data System (ADS)

    Lefebvre-Brion, Helene; Raşeev, Georges

    2003-01-01

    A review is presented of the calculation of photoionization spectra, particularly in the spectral range where electron autoionization of diatomic molecules takes place. In addition to some interesting results obtained over years that compare favourably with experiment, the emphasis here is put on the relation between the methods developed for the calculation of observables associated with the continuum energy spectrum of the electrons and the Alchemy system of programs. This system of programs serves as a basis for initial and intermediate calculations. The examples presented show that diatomic molecules not only in gas phase but also oriented in space or physisorbed at surfaces may be studied readily.

  3. Photo-ionization and residual electron effects in guided streamers

    NASA Astrophysics Data System (ADS)

    Wu, S.; Lu, X.; Liu, D.; Yang, Y.; Pan, Y.; Ostrikov, K.

    2014-10-01

    Complementary experiments and numerical modeling reveal the important role of photo-ionization in the guided streamer propagation in helium-air gas mixtures. It is shown that the minimum electron concentration ˜108 cm-3 is required for the regular, repeated propagation of the plasma bullets, while the streamers propagate in the stochastic mode below this threshold. The stochastic-to-regular mode transition is related to the higher background electron density in front of the propagating streamers. These findings help improving control of guided streamer propagation in applications from health care to nanotechnology and improve understanding of generic pre-breakdown phenomena.

  4. A simple photoionization scheme for characterizing electron and ion spectrometers.

    PubMed

    Wituschek, A; von Vangerow, J; Grzesiak, J; Stienkemeier, F; Mudrich, M

    2016-08-01

    We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ∼1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education. PMID:27587098

  5. Double K-shell photoionization of atomic beryllium

    SciTech Connect

    Yip, F. L.; Martin, F.; McCurdy, C. W.; Rescigno, T. N.

    2011-11-15

    Double photoionization of the core 1s electrons in atomic beryllium is theoretically studied using a hybrid approach that combines orbital and grid-based representations of the Hamiltonian. The {sup 1} S ground state and {sup 1} P final state contain a double occupancy of the 2s valence shell in all configurations used to represent the correlated wave function. Triply differential cross sections are evaluated, with particular attention focused on a comparison of the effects of scattering the ejected electrons through the spherically symmetric valence shell with similar cross sections for helium, representing a purely two-electron target with an analogous initial-state configuration.

  6. Photo-ionization and residual electron effects in guided streamers

    SciTech Connect

    Wu, S.; Lu, X. Liu, D.; Yang, Y.; Pan, Y.; Ostrikov, K.

    2014-10-15

    Complementary experiments and numerical modeling reveal the important role of photo-ionization in the guided streamer propagation in helium-air gas mixtures. It is shown that the minimum electron concentration ∼10{sup 8 }cm{sup −3} is required for the regular, repeated propagation of the plasma bullets, while the streamers propagate in the stochastic mode below this threshold. The stochastic-to-regular mode transition is related to the higher background electron density in front of the propagating streamers. These findings help improving control of guided streamer propagation in applications from health care to nanotechnology and improve understanding of generic pre-breakdown phenomena.

  7. Photoelectron imaging of atomic chlorine and bromine following photolysis of CH{sub 2}BrCl

    SciTech Connect

    Hua Linqiang; Shen Huan; Hu Changjin; Zhang Bing

    2008-12-28

    Photoionization of chlorine and bromine atoms following photodissociation of CH{sub 2}BrCl was studied in the wavelength range of 231-238 nm by photoelectron imaging technique. Final state-specific speed and angular distributions of the photoelectron were recorded. Analysis of relative branching ratios to different levels of Cl{sup +} and Br{sup +} revealed that the final ion level distributions are generally dominated by the preservation of the ion-core configuration of the intermediate resonant state. Some J{sub c} numbers of the intermediate states were newly assigned according to this regulation. The configuration interaction between resonant states and the autoionization in the continuum were also believed to play an important role in the ionization process since some ions that deviate from the regulation mentioned ahead were observed. The angular distributions of the electrons were found to be well characterized by {beta}{sub 2} and {beta}{sub 4}, although the ionization process of chlorine and bromine atoms involves three photons.

  8. Research on fluorescence from photoionization, photodissociation, and vacuum, along with bending quantrum study

    NASA Technical Reports Server (NTRS)

    Judge, D. L.

    1975-01-01

    Reports of research concerning the fluorescence of CS2 are presented. Fluorescence from fragments of CS2 vapor produced by vacuum ultraviolet radiation, and fluorescence from photoionization of CS2 vapor are discussed along with fluorescence produced by photodissociation of CS2, and fluorescence from photoionization of OCS.

  9. Photoionization cross sections for O-like S IX: a Breit-Pauli R-matrix calculation

    NASA Astrophysics Data System (ADS)

    Tyndall, N. B.; Ramsbottom, C. A.; Hibbert, A.; Ferland, G.

    2015-08-01

    In this paper we present photoionization cross sections for the lowest five states of O-like S IX (1s22s22p4 3P0,1,2, 1D2, 1S0). The relativistic Breit-Pauli R-matrix codes were utilized including all terms of the 2s22p3, 2s2p4, 2p5, 2s22p23s, 3p, 3d and 2s2p33s, 3p, 3d configurations in the expansion of the collision wavefunction for S X. It was also found that to achieve convergence of the low-lying energy separations of the target levels, an additional 21 configuration functions needed to be included in the configuration interaction expansion, incorporating two-electron excitations from the 2s and 2p shells to the 3s, 3p and 3d shells. The present work thus constitutes the most sophisticated photoionization evaluation for ground and metastable levels of the S IX ion. Direct comparisons have been made with the only available data found on the OPEN-ADAS database between level resolved contributions of the spectrum. This comparison for the background cross section exhibits excellent agreement at all photon energies for each partial photoionization cross section contribution investigated. Finally, the autoionizing bound states arising from numerous open channels have also been investigated and identified using the QB approach, a procedure for analyzing resonances in atomic and molecular collision theory which exploits the analytic properties of R-matrix theory. Major Rydberg resonance series are also presented and tabulated for the dominant linewidths considered.

  10. Electron dynamics in the strong field limit of photoionization

    SciTech Connect

    Sheehy, B.; Walker, B.; Lafon, R.; Widmer, M.

    1998-12-31

    High precision photoelectron energy and angular distributions in helium and neon atoms for a broad intensity range reflect the change in the continuum dynamics that occurs as the ionization process evolves into the pure tunneling regime. Elastic rescattering of the laser-driven free electron from its parent ion core leaves a distinct signature on the spectra, providing a direct quantitative test of the various theories of strong field multiphoton ionization. We show that it takes a relatively complete semi-classical rescattering model to accurately reproduce the observed photoelectron distributions. However, the calculated inelastic rescattering rate fails to reproduce the measured nonsequential double ionization yields.

  11. Femtosecond time-resolved XUV + UV photoelectron imaging of pure helium nanodroplets

    SciTech Connect

    Ziemkiewicz, Michael P.; Bacellar, Camila; Siefermann, Katrin R.; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2014-11-07

    Liquid helium nanodroplets, consisting of on average 2 × 10{sup 6} atoms, are examined using femtosecond time-resolved photoelectron imaging. The droplets are excited by an extreme ultraviolet light pulse centered at 23.7 eV photon energy, leading to states within a band that is associated with the 1s3p and 1s4p Rydberg levels of free helium atoms. The initially excited states and subsequent relaxation dynamics are probed by photoionizing transient species with a 3.2 eV pulse and using velocity map imaging to measure time-dependent photoelectron kinetic energy distributions. Significant differences are seen compared to previous studies with a lower energy (1.6 eV) probe pulse. Three distinct time-dependent signals are analyzed by global fitting. A broad intense signal, centered at an electron kinetic energy (eKE) of 2.3 eV, grows in faster than the experimental time resolution and decays in ∼100 fs. This feature is attributed to the initially excited droplet state. A second broad transient feature, with eKE ranging from 0.5 to 4 eV, appears at a rate similar to the decay of the initially excited state and is attributed to rapid atomic reconfiguration resulting in Franck-Condon overlap with a broader range of cation geometries, possibly involving formation of a Rydberg-excited (He{sub n})* core within the droplet. An additional relaxation pathway leads to another short-lived feature with vertical binding energies ≳2.4 eV, which is identified as a transient population within the lower-lying 1s2p Rydberg band. Ionization at 3.2 eV shows an enhanced contribution from electronically excited droplet states compared to ejected Rydberg atoms, which dominate at 1.6 eV. This is possibly the result of increased photoelectron generation from the bulk of the droplet by the more energetic probe photons.

  12. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    SciTech Connect

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus

  13. Pu electronic structure and photoelectron spectroscopy

    SciTech Connect

    Joyce, John J; Durakiewicz, Tomasz; Graham, Kevin S; Bauer, Eric D; Moore, David P; Mitchell, Jeremy N; Kennison, John A; Martin, Richard L; Roy, Lindsay E; Scuseria, G. E.

    2010-01-01

    The electronic structure of PuCoGa{sub 5}, Pu metal, and PuO{sub 2} is explored using photoelectron spectroscopy. Ground state electronic properties are inferred from temperature dependent photoemission near the Fermi energy for Pu metal. Angle-resolved photoemission details the energy vs. crystaJ momentum landscape near the Fermi energy for PuCoGa{sub 5} which shows significant dispersion in the quasiparticle peak near the Fermi energy. For the Mott insulators AnO{sub 2}(An = U, Pu) the photoemission results are compared against hybrid functional calculations and the model prediction of a cross over from ionic to covalent bonding is found to be reasonable.

  14. Inner-shell Photoionization Studies of Neutral Atomic Nitrogen

    NASA Astrophysics Data System (ADS)

    Stolte, W. C.; Jonauskas, V.; Lindle, D. W.; Sant'Anna, M. M.; Savin, D. W.

    2016-02-01

    Inner-shell ionization of a 1s electron by either photons or electrons is important for X-ray photoionized objects such as active galactic nuclei and electron-ionized sources such as supernova remnants. Modeling and interpreting observations of such objects requires accurate predictions for the charge state distribution (CSD), which results as the 1s-hole system stabilizes. Due to the complexity of the complete stabilization process, few modern calculations exist and the community currently relies on 40-year-old atomic data. Here, we present a combined experimental and theoretical study for inner-shell photoionization of neutral atomic nitrogen for photon energies of 403-475 eV. Results are reported for the total ion yield cross section, for the branching ratios for formation of N+, {{{N}}}2+, and {{{N}}}3+, and for the average charge state. We find significant differences when comparing to the data currently available to the astrophysics community. For example, while the branching ratio to {{{N}}}2+ is somewhat reduced, that for N+ is greatly increased, and that to {{{N}}}3+, which was predicted to be zero, grows to ≈ 10% at the higher photon energies studied. This work demonstrates some of the shortcomings in the theoretical CSD data base for inner-shell ionization and points the way for the improvements needed to more reliably model the role of inner-shell ionization of cosmic plasmas.

  15. Relativistic Effects in the Photoionization of Very Heavy Atoms

    NASA Astrophysics Data System (ADS)

    Keating, David A.; Manson, Steven T.; Deshmukh, Pranawa C.

    2015-05-01

    At very high Z relativistic interactions become important contributors to even the qualitative nature of atomic properties. To explore the extent of relativistic interactions in the photoionization of a very heavy atom, a theoretical study of nobelium (Z = 102) has been performed using the relativistic random phase approximation (RRPA) methodology. In order to determine which features in the photoionization cross section are due to relativity, calculations using the (nonrelativistic) random phase approximation with exchange method (RPAE) are performed for comparison. With the inclusion of inter-channel coupling some relativistic effects are amplified or diminished. To distinguish which relativistic effects are native to the orbital of interest or a product of inter-channel coupling, calculations have been performed with and without coupling for comparison. Aside from significant splitting and shifts of threshold, induced effects on subshells not strongly affected by relativity directly, e.g. outer shells, by inner subshells that are strongly affected, occur via changes in screening and inter-channel coupling.

  16. Kr photoionized plasma induced by intense extreme ultraviolet pulses

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Skrzeczanowski, W.

    2016-04-01

    Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Kr plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.

  17. Photoionization mass spectrometry of combustion radicals. Final technical report

    SciTech Connect

    Cool, T.A.

    1998-12-31

    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated organic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and control of hazardous chemical wastes. Selective laser ionization techniques are used in the laboratory for the measurement of concentration profiles of radical intermediates in chlorinated hydrocarbon flames. A novel flame-sampling VUV laser photoionization mass spectrometer, constructed with DOE funding, is in use for these studies. Progress is reported here on the use of this new facility in the development, refinement, and verification of chemical kinetic models describing the thermal destruction of toxic chlorocarbons commonly found in chemical wastes. In the past two years the author has used the flame sampling VUV laser ionization mass spectrometer system for studies of chlorocarbon-doped methane/oxygen flames. Relative concentration profiles and photoionization efficiency curves have been measured for over two-dozen key reaction intermediates. Preliminary kinetic models have been developed that promise an improved understanding of chlorocarbon chemistry under laboratory flame conditions.

  18. Attosecond delays in photoionization: time and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard

    2014-10-01

    This article addresses topics regarding time measurements performed on quantum systems. The motivation is linked to the advent of ‘attophysics’ which makes feasible to follow the motion of electrons in atoms and molecules, with time resolution at the attosecond (1 as = 10-18 s) level, i.e. at the natural scale for electronic processes in these systems. In this context, attosecond ‘time-delays’ have been recently measured in experiments on photoionization and the question arises if such advances could cast a new light on the still active discussion on the status of the time variable in quantum mechanics. One issue still debatable is how to decide whether one can define a quantum time operator with eigenvalues associated to measurable ‘time-delays’, or time is a parameter, as it is implicit in the Newtonian classical mechanics. One objective of this paper is to investigate if the recent attophysics-based measurements could shed light on this parameter-operator conundrum. To this end, we present here the main features of the theory background, followed by an analysis of the experimental schemes that have been used to evidence attosecond ‘time-delays’ in photoionization. Our conclusion is that these results reinforce the view that time is a parameter which cannot be defined without reference to classical mechanics.

  19. Efficient photoheating algorithms in time-dependent photoionization simulations

    NASA Astrophysics Data System (ADS)

    Lee, Kai-Yan; Mellema, Garrelt; Lundqvist, Peter

    2016-02-01

    We present an extension to the time-dependent photoionization code C2-RAY to calculate photoheating in an efficient and accurate way. In C2-RAY, the thermal calculation demands relatively small time-steps for accurate results. We describe two novel methods to reduce the computational cost associated with small time-steps, namely, an adaptive time-step algorithm and an asynchronous evolution approach. The adaptive time-step algorithm determines an optimal time-step for the next computational step. It uses a fast ray-tracing scheme to quickly locate the relevant cells for this determination and only use these cells for the calculation of the time-step. Asynchronous evolution allows different cells to evolve with different time-steps. The asynchronized clocks of the cells are synchronized at the times where outputs are produced. By only evolving cells which may require short time-steps with these short time-steps instead of imposing them to the whole grid, the computational cost of the calculation can be substantially reduced. We show that our methods work well for several cosmologically relevant test problems and validate our results by comparing to the results of another time-dependent photoionization code.

  20. Photoionization of He above the n =2 threshold

    SciTech Connect

    Sanchez, I.; Martriaan, F. )

    1991-12-01

    We report a theoretical study of He(1{ital s}{sup 2})+{ital h}{nu}{r arrow}He{sup +}(1{ital s},2{ital s},2{ital p})+{ital e}{sup {minus}} photoionization processes, for photon energies greater than 65.4 eV. We pay special attention to the energy region 69.0--73.0 eV, where recent synchrotron experiments exhibit clearly resonant structure associated to 3{ital lnl}{prime} doubly excited states of He. Our method is based on a Feshbach partitioning of the total wave function that includes explicitly resonant structure. Total and partial cross sections do not depend on parametrization, although an obvious one can be obtained in a straightforward manner in the vicinity of isolated resonances; this is very useful for the analysis of most of the resonance peaks observed experimentally. An appealing feature of our approach is the use of {ital L}{sup 2}-integrable basis sets to describe the scattering wave functions. Our discretization method provides coupled continuum states with the proper {delta}-function normalization and with the correct asymptotic behavior. With this method, we have calculated partial photoionization cross sections for leaving the ion in the 1{ital s}, 2{ital s}, and 2{ital p} levels, and the results are in good agreement with recently published experimental data. A complete set of parameters describing the first twelve resonances in partial cross sections is also provided.

  1. On-line product analysis of pine wood pyrolysis using synchrotron vacuum ultraviolet photoionization mass spectrometry.

    PubMed

    Weng, Junjie; Jia, Liangyuan; Sun, Shaobo; Wang, Yu; Tang, Xiaofeng; Zhou, Zhongyue; Qi, Fei

    2013-09-01

    The pyrolysis process of pine wood, a promising biofuel feedstock, has been studied with tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. The mass spectra at different photon energies and temperatures as well as time-dependent profiles of several selected species during pine wood pyrolysis process were measured. Based on the relative contents of three lignin subunits, the data indicate that pine wood is typical of softwood. As pyrolysis temperature increased from 300 to 700 °C, some more details of pyrolysis chemistry were observed, including the decrease of oxygen content in high molecular weight species, the observation of high molecular weight products from cellulose chain and lignin polymer, and potential pyrolysis mechanisms for some key species. The formation of polycyclic aromatic hydrocarbons (PAHs) was also observed, as well as three series of pyrolysis products derived from PAHs with mass difference of 14 amu. The time-dependent profiles show that the earliest products are formed from lignin, followed by hemicellulose products, and then species from cellulose.

  2. Photoionization dynamics of glycine adsorbed on a silicon cluster: ''On-the-fly'' simulations

    SciTech Connect

    Shemesh, Dorit; Baer, Roi; Seideman, Tamar; Gerber, R. Benny

    2005-05-08

    Dynamics of glycine chemisorbed on the surface of a silicon cluster is studied for a process that involves single-photon ionization, followed by recombination with the electron after a selected time delay. The process is studied by ''on-the-fly'' molecular dynamics simulations, using the semiempirical parametric method number 3 (PM3) potential energy surface. The system is taken to be in the ground state prior to photoionization, and time delays from 5 to 50 fs before the recombination are considered. The time evolution is computed over 10 ps. The main findings are (1) the positive charge after ionization is initially mostly distributed on the silicon cluster. (2) After ionization the major structural changes are on the silicon cluster. These include Si-Si bond breaking and formation and hydrogen transfer between different silicon atoms. (3) The transient ionization event gives rise to dynamical behavior that depends sensitively on the ion state lifetime. Subsequent to 45 fs evolution in the charged state, the glycine molecule starts to rotate on the silicon cluster. Implications of the results to various processes that are induced by transient transition to a charged state are discussed. These include inelastic tunneling in molecular devices, photochemistry on conducting surfaces, and electron-molecule scattering.

  3. Toward Rotational State-Selective Photoionization of ThF+ Ions

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Ng, Kia Boon; Gresh, Dan; Cairncross, William; Grau, Matt; Ni, Yiqi; Cornell, Eric; Ye, Jun

    2016-06-01

    ThF+ has been chosen to replace HfF+ for a second-generation measurement of the electric dipole moment of the electron (eEDM). Compared to the currently running HfF+ eEDM experiment, ThF+ has several advantages: (i) the eEDM-sensitive state (3Δ1) is the ground state, which facilitates a long coherence time [1]; (ii) its effective electric field (35 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity [2]; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces greater flexibility in rotational state-selective photoionization via core-nonpenetrating Rydberg states [3]. In this talk, we first present our strategy of preparing and utilizing core-nonpenetrating Rydberg states for rotational state-selective ionization. Then, we report spectroscopic data of laser-induced fluorescence of neutral ThF, which provides critical information for multi-photon ionization spectroscopy. [1] D. N. Gresh, K. C. Cossel, Y. Zhou, J. Ye, E. A. Cornell, Journal of Molecular Spectroscopy, 319 (2016), 1-9 [2] M. Denis, M. S. Nørby, H. J. A. Jensen, A. S. P. Gomes, M. K. Nayak, S. Knecht, T. Fleig, New Journal of Physics, 17 (2015) 043005. [3] Z. J. Jakubek, R. W. Field, Journal of Molecular Spectroscopy 205 (2001) 197-220.

  4. Double photoionization of CO2 molecules in the 34-50 eV energy range.

    PubMed

    Alagia, M; Candori, P; Falcinelli, S; Lavollée, M; Pirani, F; Richter, R; Stranges, S; Vecchiocattivi, F

    2009-12-31

    The double photoionization of CO(2) molecules has been studied in the 34-50 eV photon energy range, by the use of synchrotron radiation and detecting electron-ion and electron-ion-ion coincidences. Three processes have been observed: (i) the formation of the CO(2)(2+) molecular dication, (ii) the production of a metastable (CO(2)(2+))* that dissociates, with an apparent lifetime of 3.1 micros, giving rise to CO(+) and O(+) ions, and (iii) the dissociation leading to the same products, but occurring with a lifetime shorter than 0.05 micros. The relative dependence on the photon energy of the cross section for such processes has been measured. While for the production of the molecular dication a threshold is observed, in agreement with the vertical threshold for double ionization of CO(2), for the dissociative processes the threshold appears to be lower than that value, indicating the presence of an indirect dissociation, probably leading to the formation of CO(+) together with a neutral autoionizing oxygen atom. PMID:19618922

  5. Strong nondipole effects in low-energy photoionization of the 5s and 5p subshells of xenon

    SciTech Connect

    Johnson, W. R.; Cheng, K. T.

    2001-02-01

    Large nondipole effects are predicted in the angular distribution of photoelectrons from the 5s and 5p subshells of xenon for photon energies below 200 eV. The nondipole parameter {gamma}{sub 5s} exhibits a dispersion-curve variation near the first minimum of the 5s cross section at 35 eV, reaching a minimum value of -0.8 near 40 eV. Rapid variation of {gamma}{sub 5s} is also found near the second minimum of the 5s cross section at 150 eV, where {gamma}{sub 5s} reaches a maximum value of 1.2. Smaller, but significant, nondipole effects are also found in the parameter {zeta}{sub 5p}={gamma}{sub 5p}+3{delta}{sub 5p}, which has a maximum value of 0.15 near 50 eV, and a second maximum value of 0.18 near 160 eV. The higher energy maxima in {gamma}{sub 5s} and {zeta}{sub 5p} arise from correlation enhanced by shape resonances in the 4p{yields}f quadrupole photoionization channels. These predictions are based on relativistic random-phase approximation calculations in which excitations from 5p, 5s, 4d, 4p, and 4s subshells are coupled.

  6. Role of Conical Intersections in Molecular Spectroscopy and Photoinduced Chemical Dynamics

    NASA Astrophysics Data System (ADS)

    Domcke, Wolfgang; Yarkony, David R.

    2012-05-01

    This review describes how conical intersections affect measured molecular spectra and simple photofragmentation processes. We consider excitations that result in electron ejection, that is, photoionization or photodetachment, as well as photoinduced H-atom elimination. Section 1 presents a brief overview of the history of conical intersections and their rise from an arcane theoretical concept to a major paradigm in nonadiabatic chemistry. In Section 2, the generic properties of conical intersections are discussed, as well as their characterization with modern electronic-structure methods. Section 3 briefly discusses computational tools used to compute the nuclear motion involving conical intersections. Section 4 describes how the ideas of Sections 2 and 3 are combined to simulate molecular spectra impacted by conical intersections. Section 5 describes selected recent experimental and computational studies of photoelectron, photodetachment, and photofragment spectra. Rather than providing an encyclopedic bibliography of the previous and current literature, we illustrate significant problems currently being addressed and describe what can be accomplished with current computational techniques and how these results are achieved. Section 6 suggests future directions in this field.

  7. High Resolution Photoelectron Spectroscopy of Au_2^- and Au_4^- by Photoelectron Imaging

    NASA Astrophysics Data System (ADS)

    Leon, Iker; Yang, Zheng; Wang, Lai-Sheng

    2013-06-01

    We report high resolution photoelectron spectra of Au_2^- and Au_4^- obtained with a newly-built photoelectron imaging apparatus. Gold anions are produced by laser vaporization and the desired specie is mass selected and focused into the collinear velocity-map imaging (VMI) lens assembly. The design of the imaging lens has allowed us to obtain less than 0.9% energy resolution for high kinetic energy electrons ( > 1eV) while maintaining wavenumber resolution for low kinetic energy electrons. Although gold dimer and tetramer have been studied in the past, we present spectroscopic results under high resolution. For Au_2^-, we report high resolution spectra with an accurate determination of the electron affinity together with a complete vibrational assignment, for both the anion and neutral ground states, while for Au_4^-, we are able to resolve a low frequency mode and obtain accurately the adiabatic detachment energy.

  8. An experimental study of low-pressure premixed pyrrole/oxygen/argon flames with tunable synchrotron photoionization

    SciTech Connect

    Tian, Zhenyu; Li, Yuyang; Zhang, Taichang; Qi, Fei; Zhu, Aiguo; Cui, Zhifeng

    2007-10-15

    Two premixed laminar pyrrole/oxygen/argon flames at 3.33 kPa (25 Torr) with equivalence ratios of 0.55 (C/O/N = 1:5.19:0.25) and 1.84 (C/O/N = 1:1.56:0.25) have been investigated using tunable synchrotron photoionization and molecular-beam mass spectrometry techniques. All observed flame species, including some nitrogen-containing intermediates, have been identified by measurements of photoionization efficiency spectra. Mole fraction profiles of species including reactants, intermediates, and products have been determined by scanning burner position at some selected photon energies near ionization thresholds, and flame temperature has been measured by a Pt/Pt-13% Rh thermocouple. The results indicate that N{sub 2}, NO, and NO{sub 2} are the major nitrogenous products, while hydrogen cyanide, isocyanic acid, and 2-propenenitrile are the most important nitrogen-containing intermediates in pyrrole flames. Radicals such as methyl, propargyl, allyl, cyanomethyl, n-propyl, isobutyl, cyclopentadienyl, phenyl, cyclohexyl, phenoxy, and 4-methylbenzyl are observed as well. Moreover, ethenol and methylacrylonitrile are also detected. Reaction pathways involving the major species are proposed. The new results will be useful in developing a kinetic model of nitrogenous compound combustion. (author)

  9. The Photoionization of a Star-forming Core in the Trifid Nebula

    NASA Astrophysics Data System (ADS)

    Lefloch, B.; Cernicharo, J.; Rodríguez, L. F.; Miville-Deschênes, M. A.; Cesarsky, D.; Heras, A.

    2002-12-01

    We have carried out a comprehensive multiwavelength study of the bright-rimmed globule TC2 in the Trifid Nebula, using the IRAM 30 m telescope, the VLA centimeter array, and the Infrared Space Observatory (ISO). TC2 is one of the very few globules to exhibit signs of active ongoing star formation while being photoevaporated by the Lyman continuum flux of the exciting star of the nebula (~1010 cm-2 s-1). The globule consists of a cold dense core of mass 27 Msolar surrounded by a lower density envelope of molecular gas. The impinging Lyman continuum photons induce the propagation of an ionization front into the globule. The evaporation of the ionized gas forms a thin layer of density ne=(1-2)×103 cm-3 around the globule, which could be mapped with the VLA. The globule is illuminated mainly on its rear side, by a far-ultraviolet field of intensity G0~=1000. It creates a photon-dominated region (PDR) below the surface, which was mapped and characterized with the ISOCAM circular variable filter and the Short Wavelength Spectrometer (SWS) on board ISO. The physical conditions derived from the analysis of the far-infrared lines [O I] 63, 145 μm and [C II] 158 μm and the continuum emission are in good agreement with some recent PDR models. The emission of the polycyclic aromatic hydrocarbon band at 6.2, 7.7, 8.6, and 11.3 μm is detected over the whole globule. The relative intensity variations observed across the globule, in the PDR and the photoionized envelope, are consistent with the changes in the ionization fraction. In the head of TC2, we find a second kinematic component, which is the signature of the radiatively driven collapse undergone by the globule. This component indicates that the PDR propagates at low velocity inside the body of TC2. The molecular emission suggests that the star formation process was probably initiated a few times 105 years ago, in the large burst that led to the formation of the nebula. The globule has already evaporated half the mass

  10. Photoelectron diffraction from laser-aligned molecules with X-ray free-electron laser pulses

    PubMed Central

    Nakajima, Kyo; Teramoto, Takahiro; Akagi, Hiroshi; Fujikawa, Takashi; Majima, Takuya; Minemoto, Shinichirou; Ogawa, Kanade; Sakai, Hirofumi; Togashi, Tadashi; Tono, Kensuke; Tsuru, Shota; Wada, Ken; Yabashi, Makina; Yagishita, Akira

    2015-01-01

    We report on the measurement of deep inner-shell 2p X-ray photoelectron diffraction (XPD) patterns from laser-aligned I2 molecules using X-ray free-electron laser (XFEL) pulses. The XPD patterns of the I2 molecules, aligned parallel to the polarization vector of the XFEL, were well matched with our theoretical calculations. Further, we propose a criterion for applying our molecular-structure-determination methodology to the experimental XPD data. In turn, we have demonstrated that this approach is a significant step toward the time-resolved imaging of molecular structures. PMID:26369428

  11. H{sub 2} and D{sub 2} in intense sub-picosecond laser pulses: Photoelectron spectroscopy at 1053 and 527 nm

    SciTech Connect

    Rottke, H.; Ludwig, J.; Sandner, W.

    1996-09-01

    We report multiphoton ionization experiments on H{sub 2} and D{sub 2} molecules at 1053- and 526.5-nm excitation wavelengths in the intensity range 5{times}10{sup 13}{endash}5{times}10{sup 14} W/cm{sup 2}. The intensity dependence of the total ion yield, the dissociation fraction, and the photoelectron spectrum is investigated. At 1053 nm we find a strong isotope effect in the dissociation fraction, whereas at 526.5 nm no such effect is observed. Up to 1{times}10{sup 14} W/cm{sup 2} the photoelectron spectrum at 526.5 nm is dominated by resonant ionization processes via Rydberg states of the molecules. They are shifted into resonance at intensities above {approximately}10{sup 13} W/cm{sup 2}. The spectra show that the potential energy curves of the resonant states must have a shape very similar to the corresponding ionic ones. They are therefore mainly determined by the dipole coupling between the ion core orbitals 1{ital s}{sigma}{sub {ital g}} and 2{ital p}{sigma}{sub {ital u}}. At 1053 nm two photoionization regimes are observed: the multiphoton regime with Keldysh parameter {gamma}{gt}1 showing resonance ionization structures, and the tunnel regime ({gamma}{lt}1) at high intensity. The isotope effect in the dissociation fraction at 1053 nm has no influence on the shape of the corresponding photoelectron spectra at this wavelength. {copyright} {ital 1996 The American Physical Society.}

  12. Infrared-Vacuum Ultraviolet Pulsed Field Ionization-Photoelectron Study of C₂H₄ + Using a High-Resolution Infrared Laser

    SciTech Connect

    Xing, Xi; Reed, Beth; Bahng, Mi-Kyung; Ng, Cheuk-Yiu

    2008-02-20

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The infrared (IR)-vacuum ultraviolet (VUV)-pulsed field ionization-photoelectron (IR-VUV-PFI-PE) spectrum for C₂H₄(X 1Ag, V11 = 1, N'Ka'Kc'=3₀₃) in the VUV range of 83 000-84 800 cm-1 obtained using a single mode infrared laser revealed 24 rotationally resolved vibrational bands for the ion C₂H₄ +(X 2B3u) ground state. The frequencies and symmetry of the vibrational bands thus determined, together with the anharmonic frequency predictions calculated at the CCSD(T)/aug-cc-pVQZ level, have allowed the unambiguous assignment of these vibrational bands. These bands are mostly combination bands. The measured frequencies of these bands yield the fundamental frequencies for V8 + ) 1103± ( 10 cm-1 and V10 + ) 813 ( 10 cm-1 of C₂H₄ +(X 2B3u), which have not been determined previously. The present IR-VUV-PFI-PE study also provides truly rovibrationally selected and resolved state-to-state cross sections for the photoionization transitions C₂H₄(X~1Ag; V11, N'Ka'Kc') → C₂H₄ +(X~ 2B3u; Vi +, N+ Ka +Kc +), where N'Ka'Kc' denotes the rotational level of C₂H₄(X~ 1Ag; V11), and Vi + and N+ Ka +Kc + represent the vibrational and rotational states of the cation.

  13. Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy

    SciTech Connect

    Weaver, A.

    1991-12-01

    Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO{sub 2} and NO{sub 3}) and unstable neutral species ([IHI] and [FH{sub 2}]). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

  14. Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy

    SciTech Connect

    Weaver, A.

    1991-12-01

    Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO{sub 2} and NO{sub 3}) and unstable neutral species ((IHI) and (FH{sub 2})). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

  15. Photoelectron Imaging as a Quantum Chemistry Visualization Tool

    ERIC Educational Resources Information Center

    Grumbling, Emily R.; Pichugin, Kostyantyn; Mabbs, Richard; Sanov, Andrei

    2011-01-01

    An overview and simple example of photoelectron imaging is presented, highlighting its efficacy as a pedagogical tool for visualizing quantum phenomena. Specifically, photoelectron imaging of H[superscript -] (the simplest negative ion) is used to demonstrate several quantum mechanical principles. This example could be incorporated into an…

  16. Electron correlation effects on photoionization time delay in atomic Ar and Xe

    NASA Astrophysics Data System (ADS)

    Ganesan, A.; Saha, S.; Decshmukh, P. C.; Manson, S. T.; Kheifets, A. S.

    2016-05-01

    Time delay studies in photoionization processes have stimulated much interest as they provide valuable dynamical information about electron correlation and relativistic effects. In a recent work on Wigner time delay in the photoionization of noble gas atoms, it was found that correlations resulting from interchannel coupling involving shells with different principal quantum numbers have significant effects on 2s and 2p photoionization of Ne, 3s photoionization of Ar, and 3d photoionization of Kr. In the present work, photoionization time delay in inner and outer subshells of the noble gases Ar and Xe are examined by including electron correlations using different many body techniques: (i) the relativistic-random-phase approximation (RRPA), (ii) RRPA with relaxation, to include relaxation effects of the residual ion and (iii) the relativistic multiconfiguration Tamm-Dancoff (RMCTD) approximation. The (sometimes substantial) effects of the inclusion of non-RPA correlations on the photoionization Wigner time delay are reported. Work supported by DOE, Office of Chemical Sciences and DST (India).

  17. Photoionization and Recombination of ne IV and Excitation of NeV in Nebular Plasmas

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.; Palay, Ethan; Pradhan, Anil K.

    2013-06-01

    %TEXT OF YOUR ABSTRACT The inverse processes of photoionization and electron-ion recombination are dominant in photoionized astrophysical plasmas. They determine the ionization fractions in photoionization equilibrium, physical conditions, and chemical abundances. We employ the unified theory of electron-ion recombination to study photoionization of Ne IV in photoionized nebulae. That leads to the production of Ne V and spectral emission of forbidden optical and mid-infrared [Ne V] lines via collisional excitation. These lines are prominent in the observations made by infrared space observatories SPITZER, SOFIA, and HERSCHEL. The unified method for electronic recombination provides self-consistent data for photoionization and recombination that is necessary to eliminate uncertainties in the determination of ionization fractions. To wit: Precise abundance of neon in the Sun is unknown owing to lack of accurate atomic data. A 20-level wave function expansion is used for the calculations of photoionization, recombination, and collisional excitation employing the relativistic Breit-Pauli R-matrix method in the close coupling approximation. We find and delineate extensive resonance structures at low energies that considerably enhance the effective cross sections and rates in astrophysical sources. Acknowledgement: Partially supported by DOE and NSF. Computational work was carried out at the Ohio Supercomputer Center

  18. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    NASA Astrophysics Data System (ADS)

    Jordan, I.; Huppert, M.; Brown, M. A.; van Bokhoven, J. A.; Wörner, H. J.

    2015-12-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  19. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases.

    PubMed

    Jordan, I; Huppert, M; Brown, M A; van Bokhoven, J A; Wörner, H J

    2015-12-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup. PMID:26724045

  20. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    SciTech Connect

    Jordan, I.; Huppert, M.; Wörner, H. J.; Brown, M. A.; Bokhoven, J. A. van

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.