Science.gov

Sample records for photoemission spectra xps

  1. Calculation of 3s photoemission spectra of vanadium on graphite

    SciTech Connect

    Krueger, P.; Taguchi, M.; Parlebas, J.C.; Kotani, A.

    1997-06-01

    A few years ago, a satellite structure in the vanadium 3s x-ray photoemission spectroscopy (XPS) spectrum of V clusters upon graphite was observed and attributed to the presence of magnetic moments on the V surface. Here, we present calculations of these spectra using a cluster model that takes into account intra-atomic d-d and d{endash}core electron correlation and hybridization between V d and graphite {pi} states. When the V-graphite distance is increased from 1.5 to 2.0 {Angstrom} the system undergoes a low-to-high spin transition, which is clearly evidenced in the evolution of the XPS line shape. Although direct comparison with experiment is difficult, our study suggests that the observed satellite is due to core hole screening rather than a magnetic moment on the V atom. {copyright} {ital 1997} {ital The American Physical Society}

  2. Quantitative analysis of satellite structures in XPS spectra of gold and silver

    NASA Astrophysics Data System (ADS)

    Pauly, N.; Yubero, F.; Tougaard, S.

    2016-10-01

    Identification of specific chemical states and local electronic environments at surfaces by X-ray photoelectron spectroscopy (XPS) is often difficult because it is not straightforward to quantitatively interpret the shape and intensity of shake-up structures that originate from the photoexcitation process. Indeed the shape and intensity of measured XPS structures are strongly affected by both extrinsic excitations due to electron transport out of the surface and intrinsic excitations induced by the sudden creation of the static core hole. These processes must be taken into account to quantitatively extract, from experimental XPS, the primary excitation spectrum of the considered transition which includes all effects that are part of the initial photo-excitation process, i.e. lifetime broadening, spin-orbit coupling, and multiplet splitting. It was previously shown [N. Pauly, S. Tougaard, F. Yubero, Surf. Sci. 620 (2014) 17] that both extrinsic and intrinsic excitations could be included in an effective energy-differential inelastic electron scattering cross section for XPS which is then convoluted with the primary excitation spectrum to model the full XPS spectrum. This method can thus be applied to determine the primary excitation spectrum from any XPS spectrum. We use this approach in the present paper to determine the Au 4f and Ag 3d photoemission spectra from pure metals. We observe that characteristic energy loss features of the XPS spectra are not only due to photoelectron energy losses. We thus prove the existence of a double shake-up process characterized by a 4d → 5s/5p transition for Ag and a 5d → 6s/6p transition for Au. We finally accurately quantify the energy position and intensity of these shake-up peaks.

  3. Photoemission spectra of charge density wave states in cuprates

    NASA Astrophysics Data System (ADS)

    Tu, Wei-Lin; Chen, Peng-Jen; Lee, Ting-Kuo

    Angle-resolved photoemission spectroscopy(ARPES) experiments have reported many exotic properties of cuprates, such as Fermi arc at normal state, two gaps at superconducting state and particle-hole asymmetry at the antinodal direction. On the other hand, a number of inhomogeneous states or so-called charge density waves(CDW) states have also been discovered in cuprates by many experimental groups. The relation between these CDW states and ARPES spectra is unclear. With the help of Gutzwiller projected mean-field theory, we can reproduce the quasiparticle spectra in momentum space. The spectra show strong correspondence to the experimental data with afore-mentioned exotic features in it.

  4. The Interpretation of XPS Spectra: Insights Into Materials Properties

    SciTech Connect

    Bagus, Paul S.; Ilton, Eugene S.; Nelin, Constance J.

    2013-06-01

    We review basic and advanced concepts needed for the correct analysis of XPS features. We place these concepts on rigorous foundations and explore their physical and chemical meanings without stressing the derivation of the mathematical formulations, which can be found in the cited literature. The significance and value of combining theory and experiment is demonstrated by discussions of the physical and chemical origins of the main and satellite XPS features for a variety of molecular and condensed phase materials.

  5. Real time cumulant approach for charge-transfer satellites in x-ray photoemission spectra

    SciTech Connect

    Kas, Joshua J.; Vila, Fernando D.; Rehr, John J.; Chambers, Scott A.

    2015-03-01

    X-ray photoemission spectra generally exhibit satellite features in addition to quasi-particle peaks due to many-body excitations which have been of considerable theoretical and experimental interest. However, the satellites attributed to charge-transfer (CT) excitations in correlated materials have proved difficult to calculate from first principles. Here we report a real-time, real-space approach for such calculations based on a cumulant representation of the core-hole Green’s function and time-dependent density functional theory. This approach also yields an interpretation of CT satellites in terms of a complex oscillatory, transient response to a suddenly created core hole. Illustrative results for TiO2 and NiO are in good agreement with experiment.

  6. Revisiting photoemission and inverse photoemission spectra of nickel oxide from first principles: implications for solar energy conversion.

    PubMed

    Alidoust, Nima; Toroker, Maytal Caspary; Carter, Emily A

    2014-07-17

    We use two different ab initio quantum mechanics methods, complete active space self-consistent field theory applied to electrostatically embedded clusters and periodic many-body G0W0 calculations, to reanalyze the states formed in nickel(II) oxide upon electron addition and ionization. In agreement with interpretations of earlier measurements, we find that the valence and conduction band edges consist of oxygen and nickel states, respectively. However, contrary to conventional wisdom, we find that the oxygen states of the valence band edge are localized whereas the nickel states at the conduction band edge are delocalized. We argue that these characteristics may lead to low electron-hole recombination and relatively efficient electron transport, which, coupled with band gap engineering, could produce higher solar energy conversion efficiency compared to that of other transition-metal oxides. Both methods find a photoemission/inverse-photoemission gap of 3.6-3.9 eV, in good agreement with the experimental range, lending credence to our analysis of the electronic structure of NiO.

  7. Revisiting Photoemission and Inverse Photoemission Spectra of Nickel Oxide from First Principles: Implications for Solar Energy Conversion

    SciTech Connect

    Alidoust, Nima; Toroker, Maytal; Carter, Emily A.

    2014-07-17

    We use two different ab initio quantum mechanics methods, complete active space self-consistent field theory applied to electrostatically embedded clusters and periodic many-body G₀W₀ calculations, to reanalyze the states formed in nickel(II) oxide upon electron addition and ionization. In agreement with interpretations of earlier measurements, we find that the valence and conduction band edges consist of oxygen and nickel states, respectively. However, contrary to conventional wisdom, we find that the oxygen states of the valence band edge are localized whereas the nickel states at the conduction band edge are delocalized. We argue that these characteristics may lead to low electron-hole recombination and relatively efficient electron transport, which, coupled with band gap engineering, could produce higher solar energy conversion efficiency compared to that of other transition-metal oxides. Both methods find a photoemission/inverse-photoemission gap of 3.6-3.9 eV, in good agreement with the experimental range, lending credence to our analysis of the electronic structure of NiO.

  8. Accurate determination of the valence band edge in hard x-ray photoemission spectra using GW theory

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Nemšák, Slavomír; Conti, Giuseppina; Gloskovskii, Andrei; Pálsson, Gunnar Karl; Schneider, Claus M.; Drube, Wolfgang; Louie, Steven G.; Fadley, Charles

    2016-04-01

    We introduce a new method for determining accurate values of the valence-band maximum in x-ray photoemission spectra. Specifically, we align the sharpest peak in the valence-band region of the experimental spectrum with the corresponding feature of a theoretical valence-band density of states curve from ab initio GW theory calculations. This method is particularly useful for soft and hard x-ray photoemission studies of materials with a mixture of valence-band characters, where strong matrix element effects can render standard methods for extracting the valence-band maximum unreliable. We apply our method to hydrogen-terminated boron-doped diamond, which is a promising substrate material for novel solar cell devices. By carrying out photoemission experiments with variable light polarizations, we verify the accuracy of our analysis and the general validity of the method.

  9. Surface and bulk 4f-photoemission spectra of CeIn{sub 3} and CeSn{sub 3}

    SciTech Connect

    Kim, H.; Tjernberg, O.; Chiaia, G.; Kumigashira, H.; Takahashi, T.; Duo, L.; Sakai, O.; Kasaya, M.; Lindau, I.

    1997-07-01

    Resonant photoemission spectroscopy was performed on CeIn{sub 3} and CeSn{sub 3} at the 4d-4f and 3d-4f core thresholds. Using the different surface sensitivity between the two photon energies, surface and bulk 4f-photoemission spectra were derived for both compounds. With the noncrossing approximation of the Anderson impurity model, the 4d-4f resonant spectra together with the surface and bulk spectra were self-consistently analyzed to obtain the microscopic parameters such as the 4f-electron energy and the hybridization strength with conduction electrons. The result shows a substantial difference in these parameters between the surface and the bulk, indicating that it is important to take into account the surface effect in analyzing photoemission spectra of Ce compounds. It is also found that the 4f surface core-level shift is different between CeIn{sub 3} and CeSn{sub 3}. {copyright} {ital 1997} {ital The American Physical Society}

  10. Phonon-assisted indirect transitions in angle-resolved photoemission spectra of graphite and graphene

    NASA Astrophysics Data System (ADS)

    Ayria, Pourya; Tanaka, Shin-ichiro; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2016-08-01

    Indirect transitions of electrons in graphene and graphite are investigated by means of angle-resolved photoemission spectroscopy (ARPES) with several different incident photon energies and light polarizations. The theoretical calculations of the indirect transition for graphene and for a single crystal of graphite are compared with the experimental measurements for highly-oriented pyrolytic graphite and a single crystal of graphite. The dispersion relations for the transverse optical (TO) and the out-of-plane longitudinal acoustic (ZA) phonon modes of graphite and the TO phonon mode of graphene can be extracted from the inelastic ARPES intensity. We find that the TO phonon mode for k points along the Γ -K and K -M -K' directions in the Brillouin zone can be observed in the ARPES spectra of graphite and graphene by using a photon energy ≈11.1 eV. The relevant mechanism in the ARPES process for this case is the resonant indirect transition. On the other hand, the ZA phonon mode of graphite can be observed by using a photon energy ≈6.3 eV through a nonresonant indirect transition, while the ZA phonon mode of graphene within the same mechanism should not be observed.

  11. A poly-epoxy surface explored by Hartree-Fock ΔSCF simulations of C1s XPS spectra

    NASA Astrophysics Data System (ADS)

    Gavrielides, A.; Duguet, T.; Esvan, J.; Lacaze-Dufaure, C.; Bagus, P. S.

    2016-08-01

    Whereas poly-epoxy polymers represent a class of materials with a wide range of applications, the structural disorder makes them difficult to model. In the present work, we use good experimental model samples in the sense that they are pure, fully polymerized, flat and smooth, defect-free, and suitable for ultrahigh vacuum x-ray photoelectron spectroscopy, XPS, experiments. In parallel, we perform Hartree-Fock, HF, calculations of the binding energies, BEs, of the C1s electrons in a model molecule composed of the two constituents of the poly-epoxy sample. These C1s BEs were determined using the HF ΔSCF method, which is known to yield accurate values, especially for the shifts of the BEs, ΔBEs. We demonstrate the benefits of combining rigorous theory with careful XPS measurements in order to obtain correct assignments of the C1s XPS spectra of the polymer sample. Both the relative binding energies—by the ΔSCF method—and relative intensities—in the sudden approximation, SA, are calculated. It results in an excellent match with the experimental spectra. We are able to identify 9 different chemical environments under the C1s peak, where an exclusively experimental work would have found only 3 contributions. In addition, we observe that some contributions are localized at discrete binding energies, whereas others allow a much wider range because of the variation of their second neighbor bound polarization. Therefore, HF-ΔSCF simulations significantly increase the spectral resolution of XPS and thus offer a new avenue for the exploration of the surface of polymers.

  12. A poly-epoxy surface explored by Hartree-Fock ΔSCF simulations of C1s XPS spectra.

    PubMed

    Gavrielides, A; Duguet, T; Esvan, J; Lacaze-Dufaure, C; Bagus, P S

    2016-08-21

    Whereas poly-epoxy polymers represent a class of materials with a wide range of applications, the structural disorder makes them difficult to model. In the present work, we use good experimental model samples in the sense that they are pure, fully polymerized, flat and smooth, defect-free, and suitable for ultrahigh vacuum x-ray photoelectron spectroscopy, XPS, experiments. In parallel, we perform Hartree-Fock, HF, calculations of the binding energies, BEs, of the C1s electrons in a model molecule composed of the two constituents of the poly-epoxy sample. These C1s BEs were determined using the HF ΔSCF method, which is known to yield accurate values, especially for the shifts of the BEs, ΔBEs. We demonstrate the benefits of combining rigorous theory with careful XPS measurements in order to obtain correct assignments of the C1s XPS spectra of the polymer sample. Both the relative binding energies-by the ΔSCF method-and relative intensities-in the sudden approximation, SA, are calculated. It results in an excellent match with the experimental spectra. We are able to identify 9 different chemical environments under the C1s peak, where an exclusively experimental work would have found only 3 contributions. In addition, we observe that some contributions are localized at discrete binding energies, whereas others allow a much wider range because of the variation of their second neighbor bound polarization. Therefore, HF-ΔSCF simulations significantly increase the spectral resolution of XPS and thus offer a new avenue for the exploration of the surface of polymers. PMID:27544119

  13. Direct observation of Higgs mode oscillations in the pump-probe photoemission spectra of electron-phonon mediated superconductors

    NASA Astrophysics Data System (ADS)

    Kemper, A. F.; Sentef, M. A.; Moritz, B.; Freericks, J. K.; Devereaux, T. P.

    2015-12-01

    Using the nonequilibrium Keldysh formalism, we solve the equations of motion for electron-phonon superconductivity, including an ultrafast pump field. We present results for time-dependent photoemission spectra out of equilibrium which probe the dynamics of the superconducting gap edge. The partial melting of the order by the pump field leads to oscillations at twice the melted gap frequency, a hallmark of the Higgs or amplitude mode. Thus the Higgs mode can be directly excited through the nonlinear effects of an electromagnetic field and detected without requiring any additional symmetry breaking.

  14. Asymmetries in transition metal XPS spectra: metal nanoparticle structure, and interaction with the graphene-structured substrate surface.

    PubMed

    Sacher, E

    2010-03-16

    Transition-metal XPS spectra have traditionally been considered to possess a natural asymmetry, extending to the high-binding-energy side. This is based on the fact that these spectra have generally been found experimentally to have such an asymmetry, as well as on the confirmation of asymmetry offered by the Doniach-Sunjić equation, an equation based on the proposal that the conduction electron scattering amplitude for interband absorption or emission in metals, at the Fermi level, is a singularity. Our discovery that metal nanoparticles, prepared under vacuum and characterized without exposure to air, have symmetric peaks, which become asymmetric with time, informed us that these peak asymmetries have other sources. On the basis of our belief that all metal spectra are composed of symmetric peaks, where the asymmetries are attributed to overlapping minor peaks that are consistent with known physical and chemical phenomena associated with that metal, we have shown that, for the metals that we have studied, these asymmetries contain much information, otherwise unavailable, on the structures, contaminants, oxidation, and interfacial interactions of nanoparticle surfaces. The existence of this information has been demonstrated for several metals, and its value is shown by its use in explaining the strong interfacial bonding of the nanoparticles with substrates having graphene structures. A possible future research direction is offered in the field of metal-metal interactions in nanoparticle alloys.

  15. Vibrationally resolved high-resolution NEXAFS and XPS spectra of phenanthrene and coronene

    SciTech Connect

    Fronzoni, Giovanna; Baseggio, Oscar; Stener, Mauro; Hua, Weijie; Tian, Guangjun; Luo, Yi; Apicella, Barbara; Alfé, Michela; Simone, Monica de; Kivimäki, Antti; Coreno, Marcello

    2014-07-28

    We performed a combined experimental and theoretical study of the C1s Near-Edge X-ray Absorption Fine-Structure (NEXAFS) spectroscopy and X-ray Photoelectron Spectroscopy in the gas phase of two polycyclic aromatic hydrocarbons (phenanthrene and coronene), typically formed in combustion reactions. In the NEXAFS of both molecules, a double-peak structure appears in the C1s → LUMO region, which differ by less than 1 eV in transition energies. The vibronic coupling is found to play an important role in such systems. It leads to weakening of the lower-energy peak and strengthening of the higher-energy one because the 0 − n (n > 0) vibrational progressions of the lower-energy peak appear in nearly the same region of the higher-energy peak. Vibrationally resolved theoretical spectra computed within the Frank-Condon (FC) approximation and linear coupling model agree well with the high-resolution experimental results. We find that FC-active normal modes all correspond to in-plane vibrations.

  16. X-ray Photoemission Spectra and Electronic Structure of Coumarin and its Derivatives.

    PubMed

    Wickrama Arachchilage, Anoja P; Wang, Feng; Feyer, Vitaliy; Plekan, Oksana; Acres, Robert G; Prince, Kevin C

    2016-09-15

    The electronic structures of coumarin and three of its derivatives (7-amino-4-methylcoumarin, 7-amino-4-(trifluoro)methylcoumarin, and 4-hydroxycoumarin) have been studied by theoretical calculations, and compared with experimental valence and core photoelectron spectra to benchmark the predicted spectra. The outer valence band spectra of the first three compounds showed good agreement with theoretical calculations for a single isomer, whereas the spectrum of 4-hydroxycoumarin indicated the presence of more than one tautomer, consistent with published results. Calculations of core level spectra of carbon, nitrogen, oxygen, and fluorine of the first three compounds are also in satisfactory agreement with our measurements. The carbon and oxygen 1s spectra of 4-hydroxycoumarin allow us to identify and quantify the populations of the principle tautomers present. The 4-hydroxy enol form is the most stable isomer at 348 K, followed by the diketo form, with 1.3 kJ·mol(-1) lower energy. PMID:27545582

  17. [Active oxygen species of Co-V-O catalysts in propane oxidative dehydrogenation analyzed by FTIR and XPS spectra].

    PubMed

    Xu, Ai-Ju; Lin, Qin; Bao, Zhaorigetu; Jia, Mei-Lin; Liu, Lian-Yun

    2009-02-01

    A series of Co-V-O (meta-CoV2O6, pyro-Co2 V2 O7, and ortho-Co3 V2 O8) catalysts were prepared by microwave oxalate co-precipitation method and characterized by (XRD), TEM, BET, FTIR, XPS, H2-TPR and conductivity measurement. The catalytic characters of the catalysts for propane oxidative dehydrogenation were investigated. The FTIR spectra of catalysts were obtained in the range of 400-1 100 cm(-1) and their major bands were assigned. The peak separation fitting of O(1s) XPS spectra was carried out and the quantity of oxygen species was calculated. The results of XRD characterization showed that pure meta-CoV2O6, pyro-Co2 V2O7, and ortho-Co3 V2O8 with nice structure were obtained. The TEM images demonstrated that the catalysts showed uniform particle with the mean particle size of 20-30 nm. The diagram of the relationship between electrical conductivity and oxygen partial pressure of Co3V2O8 and Co2 V2O7 showed dsigma/dPo2 > 0, which implied that these were p-type semiconductor, and CoV2O6 reverse showed dsigma/dPo2 < 0, which implied n-type semiconductor. 48.12%, 47.82% and 35.24% of C3 H6 selectivities were obtained for p-type semiconductor Co3 V2O8, CO2 V2O7 and n-type CoV2O6 catalysts respectively at 10% C3H6 conversion, and the results showed that p-type semiconductor catalysts Co3 V2O8 and Co2 V2O7 showed higher activity than n-type catalyst CoV2O6. The results of FTIR, XPS, H2-TPR and conductivity measurement indicated that transferring between non-stoichiometric and lattice oxygen that easily happened in Co3 V2O8 and Co2 V2O7 catalysts might promote the oxidation-reduction reaction between different valence vanadium species, and promoted the oxygen vacancy formation. Furthermore, the forming of Co-O-V bridge bond that was easy to shift between Co and V increased the mobile oxygen species of O2-, O2(2-) and O- and made the redox reaction among different valence V be realized. It is concluded that high catalytic properties of p-type semiconductor Co3 V2O8 and

  18. Multiplateau structure in photoemission spectra of strong-field ionization of dense media

    NASA Astrophysics Data System (ADS)

    Wilke, M.; Al-Obaidi, R.; Kiyan, I. Yu.; Aziz, E. F.

    2016-09-01

    Strong-field ionization of dense molecular gases in a short infrared laser pulse is studied by means of photoelectron spectroscopy combined with a liquid microjet technique. By increasing the gas density, we observe how the laser-assisted electron scattering on neighboring particles becomes a dominant mechanism of hot electron emission. The angle-resolved energy distributions of rescattered electrons are obtained by analyzing the density dependency of emission spectra. A semiclassical consideration of electron trajectories is shown to provide a good description of experimental spectra. The model predicts the existence of four energy plateaus. Two cutoffs at higher energies are evident in the spectra.

  19. Epitaxial growth of CeO{sub 2}(111) film on Ru(0001): Scanning tunneling microscopy (STM) and x-ray photoemission spectroscopy (XPS) study

    SciTech Connect

    Hasegawa, Tomo; Shahed, Syed Mohammad Fakruddin; Sainoo, Yasuyuki; Beniya, Atsushi; Isomura, Noritake; Watanabe, Yoshihide; Komeda, Tadahiro

    2014-01-28

    We formed an epitaxial film of CeO{sub 2}(111) by sublimating Ce atoms on Ru(0001) surface kept at elevated temperature in an oxygen ambient. X-ray photoemission spectroscopy measurement revealed a decrease of Ce{sup 4+}/Ce{sup 3+} ratio in a small temperature window of the growth temperature between 1070 and 1096 K, which corresponds to the reduction of the CeO{sub 2}(111). Scanning tunneling microscope image showed that a film with a wide terrace and a sharp step edge was obtained when the film was grown at the temperatures close to the reduction temperature, and the terrace width observed on the sample grown at 1060 K was more than twice of that grown at 1040 K. On the surface grown above the reduction temperature, the surface with a wide terrace and a sharp step was confirmed, but small dots were also seen in the terrace part, which are considerably Ce atoms adsorbed at the oxygen vacancies on the reduced surface. This experiment demonstrated that it is required to use the substrate temperature close to the reduction temperature to obtain CeO{sub 2}(111) with wide terrace width and sharp step edges.

  20. Epitaxial growth of CeO2(111) film on Ru(0001): Scanning tunneling microscopy (STM) and x-ray photoemission spectroscopy (XPS) study

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tomo; Shahed, Syed Mohammad Fakruddin; Sainoo, Yasuyuki; Beniya, Atsushi; Isomura, Noritake; Watanabe, Yoshihide; Komeda, Tadahiro

    2014-01-01

    We formed an epitaxial film of CeO2(111) by sublimating Ce atoms on Ru(0001) surface kept at elevated temperature in an oxygen ambient. X-ray photoemission spectroscopy measurement revealed a decrease of Ce4+/Ce3+ ratio in a small temperature window of the growth temperature between 1070 and 1096 K, which corresponds to the reduction of the CeO2(111). Scanning tunneling microscope image showed that a film with a wide terrace and a sharp step edge was obtained when the film was grown at the temperatures close to the reduction temperature, and the terrace width observed on the sample grown at 1060 K was more than twice of that grown at 1040 K. On the surface grown above the reduction temperature, the surface with a wide terrace and a sharp step was confirmed, but small dots were also seen in the terrace part, which are considerably Ce atoms adsorbed at the oxygen vacancies on the reduced surface. This experiment demonstrated that it is required to use the substrate temperature close to the reduction temperature to obtain CeO2(111) with wide terrace width and sharp step edges.

  1. Correlation of electronic structures of three cyclic dipeptides with their photoemission spectra

    NASA Astrophysics Data System (ADS)

    Arachchilage, Anoja P. Wickrama; Wang, Feng; Feyer, Vitaliy; Plekan, Oksana; Prince, Kevin C.

    2010-11-01

    We have investigated the electronic structure of three cyclic dipeptides: cyclo(Glycyl-Glycyl) (cGG), cyclo(Leucyl-Prolyl) (cLP), and cyclo(Phenylalanyl-Prolyl) (cPP). These compounds are biologically active and cLP and cPP are derived from cGG (also known as diketopiperazine), by the addition of the respective functional groups of the amino acids, namely, phenyl, alkyl or a fused pyrrolidine ring (proline). Experimental valence and core level spectra have been interpreted in the light of theoretical calculations to identify the basic chemical properties associated with the central ring, and with the additional functional groups in cLP and cPP. The theoretically simulated spectra of all three cyclic dipeptides in both valence and core spaces agreed reasonably well with the experimental spectra. The three molecules displayed similarities in their core spectra, suggesting that the diketopiperazine structure plays an important role in determining the inner shell spectrum. The experimental C 1s spectra of cLP and cPP are analogous but differ from cGG due to the side chains attached to the diketopiperazine structure. Single spectral peaks in the N 1s (and O 1s) spectra of the dipeptides indicate that the chemical environment of the nitrogen atoms (and oxygen atoms) are very similar, although they show a small splitting in the simulated spectra of cPL and cPP, due to the reduction of their point group symmetry. Valence band spectra of the three dipeptides in the frontier orbital region of 9-11 eV exhibit similarities; however theoretical analysis shows that significant changes occur due to the involvement of the side chain in the frontier orbitals of cPP, while lesser changes are found for cLP.

  2. t-SURFF: fully differential two-electron photo-emission spectra

    NASA Astrophysics Data System (ADS)

    Scrinzi, Armin

    2012-08-01

    The time-dependent surface flux (t-SURFF) method is extended to single and double ionization of two-electron systems. Fully differential double emission spectra by strong pulses at extreme UV and infrared wavelengths are calculated using simulation volumes that only accommodate the effective range of the atomic binding potential and the quiver radius of free electrons in the external field. For a model system, we found a pronounced dependence of shake-up and non-sequential double ionization on the phase and duration of the laser pulse. The extension to fully three-dimensional calculations is discussed.

  3. Coulomb disorder effects on angle-resolved photoemission and nuclear quadrupole resonance spectra in cuprates

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Khaliullin, Giniyat; Sushkov, Oleg P.

    2009-09-01

    The role of Coulomb disorder, either of extrinsic origin or introduced by dopant ions in undoped and lightly doped cuprates, is studied. We demonstrate that charged surface defects in an insulator lead to a Gaussian broadening of the angle-resolved photoemisson spectroscopy (ARPES) lines. The effect is due to the long-range nature of the Coulomb interaction. A tiny surface concentration of defects about a fraction of one percent is sufficient to explain the line broadening observed in Sr2CuO2Cl2 , La2CuO4 , and Ca2CuO2Cl2 . Due to the Coulomb screening, the ARPES spectra evolve dramatically with doping, changing their shape from a broad Gaussian form to narrow Lorentzian ones. To understand the screening mechanism and the line-shape evolution in detail, we perform Hartree-Fock simulations with random positions of surface defects and dopant ions. To check validity of the model we calculate the nuclear quadrupole resonance (NQR) line shapes as a function of doping and reproduce the experimentally observed NQR spectra. Our study also indicates opening of a substantial Coulomb gap at the chemical potential. For a surface CuO2 layer the value of the gap is on the order of 10 meV while in the bulk it is reduced to the value about a few meV.

  4. Interpretation of valence band photoemission spectra at organic-metal interfaces

    NASA Astrophysics Data System (ADS)

    Giovanelli, L.; Bocquet, F. C.; Amsalem, P.; Lee, H.-L.; Abel, M.; Clair, S.; Koudia, M.; Faury, T.; Petaccia, L.; Topwal, D.; Salomon, E.; Angot, T.; Cafolla, A. A.; Koch, N.; Porte, L.; Goldoni, A.; Themlin, J.-M.

    2013-01-01

    Adsorption of organic molecules on well-oriented single-crystal coinage metal surfaces fundamentally affects the energy distribution curve of ultraviolet photoelectron spectroscopy spectra. New features not present in the spectrum of the pristine metal can be assigned as “interface states” having some degree of molecule-substrate hybridization. Here it is shown that interface states having molecular orbital character can easily be identified at low binding energy as isolated features above the featureless substrate sp plateau. On the other hand, much care must be taken in assigning adsorbate-induced features when these lie within the d-band spectral region of the substrate. In fact, features often interpreted as characteristic of the molecule-substrate interaction may actually arise from substrate photoelectrons scattered by the adsorbates. This phenomenon is illustrated through a series of examples of noble-metal single-crystal surfaces covered by monolayers of large π-conjugated organic molecules.

  5. Fingerprints of the hydrogen bond in the photoemission spectra of croconic acid condensed phase: An x-ray photoelectron spectroscopy and ab-initio study

    SciTech Connect

    Bisti, F.; Stroppa, A.; Picozzi, S.; Ottaviano, L.

    2011-05-07

    The electronic structure of Croconic Acid in the condensed phase has been studied by comparing core level and valence band x-ray photoelectron spectroscopy experiments and first principles density functional theory calculations using the Heyd-Scuseria-Ernzerhof screened hybrid functional and the GW approximation. By exploring the photoemission spectra for different deposition thicknesses, we show how the formation of the hydrogen bond network modifies the O 1s core level lineshape. Moreover, the valence band can be explained only if the intermolecular interactions are taken into account in the theoretical approach.

  6. Anomalous temperature dependence in valence band spectra: A resonant photoemission study of layered perovskite Sr{sub 2}CoO{sub 4}

    SciTech Connect

    Pandey, Pankaj K.; Choudhary, R. J. Phase, D. M.

    2014-05-05

    Valence band spectra (VBS) and its modification across Curie temperature (T{sub C}) of Sr{sub 2}CoO{sub 4} thin film are studied using resonant photoemission spectroscopy. It is found that VBS mainly consists of hybridized states of Co-3d t{sub 2g}e{sub g} and O-2p; however, Co-3d e{sub g} states show its prominence only in the ferromagnetic temperature regime. Below T{sub C}, spectral weight transfer takes place anomalously from high binding energy (B.E.) region to low B.E. region, signifying the enhanced intermediate or low spin state Co{sup 4+} ions. It is suggested that spin-lattice coupling and many-body effects in Sr{sub 2}CoO{sub 4} derived from the strong electron correlations lead to such temperature dependence of VBS.

  7. Evidence for phonon-like charge and spin fluctuations from an analysis of angle-resolved photoemission spectra of La2-xSrxCuO4 superconductors

    NASA Astrophysics Data System (ADS)

    Mazza, G.; Grilli, M.; Di Castro, C.; Caprara, S.

    2013-01-01

    In high temperature superconductors we provide evidence of spin and mixed phonon-charge collective modes as mediators of the effective electron-electron interaction and suggestive of a charge and spin density wave instability competing with superconductivity. Indeed, we show that the so-called kinks and waterfalls observed in angle-resolved photoemission spectra of La2-xSrxCuO4, a prototypical high-Tc superconducting cuprate, are due to the coupling of quasiparticles with two distinct nearly critical collective modes with finite characteristic wave vectors, typical of charge and spin fluctuations. The simultaneous presence of these two modes reconciles the long standing dichotomy whether kinks are due to phonons or spin waves.

  8. Ab initio simulation of photoemission spectroscopy in solids: Plane-wave pseudopotential approach with applications to normal-emission spectra of Cu(001) and Cu(111)

    NASA Astrophysics Data System (ADS)

    Stojić, Nataša; Dal Corso, Andrea; Zhou, Bo; Baroni, Stefano

    2008-05-01

    We develop a method for simulating photoemission spectra from bulk crystals in the ultraviolet energy range within a three-step model. Our method explicitly accounts for transmission and matrix-element effects, as calculated from state-of-the-art plane-wave pseudopotential techniques within the density-functional theory. Transmission effects, in particular, are included by extending to the present problem a technique previously employed with success to deal with ballistic conductance in metal nanowires. The spectra calculated for normal emission in Cu(001) and Cu(111) are in fair agreement with previous theoretical results and with experiments, including a recently determined experimental spectrum. The residual discrepancies between our results and the latter are mainly due to the well-known deficiencies of the density-functional theory in accounting for correlation effects in quasiparticle spectra. A significant improvement is obtained by the LDA+U method. Further improvements are obtained by including surface-optics corrections, as described by Snell’s law and Fresnel’s equations.

  9. Quantitative analysis of Sr2RuO4 angle-resolved photoemission spectra: Many-body interactions in a model Fermi liquid

    SciTech Connect

    Ingle, N.J.C.

    2010-04-15

    Angle-resolved photoemission spectroscopy (ARPES) spectra hold a wealth of information about the many-body interactions in a correlated material. However, the quantitative analysis of ARPES spectra to extract the various coupling parameters in a consistent manner is extremely challenging, even for a model Fermi liquid system. We propose a fitting procedure which allows quantitative access to the intrinsic line shape, deconvolved of energy and momentum resolution effects, of the correlated two-dimensional material Sr2RuO4. In correlated two-dimensional materials, we find an ARPES linewidth that is narrower than its binding energy, a key property of quasiparticles within Fermi liquid theory. We also find that when the electron-electron scattering component is separated from the electron-phonon and impurity scattering terms, it decreases with a functional form compatible with Fermi liquid theory as the Fermi energy is approached. In combination with the previously determined Fermi surface, these results give a complete picture of a Fermi liquid system via ARPES. Furthermore, we show that the magnitude of the extracted imaginary part of the self-energy is in remarkable agreement with DC transport measurements.

  10. Photoemissive coating

    NASA Technical Reports Server (NTRS)

    Gange, R. A.

    1972-01-01

    Polystyrene coating is applied to holographic storage tube substrate via glow discharge polymerization in an inert environment. After deposition of styrene coating, antimony and then cesium are added to produce photoemissive layer. Technique is utilized in preparing perfectly organized polymeric films useful as single-crystal membranes.

  11. Hidden relationship between the electrical conductivity and the Mn 2p core-level photoemission spectra in La{sub 1-x}Sr{sub x}MnO{sub 3}

    SciTech Connect

    Hishida, T.; Ohbayashi, K.; Saitoh, T.

    2013-01-28

    Core-level electronic structure of La{sub 1-x}Sr{sub x}MnO{sub 3} has been studied by x-ray photoemission spectroscopy (XPS). We first report, by the conventional XPS, the well-screened shoulder structure in Mn 2p{sub 3/2} peak, which had been observed only by hard x-ray photoemission spectroscopy so far. Multiple-peak analysis revealed that the Mn{sup 4+} spectral weight was not proportional to the nominal hole concentration x, indicating that a simple Mn{sup 3+}/Mn{sup 4+} intensity ratio analysis may result in a wrong quantitative elemental analysis. Considerable weight of the shoulder at x = 0.0 and the fact that the shoulder weight was even slightly going down from x = 0.2 to 0.4 were not compatible with the idea that this weight simply represents the metallic behavior. Further analysis found that the whole Mn 2p{sub 3/2} peak can be decomposed into four portions, the Mn{sup 4+}, the (nominal) Mn{sup 3+}, the shoulder, and the other spectral weight located almost at the Mn{sup 3+} location. We concluded that this weight represents the well-screened final state at Mn{sup 4+} sites, whereas the shoulder is known as that of the Mn{sup 3+} states. We found that the sum of these two spectral weight has an empirical relationship to the conductivity evolution with x.

  12. The influence of oxygen adsorption on the NEXAFS and core-level XPS spectra of the C{sub 60} derivative PCBM

    SciTech Connect

    Brumboiu, Iulia Emilia Eriksson, Olle; Brena, Barbara; Ericsson, Leif; Hansson, Rickard; Moons, Ellen

    2015-02-07

    Fullerenes have been a main focus of scientific research since their discovery due to the interesting possible applications in various fields like organic photovoltaics (OPVs). In particular, the derivative [6,6]-phenyl-C{sub 60}-butyric acid methyl ester (PCBM) is currently one of the most popular choices due to its higher solubility in organic solvents compared to unsubstituted C{sub 60}. One of the central issues in the field of OPVs is device stability, since modules undergo deterioration (losses in efficiency, open circuit voltage, and short circuit current) during operation. In the case of fullerenes, several possibilities have been proposed, including dimerization, oxidation, and impurity related deterioration. We have studied by means of density functional theory the possibility of oxygen adsorption on the C{sub 60} molecular moiety of PCBM. The aim is to provide guidelines for near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) measurements which can probe the presence of atomic or molecular oxygen on the fullerene cage. By analysing several configurations of PCBM with one or more adsorbed oxygen atoms, we show that a joint core level XPS and O1s NEXAFS investigation could be effectively used not only to confirm oxygen adsorption but also to pinpoint the bonding configuration and the nature of the adsorbate.

  13. Momentum resolution in inverse photoemission

    SciTech Connect

    Zumbülte, A.; Schmidt, A. B.; Donath, M.

    2015-01-15

    We present a method to determine the electron beam divergence, and thus the momentum resolution, of an inverse-photoemission setup directly from a series of spectra measured on Cu(111). Simulating these spectra with different beam divergences shows a distinct influence of the divergence on the appearance of the Shockley surface state. Upon crossing the Fermi level, its rise in intensity can be directly linked with the beam divergence. A comparison of measurement and simulation enables us to quantify the momentum resolution independent of surface quality, energy resolution, and experimental geometry. With spin resolution, a single spectrum taken around the Fermi momentum of a spin-split surface state, e.g., on Au(111), is sufficient to derive the momentum resolution of an inverse-photoemission setup.

  14. Momentum resolution in inverse photoemission.

    PubMed

    Zumbülte, A; Schmidt, A B; Donath, M

    2015-01-01

    We present a method to determine the electron beam divergence, and thus the momentum resolution, of an inverse-photoemission setup directly from a series of spectra measured on Cu(111). Simulating these spectra with different beam divergences shows a distinct influence of the divergence on the appearance of the Shockley surface state. Upon crossing the Fermi level, its rise in intensity can be directly linked with the beam divergence. A comparison of measurement and simulation enables us to quantify the momentum resolution independent of surface quality, energy resolution, and experimental geometry. With spin resolution, a single spectrum taken around the Fermi momentum of a spin-split surface state, e.g., on Au(111), is sufficient to derive the momentum resolution of an inverse-photoemission setup.

  15. High-energy anomaly in the angle-resolved photoemission spectra of Nd(2-x)Ce(x)CuO₄: evidence for a matrix element effect.

    PubMed

    Rienks, E D L; Ärrälä, M; Lindroos, M; Roth, F; Tabis, W; Yu, G; Greven, M; Fink, J

    2014-09-26

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd(2-x)Ce(x)CuO₄, x=0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone. PMID:25302914

  16. High-Energy Anomaly in the Angle-Resolved Photoemission Spectra of Nd2-xCexCuO4: Evidence for a Matrix Element Effect

    NASA Astrophysics Data System (ADS)

    Rienks, E. D. L.; ńrrälä, M.; Lindroos, M.; Roth, F.; Tabis, W.; Yu, G.; Greven, M.; Fink, J.

    2014-09-01

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, x =0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  17. Photoemission studies of semiconductor nanocrystals

    SciTech Connect

    Hamad, K. S.; Roth, R.; Alivisatos, A. P.

    1997-04-01

    Semiconductor nanocrystals have been the focus of much attention in the last ten years due predominantly to their size dependent optical properties. Namely, the band gap of nanocrystals exhibits a shift to higher energy with decreasing size due to quantum confinement effects. Research in this field has employed primarily optical techniques to study nanocrystals, and in this respect this system has been investigated extensively. In addition, one is able to synthesize monodisperse, crystalline particles of CdS, CdSe, Si, InP, InAs, as well as CdS/HgS/CdS and CdSe/CdS composites. However, optical spectroscopies have proven ambiguous in determining the degree to which electronic excitations are interior or surface admixtures or giving a complete picture of the density of states. Photoemission is a useful technique for understanding the electronic structure of nanocrystals and the effects of quantum confinement, chemical environments of the nanocrystals, and surface coverages. Of particular interest to the authors is the surface composition and structure of these particles, for they have found that much of the behavior of nanocrystals is governed by their surface. Previously, the authors had performed x-ray photoelectron spectroscopy (XPS) on CdSe nanocrystals. XPS has proven to be a powerful tool in that it allows one to determine the composition of the nanocrystal surface.

  18. THEORY FOR THE XPS OF ACTINIDES

    SciTech Connect

    Bagus, Paul S.; Ilton, Eugene S.

    2013-08-01

    Two aspects of the electronic structure of actinide oxides that significantly affect the XPS spectra are described; these aspects are also important for the materials properties of the oxides. The two aspects considered are: (1) The spin-orbit coupling of the open 5f shell electrons in actinide cations and how this coupling affects the electronic structure. And, (2) the covalent character of the metal oxygen interaction in actinide compounds. Because of this covalent character, there are strong departures from the nominal oxidation states that are significantly larger in core-hole states than in the ground state. The consequences for the XPS of this covalent character are examined. A proper understanding of the way in which they influence the XPS makes it possible to use the XPS to correctly characterize the electronic structure of the oxides.

  19. Consequences of electron correlation for XPS binding energies: Representative case for C(1s) and O(1s) XPS of CO

    NASA Astrophysics Data System (ADS)

    Bagus, Paul S.; Sousa, Carme; Illas, Francesc

    2016-10-01

    In this paper, we present a study of the signs and the magnitudes of the errors of theoretical binding energies, BE's, of the C(1s) and O(1s) core-levels compared to BE's measured in X-Ray photoemission, XPS, experiments. In particular, we explain the unexpected sign of the error of the Hartree-Fock C(1s) BE, which is larger than experiment, in terms of correlation effects due to the near degeneracy of the CO(1π) and CO(2π) levels and show how taking this correlation into account leads to rather accurate predicted BE's. We separate the initial state contributions of this near degeneracy, present for the ground state wavefunction, from the final state near degeneracy effects, present for the hole state wavefunctions. Thus, we are able to establish the importance for the core-level BE's of initial state charge redistribution due to the π near-degeneracy. While the results for CO are interesting in their own right, we also consider whether our conclusions for CO are relevant for the analysis of XPS spectra of a wider range of molecules.

  20. Calcination products of gibbsite studied by X-ray diffraction, XPS and solid-state NMR

    SciTech Connect

    Malki, A.; Mekhalif, Z.; Detriche, S.; Fonder, G.; Boumaza, A.; Djelloul, A.

    2014-07-01

    The changes caused by heat treatment of gibbsite powder at 300–1473 K were studied using the X-ray diffraction (XRD), X-ray photoemission (XPS) spectra and {sup 27}Al magic angle spinning nuclear magnetic resonance spectroscopy ({sup 27}Al MAS NMR). XRD analysis indicates that the transformation sequence involves the formation of κ-Al{sub 2}O{sub 3} as an intermediate phase between χ- and α-Al{sub 2}O{sub 3}. The crystallite size of χ-Al{sub 2}O{sub 3} is as small as 10 nm. XPS analysis indicates that the ratio of aluminium atoms to oxygen atoms in χ-Al{sub 2}O{sub 3} and κ-Al{sub 2}O{sub 3} increases, whereas the expected ratio is observed in α-Al{sub 2}O{sub 3}. The percentage of AlO{sub 4} units in the transition aluminas follows the same behaviour as the ratio of Al/O. - Graphical abstract: The percentage of AlO{sub 4} units in transition aluminas follows the same behaviour as the ratio of Al/O. - Highlights: • Calcination products of gibbsite studied by XRD, XPS and solid-state NMR. • The crystallite size of χ-Al{sub 2}O{sub 3} is as small as 10 nm. • The Al/O atomic ratio determined by XPS is larger than 2/3 in χ-Al{sub 2}O{sub 3} and κ-Al{sub 2}O{sub 3}. • The percentage of AlO{sub 4} in the aluminas follows the same behaviour as the Al/O atomic ratio.

  1. X-PEEM, XPS and ToF-SIMS characterisation of xanthate induced chalcopyrite flotation: Effect of pulp potential

    NASA Astrophysics Data System (ADS)

    Kalegowda, Yogesh; Chan, Yuet-Loy; Wei, Der-Hsin; Harmer, Sarah L.

    2015-05-01

    Synchrotron-based X-ray photoemission electron microscopy (X-PEEM), X-ray photo-electron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and ultraviolet visible spectroscopy were used to characterize the flotation behaviour of chalcopyrite with xanthate at different processing conditions. The flotation recovery of chalcopyrite decreased from 97% under oxidative conditions (Eh ~ 385 mV SHE, pH 4) to 41% at a reductive potential of - 100 mV SHE (at pH 9). X-PEEM images constructed from the metal L3 absorption edges were used to produce near-edge X-ray absorption fine structure (NEXAFS) spectra from regions of interest, allowing the variability in mineral surface chemistry of each mineral particle to be analysed, and the effect of pulp potential (Eh) on the flotation of chalcopyrite to be determined. XPS, ToF-SIMS and NEXAFS analyses of chalcopyrite particles at oxidative conditions show that the surface was mildly oxidised and covered with adsorbed molecular CuEX. The Cu 2p XPS and Cu L2,3 NEXAFS spectra were dominated by CuI species attributed to bulk chalcopyrite and adsorbed CuEX. At a reductive potential of - 100 mV SHE, an increase in concentration of CuI and FeIII oxides and hydroxides was observed. X-PEEM analysis was able to show the presence of a low percentage of CuII oxides (CuO or Cu(OH)2) with predominantly CuI oxide (Cu2O) which is not evident in Cu 2p XPS spectra.

  2. UHV-MOCVD growth of TiO 2 on SiO x/Si(1 1 1): Interfacial properties reflected in the Si 2p photoemission spectra

    NASA Astrophysics Data System (ADS)

    Karlsson, P. G.; Richter, J. H.; Andersson, M. P.; Blomquist, J.; Siegbahn, H.; Uvdal, P.; Sandell, A.

    2005-04-01

    Metal-organic chemical vapour deposition growth of titanium oxide on moderately pre-oxidised Si(1 1 1) using the titanium(IV) isopropoxide precursor has been studied for two different growth modes, reaction-limited growth at 300 °C and flux-limited growth at 500 °C. The interfacial properties have been characterized by monitoring synchrotron radiation excited Si 2p photoemission spectra. The cross-linking from oxidised Si to bulk Si after TTIP exposure has been found to be very similar to that of SiO x/Si(1 1 1). However, the results show that the additional oxidation of Si most probably causes a corrugation of the SiO x/Si interface. Those conclusions are valid for both growth modes. A model is introduced in which the amorphous interface region is described as (TiO 2) x(SiO 2) y where x and y changes linearly and continuously over the interface. The model quantifies how (TiO 2) x(SiO 2) y mixing changes the relative intensities of the signals from silicon oxide and silicon. The method can be generalised and used for the analyses of other metal-oxides on silicon.

  3. Rondorfite-type structure — XPS and UV–vis study

    SciTech Connect

    Dulski, M.; Bilewska, K.; Wojtyniak, M.; Szade, J.; Kusz, J.; Nowak, A.; Wrzalik, R.; and others

    2015-10-15

    Highlights: • Structural and spectroscopic characterization of chlorosilicate mineral, rondorfite. • Characterization of main photoemission lines and valence band spectra. • The study of color origin’s using UV–vis spectroscopy. • Analysis of structural changes in context of origin of natural fluorescence. • Discussion of a new application possibilities of analyzed mineral - Abstract: This paper focuses on X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy of two different (green, orange) rondorfite samples. The differences in the sample color originate from various O/Cl ratios. The orange color was found to be related either to the isomorphic substitution of Fe{sup 3+}/Al{sup 3+} for Mg{sup 2+}, the presence of atypical [MgO{sub 4}] tetrahedrons in crystal structure or electronegativity of the sample. The tetrahedron is known to be very prone to accumulation of impurities and substitute atoms. Moreover, the XPS data showed tetrahedrally coordinated Mg{sup 2+} and isomorphic substitution of Al{sup 3+}/Fe{sup 3+} for Mg{sup 2+}, which influences local disordering and the point defects density and distribution. Non-equilibrium chlorine positions inside the crystal cages as well as Ca-Cl bonds have also been found. The XPS measurements as a function of temperature indicate occurrence of a structural transformation at about 770 K which is accompanied by a rotation of silicate tetrahedra within magnesiosilicate pentamer and luminescence disappearance.

  4. Photoemission study of Li@C60

    NASA Astrophysics Data System (ADS)

    Yagi, Hajime; Ogasawara, Naoko; Zenki, Masashi; Miyazaki, Takafumi; Hino, Shojun

    2016-05-01

    Ultraviolet and X-ray photoelectron spectra (UPS and XPS) of thin films prepared by either depositing or applying [Li@C60]+(PF6)- on the substrates are presented. The UPS and XPS of [Li@C60]+(PF6)- applied films suggest that PF6- anions come out from the surface by annealing at 250 °C. The UPS and XPS of the deposited thin films indicate that the film does not contain PF6- anion but is composed of only Li@C60. Changing the sublimation temperature reveals that encapsulated Li cations begin to escape from the C60 cage when heated above 550 °C.

  5. In-situ X-ray Photoemission Spectroscopy Study of Atomic Layer Deposition of TiO2 on Silicon Substrate

    NASA Astrophysics Data System (ADS)

    Youb Lee, Seung; Jeon, Cheolho; Kim, Seok Hwan; Kim, Yooseok; Jung, Woosung; An, Ki-Seok; Park, Chong-Yun

    2012-03-01

    In-situ X-ray photoemission spectroscopy (XPS) has been used to investigate the initial stages of TiO2 growth on a Si(001) substrate by atomic layer deposition (ALD). The core level spectra of Si 2p, C 1s, O 1s, and Ti 2p were measured at every half reaction in the titanium tetra-isopropoxide (TTIP)-H2O ALD process. The ligand exchange reactions were verified using the periodic oscillation of the C 1s concentration, as well as changes in the hydroxyl concentration. XPS analysis revealed that Ti2O3 and Si oxide were formed at the initial stages of TiO2 growth. A stoichiometric TiO2 layer was dominantly formed after two cycles and was chemically saturated after four cycles.

  6. In-situ X-ray Photoemission Spectroscopy Study of Atomic Layer Deposition of TiO2 on Silicon Substrate

    NASA Astrophysics Data System (ADS)

    Lee, Seung Youb; Jeon, Cheolho; Kim, Seok Hwan; Kim, Yooseok; Jung, Woosung; An, Ki-Seok; Park, Chong-Yun

    2012-03-01

    In-situ X-ray photoemission spectroscopy (XPS) has been used to investigate the initial stages of TiO2 growth on a Si(001) substrate by atomic layer deposition (ALD). The core level spectra of Si 2p, C 1s, O 1s, and Ti 2p were measured at every half reaction in the titanium tetra-isopropoxide (TTIP)--H2O ALD process. The ligand exchange reactions were verified using the periodic oscillation of the C 1s concentration, as well as changes in the hydroxyl concentration. XPS analysis revealed that Ti2O3 and Si oxide were formed at the initial stages of TiO2 growth. A stoichiometric TiO2 layer was dominantly formed after two cycles and was chemically saturated after four cycles.

  7. PLS photoemission electron microscopy beamline

    NASA Astrophysics Data System (ADS)

    Kang, Tai-Hee; Kim, Ki-jeong; Hwang, C. C.; Rah, S.; Park, C. Y.; Kim, Bongsoo

    2001-07-01

    The performance of a recently commissioned beamline at the Pohang Light Source (PLS) is described. The beamline, which is located at 4B1 at PLS, is a Varied Line Spacing (VLS) Plane Grating Monochromator (PGM) beamline. VLS PGM has become very popular because of the simple scanning mechanism and the fixed exit slit. The beamline which takes 3 mrad horizontal beam fan from bending magnet, covers the energy range 200-1000 eV for Photoemission Electron Microscopy (PEEM), X-ray Photoelectron Spectroscopy (XPS) and Magnetic Circular Dichroism (MCD) experiments. Simplicity of the optics and high flux with medium resolution were the design goals for these applications. The beamline consists of a horizontal focusing mirror, a vertical focusing mirror, VLS plane grating and exit slit. The source of PLS could be used as a virtual entrance slit because of its small size and stability. The flux and the resolution of the beamline at the experimental station have been measured using an ion chamber and a calibrated photodiode. Test images of PEEM from a standard sample were taken to illustrate the further performance of the beamline and PEEM station.

  8. Influence of temperature and photon energy on quantum yield of photoemission from real iron surfaces

    NASA Astrophysics Data System (ADS)

    Momose, Yoshihiro; Suzuki, Daisuke; Sakurai, Takao; Nakayama, Keiji

    2014-07-01

    The influence of temperature and incident photon energy on the photoemission quantum yield, Y s, of real iron surfaces has been investigated by thermally assisted photoemission (TAPE). Measurements were carried out using a Geiger counter under a gaseous atmosphere of He containing 1 % isobutane vapor at normal atmospheric pressure in the temperature range 25-353 °C under UV irradiation with wavelengths of 200, 210, 220, and 230 nm. The Y s obtained under irradiation at a given wavelength was found to increase with temperature, particularly more rapidly with wavelengths of greater photon energy. From the Arrhenius plots, the Y s values were found to have activation energies of 0.112-0.040 eV, depending on the photon energy. The chemical composition of the surfaces after TAPE measurements at different temperatures was examined by X-ray photoelectron spectroscopy (XPS). The intensity of species thermally removed from the surface was also measured by temperature desorption spectroscopy (TDS). XPS and TDS results showed the removal of the surface water and weakly bound carbon material from the surface with temperature. It was concluded that the removal of these species with increasing temperature enabled the incident light to penetrate through the surface into the metal, causing the increase in the Y s. The dependence of the activation energies on the photon energy was explained by the change of UV light absorption spectra of the surface water, and the enhancement of the Y s with temperature was also attributed to the influence of iron cations (Fe3+) corresponding to positive holes produced in the surface oxide layer by UV light.

  9. Application of XPS to study electrocatalysts for fuel cells

    NASA Astrophysics Data System (ADS)

    Corcoran, C. J.; Tavassol, H.; Rigsby, M. A.; Bagus, P. S.; Wieckowski, A.

    Analysis of the surface is paramount to understanding the reactivity, selectivity, and catalytic ability of substances. In particular, this understanding is required to make an efficient use of the catalytic surfaces in fuel cells. X-ray photoelectron spectroscopy (XPS) allows determination of changes in the electronic structure for different surface preparation and composition based, mainly, on shifts of the binding energies of core-level electrons. It is also an ideal method that allows identification of the surface or near surface species in relation to fuel cell catalysis. However, the fundamental theoretical concepts, which are used to analyze and interpret XPS spectra are sometimes not correctly understood or correctly applied. In this review, we not only report on XPS operational parameters in use for fuel cell electrocatalysis, but, more significantly, we review and provide rigorous definitions of fundamental concepts used to understand XPS spectra, including the separation of initial and final state effects and the relaxation of valence electrons to screen core-holes. An additional direction of our review is to show the relationships between XPS binding energy shifts and XPS satellite structure with chemical bonding and chemical interactions. However, our primary concern is to provide reviews of representative cases of the application of XPS to solving fuel cell and electrocatalysis-related problems, highlighting progress in this laboratory. We begin with descriptions of essential issues in fuel cell science and with a review of key concepts of XPS. Then, we briefly report on the XPS instrumentation, after which, studies of fundamental importance to electrochemical processes are reviewed. This review includes an overview of complex organic and biological systems in relation to fuel cell electrocatalysis (probed via XPS). We conclude with a discussion of modern developments in XPS methodology.

  10. Quantitative analysis of Ni 2p photoemission in NiO and Ni diluted in a SiO2 matrix

    NASA Astrophysics Data System (ADS)

    Pauly, N.; Yubero, F.; García-García, F. J.; Tougaard, S.

    2016-02-01

    In X-ray excited photoelectron emission (XPS), besides the initial excitation process, the shape and intensity of photoelectron peaks are strongly affected by extrinsic excitations due to electron transport out of the surface (including bulk and surface effects) and to intrinsic excitations due to the sudden creation of the static core hole. To make an accurate quantitative interpretation of features observed in XPS, these effects must be included in the theoretical description of the emitted photoelectron spectra. It was previously shown [N. Pauly, S. Tougaard, F. Yubero, Surf. Sci. 620 (2014) 17] that these three effects can be calculated by means of the QUEELS-XPS software (QUantitative analysis of Electron Energy Losses at Surfaces for XPS) in terms of effective energy-differential inelastic electron scattering cross-sections. The only input needed to calculate these cross-sections is the energy loss function of the media which is determined from analysis of Reflection Electron Energy Loss Spectra (REELS). The full XPS spectrum is then modeled by convoluting this energy loss cross-section with the primary excitation spectrum that accounts for all effects which are part of the initial photo-excitation process, i.e. lifetime broadening, spin-orbit coupling, and multiplet splitting. In this paper we apply the previously presented procedure to the study of Ni 2p photoemission in NiO and Ni diluted in a SiO2 matrix (Ni:SiO2), samples being prepared by reactive magnetron sputtering at room temperature. We observe a significant difference between the corresponding Ni 2p primary excitation spectra. The procedure allows quantifying the relative intensity of the c3d9L, c3d10L2, and c3d8 final states contributing to the Ni 2p photoemission spectra of the Ni2 + species in the oxide matrices. Especially, the intensity ratio in NiO between the non-local and local contributions to the 3d9L configuration is determined to be 2.5. Moreover the relative intensity ratio of the c3d

  11. In-Situ observation of wet oxidation kinetics on Si (100) via ambient pressure x-ray photoemission spectroscopy

    SciTech Connect

    Hussain, Zahid; Rossi, Massimiliano; Mun, Bongjin S.; Enta, Yoshiharu; Fadley, Charles S.; Lee, Ki-Suk; Kim, Sang-Koog; Shin, Hyun-Joon; Hussain, Zahid; Ross, Jr., Philip N.

    2007-08-24

    The initial stages of wet thermal oxidation of Si(100)-(2x1) have been investigated by in-situ ambient pressure x-ray photoemission spectroscopy (APXPS), including chemical-state resolution via Si 2p core-level spectra. Real-time growth rates of silicon dioxide have been monitored at 100 mTorr of water vapor. This pressure is considerably higher than in any prior study using XPS. Substrate temperatures have been varied between 250 and 500 C. Above a temperature of {approx} 400 C, two distinct regimes, a rapid and a quasi-saturated one, are identified and growth rates show a strong temperature dependence which cannot be explained by the conventional Deal-Grove model.

  12. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis.

    PubMed

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-26

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum. PMID:27420635

  13. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-01

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum.

  14. PHOTOEMISSION PROPERTIES OF LEAD.

    SciTech Connect

    SMEDLEY,J.; RAO,T.; WARREN,J.; SEKUTOWICZ,J.; LEFFERTS,R.; LIPSKI,A.

    2004-07-05

    In this paper we present a study of the photoemission properties of lead at several UV wavelengths, including a study of the damage threshold of electroplated lead under laser cleaning. A quantum efficiency in excess of 0.1% has been achieved for a laser cleaned, electroplated lead sample with a laser wavelength of 193 nm. Niobium cathodes have been measured for comparison, and lead is found to be a superior photoemitter for all measured wavelengths.

  15. Photoemission, Correlation and Superconductivity:

    NASA Astrophysics Data System (ADS)

    Abrecht, M.; Ariosa, D.; Cloëtta, D.; Pavuna, D.; Perfetti, L.; Grioni, M.; Margaritondo, G.

    We review some of the problems still affecting photoemission as a probe of high-temperature superconductivity, as well as important recent results concerning their solution. We show, in particular, some of the first important results on thin epitaxial films grown by laser ablation, which break the monopoly of cleaved BCSCO in this type of experiments. Such results, obtained on thin LSCO, may have general implications on the theory of high-temperature superconductivity.

  16. Angle-resolved photoemission extended fine structure

    SciTech Connect

    Barton, J.J.

    1985-03-01

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs.

  17. Monochromatic electron photoemission from diamondoid monolayers

    SciTech Connect

    Yang, Wanli; Yang, Wanli L.; Fabbri, J.D.; Willey, T.M.; Lee, J.R.I.; Dahl, J.E.; Carlson, R.M.K.; Schreiner, P.R.; Fokin, A.A.; Tkachenko, B.A.; Fokina, N.A.; Meevasana, W.; Mannella, N.; Tanaka, K.; Zhou, X.J.; van Buuren, T.; Kelly, M.A.; Hussain, Z.; Melosh, N.A.; Shen, Z.-X.

    2007-02-27

    We found monochromatic electron photoemission from large-area self-assembled monolayers of a functionalized diamondoid, [121]tetramantane-6-thiol. Photoelectron spectra of the diamondoid monolayers exhibited a peak at the low-kinetic energy threshold; up to 68percent of all emitted electrons were emitted within this single energy peak. The intensity of the emission peak is indicative of diamondoids being negative electron affinity materials. With an energy distribution width of less than 0.5 electron volts, this source of monochromatic electrons may find application in technologies such as electron microscopy, electron beam lithography, and field-emission flatpanel displays.

  18. Insulating state of ultrathin epitaxial LaNiO{sub 3} thin films detected by hard x-ray photoemission

    SciTech Connect

    Gray, A. X.; Kaiser, A. M.; Fadley, C. S.; Janotti, A.; Son, J.; LeBeau, J. M.; Van de Walle, C. G.; Stemmer, S.; Ueda, S.; Yamashita, Y.; Kobayashi, K.; Sutarto, R.; Wadati, H.; Sawatzky, G. A.

    2011-08-15

    In order to understand the influence of strain and film thickness on the electronic structure of thin films of strongly correlated oxides, we have applied hard x-ray photoemission (HXPS) at 6 keV, soft x-ray photoemission (XPS) at 1.5 keV, and transmission electron microscopy to epitaxial LaNiO{sub 3} films deposited on two substrates: LaAlO{sub 3} (compressive strain) and (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (tensile strain). Using inelastic attenuation lengths in LaNiO{sub 3} determined from the HXPS data, we have decomposed valence-band spectra into layer-specific contributions. This decomposition is validated by comparing with the results of first-principles calculations using a hybrid functional. The resultant thin-film LaNiO{sub 3} densities of states exhibit significant differences in spectral weights for the thinnest LaNiO{sub 3} films. A gap opening consistent with a metal-to-insulator transition is observed for the thinnest 2.7 nm LaNiO{sub 3} film on an (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} substrate, with a similar gap opening also being observed in complementary soft x-ray photoemission at 1.5 keV for a thinner 1.4 nm film on an LaAlO{sub 3} substrate. A metal-to-insulator transition in very thin nm-scale films of LaNiO{sub 3} is thus suggested as a general phenomenon.

  19. Characterization of YBa 2Cu 3O x using core- and valence-level XPS

    NASA Astrophysics Data System (ADS)

    Brundle, C. R.; Fowler, D. E.

    1993-12-01

    Hundreds of papers have been published involving the photoelectron spectroscopy of the high- Tc superconducting oxides since 1987. The early work, originally on bulk-sintered material, sputtered films, and later on "single crystals", concentrated on finding "unusual" features in valence- or core-level spectra to relate to electronic structure effects which might explain the superconducting mechanism. The majority of this work has not adequately taken into account the facts that (a) photoemission probes only the top few monolayers of material, and (b) in many cases the top few layers are completely unrepresentative of the bulk material. This is particularly true for YBa 2Cu 3O x, where the surface is extremely reactive, unstable, and prone to contaminating phases, even when prepared under UHV conditions. This has led to a flood of misinformation concerning the true characteristic spectra of this material and their interpretation. In this paper, we present core- and valence-level XPS for YBa 2Cu 3O x single-crystal, bulk-sintered, and thin-film samples, and show that, when artifacts are eliminated, the characteristic spectra are the same, to first order, and easily allow distinction of surfaces consisting of the genuine orthorhombic phase ( x > 6.4) from those with the non-superconducting tetragonal phase ( x<6.4) or contaminant or reaction-product phases. With this information, it is possible to eliminate much of the previous literature discussion and also to follow the material changes occuring, for instance, during annealing, adsorption and reaction. We then discuss some detailed interpretations, including the DOS observed at and near EF, the explanations for the ˜1.5 eV chemical shift in Ba core-level BE between orthorhombic and tetragonal forms, and the implications of the very low O(1s) BE of the orthorhombic form.

  20. Crystal structure and X-ray photoemission spectroscopic study of A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta

    SciTech Connect

    Dutta, Alo; Saha, Sujoy; Sinha, T.P.

    2015-09-15

    The X-ray photoemission spectroscopic (XPS) study of the double perovskite oxides A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta] synthesized by the solid-state reaction technique has been carried out to investigate the nature of the chemical state of the constituent ions and the bonding between them. The Rietveld refinement of the X-ray diffraction patterns suggests the monoclinic crystal structure of all the materials at room temperature. The negative and positive chemical shifts of the core level XPS spectrum of O-1s and Nb-3d{sub 3/2}/Ta-4f{sub 5/2} respectively suggest the covalent bonding between Nb/Ta cations and O ion. The change of the bonding strength between the anion and the cations from one material to another has been analyzed. The vibrational property of the materials is investigated using the room temperature Raman spectra. A large covalency of Ta-based compound than Nb compound is confirmed from the relative shifting of the Raman modes of the materials. - Graphical abstract: Crystal structure of two perovskite oxides CLN and CLT is investigated. XPS study confirms the two different co-ordination environments of Ca and covalent bonding between B-site cations and O-ion. - Highlights: • Ordered perovskite structure obtained by Rietveld refinement of XRD patterns. • Study of nature of chemical bonding by X-ray photoemission spectroscopy. • Opposite chemical shift of d-states of Nb/Ta with respect to O. • Covalent bonding between d-states of Nb/Ta and O. • Relative Raman shifts of CLN and CLT substantiate the more covalent character of Ta than Nb.

  1. Electronic band structure and photoemission: A review and projection

    SciTech Connect

    Falicov, L.M.

    1987-09-01

    A brief review of electronic-structure calculations in solids, as a means of interpreting photoemission spectra, is presented. The calculations are, in general, of three types: ordinary one-electron-like band structures, which apply to bulk solids and are the basis of all other calculations; surface modified calculations, which take into account, self-consistently if at all possible, the presence of a vacuum-solid interface and of the electronic modifications caused thereby; and many-body calculations, which go beyond average-field approximations and consider dynamic rearrangement effects caused by electron-electron correlations during the photoemission process. 44 refs.

  2. Particle-hole cumulant approach for inelastic losses in x-ray spectra

    NASA Astrophysics Data System (ADS)

    Kas, J. J.; Rehr, J. J.; Curtis, J. B.

    2016-07-01

    Inelastic losses in core level x-ray spectra arise from many-body excitations, leading to broadening and damping as well as satellite peaks in x-ray photoemission (XPS) and x-ray absorption (XAS) spectra. Here we present a practical approach for calculating these losses based on a cumulant representation of the particle-hole Green's function, a quasiboson approximation, and a partition of the cumulant into extrinsic, intrinsic, and interference terms. The intrinsic losses are calculated using real-time time-dependent density functional theory while the extrinsic losses are obtained from the G W approximation of the photoelectron self-energy and the interference terms are approximated. These effects are included in the spectra using a convolution with an energy dependent particle-hole spectral function. The approach elucidates the nature of the spectral functions in XPS and XAS and explains the significant cancellation between extrinsic and intrinsic losses. Edge-singularity effects in metals are also accounted for. Illustrative results are presented for the XPS and XAS of both weakly and more correlated systems.

  3. Plasmon Enhanced Photoemission

    SciTech Connect

    Polyakov, Aleksandr

    2012-05-08

    Next generation ultrabright light sources will operate at megahertz repetition rates with temporal resolution in the attosecond regime. For an X-Ray Free Electron Laser (FEL) to operate at such repetition rate requires a high quantum efficiency (QE) cathode to produce electron bunches of 300 pC per 1.5 μJ incident laser pulse. Semiconductor photocathodes have sufficient QE in the ultraviolet (UV) and the visible spectrum, however, they produce picosecond electron pulses due to the electron-phonon scattering. On the other hand, metals have two orders of magnitude less QE, but can produce femtosecond pulses, that are required to form the optimum electron distribution for high efficiency FEL operation. In this work, a novel metallic photocathode design is presented, where a set of nano-cavities is introduced on the metal surface to increase its QE to meet the FEL requirements, while maintaining the fast time response. Photoemission can be broken up into three steps: (1) photon absorption, (2) electron transport to the surface, and (3) crossing the metal-vacuum barrier. The first two steps can be improved by making the metal completely absorbing and by localizing the fields closer to the metal surface, thereby reducing the electron travel distance. Both of these effects can be achieved by coupling the incident light to an electron density wave on the metal surface, represented by a quasi-particle, the Surface Plasmon Polariton (SPP). The photoemission then becomes a process where the photon energy is transferred to an SPP and then to an electron. The dispersion relation for the SPP defines the region of energies where such process can occur. For example, for gold, the maximum SPP energy is 2.4 eV, however, the work function is 5.6 eV, therefore, only a fourth order photoemission process is possible. In such process, four photons excite four plasmons that together excite only one electron. The yield of such non-linear process depends strongly on the light intensity. In

  4. Structural, magnetic and XPS studies of Sn0.95Co0.05O2-0.05 and Sn0.95Fe0.05O2-0.05 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaur, Jasneet; Sahni, Kunal; Kumar, Vikas; Thakur, Kartik; Kotnala, R. K.; Verma, Kuldeep Chand

    2013-02-01

    Structural, microstructural, X-ray photoemission spectra (XPS) and magnetic properties of transition metal ion [5 mol% of Co (SC5) and Fe (SF5)]-doped SnO2 nanoparticles have been studied. The SC5 and SF5 nanoparticles were synthesized by a chemical route using polyvinyl alcohol as surfactant. The doped SnO2 crystallites were found to exhibit a tetragonal rutile structure and the average grains size was measured by the Scherer relation of X-ray diffraction. Transmission electron micrographs showed that the average grain size of SC5 is smaller than SF5. SC5 nanoparticles showed strong ferromagnetic behaviour but SF5 exhibited an F-centre exchange (FCE) mechanism. Temperature-dependent magnetization showed the values of phase transition temperature. XPS confirmed the presence of Sn-O-Co and Sn-O-Fe bonds in these SC5 and SF5 nanoparticles. The oxidation states of Sn, Co and Fe were found to be +4, +2 and +2, respectively, while the core level XPS peaks of Sn 3d, O 1s, Co 2p and Fe 2p were analyzed.

  5. High-harmonic XUV source for time- and angle-resolved photoemission spectroscopy

    SciTech Connect

    Dakovski, Georgi L; Li, Yinwan; Durakiewicz, Tomasz; Rodriguez, George

    2009-01-01

    We present a laser-based apparatus for visible pump/XUV probe time- and angle-resolved photoemission spectroscopy (TRARPES) utilizing high-harmonic generation from a noble gas. Femtosecond temporal resolution for each selected harmonic is achieved by using a time-delay-compensated monochromator (TCM). The source has been used to obtain photoemission spectra from insulators (UO{sub 2}) and ultrafast pump/probe processes in semiconductors (GaAs).

  6. The Origin of the Monochromatic Photoemission Peak in Diamondoid Monolayers

    SciTech Connect

    Clay, William A.; Liu, Zhi; Yang, Wanli; Fabbri, Jason D.; Dahl, Jeremy E.; Carlson, Robert M.K.; Sun, Steven; Pianetta, Piero A.; Melosh, Nicholas; Shen, Zhi-Xun; /Stanford U., Geballe Lab. /LBNL, ALS /Chevron Petroleum Tech., Richmond /SLAC, SSRL

    2008-10-31

    Recent photoemission experiments have discovered a highly monochromatized secondary electron peak emitted from diamondoid self-assembled monolayers on metal substrates. New experimental data and simulation results are presented to show that a combination of negative electron affinity and strong electron-phonon scattering is responsible for this behavior. The simulation results are generated using a simple Monte Carlo transport algorithm. The simulated spectra contain the main spectral features of the measured ones.

  7. XPS analysis of humic and fulvic acids

    SciTech Connect

    Desbene, P.L.; Silly, L.; Morizur, J.P.; Delamar, M.

    1986-01-01

    The composition of humic and fulvic acids is examined using X-ray Photoelectron Spectroscopy (XPS). The XPS results are compared to that of elemental analyses. XPS permits an easy detection of the different chemical forms of carbon and sulfur that exist in these complex compounds.

  8. Photoemission study of SmCo2

    NASA Astrophysics Data System (ADS)

    Kang, J.-S.; Yang, C. J.; Lee, Y. P.; Olson, C. G.; Cho, E.-J.; Oh, S.-J.; Anderson, R. O.; Liu, L. Z.; Park, J.-H.; Allen, J. W.; Ellis, W. P.

    1993-10-01

    The electronic structure of SmCo2 is investigated with photoemission spectroscopy (PES). All the PES spectra are consistent in showing that the bulk Sm ions are trivalent, but that the surface has divalent Sm ions and is probably inhomogeneously mixed valent. Both the Sm 4f valence band and Sm 3d core level PES spectra are found to be substantially broader than those of Sm metal. The observed larger linewidths for SmCo2, as compared to those of pure Sm metal, suggest a larger lifetime broadening, probably due to an increased number of valence-band electrons, and a larger 4f hybridization, mainly to Co 3d states. Weak satellite structures are observed in the Co 3d valence band and Co 2p core level PES spectra, indicating Co 3d correlation effects. The comparison of the experimental valence-band PES spectrum with the theoretical Co 3d projected local density of states also suggests that Co 3d correlation effects in SmCo2 are non-negligible.

  9. Ultrafast surface dynamics probed with time resolved photoemission

    NASA Astrophysics Data System (ADS)

    Dell'Angela, M.; Hieke, F.; Sorgenfrei, F.; Gerken, N.; Beye, M.; Gerasimova, N.; Redlin, H.; Wurth, W.

    2016-01-01

    Time resolved core level photoemission (trXPS) allows real-time atom-specific investigation of ultrafast surface dynamics. Core levels contain information on the chemical state and the structure of the surface as well as the local charge distribution around specific atoms. Monitoring their evolution after optically exciting the surface, can give valuable information on the electronic (few picosecond time scale) and lattice dynamics (several picosecond timescale). We have performed a trXPS experiment at the free-electron laser FLASH at DESY in Hamburg on a clean Ir(111) surface measuring the temporal evolution of the 4f core levels of Ir(111) after optically exciting the sample. The spectral changes due to X-ray and optical laser induced space charge effects which occur in trXPS experiments with high fluence pump and probe pulses have been fully characterized and controlled during the measurements. At early time scales after the optical excitation we observe time-dependent energy shifts and intensity changes which can be partially attributed to the formation of sidebands. Furthermore, we can clearly identify contributions which result from a change in the surface electron density which then relaxes on a time scale on the order of 2 ps.

  10. Determination of the valence band structure of an alkali phosphorus oxynitride glass: A synchrotron XPS study on LiPON

    NASA Astrophysics Data System (ADS)

    Schwöbel, André; Precht, Ruben; Motzko, Markus; Carrillo Solano, Mercedes A.; Calvet, Wolfram; Hausbrand, René; Jaegermann, Wolfram

    2014-12-01

    Lithium phosphorus oxynitride (LiPON) is a solid state electrolyte commonly used in thin film batteries (TFBs). Advanced TFBs face the issue of detrimental electrode-electrolyte interlayer formation, related to the electronic structure of the interface. In this contribution, we study the valence band structure of LiPON using resonant photoemission and synchrotron photoemission with variable excitation energies. The identification of different valence band features is done according to the known valence band features of meta- and orthophosphates. Additionally we compare our results with partial density of states simulations from literature. We find that the valence band structure is similar to the known metaphosphates with an additional contribution of nitrogen states at the top of the valence band. From the results we conclude that synchrotron X-ray photoemission (XPS) is a useful tool to study the valence band structure of nitridated alkali phosphate glasses.

  11. Os layers spontaneously deposited on the Pt(111) electrode : XPS, STM and GIF-XAS study.

    SciTech Connect

    Rhee, C. K.; Wakisaka, M.; Tolmachev, Y.; Johnston, C.; Haasch, R.; Attenkofer, K.; Lu, G. Q.; You, H.; Wieckowski, A.; Univ. of Illinois Champaigh-Urbana

    2003-01-01

    Scanning tunneling microscopy (STM) characterized adlayers of spontaneously deposited osmium on a Pt(111) electrode were investigated using ex-situ X-ray photoemission spectroscopy (XPS) and in-situ grazing incidence fluorescence X-ray absorption spectroscopy (GIF-XAS). After a single spontaneous deposition, monoatomic (or nearly monoatomic) nanoislands of osmium are formed. The island diameter varies from 2 to 5 nm depending on the Os coverage, which in turn is adjusted by varying the concentration of the Os precursor salt (OsCl3) in the deposition bath and/or by the deposition time. XPS reveals three oxidation states: a metallic Os (the 4f7/2 core level binding energy of 50.8 eV), Os(IV) (51.5 eV) and Os(VIII) (52.4 eV). The metallic osmium exists at potentials below 500 mV (vs. RHE) while above 500 mV osmium is oxidized to Os(IV). Electrodissolution of osmium begins above 900 mV and occurs simultaneously with platinum oxidation. At ca. 1200 mV V versus the RHE reference, the oxidation state of some small amounts of osmium that survive dissolution is the Os(VIII). We demonstrate, for the first time, that mixed or odd valencies of osmium exist on the platinum surface at potentials higher that 800 mV. In-situ GIF-XAS measurements of an Os LIII edge also reveal the presence of three Os oxidation states. Namely, below the electrode potential of 400 mV, the X-ray fluorescent energy at maximum absorption is 10.8765 keV, and is characteristic of the metallic Os. In the potential range between 500 and 1000 mV this energy is gradually shifted to higher values, assignable to higher valencies of osmium, like Os(IV). This tendency continues to higher potentials consistent with the third, highly oxidized osmium form present, most likely Os(VIII). The variation of the 'raw edge jump height' of Os with the electrode potential, which is equivalent to a drop in osmium surface concentration, demonstrates that the electrochemical stripping of Os begins below 1.0 V versus RHE, as

  12. Characterization of Catechins in Water by Photoemission Yield Spectroscopy in Air.

    PubMed

    Yamashita, Daisuke; Ishizaki, Atsushi

    2016-01-01

    Photoemission yield spectroscopy in air (PYSA) was applied for the characterization of catechins in water in ambient conditions. According to the results of measurements on aqueous solutions of epigallocatechin gallate (EGCg) of various concentrations, the photoemission yield is almost proportional to the concentration of EGCg. Contrarily, the threshold energy of photoemission, EPET, is almost constant at 5.46 ± 0.02 eV. Moreover, we measured aqueous solutions of epicatechin (EC), epigallocatechin (EGC), and epicatechin gallate (ECg). The values of EPET of EC, EGC, ECg were estimated to be 5.72 ± 0.02, 5.68 ± 0.01, and 5.45 ± 0.02 eV, respectively, and a dependence on the molecular structure was found. Furthermore, changes in the photoemission yield spectra of heated EGCg were well explained by molecular orbital calculations on the basis of an assumption of epimerization. PMID:27169659

  13. Spin polarization and magnetic dichroism in core-level photoemission from ferromagnets

    SciTech Connect

    Menchero, J G

    1997-05-01

    In this thesis we present a theoretical investigation of angle- and spin-resolved core-level photoemission from ferromagnetic Fe and Ni. We also consider magneto-dichroic effects due to reversal of the photon helicity or reversal of the sample magnetization direction. In chapter 1, we provide a brief outline of the history of photoemission, and show how it has played an important role in the development of modern physics. We then review the basic elements of the theory of core-level photoemission, and discuss the validity of the some of the commonly-used approximations. In chapter 2, we present a one-electron theory to calculate spin- and angle-resolved photoemission spectra for an arbitrary photon polarization. The Hamiltonian includes both spin-orbit and exchange interactions. As test cases for the theory, we calculate the spin polarization and magnetic dichroism for the Fe 2p core level, and find that agreement with experiment is very good.

  14. Study of Photoemissive Dusty Plasma

    SciTech Connect

    Gavrikov, A. V.; Fortov, V. E.; Petrov, O. F.; Babichev, V. N.; Filippov, A. V.; Pal', A. F.; Starostin, A. N.

    2008-09-07

    The present work deals with the experimental and theoretical investigation of photoemissive charging of polydisperse dust particles. The characteristic size of dust particles under consideration was 0.1-25 mkm. The experimental part of this work was devoted to the study of positive charging of macroparticles under UV-radiation that acted on dusty formations. Investigations were carried out in argon at normal pressure with particles of different materials. Dust structure was subjected to radiation. The power and frequency spectrum of this radiation was close to corresponding parameters of sun radiation near the top layers of Earth atmosphere. Owing to electron photoemission the macroparticles became positively charged. On the basis of experimental data the estimation of this charge was performed. It was about 500 elementary charges for micron particles. The theoretical part of present work included the numerical simulation of photoemissive dusty plasma decay in a drift-diffusion approximation. The model included equilibrium equation for positively charged macroparticles (in experiment, the percent of these particles was about 90), negatively charged dust particles (about 10%), positive ions (those were born by electron strike of buffered gas atoms) and electrons. Also the model included the Poisson equation for determination of potential distribution in the discharge region. The results of numerical calculations were in a satisfactory correspondence with experimental data both for time dependences of positively and negatively charged macroparticles concentrations and for their velocities.

  15. Photocathode device that replenishes photoemissive coating

    DOEpatents

    Moody, Nathan A.; Lizon, David C.

    2016-06-14

    A photocathode device may replenish its photoemissive coating to replace coating material that desorbs/evaporates during photoemission. A linear actuator system may regulate the release of a replenishment material vapor, such as an alkali metal, from a chamber inside the photocathode device to a porous cathode substrate. The replenishment material deposits on the inner surface of a porous membrane and effuses through the membrane to the outer surface, where it replenishes the photoemissive coating. The rate of replenishment of the photoemissive coating may be adjusted using the linear actuator system to regulate performance of the photocathode device during photoemission. Alternatively, the linear actuator system may adjust a plasma discharge gap between a cartridge containing replenishment material and a metal grid. A potential is applied between the cartridge and the grid, resulting in ejection of metal ions from the cartridge that similarly replenish the photoemissive coating.

  16. Real-time cumulant approach for inelastic losses in x-ray spectra

    NASA Astrophysics Data System (ADS)

    Kas, J. J.; Rehr, J. J.; Curtis, J. B.

    Intrinsic inelastic losses in core level x-ray absorption (XAS), emission (XES), and x-ray photo-emission spectra (XPS), arise from excitations of the system due to the sudden creation or annihilation of a deep core hole. Additional extrinsic losses arise during the propagation of the photoelectron, and interference processes are also important. These excitations are reflected in the satellite peaks observed in XPS. Formally the distribution of these excitations are described in terms of the core-hole spectral function, which can be calculated in terms of the core-hole Green's function represented in exponential form. Here we discuss an approach for calculating the exponent, or cumulant in terms of local density fluctuations via real-space, real-time time-dependent density functional theory. The role of extrinsic and interference terms is also discussed. Our method is illustrated in calculations of XAS and XPS for number of systems, including weakly correlated as well as d- and f-electron materials. Supported by DOE BES Grant DE-FG03-97ER45623.

  17. X-ray photoemission study of the infinite-layer cuprate superconductor Sr(0.9) La (0.1) CuO(2)

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Jung, C. U.; Kim, J. Y.; Kim, M. S.; Lee, S. Y.; Lee, S. I.

    2001-01-01

    The electron-doped infinite-layer superconductor Sr(0.9)La(0.1) CuO(2) is studied with x-ray photoemission spectroscopy (XPS). A nonaqueous chemical etchant is shown to effectively remove contaminants and to yield surfaces from which signals intrinsic to the superconductor dominate.

  18. XPS investigation of an iron/manganese/sulfated zirconia catalyst

    NASA Astrophysics Data System (ADS)

    Milburn, Diane R.; Keogh, Robert A.; Sparks, Dennis E.; Davis, Burtron H.

    1998-04-01

    A sample of Fe-Mn-SO 42--ZrO 2 has been heated at 500°C in air for 98 h. At intervals, the sample was evacuated and transferred without atmospheric exposure to an XPS chamber. As noted with Pt-SO 42--ZrO 2, the O 1s peak resolved to a doublet; one of these peaks is interpreted to result by dehydration of the sulfate group. Following the 98 h air treatment, the sample was treated at 150°C at 1 atm in flowing hydrogen for a total of 78 h. The XPS spectra, obtained at intervals during the heating in hydrogen, showed that both Fe and Mn remained in an oxidized state.

  19. Photoemission studies of wurtzite zinc oxide.

    NASA Technical Reports Server (NTRS)

    Powell, R. A.; Spicer, W. E.; Mcmenamin, J. C.

    1972-01-01

    The electronic structure of wurtzite zinc oxide, investigated over the widest possible photon energy range by means of photoemission techniques, is described. Of particular interest among the results of the photoemission study are the location of the Zn 3rd core states, the width of the upper valence bands, and structure in the conduction-band and valence-band density of states.

  20. Structural and electronic properties of V2O3 ultrathin film on Ag(001): LEED and photoemission study

    NASA Astrophysics Data System (ADS)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-05-01

    V2O3 ultrathin films were grown on Ag(001) substrate by reactive evaporation of vanadium (V) metal in presence of oxygen and their structural and electronic properties were studied by Low Energy Electron Diffraction (LEED), X-ray Photo Electron Spectroscopy (XPS) and Angle Resolved Photoemission Spectroscopic (ARPES) techniques, respectively. On top of square symmetry substrate Ag(001), hexagonal surface of V2O3 (0001) is stabilized in the form of two domain structure, rotated by 30°(or 90°)to each other, has been observed by LEED. Rather than epitaxial flat monolayer, formation of well-ordered V2O3 (0001) island has been confirmed from the LEED and the Photoemission Spectroscopic (PES) study. Stoichiometry of the grown film was confirmed by the XPS study. Evolution of valance band electronic structure of V2O3 (0001) surface has been studied as a function of film thickness by ARPES.

  1. A Dust Grain Photoemission Experiment

    NASA Technical Reports Server (NTRS)

    Venturini, C. C.; Spann, J. F., Jr.; Abbas, M. M.; Comfort, R. H.

    2000-01-01

    A laboratory experiment has been developed at Marshall Space Flight Center to study the interaction of micron-sized particles with plasmas and FUV radiation. The intent is to investigate the conditions under which particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and/or UV radiation. This experiment uses a unique laboratory where a single charged micron size particle is suspended in a quadrupole trap and then subjected to a controlled environment. Tests are performed using different materials and sizes, ranging from 10 microns to 1 micron, to determine the particle's charge while being subjected to an electron beam and /or UV radiation. The focus of this presentation will be on preliminary results from UV photoemission tests, but past results from electron beam, secondary electron emission tests will also be highlighted. A monochromator is used to spectrally resolve UV in the 120 nm to 300 nm range. This enables photoemission measurements as a function of wavelength. Electron beam tests are conducted using I to 3 micron sized aluminum oxide particles subjected to energies between 100 eV to 3 KeV. It was found that for both positive and negative particles the potential tended toward neutrality over time with possible equilibrium potentials between -0.8 Volts and 0.8 Volts.

  2. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  3. XPS Study of Plasma- and Argon Ion-Sputtered Polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Kliss, Mark (Technical Monitor)

    1997-01-01

    The similarity of plasma-polymerized tetrafluoroethylene (PPTFE) and the fluoropolymer film deposited by rf (radio frequency) plasma sputtering (SPTFE) of polytetrafluoroethylene (PTFE), noted earlier in the literature, has been reconfirmed. FT-IR (Fourier Transform Infrared), XPS (X ray Photoelectron Spectroscopy) and UV (ultraviolet) spectroscopy has been employed in apparently the first study to involve preparation of PPTFE and SPTFE in the same reactor and under comparable low-power plasma conditions. Most of the work concerned the use of He or Ar as sputtering gas, but some runs were also carried out with the other rare gases Ne, Kr and Xe. The C1s XPS spectra of SPTFE films displayed a relatively higher content of CF2 groups, and yielded higher F/C (fluorine / carbon) ratios, than PPTFE films, while the SPTFE films were somewhat more transparent in the UV than PPTFE. The F/C ratios for SPTFE were essentially independent of the rare gas used for sputtering. Increasing rf power from 10 to 50 W for Xe plasma-sputtering of PTFE resulted in successively lower F/C ratios (1.55 to 1.21), accompanied by sputtering of the glass reactor occurring at 40 W and above. Some limited XPS, FT-IR and UV data are presented on Ar ion-sputtered PTFE.

  4. Mapping of Si/SiC p-n heterojunctions using scanning internal photoemission microscopy

    NASA Astrophysics Data System (ADS)

    Shingo, Masato; Liang, Jianbo; Shigekawa, Naoteru; Arai, Manabu; Shiojima, Kenji

    2016-04-01

    We demonstrated the two-dimensional characterization of p+-Si/n--SiC heterointerfaces by scanning internal photoemission microscopy (SIPM). In internal photoemission spectra, a linear relationship was found between the square root of photoyield (Y) and photon energy, and the threshold energy (qV th) was reasonably obtained to be 1.34 eV. From the SIPM results, Y and qV th maps were successfully obtained, and nanometer-deep gaps in the junction were sensitively visualized as a pattern. These results suggest that this method is a powerful tool for investigating the inhomogeneity of heterojunctions as well as their carrier transport properties.

  5. A medium-energy photoemission and ab-initio investigation of cubic yttria-stabilised zirconia

    SciTech Connect

    Cousland, G. P.; Cui, X. Y.; Smith, A. E.; Stampfl, C. M.; Wong, L.; Tayebjee, M.; Yu, D.; Triani, G.; Evans, P. J.; Ruppender, H.-J.; Jang, L.-Y.; Stampfl, A. P. J.

    2014-04-14

    Experimental and theoretical investigations into the electronic properties and structure of cubic yttria-stabilized zirconia are presented. Medium-energy x-ray photoemission spectroscopy measurements have been carried out for material with a concentration of 8-9 mol. % yttria. Resonant photoemission spectra are obtained for a range of photon energies that traverse the L2 absorption edge for both zirconium and yttrium. Through correlation with results from density-functional theory (DFT) calculations, based on structural models proposed in the literature, we assign photoemission peaks appearing in the spectra to core lines and Auger transitions. An analysis of the core level features enables the identification of shifts in the core level energies due to different local chemical environments of the constituent atoms. In general, each core line feature can be decomposed into three contributions, with associated energy shifts. Their identification with results of DFT calculations carried out for proposed atomic structures, lends support to these structural models. The experimental results indicate a multi-atom resonant photoemission effect between nearest-neighbour oxygen and yttrium atoms. Near-edge x-ray absorption fine structure spectra for zirconium and yttrium are also presented, which correlate well with calculated Zr- and Y-4d electron partial density-of-states and with Auger electron peak area versus photon energy curve.

  6. High-Resolution and Low-Temperature Photoemission Spectroscopy at the Hisor Helical-Undulator Beamline

    NASA Astrophysics Data System (ADS)

    Arita, Masashi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki

    We report an experimental system dedicated for high-resolution and low-temperature photoemission spectroscopy installed on the helical-undulator beamline of a compact 700 MeV electron-storage ring (HiSOR) at Hiroshima University. A 3 m off-plane Eagle normal-incidence monochromator at the beamline covers the photon-energy range of hν = 4-40 eV. From the photoemission spectra near the Fermi edge of evaporated Au film, the total energy resolution was estimated to be 4.5 and 7.5 meV at hν = 7.1 and 22.6 eV, respectively. We have also performed photoemission measurements of Yb metal, which demonstrated highly bulk-sensitive spectra for the excitation by low energy photon. The high-resolution photoemission spectra of Y1 - xCaxTiO3 with x = 0.41 in the vicinity of the boundary between the metallic and insulating phases exhibited anomalous temperature dependence in comparison with those of normal metals.

  7. A photoemission study of the diamond and the single crystal C{sub 60}

    SciTech Connect

    Wu, Jin

    1994-03-01

    This report studied the elctronic structure of diamond (100) and diamond/metal interface and C{sub 60}, using angle-resolved and core level photoemission. The C(100)-(2X1) surface electronic structure was studied using both core level and angle resolved valence band photoemission spectroscopy. The surface component of the C 1s core level spectrum agrees with theoretical existence of only symmetrical dimers. In the case of metal/diamond interfaces, core level and valence photoelectron spectroscopy and LEED studies WERE MADE OF B and Sb on diamond (100) and (111) surfaces. In the case of single-crystal C{sub 60}, photoemission spectra show sharp molecular features, indicating that the molecular orbitals are relatively undisturbed in solid C{sub 60}.

  8. Final-state diffraction effects in angle-resolved photoemission at an organic-metal interface

    NASA Astrophysics Data System (ADS)

    Bocquet, F. C.; Giovanelli, L.; Amsalem, P.; Petaccia, L.; Topwal, D.; Gorovikov, S.; Abel, M.; Koch, N.; Porte, L.; Goldoni, A.; Themlin, J.-M.

    2011-12-01

    In this paper it is shown that angle-resolved photoemission performed using low-energy photons on an organic-metal interface allows to clearly distinguish genuine interface states from features of substrate photoelectrons diffracted by the molecular lattice. As a model system an ordered monolayer of Zn-phthalocyanine is used as a diffraction lattice to probe the electronic band structure of a Ag(110) substrate. Photoemission close to normal emission geometry reveals strongly dispersive features absent in the pristine substrate spectra. Density functional theory modeling helped identifying these as bulk sp direct transitions undergoing surface-umklapp processes. The present results establish the important role of final-state diffraction effects in photoemission experiments at organic-inorganic interfaces.

  9. Layer-resolved photoemission tomography: The p -sexiphenyl bilayer upon Cs doping

    NASA Astrophysics Data System (ADS)

    Reinisch, E. M.; Puschnig, P.; Ules, T.; Ramsey, M. G.; Koller, G.

    2016-04-01

    The buried interface between a molecular thin film and the metal substrate is generally not accessible to the photoemission experiment. With the example of a sexiphenyl (6 P ) bilayer on Cu we show that photoemission tomography can be used to study the electronic level alignment and geometric structure, where it was possible to assign the observed orbital emissions to the individual layers. We further study the Cs doping of this bilayer. Initial Cs exposure leads to a doping of only the first interface layer, leaving the second layer unaffected except for a large energy shift. This result shows that it is in principle possible to chemically modify just the interface, which is important to issues like tuning of the energy level alignment and charge transfer to the interface layer. Upon saturating the film with Cs, photoemission tomography shows a complete doping (6 p4 - ) of the bilayer, with the molecular geometry changing such that the spectra become dominated by σ -orbital emissions.

  10. Laser-assisted photoemission from surfaces

    SciTech Connect

    Saathoff, G.; Miaja-Avila, L.; Murnane, M. M.; Kapteyn, H. C.; Aeschlimann, M.

    2008-02-15

    We investigate the laser-assisted photoelectric effect from a solid surface. By illuminating a Pt(111) sample simultaneously with ultrashort 1.6 and 42 eV pulses, we observe sidebands in the extreme ultraviolet photoemission spectrum, and accurately extract their amplitudes over a wide range of laser intensities. Our results agree with a simple model, in which soft x-ray photoemission is accompanied by the interaction of the photoemitted electron with the laser field. This strong effect can definitively be distinguished from other laser surface interaction phenomena, such as hot electron excitation, above-threshold photoemission, and space-charge acceleration. Thus, laser-assisted photoemission from surfaces promises to extend pulse duration measurements to higher photon energies, as well as opening up measurements of femtosecond-to-attosecond electron dynamics in solid and surface-adsorbate systems.

  11. Coherent and incoherent processes in resonant photoemission

    SciTech Connect

    Magnuson, M.; Karis, O.; Weinelt, M.

    1997-04-01

    In this contribution the authors present the distinction between coherent and incoherent processes in resonant photoemission. As a first step they determine whether an autoionization process is photoemission-like or Auger-like. The discussion is based on measurements for a weakly bonded adsorption system, Ar/Pt(111). This type of system is well adapted to investigate these effects since it yields distinctly shifted spectral features depending on the nature of the process. After this, the question of resonance photoemission in metallic systems is addressed. This is done in connection with measurements at the 2p edges for Ni metal. Ni has been one of the prototype systems for resonant photoemission. The resonances have been discussed in connection with the strong correlation and d-band localization effects in this system. Based on the results some general comments about the appearance of resonant effects in metallic systems are made.

  12. Nondipole Photoemission from Chiral Enantiomers of Camphor

    NASA Astrophysics Data System (ADS)

    Bowen, K. P.; Stolte, W. C.; Young, J. A.; Demchenko, I. N.; Guillemin, R.; Hemmers, O.; Piancastelli, M. N.; Lindle, D. W.

    2010-03-01

    K-shell photoemission from the carbonyl carbon in the chiral molecule camphor has been studied in the region just above the core-shell ionization threshold. Differences between angular distributions of emitted photoelectrons from the two enantiomers are attributed to the influence of chirality combined with nondipole effects in the photoemission process, despite the fact the measurements were taken using linearly polarized x-rays. The results suggest the possibility of a new form of linear dichroism.

  13. Multi-Atom Resonant Photoemission

    NASA Astrophysics Data System (ADS)

    Kay, Alex; Yang, See-Hun; Garcia de Abajo, F. J.; Elke, Arenholz; Mun, Bongjin S.; Mannella, Norman; Zhao, Limin; Hussain, Zahid; van Hove, Michel; Fadley, Charles S.

    2001-03-01

    We will present experimental and theoretical results related to multi-atom resonant photoemission (MARPE) [1], in which the photoelectron intensity from a core level on one atom is influenced by a core-level absorption resonance on another. We will first point out that some prior experimental data [1-3] has been strongly influenced by non-linearities in the detector utilized [2], and that the effects seen in new corrected data are smaller, have a different form, and are strongly dependent on x-ray incidence angle. Data for the specific case of O 1s photoemission from MnO in resonance with Mn 2p excitations that are properly corrected for detector non-linearities data are found to be well described by an extension of resonant photoemission theory to the interatomic case [4], provided that interactions beyond the usual second-order Kramers-Heisenberg treatment are included. These higher-order interactions represent the equivalent of multiple resonant elastic scattering of the radiation. This microscopic theory is also found to simplify so as to yield results equivalent to a classical macroscopic x-ray optical approach, with the latter providing an alternative, although less detailed and general, physical picture of these effects. The relationship of these core-core resonant effects to similar effects seen in valence-core resonances [5-7], as well as in photoelectron angular distributions from a free molecule [8], and to x-ray fluorescence holography, will be discussed. Possible future applications of MARPE to studies of near-neighbor identities and bonding will also be suggested. [1] A. Kay, E. Arenholz, S. Mun, J. Garcia de Abajo, C.S. Fadley, R. Denecke, Z. Hussain, and M.A. Van Hove, Science 281, 679 (1998). [2] M.G. Garnier, N. Witkowski, R. Denecke, D. Nordlund, A. Nilsson, M. Nagasono, N. Mårtensson, and A. Föhlisch, Maxlab Annual Report for 1999 and private communication correcting this data for detector non-linearities. [3] A. Kikas, E. Nommiste, R. Ruus, A

  14. Calculations of Photoemission from Rutile

    NASA Astrophysics Data System (ADS)

    Hjalmarson, Harold; Schultz, Peter; Moore, Chris

    2015-03-01

    Photoemission is a well-known mechanism for release of electrons from a surface during electrical breakdown of a gas such as air. During air breakdown, UV photons, which are emitted from the highly excited gas molecules, are absorbed in the surfaces such as the cathode and the anode. These absorbed photons create energetic electrons, and a small portion of these electrons reach the surface. Those that overcome the potential energy barrier at the surface tend to be emitted. In this talk, the Boltzmann equation that describes these phenomena is formulated. A Monte Carlo probabilistic method is used to obtain the rate of electron emission as a function of photon energy. The role of bandstructure effects will be discussed. This bandstructure information is obtained by using a density-functional theory (DFT) method. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon

    NASA Astrophysics Data System (ADS)

    Dietrich, Paul M.; Glamsch, Stephan; Ehlert, Christopher; Lippitz, Andreas; Kulak, Nora; Unger, Wolfgang E. S.

    2016-02-01

    The analysis of chemical and elemental in-depth variations in ultra-thin organic layers with thicknesses below 5 nm is very challenging. Energy- and angle-resolved XPS (ER/AR-XPS) opens up the possibility for non-destructive chemical ultra-shallow depth profiling of the outermost surface layer of ultra-thin organic films due to its exceptional surface sensitivity. For common organic materials a reliable chemical in-depth analysis with a lower limit of the XPS information depth z95 of about 1 nm can be performed. As a proof-of-principle example with relevance for industrial applications the ER/AR-XPS analysis of different organic monolayers made of amino- or benzamidosilane molecules on silicon oxide surfaces is presented. It is demonstrated how to use the Si 2p core-level region to non-destructively depth-profile the organic (silane monolayer) - inorganic (SiO2/Si) interface and how to quantify Si species, ranging from elemental silicon over native silicon oxide to the silane itself. The main advantage of the applied ER/AR-XPS method is the improved specification of organic from inorganic silicon components in Si 2p core-level spectra with exceptional low uncertainties compared to conventional laboratory XPS.

  16. Photoemission from real iron surfaces and its relationship to light penetration of the overlayer

    NASA Astrophysics Data System (ADS)

    Momose, Yoshihiro; Suzuki, Daisuke; Sakurai, Takao; Nakayama, Keiji

    2014-09-01

    We report the photoemission from real iron surfaces at elevated temperatures, called thermally assisted photoemission (TAPE), and its relationship to the X-ray photoelectron spectroscopy (XPS) results. TAPE measurements were carried out using a Geiger counter under a gaseous atmosphere of He containing 1 % isobutane vapor at normal atmospheric pressure. A sample was initially heated to temperatures ranging from 25 to 353 °C under light irradiation at a certain wavelength of 200, 210, 220, and 230 nm, and then, wavelength was scanned from 300 to 170 nm at the final temperature. The values of a constant related to electron photoemission probability, αA, where A is identical with the Richardson constant, and photothreshold (photoelectric work function), ϕ, were obtained from a plot of the square root of the electron photoemission intensity against the photon energy; the αA values increased with temperature, and the ϕ values also increased with temperature. From the Arrhenius plot, the αA was found to have an activation energy ΔE αA = 0.096 eV. The activation energies of the surface oxygen component ratio Z = O2-/(OH + O2-) and the surface elemental composition ratio X = Fe/(O + N + C + Fe) obtained from the XPS data were also determined from their Arrhenius plots: ΔE Z = 0.113 eV and ΔE X = 0.039 eV, respectively. From a close resemblance between the latter activation energies and those of the ΔE αA and the ΔE a = 0.112-0.040 eV for the quantum yields (Momose et al. in Appl Phys A. doi: 10.1007/s00339-014-8589-7, 2014), it was found that the increase in the intensity of the TAPE with temperature was strongly associated with the increase in the values of Z and X with temperature. It was therefore concluded that the ability of the surface overlayer to pass the incident light became a rate-determining step to start the photoemission, which was decisively controlled by the temperature-dependent surface oxygen components and surface compositions. The intensity

  17. Photoemission from real iron surfaces and its relationship to light penetration of the overlayer

    NASA Astrophysics Data System (ADS)

    Momose, Yoshihiro; Suzuki, Daisuke; Sakurai, Takao; Nakayama, Keiji

    2015-02-01

    We report the photoemission from real iron surfaces at elevated temperatures, called thermally assisted photoemission (TAPE), and its relationship to the X-ray photoelectron spectroscopy (XPS) results. TAPE measurements were carried out using a Geiger counter under a gaseous atmosphere of He containing 1 % isobutane vapor at normal atmospheric pressure. A sample was initially heated to temperatures ranging from 25 to 353 °C under light irradiation at a certain wavelength of 200, 210, 220, and 230 nm, and then, wavelength was scanned from 300 to 170 nm at the final temperature. The values of a constant related to electron photoemission probability, αA, where A is identical with the Richardson constant, and photothreshold (photoelectric work function), ϕ, were obtained from a plot of the square root of the electron photoemission intensity against the photon energy; the αA values increased with temperature, and the ϕ values also increased with temperature. From the Arrhenius plot, the αA was found to have an activation energy Δ E αA = 0.096 eV. The activation energies of the surface oxygen component ratio Z = O2-/(OH + O2-) and the surface elemental composition ratio X = Fe/(O + N + C + Fe) obtained from the XPS data were also determined from their Arrhenius plots: Δ E Z = 0.113 eV and Δ E X = 0.039 eV, respectively. From a close resemblance between the latter activation energies and those of the Δ E αA and the Δ E a = 0.112-0.040 eV for the quantum yields (Momose et al. in Appl Phys A. doi: 10.1007/s00339-014-8589-7, 2014), it was found that the increase in the intensity of the TAPE with temperature was strongly associated with the increase in the values of Z and X with temperature. It was therefore concluded that the ability of the surface overlayer to pass the incident light became a rate-determining step to start the photoemission, which was decisively controlled by the temperature-dependent surface oxygen components and surface compositions. The

  18. Low-energy excitations in α- and γ-Ce observed by photoemission

    NASA Astrophysics Data System (ADS)

    Patthey, F.; Delley, B.; Schneider, W.-D.; Baer, Y.

    1985-09-01

    uv-photoemission spectra of the α- and γ-phases of Ce have been measured with an unprecedented resolution (20 meV). A detailed many-body calculation based on the Anderson impurity model and including the 4f1 spin-orbit splitting has been performed. It accounts perfectly for the fine structures observed in the spectra. Within the energy range corresponding to the ground-state lowering by the f-d hybridization, the f contribution to the spectra reveals the density of low-energy excitations culminating at EF.

  19. Surface analysis of zeolites: An XPS, variable kinetic energy XPS, and low energy ion scattering study

    NASA Astrophysics Data System (ADS)

    Bare, Simon R.; Knop-Gericke, Axel; Teschner, Detre; Hävacker, Michael; Blume, Raoul; Rocha, Tulio; Schlögl, Robert; Chan, Ally S. Y.; Blackwell, N.; Charochak, M. E.; ter Veen, Rik; Brongersma, Hidde H.

    2016-06-01

    The surface Si/Al ratio in a series of zeolite Y samples has been obtained using laboratory XPS, synchrotron (variable kinetic energy) XPS, and low energy ion scattering (LEIS) spectroscopy. The non-destructive depth profile obtained using variable kinetic energy XPS is compared to that from the destructive argon ion bombardment depth profile from the lab XPS instrument. All of the data indicate that the near surface region of both the ammonium form and steamed Y zeolites is strongly enriched in aluminum. It is shown that when the inelastic mean free path of the photoelectrons is taken into account the laboratory XPS of aluminosilicates zeolites does not provide a true measurement of the surface stoichiometry, while variable kinetic energy XPS results in a more surface sensitive measurement. A comprehensive Si/Al concentration profile as a function of depth is developed by combining the data from the three surface characterization techniques. The LEIS spectroscopy reveals that the topmost atomic layer is further enriched in Al compared to subsequent layers.

  20. The role of angle-resolved photoemission in understanding the high temperature superconductors.

    SciTech Connect

    Campuzano, J. C.; Kaminski, A.; Fretwell, H.; Mesot, J.; Sato, T.; Takahashi, T.; Norman, M.; Randeria, M.; Kadowaki, K.; Hinks, D.; Univ. of Illinois at Chicago; Tohuku Univ.; Tata Inst.; Tsukuba Univ.

    2001-01-01

    The two-dimensional nature of the high temperature superconductors allows the determination of the energy-momentum relationship of electronic states by angle-resolved photoemission (ARPES). Furthermore, the shape of the ARPES spectra provides information on the many body interactions so prevalent in these materials. In this paper we review some results obtained by our group on the question of the existence of quasiparticles and their interactions.

  1. 48-Channel electron detector for photoemission spectroscopy and microscopy

    NASA Astrophysics Data System (ADS)

    Gregoratti, L.; Barinov, A.; Benfatto, E.; Cautero, G.; Fava, C.; Lacovig, P.; Lonza, D.; Kiskinova, M.; Tommasini, R.; Mähl, S.; Heichler, W.

    2004-01-01

    We show that it is possible to use a multichannel electron detector in a zone plate based photoemission spectromicroscopy in a snap shot mode to reduce the total acquisition time for a given counting time by 50% relative to the standard scanning mode while preserving the feature of the spectra. We describe the result of tests performed at Elettra using its microbeam (150 nm) together with a 48-channel detector designed for the PHOIBOS 100 analyzer optimized for extremely small x-ray sources. We also give a short summary of the technical features of the detector and describe one possible calibration procedure for its use in the snap shot mode. We show initial results from using this device to perform chemical maps of surfaces at a resolution of 150 nm.

  2. Angle-resolved photoemission study of Ag(1 1 1)

    NASA Astrophysics Data System (ADS)

    Edamoto, K.; Miyazaki, E.; Shimokoshi, K.; Kato, H.

    1990-01-01

    The (1 1 1) face of Ag has been studied by angle-resolved photoemission spectroscopy utilizing synchrotron radiation as the excitation source (25 <= hv <= 50eV). The overlapping Ag 4d bands were deconvolved by the modified FIRO method. The peak positions thus determined are used to map the dispersion curves along the lang1 1 1rang (Γ-L) direction. The results show general agreement with calculated band structure, so far as the energy levels and symmetries are concerned. However, it is found that the density of state effect is dominant in the spectra obtained in the present photon energy region. The emission from the Ag 5s, p bands is observed to be broadened due to the indirect transition process.

  3. Einstein's Photoemission from Quantum Confined Superlattices.

    PubMed

    Debbarma, S; Ghatak, K P

    2016-01-01

    This paper is dedicated to the 83th Birthday of Late Professor B. R. Nag, D.Sc., formerly Head of the Departments of Radio Physics and Electronics and Electronic Science of the University of Calcutta, a firm believer of the concept of theoretical minimum of Landau and an internationally well known semiconductor physicist, to whom the second author remains ever grateful as a student and research worker from 1974-2004. In this paper, an attempt is made to study, the Einstein's photoemission (EP) from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum well heavily doped superlattices (QWHDSLs) with graded interfaces in the presence of quantizing magnetic field on the basis of newly formulated electron dispersion relations within the frame work of k · p formalism. The EP from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum wells of heavily doped effective mass superlattices respectively has been presented under magnetic quantization. Besides the said emissions, from the quantum dots of the aforementioned heavily doped SLs have further investigated for the purpose of comparison and complete investigation in the context of EP from quantum confined superlattices. Using appropriate SLs, it appears that the EP increases with increasing surface electron concentration and decreasing film thickness in spiky manners, which are the characteristic features of such quantized hetero structures. Under magnetic quantization, the EP oscillates with inverse quantizing magnetic field due to Shuvnikov-de Haas effect. The EP increases with increasing photo energy in a step-like manner and the numerical values of EP with all the physical variables are totally band structure dependent for all the cases. The most striking features are that the presence of poles in the dispersion relation of the materials in the absence of band tails create the complex energy spectra in the corresponding HD constituent materials of such quantum confined superlattices and effective electron

  4. PHOTOEMISSION AS A PROBE OF THE COLLECTIVE EXCITATIONS IN CONDENSED MATTER SYSTEMS.

    SciTech Connect

    JOHNSON, P.D.; VALLA, T.

    2006-08-01

    New developments in instrumentation have recently allowed photoemission measurements to be performed with very high energy and momentum resolution.[1] This has allowed detailed studies of the self-energy corrections to the lifetime and mass renormalization of excitations in the vicinity of the Fermi level. These developments come at an opportune time. Indeed the discovery of high temperature superconductivity in the cuprates and related systems is presenting a range of challenges for condensed matter physics.[2] Does the mechanism of high T{sub c} superconductivity represent new physics? Do we need to go beyond Landau's concept of the Fermi liquid?[3] What, if any, is the evidence for the presence or absence of quasiparticles in the excitation spectra of these complex oxides? The energy resolution of the new instruments is comparable to or better than the energy or temperature scale of superconductivity and the energy of many collective excitations. As such, photoemission has again become recognized as an important probe of condensed matter. Studies of the high T{sub c} superconductors and related materials are aided by the observation that they are two dimensional. To understand this, we note that the photoemission process results in both an excited photoelectron and a photohole in the final state. Thus the experimentally measured photoemission peak is broadened to a width reflecting contributions from both the finite lifetime of the photohole and the momentum broadening of the outgoing photoelectron.

  5. A New Spin on Photoemission Spectroscopy

    SciTech Connect

    Jozwiak, Chris

    2008-12-01

    The electronic spin degree of freedom is of general fundamental importance to all matter. Understanding its complex roles and behavior in the solid state, particularly in highly correlated and magnetic materials, has grown increasingly desirable as technology demands advanced devices and materials based on ever stricter comprehension and control of the electron spin. However, direct and efficient spin dependent probes of electronic structure are currently lacking. Angle Resolved Photoemission Spectroscopy (ARPES) has become one of the most successful experimental tools for elucidating solid state electronic structures, bolstered by-continual breakthroughs in efficient instrumentation. In contrast, spin-resolved photoemission spectroscopy has lagged behind due to a lack of similar instrumental advances. The power of photoemission spectroscopy and the pertinence of electronic spin in the current research climate combine to make breakthroughs in Spin and Angle Resolved Photoemission Spectroscopy (SARPES) a high priority . This thesis details the development of a unique instrument for efficient SARPES and represents a radical departure from conventional methods. A custom designed spin polarimeter based on low energy exchange scattering is developed, with projected efficiency gains of two orders of magnitude over current state-of-the-art polarimeters. For energy analysis, the popular hemispherical analyzer is eschewed for a custom Time-of-Flight (TOF) analyzer offering an additional order of magnitude gain in efficiency. The combined instrument signifies the breakthrough needed to perform the high resolution SARPES experiments necessary for untangling the complex spin-dependent electronic structures central to today's condensed matter physics.

  6. XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    McLeod, Kate; Kumar, Sunil; Smart, Roger St. C.; Dutta, Naba; Voelcker, Nicolas H.; Anderson, Gail I.; Sekel, Ron

    2006-12-01

    This paper reports the use of X-ray photoelectron spectroscopy (XPS) to investigate bisphosphonate (BP) adsorption onto plasma sprayed hydroxyapatite (HA) coatings commonly used for orthopaedic implants. BPs exhibit high binding affinity for the calcium present in HA and hence can be adsorbed onto HA-coated implants to exploit their beneficial properties for improved bone growth at the implant interface. A rigorous XPS analysis of pamidronate, a commonly used nitrogenous BP, adsorbed onto plasma sprayed HA-coated cobalt-chromium substrates has been carried out, aimed at: (a) confirming the adsorption of this BP onto HA; (b) studying the BP diffusion profile in the HA coating by employing the technique of XPS depth profiling; (c) confirming the bioactivity of the adsorbed BP. XPS spectra of plasma sprayed HA-coated discs exposed to a 10 mM aqueous BP solution (pamidronate) for periods of 1, 2 and 24 h showed nitrogen and phosphorous photoelectron signals corresponding to the BP, confirming its adsorption onto the HA substrate. XPS depth profiling of the 2 h BP-exposed HA discs showed penetration of the BP into the HA matrix to depths of at least 260 nm. The bioactivity of the adsorbed BP was confirmed by the observed inhibition of osteoclast (bone resorbing) cell activity. In comparison to the HA sample, the HA sample with adsorbed BP exhibited a 25-fold decrease in primary osteoclast cells.

  7. XPS and SAM studies of the surface chemistry of lunar impact glasses including 12054

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.; Cirlin, E. H.

    1979-01-01

    We report and discuss quantitative X-ray photoemission (XPS) analyses of mm size areas and qualitative scanning Auger microprobe (SAM) analyses of micron size areas on the surfaces of impact glass coatings found on fragments in the 14161 coarse fines and on the top surface, and a reentrant crack surface of rock 12054. The data suggest that some segregation occurs during impact glass formation leading to surface enrichments in Si and depletions in Mg, Al, Ca, and Ti. The magnitude of the effect appears fairly small, although the complexity of the surfaces severely complicates the data analysis. Because of the complexity of the surfaces, both XPS and SAM data were essential. A search for direct evidence of either solar wind sputter erosion or vapor deposition on the exposed top surface of 12054 provided interesting results which we cannot yet fully interpret. Both this surface and the surface from the re-entrant crack showed enrichments of more than a factor of two in Fe with respect to the bulk.

  8. Gauge invariance in the theoretical description of time-resolved angle-resolved pump/probe photoemission spectroscopy

    SciTech Connect

    Freericks, J. K.; Krishnamurthy, H. R.; Sentef, M. A.; Devereaux, T. P.

    2015-10-01

    Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoexcites electrons due to nonequilibrium effects.

  9. A single-source precursor approach to solution processed indium arsenide thin films† †Electronic supplementary information (ESI) available: Table listing selected bond lengths and angles for InAs precursor complex. Cross-sectional SEM of InAs thin film. XPS depth profile spectra of InAs thin film. Valence band XPS of InAs thin film and standard. CCDC 1477895. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6tc02293f Click here for additional data file. Click here for additional data file.

    PubMed Central

    Marchand, Peter; Sathasivam, Sanjayan; Williamson, Benjamin A. D.; Pugh, David; Bawaked, Salem M.; Basahel, Sulaiman N.; Obaid, Abdullah Y.; Scanlon, David O.; Parkin, Ivan P.

    2016-01-01

    This paper reports the synthesis of the novel single-source precursor, [{(MeInAstBu)3}2(Me2InAs(tBu)H)2] and the subsequent first report of aerosol-assisted chemical vapour deposition of InAs thin films. Owing to the use of the single-source precursor, highly crystalline and stoichiometric films were grown at a relatively low deposition temperature of 450 °C. Core level XPS depth profiling studies showed some partial oxidation of the film surface, however this was self-limiting and disappeared on etch profiles. Valence band XPS analysis matched well with the simulated density of state spectrum. Hall effect measurements performed on the films showed that the films were n-type with promising resistivity (3.6 × 10–3 Ω cm) and carrier mobility (410 cm2 V–1 s–1) values despite growth on amorphous glass substrates. PMID:27774150

  10. Photoemission and the electronic properties of heavy fermions -- limitations of the Kondo model

    SciTech Connect

    Joyce, J.J.; Arko, A.J.; Andrews, A.B.

    1993-09-01

    The electronic properties of Yb-based heavy fermions have been investigated by means of high resolution synchrotron radiation photoemission and compared with predictions of the Kondo model. The Yb heavy fermion photoemission spectra show massive disagreement with the Kondo model predictions (as calculated within the Gunnarsson-Schonhammer computational method). Moreover, the Yb heavy fermion photoemission spectra give very strong indications of core-like characteristics and compare favorable to purely divalent Yb metal and core-like Lu 4f levels. The heavy fermions YbCu{sub 2}Si{sub 2}, YbAgCu{sub 4} and YbAl{sub 3} were measured and shown to have lineshapes much broader and deeper in binding energy than predicted by the Kondo model. The lineshape of the bulk component of the 4f emission for these three heavy fermion materials was compared with that from Yb metal and the Lu 4f levels in LuAl{sub 3}, the heavy fermion materials show no substantive spectroscopic differences from simple 4f levels observed in Yb metal and LuAl{sub 3}. Also, the variation with temperature of the 4f fineshape was measured for Yb metal and clearly demonstrates that phonon broadening plays a major role in 4f level lineshape analysis and must be accounted for before considerations of correlated electron resonance effects are presumed to be at work.

  11. Raising Photoemission Efficiency with Surface Acoustic Waves

    SciTech Connect

    A. Afanasev, F. Hassani, C.E. Korman, V.G. Dudnikov, R.P. Johnson, M. Poelker, K.E.L. Surles-Law

    2012-07-01

    We are developing a novel technique that may help increase the efficiency and reduce costs of photoelectron sources used at electron accelerators. The technique is based on the use of Surface Acoustic Waves (SAW) in piezoelectric materials, such as GaAs, that are commonly used as photocathodes. Piezoelectric fields produced by the traveling SAW spatially separate electrons and holes, reducing their probability of recombination, thereby enhancing the photoemission quantum efficiency of the photocathode. Additional advantages could be increased polarization provided by the enhanced mobility of charge carriers that can be controlled by the SAW and the ionization of optically-generated excitons resulting in the creation of additional electron-hole pairs. It is expected that these novel features will reduce the cost of accelerator operation. A theoretical model for photoemission in the presence of SAW has been developed, and experimental tests of the technique are underway.

  12. Valence electron photoemission spectrum of semiconductors: ab initio description of multiple satellites.

    PubMed

    Guzzo, Matteo; Lani, Giovanna; Sottile, Francesco; Romaniello, Pina; Gatti, Matteo; Kas, Joshua J; Rehr, John J; Silly, Mathieu G; Sirotti, Fausto; Reining, Lucia

    2011-10-14

    The experimental valence band photoemission spectrum of semiconductors exhibits multiple satellites that cannot be described by the GW approximation for the self-energy in the framework of many-body perturbation theory. Taking silicon as a prototypical example, we compare experimental high energy photoemission spectra with GW calculations and analyze the origin of the GW failure. We then propose an approximation to the functional differential equation that determines the exact one-body Green's function, whose solution has an exponential form. This yields a calculated spectrum, including cross sections, secondary electrons, and an estimate for extrinsic and interference effects, in excellent agreement with experiment. Our result can be recast as a dynamical vertex correction beyond GW, giving hints for further developments. PMID:22107408

  13. Dopamine adsorption on anatase TiO2(101): a photoemission and NEXAFS spectroscopy study.

    PubMed

    Syres, K; Thomas, A; Bondino, F; Malvestuto, M; Grätzel, M

    2010-09-21

    The adsorption of dopamine onto an anatase TiO(2)(101) single crystal has been studied using photoemission and NEXAFS techniques. Photoemission results suggest that the dopamine molecule adsorbs on the surface in a bidentate geometry, resulting in the removal of band gap states in the TiO(2) valence band. Using the searchlight effect, carbon K-edge NEXAFS spectra indicate that the phenyl rings in the dopamine molecules are orientated normal to the surface. A combination of experimental and computational results indicates the appearance of new unoccupied states arising following adsorption. The possible role of these states in the charge-transfer mechanism of the dopamine-TiO(2) system is discussed.

  14. Dopamine adsorption on anatase TiO2(101): a photoemission and NEXAFS spectroscopy study.

    PubMed

    Syres, K; Thomas, A; Bondino, F; Malvestuto, M; Grätzel, M

    2010-09-21

    The adsorption of dopamine onto an anatase TiO(2)(101) single crystal has been studied using photoemission and NEXAFS techniques. Photoemission results suggest that the dopamine molecule adsorbs on the surface in a bidentate geometry, resulting in the removal of band gap states in the TiO(2) valence band. Using the searchlight effect, carbon K-edge NEXAFS spectra indicate that the phenyl rings in the dopamine molecules are orientated normal to the surface. A combination of experimental and computational results indicates the appearance of new unoccupied states arising following adsorption. The possible role of these states in the charge-transfer mechanism of the dopamine-TiO(2) system is discussed. PMID:20735026

  15. Conduction band offset at GeO{sub 2}/Ge interface determined by internal photoemission and charge-corrected x-ray photoelectron spectroscopies

    SciTech Connect

    Zhang, W. F.; Nishimula, T.; Nagashio, K.; Kita, K.; Toriumi, A.

    2013-03-11

    We report a consistent conduction band offset (CBO) at a GeO{sub 2}/Ge interface determined by internal photoemission spectroscopy (IPE) and charge-corrected X-ray photoelectron spectroscopy (XPS). IPE results showed that the CBO value was larger than 1.5 eV irrespective of metal electrode and substrate type variance, while an accurate determination of valence band offset (VBO) by XPS requires a careful correction of differential charging phenomena. The VBO value was determined to be 3.60 {+-} 0.2 eV by XPS after charge correction, thus yielding a CBO (1.60 {+-} 0.2 eV) in excellent agreement with the IPE results. Such a large CBO (>1.5 eV) confirmed here is promising in terms of using GeO{sub 2} as a potential passivation layer for future Ge-based scaled CMOS devices.

  16. Evidencing the need for high spatial resolution in angle-resolved photoemission experiments

    NASA Astrophysics Data System (ADS)

    Joucken, Frédéric; Reckinger, Nicolas; Lorcy, Stéphane; Avila, José; Chen, Chaoyu; Lagoute, Jérôme; Colomer, Jean-François; Ghijsen, Jacques; Asensio, Maria Carmen; Sporken, Robert

    2016-06-01

    Angle-resolved photoemission spectroscopy (ARPES) is the most direct tool to measure the electronic structure of materials. In particular, fine features of the spectra can be analyzed for evaluating the electron self-energy. Owing to a setup allowing ARPES investigation with submicron resolution and state-of-the-art energy and momentum resolution, we show here first that ARPES spectra of pristine and virtually undoped monolayer graphene acquired on a small spot do not display manifestations of self-energy. We next demonstrate that, although the region of the sample investigated is a unique graphene domain, it displays faint spatial inhomogeneity, both in its crystallographic orientation and its thickness, which is undetectable with conventional ARPES but renders the spectra improper for self-energy extraction. These results indicate that care should be taken when analyzing ARPES spectra obtained with poor spatial resolution.

  17. Angle-dependent study of a direct optical transition in the sp bands of Ag(111) by one- and two-photon photoemission

    NASA Astrophysics Data System (ADS)

    Winkelmann, Aimo; Sametoglu, Vahit; Zhao, Jin; Kubo, Atsushi; Petek, Hrvoje

    2007-11-01

    We have measured angle-dependent photoemission spectra for one-photon and two-photon excitation from Ag(111). The observed dispersion of the sp -band transition of Ag(111) can be reproduced using a nearly-free-electron model for the initial and final states involved. The observed dispersion agrees with the known band structure. We illustrate how the strong refraction of low-energy electrons becomes a limiting factor to obtain quantitative band-structure information. Conversely, low-energy electrons of a well-defined direct optical interband transition can provide a sensitive probe of the inner potential. We observe asymmetric two-photon photoelectron intensity distributions with respect to detection along the surface normal. These intensity distributions can be well described by a phenomenological model which employs the Fresnel equations to calculate the electric field components of the incident radiation inside the sample. Very good agreement is found using tabulated optical constants and a momentum matrix element, which is oriented along the surface normal. In contrast, the observed intensity distribution for one-photon photoemission from Ag(111) does not fit the simple Fresnel model. We interpret this as the influence of surface photoemission. By comparison to Cu(001), we show that the expected intensity distributions of the Fresnel model for one-photon photoemission and two-photon photoemission are valid for an orientation of the momentum matrix element along the surface normal if the influence of additional effects like surface photoemission can be neglected.

  18. Near-field focused photoemission from polystyrene microspheres studied with photoemission electron microscopy

    SciTech Connect

    Peppernick, Samuel J.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.

    2012-07-07

    We use photoemission electron microscopy(PEEM) to image 3 μm diameter polystyrene spheres supported on a metalthin film illuminated by 400 nm (~3.1 eV) and 800 nm (~1.5 eV) femtosecond (fs) laser pulses. Intense photoemission is generated by microspheres even though polystyrene is an insulator and its ionization threshold is well above the photon energies employed. We observe intense photoemission from the far side (the side opposite the incident light) of the illuminated microsphere that is attributed to light focusing within the microsphere. For the case of p-polarized, 800 nm fs laser pulses, we observe photoemission exclusively from the far side of the microsphere and additionally resolve sub-50 nm hot spots in the supporting Pt/Pd thin film that are located only within the focal region of the microsphere. We compare the PEEM images with finite difference time domain(FDTD) electrodynamic simulations to model our experimental results. Finally, the FDTD simulations predict light focusing in the microsphere and subsequent interaction with the supporting metal surface that is consistent with the experimental observations.

  19. HIGH RESOLUTION PHOTOEMISSION STUDIES OF COMPLEX MATERIALS.

    SciTech Connect

    JOHNSON,P.D.; VALLA,T.; FEDOROV,A.; REISFELD,G.; HULBERT,S.L.

    1999-10-13

    Recent instrumentation developments in photoemission are providing new insights into the physics of complex materials. With increased energy and momentum resolution, it has become possible to examine in detail different contributions to the self-energy or inverse lifetime of the photohole created in the photoexcitation process. Employing momentum distribution and energy distribution curves, a detailed study of the optimally doped cuprate, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}, shows that the material behaves like a non-Fermi liquid with no evidence for the quasi-particles characteristic of a Fermi liquid.

  20. Photoemission Spectroscopy of Delta- Plutonium: Experimental Review

    NASA Astrophysics Data System (ADS)

    Tobin, J. G.

    2002-03-01

    The electronic structure of Plutonium, particularly delta- Plutonium, remains ill defined and without direct experimental verification. Recently, we have embarked upon a program of study of alpha- and delta- Plutonium, using synchrotron radiation from the Advanced Light Source in Berkeley, CA, USA [1]. This work is set within the context of Plutonium Aging [2] and the complexities of Plutonium Science [3]. The resonant photoemission of delta-plutonium is in partial agreement with an atomic, localized model of resonant photoemission, which would be consistent with a correlated electronic structure. The results of our synchrotron- based studies will be compared with those of recent laboratory- based works [4,5,6]. The talk will conclude with a brief discussion of our plans for the future, such as the performance of spin-resolving and dichroic photoemission measurements of Plutonium [7] and the development of single crystal ultrathin films of Plutonium. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 1. J. Terry, R.K. Schulze, J.D. Farr, T. Zocco, K. Heinzelman, E. Rotenberg, D.K. Shuh, G. van der Laan, D.A. Arena, and J.G. Tobin, “5f Resonant Photoemission from Plutonium”, UCRL-JC-140782, Surf. Sci. Lett., accepted October 2001. 2. B.D. Wirth, A.J. Schwartz, M.J. Fluss, M.J. Caturla, M.A. Wall, and W.G. Wolfer, MRS Bulletin 26, 679 (2001). 3. S.S. Hecker, MRS Bulletin 26, 667 (2001). 4. T. Gouder, L. Havela, F. Wastin, and J. Rebizant, Europhys. Lett. 55, 705 (2001); MRS Bulletin 26, 684 (2001); Phys. Rev. Lett. 84, 3378 (2000). 5. A.J. Arko, J.J. Joyce, L. Morales, J. Wills, J. Lashley, F. Wastin, and J. Rebizant, Phys. Rev. B 62, 1773 (2000). 6. L.E. Cox, O. Eriksson, and B.R. Cooper, Phys. Rev. B 46, 13571 (1992). 7. J. Tobin, D.A. Arena, B. Chung, P. Roussel, J. Terry, R.K. Schulze, J.D. Farr, T. Zocco, K. Heinzelman, E

  1. Angle resolved photoemission from organic semiconductors: orbital imaging beyond the molecular orbital interpretation

    NASA Astrophysics Data System (ADS)

    Dauth, M.; Wiessner, M.; Feyer, V.; Schöll, A.; Puschnig, P.; Reinert, F.; Kümmel, S.

    2014-10-01

    Fascinating pictures that can be interpreted as showing molecular orbitals have been obtained with various imaging techniques. Among these, angle resolved photoemission spectroscopy (ARPES) has emerged as a particularly powerful method. Orbital images have been used to underline the physical credibility of the molecular orbital concept. However, from the theory of the photoemission process it is evident that imaging experiments do not show molecular orbitals, but Dyson orbitals. The latter are not eigenstates of a single-particle Hamiltonian and thus do not fit into the usual simple interpretation of electronic structure in terms of molecular orbitals. In a combined theoretical and experimental study we thus check whether a Dyson-orbital and a molecular-orbital based interpretation of ARPES lead to differences that are relevant on the experimentally observable scale. We discuss a scheme that allows for approximately calculating Dyson orbitals with moderate computational effort. Electronic relaxation is taken into account explicitly. The comparison reveals that while molecular orbitals are frequently good approximations to Dyson orbitals, a detailed understanding of photoemission intensities may require one to go beyond the molecular orbital picture. In particular we clearly observe signatures of the Dyson-orbital character for an adsorbed semiconductor molecule in ARPES spectra when these are recorded over a larger momentum range than in earlier experiments.

  2. In Situ SR-XPS Observation of Ni-Assisted Low-Temperature Formation of Epitaxial Graphene on 3C-SiC/Si

    NASA Astrophysics Data System (ADS)

    Hasegawa, Mika; Sugawara, Kenta; Suto, Ryota; Sambonsuge, Shota; Teraoka, Yuden; Yoshigoe, Akitaka; Filimonov, Sergey; Fukidome, Hirokazu; Suemitsu, Maki

    2015-10-01

    Low-temperature (~1073 K) formation of graphene was performed on Si substrates by using an ultrathin (2 nm) Ni layer deposited on a 3C-SiC thin film heteroepitaxially grown on a Si substrate. Angle-resolved, synchrotron-radiation X-ray photoemission spectroscopy (SR-XPS) results show that the stacking order is, from the surface to the bulk, Ni carbides(Ni3C/NiCx)/graphene/Ni/Ni silicides (Ni2Si/NiSi)/3C-SiC/Si. In situ SR-XPS during the graphitization annealing clarified that graphene is formed during the cooling stage. We conclude that Ni silicide and Ni carbide formation play an essential role in the formation of graphene.

  3. XPS and STEM Study of the Interface Formation between Ultra-Thin Ru and Ir OER Catalyst Layers and Perylene Red Support Whiskers

    SciTech Connect

    Atanasoska, Liliana; Cullen, David A; Hester, Amy E; Atanasoski, Radoslav

    2013-01-01

    The interface formation between perylene red (PR) and ruthenium or iridium OER catalysts has been studied systematically by XPS and STEM. The OER catalyst over-layers with thicknesses ranging from ~0.1 to ~50 nm were vapor deposited onto PR ex-situ. As seen by STEM, Ru and Ir form into nanoparticles, which agglomerate with increased loading. XPS data show a strong interaction between Ru and PR. Ir also interacts with PR although not to the extent seen for Ru. At low coverages, the entire Ru deposit is in the reacted state while a small portion of the deposited Ir remains metallic. Ru and Ir bonding occur at the PR carbonyl sites as evidenced by the attenuation of carbonyl photoemission and the emergence of new peak assigned to C-O single bond. The curve fitting analysis and the derived stoichiometry indicates the formation of metallo-organic bonds. The co-existence of oxide bonds is also apparent.

  4. Resonant Photoemission in f Electron Systems: Pu& Gd

    SciTech Connect

    Tobin, J G; Chung, B W; Schulze, R K; Terry, J; Farr, J D; Shuh, D K; Heinzelman, K; Rotenberg, E; Waddill, G D; van der Laan, G

    2003-03-07

    Resonant photoemission in the Pu5f and Pu6p states is compared to that in the Gd4f and Gd5p states. Spectral simulations, based upon and atomic model with angular momentum coupling, are compared to the Gd and Pu results. Additional spectroscopic measurements of Pu, including core level photoemission and x-ray absorption are also presented.

  5. Internal Photoemission and X-Ray Photoelectron Spectroscopic Studies of Sulfur-Passivated GaAs

    NASA Astrophysics Data System (ADS)

    Sato, Kenji; Ikoma, Hideaki

    1993-02-01

    Internal photoemission and X-ray photoelectron spectroscopic (XPS) measurements were performed to investigate the effect of sulfur passivation on the GaAs surface and the degradation of the GaAs surface exposed to air ambient after the passivation. The reverse bias dependence of the Schottky barrier height was very small in the as-sulfur-treated sample and was mainly explained by the image force lowering effect. However, it increased as this sample was exposed to air, indicating an increase in the interface state density. The XPS studies showed that both the Ga and As oxides were hardly observed in the sulfur-passivated samples. This indicates that sulfur passivation strongly suppresses oxidation of GaAs. However, a small amount of elemental arsenic was observed with a trace of the As suboxides (such as AsO) after exposure to air and it increased as the exposure time was increased. These results were probably correlated with the increase in the bias dependence of the Schottky barrier height in samples exposed to air after the passivation. Thermal oxidation of GaAs was found to be retarded by sulfur passivation until oxidation time was about 10 min at 300°C. A possible model of suppression of oxidation by sulfur passivation was also discussed.

  6. X-ray photoemission study of manganese thin films deposited on a layered semiconductor

    NASA Astrophysics Data System (ADS)

    Mirabella, F.; Parkinson, B. A.; Ghijsen, J.

    2004-02-01

    Germanium sulphide (GeS) and tin diselenide (SnSe2) present anisotropic properties due to their layered crystal structures. These crystals are composed of atomic layers interacting with each other by van der Waals forces only. Recently these materials have been used to prepare a new diluted magnetic semiconductor (DMS) by substituting some Ge or Sn atoms by manganese in the crystal lattice, forming Ge1-xMnxS and Sn1-xMnxSe2. To compare Mn behaviour within the layered crystals, Mn/GeS and Mn/SnSe2 thin films have been grown and investigated in situ by X-ray induced photoemission. Here is reported the XPS analysis of in situ grown Mn/SnSe2 for coverage ranging from sub-monolayer to thin films. The properties of these films were investigated from the structural and reactivity point of view. XPS measurements suggest that an Mn-Sn alloy is formed at the interface and that Mn atoms first deposit as an atomic netting pattern dictated by the typical structure of the SnSe2 (001) surface.

  7. A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures.

    PubMed

    Ganesan, K; Ghosh, Subrata; Gopala Krishna, Nanda; Ilango, S; Kamruddin, M; Tyagi, A K

    2016-08-10

    Defects in planar and vertically oriented nanographitic structures (NGSs) synthesized by plasma enhanced chemical vapor deposition (PECVD) have been investigated using Raman and X-ray photoelectron spectroscopy. While Raman spectra reveal the dominance of vacancy and boundary type defects respectively in vertical and planar NGSs, XPS provides additional information on vacancy related defect peaks in the C 1s spectrum, which originate from non-conjugated carbon atoms in the hexagonal lattice. Although an excellent correlation prevails between these two techniques, our results show that estimation of surface defects by XPS is more accurate than Raman analysis. Nuances of these techniques are discussed in the context of assessing defects in nanographitic structures. PMID:27445041

  8. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    SciTech Connect

    Kozyukhin, S.; Golovchak, R.; Kovalskiy, A.; Shpotyuk, O.; Jain, H.

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  9. RECENT XPS STUDIES OF THE EFFECT OF PROCESSING ON NB SRF SURFACES

    SciTech Connect

    Hui Tian; Binping Xiao; Michael Kelley; Charles Reece; A. Demasi; L. Pipe; Kevin Smith

    2008-02-12

    XPS studies have consistently shown that Nb surfaces for SRF chiefly comprise of a few nm of Nb2O5 on top of Nb metal, with minor amounts of Nb sub-oxides. Nb samples after BCP/EP treatment with post-baking at the various conditions have been examined by using synchrotron based XPS. Despite the confounding influence of surface roughness, certain outcomes are clear. Lower-valence Nb species are always and only associated with the metal/oxide interface, but evidence for an explicit layer structure or discrete phases is lacking. Post-baking without air exposure shows decreased oxide layer thickness and increased contribution from lower valence species, but spectra obtained after subsequent air exposure cannot be distinguished from those obtained prior to baking, though the SRF performance improvement remains.

  10. Wigner photoemission time delay from endohedral anions

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Varma, Hari R.; Deshmukh, Pranawa C.; Manson, Steven T.; Dolmatov, Valeriy K.; Kheifets, Anatoli

    2016-10-01

    Characteristic features of Wigner photoemission time delay from endohedral anions A@C60q along with their dependence on the anion charge q are unraveled. Specifically, significant enhancement of the time delay in the innermost dipole photoionization channels near threshold is found, owing to the presence of the Coulomb confined resonances (CRs). Moreover, it is shown that interchannel coupling of the inner-shell Coulomb CRs with outer-shell photoionization channels results in resonantly enhanced time delay in the release of the outer-shell photoelectron well above, several hundreds eV, the outer-shell thresholds. It is also demonstrated that, and explained why, photoionization cross sections of the innermost subshells as well as outer subshells (near the inner-subshell threshold) depends only very weakly on the anion charge q , but the dependence of the corresponding time delays on q can be significant. Furthermore, Coulomb CRs are found to emerge in the innermost quadrupole photoionization channels as well, thereby causing considerable time delay in the quadrupole photoemission. These findings are illustrated in calculations of the photoionization of inner and outer subshells of the endohedral anions Ne@C60-1 and Ne@C60-5 that were chosen as case studies.

  11. Photoemission study of the Cs$z.urule;GaP(110) interface at low temperatures

    NASA Astrophysics Data System (ADS)

    Chassé, Th.; Paggel, J.; Neuhold, G.; Theis, W.; Horn, K.

    1994-04-01

    The formation of the Cs⧸GaP(110) interface at low temperature has been studied using core and valence level photoemission. It is found that a nonmetallic first adsorption layer is followed by a transition to a metallic film. Valence level spectra show that Cs induces a new peak above the valence band maximum, which from the appearance of the core level spectra is assigned to adsorbate-substrate charge transfer. At higher coverages an intermediate species is identified on the basis of Cs 5p core level spectra. The metallic layer of Cs is characterised by metallic surface and bulk core level emission, the occurrence of plasmon satellites, and the emergence of a metallic Fermi edge. The relative separation of the different Cs core level line contributions are analysed through a Born-Haber cycle and qualitative arguments based on final state screening.

  12. Synchrotron-Radiation Photoemission Study of Electronic Structures of a Cs-Doped Rubrene Surface

    NASA Astrophysics Data System (ADS)

    Cheng, Chiu-Ping; Lu, Meng-Han; Chu, Yu-Ya; Pi, Tun-Wen

    Using synchrotron-radiation photoemission spectroscopy, we have studied the electronic structure of a cesium-doped rubrene thin film. The addition of cesium atoms causes the movement of the valence-band spectra and the change in line shapes at different concentration that can be separated into four different stages. In the first stage, the cesium atoms continuously diffuse into the substrate, and the Fermi level moves in the energy gap as a result of an electron transferred from the cesium to the rubrene. The second stage, in which the shifts of the spectra are interrupted, is characterized by the introduction of two in-gap states. When increasing doping of cesium into the third stage, the spectra move again; whereas, the line shapes maintain at the stoichiometric ratio of one. In the fourth stage, new in-gap states appear, which are the highest occupied molecular orbital (HOMO) and HOMO+1 states of (rubrene)2- anion.

  13. Temperature-dependent photoemission features for overdoped Bi2Sr2CaCu2O8 + x cuprates

    NASA Astrophysics Data System (ADS)

    Rast, S.; Frazer, B. H.; Onellion, M.; Schmauder, T.; Abrecht, M.; Touzelet, O.; Berger, H.; Margaritondo, G.; Pavuna, D.

    2000-07-01

    We report temperature-dependent angle-resolved photoemission spectra for overdoped Bi2Sr2CaCu2O8 + x single-crystal samples. The data indicate that there is a special temperature (T+) where the spectral function changes intensity, and where the energy difference between the peak and dip features changes. The data also demonstrate that immediately above the superconducting transition temperature, the system exhibits a non-Lorentzian lineshape. We discuss implications of the data.

  14. Inner-shell photoemission from atoms and molecules using synchrotron radiation

    SciTech Connect

    Lindle, D.W.

    1983-12-01

    Photoelectron spectroscopy, in conjunction with synchrotron radiation, has been used to study inner-shell photoemission from atoms and molecules. The time structure of the synchrotron radiation permits the measurements of time-of-flight (TOF) spectra of Auger and photoelectrons, thereby increasing the electron collection efficiency. The double-angle TOF method yielded angle-resolved photoelectron intensities, which were used to determine photoionization cross sections and photoelectron angular distributions in several cases. Comparison to theoretical calculations has been made where possible to help explain observed phenomena in terms of the electronic structure and photoionization dynamics of the systems studied. 154 references, 23 figures, 7 tables.

  15. Optical study of HgCdTe infrared photodetectors using internal photoemission spectroscopy

    SciTech Connect

    Lao, Yan-Feng; Unil Perera, A. G.; Wijewarnasuriya, Priyalal S.

    2014-03-31

    We report a study of internal photoemission spectroscopy (IPE) applied to a n-type Hg{sub 1−x}Cd{sub x}Te/Hg{sub 1−y}Cd{sub y}Te heterojunction. An exponential line-shape of the absorption tail in HgCdTe is identified by IPE fittings of the near-threshold quantum yield spectra. The reduction of quantum yield (at higher photon energy) below the fitting value is explained as a result of carrier-phonon scatterings. In addition, the obtained bias independence of the IPE threshold indicates a negligible electron barrier at the heterojunction interface.

  16. Electron attachment rate constant measurement by photoemission electron attachment ion mobility spectrometry (PE-EA-IMS)

    NASA Astrophysics Data System (ADS)

    Su, Desheng; Niu, Wenqi; Liu, Sheng; Shen, Chengyin; Huang, Chaoqun; Wang, Hongmei; Jiang, Haihe; Chu, Yannan

    2012-12-01

    Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS), with a source of photoelectrons induced by vacuum ultraviolet radiation on a metal surface, has been developed to study electron attachment reaction at atmospheric pressure using nitrogen as the buffer gas. Based on the negative ion mobility spectra, the rate constants for electron attachment to tetrachloromethane and chloroform were measured at ambient temperature as a function of the average electron energy in the range from 0.29 to 0.96 eV. The experimental results are in good agreement with the data reported in the literature.

  17. GaAs clean up studied with synchrotron radiation photoemission

    NASA Astrophysics Data System (ADS)

    Tallarida, Massimo; Adelmann, Christoph; Delabie, Annelies; van Elshocht, Sven; Caymax, Matty; Schmeisser, Dieter

    2012-12-01

    In this contribution we describe the chemical changes at the surface of GaAs upon adsorption of tri-methyl-aluminum (TMA). TMA is used to grow Al2O3 with atomic layer deposition (ALD) usually using H2O as oxygen source. Recently, it was pointed out that the adsorption of TMA on various III-V surfaces reduces the native oxide, allowing the growth of an abrupt III-V/High-K interface with reduced density of defects. Synchrotron radiation photoemission spectroscopy (SR-PES) is a powerful method to characterize surfaces and interfaces of many materials, as it is capable to determine their chemical composition as well as the electronic properties. We performed in-situ SR-PES measurements after exposing a GaAs surface to TMA pulses at about 250°C. Upon using the possibility of tuning the incident photon energy we compared the Ga3d spectra at 41 eV, 71 eV, 91 eV and 121 eV, as well as the As3d at 71 eV and 91 eV. Finally, we show that using SR-PES allows a further understanding of the surface composition, which is usually not accessible with other techniques.

  18. Nitrogen Doping and Thermal Stability in HfSiOxNy Studied by Photoemission and X-ray Absorption Spectroscopy

    SciTech Connect

    Toyoda, Satoshi; Okabayashi, Jun; Takahashi, Haruhiko; Oshima, Masaharu; Lee, Dong-Ick; Sun, Shiyu; sun, Steven; Pianetta, Piero A.; Ando, Takashi; Fukuda, Seiichi; /SONY, Atsugi

    2005-12-14

    We have investigated nitrogen-doping effects into HfSiO{sub x} films on Si and their thermal stability using synchrotron-radiation photoemission and x-ray absorption spectroscopy. N 1s core-level photoemission and N K-edge absorption spectra have revealed that chemical-bonding states of N-Si{sub 3-x}O{sub x} and interstitial N{sub 2}-gas-like features are clearly observed in as-grown HfSiO{sub x}N{sub y} film and they decrease upon ultrahigh vacuum (UHV) annealing due to a thermal instability, which can be related to the device performance. Annealing-temperature dependence in Hf 4f and Si 2p photoemission spectra suggests that the Hf-silicidation temperature is effectively increased by nitrogen doping into the HfSiO{sub x} although the interfacial SiO{sub 2} layer is selectively reduced. No change in valence-band spectra upon UHV annealing suggests that crystallization of the HfSiO{sub x}N{sub y} films is also hindered by nitrogen doping into the HfSiO{sub x}.

  19. Tetragonal and collapsed-tetragonal phases of CaFe2As2 : A view from angle-resolved photoemission and dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong

    2016-06-01

    We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.

  20. Multiatom Resonant Photoemission: Theory and Systematics

    SciTech Connect

    Garcia de Abajo, F.J.; Fadley, C.S.; Van Hove, M.A.; Garcia de Abajo, F.J.

    1999-05-01

    A first-principles calculation of the recently discovered interatomic multiatom resonant photoemission (MARPE) effect is presented. In this phenomenon, core photoelectron intensities are enhanced when the photon energy is tuned to a core-level absorption edge of nonidentical neighboring atoms, thus enabling direct determination of near-neighbor atomic identities. Both the multiatom character of MARPE and retardation effects in the photon and electron interactions in the resonant channel are shown to be crucial. Measured peak-intensity enhancements of 40{percent} in MnO and spectral shapes similar to the corresponding x-ray absorption profiles are well reproduced by this theory. {copyright} {ital 1999} {ital The American Physical Society}

  1. Theoretical modeling of the uranium 4f XPS for U(VI) and U(IV) oxides

    SciTech Connect

    Bagus, Paul S.; Nelin, Connie J.; Ilton, Eugene S.

    2013-12-28

    A rigorous study is presented of the physical processes related to X-Ray photoelectron spectroscopy, XPS, in the 4f level of U oxides, which, as well as being of physical interest in themselves, are representative of XPS in heavy metal oxides. In particular, we present compelling evidence for a new view of the screening of core-holes that extends prior understandings. Our analysis of the screening focuses on the covalent mixing of high lying U and O orbitals as opposed to the, more common, use of orbitals that are nominally pure U or pure O. It is shown that this covalent mixing is quite different for the initial and final, core-hole, configurations and that this difference is directly related to the XPS satellite intensity. Furthermore, we show that the high-lying U d orbitals as well as the U(5f) orbital may both contribute to the core-hole screening, in contrast with previous work that has only considered screening through the U(5f) shell. The role of modifying the U-O interaction by changing the U-O distance has been investigated and an unexpected correlation between U-O distance and XPS satellite intensity has been discovered. The role of flourite and octahedral crystal structures for U(IV) oxides has been examined and relationships established between XPS features and the covalent interactions in the different structures. The physical views of XPS satellites as arising from shake processes or as arising from ligand to metal charge transfers are contrasted; our analysis provides strong support that shake processes give a more fundamental physical understanding than charge transfer. Our theoretical studies are based on rigorous, strictly ab initio determinations of the electronic structure of embedded cluster models of U oxides with formal U(VI) and U(IV) oxidation states. Our results provide a foundation that makes it possible to establish quantitative relationships between features of the XPS spectra and materials properties.

  2. High- Tc superconductivity: new issues from photoemission data

    NASA Astrophysics Data System (ADS)

    Margaritondo, G.; Grioni, M.; Vobornik, I.; Pavuna, D.

    2001-11-01

    Recent high-resolution photoemission results on high- Tc superconductors and other low-dimensional systems solve some critical issues but also open new fundamental questions. A recent breakthrough enabled us to clarify the interplay of conflicting periodicities in photoemission data, thus legitimizing the photoemission analysis of crystals with super-periodicities. On the other hand, results on the role of doping and of intentional disorder in Bi 2Sr 2CaCu 2O 8+ x single crystals raise questions about the origin of the pseudogap.

  3. Chemical Visualization of a GaN p-n junction by XPS.

    PubMed

    Caliskan, Deniz; Sezen, Hikmet; Ozbay, Ekmel; Suzer, Sefik

    2015-01-01

    We report on an operando XPS investigation of a GaN diode, by recording the Ga2p3/2 peak position under both forward and reverse bias. Areal maps of the peak positions under reverse bias are completely decoupled with respect to doped regions and allow a novel chemical visualization of the p-n junction in a 2-D fashion. Other electrical properties of the device, such as leakage current, resistivity of the domains are also tapped via recording line-scan spectra. Application of a triangular voltage excitation enables probing photoresponse of the device. PMID:26359762

  4. Chemical Visualization of a GaN p-n junction by XPS

    PubMed Central

    Caliskan, Deniz; Sezen, Hikmet; Ozbay, Ekmel; Suzer, Sefik

    2015-01-01

    We report on an operando XPS investigation of a GaN diode, by recording the Ga2p3/2 peak position under both forward and reverse bias. Areal maps of the peak positions under reverse bias are completely decoupled with respect to doped regions and allow a novel chemical visualization of the p-n junction in a 2-D fashion. Other electrical properties of the device, such as leakage current, resistivity of the domains are also tapped via recording line-scan spectra. Application of a triangular voltage excitation enables probing photoresponse of the device. PMID:26359762

  5. Energy Thresholds of DNA Damage Induced by UV Radiation: An XPS Study.

    PubMed

    Gomes, P J; Ferraria, A M; Botelho do Rego, A M; Hoffmann, S V; Ribeiro, P A; Raposo, M

    2015-04-30

    This work stresses on damage at the molecular level caused by ultraviolet radiation (UV) in the range from 3.5 to 8 eV, deoxyribonucleic acid (DNA) films observed by X-ray photoelectron spectroscopy (XPS). Detailed quantitative XPS analysis, in which all the amounts are relative to sodium-assumed not to be released from the samples, of the carbon, oxygen, and particularly, nitrogen components, reveals that irradiation leads to sugar degradation with CO-based compounds release for energies above 6.9 eV and decrease of nitrogen groups which are not involved in hydrogen bonding at energies above 4.2 eV. Also the phosphate groups are seen to decrease to energies above 4.2 eV. Analysis of XPS spectra allowed to conclude that the damage on bases peripheral nitrogen atoms are following the damage on phosphates. It suggests that very low kinetic energy photoelectrons are ejected from the DNA bases, as a result of UV light induced breaking of the phosphate ester groups which forms a transient anion with resonance formation and whereby most of the nitrogen DNA peripheral groups are removed. The degree of ionization of DNA was observed to increase with radiation energy, indicating that the ionized phosphate groups are kept unchanged. This result was interpreted by the shielding of phosphate groups caused by water molecules hydration near sodium atoms. PMID:25844940

  6. Theoretical modeling of the uranium 4f XPS for U(VI) and U(IV) oxides

    SciTech Connect

    Bagus, Paul S.; Nelin, Constance J.; Ilton, Eugene S.

    2013-12-28

    X-ray photoelectron spectroscopy (XPS), and in particular the U4f level, has been widely used to elucidate the chemical state of uranium in various materials. In large part, previous experimental work has relied on comparing the U4f spectra of an unknown to some “standard” or using qualitative intuitive judgments on the expected behavior of the primary lines and satellite structures as a function of oxidation state and bonding environment. Such approaches are useful and can be sufficiently robust to make defensible claims. Nonetheless, there is no quantitative understanding of the chemistry and physics that control satellite structures or even the shape of the primary peaks. To address this issue, we used a rigorous, strictly ab initio theoretical approach to investigate the U(4f) XPS of U oxides with formal U(VI) and U(IV) oxidation states. Our theoretical studies are based on the electronic structures of embedded cluster models, where bonding between U and O is explicitly incorporated. We demonstrate that treatment of the many-body character of the cluster wavefunctions is essential to correctly model and interpret the U4f XPS. Here we definitively show that shake configurations, where an electron is transferred from a dominantly O2p bonding orbital into dominantly 5f or 6d antibonding orbitals, are indeed responsible for the major satellite features. Based on this rigorous theoretical framework, it is possible to establish quantitative relationships between features of the XPS spectra and the chemistry of the material.

  7. Pulsed laser deposition for in-situ photoemission studies on YBa2Cu3O7-δ and related oxide films

    NASA Astrophysics Data System (ADS)

    Schmauder, T.; Frazer, B.; Gatt, R.; Xi, Xiaoxing; Onellion, Marshall; Ariosa, Daniel; Grioni, M.; Margaritondo, Giorgio; Pavuna, Davor

    1998-12-01

    We describe a new pled laser deposition (PLD) system that is linked to an angle-resolved photoemission (ARPES) chamber at the Synchrotron Radiation Center (SRC) in Wisconsin, USA. We also discuss our first results on epitaxially grown YBa2Cu3O7-(delta ) (YBCO) films. The core level photoemission data indicate that a Ba-oxide layer is the dominant surface layer. We were not able to reproducibly detect a sharp fermi edge in the photoemission spectra and thus conclude that the surface layer is non-metallic, probably due to oxygen loss at the surface. The absence of screening of the Y and Ba core levels is a further argument for this conclusion. Further experiments with ozone treated film surfaces are currently under way.

  8. XPS characterization of polymer–monocalcium aluminate interface

    SciTech Connect

    Kalina, Lukáš Másilko, Jiří; Koplík, Jan; Šoukal, František

    2014-12-15

    The aim of this paper is the introduction of a sophisticated testing method, X-ray photoelectron spectroscopy (XPS), used to study the interface between the hydrated cement phase and polymer after mechanochemical activation, which is fundamental for the creation of macro-defect-free (MDF) composites. The XPS results clearly explain the hypothesis of a chemical reaction mechanism in the interphase regions affecting the final properties of the MDF materials.

  9. Photoemission from Shockley surface state on Ag(111)

    NASA Astrophysics Data System (ADS)

    Karkare, Siddharth; Wan, Weishi; Feng, Jun; Padmore, Howard

    We present measurements of quantum yield and transverse momentum distributions of electrons emitted from the Shockley surface state on Ag(111) surface using near threshold photons. Our measurements shed light on the validity of the conservation of transverse momentum during photoemission when the kinetic energy of electrons is less than 0.1 eV. We also develop a one-step photoemission model that quantitatively explains photoemission from single crystal metal surfaces. This model accurately calculates the dependence of the electron yield on the angle of incidence and the polarization of incident light (vectorial photoelectric effect). We show excellent agreement between the measured and calculated photoemission properties of the Ag(111) surface. Our measurements show that Ag(111) surface can act as an excellent electron source for several applications like Free Electron Lasers and Ultra-fast Electron Diffraction.

  10. Photoemission optogalvanic studies with copper as target electrode

    NASA Astrophysics Data System (ADS)

    Ajithprasad, K. C.; Nampoori, V. P. N.; Vallabhan, C. P. G.

    1996-12-01

    Photoemission optogalvanaic (POG) effect has been observed by irradiating copper target electrode, in a nitrogen discharge cell using 1.06 μm and frequency doubled 532 nm Nd:YAG laser pulse. Measurement of the nature of the variation of POG signal strength with 532 nm laser fluence confirms the two photon induced photoelectric emission from copper. However, using 1.06 μm laser pulses thermally assisted photoemission is observed.

  11. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    SciTech Connect

    Schaefer, Michael E-mail: schlaf@mail.usf.edu; Schlaf, Rudy E-mail: schlaf@mail.usf.edu

    2015-08-14

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru{sup 0}) and its oxide (RuO{sub 2}) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru{sup 0} and RuO{sub 2} films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO{sub 2} and 0.04 Å/cycle for Ru.{sup 0} An interface dipole of up to −0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO{sub 2}/OH compound whose surface is saturated with hydroxyl groups.

  12. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Schaefer, Michael; Schlaf, Rudy

    2015-08-01

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru0) and its oxide (RuO2) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru0 and RuO2 films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO2 and 0.04 Å/cycle for Ru.0 An interface dipole of up to -0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO2/OH compound whose surface is saturated with hydroxyl groups.

  13. Electronic structure of Mo1-x Re x alloys studied through resonant photoemission spectroscopy.

    PubMed

    Sundar, Shyam; Banik, Soma; Sharath Chandra, L S; Chattopadhyay, M K; Ganguli, Tapas; Lodha, G S; Pandey, Sudhir K; Phase, D M; Roy, S B

    2016-08-10

    We studied the electronic structure of Mo-rich Mo1-x Re x alloys ([Formula: see text]) using valence band photoemission spectroscopy in the photon energy range 23-70 eV and density of states calculations. Comparison of the photoemission spectra with the density of states calculations suggests that, with respect to the Fermi level E F, the d states lie mostly in the binding energy range 0 to  -6 eV, whereas s states lie in the binding energy range  -4 to  -10 eV. We observed two resonances in the photoemission spectra of each sample, one at about 35 eV photon energy and the other at about 45 eV photon energy. Our analysis suggests that the resonance at 35 eV photon energy is related to the Mo 4p-5s transition and the resonance at 45 eV photon energy is related to the contribution from both the Mo 4p-4d transition (threshold: 42 eV) and the Re 5p-5d transition (threshold: 46 eV). In the constant initial state plot, the resonance at 35 eV incident photon energy for binding energy features in the range E F (BE  =  0) to  -5 eV becomes progressively less prominent with increasing Re concentration x and vanishes for x  >  0.2. The difference plots obtained by subtracting the valence band photoemission spectrum of Mo from that of Mo1-x Re x alloys, measured at 47 eV photon energy, reveal that the Re d-like states appear near E F when Re is alloyed with Mo. These results indicate that interband s-d interaction, which is weak in Mo, increases with increasing x and influences the nature of the superconductivity in alloys with higher x. PMID:27301550

  14. Electronic structure of Mo1-x Re x alloys studied through resonant photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Sundar, Shyam; Banik, Soma; Sharath Chandra, L. S.; Chattopadhyay, M. K.; Ganguli, Tapas; Lodha, G. S.; Pandey, Sudhir K.; Phase, D. M.; Roy, S. B.

    2016-08-01

    We studied the electronic structure of Mo-rich Mo1-x Re x alloys (0≤slant x≤slant 0.4 ) using valence band photoemission spectroscopy in the photon energy range 23-70 eV and density of states calculations. Comparison of the photoemission spectra with the density of states calculations suggests that, with respect to the Fermi level E F, the d states lie mostly in the binding energy range 0 to  -6 eV, whereas s states lie in the binding energy range  -4 to  -10 eV. We observed two resonances in the photoemission spectra of each sample, one at about 35 eV photon energy and the other at about 45 eV photon energy. Our analysis suggests that the resonance at 35 eV photon energy is related to the Mo 4p-5s transition and the resonance at 45 eV photon energy is related to the contribution from both the Mo 4p-4d transition (threshold: 42 eV) and the Re 5p-5d transition (threshold: 46 eV). In the constant initial state plot, the resonance at 35 eV incident photon energy for binding energy features in the range E F (BE  =  0) to  -5 eV becomes progressively less prominent with increasing Re concentration x and vanishes for x  >  0.2. The difference plots obtained by subtracting the valence band photoemission spectrum of Mo from that of Mo1-x Re x alloys, measured at 47 eV photon energy, reveal that the Re d-like states appear near E F when Re is alloyed with Mo. These results indicate that interband s-d interaction, which is weak in Mo, increases with increasing x and influences the nature of the superconductivity in alloys with higher x.

  15. Electronic structure of Mo1‑x Re x alloys studied through resonant photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Sundar, Shyam; Banik, Soma; Sharath Chandra, L. S.; Chattopadhyay, M. K.; Ganguli, Tapas; Lodha, G. S.; Pandey, Sudhir K.; Phase, D. M.; Roy, S. B.

    2016-08-01

    We studied the electronic structure of Mo-rich Mo1‑x Re x alloys (0≤slant x≤slant 0.4 ) using valence band photoemission spectroscopy in the photon energy range 23–70 eV and density of states calculations. Comparison of the photoemission spectra with the density of states calculations suggests that, with respect to the Fermi level E F, the d states lie mostly in the binding energy range 0 to  ‑6 eV, whereas s states lie in the binding energy range  ‑4 to  ‑10 eV. We observed two resonances in the photoemission spectra of each sample, one at about 35 eV photon energy and the other at about 45 eV photon energy. Our analysis suggests that the resonance at 35 eV photon energy is related to the Mo 4p–5s transition and the resonance at 45 eV photon energy is related to the contribution from both the Mo 4p–4d transition (threshold: 42 eV) and the Re 5p–5d transition (threshold: 46 eV). In the constant initial state plot, the resonance at 35 eV incident photon energy for binding energy features in the range E F (BE  =  0) to  ‑5 eV becomes progressively less prominent with increasing Re concentration x and vanishes for x  >  0.2. The difference plots obtained by subtracting the valence band photoemission spectrum of Mo from that of Mo1‑x Re x alloys, measured at 47 eV photon energy, reveal that the Re d-like states appear near E F when Re is alloyed with Mo. These results indicate that interband s–d interaction, which is weak in Mo, increases with increasing x and influences the nature of the superconductivity in alloys with higher x.

  16. Nanoscale morphology and photoemission of arsenic implanted germanium films

    NASA Astrophysics Data System (ADS)

    Petö, G.; Khanh, N. Q.; Horváth, Z. E.; Molnár, G.; Gyulai, J.; Kótai, E.; Guczi, L.; Frey, L.

    2006-04-01

    Germanium films of 140 nm thickness deposited onto Si substrate were implanted with 70 keV arsenic ions with a dose of 2.5×1014 cm-2. The morphology of the implanted films was determined by Rutherford backscattering and cross-sectional transmission electron microscopy. Concentration of oxygen and carbon impurities and their distribution in the implanted layer were detected by secondary-ion-mass spectroscopy and nuclear reaction analysis using the O16(He4,He4)O16 reaction. The depth dependence of the valence band density of states was investigated by measuring the energy distribution curve of photoelectrons using Ar ion etching for profiling. The morphology of As implanted film was dominated by nanosized (10-100 nm) Ge islands separated by empty bubbles at a depth of 20-50 nm under the surface. At depth ranges of 0-20 and 70 to a measured depth of 140 nm, however, morphology of the as-evaporated Ge film was not modified. At a depth of 20-50 nm, photoelectron spectra were similar to those obtained for Ge amorphized with heavy ion (Sb) implantation [implantation induced (I.I.) a-Ge]. The depth profile of the morphology and the photoemission data indicate correlation between the morphology and valence band density of states of the ion I.I. a-Ge. As this regime was formed deep in the evaporated film, i.e., isolated from the environment, any contamination, etc., effect can be excluded. The depth distribution of this I.I. a-Ge layer shows that the atomic displacement process cannot account for its formation.

  17. In-situ NAP XPS studies of dissociative water adsorption on GaAs(100) surfaces

    NASA Astrophysics Data System (ADS)

    Ptasinska, Sylwia; Zhang, Xueqiang

    2014-03-01

    In current semiconductor-based technology it is important to design and fabricate new materials in order to achieve specific well-defined properties and functionalities. Before such systems can be applied they first need to be understood, refined and controlled. Therefore, a basic knowledge about molecule/semiconductor surface interfaces is essential. In the present work dissociative water adsorption on the GaAs(100) surface is monitored using X-ray Photoelectron Spectroscopy (XPS) performed in situ under near ambient conditions. Firstly, the crystal surface is exposed to water vapor pressures ranging from UHV to 0.5 kPa. At elevated pressures an increase of oxygenation and hydroxylation of Ga surface atoms has been observed in the Ga2p XPS spectra. Moreover, intense signals obtained from molecularly adsorbed water molecules or water molecules adsorbed via hydrogen bond to surface OH groups have been also observed in the O1s spectra. Finally, the crystal surface is annealed up to 700 K at water vapor pressure of 0.01 kPa, which leads to desorption of physisorbed water molecules and further increase of surface oxidation. The research described herein was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy through grant number DE-FC02-04ER15533.

  18. Formation of Hydroxyl and Water Layers on MgO Films Studied with Ambient Pressure XPS

    SciTech Connect

    Newberg, J.T.; Starr, D.; Yamamoto, S.; Kaya, S.; Kendelewicz, T.; Mysak, E.R.; Porsgaard, S.; Salmeron, M.B.; Brown Jr., G.E.; Nilsson, A.; Bluhm, H.

    2011-01-01

    To understand the interaction of water with MgO(100), a detailed quantitative assessment of the interfacial chemistry is necessary. We have used ambient pressure X-ray photoelectron spectroscopy (XPS) to measure molecular (H{sub 2}O) and dissociative (OH) water adsorption on a 4 monolayer (ML) thick MgO(100)/Ag(100) film under ambient conditions. Since the entire 4 ML metal oxide (Ox) film is probed by XPS, the reaction of the MgO film with water can be quantitatively studied. Using a multilayer model (Model 1) that measures changes in Ox thickness from O 1s (film) and Ag 3d (substrate) spectra, it is shown that the oxide portion of the MgO film becomes thinner upon hydroxylation. A reaction mechanism is postulated in which the top-most layer of MgO converts to Mg(OH)2 upon dissociation of water. Based on this mechanism a second model (Model 2) is developed to calculate Ox and OH thickness changes based on OH/Ox intensity ratios from O 1s spectra measured in situ, with the known initial Ox thickness prior to hydroxylation. Models 1 and 2 are applied to a 0.15 Torr isobar experiment, yielding similar results for H{sub 2}O, OH and Ox thickness changes as a function of relative humidity.

  19. Dirac Fermions in graphene and graphite---a view from angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Shuyun

    The research in graphene has exploded in the past few years, due to its intriguing physics as an emerging paradigm for relativistic condensed matter physics as well as its great promise for application in next generation electronics. Understanding the low energy electronic structure of graphene is fundamental as most of the intriguing properties of graphene arise from its peculiar electronic dispersion, which resembles that of relativistic Dirac Fermions. This thesis presents a detailed study of the low energy electronic structure of graphene and its related three dimensional material - graphite - by using angle-resolved photoemission spectroscopy (ARPES), a direct probe of the electronic structure. In particular, the evolution of the Dirac Fermions in graphene and graphite as well as the effect of impurities is the focus of this thesis. This thesis is organized as follows. The first chapter is an introduction of the electronic structure of graphene and graphite, and the specialty of Dirac fermions compared to quasiparticles in conventional condensed matter systems. Chapter 2 is an introduction of the techniques used throughout this thesis - angle resolved photoemission spectroscopy (ARPES), X-ray photoemission spectroscopy (XPS) and low energy electron microscopy (LEEM). Chapter 3 discusses the growth and characterization of epitaxial graphene on SiC wafers. Chapters 4 and 5 present the ARPES results on epitaxial graphene, the evolution of the low energy electronic dynamics as a function of sample thickness and how to make graphene a finite band gap semiconductor. More specifically, chapter 4 discusses how a gap is induced between the valence and conduction bands by graphene-substrate interaction and chapter 6 shows how a reversible metal-insulator transition can be possibly induced in epitaxial graphene by hole doping. Chapters 6 and 7 show the ARPES results on three dimensional graphite samples. Chapter 6 shows the coexistence of Dirac fermions with massive

  20. Theory of hot electron photoemission from graphene

    NASA Astrophysics Data System (ADS)

    Ang, Lay Kee; Liang, Shijun

    Motivated by the development of Schottky-type photodetectors, some theories have been proposed to describe how the hot carriers generated by the incident photon are transported over the Schottky barrier through the internal photoelectric effect. One of them is Fowler's law proposed as early as 1931, which studied the temperature dependence of photoelectric curves of clean metals. This law is very successful in accounting for mechanism of detecting photons of energy lower than the band gap of semiconductor based on conventional metal/semiconductor Schottky diode. With the goal of achieving better performance, graphene/silicon contact-based- graphene/WSe2 heterostructure-based photodetectors have been fabricated to demonstrate superior photodetection efficiency. However, the theory of how hot electrons is photo-excited from graphene into semiconductor remains unknown. In the current work, we first examine the photoemission process from suspended graphene and it is found that traditional Einstein photoelectric effect may break down for suspended graphene due to the unique linear band structure. Furthermore, we find that the same conclusion applies for 3D graphene analog (e.g. 3D topological Dirac semi-metal). These findings are very useful to further improve the performance of graphene-based photodetector, hot-carrier solar cell and other kinds of sensor.

  1. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  2. Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an x-ray photoemission spectroscopy analysis system

    SciTech Connect

    Rutkowski, M. M.; Zeng Zhaoquan; McNicholas, K. M.; Brillson, L. J.

    2013-06-15

    We designed a mechanism and the accompanying sample holders to transfer between a VEECO 930 oxide molecular beam epitaxy (MBE) and a PHI Versa Probe X-ray photoemission spectroscopy (XPS) chamber within a multiple station growth, processing, and analysis system through ultrahigh vacuum (UHV). The mechanism consists of four parts: (1) a platen compatible with the MBE growth stage, (2) a platen compatible with the XPS analysis stage, (3) a sample coupon that is transferred between the two platens, and (4) the accompanying UHV transfer line. The mechanism offers a robust design that enables transfer back and forth between the growth chamber and the analysis chamber, and yet is flexible enough to allow transfer between standard sample holders for thin film growth and masked sample holders for making electrical contacts and Schottky junctions, all without breaking vacuum. We used this mechanism to transfer a barium strontium titanate thin film into the XPS analysis chamber and performed XPS measurements before and after exposing the sample to the air. After air exposure, a thin overlayer of carbon was found to form and a significant shift ({approx}1 eV) in the core level binding energies was observed.

  3. Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an x-ray photoemission spectroscopy analysis system

    NASA Astrophysics Data System (ADS)

    Rutkowski, M. M.; McNicholas, K. M.; Zeng, Zhaoquan; Brillson, L. J.

    2013-06-01

    We designed a mechanism and the accompanying sample holders to transfer between a VEECO 930 oxide molecular beam epitaxy (MBE) and a PHI Versa Probe X-ray photoemission spectroscopy (XPS) chamber within a multiple station growth, processing, and analysis system through ultrahigh vacuum (UHV). The mechanism consists of four parts: (1) a platen compatible with the MBE growth stage, (2) a platen compatible with the XPS analysis stage, (3) a sample coupon that is transferred between the two platens, and (4) the accompanying UHV transfer line. The mechanism offers a robust design that enables transfer back and forth between the growth chamber and the analysis chamber, and yet is flexible enough to allow transfer between standard sample holders for thin film growth and masked sample holders for making electrical contacts and Schottky junctions, all without breaking vacuum. We used this mechanism to transfer a barium strontium titanate thin film into the XPS analysis chamber and performed XPS measurements before and after exposing the sample to the air. After air exposure, a thin overlayer of carbon was found to form and a significant shift (˜1 eV) in the core level binding energies was observed.

  4. High resolution photoemission experiments on copper oxide superconductors

    NASA Astrophysics Data System (ADS)

    Rameau, Jonathan David

    The mechanism for achieving high transition temperatures (T c) in copper oxide superconductors and the nature of the mysterious "pseudogap" phase from which this phenomenon arises are two of the most pressing issues in solid state physics. High resolution angle resolved photoemission spectroscopy (ARPES), which can directly probe the momentum and energy dependence of the electronic structure of a crystal, is considered one of the foremost tools for unraveling these mysteries. In this thesis we present work on both the further development of the ARPES technique itself and the results of two experiments on the high temperature superconductor Bi2Sr2CaCu2O8+delta (BSCCO)---the drosophila of copper oxide superconductors---based upon these analytical and experimental advances. On the analytical side we have shown that the precision of any ARPES experiment can be radically enhanced by using the Lucy-Richardson method (LRM) of iterative deconvolution to remove the worst effects of experimental resolution broadening present in all ARPES spectra. On the experimental side we have constructed a deep ultraviolet laser system capable of increasing our data acquisition rate by more than an order of magnitude compared to what is possible using traditional synchrotron radiation sources at the same momentum and energy resolutions. Using the LRM, in conjunction with synchrotron radiation, spectroscopic evidence was found for the existence of incoherent Cooper pairs in underdoped BSCCO in the normal pseudogap state (above Tc). At the same time an asymmetry between the particle and hole states of BSCCO was found, implying that doped Mott insulators, of which BSCCO is a primordial example, are characterized by the presence of a Fermi-Luttinger surface, rather than a Fermi surface, as would be the case for a simple metal. This study provided the first spectroscopic evidence for either phenomenon. In our second experiment we were able to use the LRM on data acquired with the laser ARPES

  5. Comparative Photoemission Study of Actinide (Am, Pu, Np and U) Metals, Nitrides, and Hydrides

    SciTech Connect

    Gouder, Thomas; Seibert, Alice; Rebizant, Jean; Huber, Frank; Havela, Ladislav

    2007-07-01

    Core-level and valence-band spectra of Pu and the other early actinide compounds show remarkable systematics, which can be understood in the framework of final state screening. We compare the early actinide (U, Np, Pu and Am) metals, nitrides and hydrides and a few other specific compounds (PuSe, PuS, PuCx, PuSix) prepared as thin films by sputter deposition. In choosing these systems, we combine inherent 5f band narrowing, due to 5f orbital contraction throughout the actinide series, with variations of the chemical environment in the compounds. Goal of this work was to learn more on the electronic structure of the early actinide systems and to achieve the correct interpretation of their photoemission spectra. The highly correlated nature of the 5f states in systems, which are on the verge to localization, makes this a challenging task, because of the peculiar interplay between ground state DOS and final-state effects. Their influence can be estimated by doing systematic studies on systems with different (5f) bandwidths. We conclude on the basis of such systematic experiments that final-state effects due to strong e-e correlations in narrow 5f-band systems lead to multiplet like structures, analogous to those observed in the case of systems with localized electron states. Such observations in essentially band-like 5f-systems was first surprising, but the astonishing similarity of photoemission spectra of very different chemical systems (e.g. PuSe, Pu{sub 2}C{sub 3}..) points to a common origin, relating them to atomic features rather than material dependent density of states (DOS) features. (authors)

  6. AES XPS study of chromium carbides and chromium iron carbides

    NASA Astrophysics Data System (ADS)

    Detroye, M.; Reniers, F.; Buess-Herman, C.; Vereecken, J.

    1999-04-01

    The nature of chromium rich carbides which precipitate at grain boundaries in steels is still not perfectly understood. We performed a multitechnique approach on model chromium carbide and chromium-iron carbide samples: Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), and High Energy Electron Diffraction (HEED) were used to characterise the samples. Significant chemical shifts were observed for the Cr, Fe and C XPS peaks in the M 7C 3 compound (M stands for metal), indicating unambiguously that the compound formed is a mixed iron-chromium carbide.

  7. Characterization of fossil remains using XRF, XPS and XAFS spectroscopies

    NASA Astrophysics Data System (ADS)

    Zougrou, I. M.; Katsikini, M.; Pinakidou, F.; Brzhezinskaya, M.; Papadopoulou, L.; Vlachos, E.; Tsoukala, E.; Paloura, E. C.

    2016-05-01

    Synchrotron radiation micro-X-Ray Fluorescence (μ-XRF), X-ray photoelectron (XPS) and X-ray Absorption Fine Structure (XAFS) spectroscopies are applied for the study of paleontological findings. More specifically the costal plate of a gigantic terrestrial turtle Titanochelon bacharidisi and a fossilized coprolite of the cave spotted hyena Crocuta crocuta spelaea are studied. Ca L 2,3-edge NEXAFS and Ca 2p XPS are applied for the identification and quantification of apatite and Ca containing minerals. XRF mapping and XAFS are employed for the study of the spatial distribution and speciation of the minerals related to the deposition environment.

  8. Excitation of XPS spectra from nanoscaled particles by local generation of x-rays

    SciTech Connect

    Mallinson, Christopher F.; Castle, James E.

    2015-09-15

    In preliminary work, the authors have shown that use of an aluminum substrate to support a distribution of copper particles enables their characteristic photoelectrons to be observed within the Auger electron spectrum generated by an incident electron beam. This observation raises the possibility of the use of chemical shifts and the corresponding Auger parameter to identify the chemical states present on the surface of individual submicrometer particles within a mixture. In this context, the technique has an advantage in that, unlike conventional Auger electron spectroscopy, the electron beam does not dwell on the particle but on the substrate adjacent to it. Given the importance, for both medical and toxicological reasons, of the surface composition of such particles, the authors have continued to explore the potential of this development. In this contribution, the authors show that proximal excitation of x-rays is equally successful with magnesium substrates. In some regions of the x-ray photoelectron spectrum, the much larger Auger peaks generated by the electron beam can cause inconvenient clustering of Auger and photoelectron peaks. As in conventional x-ray photoelectron spectroscopy, the ability to switch between Al and Mg sources is useful in such situations. In this context, the authors have extended the studies to iron particles where the authors show that use of Al or Mg substrates, as necessary, can make a contribution to clear identification of individual components in the Fe 2p peaks. For this development in electron spectroscopy to achieve its full potential, it is necessary to optimize the beam conditions used to generate the local x-ray to give good selectivity of a given particle. Measurements made in support of this will be given. Of greater concern is a possible problem of local heating associated with x-ray generation. The authors continue to explore this problem and report some progress in minimizing heating of the particle while maintaining the particle selectivity that is central to this exciting development.

  9. C-C bond unsaturation degree in monosubstituted ferrocenes for molecular electronics investigated by a combined near-edge x-ray absorption fine structure, x-ray photoemission spectroscopy, and density functional theory approach

    SciTech Connect

    Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Zanoni, R.; Stranges, S.; Alagia, M.; Fronzoni, G.; Decleva, P.

    2012-04-07

    We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the {sigma}/{pi} hyperconjugation in EtFC and the {pi}-conjugation in VFC and EFC.

  10. C-C bond unsaturation degree in monosubstituted ferrocenes for molecular electronics investigated by a combined near-edge x-ray absorption fine structure, x-ray photoemission spectroscopy, and density functional theory approach

    NASA Astrophysics Data System (ADS)

    Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Stranges, S.; Zanoni, R.; Alagia, M.; Fronzoni, G.; Decleva, P.

    2012-04-01

    We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the σ/π hyperconjugation in EtFC and the π-conjugation in VFC and EFC.

  11. Study on the long wavelength SiGe/Si heterojunction internal photoemission infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Aslan, B.; Turan, R.; Liu, H. C.

    2005-10-01

    The theory of internal photoemission in semiconductor heterojunctions has been investigated and the existing model has been extended by incorporating the effect of different effective masses in the active region and the substrate, nonspherical-nonparabolic bands, and the energy loss per collision. Photoresponse measurements on Si 1- xGe x/Si heterojunction internal photoemission (HIP) infrared photodetectors (IP) have shown that they are fit well by the theory. Qualitative model describing the mechanisms of photocurrent generation in our structures are presented. We also study the effect of a double barrier on the photoresponse spectrum of a SiGe/Si HIP IP. It has been shown that the performance of our devices depends significantly on the applied bias and the operating temperature; therefore, their cut-off wavelengths can be tuned to the desired region by changing the potential difference across the device and/or changing the device temperature. The barrier heights (correspondingly the cut-off wavelengths) of the samples have been determined from their IP spectra by using the extended model which has the wavelength and doping concentration dependent free carrier absorption parameters.

  12. Angle resolved photoemission study of the c(2 × 2)Si overlayer on Fe(100)

    NASA Astrophysics Data System (ADS)

    Egert, B.; Grabke, H. J.; Sakisaka, Y.; Rhodin, T. N.

    1984-06-01

    Angle resolved photoemission experiments utilizing polarized synchrotron radiation were performed to study the electronic structure of valence levels of Si segregated in a c(2 × 2) overlayer on the α-Fe(100) surface. The spectra were taken at varying photon energies (14 ⩽ ω ⩽ 40 eV), in dependence on the polarization of the incoming light, and as a function of the photoelectron emission angle in the symmetry directions T¯M¯' and T¯X¯' of the surface Brillouin zone. Evaluation of the photoemission data shows that the Si 3p levels form energy bands for the ordered c(2 × 2) overlayer on Fe(100). The initial state energy of the Si 3p states depends on k∥ being measured. At T¯ a bonding Si 3p z state (a 1 symmetry) and an antibonding Si 3p xp y state (e symmetry) is analyzed, which are separated by 0.8 eV in binding energy. In going from T¯ to M¯' the Si 3p z induced level disperses ~ 0.8 eV to lower initial state energies. In the T¯X¯' direction the overall Si 3p band width is approximate 1.3 eV. Though the interaction between silicon and iron surface atoms are relatively weak compared to Fe(100)-c(2 × 2)S, modifications in the Fe derived valence band states occur, including the formation of a hybridization state located 1.4 eV below EF.

  13. Determination of transport levels of inorganic semiconductors by ultraviolet and inverse photoemission

    NASA Astrophysics Data System (ADS)

    Krause, S.; Schöll, A.; Umbach, E.

    2015-05-01

    A combination of ultraviolet and inverse photoemission is often used to determine the position of the transport levels of semiconductors. Although data from direct methods like photoemission appear advantageous at first glance, large discrepancies between thus-derived band gaps and optically measured band gaps have led to fundamentally different evaluation methods of the data from ultraviolet photoelectron spectroscopy (UPS)/inverse photoelectron spectroscopy (IPS) experiments, the essential alternatives being the maxima or the onsets of the frontier peaks. In this paper, we review published data as well as present new experimental data for a few representative II-VI and III-V compound and element semiconductors. New data from silicon are utilized as examples for evaluating details of such combined UPS and IPS spectra and for answering the question of how surface effects, especially the consequences of surface reconstruction, can adequately be taken into account. The results clearly indicate that, for all three types of semiconductors, only peak onsets represent the correct band positions. Possible reasons for this finding are discussed, and an explanation in the framework of relaxation (i.e., dynamical screening) is suggested.

  14. Comparison between laser-induced photoemissions and phototransmission of hard tissues using fibre-coupled Nd:YAG and Er(3+)-doped fibre lasers.

    PubMed

    El-Sherif, Ashraf Fathy

    2012-07-01

    During pulsed laser irradiation of dental enamel, laser-induced photoemissions result from the laser-tissue interaction through mechanisms including fluorescence and plasma formation. Fluorescence induced by non-ablative laser light interaction has been used in tissue diagnosis, but the photoemission signal accompanying higher power ablative processes may also be used to provide real-time monitoring of the laser-tissue interaction. The spectral characteristics of the photoemission signals from normal and carious tooth enamel induced by two different pulsed lasers were examined. The radiation sources compared were a high-power extra-long Q-switched Nd:YAG laser operating at a wavelength of 1,066 nm giving pulses (with pulse durations in the range 200-250 μs) in the near infrared and a free-running Er(3+)-doped ZBLAN fibre laser operating at a wavelength near 3 μm with similar pulse durations in the mid-infrared region. The photoemission spectra produced during pulsed laser irradiation of enamel samples were recorded using a high-resolution spectrometer with a CCD array detector that enabled an optical resolution as high as 0.02 nm (FWHM). The spectral and time-dependence of the laser-induced photoemission due to thermal emission and plasma formation were detected during pulsed laser irradiation of hard tissues and were used to distinguish between normal and carious teeth. The use of these effects to distinguish between hard and soft biological tissues during photothermal ablation with a pulsed Nd:YAG laser or an Er fibre laser appears feasible. The real-time spectrally resolved phototransmission spectrum produced during pulsed Nd:YAG laser irradiation of human tooth enamel samples was recorded, with a (normalized) relative transmission coefficient of 1 (100%) for normal teeth and 0.6 (60%) for the carious teeth. The photoemission signal accompanying ablative events may also be used to provide real-time monitoring of the laser-tissue interaction.

  15. Surface characterization of coated powders with XPS: Al2O3-SiO2 coated TiO2 pigments

    NASA Astrophysics Data System (ADS)

    Johansson, Leena-Sisko; Losoi, Tuomo

    A study aimed at finding experimental strategies to characterize surface structures of coated powders with X-ray Photoelectron Spectroscopy (XPS) was reported. As an example, industrial TiO2 pigments, coated with hydrous alumina and silica were studied using different XPS methods. Isoeletric points and x-ray fluorescence analyses were also measured for comparison. The applicability of an XPS analysis method introduced by Tougaard et al was studied. In the method, the depth an element is calculated, analyzing elastic and inelastic photoelectron emissions from a low resolution XPS spectra. Used together with conventional analysis, two independent analyses may be calculated from line low resolution XPS spectrum. For fast and simple analysis, peak to background ratio D for the element can be measured. Good correlation was found between the results from conventional XPS layer calculations and the Tougaard equation. The methods are independent of each other. Together they seemed to give more reliable information on the nonideal powder surfaces studied than either of the methods alone.

  16. TEM and XPS studies on CdS/CIGS interfaces

    NASA Astrophysics Data System (ADS)

    Han, Jun-feng; Liao, Cheng; Cha, Li-mei; Jiang, Tao; Xie, Hua-mu; Zhao, Kui; Besland, M.-P.

    2014-12-01

    Copper indium gallium selenide (CIGS) was deposited by metallic precursors sputtering and subsequently submitted to a selenization process. The upper CdS layers were deposited by chemical bath deposition (CBD) technique. The CdS/CIGS interfaces were investigated by Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). As checked by XPS analysis, the CIGS surface exhibited a hydroxide-terminated CdSe layer when treated with Cd Partial Electrolyte solution (Cd PE). Its thickness was roughly estimated to several nanometers. A 100 nm thick CdS layer was deposited onto CIGS surface. The TEM images revealed a clear and sharp interface between CdS and CIGS. XPS analysis showed a CIGS surface covered by a pinhole free and homogeneous CdS layer. XPS depth profile measurement of the CdS/CIGS interface did not evidence elemental inter-diffusion between the CIGS and CdS layers, in very good agreement with TEM observations.

  17. XPS analysis of nikki N111 catalyst pellets

    SciTech Connect

    Kelly, Dan

    2007-03-26

    X-ray photoelectron spectroscopy (XPS) was performed on several pellets of Nikki N111 catalyst to determine elemental composition. Of specific interest, the Nikki MSDS for this material cites a 20 wt. % contribution from the species "Others". XPS was employed to determine more precisely the chemical composition of the pellets and search for potential catalytic metal species not identified on the MSDS. Results are tabulated in Table 1 below. XPS analysis of the chemical composition of the catalyst pellets compares favorably to the N ikki MSDS, if the assumption is made that the nickel in the catalyst is oxidized to Ni2O3. Specifically, using a 100 g sample basis, the 49 grams of nickel metal specified in the MSDS would carry 20 grams of oxygen if it were oxidized to Ni2O3, potentially accounting for the 20 wt. %"Others". XPS was able to confirm the presence of copper and chromium in the pellets, each expected at less than 1 atomic percent and quantified at 1-3 atomic percent concentrations, but no metal species not identified by the MSDS were detected.

  18. Comparative study of the native oxide on 316L stainless steel by XPS and ToF-SIMS

    SciTech Connect

    Tardio, Sabrina Abel, Marie-Laure; Castle, James E.; Watts, John F.; Carr, Robert H.

    2015-09-15

    The very thin native oxide film on stainless steel, of the order of 2 nm, is known to be readily modified by immersion in aqueous media. In this paper, X-ray photoelectron spectroscopy (XPS) and time of flight secondary ions mass spectrometry are employed to investigate the nature of the air-formed film and modification after water emersion. The film is described in terms of oxide, hydroxide, and water content. The preferential dissolution of iron is shown to occur on immersion. It is shown that a water absorbed layer and a hydroxide layer are present above the oxide-like passive film. The concentrations of water and hydroxide appear to be higher in the case of exposure to water. A secure method for the peak fitting of Fe2p and Cr2p XPS spectra of such films on their metallic substrates is described. The importance of XPS survey spectra is underlined and the feasibility of C{sub 60}{sup +} SIMS depth profiling of a thin oxide layer is shown.

  19. Unit charge on supported gold clusters in photoemission final state

    NASA Astrophysics Data System (ADS)

    Wertheim, G. K.; Dicenzo, S. B.; Youngquist, S. E.

    1983-12-01

    The large, positive core-level shifts seen in photoemission from Au clusters on poorly conducting substrates result from a unit positive charge left on a cluster during the photoemission final state. The case of clusters supported on a poorly conducting carbon substrate is intermediate between the case of free clusters and that of clusters supported on metallic substrates. The identification of a macroscopic Coulomb effect removes the apparent conflict between positive core-level shifts and the expected initial state band-structure effect, whereby increased localization in small clusters should increase the density in Au and decrease the Au core electron binding energy.

  20. Photoemission from Ag, Cu, and CsI

    SciTech Connect

    Srinivasan-Rao, T.; Fischer, J.; Tsang, T.

    1992-06-01

    Photoemission characteristics of three different cathodes, CsI, Ag film and Cu were investigated. CsI, upon irradiation by 213 nm, 10ps laser pulse yields a quantum efficiency of 4% at O.2[mu]J input energy. The saturation mechanism observed at higher input energies require further investigation. Ag film, upon irradiation by 630 nm, 300 fs laser emit prompt photoelectrons after absorbing 2 photons. There was no evidence of optical damage of the film up to 10[sup 11] W/cm[sup 2]. At low intensities, photoemission from Cu is a simple [nu]-e[sup [minus

  1. Si1-XGex/Si-Heterojunction Internal-Photoemission Detectors

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon; Maserjian, Joseph

    1992-01-01

    Cutoff wavelengths tailored by choice of Ge content. Infrared detectors based on internal photoemission at Si1-xGex/Si heterojunctions exhibited photoresponses at wavelengths from 2 to 12 micrometers in initial tests. Si1-xGex/Si-heterojunction internal-photoemission detectors tailored for use at wavelengths of order of 10 micrometers. Future developments expected to include integration of such devices with silicon readout circuitry to form infrared-imaging arrays. Imaging arrays operating in important wavelength range of 8 to 12 micrometers can be fabricated relatively inexpensively for use in outer-space, military, and industrial applications.

  2. Photoemission Electron Microscopy of a Plasmonic Silver Nanoparticle Trimer

    SciTech Connect

    Peppernick, Samuel J.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.; Wang, Jinyong; Wang, Yi-Chung; Wei, Wei

    2013-07-01

    We present a combined experimental and theoretical study to investigate the spatial distribution of photoelectrons emitted from core-shell silver (Ag) nanoparticles. We use two-photon photoemission microscopy (2P-PEEM) to spatially resolve electron emission from a trimeric core-shell aggregate of triangular symmetry. Finite difference time domain (FDTD) simulations are performed to model the intensity distributions of the electromagnetic near-fields resulting from femtosecond (fs) laser excitation of localized surface plasmon oscillations in the triangular core-shell structure. We demonstrate that the predicted FDTD near-field intensity distribution reproduces the 2P-PEEM photoemission pattern.

  3. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    DOE PAGESBeta

    Dell'Angela, M.; Anniyev, T.; Beye, M.; Coffee, R.; Föhlisch, A.; Gladh, J.; Kaya, S.; Katayama, T.; Krupin, O.; Nilsson, A.; et al

    2015-03-01

    Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  4. Laser-induced electron emission from a tungsten nanotip: identifying above threshold photoemission using energy-resolved laser power dependencies

    NASA Astrophysics Data System (ADS)

    Bionta, M. R.; Chalopin, B.; Champeaux, J. P.; Faure, S.; Masseboeuf, A.; Moretto-Capelle, P.; Chatel, B.

    2014-06-01

    We present an experiment studying the interaction of a strongly focused 25 fs laser pulse with a tungsten nanotip, investigating the different regimes of laser-induced electron emission. We study the dependence of the electron yield with respect to the static electric field applied to the tip. Photoelectron spectra are recorded using a retarding field spectrometer and peaks separated by the photon energy are observed with a 45% contrast. They are a clear signature of above threshold photoemission (ATP), and are confirmed by extensive spectrally resolved studies of the laser power dependence. Understanding these mechanisms opens the route to control experiment in the strong-field regime on nanoscale objects.

  5. Resonant photoemission study of the 4f spectral function of cerium in Ce/Fe(100) interfaces

    SciTech Connect

    Witkowski, N.; Bertran, F.; Gourieux, T.; Kierren, B.; Malterre, D.; Panaccione, G. |

    1997-11-01

    In this paper, we present a resonant photoemission study of the cerium 4f spectral function in Ce/Fe(100) interfaces. By covering cerium ultrathin films with lanthanum, we completely suppress the surface contribution of the spectra. Then we show that the cerium atoms at the interface are in an intermediate valent state, whereas the f{sup 1} configuration is stabilized in the top layer. This method allows us to obtain the genuine 4f spectral function of the interface, and could be extended to a study of Ce-based compounds. {copyright} {ital 1997} {ital The American Physical Society}

  6. Magnetic linear dichroism of photoemission from ultrathin manganese films on silicon

    NASA Astrophysics Data System (ADS)

    Gomoyunova, M. V.; Grebenyuk, G. S.; Pronin, I. I.; Senkovskiy, B. V.

    2015-09-01

    The magnetic linear dichroism (MLD) effect in photoemission of Mn 3 p electrons was used to study magnetic properties of Mn films (to 2.5 nm thick) grown on the Si(111)-(7 × 7) surface at room temperature and manganese silicide films grown by solid-phase epitaxy. The experiments were performed using linearly polarized light with a photon energy of 130 eV, incident at an angle of 30° to the sample surface. Photoelectron spectra were measured in a narrow solid angle focused along the normal to the surface for two opposite sample magnetization directions in the surface plane, perpendicular to the polarization vector of the light wave. It was shown that the MLD effect characteristic of films with high-temperature ferromagnetism appears after depositing ˜2 nm Mn. The formation of manganese silicides upon annealings of the sample with deposited 2.5 nm Mn results in the disappearance of the MLD effect.

  7. Direct detection of density of gap states in C60 single crystals by photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Bussolotti, Fabio; Yang, Janpeng; Hiramoto, Masahiro; Kaji, Toshihiko; Kera, Satoshi; Ueno, Nobuo

    2015-09-01

    We report on the direct and quantitative evaluation of density of gap states (DOGS) in large-size C60 single crystals by using ultralow-background, high-sensitivity ultraviolet photoemission spectroscopy. The charging of the crystals during photoionization was overcome using photoconduction induced by simultaneous laser irradiation. By comparison with the spectra of as-deposited and gas exposed C60 thin films the following results were found: (i) The DOGS near the highest occupied molecular orbital edge in the C60 single crystals (1019-1021states e V-1c m-3) mainly originates from the exposure to inert and ambient gas atmosphere during the sample preparation, storage, and transfer; (ii) the contribution of other sources of gap states such as structural imperfections at grain boundaries is negligible (<1018states e V-1c m-3) .

  8. Structural Investigation of Mixed Nitrided Galloaluminophosphates ``AlGaPON'' by EELS, XAS, and XPS Spectroscopies

    NASA Astrophysics Data System (ADS)

    Delsarte, S.; Serin, V.; Flank, A.-M.; Villain, F.; Grange, P.

    2002-01-01

    Amorphous nitrided galloaluminophosphates "AlGaPON" catalysts with nitrogen contents varying from 0 to 23.3 wt% N were obtained by nitriding an Al0.5Ga0.5PO4 precursor under ammonia flow at 750°C in a tubular furnace. The structural changes induced by this treatment were investigated by electron energy loss spectroscopy (EELS), X-ray absorption spectroscopy (XAS), and X-ray photoelecton spectroscopy (XPS). XANES and XPS results indicate that the first-coordination spheres of P, Ga, and Al atoms are modified by nitridation. In particular, the comparison of the P XANES spectra recorded on "AlGaPON" and on a PON phosphorus oxynitride (reference of mixed PO2N2 tetrahedra) reveals that mainly PO2N2 tetrahedra are present in highly nitrided samples. Moreover, the replacement of oxygen by nitrogen probably concerned P-O-Ga bonds rather than P-O-Al. EELS investigation reveals that the precursor is homogeneous at the used probe scale, but indicates that nitridation is accompanied by a loss of homogeneity of the material.

  9. Photoemission of Single Dust Grains for Heliospheric Conditions

    NASA Technical Reports Server (NTRS)

    Spann, James F., Jr.; Venturini, Catherine C.; Abbas, Mian M.; Comfort, Richard H.

    2000-01-01

    Initial results of an experiment to measure the photoemission of single dust grains as a function of far ultraviolet wavelengths are presented. Coulombic forces dominate the interaction of the dust grains in the heliosphere. Knowledge of the charge state of dust grains, whether in a dusty plasma (Debye length < intergrain distance) or in the diffuse interplanetary region, is key to understanding their interaction with the solar wind and other solar system constituents. The charge state of heliospheric grains is primarily determined by primary electron and ion collisions, secondary electron emission and photoemission due to ultraviolet sunlight. We have established a unique experimental technique to measure the photoemission of individual micron-sized dust grains in vacuum. This technique resolves difficulties associated with statistical measurements of dust grain ensembles and non-static dust beams. The photoemission yield of Aluminum Oxide 3-micron grains For wavelengths from 120-300 nm with a spectral resolution of 1 nm FWHM is reported. Results are compared to interplanetary conditions.

  10. Magneto-optical and photoemission studies of ultrathin wedges

    SciTech Connect

    Bader, S.D.; Li, Dongqi

    1995-12-01

    Magnetic phase transitions of Fe wedges grown epitaxially on Cu(100) are detected via the surface magneto-optical Kerr effect and used to construct a phase diagram for face centered Fe. Also, the confinement of Cu sp- and d-quantum-well states is studied for Cu/Co(wedge)/Cu(100) utilizing undulator-based photoemission experiments.

  11. Relativistic calculations of angle-dependent photoemission time delay

    NASA Astrophysics Data System (ADS)

    Kheifets, Anatoli; Mandal, Ankur; Deshmukh, Pranawa C.; Dolmatov, Valeriy K.; Keating, David A.; Manson, Steven T.

    2016-07-01

    Angular dependence of photoemission time delay for the valence n p3 /2 and n p1 /2 subshells of Ar, Kr, and Xe is studied in the dipole relativistic random phase approximation. Strong angular anisotropy of the time delay is reproduced near respective Cooper minima while the spin-orbit splitting affects the time delay near threshold.

  12. ToF-SIMS and XPS study of ancient papers

    NASA Astrophysics Data System (ADS)

    Benetti, Francesca; Marchettini, Nadia; Atrei, Andrea

    2011-01-01

    The surface composition of 18th century papers was investigated by means of ToF-SIMS and XPS. The aim of the present study was to explore the possibility of using these surface sensitive methods to obtain information which can help to determine the manufacturing process, provenance and state of conservation of ancient papers. The ToF-SIMS results indicate that the analyzed papers were sized by gelatin and that alum was added as hardening agent. The paper sheets produced in near geographical areas but in different paper mills exhibit a similar surface composition and morphology of the fibers as shown by the ToF-SIMS measurements. The ToF-SIMS and the XPS results indicate that a significant fraction of the cellulose fibers is not covered by the gelatin layer. This was observed for the ancient papers and for a modern handmade paper manufactured according to the old recipes.

  13. XPS and IGC characterization of steam treated triticale straw

    NASA Astrophysics Data System (ADS)

    Zhao, Liyan; Boluk, Yaman

    2010-10-01

    The surface chemical composition and surface energy of native and steam treated triticale straws have been investigated by X-ray photoelectron spectroscopy (XPS) and inverse gas chromatography (IGC) to reveal the effect of steam treatment temperature and time. The XPS results show that the contents of C elements and C-C group on the exterior surface of native triticale straw are much higher than those on the interior surface, indicating that there was a high quantity of wax on the exterior surface of the native triticale straw. Upon steam treatment, both carbon levels and C-C groups reduce with increasing steam temperature and treatment time of the exterior surfaces. However, the effect of steam treatment on the interior surface is very limited. In terms of the surface acid and base properties, the steam treated samples exhibited higher acid and base properties than the native sample, indicating a more polar surface of the steam treated sample.

  14. Chemical state determination of molecular gallium compounds using XPS.

    PubMed

    Bourque, Jeremy L; Biesinger, Mark C; Baines, Kim M

    2016-05-01

    A series of molecular gallium compounds were analyzed using X-ray photoelectron spectroscopy (XPS). Specifically, the Ga 2p3/2 and Ga 3d5/2 photoelectron binding energies and the Ga L3M45M45 Auger electron kinetic energies of compounds with gallium in a range of assigned oxidation numbers and with different stabilizing ligands were measured. Auger parameters were calculated and used to generate multiple chemical speciation (or Wagner) plots that were subsequently used to characterize the novel gallium-cryptand[2.2.2] complexes that possess ambiguous oxidation numbers for gallium. The results presented demonstrate the ability of widely accessible XPS instruments to experimentally determine the chemical state of gallium centers and, as a consequence, provide deeper insights into reactivity compared to assigned oxidation and valence numbers.

  15. Standard Test Data and Peak Fitting for XPS Measurements

    National Institute of Standards and Technology Data Gateway

    Standard Test Data and Peak Fitting for XPS Measurements (Web, free access)   This web site provides an extensive set of simulated photoelectron spectroscopy data for users to test software for determining the positions and intensities of overlapping peaks. Users download the data, perform their analyses, and then upload their results. A Java program evaluates the results and provides a graphical presentation of the errors in the user's analyses.

  16. Electronic Properties of Pseudomorphic Metallic Films: Photoemission and Inverse Photoemission Measurements

    NASA Astrophysics Data System (ADS)

    Mankey, Gary Jay

    Recent developments in experimental physics have made possible the production and characterization of ultrathin metallic films of atomic dimension. The methods used to grow pseudomorphic fcc films of Ni, Co, and Fe on Cu(001) are described. High-quality epitaxial films are produced by vapor deposition in an ultra-high vacuum environment on suitably prepared substrates. The morphology of these films is characterized using a variety of experimental techniques: Auger electron spectroscopy, low-energy electron diffraction, reflection high-energy electron diffraction, and thermal desorption spectroscopy of adsorbed hydrogen. The magnetic properties of the films are measured with a surface magneto-optic Kerr effect magnetometer. The occupied and unoccupied electronic band dispersions and critical point energies are determined with photoemission and inverse photoemission measurements. These measurements are used as eigenvalues for an empirical combined interpolation scheme bandstructure calculation of the energy bands along the fcc(001) surface normal. Results are presented for Cu(001), Ni(001), Co(001), and paramagnetic Fe(001). Changes in the unoccupied electronic states in the ultrathin film limit are determined for Co and Fe films on Cu(111). The Co films exhibit a bulk-like electronic structure similar to hcp Co(0001) down to films one atomic layer thick. The low-spin ferromagnetic phase of fcc Fe is produced on Cu(111) for films below 5 atomic layers thick. Above this thickness, the Fe films revert to a bulk-like bcc(110) phase. The development of the electronic structure is measured for ultrathin Cu films grown on a specially prepared fcc Co(001) substrate. The Cu 3d band is significantly narrowed for films 1 atomic layer thick and bulk-like for films 3 atomic layers thick (one fcc unit cell). The s, p band exhibits quantum-well states due to the discretization of reciprocal space in the direction perpendicular to the film surface. These quantum-well states are

  17. Resonant photoemission study of multiferroic LuFe{sub 2}O{sub 4} across three-dimensional to two-dimensional charge ordering

    SciTech Connect

    Patankar, S.; Choudhary, R. J.; Phase, D. M.

    2015-04-27

    Electronic structures modification of polycrystalline LuFe{sub 2}O{sub 4} across 3 dimensional to 2 dimensional charge ordering (CO) has been studied by resonance photoemission spectroscopy. Constant-initial-state spectra measured across 3p → 3d resonance energy indicate its charge transfer insulating behavior. Valance band spectra study shows states lying closer to the Fermi level are due to Fe{sup 2+} ions. As the temperature is varied from 3D to 2D CO state, a weight transfer of DOS from low binding energy to higher binding energy is observed which is attributed to the modification in the Fe-O hybridized states.

  18. Two-photon photoemission investigation of electronic and dynamical properties of alkali atoms adsorbed on noble metal surfaces

    NASA Astrophysics Data System (ADS)

    Sametoglu, Vahit

    We present a systematic time-resolved two-photon photoemission study of the electronic and dynamical properties of Li through Cs adsorbed on Cu(111) and Ag(111) surfaces. A fundamental problem in surface science is how to describe the electronic structure of a chemisorption interface based on the intrinsic properties of the interacting materials. Because of their simple s-electron structure, elements of the alkali atom group comprise paradigmatic adsorbates in many theories of chemisorption, whereas the complementary experimental studies are sparse and incomplete. Through a combination of spectroscopic and femtosecond time-resolved surface measurements, we are able to probe systematically the binding energies, symmetries, and electron and nuclear relaxation dynamics of the initially unoccupied alkali atom resonances. As a prelude, we study the two-photon photoemission process occurring at the bare Ag(111) surface. We develop a quantitative model for two-photon photoemission process, where the nonresonant and k-dependent two-photon absorption between the lower and upper sp-bands is modeled by the optical Bloch equations, and the angle-dependent intensities are described by the Fresnel equations. Our two-photon photoemission spectra of Li through Cs chemisorbed Cu(111) and Ag(111) surfaces reveal two resonances with the m = 0 and m = +/-1 symmetry ('m' is the projection of the orbital angular momentum 'l' onto the surface plane). For the m = 0 resonance, which is derived from the hybridization of the ns and npz orbitals of alkali atoms, we find a binding energy of 1.84--1.99 eV below the vacuum level, which is independent of the alkali atom period, and tunes with coverage in a universal manner. At 0.3--0.7 eV higher energy, we discover and identify the m = +/-1 resonance by its characteristic angular intensity distribution, which derives from the antisymmetry of the npx and npy orbitals. We implement a quantitative model for the alkali atom chemisorption based on the

  19. Effects of the low Earth orbit space environment on the surface chemistry of Kapton polyimide film: An XPS study

    NASA Technical Reports Server (NTRS)

    Lee, Myung; Rooney, William; Whiteside, James

    1992-01-01

    Kapton H (DuPont Trademark) polyimide specimens exposed to the low earth (LEO) space environment suffered significant weathering with surface erosions of approximately 8.0 microns. Despite these effects, no significant changes in bulk chemistry were observed. X-ray photoelectron spectroscopy (XPS) was used to determine local changes induced from approximately 25 percent in 1980 vintage ground control specimens to nearly 53 percent in space exposed specimens. The greatest increase was observed for the divalent oxygen moieties, although a slight increase in carbonyl oxygen was also measured. Furthermore, the chemical shifts of all XPS peaks of space-exposed Kapton are shifted to higher energy. This is consistent with a higher oxidation state of the space exposed surface. Finally, space exposed specimens had distinct silicon peaks (2p 100 eV and 2s 149 eV) in their XPS spectra in agreement with widespread reports of silicon contamination throughout the LDEF satellite. These results are discussed in terms of surface reactivity of the polyimide exposed to the LEO environment and the chemical nature of contaminants deposited on flight surfaces due to satellite outgassing.

  20. Chemical characterization of soot particles emitted by Wood-Burning Cook Stoves: A XPS and HRTEM study

    NASA Astrophysics Data System (ADS)

    Carabali, Giovanni; Peralta, Oscar; Castro, Telma; Torres, Ricardo; Ruiz, Gerardo; Molina, Luisa; Saavedra, Isabel

    2014-05-01

    The morphology, microstructure, chemical composition, and electronic structure of soot particles emitted directly from biofuel cook stoves have been studied by high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). In order to obtain freshly emitted soot particles, copper grids for Transmission Electron Microscope (TEM) were placed on the last two of an 8-stages MOUDI cascade impactor. The analysis of HRTEM micrographs revealed the nanostructure and the particle size of soot chain. Additionally, the morphology of soot particles was analyzed calculating the border-based fractal dimension (Df). Particles sampled on the first heating stage exhibit complex shapes with high values of Df, which are present as aggregates formed by carbon ceno-spheres. The XPS survey spectrum for soot particles shows that the main particle composition is carbon. We also observed differences in the carbon/oxygen (C/O) ratio of the particles, which probably depends on the combustion process efficiency of each cook-stove analyzed. The XPS C-1s spectra show carbon with two peaks that correspond to sp2 and sp3 hybridization. Also, real-time absorption (βa) and scattering (αs) coefficients of the particles emitted by cook stoves were measured. The trend in βa and αs indicate that the cooking process has two important combustion stages which varied in its flaming strength, being vigorous in the first stage and soft in the second one.

  1. X-ray photoemission spectroscopy of nonmetallic materials: Electronic structures of boron and BxOy

    NASA Astrophysics Data System (ADS)

    Ong, C. W.; Huang, H.; Zheng, B.; Kwok, R. W. M.; Hui, Y. Y.; Lau, W. M.

    2004-04-01

    Although an increasing volume of x-ray photoemission spectroscopic (XPS) data has been accumulated on boron and boron-rich compounds because of their unusual properties, including a unique three-center, two-electron bonding configuration, their common nonmetallic nature has been overlooked. Typically, the measured energy-state data are not clarified by surface Fermi level positions of these nonmetallic samples, which compromises the scientific contents of the data. In the present study, we revisited the XPS studies of sputter-cleaned β-rhombohedral boron (βr-B), the oxidized surface of βr-B, B6O pellet, and polished B2O3, to illustrate the impact and resolution of this scientific issue. These samples were chosen because βr-B is the most thermodynamically stable polytype of pure boron, B2O3 is its fully oxidized form, and B6O is the best known superhard family member of boron-rich compounds. From our XPS measurements, including those from a sputter-cleaned gold as a metal reference, we deduced that our βr-B had a surface Fermi level located at 0.7±0.1 eV from its valence-band maximum (VBM) (referred as EFL) and a binding energy for its B 1s core level at 187.2 eV from VBM (Eb,VBM). The latter attribute, unlike typical XPS binding energy data that are referenced to a sample-dependent Fermi level (Eb,FL), is immune from any uncertainties and variations arising from sample doping and surface charging. For bulk B2O3, we found an Eb,VBM for its B 1s core level at 190.5 eV and an Eb,FL at 193.6 eV. For our βr-B subjected to a surface oxidation treatment, an overlayer structure of ˜1.2 nm B2O3/˜2 nm B2O/B was found. By comparing the data from this sample and those from βr-B and bulk B2O3, we infer that the oxide overlayer carried some negative fixed charge and this induced on the semiconducting βr-B sample an upward surface band bending of ˜0.6 eV. As for our B6O sample, we found an EFL of ˜1.7 eV and two different chemical states having Eb,VBM of 185.4 and

  2. The behavior of f-levels in hcp and bcc rare-earth elements in the ground state and XPS and BIS spectroscopy from density-functional theory.

    PubMed

    Jarlborg, T

    2014-04-16

    The electronic structures of rare-earth elements in the hexagonal close-packed structure and Europium in the body-centered cubic structure are calculated using density-functional theory (DFT). X-ray photoemission spectroscopy (XPS) and bremsstrahlung isochromatic spectroscopy (BIS) simulations are made within DFT by implying that the f-electrons are excited by a large photon energy, either by removal from the occupied states in XPS or by addition to the unoccupied f-states in BIS. The results show sizable differences in the apparent position of the f-states compared to the f-band energy of the ground states. This result is fundamentally different from calculations assuming strong on-site correlation, since all the calculations are based on DFT. The spin-orbit coupling and multiplet splittings are not included, and the present simulation accounts for almost half of the difference between the f-level positions in the DFT ground states and the observed f-level positions. The electronic specific-heat at low T is compatible with the DFT ground state, where f-electrons often reside at the Fermi level.

  3. Experimental Observation and Theoretical Description of the Pure Fano Effect in the Valence-Band Photoemission of Ferromagnets

    SciTech Connect

    Minar, J.; Ebert, H.; De Nadaie, C.; Brookes, N.B.; Venturini, F.; Ghiringhelli, G.; Chioncel, L.; Katsnelson, M. I.; Lichtenstein, A. I.

    2005-10-14

    The pure Fano effect in angle-integrated valence-band photoemission of ferromagnets has been observed for the first time. A contribution of the intrinsic spin polarization to the spin polarization of the photoelectrons has been avoided by an appropriate choice of the experimental parameters. The theoretical description of the resulting spectra reveals a complete analogy to the Fano effect observed before for paramagnetic transition metals. While the theoretical photocurrent and spin-difference spectra are found in good quantitative agreement with experiment in the case of Fe and Co, only a qualitative agreement could be achieved in the case of Ni by calculations on the basis of plain local spin-density approximation. Agreement with experimental data could be improved in this case in a very substantial way by a treatment of correlation effects on the basis of dynamical mean field theory.

  4. Derivation of dielectric function and inelastic mean free path from photoelectron energy-loss spectra of amorphous carbon surfaces

    NASA Astrophysics Data System (ADS)

    David, Denis; Godet, Christian

    2016-11-01

    Photoelectron Energy Loss Spectroscopy (PEELS) is a highly valuable non destructive tool in applied surface science because it gives access to both chemical composition and electronic properties of surfaces, including the near-surface dielectric function. An algorithm is proposed for real materials to make full use of experimental X-ray photoelectron spectra (XPS). To illustrate the capabilities and limitations of this algorithm, the near-surface dielectric function ε(ℏω) of a wide range of amorphous carbon (a-C) thin films is derived from energy losses measured in XPS, using a dielectric response theory which relates ε(ℏω) and the bulk plasmon (BP) loss distribution. Self-consistent separation of bulk vs surface plasmon excitations, deconvolution of multiple BP losses and evaluation of Bethe-Born sensitivity factors for bulk and surface loss distributions are crucial to obtain several material parameters: (1) energy loss function for BP excitation, (2) dielectric function of the near-surface material (3-5 nm depth sensitivity), (3) inelastic mean free path, λP (E0), for plasmon excitation, (4) surface excitation parameter, (5) effective number NEFF of valence electrons participating in the plasma oscillation. This photoelectron energy loss spectra analysis has been applied to a-C and a-C:H films grown by physical and chemical methods with a wide range of (sp3/sp2 + sp3) hybridization, optical gap and average plasmon energy values. Different methods are assessed to accurately remove the photoemission peak tail at low loss energy (0-10 eV) due to many-body interactions during the photo-ionization process. The σ + π plasmon excitation represents the main energy-loss channel in a-C; as the C atom density decreases, λP (970 eV) increases from 1.22 nm to 1.6 nm, assuming a cutoff plasmon wavenumber given by a free electron model. The π-π* and σ-σ* transitions observed in the retrieved dielectric function are discussed as a function of the average (sp3/sp

  5. The application of XPS to the study of MIC

    SciTech Connect

    Kearns, J.R.; Clayton, C.R.; Halada, G.P.; Gillow, J.B.; Francis, A.J.

    1992-01-01

    The biotic and abiotic factors that contribute to Microbiologically Influenced Corrosion (MIC) involve the transformation of chemical species at a metal surface. X-ray Photoelectron Spectroscopy (XPS) is utilized in conjunction with conventional microbiological and Quantitative Chemical Analytical techniques to better understand the effect of environmental conditions on microbial behavior as well as the ability of bacteria to alter local environmental conditions. Specifically, the interaction of Fe, Cr, Ni, Mo ions with Desulfovibrio sp. under anoxic conditions were studied. This is the first phase of a systematic study of microbial activity and the effects of alloy elements and thermo-mechanical treatments on the MIC resistance of stainless steels.

  6. Simultaneous Use Of Zr And Mg Anodes In XPS

    NASA Technical Reports Server (NTRS)

    Allgeyer, D. F.; Pratz, E. H.

    1996-01-01

    Improved x-ray source for x-ray photoelectron spectroscopy (XPS) contains both zirconium anode with beryllium window and magnesium anode with aluminum window. Previously unresolvable peaks of electron-energy spectrum become resolvable. Developed specifically for use in analyzing distributions of chemical constituents in surface layers of specimens of 2219 aluminum alloy and in determining the depths of surface oxide layers and relative proportions of aluminum and oxide in layers. Also used to study chemical constituents of surface layers in other material systems - for example, thin oxide films on silicon-based semiconductor devices, oxide films on alloys, and surface layers affecting adhesion of paints or bonding materials.

  7. XPS investigation of DNA binding to zirconium-phosphonate surfaces.

    PubMed

    Lane, Sarah M; Monot, Julien; Petit, Marc; Bujoli, Bruno; Talham, Daniel R

    2007-07-01

    The surface coverage of phosphorylated oligonucleotides immobilized on a zirconium-phosphonate surface was analyzed using X-ray photoelectron spectroscopy (XPS). By quantifying the intensity of the N 1s signal originating from the oligonucleotide and the Zr 3d peak from the metal-phosphonate surface, the surface coverage of the oligonucleotide could be calculated with a modified substrate-overlayer model. We found relatively low surface coverages indicating that once covalently bound via the terminal phosphate the polymer chain further physisorbs to the surface limiting the adsorption of additional molecules.

  8. Soft X-ray photoemission studies of Hf oxidation

    SciTech Connect

    Suzer, S.; Sayan, S.; Banaszak Holl, M.M.; Garfunkel, E.; Hussain, Z.; Hamdan, N.M.

    2002-02-01

    Soft X-Ray Photoemission Spectroscopy using surface sensitive Synchrotron Radiation has been applied to accurately determine the binding energy shifts and the valence band offset of the HfO2 grown on Hf metal. Charging of oxide films under x-rays (or other irradiation) is circumvented by controlled and sequential in-situ oxidation. Photoemission results show the presence of metallic Hf (from the substrate) with the 4f7/2 binding energy of 14.22 eV, fully oxidized Hf (from HfO2) with the 4f7/2 binding energy of 18.16 eV, and at least one clear suboxide peak. The position of the valence band of HfO2 with respect to the Hf(m) Fermi level is determined as 4.05 eV.

  9. Photoemission from Ag, Cu, and CsI

    SciTech Connect

    Srinivasan-Rao, T.; Fischer, J.; Tsang, T.

    1992-06-01

    Photoemission characteristics of three different cathodes, CsI, Ag film and Cu were investigated. CsI, upon irradiation by 213 nm, 10ps laser pulse yields a quantum efficiency of 4% at O.2{mu}J input energy. The saturation mechanism observed at higher input energies require further investigation. Ag film, upon irradiation by 630 nm, 300 fs laser emit prompt photoelectrons after absorbing 2 photons. There was no evidence of optical damage of the film up to 10{sup 11} W/cm{sup 2}. At low intensities, photoemission from Cu is a simple {nu}-e{sup {minus}} interaction, the nonlinearity of the process depending strongly on trace impurities. At higher intensities, there appears to be a change in the emission mechanism.

  10. Generalized Franck-Condon principle for resonant photoemission

    NASA Astrophysics Data System (ADS)

    Sałek, Paweł; Gel'mukhanov, Faris; Ågren, Hans; Björneholm, Olle; Svensson, Svante

    1999-10-01

    A generalized Franck-Condon (GFC) principle for resonant x-ray Raman scattering and for resonant photoemission in particular is derived and numerically investigated. The GFC amplitudes differ from ordinary FC amplitudes by the presence of photon and photoelectron phase factors which describe the coupling-or interference-of the x-ray photons or Auger electrons with the nuclear motion. With the GFC amplitudes, a Kramers-Heisenberg relation is obtained for vibronic transitions that corrects the so-called lifetime-vibrational interference formula. For resonant photoemission in the soft-x-ray region involving typical bound potential surfaces, the generalization gives a contribution to the FC factors that can amount to 20%. For core excitation above the dissociation threshold, the GFC principle relates to Doppler effects on the ejected photoelectron both for the so-called ``molecular'' and ``atomic'' bands. The role of the GFC principle in direct photoionization is briefly discussed.

  11. Experimental setup for high energy photoemission using synchrotron radiation

    SciTech Connect

    Torelli, P.; Sacchi, M.; Cautero, G.; Cautero, M.; Krastanov, B.; Lacovig, P.; Pittana, P.; Sergo, R.; Tommasini, R.; Fondacaro, A.; Offi, F.; Paolicelli, G.; Stefani, G.; Grioni, M.; Verbeni, R.; Monaco, G.; Panaccione, G.

    2005-02-01

    The instrument VOLPE (volume photoemission from solids) is an experimental setup dedicated to high energy photoemission (PE) experiments. The instrument is equipped with an electrostatic hemispherical spectrometer especially designed to analyze high energy electrons (up to 10 keV) with high resolving power. In order to attain an energy resolution of a few tens of millielectron volts, we designed and constructed a dedicated input lens system, high stability power supplies, and a low dark-count detector and readout electronics. The system has been tested and is now operational on the ID16 beamline at European Synchrotron Radiation Facility, where an optical layout has been developed to perform high energy, high resolution PE experiments. First results show an overall energy resolution (electron + photon) of 71{+-}7 meV at 5934 eV. The effective attenuation length of the photoelectrons is estimated to be 5{+-}0.5 nm at a kinetic energy of 5 keV.

  12. Ultrafast angle-resolved photoemission spectroscopy of quantum materials

    NASA Astrophysics Data System (ADS)

    Smallwood, Christopher L.; Kaindl, Robert A.; Lanzara, Alessandra

    2016-07-01

    Techniques in time- and angle-resolved photoemission spectroscopy have facilitated a number of recent advances in the study of quantum materials. We review developments in this field related to the study of incoherent nonequilibrium electron dynamics, the analysis of interactions between electrons and collective excitations, the exploration of dressed-state physics, and the illumination of unoccupied band structure. Future prospects are also discussed.

  13. Photoemission Experiments for Charge Characteristics of Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; West, E.; Pratico, J.; Tankosic, D.; Venturini, C. C.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 2-10 gm diameter are levitated in a vacuum chamber at pressures approximately 10(exp-5) torr and exposed to a collimated beam of UV radiation in the 120-200 nm spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV wavelength with a spectral resolution of 8 nm. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on test particles of silica and polystyrene to determine the photoelectric yields and surface equilibrium potentials when exposed to UV radiation. A brief description of an experimental procedure for photoemission studies is given and some preliminary laboratory measurements of the photoelectric yields of individual dust particles are presented.

  14. Bulk sensitive hard x-ray photoemission electron microscopy

    SciTech Connect

    Patt, M. Wiemann, C.; Weber, N.; Escher, M.; Merkel, M.; Gloskovskii, A.; Drube, W.; Schneider, C. M.

    2014-11-15

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. The high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.

  15. Application of Koopmans' theorem for density functional theory to full valence-band photoemission spectroscopy modeling.

    PubMed

    Li, Tsung-Lung; Lu, Wen-Cai

    2015-10-01

    In this work, Koopmans' theorem for Kohn-Sham density functional theory (KS-DFT) is applied to the photoemission spectra (PES) modeling over the entire valence-band. To examine the validity of this application, a PES modeling scheme is developed to facilitate a full valence-band comparison of theoretical PES spectra with experiments. The PES model incorporates the variations of electron ionization cross-sections over atomic orbitals and a linear dispersion of spectral broadening widths. KS-DFT simulations of pristine rubrene (5,6,11,12-tetraphenyltetracene) and potassium-rubrene complex are performed, and the simulation results are used as the input to the PES models. Two conclusions are reached. First, decompositions of the theoretical total spectra show that the dissociated electron of the potassium mainly remains on the backbone and has little effect on the electronic structures of phenyl side groups. This and other electronic-structure results deduced from the spectral decompositions have been qualitatively obtained with the anionic approximation to potassium-rubrene complexes. The qualitative validity of the anionic approximation is thus verified. Second, comparison of the theoretical PES with the experiments shows that the full-scale simulations combined with the PES modeling methods greatly enhance the agreement on spectral shapes over the anionic approximation. This agreement of the theoretical PES spectra with the experiments over the full valence-band can be regarded, to some extent, as a collective validation of the application of Koopmans' theorem for KS-DFT to valence-band PES, at least, for this hydrocarbon and its alkali-adsorbed complex. PMID:25974677

  16. Visualizing the chiral anomaly in Dirac and Weyl semimetals with photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Behrends, Jan; Grushin, Adolfo G.; Ojanen, Teemu; Bardarson, Jens H.

    2016-02-01

    Quantum anomalies are the breaking of a classical symmetry by quantum fluctuations. They dictate how physical systems of diverse nature, ranging from fundamental particles to crystalline materials, respond topologically to external perturbations, insensitive to local details. The anomaly paradigm was triggered by the discovery of the chiral anomaly that contributes to the decay of pions into photons and influences the motion of superfluid vortices in 3He-A. In the solid state, it also fundamentally affects the properties of topological Weyl and Dirac semimetals, recently realized experimentally. In this work we propose that the most identifying consequence of the chiral anomaly, the charge density imbalance between fermions of different chirality induced by nonorthogonal electric and magnetic fields, can be directly observed in these materials with the existing technology of photoemission spectroscopy. With angle resolution, the chiral anomaly is identified by a characteristic note-shaped pattern of the emission spectra, originating from the imbalanced occupation of the bulk states and a previously unreported momentum dependent energy shift of the surface state Fermi arcs. We further demonstrate that the chiral anomaly likewise leaves an imprint in angle averaged emission spectra, facilitating its experimental detection. Thereby, our work provides essential theoretical input to foster the direct visualization of the chiral anomaly in condensed matter, in contrast to transport properties, such as negative magnetoresistance, which can also be obtained in the absence of a chiral anomaly.

  17. Evidence of the nature of core-level photoemission satellites using angle-resolved photoemission extended fine structure

    SciTech Connect

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A.

    1997-04-01

    The authors present a unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level photoemission satellites by examining the satellite diffraction pattern in the Angle Resolved Photoemission Extended Fine Structure (ARPEFS) mode. They show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. They present ARPEFS data for the carbon 1s from ({radical}3x{radical}3)R30 CO/Cu(111) and p2mg(2xl)CO/Ni(110), nitrogen 1s from c(2x2) N{sub 2}/Ni(100), cobalt 1s from p(1x1)Co/Cu(100), and nickel 3p from clean nickel (111). The satellite peaks and tails of the Doniach-Sunjic line shapes in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature.

  18. Time- and angle-resolved photoemission spectroscopy of hydrated electrons near a liquid water surface.

    PubMed

    Yamamoto, Yo-ichi; Suzuki, Yoshi-Ichi; Tomasello, Gaia; Horio, Takuya; Karashima, Shutaro; Mitríc, Roland; Suzuki, Toshinori

    2014-05-01

    We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed.

  19. Time- and Angle-Resolved Photoemission Spectroscopy of Hydrated Electrons Near a Liquid Water Surface

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yo-ichi; Suzuki, Yoshi-Ichi; Tomasello, Gaia; Horio, Takuya; Karashima, Shutaro; Mitríc, Roland; Suzuki, Toshinori

    2014-05-01

    We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed.

  20. Silicon (100)/SiO2 by XPS

    SciTech Connect

    Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-25

    Silicon (100) wafers are ubiquitous in microfabrication and, accordingly, their surface characteristics are important. Herein, we report the analysis of Si (100) via X-ray photoelectron spectroscopy (XPS) using monochromatic Al K radiation. Survey scans show that the material is primarily silicon and oxygen, and the Si 2p region shows two peaks that correspond to elemental silicon and silicon dioxide. Using these peaks the thickness of the native oxide (SiO2) was estimated using the equation of Strohmeier.1 The oxygen peak is symmetric. The material shows small amounts of carbon, fluorine, and nitrogen contamination. These silicon wafers are used as the base material for subsequent growth of templated carbon nanotubes.

  1. Secondary electron measurement and XPS characterization of NEG coatings

    SciTech Connect

    Sharma, R. K. Sinha, Atul K. Gupta, Nidhi Nuwad, J. Jagannath, Gadkari, S. C. Singh, M. R. Gupta, S. K.

    2014-04-24

    Ternary alloy coatings of IVB and VB materials provide many of benefits over traditional material surfaces such as creation of extreme high vacuum(XHV), lower secondary electron yield(SEY), low photon desorption coefficient. XHV (pressure < 10{sup −10} mbar) is very useful to the study of surfaces of the material in as it is form, high energy particle accelerators(LHC, Photon Factories), synchrotrons (ESRF, Ellectra) etc.. Low secondary electron yield leads to very low multi-pacting utilizes to increase beam life time. In this paper preparation of the coatings and a study of secondary electron yield measurement after heating at different temperatures has been shown also results of their surface characterization based on shift in binding energy has been produced using the surface techniques XPS. Stoichiometry of the film was measured by Energy dispersive x-ray analysis (EDX)

  2. XPS Study of Counterion Incorporation into Poly(vinylferrocene).

    PubMed

    Zeng, X; Moon, S; Bruckenstein, S; Hillman, A R

    1998-07-01

    XPS provides answers to two significant issues that arise in studying electroactive polymers. First, what fraction of possible charge centers participates in the redox process? Second, what are the relative partition coefficients of two counterions that compete as charge-compensating counterions? To answer both these questions, we emersed (or immersed) poly(vinylferrocene) films from (or into) supporting electrolytes while maintaining potential control to govern the electrochemical history of the electroactive film. We found that all ferrocene units in the surface of a poly(vinylferrocene) film deposited on gold can be oxidized when the counterion is perchlorate, tetrafluoroborate, hexafluorophosphate, tosylate, or 1,5-naphthalenedisulfonate. In answering the second question, no internal standard was needed:  the concentration ratios of the two competing ions in both water and polymer phases were used as the experimental variables. For the completely oxidized ferricinium film, we found that the partition coefficient of perchlorate ions is 67% of that of fluoroborate ions.

  3. Surface study of metal-containing ionic liquids by means of photoemission and absorption spectroscopies

    NASA Astrophysics Data System (ADS)

    Caporali, Stefano; Pedio, Maddalena; Chiappe, Cinzia; Pomelli, Christian S.; Acres, Robert G.; Bardi, Ugo

    2016-06-01

    The vacuum/liquid interface of different ionic liquids obtained by dissolving bistriflimide salts of Ag, Al, Cu, Ni, and Zn in 1-butyl-3-methylimidazolium bistriflimide ([bmim][Tf2N]) was investigated under vacuum using AR-XPS and NEXAFS. The XPS spectra show chemical shifts of the nitrogen of the bistriflimide anion as a function of the metal type, indicating different strength of the coordination bonds. In silver bearing ILs, silver ions were found to be only weakly coordinated. On the contrary, Ni, Cu, Zn, and especially Al exhibit large chemical shifts attributable to strong interaction with the bistriflimide ions. The outermost surface was enriched with or depleted of metal ions as a function of the nature of the metals. Nickel and zinc tend to slightly concentrate at the surface while copper, silver, and especially aluminum are depleted at the surface. We also observed that the aliphatic alkyl chains of the cations tend to protrude outside the surface in all systems studied. However, the presence of metals generally increases the amount of bistriflimide at the vacuum/liquid interface.

  4. Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials.

    PubMed

    Mangolini, Filippo; McClimon, J Brandon; Rose, Franck; Carpick, Robert W

    2014-12-16

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique. This assumption can introduce large errors when analyzing the vast majority of solid surfaces due to the presence of complex surface and near-surface structures such as oxides and contamination layers. An analytical methodology is presented for removing the contribution of these nanoscale overlayers from NEXAFS spectra of two-layered systems to provide a corrected photoabsorption spectrum of the substrate. This method relies on the subtraction of the NEXAFS spectrum of the overlayer adsorbed on a reference surface from the spectrum of the two-layer system under investigation, where the thickness of the overlayer is independently determined by X-ray photoelectron spectroscopy (XPS). This approach is applied to NEXAFS data acquired for one of the most challenging cases: air-exposed hard carbon-based materials with adventitious carbon contamination from ambient exposure. The contribution of the adventitious carbon was removed from the as-acquired spectra of ultrananocrystalline diamond (UNCD) and hydrogenated amorphous carbon (a-C:H) to determine the intrinsic photoabsorption NEXAFS spectra of these materials. The method alters the calculated fraction of sp(2)-hybridized carbon from 5 to 20% and reveals that the adventitious contamination can be described as a layer containing carbon and oxygen ([O]/[C] = 0.11 ± 0.02) with a thickness of 0.6 ± 0.2 nm and a fraction of sp(2)-bonded carbon of 0.19 ± 0.03. This

  5. Electronic structure of LiCoO{sub 2} thin films: A combined photoemission spectroscopy and density functional theory study

    SciTech Connect

    Ensling, David; Thissen, Andreas; Laubach, Stefan; Schmidt, Peter C.; Jaegermann, Wolfram

    2010-11-15

    The electronic properties of LiCoO{sub 2} have been studied by theoretical band-structure calculations (using density functional theory) and experimental methods (photoemission). Synchrotron-induced photoelectron spectroscopy, resonant photoemission spectroscopy (ResPES), and soft x-ray absorption (XAS) have been applied to investigate the electronic structure of both occupied and unoccupied states. High-quality PES spectra were obtained from stoichiometric and highly crystalline LiCoO{sub 2} thin films deposited ''in situ'' by rf magnetron sputtering. An experimental approach of separating oxygen- and cobalt-derived (final) states by ResPES in the valence-band region is presented. The procedure takes advantage of an antiresonant behavior of cobalt-derived states at the 3p-3d excitation threshold. Information about the unoccupied density of states has been obtained by O K XAS. The structure of the Co L absorption edge is compared to semiempirical charge-transfer multiplet calculations. The experimental results are furthermore compared with band-structure calculations considering three different exchange potentials [generalized gradient approximation (GGA), using a nonlocal Hubbard U (GGA+U) and using a hybrid functional (Becke, three-parameter, Lee-Yang-Parr [B3LYP])]. For these different approaches total density of states and partial valence-band density of states have been investigated. The best qualitative agreement with experimental results has been obtained by using a GGA+U functional with U=2.9 eV.

  6. Measurements of Schottky barrier at the low-k SiOC:H/Cu interface using vacuum ultraviolet photoemission spectroscopy

    SciTech Connect

    Guo, X.; Pei, D.; Zheng, H.; Shohet, J. L.; King, S. W.; Lin, Y.-H.; Fung, H.-S.; Chen, C.-C.; Nishi, Y.

    2015-12-07

    The band alignment between copper interconnects and their low-k interlayer dielectrics is critical to understanding the fundamental mechanisms involved in electrical leakage in low-k/Cu interconnects. In this work, vacuum-ultraviolet (VUV) photoemission spectroscopy is utilized to determine the potential of the Schottky barrier present at low-k a-SiOC:H/Cu interfaces. By examining the photoemission spectra before and after VUV exposure of a low-k a-SiOC:H (k = 3.3) thin film fabricated by plasma-enhanced chemical-vapor deposition on a polished Cu substrate, it was found that photons with energies of 4.9 eV or greater can deplete accumulated charge in a-SiOC:H films, while VUV photons with energies of 4.7 eV or less, did not have this effect. These critical values were identified to relate the electric potential of the interface barrier between the a-SiOC:H and the Cu layers. Using this method, the Schottky barrier at the low-k a-SiOC:H (k = 3.3)/Cu interface was determined to be 4.8 ± 0.1 eV.

  7. Resonant photoemission of oxidized Yb: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Schmidt-May, J.; Gerken, F.; Nyholm, R.; Davis, L. C.

    1984-11-01

    The oxidation-induced valence change of Yb leads to a single 4f hole in the ground state. The creation of the 4f13 configuration which does not exist for any pure rare-earth metal makes it possible to analyze the 4d-->4f Fano resonance for a simple system experimentally as well as theoretically. Calculated Fano profiles for the 4f12 final-state multiplets are in good agreement with photoemission measurements taken with the FLIPPER monochromator at Hamburger Synchrotron-strahlungslabor, Deutsches Elektronen-Synchrotron, using synchrotron radiation from the storage ring DORIS.

  8. Photon Detector For Inverse Photoemission Spectroscopy With Improved Energy Resolution

    SciTech Connect

    Maniraj, M.; D'Souza, S. W.; Barman, S. R.

    2011-07-15

    We present the results from newly designed and fabricated double window photon detector to improve the overall energy resolution for inverse photoemission spectroscopy (IPES). This simple design allows us to introduce an absorption gas (Krypton) to decrease the band-width of the energy selective photon detector and thus improve the resolution. Resonance absorption line of Kr of wavelength of 123.6 nm was used. By fitting the Fermi edge of the IPES spectrum of silver, we find an overall energy resolution improved by 73 meV. The design is modular and ensures ease and safety of handling.

  9. Spin polarized photoemission studies of interfacial and thin film magnetism

    SciTech Connect

    Johnson, P.D.; Brookes, N.B.; Chang, Y.; Garrison, K.

    1993-01-01

    Spin polarized photoemission is used to study the electronic structure of noble metals deposited on ferromagnetic substrates. Studies of Ag deposited on an Fe(001) substrate reveal a series of minority spin interface or quantum well states with binding energies dependent on the thickness of the silver. Similar behavior is observed for Cu films deposited on a fct Co(001) substrate. Tight-binding modeling reproduces many of the observations and shows that hybridization of the sp-bands with the noble metal d-bands cannot be ignored.

  10. Spin polarized photoemission studies of interfacial and thin film magnetism

    SciTech Connect

    Johnson, P.D.; Brookes, N.B.; Chang, Y.; Garrison, K.

    1993-06-01

    Spin polarized photoemission is used to study the electronic structure of noble metals deposited on ferromagnetic substrates. Studies of Ag deposited on an Fe(001) substrate reveal a series of minority spin interface or quantum well states with binding energies dependent on the thickness of the silver. Similar behavior is observed for Cu films deposited on a fct Co(001) substrate. Tight-binding modeling reproduces many of the observations and shows that hybridization of the sp-bands with the noble metal d-bands cannot be ignored.

  11. A combined droplet train and ambient pressure photoemission spectrometer for the investigation of liquid/vapor interfaces

    SciTech Connect

    Starr, David E.; Wong, Ed K.; Worsnop, Douglas R.; Wilson, Kevin R.; Bluhm, Hendrik

    2008-05-01

    We describe a combined ambient pressure photoelectron spectroscopy/droplet train apparatus for investigating the nature and heterogeneous chemistry of liquid/vapor interfaces. In this instrument a liquid droplet train with typical droplet diameters from 50...150 {micro}m is produced by a vibrating orifice aerosol generator (VOAG). The droplets are irradiated by soft X-rays (100...1500 eV) in front of the entrance aperture of a differentially pumped electrostatic lens system that transfers the emitted electrons into a conventional hemispherical electron analyzer. The photoemission experiments are performed at background pressures of up to several Torr, which allows the study of environmentally important liquid/vapor interfaces, in particular aqueous solutions, under equilibrium conditions. The exposure time of the droplet surface to the background gases prior to the XPS measurement can be varied, which will allow future kinetic measurements of gas uptake on liquid surfaces. As an example, a measurement of the surface composition of a {chi} = 0.21 aqueous methanol solution is presented. The concentration of methanol at the vapor/liquid interface is enhanced by a factor of about 3 over the bulk value, while the expected bulk value is recovered at depths larger than about 1.5 nm.

  12. A combined droplet train and ambient pressure photoemission spectrometer for the investigation of liquid/vapor interfaces.

    PubMed

    Starr, David E; Wong, Ed K; Worsnop, Douglas R; Wilson, Kevin R; Bluhm, Hendrik

    2008-06-01

    We describe a combined ambient pressure photoelectron spectroscopy/droplet train apparatus for investigating the nature and heterogeneous chemistry of liquid/vapor interfaces. In this instrument a liquid droplet train with typical droplet diameters from 50-150 mum is produced by a vibrating orifice aerosol generator (VOAG). The droplets are irradiated by soft X-rays (100-1500 eV) in front of the entrance aperture of a differentially pumped electrostatic lens system that transfers the emitted electrons into a conventional hemispherical electron analyzer. The photoemission experiments are performed at background pressures of up to several Torr, which allows the study of environmentally important liquid/vapor interfaces, in particular aqueous solutions, under equilibrium conditions. The exposure time of the droplet surface to the background gases prior to the XPS measurement can be varied, which will allow future kinetic measurements of gas uptake on liquid surfaces. As an example, a measurement of the surface composition of a chi = 0.21 aqueous methanol solution is presented. The concentration of methanol at the vapor/liquid interface is enhanced by a factor of about 3 over the bulk value, while the expected bulk value is recovered at depths larger than about 1.5 nm.

  13. Mott behavior of ultrathin epitaxial LaNiO3 films and interfaces via hard x-ray and standing-wave excited photoemission

    NASA Astrophysics Data System (ADS)

    Gray, Alexander; Kaiser, Alexander; Son, Junwoo; Janotti, Anderson; Yang, See-Hun; Bostwick, Aaron; Ueda, Shigenori; Kobayashi, Keisuke; van de Walle, Chris; Stemmer, Susanne; Fadley, Charles

    2012-02-01

    In this study we apply several emerging x-ray photoemission techniques to study Mott behavior of ultrathin LaNiO3 films and interfaces in a depth-resolved manner. In order to understand the effects of thickness and strain on the electronic structure, we apply hard x-ray photoemission (HAXPES) at 6 keV to epitaxial LaNiO3 films of varying thickness under compressive and tensile strain. Mott metal-to-insulator transition is observed for the thinnest films. Furthermore, standing-wave-excited photoemission is used to study the electronic structure of ultrathin LaNiO3 in a SrTiO3/LaNiO3 superlattice. Standing-wave measurements of core-level and valence band spectra are used to derive layer-resolved densities of states, revealing a suppression of electronic states near the Fermi level in the multilayer as compared to bulk LaNiO3. Further analysis shows that the suppression of these states is not homogeneously distributed over the LaNiO3 layers but is more pronounced near the interfaces.

  14. One-Step Model of Photoemission for Nonlocal Potentials

    NASA Astrophysics Data System (ADS)

    Potthoff, M.; Lachnitt, J.; Nolting, W.; Braun, J.

    1997-10-01

    The one-step model of valence-band photoemission and inverse photoemission from single-crystal surfaces is reformulated for generalized (nonlocal, complex and energy-dependent) potentials. Thereby, it becomes possible to account for self-energy corrections taken from many-body electronic-structure calculations. The original formulation due to Pendry and coworkers employs the KKR multiple-scattering theory for the calculation of the initial state. This prevents a straightforward generalization of the one-step model to nonlocal potentials. We therefore consider the Dyson equation which is set up within a muffin-tin-orbital representation as an alternative to obtain the initial-state Green function. This approach requires a revision of the transition-matrix elements which is carried out in detail. The final state is considered as a time-reversed LEED state as usual. The proposed generalization of the one-step model allows to distinguish between the bare photocurrent reflecting the (quasi-particle) band structure and the secondary effects due to the (dipole) selection rules and due to the wave-vector and energy dependence of the transition-matrix elements.

  15. New Luttinger-Liquid Physics from Photoemission on Li0.9Mo6O17

    SciTech Connect

    Wang, Feng; Alvarez, J V; Mo, S -K; Allen, J W; Gweon, G -H; He, J; Jin, Rongying; Mandrus, David; Hochst, H

    2006-01-01

    Temperature dependent high resolution photoemission spectra of quasi-one-dimensional Li{sub 0.9}Mo{sub 6}O{sub 17} evince a strong renormalization of its Luttinger-liquid density-of-states anomalous exponent. We trace this new effect to interacting charge neutral critical modes that emerge naturally from the two-band nature of the material. Li{sub 0.9}Mo{sub 6}O{sub 17} is shown thereby to be a paradigm material that is capable of revealing new Luttinger physics.

  16. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer.

    PubMed

    Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W

    2015-03-01

    Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  17. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer.

    PubMed

    Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W

    2015-03-01

    Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse. PMID:26798795

  18. Laser intensity effects in carrier-envelope phase-tagged time of flight-photoemission electron microscopy

    NASA Astrophysics Data System (ADS)

    Chew, S. H.; Gliserin, A.; Schmidt, J.; Bian, H.; Nobis, S.; Schertz, F.; Kübel, M.; Yang, Y.-Y.; Loitsch, B.; Stettner, T.; Finley, J. J.; Späth, C.; Ouacha, H.; Azzeer, A. M.; Kleineberg, U.

    2016-04-01

    A time of flight-photoemission electron microscope is combined with a single-shot stereographic above-threshold ionization phase meter for studying attosecond control of electrons in tailored plasmonic nanostructures spatially and energetically via a carrier-envelope phase tagging technique. First carrier-envelope phase-resolved measurements of gold nanoparticles on gold plane and surface roughness from a gold film show an apparent carrier-envelope phase modulation with a period of π. This modulation is found to originate from an intensity dependence of the photoelectron spectra and the carrier-envelope phase measurement rather than from an intrinsic carrier-envelope phase dependence, which is confirmed by simulations. This useful finding suggests that intensity tagging should be considered for phase tagging experiments on plasmonic nanostructures with low carrier-envelope phase sensitivity in order to correct for the intensity-related carrier-envelope phase artifact.

  19. Attosecond interferometry on surfaces: Laser-assisted photoemission from Ag(111) and Au(111) by an XUV pulse train

    NASA Astrophysics Data System (ADS)

    Ambrosio, Marcelo J.; Thumm, Uwe

    2016-05-01

    Motivated by recent RABBITT experiments, we numerically investigated electron emission from metal surfaces by a pulse train of phase coherent attosecond XUV pulses into the assisting electric field of a time-delayed IR laser pulse. From the delay-dependent oscillations of the first-sideband-electron yields in our simulated spectra we deduced the atomic phases of the pulse train's higher harmonic components. These calculations allow us to extract physical properties of solid surfaces, as we numerically demonstrate for the Ag(111) and Au(111) surfaces targeted in, including photoemission from conduction-band and core-level electrons. Supported by the NSF and the Division of Chemical Sciences, Office of the Basic Energy Sciences, Office of Energy Research, US DoE.

  20. Time-dependent many-body treatment of electron-boson dynamics: Application to plasmon-accompanied photoemission

    NASA Astrophysics Data System (ADS)

    Schüler, M.; Berakdar, J.; Pavlyukh, Y.

    2016-02-01

    Recent experiments access the time-resolved photoelectron signal originating from plasmon satellites in correlated materials and address their buildup and decay in real time. Motivated by these developments, we present the Kadanoff-Baym formalism for the nonequilibrium time evolution of interacting fermions and bosons. In contrast to the fermionic case, the bosons are described by second-order differential equations. Solution of the bosonic Kadanoff-Baym equations—which is the central ingredient of this work—requires substantial modification of the usual two-times electronic propagation scheme. The solution is quite general and can be applied to a number of problems, such as the interaction of electrons with quantized photons, phonons, and other bosonic excitations. Here the formalism is applied to the photoemission from a deep core hole accompanied by plasmon excitation. We compute the time-resolved photoelectron spectra and discuss the effects of intrinsic and extrinsic electron energy losses and their interference.

  1. Understanding the Unique Electronic Properties of Nano Structures Using Photoemission Theory.

    PubMed

    Kwon, Soonnam; Choi, Won Kook

    2015-01-01

    Newly emerging experimental techniques such as nano-ARPES are expected to provide an opportunity to measure the electronic properties of nano-materials directly. However, the interpretation of the spectra is not simple because it must consider quantum mechanical effects related to the measurement process itself. Here, we demonstrate a novel approach that can overcome this problem by using an adequate simulation to corroborate the experimental results. Ab initio calculation on arbitrarily-shaped or chemically ornamented nano-structures is elaborately correlated to photoemission theory. This correlation can be directly exploited to interpret the experimental results. To test this method, a direct comparison was made between the calculation results and experimental results on highly-oriented pyrolytic graphite (HOPG). As a general extension, the unique electronic structures of nano-sized graphene oxide and features from the experimental result of black phosphorous (BP) are disclosed for the first time as supportive evidence of the usefulness of this method. This work pioneers an approach to intuitive and practical understanding of the electronic properties of nano-materials. PMID:26634647

  2. Understanding the Unique Electronic Properties of Nano Structures Using Photoemission Theory

    NASA Astrophysics Data System (ADS)

    Kwon, Soonnam; Choi, Won Kook

    2015-12-01

    Newly emerging experimental techniques such as nano-ARPES are expected to provide an opportunity to measure the electronic properties of nano-materials directly. However, the interpretation of the spectra is not simple because it must consider quantum mechanical effects related to the measurement process itself. Here, we demonstrate a novel approach that can overcome this problem by using an adequate simulation to corroborate the experimental results. Ab initio calculation on arbitrarily-shaped or chemically ornamented nano-structures is elaborately correlated to photoemission theory. This correlation can be directly exploited to interpret the experimental results. To test this method, a direct comparison was made between the calculation results and experimental results on highly-oriented pyrolytic graphite (HOPG). As a general extension, the unique electronic structures of nano-sized graphene oxide and features from the experimental result of black phosphorous (BP) are disclosed for the first time as supportive evidence of the usefulness of this method. This work pioneers an approach to intuitive and practical understanding of the electronic properties of nano-materials.

  3. Understanding the Unique Electronic Properties of Nano Structures Using Photoemission Theory

    PubMed Central

    Kwon, Soonnam; Choi, Won Kook

    2015-01-01

    Newly emerging experimental techniques such as nano-ARPES are expected to provide an opportunity to measure the electronic properties of nano-materials directly. However, the interpretation of the spectra is not simple because it must consider quantum mechanical effects related to the measurement process itself. Here, we demonstrate a novel approach that can overcome this problem by using an adequate simulation to corroborate the experimental results. Ab initio calculation on arbitrarily-shaped or chemically ornamented nano-structures is elaborately correlated to photoemission theory. This correlation can be directly exploited to interpret the experimental results. To test this method, a direct comparison was made between the calculation results and experimental results on highly-oriented pyrolytic graphite (HOPG). As a general extension, the unique electronic structures of nano-sized graphene oxide and features from the experimental result of black phosphorous (BP) are disclosed for the first time as supportive evidence of the usefulness of this method. This work pioneers an approach to intuitive and practical understanding of the electronic properties of nano-materials. PMID:26634647

  4. XPS and SEM characterization of electrodeposited transition metals on zirconia

    NASA Astrophysics Data System (ADS)

    Ikonomov, J.; Stoychev, D.; Marinova, Ts

    2000-07-01

    The structure and chemical composition of electrochemically deposited cobalt, copper and cobalt+copper on zirconia have been investigated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and scanning Auger microscopy (SAM) methods. It has been established that as-deposited metal crystallites are mainly formed on the macroconcavities of an electrochemically roughened SS 1.4301 substrate. In the facet zones, the crystallites are much smaller and have a good dispersion. In this case, the cobalt on the surface is present as Co 2+, while copper is found as Cu +. The deposited metal crystallites show no substantial changes in structure after thermal oxidation, which leads to the formation of considerably thicker oxide layers on the metal crystallites where cobalt and copper are in the Co 3+ nd Cu 2+ states. The cobalt and copper oxides obtained on ZrO 2 are characterized by good adhesion and cause no change in the specific surface area of porous zirconia films. Modification of the structure, composition and dispersion of the oxide systems under consideration is promising, with a view to their application as thin porous inorganic catalytic films.

  5. XPS-XRF hybrid metrology enabling FDSOI process

    NASA Astrophysics Data System (ADS)

    Hossain, Mainul; Subramanian, Ganesh; Triyoso, Dina; Wahl, Jeremy; Mcardle, Timothy; Vaid, Alok; Bello, A. F.; Lee, Wei Ti; Klare, Mark; Kwan, Michael; Pois, Heath; Wang, Ying; Larson, Tom

    2016-03-01

    Planar fully-depleted silicon-on-insulator (FDSOI) technology potentially offers comparable transistor performance as FinFETs. pFET FDOSI devices are based on a silicon germanium (cSiGe) layer on top of a buried oxide (BOX). Ndoped interfacial layer (IL), high-k (HfO2) layer and the metal gate stacks are then successively built on top of the SiGe layer. In-line metrology is critical in precisely monitoring the thickness and composition of the gate stack and associated underlying layers in order to achieve desired process control. However, any single in-line metrology technique is insufficient to obtain the thickness of IL, high-k, cSiGe layers in addition to Ge% and N-dose in one single measurement. A hybrid approach is therefore needed that combines the capabilities of more than one measurement technique to extract multiple parameters in a given film stack. This paper will discuss the approaches, challenges, and results associated with the first-in-industry implementation of XPS-XRF hybrid metrology for simultaneous detection of high-k thickness, IL thickness, N-dose, cSiGe thickness and %Ge, all in one signal measurement on a FDSOI substrate in a manufacturing fab. Strong correlation to electrical data for one or more of these measured parameters will also be presented, establishing the reliability of this technique.

  6. Universal quantification of elastic scattering effects in AES and XPS

    NASA Astrophysics Data System (ADS)

    Jablonski, Aleksander

    1996-09-01

    Elastic scattering of photoelectrons in a solid can be accounted for in the common formalism of XPS by introducing two correction factors, βeff and Qx. In the case of AES, only one correction factor, QA, is required. As recently shown, relatively simple analytical expressions for the correction factors can be derived from the kinetic Boltzmann equation within the so-called "transport approximation". The corrections are expressed here in terms of the ratio of the transport mean free path (TRMFP) to the inelastic mean free path (IMFP). Since the available data for the TRMFP are rather limited, it was decided to complete an extensive database of these values. They were calculated in the present work for the same elements and energies as in the IMFP tabulation published by Tanuma et al. An attempt has been made to derive a predictive formula providing the ratios of the TRMFP to the IMFP. Consequently, a very simple and accurate algorithm for calculating the correction factors βeff, Qx and QA has been developed. This algorithm can easily be generalized to multicomponent solids. The resulting values of the correction factors were found to compare very well with published values resulting from Monte Carlo calculations.

  7. XPS studies and photocurrent applications of alkali-metals-doped ZnO nanoparticles under visible illumination conditions

    NASA Astrophysics Data System (ADS)

    Saáedi, Abdolhossein; Yousefi, Ramin; Jamali-Sheini, Farid; Zak, Ali Khorsand; Cheraghizade, Mohsen; Mahmoudian, M. R.; Baghchesara, Mohammad Amin; Dezaki, Abbas Shirmardi

    2016-05-01

    The present work is a study about a relationship between X-ray photoelectron spectrometer (XPS) results and photocurrent intensity of alkali-metals-elements doped ZnO nanoparticles, which is carried out under visible illumination conditions. The nanoparticles were synthesized by a simple sol-gel method. Structure and morphology studies of the NPs were carried out by X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The effect of doping on the optical band-gap was investigated by using UV-visible spectrometer. The absorption peak of the doped ZnO NPs was red-shifted with respect to that of the undoped ZnO NPs. After that, the photocurrent application of the products was examined under a white light source at 2 V bias. The photocurrent results showed that, the current intensity of the ZnO NPs was increased by doping materials. However, K-doped ZnO NPs showed the highest photocurrent intensity. Finally, a discussion was carried out about the obtained photocurrent results by the O-1s spectra of the XPS of the samples. Our results suggest that the alkali-metals-doped ZnO NPs exhibit considerable promise for highly sensitive visible-light photodetectors.

  8. Particle and phase thicknesses from XPS analysis of supported bimetallic catalysts: Calcined Co-Rh/Nb{sub 2}O{sub 5}

    SciTech Connect

    Frydman, A. |; Castner, D.G.; Campbell, C.T.

    1995-03-01

    The surface structure and elemental composition of a series of calcined Co-Rh/Nb{sub 2}O{sub 5} bimetallic catalysts have been investigated using X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR). New formulae for the quantitative analysis of XPS intensities for supported bimetallic catalysts involving up to three separate, layered phases on spherical support particles are used for the first time. These apply an average take-off angle for photoelectrons from spherical particles whose radii are large compared to the electron attenuation length. Calcined monometallic Co/Nb{sub 2}O{sub 5} and Rh/Nb{sub 2}O{sub 5}, and four calcined bimetallic Co-Rh/Nb{sub 2}O{sub 5} catalysts with similar Co loadings ({approx} 1.9 wt%) and variable Rh loadings (0.3 to 2.3 wt%) were examined. Reference spectra for pure CoNb{sub 2}O{sub 6} (columbite) are also presented here for the first time. The catalysts were prepared by incipient wetness impregnation and calcined at 673 K to generate the oxide precursors. The XPS lineshapes and the Co (2p) spin-orbit splitting indicated the presence of two Co species, Co{sub 3}O{sub 4} and CO{sup +2}, on all calcined Co-containing catalysts. The measured XPS Co/Nb and Rh/Nb atomic ratios for the catalysts were factors of 1.5-2 and 2-4.5, respectively, greater than the bulk atomic ratios, showing that both Co and Rh oxides were surface-enriched. The measured XPS peak intensities were compared to the values predicted from several different structural models of the oxide particles.

  9. Thermally Evaporated Iron (Oxide) on an Alumina Barrier Layer, by XPS

    SciTech Connect

    Madaan, Nitesh; Kanyal, Supriya S.; Jensen, David S.; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-06

    We report the XPS characterization of a thermally evaporated iron thin film (6 nm) deposited on an Si/SiO_2/Al_2O_3 substrate using Al Ka X-rays. An XPS survey spectrum, narrow Fe 2p scan, narrow O 1s, and valence band scan are shown.

  10. Dissolution of uranophane: An AFM, XPS, SEM and ICP study

    NASA Astrophysics Data System (ADS)

    Schindler, Michael; Freund, Michael; Hawthorne, Frank C.; Burns, Peter C.; Maurice, Patricia A.

    2009-05-01

    Dissolution experiments on single crystals of uranophane and uranophane-β, Ca(H 2O) 5[(UO 2)(SiO 3(OH)] 2, from the Shinkolobwe mine of the Democratic Republic of Congo, were done in an aqueous HCl solution of pH 3.5 for 3 h, in HCl solutions of pH 2 for 5, 10 and 30 min, and in Pb 2+-, Ba-, Sr-, Ca- and Mg-HCl solutions of pH 2 for 30 min. The basal surfaces of the treated uranophane crystals were examined using atomic-force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Solutions after dissolution experiments on single crystals and synthetic powders were analysed with inductively coupled plasma-optical emission spectroscopy (ICP-OES) and mass spectroscopy (ICP-MS). The morphology of the observed etch pits (measured by AFM) were compared to the morphology, predicted on the basis of the bond-valence deficiency of polyhedron chains along the edges of the basal surface. Etch pits form in HCl solutions of pH 2. Their decrease in depth with the duration of the dissolution experiment is explained with the stepwave dissolution model, which describes the lowering of the surrounding area of an etch pit with continuous waves of steps emanated from the etch pit into the rest of the crystal surface. Hillocks form in an HCl solution of pH 3.5, and the chemical composition of the surface (as indicated by XPS) shows that these hillocks are the result of the precipitation of a uranyl-hydroxy-hydrate phase. Well-orientated hillocks form on the surface of uranophane in a SrCl 2-HCl solution of pH 2. They are part of an aged silica coating of composition Si 2O 2(OH) 4(H 2O) n. An amorphous layer forms on the surface of uranophane in a MgCl 2-HCl solution of pH 2, which has a composition and structure similar to silicic acid. Small crystallites of uranyl-hydroxy-hydrate phases form on the surface of uranophane after treatment in Pb(NO 3) 2-HCl and BaCl 2-HCl solutions of pH 2. Dissolution experiments on synthetic uranophane powders

  11. [XPS analysis of tea plant leaf and root surface].

    PubMed

    Fang, Jiang-yu; Wan, Xiao-chun

    2008-09-01

    XPS was applied to analyze the surface chemical composition and structure of the tea plant leaf and root. It was detected that the surface is made up of mainly 4 elements: C, O, N and Al, with little P and F in abaxial leaf. Based on the botanic epidermis structure and the chemical composition, with the help of the standard spectrum data bank on line and the wood XPS study results, and through line Gaussian and Lorentizian the mixed, the binding energy of C(1s) of the leaf surface was classified as 3 types: the first was C1, with the electron binding energy of 285 eV, from C-C or C-H group, representing lipid compound like cutin and wax. C2 with the binding energy of 286.35 eV in the adaxial and 286.61 eV in the abaxial, came from the single bond of carbon and oxygen C-O, mainly standing for cellulose. C3 with the binding energy of approximately 288 eV (288.04 eV in adaxial and 288.09 eV in abaxial) was the sign of C=O group, which is acyl in protein with the confirmation of N(1s) (399-401 eV)and O(1s) analyses. In the root surface, besides the same compounds of cutin and wax (C1, binding energy 285 eV), cellulose (C2, binding energy 286.49 eV) and protein (C3, binding energy 288.78 eV)as in the leaf, there appeared C5 type with the binding energy of 283.32 eV. Because it was lower than C1, it was estimated as carbon linking to metal. Both the leaf and the root surfaces didn't have C4, a type of O-C=O, which is common in wood surface with the highest oxidated carbon of 289-289.5 eV binding energy, indicating that organic acid secreted by the root existed freely on the root surface, without any chemical association with the surface compounds. The results of the separated spectrum of O(1s) supported the above C(1s) results. By the ratio of each type of C, there were more oxygen groups in the abaxial than in the adaxial, implicating more active chemical properties on the abaxial. Compared with the leaf, cutin and wax was little in the root and oxygen groups were many

  12. Evaluation Metrics for the Paragon XP/S-15

    NASA Technical Reports Server (NTRS)

    Traversat, Bernard; McNab, David; Nitzberg, Bill; Fineberg, Sam; Blaylock, Bruce T. (Technical Monitor)

    1993-01-01

    On February 17th 1993, the Numerical Aerodynamic Simulation (NAS) facility located at the NASA Ames Research Center installed a 224 node Intel Paragon XP/S-15 system. After its installation, the Paragon was found to be in a very immature state and was unable to support a NAS users' workload, composed of a wide range of development and production activities. As a first step towards addressing this problem, we implemented a set of metrics to objectively monitor the system as operating system and hardware upgrades were installed. The metrics were designed to measure four aspects of the system that we consider essential to support our workload: availability, utilization, functionality, and performance. This report presents the metrics collected from February 1993 to August 1993. Since its installation, the Paragon availability has improved from a low of 15% uptime to a high of 80%, while its utilization has remained low. Functionality and performance have improved from merely running one of the NAS Parallel Benchmarks to running all of them faster (between 1 and 2 times) than on the iPSC/860. In spite of the progress accomplished, fundamental limitations of the Paragon operating system are restricting the Paragon from supporting the NAS workload. The maximum operating system message passing (NORMA IPC) bandwidth was measured at 11 Mbytes/s, well below the peak hardware bandwidth (175 Mbytes/s), limiting overall virtual memory and Unix services (i.e. Disk and HiPPI I/O) performance. The high NX application message passing latency (184 microns), three times than on the iPSC/860, was found to significantly degrade performance of applications relying on small message sizes. The amount of memory available for an application was found to be approximately 10 Mbytes per node, indicating that the OS is taking more space than anticipated (6 Mbytes per node).

  13. XPS and AFM Study of GaAs Surface Treatment

    SciTech Connect

    Contreras-Guerrero, R.; Wallace, R. M.; Aguirre-Francisco, S.; Herrera-Gomez, A.; Lopez-Lopez, M.

    2008-11-13

    Obtaining smooth and atomically clean surfaces is an important step in the preparation of a surface for device manufacturing. In this work different processes are evaluated for cleaning a GaAs surface. A good surface cleaning treatment is that which provides a high level of uniformity and controllability of the surface. Different techniques are useful as cleaning treatments depending on the growth process to be used. The goal is to remove the oxygen and carbon contaminants and then form a thin oxide film to protect the surface, which is easy to remove later with thermal desorption mechanism like molecular beam epitaxy (MBE) with minimal impact to the surface. In this study, atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) were used to characterize the structure of the surface, the composition, as well as detect oxygen and carbon contaminant on the GaAs surface. This study consists in two parts. The first part the surface was subjected to different chemical treatments. The chemical solutions were: (a)H{sub 2}SO{sub 4}:H{sub 2}O{sub 2}:H{sub 2}O(4:1:100), (b) HCl: H{sub 2}O(1:3), (c)NH{sub 4}OH 29%. The treatments (a) and (b) reduced the oxygen on the surface. Treatment (c) reduces carbon contamination. In the second part we made MOS devices on the surfaces treated. They were characterized by CV and IV electrical measurements. They show frequency dispersion.

  14. XPS chemical analysis of tholins: the oxygen contamination

    NASA Astrophysics Data System (ADS)

    Carrasco, N.; Jomard, F.; Vigneron, J.; Cernogora, G.

    2013-12-01

    In Titan's atmosphere, solid organic aerosols are initiated in the upper atmosphere by the photo-dissociation and photo-ionization of N2 and CH4. In order to simulate this complex chemistry several experimental setups have been built, among them plasma experiments. The aerosol analogues produced in such plasma discharges contain oxygen, as a few percents of the elemental composition, despite the absence of oxygen source in the reactive medium [1]. The present study aims at studying the origin of such systematic oxygen incorporation in tholins. A low pressure (0.9mbar) RF CCP discharge is used described in [2]. Gas mixtures of N2 and CH4 (from 1 to 10% of CH4) are injected continuously. The plasma discharge leads to the production of analogues of Titan's atmospheric aerosols: both as grains in the volume [1] and as thin films on the surface of the reactor [3]. SiO2 substrates of 1cm diameter and 1mm thickness are placed on the grounded electrode of the discharge. Organic films are deposited during 2 hours in order to have films thickness less than 1μm. After the two hours, samples are recovered at ambient air for ex-situ analysis. Two complementary analyses are performed to analyse the thin film chemical composition: XPS and SIMS, in order to probe both the surface and depth profile. References [1] Sciamma-O'brien E., Carrasco N., Szopa C., Buch A., Cernogora G. Icarus 209, 2 (2010) 704-714 [2] Alcouffe G., Cavarroc M., Cernogora G., Ouni F., Jolly A., Boufendi L., Szopa C. Plasma Sources Science and Technology 19, 1 (2010) 015008 (11pp) [3] Mahjoub A., Carrasco N., Dahoo P.-R., Gautier T., Szopa C., Cernogora G. Icarus 221, 2 (2012) 670-677.

  15. XPS Protocol for the Characterization of Pristine and Functionalized Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Sosa, E. D.; Allada, R.; Huffman, C. B.; Arepalli, S.

    2009-01-01

    Recent interest in developing new applications for carbon nanotubes (CNT) has fueled the need to use accurate macroscopic and nanoscopic techniques to characterize and understand their chemistry. X-ray photoelectron spectroscopy (XPS) has proved to be a useful analytical tool for nanoscale surface characterization of materials including carbon nanotubes. Recent nanotechnology research at NASA Johnson Space Center (NASA-JSC) helped to establish a characterization protocol for quality assessment for single wall carbon nanotubes (SWCNTs). Here, a review of some of the major factors of the XPS technique that can influence the quality of analytical data, suggestions for methods to maximize the quality of data obtained by XPS, and the development of a protocol for XPS characterization as a complementary technique for analyzing the purity and surface characteristics of SWCNTs is presented. The XPS protocol is then applied to a number of experiments including impurity analysis and the study of chemical modifications for SWCNTs.

  16. Morphology and Chemical Composition of soot particles emitted by Wood-burning Cook-Stoves: a HRTEM, XPS and Elastic backscattering Studies.

    NASA Astrophysics Data System (ADS)

    Carabali-Sandoval, G. A., Sr.; Castro, T.; Peralta, O.; De la Cruz, W.; Días, J.; Amelines, O.; Rivera-Hernández, M.; Varela, A.; Muñoz-Muñoz, F.; Policroniades, R.; Murillo, G.; Moreno, E.

    2014-12-01

    The morphology, microstructure and the chemical composition on surface of soot particles were studied by using high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and elastic backscattering spectrometry. In order to obtain freshly soot particles emitted by home-made wood-burning cook stoves, copper grids for Transmission Electron Microscope (TEM) were placed on the last two of an 8-stages MOUDI cascade impactor. The analysis of HRTEM micrographs revealed the nanostructure and the particle size of soot particles. The XPS survey spectra show a large carbon peak around 285 eV and the oxygen signal at 533 eV. Some differences observed in the carbon/oxygen (C/O) ratio of the particles probably depend on the combustion process efficiency of each cook-stove analyzed. The C-1s XPS spectra show an asymmetric broad peak and other with low intensity that corresponds to sp2 and sp3hybridization, which were fitted with a convolution using Gaussian functions. Elastic backscattering technique allows a chemical elemental analysis of samples and confirms the presence of C, O and Si observed by XPS. Additionally, the morphological properties of soot aggregates were analyzed calculating the border-based fractal dimension (Df). Particles exhibit complex shapes with high values of Df. Also, real-time absorption (σabs) and scattering (σsct) coefficients of fine (with aerodynamic diameter < 2.5 µm) soot particles were measured. The trend in σabs and σsct indicate that the cooking process has two important combustion stages which varied in its flaming strength, being vigorous in the first stage and soft in the second one.

  17. Relationships Between Complex Core Level Spectra and Materials Properties

    SciTech Connect

    Nelin, Constance J.; Bagus, Paul S.; Ilton, Eugene S.; Chambers, Scott A.; Kuhlenbeck, Helmut; Freund, Hans-Joachim

    2010-12-01

    The XPS of many oxides are quite complex and there may be several peaks of significant intensity for each subshell. These peaks arise from many-electron effects, which normally are treated with configuration interaction (CI) wavefunctions where static correlation effects are taken into account. It is common to use semiempirical methods to determine the matrix elements of the CI Hamiltonian and there are few rigorous CI calculations where parameters are not adjusted to fit experiment. In contrast, we present, in the present work, theoretical XPS spectra obtained with rigorous CI wavefunctions for CeO2 where the XPS are especially complex; several different core levels are studied. This study uses an embedded CeO8 cluster model to represent bulk CeO2 and the relativistic CI wavefunctions are determined using four-component spinors from Dirac-Fock calculations. In particular, we examine the importance of interatomic many-body effects where there is a transfer of electrons from occupied oxygen 2p orbitals into empty cation orbitals as it is common to ascribe the complex XPS to this effect. We also contrast the importance of many-body charge-transfer effects for the isoelectronic cations of Ce4+ and La3+. The long-range goal of this work is to relate the XPS features to the nature of the chemical bonding in CeO2 and we describe our progress toward this goal.

  18. Electron spectra line shape analysis of highly oriented pyrolytic graphite and nanocrystalline diamond.

    PubMed

    Lesiak, Beata; Zemek, Josef; Houdkova, Jana; Kromka, Alexander; Józwik, Adam

    2010-01-01

    The X-ray excited Auger electron spectroscopy (XAES), X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES) methods were applied in investigating samples of nanocrystalline diamond and highly oriented pyrolytic graphite of various C sp(2)/sp(3) ratios, crystallinity conditions and grain sizes. The composition at the surface was estimated from the XPS. The C sp(2)/sp(3) ratio was evaluated from the width of the XAES first derivative C KLL spectra and from fitting of XPS C 1s spectra into components. The pattern recognition (PR) method applied for analyzing the spectra line shapes exhibited high accuracy in distinguishing different carbon materials. The PR method was found to be a potentially useful approach for identification, especially important for technological applications in fields of materials engineering and for controlling the chemical reaction products during synthesis.

  19. An imaging photoemission polarimeter for soft X-rays

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip; Novick, Robert; Heckler, A.; Shaw, P.; Fraser, G. W.

    1990-01-01

    Results of investigations are reviewed to assess the polarization dependence of photoemission in the optical, UV, and soft X-ray bands, as well as present a design for an imaging photoelectric polarimeter. Data regarding the effect of the dependence in the soft X-ray band are emphasized including the quantity of photons produced by each X-ray. The phase shift encountered in some experiments indicates that a third axis is present; the importance of the phase shift in understanding the vectoral photoeffect is emphasized. Measurements of the pulse height show that this measure is proportional to the number of electrons photoemitted by the incident X-ray. The development of X-ray polarimeters can be significantly improved as a result of the study of polarization sensitivity in the photoelectric effect. The design of a photoelectric polarimeter is presented, and the potential uses for the instrument include measuring the polarization of supernova remnants, AGN, and black hole candidates.

  20. Photoemission characteristics of thin GaAs-based heterojunction photocathodes

    SciTech Connect

    Feng, Cheng; Zhang, Yijun Qian, Yunsheng; Shi, Feng; Zou, Jijun; Zeng, Yugang

    2015-01-14

    To better understand the different photoemission mechanism of thin heterojunction photocathodes, the quantum efficiency models of reflection-mode and transmission-mode GaAs-based heterojunction photocathodes are revised based on one-dimensional continuity equations, wherein photoelectrons generated from both the emission layer and buffer layer are taken into account. By comparison of simulated results between the revised and conventional models, it is found that the electron contribution from the buffer layer to shortwave quantum efficiency is closely related to some factors, such as the thicknesses of emission layer and buffer layer and the interface recombination velocity. Besides, the experimental quantum efficiency data of reflection-mode and transmission-mode AlGaAs/GaAs photocathodes are well fitted to the revised models, which confirm the applicability of the revised quantum efficiency models.

  1. Widespread spin polarization effects in photoemission from topological insulators

    SciTech Connect

    Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.; Analytis, J. G.; Rotundu, C. R.; Schmid, A. K.; Denlinger, J. D.; Chuang, Y.-D.; Lee, D.-H.; Fisher, I. R.; Birgeneau, R. J.; Shen, Z.-X.; Hussain, Z.; Lanzara, A.

    2011-06-22

    High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations of photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.

  2. Band Structure of SnTe Studied by Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Littlewood, P. B.; Mihaila, B.; Schulze, R. K.; Safarik, D. J.; Gubernatis, J. E.; Bostwick, A.; Rotenberg, E.; Opeil, C. P.; Durakiewicz, T.; Smith, J. L.; Lashley, J. C.

    2010-08-01

    We present an angle-resolved photoemission spectroscopy study of the electronic structure of SnTe and compare the experimental results to ab initio band structure calculations as well as a simplified tight-binding model of the p bands. Our study reveals the conjectured complex Fermi surface structure near the L points showing topological changes in the bands from disconnected pockets, to open tubes, and then to cuboids as the binding energy increases, resolving lingering issues about the electronic structure. The chemical potential at the crystal surface is found to be 0.5 eV below the gap, corresponding to a carrier density of p=1.14×1021cm-3 or 7.2×10-2 holes per unit cell. At a temperature below the cubic-rhombohedral structural transition a small shift in spectral energy of the valance band is found, in agreement with model predictions.

  3. Band structure of SnTe studied by photoemission spectroscopy.

    PubMed

    Littlewood, P B; Mihaila, B; Schulze, R K; Safarik, D J; Gubernatis, J E; Bostwick, A; Rotenberg, E; Opeil, C P; Durakiewicz, T; Smith, J L; Lashley, J C

    2010-08-20

    We present an angle-resolved photoemission spectroscopy study of the electronic structure of SnTe and compare the experimental results to ab initio band structure calculations as well as a simplified tight-binding model of the p bands. Our study reveals the conjectured complex Fermi surface structure near the L points showing topological changes in the bands from disconnected pockets, to open tubes, and then to cuboids as the binding energy increases, resolving lingering issues about the electronic structure. The chemical potential at the crystal surface is found to be 0.5 eV below the gap, corresponding to a carrier density of p=1.14 × 10(21)  cm(-3) or 7.2 × 10(-2) holes per unit cell. At a temperature below the cubic-rhombohedral structural transition a small shift in spectral energy of the valance band is found, in agreement with model predictions. PMID:20868120

  4. High-resolution photoemission study of MgB2.

    PubMed

    Takahashi, T; Sato, T; Souma, S; Muranaka, T; Akimitsu, J

    2001-05-21

    We have performed high-resolution photoemission spectroscopy on MgB2 and observed opening of a superconducting gap with a narrow coherent peak. We found that the superconducting gap is s like with the gap value ( Delta) of 4.5+/-0.3 meV at 15 K. The temperature dependence (15-40 K) of the gap value follows well the BCS form, suggesting that 2Delta/k(B)T(c) at T = 0 is about 3. No pseudogap behavior is observed in the normal state. The present results strongly suggest that MgB2 is categorized into a phonon-mediated BCS superconductor in the weak-coupling regime.

  5. Electric field stimulation setup for photoemission electron microscopes.

    PubMed

    Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures.

  6. Electric field stimulation setup for photoemission electron microscopes

    SciTech Connect

    Buzzi, M.; Vaz, C. A. F.; Raabe, J.; Nolting, F.

    2015-08-15

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg{sub 0.66}Nb{sub 0.33})O{sub 3}-PbTiO{sub 3} and La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/PMN-PT artificial multiferroic nanostructures.

  7. Compact extreme ultraviolet source for laboratory-based photoemission spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Schmitz, Christoph; Wilson, Daniel; Rudolf, Denis; Wiemann, Carsten; Plucinski, Lukasz; Riess, Sally; Schuck, Martin; Hardtdegen, Hilde; Schneider, Claus M.; Tautz, F. Stefan; Juschkin, Larissa

    2016-06-01

    We report on the combination of a state-of-the-art energy-filtering photoemission electron microscope with an intense yet compact laboratory-based gas discharge extreme ultraviolet (EUV) light source. Using a photon energy of 71.7 eV from oxygen plasma (O5+ spectral line), we demonstrate element-selective photoelectron imaging in real space and band structure mapping in reciprocal space. Additionally, the high surface sensitivity of the EUV light was used to study the surface oxidation on islands of the phase-change material Ge1Sb2Te4 . The EUV light source allows the extension of spectromicroscopy, previously only feasible at synchrotron beamlines, to laboratory-based work.

  8. Electric field stimulation setup for photoemission electron microscopes.

    PubMed

    Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures. PMID:26329198

  9. Electric field stimulation setup for photoemission electron microscopes

    NASA Astrophysics Data System (ADS)

    Buzzi, M.; Vaz, C. A. F.; Raabe, J.; Nolting, F.

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg0.66Nb0.33)O3-PbTiO3 and La0.7Sr0.3MnO3/PMN-PT artificial multiferroic nanostructures.

  10. Storm Spectra

    NASA Technical Reports Server (NTRS)

    2007-01-01

    portion is defined by the day/night boundary (known as the terminator).

    These two images illustrate only a small fraction of the information contained in a single LEISA scan, highlighting just one aspect of the power of infrared spectra for atmospheric studies.

  11. Photoemission from solids: the transition from solid-state to atomic physics

    SciTech Connect

    Shirley, D.A.

    1980-08-01

    As the photon energy is increased, photoemission from solids undergoes a slow transition from solid-state to atomic behavior. However, throughout the energy range h..nu.. = 10 to 1000 eV or higher both types of phenomena are present. Thus angle-resolved photoemission can only be understood quantitatively if each experimenter recognizes the presence of band-structure, photoelectron diffraction, and photoelectron asymmetry effects. The quest for this understanding will build some interesting bridges between solid-state and atomic physics and should also yield important new insights about the phenomena associated with photoemission.

  12. Vacuum space charge effect in laser-based solid-state photoemission spectroscopy

    SciTech Connect

    Graf, Jeff; Hellmann, Stefan; Jozwiak, Chris; Smallwood, Christopher; Hussain, Zahid; Kaindl, Robert; Kipp, Lutz; Rossnagel, Kai; Lanzara, Alessandra

    2009-08-05

    We report a systematic measurement of the space charge effect observed in the few-ps laser pulse regime in laser-based solid-state photoemission spectroscopy experiments. The broadening and the shift of a gold Fermi edge as a function of spot size, laser power, and emission angle are characterized for pulse lengths of 6 ps and 6 eV photon energy. The results are used as a benchmark for an N-body numerical simulation and are compared to different regimes used in photoemission spectroscopy. These results provide an important reference for the design of time and angle-resolved photoemission spectroscopy setups and next-generation light sources.

  13. A direct Fe-O coordination at the FePc/MoO(x) interface investigated by XPS and NEXAFS spectroscopies.

    PubMed

    Liu, Lingyun; Zhang, Wenhua; Guo, Panpan; Wang, Kai; Wang, Jiaou; Qian, Haijie; Kurash, Ibrahim; Wang, Chia-Hsin; Yang, Yaw-Wen; Xu, Faqiang

    2015-02-01

    Molecule-substrate interaction plays a vital role in determining the electronic structures and charge transfer properties in organic-transition metal oxides (TMOs) hybridized devices. In this work, the interactions at the FePc/MoO3 interface has been investigated in detail by using synchrotron radiation photoemission spectroscopy (SRPES) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Compared with the annealing of the bare MoO3 film, the FePc adsorption is found to promote the thermal reduction of the underlying MoO3 film. XPS and NEXAFS experimental results unanimously demonstrate a strong electronic coupling between FePc molecules and the MoOx (x < 3) substrate. A direct Fe-O coordination at the interface as well as an electron transfer from the molecules toward the substrate is proposed. This strong coupling is compatible with a facile electron transfer from FePc molecules toward electrode through a MoOx interlayer. The understanding of the molecule-substrate interaction at the atomic level is of significance in engineering functionalized surfaces with potential applications in nanoscience, molecular electronics and photonics.

  14. [XPS analysis of beads formed by fuse breaking of electric copper wire].

    PubMed

    Wu, Ying; Meng, Qing-Shan; Wang, Xin-Ming; Gao, Wei; Di, Man

    2010-05-01

    The in-depth composition of beads formed by fuse breaking of the electric copper wire in different circumstances was studied by XPS with Ar+ ion sputtering. In addition, the measured Auger spectra and the calculated Auger parameters were compared for differentiation of the substances of Cu and Cu2O. Corresponding to the sputtering depth, the molten product on a bead induced directly by fuse breaking of the copper wire without cover may be distinguished as three portions: surface layer with a drastic decrease in carbon content; intermediate layer with a gentle change in oxygen content and gradually diminished carbon peak, and consisting of Cu2O; transition layer without Cu2O and with a rapid decrease in oxygen content. While the molten product on a bead formed by fuse breaking of the copper wire after its insulating cover had been burned out may be distinguished as two portions: surface layer with carbon content decreasing quickly; subsurface layer without Cu2O and with carbon and oxygen content decreasing gradually. Thus, it can be seen that there was an obvious interface between the layered surface product and the substrate for the first type of bead, while as to the second type of bead there was no interface. As a result, the presence of Cu2O and the quantitative results can be used to identify the molten product on a bead induced directly by fuse breaking of the copper wire without cover and the molten product on a bead formed by fuse breaking of the cupper wire after its insulating cover had been burned out, as a complementary technique for the judgments of fire cause.

  15. XPS determination of Mn oxidation states in Mn (hydr)oxides

    NASA Astrophysics Data System (ADS)

    Ilton, Eugene S.; Post, Jeffrey E.; Heaney, Peter J.; Ling, Florence T.; Kerisit, Sebastien N.

    2016-03-01

    Hydrous manganese oxides are an important class of minerals that help regulate the geochemical redox cycle in near-surface environments and are also considered to be promising catalysts for energy applications such as the oxidation of water. A complete characterization of these minerals is required to better understand their catalytic and redox activity. In this contribution an empirical methodology using X-ray photoelectron spectroscopy (XPS) is developed to quantify the oxidation state of hydrous multivalent manganese oxides with an emphasis on birnessite, a layered structure that occurs commonly in soils but is also the oxidized endmember in biomimetic water-oxidation catalysts. The Mn2p3/2, Mn3p, and Mn3s lines of near monovalent Mn(II), Mn(III), and Mn(IV) oxides were fit with component peaks; after the best fit was obtained the relative widths, heights and binding energies of the components were fixed. Unknown multivalent samples were fit such that binding energies, intensities, and peak-widths of each oxidation state, composed of a packet of correlated component peaks, were allowed to vary. Peak-widths were constrained to maintain the difference between the standards. Both average and individual mole fraction oxidation states for all three energy levels were strongly correlated, with close agreement between Mn3s and Mn3p analyses, whereas calculations based on the Mn2p3/2 spectra gave systematically more reduced results. Limited stoichiometric analyses were consistent with Mn3p and Mn3s. Further, evidence indicates the shape of the Mn3p line was less sensitive to the bonding environment than that for Mn2p. Consequently, fitting the Mn3p and Mn3s lines yielded robust quantification of oxidation states over a range of Mn (hydr)oxide phases. In contrast, a common method for determining oxidation states that utilizes the multiplet splitting of the Mn3s line was found to be not appropriate for birnessites.

  16. What angle-resolved photoemission experiments tell about the microscopic theory for high-temperature superconductors

    PubMed Central

    Abrahams, Elihu; Varma, C. M.

    2000-01-01

    Recent angular-resolved photoemission experiments on high-temperature superconductors are consistent with a phenomenological description of the normal state of these materials as marginal Fermi liquids. The experiments also provide constraints on microscopic theories. PMID:10811895

  17. Observation of Two-Photon Photoemission Optogalvanic Effect Using Copper Target Electrode

    NASA Astrophysics Data System (ADS)

    Ajithprasad, K. C.; Sasikumar, P. R.; Harilal, S. S.; Nampoori, V. P. N.; Vallabhan, C. P. G.

    Two-photon-induced photoemission optogalvanic effect using copper as the target electrode has been observed in a nitrogen discharge cell using 532 nm radiation from a frequency-doubled Nd:YAG laser as the pump source.

  18. Predicting photoemission intensities and angular distributions with real-time density-functional theory

    NASA Astrophysics Data System (ADS)

    Dauth, M.; Kümmel, S.

    2016-02-01

    Photoemission spectroscopy is one of the most frequently used tools for characterizing the electronic structure of condensed matter systems. We discuss a scheme for simulating photoemission from finite systems based on time-dependent density-functional theory. It allows for the first-principles calculation of relative electron binding energies, ionization cross sections, and anisotropy parameters. We extract these photoemission spectroscopy observables from Kohn-Sham orbitals propagated in real time. We demonstrate that the approach is capable of estimating photoemission intensities, i.e., peak heights. It can also reliably predict the angular distribution of photoelectrons. For the example of benzene we contrast calculated angular distribution anisotropy parameters to experimental reference data. Self-interaction free Kohn-Sham theory yields meaningful outer valence single-particle states in the right energetic order. We discuss how to properly choose the complex absorbing potential that is used in the simulations.

  19. Nonlinear Photoemission Electron Micrographs of Plasmonic Nanoholes in Gold Thin Films

    SciTech Connect

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2014-11-06

    Nonlinear photoemission electron microscopy of isolated nanoholes in gold thin films map propagating surface plasmon polaritons (SPPs) launched from the lithographically patterned plasmonic structures. A damped sinusoidal elongated ring-like photoemission beat pattern is observed from the nanoholes, following low angle of incidence irradiation of these structures with sub-15 fs 780 nm laser pulses. A notable agreement between finite difference time domain simulations and experiment corroborates our assignment of the observed photoemission patterns to SPPs launched from isolated nanoholes and probed through nonlinear photoemission. We also demonstrate how the efficiency of coupling light waves into isolated plasmonic holes can be tuned by varying hole diameter. In this regard, a simple intuitive geometrical model, which accounts for the observed and simulated diameter dependent plasmonic response, is proposed. Overall, this study paves the way for designing nanohole assemblies where optical coupling and subsequent plasmon propagation can be rationally controlled through 2D SPP interferometry

  20. Attosecond photoemission dynamics encoded in real-valued continuum wave functions

    NASA Astrophysics Data System (ADS)

    Gaillac, Romain; Vacher, Morgane; Maquet, Alfred; Taïeb, Richard; Caillat, Jérémie

    2016-01-01

    The dynamics of photoemission is fully encoded in the continuum wave functions selected by the transitions. Using numerical simulations on simple benchmark models, we show how scattering phase shifts and photoemission delays can be retrieved from this unambiguously defined class of wave functions. In contrast with standard scattering waves inherited from collision theory, they are real-valued for one-photon transitions and provide a clear-cut interpretation of the delays recently discussed in the framework of attosecond science.

  1. Low-Temperature and High-Energy-Resolution Laser Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shimojima, Takahiro; Okazaki, Kozo; Shin, Shik

    2015-07-01

    We present a review on the developments in the photoemission spectrometer with a vacuum ultraviolet laser at Institute for Solid State Physics at the University of Tokyo. The advantages of high energy resolution, high cooling ability, and bulk sensitivity enable applications with a wide range of materials. We introduce some examples of fine electronic structures detected by laser photoemission spectroscopy and discuss the prospects of research on low-transition-temperature superconductors exhibiting unconventional superconductivity.

  2. XPS and STEM studies of Allende acid insoluble residues

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Clarke, D. R.

    1980-01-01

    Data on Allende acid residues obtained both before and after etching with hot HNO3 are presented. X-ray photoelectron spectra show predominantly carbonaceous material plus Fe-deficient chromite in both cases. The HNO3 oxidizes the carbonaceous material to some extent. The small chromites in these residues have a wide range of compositions somewhat paralleling those observed in larger Allende chromites and in Murchison chromites, especially in the high Al contents; however, they are deficient in divalent cations, which makes them metastable and indicates that they must have formed at relatively low temperatures. It is suggested that they formed by precipitation of Cr(3+) and Fe(3+) from olivine at low temperature or during rapid cooling.

  3. Antenna-coupled Photoemission from Single Quantum Emitters

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Palash

    Optical antennas are analogs of their radiowave and microwave counterparts, and can be defined as devices that serve to efficiently convert free-propagating optical radiation to localized energy, and vice-versa. Colloidal metal nanoparticles with their strong plasmonic optical response offer a convenient realization of optical antennas. Such nanoparticle antennas serve to spatially enhance and localize fields, and modify the excitation rate and the radiative decay rate when placed close to single emitters (molecules, quantum dots, etc.). In addition, they can also cause undesirable losses, leading to an increase in the non-radiative decay rates of these emitters. This interplay of rates can lead to a strong modification of the emission characteristics over the intrinsic behavior. We study photoemission from single emitters coupled to antennas of different geometries made from colloidal metal nanoparticles. We demonstrate enhancements of fluorescence from single quantum emitters by a factor 10 to 100, with the highest enhancements resulting for molecules with very low intrinsic quantum yields. Such enhancements afford an improvement in resolution for fluorescence imaging down to lambda/40. We also investigate changes to fluorescence blinking of a colloidal quantum dots (QD) coupled to an antenna, as a function of antenna-QD distance. We find that power-law blinking is preserved unaltered even as the antenna drastically modifies the excitonic decay rate in the QD, and reduces the blinking probability. This resilience of the power-law to change provides evidence that blinking statistics are not swayed by environment-induced variations in kinetics, and offers clues towards identifying the as-yet unknown mechanism behind universal fluorescence intermittency. Finally, in analogy with traditional electromagnetic antennas, we excite proto-typical optical antennas using electrons (current) instead of photons (fields). We excite localized plasmons using low energy tunneling

  4. Annealing effects of in-depth profile and band discontinuity in TiN/LaO/HfSiO/SiO{sub 2}/Si gate stack structure studied by angle-resolved photoemission spectroscopy from backside

    SciTech Connect

    Toyoda, S.; Kumigashira, H.; Oshima, M.; Kamada, H.; Tanimura, T.; Ohtsuka, T.; Hata, Y.; Niwa, M.

    2010-01-25

    We have investigated annealing effects on in-depth profile and band discontinuity for a metal gate/high-k gate stack structure on a Si substrate using backside angle-resolved photoemission spectroscopy with synchrotron radiation. In-depth profiles analyzed from angle-resolved photoemission spectroscopy show that La atoms diffuse through the HfSiO layer and reach interfacial SiO{sub 2} layers by rapid thermal annealing. Chemical shift of Si 2p core-level spectra suggests that there are changes in the band discontinuity at the high-k/SiO{sub 2} interface, which is well related to the V{sub th} shift based on the interface dipole model.

  5. Ultrafast Multiphoton Pump-probe Photoemission Excitation Pathways in Rutile TiO2(110)

    SciTech Connect

    Argondizzo, Adam; Cui, Xuefeng; Wang, Cong; Sun, Huijuan; Shang, Honghui; Zhao, Jin; Petek, Hrvoje

    2015-04-27

    We investigate the spectroscopy and photoinduced electron dynamics within the conduction band of reduced rutile TiO2(110) surface by multiphoton photoemission (mPP) spectroscopy with wavelength tunable ultrafast (!20 fs) laser pulse excitation. Tuning the mPP photon excitation energy between 2.9 and 4.6 eV reveals a nearly degenerate pair of new unoccupied states located at 2.73 ± 0.05 and 2.85 ± 0.05 eV above the Fermi level, which can be analyzed through the polarization and sample azimuthal orientation dependence of the mPP spectra. Based on the calculated electronic structure and optical transition moments, as well as related spectroscopic evidence, we assign these resonances to transitions between Ti 3d bands of nominally t2g and eg symmetry, which are split by crystal field. The initial states for the optical transition are the reduced Ti3+ states of t2g symmetry populated by formation oxygen vacancy defects, which exist within the band gap of TiO2. Furthermore,we studied the electron dynamics within the conduction band of TiO2 by three-dimensional time-resolved pump-probe interferometric mPP measurements. The spectroscopic and time-resolved studies reveal competition between 2PP and 3PP processes where the t2g-eg transitions in the 2PP process saturate, and are overtaken by the 3PP process initiated by the band-gap excitation from the valence band of TiO2.

  6. A first-principles core-level XPS study on the boron impurities in germanium crystal

    SciTech Connect

    Yamauchi, Jun; Yoshimoto, Yoshihide; Suwa, Yuji

    2013-12-04

    We systematically investigated the x-ray photoelectron spectroscopy (XPS) core-level shifts and formation energies of boron defects in germanium crystals and compared the results to those in silicon crystals. Both for XPS core-level shifts and formation energies, relationship between defects in Si and Ge is roughly linear. From the similarity in the formation energy, it is expected that the exotic clusters like icosahedral B12 exist in Ge as well as in Si.

  7. A soft x-ray photoemission study of the chemisorption and reaction of diethylsilane on Si(100)

    SciTech Connect

    Lapiano-Smith, D.A.; Himpsel, F.J.; Terminello, L.J.

    1993-06-01

    Soft x-ray synchrotron radiation was utilized as the excitation source in a high-resolution photoemission experiment on chemisorption and subsequent reaction of diethylsilane on the Si(100) surface. We have found that diethylsilane chemisorbs dissociatively to form Si-CH{sub 2}CH{sub 3} surface species on Si(100) following a room temperature exposure. These species are identified by two very sharp peaks observed in the valence band spectra positioned at 17.9 and 14.3 eV binding energy. In addition, C 1s core level spectra, measured following exposures of Si(100) substrates as a function of surface temperature, show that carbon, in some form, exists on the Si surface following exposures at every temperature from room temperature to about 600C. While only {minus}CH{sub 2}CH{sub 3}, ethyl groups are observed on the surface at room temperature, these species appear to partially dehydrogenate at 300C, producing a mixture of {minus}CH{sub 2}CH{sub 3} groups and other intermediate carbonaceous species. At a growth temperature of about 400C the intermixing of elemental carbon with Si begins. At higher temperatures, we observe the continued degradation of diethylsilane to produce a Si + C alloy on the surface at 600C. Results indicate that diethylsilane has potential as a molecular precursor for SiC formation by chemical vapor deposition techniques.

  8. A combined QCM and XPS investigation of asphaltene adsorption on metal surfaces.

    PubMed

    Rudrake, Amit; Karan, Kunal; Horton, J Hugh

    2009-04-01

    To investigate asphaltene-metal interactions, a combined quartz crystal microbalance (QCM) and X-ray photoelectron spectroscopy (XPS) study of asphaltene adsorption on a gold surface was conducted. Adsorption experiments were conducted at 25 degrees C with solutions of asphaltenes in toluene at concentrations ranging from 50 to 1500 ppm. QCM measurements yielded information on the kinetics of adsorption and further assessment of the data allowed the estimation of equilibrium adsorption levels. XPS analysis of adsorbed and bulk asphaltene demonstrated the presence of carboxylic, thiophenic, sulfide, pyridinic and pyrrolic type functional groups. The intensity of the main carbon (C-H) peak was related to surface coverage of adsorbed asphaltene as a function of asphaltene concentration by a simple mathematical model. The mass adsorption data from the QCM experiments also allowed estimation of the surface coverage, which was compared to those from XPS analyses. Surface coverage estimates as a function of asphaltene concentration could be described by a Langmuir (type-I) isotherm. The free energy of asphaltene adsorption was estimated to be -26.8+/-0.1 and -27.3+/-0.1 kJ/mol from QCM and XPS data, respectively assuming asphaltene molar mass of 750 g/gmol. QCM and XPS data was also analyzed to estimate adsorbed layer thickness after accounting for surface coverage. The thickness of the adsorbed asphaltene estimated from both XPS and QCM data analyses ranged from 6-8 nm over the entire range of adsorption concentrations investigated.

  9. Temperature-dependent internal photoemission probe for band parameters

    NASA Astrophysics Data System (ADS)

    Lao, Yan-Feng; Perera, A. G. Unil

    2012-11-01

    The temperature-dependent characteristic of band offsets at the heterojunction interface was studied by an internal photoemission (IPE) method. In contrast to the traditional Fowler method independent of the temperature (T), this method takes into account carrier thermalization and carrier/dopant-induced band-renormalization and band-tailing effects, and thus measures the band-offset parameter at different temperatures. Despite intensive studies in the past few decades, the T dependence of this key band parameter is still not well understood. Re-examining a p-type doped GaAs emitter/undoped AlxGa1-xAs barrier heterojunction system disclosed its previously ignored T dependency in the valence-band offset, with a variation up to ˜-10-4 eV/K in order to accommodate the difference in the T-dependent band gaps between GaAs and AlGaAs. Through determining the Fermi energy level (Ef), IPE is able to distinguish the impurity (IB) and valence bands (VB) of extrinsic semiconductors. One important example is to determine Ef of dilute magnetic semiconductors such as GaMnAs, and to understand whether it is in the IB or VB.

  10. Direct surface magnetometry with photoemission magnetic x-ray dichroism

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Schumann, F.O.

    1997-04-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the {open_quotes}sum rules.{close_quotes} Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data of linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source.

  11. XPS study of Al/polyethylene terephtalate interface

    NASA Astrophysics Data System (ADS)

    Silvain, J. F.; Arzur, A.; Alnot, M.; Ehrhardt, J. J.; Lutgen, P.

    1991-07-01

    X-ray photoelectron spectroscopy has been used to study the formation of the aluminium/polyethylene terephtalate (Al/PET) interface. On control PET, C ls and O ls exhibits the usual behavior of the PET. An extra Cvls appears on Ar+ -bombarded PET whilst the CIV 1s component is decreased by about 10% compared to the control PET. On fluorine-treated PET, the C ls spectra have been decomposed into six different components. After annealing at 500 K, the C ls shows the usual behavior of the PET indicative of a decrease of the fluorine concentration in the polymer surface. Al films up to 64 Å were evaporated with a Knudsen cell. The Al/PET interface exhibits the behavior of the layer by layer growth. A preferential aluminum bonding with PET is observed for CIV1s. The Al evaporated onto PET presents a complex A12p peak decomposed into Almetal and aloxide component. The ratio Almetal/Aloxide changes with the PET and the temperature of the PET during Al deposition. Transmission electron microscopy (TEM) is performed in order to correlate the morphology and the adhesion of the Al film on PET.

  12. Near-ambient pressure XPS of high-temperature surface chemistry in Sr2Co2O5 thin films

    DOE PAGESBeta

    Hong, Wesley T.; Stoerzinger, Kelsey; Crumlin, Ethan J.; Mutoro, Eva; Jeen, Hyoung Jeen; Lee, Ho Nyung; Shao-Horn, Yang

    2016-02-11

    Transition metal perovskite oxides are promising electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells, but a lack of fundamental understanding of oxide surfaces impedes the rational design of novel catalysts with improved device efficiencies. In particular, understanding the surface chemistry of oxides is essential for controlling both catalytic activity and long-term stability. Thus, elucidating the physical nature of species on perovskite surfaces and their catalytic enhancement would generate new insights in developing oxide electrocatalysts. In this article, we perform near-ambient pressure XPS of model brownmillerite Sr2Co2O5 (SCO) epitaxial thin films with different crystallographic orientations. Detailed analysis of themore » Co 2p spectra suggests that the films lose oxygen as a function of temperature. Moreover, deconvolution of the O 1s spectra shows distinct behavior for (114)-oriented SCO films compared to (001)-oriented SCO films, where an additional bulk oxygen species is observed. These findings indicate a change to a perovskite-like oxygen chemistry that occurs more easily in (114) SCO than (001) SCO, likely due to the orientation of oxygen vacancy channels out-of-plane with respect to the film surface. This difference in surface chemistry is responsible for the anisotropy of the oxygen surface exchange coefficient of SCO and may contribute to the enhanced ORR kinetics of La0.8Sr0.2CoO3-δ thin films by SCO surface particles observed previously.« less

  13. Structural environment of uranium (VI) and europium (III) species sorbed onto phosphate surfaces: XPS and optical spectroscopy studies

    SciTech Connect

    Drot, R.; Simoni, E.; Alnot, M.; Ehrhardt, J.J.

    1998-09-15

    In order to characterize the structure of the surface complexes formed by interaction between uranyl and europium (III) ions and the surface of solid matrices, optical and X-ray photoelectron spectroscopies experiments on uranyl/europium loaded phosphate solids have been performed. The use of complimentary spectroscopic techniques allows an identification of the sorption mechanism and a structural characterization of the sorption sites and the sorbed species on phosphate surfaces. The samples were prepared from aqueous uranyl or europium solutions in the pH range from 1.5 to 6.0. The surface coverage was varied from 1 to 40% of a monolayer. The differences between the emission spectra of europium ions either sorbed on the surface of phosphate samples or doped inside the solid unambiguously indicates that these sorbed ions are exclusively located on the surface and that they do not migrate inside the matrix, which shows clearly that surface complexation is involved during the sorption process. The XPS spectrum of uranyl ions sorbed on zirconium diphosphate exhibits only one component, while the spectrum corresponding to uranium on thorium matrix shows two different unresolved peaks attributed to two different chemical environments. These results, corroborated by the uranyl emission spectra and the associated decay times and those obtained by optical spectroscopy of europium sorbed on the same solids, have been interpreted in terms of two sorption sites probably formed by the oxygens of the PO{sub 4} and P{sub 2}O{sub 7} surface groups.

  14. Copper-ceria interaction: A combined photoemission and DFT study

    NASA Astrophysics Data System (ADS)

    Szabová, Lucie; Skála, Tomáš; Matolínová, Iva; Fabris, Stefano; Farnesi Camellone, Matteo; Matolín, Vladimír

    2013-02-01

    Stoichiometric and partially reduced ceria films were deposited on preoxidized Ru(0 0 0 1) crystal by Ce evaporation in oxygen atmosphere of different pressures at 700 K. Copper-ceria interaction was investigated by deposition of metalic copper on both types of substrate. The samples were characterized by low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS) of core states and resonant photoelectron spectroscopy (RPES) of the valence bands. Copper adsorption on stoichiometric ceria caused reduction of CeO2, while on the oxygen-defficient ceria it partially reoxidized the substrate. This is in agreement with DFT+U calculations of copper adsorption on stoichiometric and defective ceria surfaces.

  15. Epitaxy of CoSix (1photoemission and extended x-ray-absorption fine-structure techniques

    NASA Astrophysics Data System (ADS)

    Pirri, C.; Hong, S.; Tuilier, M. H.; Wetzel, P.; Gewinner, G.; Cortès, R.

    1996-01-01

    Electronic and structural properties of epitaxial CoSix layers have been investigated by means of core-level and valence-band photoemission, x-ray photoelectron diffraction, and extended x-ray-absorption fine-structure (EXAFS) experiments. CoSix layers of various x compositions have been grown on silicon by low rate Co and Si co-deposition onto room-temperature Si(111) substrates, with film thicknesses ranging from 30 to 100 Å. Photoemission shows substantial differences in valence and core-level spectra with respect to those of stable fluorite-type CoSi2 and ɛ-CoSi and indicate that well-defined metastable phases are formed. In particular, core-level photoemission experiments performed with a monochromatized x-ray source show large Si 2p binding-energy shifts (~0.4 eV) in the room-temperature deposited CoSix (1

  16. Chemical Bonding in Tl Cuprates Studied by X-Ray Photoemission

    SciTech Connect

    Lao, J.Y.; Overmyer, D.L.; Ren, Z.F.; Siegal, M.P.; Vasquez, R.P.; Wang, J.H.

    1999-04-05

    Epitaxial thin films of the Tl cuprate superconductors Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8}, Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}, and TL{sub 0.78}Bi{sub 0.22}Ba{sub 0.4}Sr{sub 1.6}Ca{sub 2}Cu{sub 3}O{sub 9{minus}{delta}} are studied with x-ray photoemission spectroscopy. These data, together with previous measurements in this lab of Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} and TlBa{sub 2}CaCu{sub 2}O{sub 7{minus}{delta}}, comprise a comprehensive data set for a comparative study of Tl cuprates with a range of chemical and electronic properties. In the Cu 2p spectra, a larger energy separation between the satellite and main peaks (E{sub s}-E{sub m}) and a lower intensity ratio (I{sub s}/I{sub m}) are found to correlate with higher values of T{sub c}. Analysis of these spectra within a simple configuration interaction model suggests that higher values of T{sub c} are related to low values of the O 2p {r_arrow} Cu 3d charge transfer energy. In the O 1s region, a smaller bond length between Ba and Cu-O planar oxygen is found to correlate with a lower binding energy for the signal associated with Cu-O bonding, most likely resulting from the increased polarization screening by Ba{sup 2+} ions. For samples near optimum doping, maximum T{sub c} is observed to occur when the Tl 4f{sub 7/2} binding energy is near 117.9 eV, which is near the middle of the range of values observed for Tl cuprates. Higher Tl 4f{sub 7/2} binding energies, corresponding to formal oxidation states nearer Tl{sup 1+}, are also found to correlate with longer bond lengths between Ba and Tl-O planar oxygen, and with higher binding energies of the O 1s signal associated with Tl-O bonding.

  17. Chemical interaction at the Cu/PPA interface: an X-ray photoemission investigation

    NASA Astrophysics Data System (ADS)

    Polzonetti, G.; Russo, M. V.; Iucci, G.; Furlani, A.

    1993-11-01

    A coverage-dependent XPS investigation of the early stages of interaction between evaporated Cu and polyphenylacetylene (PPA) has been carried out. Copper films have been deposited at 300 K to a final thickness of about 5 monolayers. Overlayer and substrate core-level emission behaviour indicates the layer-by-layer growth of Cu on the PPA surface without interdiffusion. At low copper coverages a chemical interaction between the Cu adatoms and the substrate is observed by monitoring the changes occurring at the π å π∗ satellite feature of the C1s core-level line. We observe a decrease of intensity for this satellite as the copper coverage increases, interpreted in terms of the formation of a Cu-π complex with the phenyl ring. The Cu Auger spectra demonstrated the presence of positively charged metal atoms up to a coverage of ˜ 5 Å. In the submonolayer region the occurence of broadening of the C1s core level on the low binding energy side is observed together with a positive shift for the Cu2p 3/2 emission. Upon completion of the first copper monolayer these phenomena are removed. The observed behaviour can be accounted for in terms of differential charging with injection and trapping of charge into the PPA film from the Cu atoms that have not yet completed the first monolayer.

  18. Photoemission and magnetic circular dichroism studies of magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Fujimori, Atsushi

    2005-03-01

    Recently, a series of novel ferromagnetic semiconductors have been synthesized using MBE and related techniques and have attracted much attention because of unknown mechanisms of carrier-induced ferromagnetism and potential applications as "spin electronics" devices. Some new materials show ferromagnetism even well above room temperature. Photoemission spectroscopy has been used to study the d orbitals of the dilute transition-metal atoms, mostly Mn, and their hybridization with the host band states [1]. Soft x-ray absorption spectroscopy (XAS) and magnetic circular dichroism (MCD) at the transition-metal 2p-3d absorption edges are useful techniques to study the valence and spin states of the transition-metal atoms. Furthermore, since MCD has different sensitivities to the ferromagnetic and paramagnetic components at different temperatures and magnetic fileds, if the sample is a mixture of ferromagnetic and non-ferromagnetic transition- metal atoms, it can be used to separate the two components and to study their electronic structures. In this talk, results are presented for the prototypical diluted ferromagnetic semiconductor Ga1-xMnxAs [2] and the room-temperature ferromagnets Zn1-xCoxO and Ti1-xCoxO2.I acknowledge collaboration with Y. Ishida, J.-I. Hwang, M. Kobayashi, Y. Takeda, Y. Saitoh, J. Okamoto, T. Okane, Y. Muramatsu, K. Mamiya, T. Koide, A. Tanaka, M. Tanaka, Hayashi, S. Ohya, T. Kondo, H. Munekata, H. Saeki, H. Tabata, T. Kawai, Y. Matsumoto, H. Koinuma, T. Fukumura and M. Kawasaki. This work was supported by a Grant-in-Aid for Scientific Research in Priority Area "Semiconductor nano-spintronics" (14076209) from MEXT, Japan.1. J. Okabayashi et al., Phys. Rev. B 64, 125304 (2001).2. A. Fujimori et al., J. Electron Spectrosc. Relat. Phenom., in press.

  19. Transition from the adiabatic to the sudden limit in core-electron photoemission

    NASA Astrophysics Data System (ADS)

    Hedin, Lars; Michiels, John; Inglesfield, John

    1998-12-01

    in the predictions for the photoemission spectra are found small. We confirm the finding by Langreth that the BS limit is reached only in the keV range. At no photon energy are the plasmon satellites close to being either purely intrinsic or extrinsic. For photoelectron energies larger than a few times the plasmon energy, a semiclassical approximation gives results very close to our QM model. At lower energies the QM model gives a large peak in the ratio between the total intensity in the first plasmon satellite and the main peak, which is not reproduced by the SC expression. This maximum has a simple physical explanation in terms of different dampings of the electrons in the QP peak and in the satellite. For the MND peak Jk(ω) and Ac(ɛk-ω) agree well for a range of a few eV, and experimental data can thus be used to extract the MND singularity index. For an embedded atom at a small distance from the surface there are, however, substantial deviations from the large-distance limit. Our model is simple enough to perform quantitative calculations allowing for band-structure and surface details.

  20. XPS study of surface state of novel perovskite system Dy0.5Sr0.5Co0.8Fe0.2O3-δ as cathode for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kautkar, Pranay R.; Acharya, Smita A.; Tumram, Priya V.; Deshpande, U. P.

    2016-05-01

    In the present attempt,novel perovskite oxide Dy0.5Sr0.5Co0.8Fe0.2O3-δ (DSCF) as cathode material has been synthesized by an Ethylene glycol-citrate combined sol-gel combustion route. Orthorhombic symmetry structure is confirmed by X-ray diffraction (XRD) and data is well fitted using Rietveld refinement by Full-Prof software suite. Chemical natureof surface of DSCF has been analyzed by using X-ray photoelectron spectroscopy (XPS). XPS result shows that Dy ions are in +3 oxidation state and Sr in +2 states. However Co2p and Fe2p spectra indicates partial change in oxidation state from Co3+/Fe3+ to Co4+/Fe4+. These attribute to develop active sites on the surface for oxygen ions. O1s XPS spectra shows two oxygen peaks relatedto lattice oxygen in perovskite and absorbed oxygen in oxygen vacancy are detected. O1s spectra demonstrate the existence of adsorbed oxygen species on the surface of DSCF oxide which is quite beneficial for intermediate temperature of Solid Oxide Fuel Cell.

  1. Angle-resolved photoemission study of thin molecular-beam-epitaxy-grown α-Sn1-xGex films with x~0.5

    NASA Astrophysics Data System (ADS)

    Höchst, Hartmut; Engelhardt, Michael A.; Hernández-Calderón, Isaac

    1989-11-01

    Angle-resolved synchrotron-radiation photoemission spectroscopy is used to study the electronic structure of metastable epitaxial films of α-Sn1-xGex alloys. Homogeneous crystalline alloy films were grown by molecular-beam epitaxy on Ge(100) substrates at ~400 °C up to a thickness of ~300 Å. Photoemission core-level analysis indicates a strong tendency to form a compound with a composition close to x~0.5. Angle-resolved spectra show a shift of the Γ8 valence band from ~0.6 eV in Ge(100) to ~0.16 eV below EF in the α-Sn0.48Ge0.52 alloy. The experimental information of a constant alloy Fermi level locates the top of the Γ8 valence band ~0.16 eV below EF. Assuming a linear band model, the direct band gap of Eg~0.2 eV for x~0.5 will then locate the bottom of the Γ7 conduction band ~0.04 eV above EF.

  2. Correlation of polycrystalline Cu(In,Ga)Se{sub 2} device efficiency with homojunction depth and interfacial structure: X-ray photoemission and positron annihilation spectroscopic characterization

    SciTech Connect

    Nelson, A.J.; Sobol, P.E.; Gabor, A.M.; Contreras, M.A.; Asoka-Kumar, P.; Lynn, K.G.

    1994-06-01

    Angled-resolved high resolution photoemission measurements on valence band electronic structure and Cu 2p, In 3d, Ga 2p, and Se 3d core lines were used to evaluate surface and near-surface chemistry of CuInSe{sub 2} and Cu(In,Ga)Se{sub 2} device grade thin films. XPS compositional depth profiles were also acquired from the near-surface region, and bonding of the Cu, In, Ga, and Se was determined as a function of depth. A Cu-poor region was found, indicating CuIn{sub 5}Se{sub 8} or a CuIn{sub 3}Se{sub 5}-In{sub 2}Se{sub 3} mixture. Correlation between the depth of the Cu-poor region/bulk interface and device efficiency showed that the depth was 115 {angstrom} for a 16.4% CIGS device, 240 {angstrom} for a 15.0% CIGS, and 300 {angstrom} for 14.0% CIGS, with similar trends for CIS films. The surface region is n-type, the bulk is p-type, with a 0.5 eV valence band offset. Depth of homojunction may be the determining factor in device performance. Positron annihilation spectroscopy gave similarly illuminating results.

  3. X-ray photoemission and energy dispersive spectroscopy of hydroxyapatite-coated titanium

    SciTech Connect

    Drummond, J.L.; Steinberg, A.D.; Krauss, A.R.

    1997-07-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (X-ray photoemission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls and specimens aged 30 min and 3 h at room temperature in distilled water and 0.2M sodium phosphate buffer (pH 7.2). Each X-ray photoemission cycle consisted of three scans followed by argon sputtering for 10 min for usually 20 cycles, corresponding to a sampling depth of {approximately}1,500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {micro}m area for 500 s. The X-ray photoemission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorus. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis.

  4. Simple theoretical analysis of the Einstein’s photoemission from quantum confined superlattices

    NASA Astrophysics Data System (ADS)

    Pahari, S.; Bhattacharya, S.; Roy, S.; Saha, A.; De, D.; Ghatak, K. P.

    2009-11-01

    In this paper, we study the Einstein's photoemission from III-V, II-VI, IV-VI and HgTe/CdTe quantum well superlattices (QWSLs) with graded interfaces and quantum well effective mass superlattices in the presence of a quantizing magnetic field on the basis of newly formulated dispersion relations in the respective cases. Besides, the same has been studied from the afore-mentioned quantum dot superlattices and it appears that the photoemission oscillates with increasing carrier degeneracy and quantizing magnetic field in different manners. In addition, the photoemission oscillates with film thickness and increasing photon energy in quantum steps together with the fact that the solution of the Boltzmann transport equation will introduce new physical ideas and new experimental findings under different external conditions. The influence of band structure is apparent from all the figures and we have suggested three applications of the analyses of this paper in the fields of superlattices and microstructures.

  5. Investigating early stages of biocorrosion with XPS: AISI 304 stainless steel exposed to Burkholderia species

    NASA Astrophysics Data System (ADS)

    Johansson, Leena-Sisko; Saastamoinen, Tuomas

    1999-04-01

    We have investigated the interactions of an exopolymer-producing bacteria, Burkholderia sp. with polished AISI 304 stainless steel substrates using X-ray photoelectron spectroscopy (XPS). Steel coupons were exposed to the pure bacteria culture in a specially designed flowcell for 6 h during which the experiment was monitored in situ with an optical microscope. XPS results verified the formation of biofilm containing extracellular polymer on all the samples exposed to bacteria. Sputter results indicated that some ions needed for metabolic processes were trapped within the biofilm. Changes in the relative Fe concentration and Fe 2p peak shape indicated that also iron had accumulated into the biofilm.

  6. Samarium electrodeposited acetate and oxide thin films on stainless steel substrate characterized by XPS

    DOE PAGESBeta

    Myhre, Kristian; Burns, Jonathan; Meyer, Harry; Sims, Nathan; Boll, Rose

    2016-06-01

    Characterization of a samarium thin film deposited on a stainless steel substrate using molecular electrodeposition was carried out using a Thermo Scientific K-Alpha X-ray photoelectron spectrometer. We studied two types of samarium electrodeposition samples, one as-deposited and one heated to 700 °C in an air flow. Survey scans include peaks coming from the stainless steel substrate, such as Fe and Cr. An X-ray photoelectron spectroscopy (XPS) survey spectrum, Sm 3d, C 1s, and O 1s narrow scans are shown. It was determined that the heating process decomposed the deposited Sm acetate to Sm2O3 using XPS.

  7. XPS study of distribution of elements between surface and volume in aluminosilicate catalysts and adsorbents

    SciTech Connect

    Chukin, G.D.; Grishin, S.A.; Kulikov, A.S.; Nefedov, B.K.; Surin, S.A.

    1986-02-01

    X-ray photoelectron spectroscopy (XPS) has been used in an investigation of the distribution of aluminum and sodium on the surface and in the volume of amorphous aluminosilicates. It has been shown that in the Na form of the aluminosilicates, the sodium and aluminum ions are localized preferentially on the surface. When the Na/sup +/ ions are replaced by protons, there is a change in the electronic state of the near-surface atoms in the aluminosilicates. Information on acidic centers that has been obtained by IR spectroscopy is consistent with the XPS data.

  8. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    SciTech Connect

    Palczewski, Ari Deibert

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc, max ≈ 95 K and (Bi 1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc, max ≈ 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to (π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is consistent

  9. Photoemission spectroscopy studies of new topological insulator materials

    NASA Astrophysics Data System (ADS)

    Weber, Andrew Patton

    As the size of a solid shrinks, the ratio of surface area to bulk volume grows and surface effects become more important. In a world where technologies advance with the shrinking size of electronic devices, one phase of matter has emerged which is fit for the near future of surface-dominated performance. Moreover, it has brought a new set of ideas to solid-state physics and chemistry, especially the understanding that the discipline of topology can be applied to classify the electron band structures. The topological insulator phase yields an exotic metal surface state in which the orientation of the electron's spin is locked perpendicular to its momentum. This property suppresses backscattering (making it possible to pass spin-polarized currents through the material without loss), offers a crucial ingredient for innovative approaches to quantum computation, and provides the basis for observing unique magnetoelectric effects. However, the surface states of materials in the topological insulator phase can wildly differ, so it is of interest to systematically characterize new materials to understand how the structure in position-space is related to the spin-resolved structure of electrons in energy- and momentum-space. We will discuss this relationship as it is probed through spin- and angle-resolved photoemission spectroscopy experiments on three topological (Bi2)m(Bi2Se3)n superlattices: (a) Bi2Se3 (m = 0, n = 1), (b) Bi4Se3 (m = 1, n = 1), and (c) BiSe (m = 1, n = 2). Our studies have not only proven the topological nature of these materials, but also demonstrate how bulk band structure and polar chemical bonding control the surface metal's concentration, dispersion, and spin-orbital character. Case (a) is considered to provide an ideal model of the topological surface metal. Case (b) provides the three important findings: (1) the chemical identity of the surface-termination controls the orbital composition and energy distribution of the surface states, (2) there

  10. Recent Photoemission Results for the Electron-Doped Superconductors

    NASA Astrophysics Data System (ADS)

    Matsui, Hiroaki

    2006-03-01

    Recent improvement in the energy and angular resolution of angle-resolved photoemission spectroscopy (ARPES) enabled us to investigate the detailed electronic structure in electron-doped high-temperature superconductors (HTSC), which have a relatively smaller energy-scale of superconductivity compared to hole-doped systems. In this talk, we report our recent ARPES results1,2 focusing on the many-body interaction and the superconducting-gap symmetry in electron-doped HTSC. We have performed high-resolution ARPES measurements on Nd2-xCexCuO4 and observed that the quasiparticle (QP) effective mass around oπ sg&_slash;p is strongly enhanced due to opening of an antiferromagnetic (AF) pseudogap. Both the QP effective mass and the AF pseudogap are strongly anisotropic with the largest magnitude near the hot spot, which is defined as an intersection point of the Fermi surface and the AF zone boundary. Temperature-dependent measurements have revealed that the AF pseudogap survives at temperatures much higher than TN (N'{e}el temperature), possibly due to the short-range AF correlation remaining even above TN. The AF pseudogap gradually decreases with doping and is abruptly filled up near the boundary between the AF and superconducting phases. To study the anisotropy of superconducting gap in electron-doped HTSC, we have performed high-resolution ARPES on Pr0.89LaCe0.11CuO4. We observed that the momentum dependence of superconducting gap is basically consistent with the dx2-y2-wave symmetry, but it obviously deviates from the simple dx2-y2 gap function. The maximum superconducting gap is not observed at the zone boundary as expected from the simple dx2-y2 gap symmetry, but it is located around the hot spot where electrons are thought to be strongly coupled to the AF spin fluctuation. All these ARPES results suggest that the electronic stricture and the superconducting behavior are strongly dominated by the AF interaction in electron-doped HTSC. 1) H. Matsui, K. Terashima

  11. An XUV source using a femtosecond enhancement cavity for photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Mills, Arthur K.; Zhdanovich, Sergey; Sheyerman, Alex; Levy, Giorgo; Damascelli, Andrea; Jones, David J.

    2015-05-01

    Recent development of extreme ultraviolet (XUV) sources based on high harmonic generation (HHG) in femtosecond enhancement cavities (fsEC) has enabled generation of high photon ux ( ̴ 1013-1014 photons/sec) in the XUV, at high repetition rates (> 50 MHz) and spanning the spectral region from 40 nm - 120 nm. Here we demonstrate the potential offered by this approach for angle-resolved photoemission spectroscopy by measuring the photoemission spectrum of Au using 8.3 and 25 eV photons with excellent resolution at rapid data rates.

  12. The effect of photoemission on the streamer development and propagation in short uniform gaps

    NASA Astrophysics Data System (ADS)

    Georghiou, G. E.; Morrow, R.; Metaxas, A. C.

    2001-01-01

    Results are presented for the time evolution of photoemission in a 0.1 cm parallel-plane gap in atmospheric pressure air when a positive dc voltage is applied at one of the electrodes. The hydrodynamic set of equations is solved using the finite-element flux-corrected transport method in two dimensions. The time evolution of the electron distribution at the cathode and the variation of the spread of the electrons are examined during the avalanche, the avalanche-to-streamer transition and streamer propagation stages. Finally, the effect of the variation of the photoemission coefficient on the field distribution and the current waveform are presented.

  13. Multilayer ReS2 lateral p-n homojunction for photoemission and photodetection

    NASA Astrophysics Data System (ADS)

    Najmzadeh, Mohammad; Ko, Changhyun; Wu, Kedi; Tongay, Sefaattin; Wu, Junqiao

    2016-05-01

    In this paper, a multilayer ReS2 p-n homojunction is fabricated on an oxidized Si substrate, and its photoemission under a forward bias and its photodetection under a reverse bias are reported for the first time. Au nanoparticles were used to make lateral p-n homojunctions. The device shows room temperature photoemission in the IR range, and in the photodetector mode, it shows a 0.41 A/W responsivity under illumination by a 660 nm red laser.

  14. Night Spectra Quest.

    ERIC Educational Resources Information Center

    Jacobs, Stephen

    1995-01-01

    Presents the Night Spectra Quest, a pocket-sized chart that identifies in color the spectra of all the common night lights and has an integrally mounted, holographic diffraction grating to look through. (JRH)

  15. Direct comparative study on the energy level alignments in unoccupied/occupied states of organic semiconductor/electrode interface by constructing in-situ photoemission spectroscopy and Ar gas cluster ion beam sputtering integrated analysis system

    SciTech Connect

    Yun, Dong-Jin Chung, JaeGwan; Kim, Yongsu; Park, Sung-Hoon; Kim, Seong-Heon; Heo, Sung

    2014-10-21

    Through the installation of electron gun and photon detector, an in-situ photoemission and damage-free sputtering integrated analysis system is completely constructed. Therefore, this system enables to accurately characterize the energy level alignments including unoccupied/occupied molecular orbital (LUMO/HOMO) levels at interface region of organic semiconductor/electrode according to depth position. Based on Ultraviolet Photoemission Spectroscopy (UPS), Inverse Photoemission Spectroscopy (IPES), and reflective electron energy loss spectroscopy, the occupied/unoccupied state of in-situ deposited Tris[4-(carbazol-9-yl)phenyl]amine (TCTA) organic semiconductors on Au (E{sub LUMO}: 2.51 eV and E{sub HOMO}: 1.35 eV) and Ti (E{sub LUMO}: 2.19 eV and E{sub HOMO}: 1.69 eV) electrodes are investigated, and the variation of energy level alignments according to work function of electrode (Au: 4.81 eV and Ti: 4.19 eV) is clearly verified. Subsequently, under the same analysis condition, the unoccupied/occupied states at bulk region of TCTA/Au structures are characterized using different Ar gas cluster ion beam (Ar GCIB) and Ar ion sputtering processes, respectively. While the Ar ion sputtering process critically distorts both occupied and unoccupied states in UPS/IPES spectra, the Ar GCIB sputtering process does not give rise to damage on them. Therefore, we clearly confirm that the in-situ photoemission spectroscopy in combination with Ar GCIB sputtering allows of investigating accurate energy level alignments at bulk/interface region as well as surface region of organic semiconductor/electrode structure.

  16. Adsorption of dopamine on rutile TiO2 (110): a photoemission and near-edge X-ray absorption fine structure study.

    PubMed

    Jackman, Mark J; Syres, Karen L; Cant, David J H; Hardman, Samantha J O; Thomas, Andrew G

    2014-07-29

    Synchrotron radiation photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) techniques have been used to study the adsorption of dopamine on a rutile TiO2 (110) single crystal. Photoemission results suggest that dopamine bonds through the oxygen molecules in a bidentate fashion. From the data, it is ambiguous whether the oxygens bond to the same 5-fold coordinated surface titanium atom or bridges across two, although based on the bonding of pyrocatechol on rutile TiO2 (110), it is likely that the dopamine bridges two titanium atoms. Using the searchlight effect, the carbon K-edge near-edge X-ray absorption fine structure NEXAFS spectra recorded for dopamine on rutile TiO2 (110) show the phenyl ring to be oriented at 78° ± 5° from the surface and twisted 11 ± 10° relative to the (001) direction.

  17. Adsorption of dopamine on rutile TiO2 (110): a photoemission and near-edge X-ray absorption fine structure study.

    PubMed

    Jackman, Mark J; Syres, Karen L; Cant, David J H; Hardman, Samantha J O; Thomas, Andrew G

    2014-07-29

    Synchrotron radiation photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) techniques have been used to study the adsorption of dopamine on a rutile TiO2 (110) single crystal. Photoemission results suggest that dopamine bonds through the oxygen molecules in a bidentate fashion. From the data, it is ambiguous whether the oxygens bond to the same 5-fold coordinated surface titanium atom or bridges across two, although based on the bonding of pyrocatechol on rutile TiO2 (110), it is likely that the dopamine bridges two titanium atoms. Using the searchlight effect, the carbon K-edge near-edge X-ray absorption fine structure NEXAFS spectra recorded for dopamine on rutile TiO2 (110) show the phenyl ring to be oriented at 78° ± 5° from the surface and twisted 11 ± 10° relative to the (001) direction. PMID:25003716

  18. Electric field and temperature dependence of dielectric permittivity in strontium titanate investigated by a photoemission study on Pt/SrTiO{sub 3}:Nb junctions

    SciTech Connect

    Hirose, Sakyo; Okushi, Hideyo; Yoshikawa, Hideki; Adachi, Yutaka; Ohsawa, Takeo; Haneda, Hajime; Ueda, Shigenori; Ando, Akira; Ohashi, Naoki

    2015-05-11

    Schottky junctions made from platinum and niobium-doped strontium titanate (SrTiO{sub 3}:Nb) were investigated by hard X-ray photoemission (HXPES) and through a band bending behavior simulation using a phenomenological model, which assumes a decrease in dielectric constant due to an electric field. Thus, we confirmed that the observed HXPES spectra at relatively high temperatures, e.g., >250 K, were well simulated using this phenomenological model. In contrast, it was inferred that the model was not appropriate for junction behavior at lower temperatures, e.g., <150 K. Therefore, a reconstruction of the phenomenological model is necessary to adequately explain the dielectric properties of SrTiO{sub 3}.

  19. High-kinetic-energy photoemission spectroscopy of Ni at 1s : 6-eV satellite at 4 eV

    NASA Astrophysics Data System (ADS)

    Karis, O.; Svensson, S.; Rusz, J.; Oppeneer, P. M.; Gorgoi, M.; Schäfers, F.; Braun, W.; Eberhardt, W.; Mårtensson, N.

    2008-12-01

    Electron correlations are responsible for many profound phenomena in solid-state physics. A classical example is the 6-eV satellite in the photoelectron spectrum of Ni. Until now the satellite structure has only been investigated at the L shell and more shallow levels. Here we report a high-kinetic-energy photoemission spectroscopy (HIKE) investigation of Ni metal. We present 1s and 2p photoelectron spectra, obtained using excitation energies up to 12.6 keV. Our investigation demonstrates that the energy position of the satellite relative to the main line is different for the 1s and the 2p levels. In combination with electronic structure calculations, we show that this energy shift is attributed to unique differences in the core-valence coupling for the K and L2,3 shells in 3d transition metals, resulting in different screening of the core holes.

  20. Exploring the Electronic Structure and Chemical Homogeneity of Individual Bi2Te3 Nanowires by Nano-Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Krieg, Janina; Chen, Chaoyu; Avila, José; Zhang, Zeying; Sigle, Wilfried; Zhang, Hongbin; Trautmann, Christina; Asensio, Maria Carmen; Toimil-Molares, Maria Eugenia

    2016-07-13

    Due to their high surface-to-volume ratio, cylindrical Bi2Te3 nanowires are employed as model systems to investigate the chemistry and the unique conductive surface states of topological insulator nanomaterials. We report on nanoangle-resolved photoemission spectroscopy (nano-ARPES) characterization of individual cylindrical Bi2Te3 nanowires with a diameter of 100 nm. The nanowires are synthesized by electrochemical deposition inside channels of ion-track etched polymer membranes. Core level spectra recorded with submicron resolution indicate a homogeneous chemical composition along individual nanowires, while nano-ARPES intensity maps reveal the valence band structure at the single nanowire level. First-principles electronic structure calculations for chosen crystallographic orientations are in good agreement with those revealed by nano-ARPES. The successful application of nano-ARPES on single one-dimensional nanostructures constitutes a new avenue to achieve a better understanding of the electronic structure of topological insulator nanomaterials.

  1. Direct observation of photocarrier electron dynamics in C60 films on graphite by time-resolved two-photon photoemission

    PubMed Central

    Shibuta, Masahiro; Yamamoto, Kazuo; Ohta, Tsutomu; Nakaya, Masato; Eguchi, Toyoaki; Nakajima, Atsushi

    2016-01-01

    Time-resolved two-photon photoemission (TR-2PPE) spectroscopy is employed to probe the electronic states of a C60 fullerene film formed on highly oriented pyrolytic graphite (HOPG), acting as a model two-dimensional (2D) material for multi-layered graphene. Owing to the in-plane sp2-hybridized nature of the HOPG, the TR-2PPE spectra reveal the energetics and dynamics of photocarriers in the C60 film: after hot excitons are nascently formed in C60 via intramolecular excitation by a pump photon, they dissociate into photocarriers of free electrons and the corresponding holes, and the electrons are subsequently detected by a probe photon as photoelectrons. The decay rate of photocarriers from the C60 film into the HOPG is evaluated to be 1.31 × 1012 s−1, suggesting a weak van der Waals interaction at the interface, where the photocarriers tentatively occupy the lowest unoccupied molecular orbital (LUMO) of C60. The photocarrier electron dynamics following the hot exciton dissociation in the organic thin films has not been realized for any metallic substrates exhibiting strong interactions with the overlayer. Furthermore, the thickness dependence of the electron lifetime in the LUMO reveals that the electron hopping rate in C60 layers is 3.3 ± 1.2 × 1013 s−1. PMID:27775005

  2. Soft-x-ray resonant-photoemission study of mixed-valence TmSe

    NASA Astrophysics Data System (ADS)

    Oh, S.-J.; Allen, J. W.; Lindau, I.

    1984-08-01

    A single crystal of mixed-valence TmSe was studied by a resonant-photoemission technique with use of synchrotron radiation in the soft-x-ray region (hν=70-200 eV). The two Tm 4f emissions, one corresponding to the divalent Tm ion (4f13-->4f12) and the other to the trivalent Tm ion (4f12-->4f11), are both resonantly enhanced at photon energies close to the Tm 4d binding energy (170 to 180 eV), but their resonance behaviors differ from each other in that the former structure follows the multiplet structure of the 4d94f14 intermediate-state configuration whereas the latter shows multiplets of the 4d94f13 configuration. This can serve as a direct spectroscopic identification of the 4f occupation number of each component of the 4f emissions. Because the correlation energies between Tm 4d and 4f electrons and those between two 4f electrons are similar, these resonance thresholds come at about the same energy for both configurations. The bulk-sensitive constant-final-state (CFS) spectra show a superposition of both resonance features, confirming bulk mixed valency of TmSe. The bulk valence deduced from this CFS measurement is 2.62+/-0.15. The Tm 5p core-level emissions show two sets of spin-orbit peaks corresponding to two different Tm valences, and they also resonate in the same way as 4f emissions. The apparent spin-orbit splittings between 5p12 and 5p32 peaks differ by 1.4 eV for two Tm valences, most probably because of the exchange interaction between the 5p hole and 4f electrons. The variation of the relative intensity of the divalent peak to the trivalent peak as a function of photon energy clearly supports the existence of divalent surface layer(s), as recently reported. The electron escape depth has been calculated from this intensity ratio, and the results are compared with various theoretical models.

  3. Enhanced the photocatalytic activity of Ni-doped ZnO thin films: Morphological, optical and XPS analysis

    NASA Astrophysics Data System (ADS)

    Abdel-wahab, M. Sh.; Jilani, Asim; Yahia, I. S.; Al-Ghamdi, Attieh A.

    2016-06-01

    Pure and Ni-doped ZnO thin films with different concentration of Ni (3.5 wt%, 5 wt%, 7 wt%) were prepared by DC/RF magnetron sputtering technique. The X-rays diffraction pattern showed the polycrystalline nature of pure and Ni-doped ZnO thin films. The surface morphology of pure and Ni doped ZnO thin films were investigated through atomic force microscope, which indicated the increase in the grain dimension and surface roughness with increasing the Ni doping. The UV-Visible transmission spectra showed the decrease in the transmittance of doped ZnO thin films with the incorporation of Ni dopants. The surface and chemical state analysis of pure and Ni doped ZnO thin films were investigated by X-rays photoelectron spectroscopy (XPS). The photocatalytic activities were evaluated by an aqueous solution of methyl green dye. The tungsten lamp of 500 W was used as a source of visible light for photocatalytic study. The degradation results showed that the Ni-doped ZnO thin films exhibit highly enhanced photocatalytic activity as compared to the pure ZnO thin films. The enhanced photocatalytic activities of Ni-doped ZnO thin films were attributed to the enhanced surface area (surface defects), surface roughness and decreasing the band gap of Ni-doped ZnO thin films. Our work supports the applications of thin film metal oxides in waste water treatment.

  4. On the combined use of GW approximation and cumulant expansion in the calculations of quasiparticle spectra: The paradigm of Si valence bands

    NASA Astrophysics Data System (ADS)

    Gumhalter, Branko; Kovač, Vjekoslav; Caruso, Fabio; Lambert, Henry; Giustino, Feliciano

    2016-07-01

    Since the earliest implementations of the various GW approximations and cumulant expansion in the calculations of quasiparticle propagators and spectra, several attempts have been made to combine the advantageous properties and results of these two theoretical approaches. While the GW-plus-cumulant approach has proven successful in interpreting photoemission spectroscopy data in solids, the formal connection between the two methods has not been investigated in detail. By introducing a general bijective integral representation of the cumulants, we can rigorously identify at which point these two approximations can be connected for the paradigmatic model of quasiparticle interaction with the dielectric response of the system that has been extensively exploited in recent interpretations of the satellite structures in photoelectron spectra. We establish a protocol for consistent practical implementation of the thus established GW +cumulant scheme and illustrate it by comprehensive state-of-the-art first-principles calculations of intrinsic angle-resolved photoemission spectra from Si valence bands.

  5. Thermally Annealed Iron (Oxide) Thin Film on an Alumina Barrier Layer, by XPS

    SciTech Connect

    Madaan, Nitesh; Kanyal, Supriya S.; Jensen, David S.; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-06

    Herein we show characterization of an Fe thin film on Al_2O_3 after thermal annealing under H_2 using Al Ka X-rays. The XPS survey spectrum, narrow Fe 2p scan, and valence band regions are presented. The survey spectrum shows aluminum signals due to exposure of the underlying Al_2O_3 film during Fe nanoparticle formation.

  6. En route to traceable reference standards for surface group quantifications by XPS, NMR and fluorescence spectroscopy.

    PubMed

    Hennig, Andreas; Dietrich, Paul M; Hemmann, Felix; Thiele, Thomas; Borcherding, Heike; Hoffmann, Angelika; Schedler, Uwe; Jäger, Christian; Resch-Genger, Ute; Unger, Wolfgang E S

    2015-03-21

    The fluorine content of polymer particles labelled with 2,2,2-trifluoroethylamine was reliably quantified with overlapping sensitivity ranges by XPS and solid-state NMR. This provides a first step towards reference materials for the metrological traceability of surface group quantifications. The extension of this concept to fluorescence spectroscopy is illustrated.

  7. Deteriorated hardened cement paste structure analyzed by XPS and {sup 29}Si NMR techniques

    SciTech Connect

    Kurumisawa, Kiyofumi; Nawa, Toyoharu; Owada, Hitoshi; Shibata, Masahito

    2013-10-15

    In this report, X-ray photoelectron spectroscopy (XPS) and {sup 29}Si-MAS-NMR was used for the evaluation of deteriorated hardened cement pastes. The deterioration by ammonium nitrate solution was accompanied by changes in the pore structure as well as by structural changes in the C–S–H in the hardened cement paste. The CaO/SiO{sub 2} ratio of the C–S–H decreased with the progress of deterioration, there was also polymerization of the silicate in the C–S–H. It was confirmed that the degree of polymerization of silicate of the C–S–H in hardened cement paste can be determined by XPS. It was also shown that the polymerization depends on the structure of the C–S–H. -- Highlights: •The polymerization of silicate of the C–S–H in the HCP can be observed by XPS. •The structure of C–S–H changed with the degree of calcium leaching. •The NMR result about silicate in C–S–H was in good agreement with the XPS result.

  8. Heparin coating durability on artificial heart valves studied by XPS and antithrombin binding capacity.

    PubMed

    Kristensen, E M E; Larsson, R; Sánchez, J; Rensmo, H; Gelius, U; Siegbahn, H

    2006-04-15

    The durability and functionality of a heparin coating on artificial heart valve leaflets were evaluated with X-ray photoelectron spectroscopy (XPS) and by the coatings' capacity to bind antithrombin. Current methods for accelerated life-time testing are based on exposing leaflets to water solutions. In this paper a method is explored, in which heart valve leaflets were exposed to a continuous high shear rate (4 L/min) of human citrated plasma. It was found that the heparin coating was stable and wear resistant enough to still be present after 3 weeks and to have about the same antithrombin uptake as coatings not exposed to circulating plasma. It was, however, partly destroyed by the test as found using XPS. We suggest that heparin chains from the upper layer of heparin have been torn off from the carrier chain, in combination with loss of heparin conjugate and plasma deposition in patches. This study showed that XPS provides additional information to biological measurements such as antithrombin uptake. XPS is therefore a valuable technique not only to characterize biomaterials but also to evaluate the effect of a performance test.

  9. XPS for non-destructive depth profiling and 3D imaging of surface nanostructures.

    PubMed

    Hajati, Shaaker; Tougaard, Sven

    2010-04-01

    Depth profiling of nanostructures is of high importance both technologically and fundamentally. Therefore, many different methods have been developed for determination of the depth distribution of atoms, for example ion beam (e.g. O(2)(+) , Ar(+)) sputtering, low-damage C(60) cluster ion sputtering for depth profiling of organic materials, water droplet cluster ion beam depth profiling, ion-probing techniques (Rutherford backscattering spectroscopy (RBS), secondary-ion mass spectroscopy (SIMS) and glow-discharge optical emission spectroscopy (GDOES)), X-ray microanalysis using the electron probe variation technique combined with Monte Carlo calculations, angle-resolved XPS (ARXPS), and X-ray photoelectron spectroscopy (XPS) peak-shape analysis. Each of the depth profiling techniques has its own advantages and disadvantages. However, in many cases, non-destructive techniques are preferred; these include ARXPS and XPS peak-shape analysis. The former together with parallel factor analysis is suitable for giving an overall understanding of chemistry and morphology with depth. It works very well for flat surfaces but it fails for rough or nanostructured surfaces because of the shadowing effect. In the latter method shadowing effects can be avoided because only a single spectrum is used in the analysis and this may be taken at near normal emission angle. It is a rather robust means of determining atom depth distributions on the nanoscale both for large-area XPS analysis and for imaging. We critically discuss some of the techniques mentioned above and show that both ARXPS imaging and, particularly, XPS peak-shape analysis for 3D imaging of nanostructures are very promising techniques and open a gateway for visualizing nanostructures. PMID:20091159

  10. Two-photon photoemission from a copper cathode in an X -band photoinjector

    NASA Astrophysics Data System (ADS)

    Li, H.; Limborg-Deprey, C.; Adolphsen, C.; McCormick, D.; Dunning, M.; Jobe, K.; Raubenheimer, T.; Vrielink, A.; Vecchione, T.; Wang, F.; Weathersby, S.

    2016-02-01

    This paper presents two-photon photoemission from a copper cathode in an X -band photoinjector. We experimentally verified that the electron bunch charge from photoemission out of a copper cathode scales with laser intensity (I) square for 400 nm wavelength photons. We compare this two-photon photoemission process with the single photon process at 266 nm. Despite the high reflectivity (R ) of the copper surface for 400 nm photons (R =0.48 ) and higher thermal energy of photoelectrons (two-photon at 200 nm) compared to 266 nm photoelectrons, the quantum efficiency of the two-photon photoemission process (400 nm) exceeds the single-photon process (266 nm) when the incident laser intensity is above 300 GW /cm2 . At the same laser pulse energy (E ) and other experimental conditions, emitted charge scales inversely with the laser pulse duration. A thermal emittance of 2.7 mm-mrad per mm root mean square (rms) was measured on our cathode which exceeds by sixty percent larger compared to the theoretical predictions, but this discrepancy is similar to previous experimental thermal emittance on copper cathodes with 266 nm photons. The damage of the cathode surface of our first-generation X -band gun from both rf breakdowns and laser impacts mostly explains this result. Using a 400 nm laser can substantially simplify the photoinjector system, and make it an alternative solution for compact pulsed electron sources.

  11. Core-level x-ray photoemission: Deviations from threshold behavior

    NASA Astrophysics Data System (ADS)

    Cox, D. L.; Frota, H. O.; Oliveira, L. N.; Wilkins, J. W.

    1985-07-01

    We present a systematic numerical study of core-level x-ray photoemission intensity in metals, with emphasis upon studying the deviations from behavior asymptotically close to threshold. For a model with a contact potential and linear conduction-electron dispersion, we have evaluated the photoemission intensity for core-hole phase shifts δ(0) between 0.05π and 0.5π. We find the following results. (i) The asymptotic regime extends out to 0.01 to 0.1 times the conduction bandwidth (D) from threshold. The range of the asymptotic regime decreases with increasing (absolute) phase shift. (ii) The linear relation between the integrated photoemission intensity and the asymptotic form holds for all phase shifts above ~0.1D. Due to our normalization procedure we cannot say whether it holds below this value. (iii) Discrepancies exist between numerical estimates of the deviations from asymptotic behavior and approximate analytic estimates. (iv) A definition of the frequency-dependent threshold singularity exponent α(ω) in terms of a moment of the photoemission intensity is stable out to the conduction-band edge and may prove useful to experimentalists attempting to extract exponents from their data.

  12. Electron photoemission from platinum and palladium microdeposits on glassy carbon into the solution

    SciTech Connect

    Yakushev, V.V.; Bagotskii, V.S.; Skundin, A.M.

    1984-08-01

    It was of interest to the authors to compare the electrocatalytic and photoemission properties of microdeposits in other systems. Platinum and palladium microdeposits on glassy carbon were selected as such systems in the present work. The procedure used in the photoemission measurements has been previously described. All measurements were conducted in 1 N KOH. A mercury-mercuric oxide electrode served as reference electrode. The true surface areas of the platinum microdeposits were measured potentiodynamically in terms of hydrogen adsorption and oxygen desorption, while that of the palladium microdeposits was measured in terms of oxygen desorption. The results of the present work yield the important conclusion that the changes which occur in the density of electronic states in the microdeposits because of their contact with the support depend on potential, i.e., on the position of the Fermi level. It is found that the enhancement of the photoemission currents is attended by an increase, and the depression of the photoemission currents is attended by a decrease in electrocatalytic activity.

  13. Electronic spectra of semiconductor nanocrystals

    SciTech Connect

    Alivisatos, A.P.

    1993-12-31

    Semiconductor nanocrystals smaller than the bulk exciton show substantial quantum confinement effects. Recent experiments including Stark effect, resonance Raman, valence band photoemission, and near edge X-ray adsorption will be used to put together a picture of the nanocrystal electronic states.

  14. Photoemission and optical properties of C{sub 60} fullerites

    SciTech Connect

    Shirley, E.L.; Louie, S.G. |

    1994-08-01

    A theory is presented for excitations in undoped, solid C{sub 60} involving addition or removal of an electron, as well as creation of an electron-hole pair. Excitation energies are computed using a quasiparticle description of electrons and holes, plus a model for electron-hole interactions. Results are compared with those of direct and inverse photoelectron and optical absorption spectroscopy studies. Reasonable agreement is found in such comparisons, while more complete modeling of experimental spectra might include neglected matrix-element and vibrational effects. These results give values for simple, conceptual parameters, such as a molecular Hubbard U. Some results could also be relevant in doped fullerites.

  15. Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite-magnetite nanoparticles.

    PubMed

    Chowdhury, Saidur Rahman; Yanful, Ernest K; Pratt, Allen R

    2012-10-15

    Mixed maghemite-magnetite has been used as adsorbent for Cr(VI) removal in this study. Results show that the adsorption capacity is enhanced with an increase in reaction temperature and decrease in free energy change. Thermodynamic study shows that Cr(VI) adsorption on the mixed maghemite and magnetite is endothermic in nature and is dependent on solution pH between 3 and 6. X-ray photoelectron spectroscopy (XPS) results demonstrate the theoretical multiplet peaks for iron and chromium adsorbed iron at the surface of the γ-Fe(2)O(3) and Fe(3)O(4) mixture. Theoretical multiplet analysis shows that during Cr adsorption, the amount of maghemite increases (from 70 to 89%). In magnetite spectra, the relative content of Fe(II) decreases from 8.2 to 3.6% indicating the reduction of magnetite in the mixture particles. In Raman spectroscopy studies, clear peaks of chromium on iron oxide were generated at 826 cm(-1), which could be attributed to chemical interactions between chromium compound and iron oxide. From the results of Raman and XPS studies, electrostatic attraction and oxidation-reduction between chromium and mixed maghemite-magnetite are postulated as mechanisms for the removal of Cr(VI) from aqueous solutions. PMID:22902142

  16. Surface state modulation through wet chemical treatment as a route to controlling the electrical properties of ZnO nanowire arrays investigated with XPS

    NASA Astrophysics Data System (ADS)

    Lord, Alex M.; Maffeis, Thierry G.; Allen, Martin W.; Morgan, David; Davies, Philip R.; Jones, Daniel R.; Evans, Jonathan E.; Smith, Nathan A.; Wilks, Steve P.

    2014-11-01

    ZnO is a wide bandgap semiconductor that has many potential applications including solar cell electrodes, transparent thin film transistors and gas/biological sensors. Since the surfaces of ZnO materials have no amorphous or oxidised layers, they are very environmentally sensitive, making control of their semiconductor properties challenging. In particular, the electronic properties of ZnO nanostructures are dominated by surface effects while surface conduction layers have been observed in thin films and bulk crystals. Therefore, the ability to use the ZnO materials in a controlled way depends on the development of simple techniques to modulate their surface electronic properties. Here, we use monochromatic x-ray photoelectron spectroscopy (XPS) to investigate the use of different wet chemical treatments (EtOH, H2O2) to control the electronic properties of ZnO nanowires by modulating the surface depletion region. The valence band and core level XPS spectra are used to explore the relationship between the surface chemistry of the nanowires and the surface band bending.

  17. The investigation of the action of fillers by XPS studies of the transfer films of PEEK and its composites containing CuS and CuF2

    NASA Astrophysics Data System (ADS)

    Bahadur, S.; Gong, Deli; Anderegg, J. W.

    1993-01-01

    The wear behavior of polyetheretherketone (PEEK) and CuS-PEEK composite rubbing at 1 m/s speed and 19.6 N load against both the steel and glass disks is examined. While CuS filler decreased considerably the wear rate of PEEK in rubbing against the steel disk, the wear rate of both the filled and untilled materials in rubbing against the glass disk was almost the same. The wear rate of CuF2-PEEK composite sliding against a steel surface was also considerably lower than that of PEEK. The transfer films of the polymer and its composites containing CuS and CuF2 formed against the steel disk surfaces were studied by X-ray photoelectron spectroscopy (XPS). The analysis of the XPS spectra revealed that both CuS and CuF2 decomposed under the rubbing conditions. The analysis at two different depths in the transfer film of CuF2-PEEK revealed that the concentrations of Cu and FeF2 were greater close to the transfer film-counterface interface. However, there was no chemical change detected when unfilled PEEK rubbed against the steel disk surface.

  18. Photographic spectra of fireballs

    NASA Astrophysics Data System (ADS)

    Borovička, J.

    2016-01-01

    Two methods of spectroscopy of meteors using image intensified video cameras and classical photographic film cameras are compared. Video cameras provide large number of low resolution spectra of meteors of normal brightness, which can be used for statistical studies. Large format film cameras have been used through the history and provide high resolution spectra, which can be used to derive temperature, density and absolute abundances of various elements in the radiating plasma. The sensitivity of films is, however, low and only spectra of bright meteors (fireballs) can be studied. Examples of photographic fireball spectra are provided.

  19. Spectra of stable sonoluminescence

    NASA Astrophysics Data System (ADS)

    Lewis, Stephen D.

    1992-12-01

    The continuous emission of picosecond pulses of light has been observed to originate from a bubble trapped at the pressure antinode of a resonant sound field in water and in water/glycerin mixtures. The spectra of this light in several solutions has been measured with a scanning monochrometer/photomultiplier detector system. The spectra are broadband and show strong emission in the UV region. A comparison of this measurement to two other independently produced spectra is made. The spectra are also modeled by a blackbody radiation distribution to determine an effective blackbody temperature and a size is deduced as if Sonoluminescence were characterized by blackbody radiation.

  20. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  1. Characterization of heterojunctions via x-ray and uv photoemission spectroscopy: energy level implications for single and mixed monolayer SAMs, cadmium selenide nanoparticle films, and organic semiconductor depositions

    NASA Astrophysics Data System (ADS)

    Graham, Amy L.

    This work has centered on the interface dipoles arising at heterojunctions between metals, semiconductor nanoparticles, self-assembled monolayers, and organic semiconductor materials. Alkanethiol self-assembled monolayers, CdSe nanocrystals, and the organic semiconductors zinc phthalocyanine (ZnPc) and Buckminster fullerene (C60) were the basis of these investigations. UV photoemission spectroscopy has proven to be an invaluable tool to observe the vacuum level shifts for these analyses while using XPS to corroborate surface structure. With a full evaluation of these surfaces, the shifts in the vacuum level, valence ionizations, and core ionizations, the impact of these interfaces, as well as their influence on the subsequent deposition of organic semiconductor layers is established. Alkanethiols possessing varying dipole moments were examined on gold and silver substrates. The viability of these alkanethiols was demonstrated to predictively adjust the work function of these metals as a function of their intrinsic dipole moments projected to surface normal, and established differences between Ag---S and Au---S bonds. The capability of the SAMs to modify the work function of gold provided an opportunity for mixed monolayers of the alkanethiols to produce a precise range of work functions by minimal adjustments of solution concentration, which were examined with a simple point dipole model. Photoemission spectroscopy offers a thorough analysis of CdSe nanoparticle films. Despite a plethora of research on these nanocrystals, there still is controversy on the magnitude of the shift in the valence band with diameter. In our research we found the majority of the valence band shift could be attributed to the interface dipole, ignored previously. Meanwhile, the valence band tethered films was obscured by the sulfur of the thiol tether. Finally, organic semiconductor layers deposited on SAMs on gold exhibited various interface dipole effects at these heterojunctions. Charge

  2. Adsorption of acetic acid on ice studied by ambient-pressure XPS and partial-electron-yield NEXAFS spectroscopy at 230-240 K.

    PubMed

    Křepelová, Adéla; Bartels-Rausch, Thorsten; Brown, Matthew A; Bluhm, Hendrik; Ammann, Markus

    2013-01-17

    Ice plays a key role in the environment, and the ice-air interface influences heterogeneous chemical reactions between snowpack or cirrus clouds and the surrounding air. Soluble gases have been suspected to affect the topmost, disordered layer on ice (often referred to as a quasiliquid layer, QLL). Changes are especially expected in the hydrogen-bonding structure of water in the presence of solutes at the ice surface. Here, we used ambient-pressure X-ray photoelectron spectroscopy (XPS) to detect acetic acid at the ice surface at 230-240 K under atmospheric conditions for the first time. Electron-kinetic-energy-dependent C 1s spectra indicate that acetic acid remains confined to the topmost ice surface layers. Spectral analysis provides information about the protonation state of acetate at the ice surface. Surface-sensitive Auger-electron-yield C-edge near-edge X-ray absorption fine structure (NEXAFS) spectra were recorded to probe the molecular state of the adsorbed species. The O-edge NEXAFS spectra show only minor differences between clean ice and ice with adsorbed acetic acid and thus indicate that acetic acid does not lead to an extended disordered layer on the ice surface between 230 and 240 K.

  3. Structural evolution of Ga-Ge-Te glasses by combined EXAFS and XPS analysis

    SciTech Connect

    Golovchak, R.; Calvez, L.; Bureau, B.; Jain, H.

    2013-08-07

    The structural evolution of Ga{sub x}Ge{sub y}Te{sub 100−x−y} glasses in the vicinity of GeTe{sub 4}-GaTe{sub 3} pseudo-binary tie-line is determined with high-resolution X-ray photoelectron (XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopies. The analysis of XPS data is complicated by similar electronegativity values for the constituent chemical elements, but then the interpretation is facilitated by information from complementary EXAFS analysis of the structure around each element independently. The results show 4/4/2 coordination for Ga/Ge/Te atoms and absence of Ga(Ge)-Ge(Ga) bonds or extended Te clusters in significant concentrations within the whole range of studied composition. The observed structural features correlate well with the measured basic physical properties of Ga-containing germanium telluride glasses.

  4. XPS analysis of the oxidation reaction of ruthenium-chalcogenide photoelectrodes

    NASA Astrophysics Data System (ADS)

    Jaegermann, W.; Kühne, H.-M.

    1986-07-01

    The oxidation of RuS 2, RuSe 2, and RuTe 2 single crystals and polycrystalline samples by air and electrochemical / photoelectrochemical means have been studied by XPS. The amount of oxidized species detected at the surface can be related to the tendency of the material to electrochemical corrosion. For RuS 2, which is able to oxidize H 2O to O 2 only an oxidation of the top surface layer can be derived from the changes of the O1s is signal. For RuSe 2 and RuTe 2 Ru-oxide/hydroxide and chalcogenide-oxide species are detected in correspondence to their corrosion tendency. The results of the XPS analysis are discussed with respect to the electrocatalytic properties of the materials.

  5. Detergency of stainless steel surface soiled with human brain homogenate: an XPS study

    NASA Astrophysics Data System (ADS)

    Richard, M.; Le Mogne, Th.; Perret-Liaudet, A.; Rauwel, G.; Criquelion, J.; De Barros, M. I.; Cêtre, J. C.; Martin, J. M.

    2005-02-01

    In the detergency field of re-usable medical devices, a special attention is focused on the non conventional transmissible agent called prions which is a proteinaceous infectious agent. Few cleaning procedures are effective against prions and few techniques are available to study cleaning effectiveness with respect to proteins in general. In our study, X-ray photoelectron spectroscopy (XPS) has been used to evaluate the effectiveness of detergent formulations to remove proteins from stainless steel surface soiled with a brain homogenate (BH) from human origin. Our results showed that XPS is a reliable surface analysis technique to study chemical species remaining on surface and substrate properties after cleaning procedures. A semi-quantitative evaluation of the detergency effectiveness could also be performed.

  6. In Situ Studies of Surface Mobility on Noble Metal Model Catalysts Using STM and XPS at Ambient Pressure

    SciTech Connect

    Butcher, Derek Robert

    2010-06-01

    are present on the Pt(100) hex reconstructed phase, but not the (100)-(1x1) surface. The increase in ethylene pressure caused the adsorbate interactions to dominate the crystal morphology and imposed a surface layer structure that matched the ethylidyne binding geometry. The STM results also showed that the surface was reversibly deformed during imaging due to increases in Pt mobility at high pressure. The size dependence on the activity and surface chemistry of Rh nanoparticles was studied using AP-XPS. The activity was found to increase with particle size. The XPS spectra show that in reaction conditions the particle surface has an oxide layer which is chemically distinct from the surface structure formed by heating in oxygen alone. This surface oxide which is stabilized in the catalytically active CO oxidation conditions was found to be more prevalent on the smaller nanoparticles. The reaction-induced surface segregation behavior of bimetallic noble metal nanoparticles was observed with APXPS. Monodisperse 15 nm RhPd and PdPt nanoparticles were synthesized with well controlled Rh/Pd and Pd/Pt compositions. In-situ XPS studies showed that at 300 C in the presence of an oxidizing environment (100 mTorr NO or O2) the surface concentration of the more easily oxidized element (Rh in RhPd and Pd in PdPt) was increased. Switching the gas environment to more reducing conditions (100 mTorr NO and 100 mTorr CO) caused the surface enrichment of the element with the lowest surface energy in its metallic state. Using in-situ characterization, the redox chemistry and the surface composition of bimetallic nanoparticle samples were monitored in reactive conditions. The particle surfaces were shown to reversibly restructure in response to the gas environment at high temperature. The oxidation behavior of the Pt(110) surface was studied using surface sensitive in-situ characterization by APXPS and STM. In the presence of 500 mTorr O2 and temperatures between 25

  7. XPS investigation on vacuum thermal desorption of UV/ozone treated GaAs(100) surfaces

    NASA Astrophysics Data System (ADS)

    Cossu, G.; Ingo, G. M.; Mattogno, G.; Padeletti, G.; Proietti, G. M.

    In order to prepare suitable surfaces for molecular beam epitaxy (MBE), sacrificial thin oxide layers on HCl etched GaAs(100) surfaces were grown by both air and UV/ozone exposure. Passive films were subsequently removed by vacuum thermal desorption to achieve surfaces that were smooth and clean on an atomic scale. The evolution of the surface chemical composition, as a function of vacuum desorption temperature, has been studied by means of X-ray photoelectron spectroscopy (XPS). XPS results have evidenced for air and UV/ozone exposed GaAs(100) surfaces a relationship between desorption temperature and surface chemical composition; indeed, the oxide removal is temperature dependent and sequentially selective as follows: As 2O 3. AsO and Ga 2O 3. Furthermore, XPS results have shown that air-grown films have a chemical composition and thermal desorption behaviour different from UV/ozone treated materials. Indeed, these latter have an As 2O 3/Ga 2O 3 and an unoxidized As/Ga ratio close to unity for as grown and thermal treated at 580°C surfaces, respectively. By contrast, air-exposed GaAs(100) materials are Ga 2O 3-enriched and after vacuum thermal desorption treatments have never a stoichiometric composition(As (GaAs)/Ga (GaAs)= 1). Furthermore UV/ozone treated GaAs(100) surfaces subjected to a vacuum thermal treatment at 580°C, have a troublesome organic contamination level below XPS detectability, whereas from air-exposed surfaces, carbon is not completely thermally removable

  8. Fluorescence, XPS, and TOF-SIMS surface chemical state image analysis of DNA microarrays.

    PubMed

    Lee, Chi-Ying; Harbers, Gregory M; Grainger, David W; Gamble, Lara J; Castner, David G

    2007-08-01

    Performance improvements in DNA-modified surfaces required for microarray and biosensor applications rely on improved capabilities to accurately characterize the chemistry and structure of immobilized DNA molecules on micropatterned surfaces. Recent innovations in imaging X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) now permit more detailed studies of micropatterned surfaces. We have exploited the complementary information provided by imaging XPS and imaging TOF-SIMS to detail the chemical composition, spatial distribution, and hybridization efficiency of amine-terminated single-stranded DNA (ssDNA) bound to commercial polyacrylamide-based, amine-reactive microarray slides, immobilized in both macrospot and microarray diagnostic formats. Combinations of XPS imaging and small spot analysis were used to identify micropatterned DNA spots within printed DNA arrays on slide surfaces and quantify DNA elements within individual microarray spots for determination of probe immobilization and hybridization efficiencies. This represents the first report of imaging XPS of DNA immobilization and hybridization efficiencies for arrays fabricated on commercial microarray slides. Imaging TOF-SIMS provided distinct analytical data on the lateral distribution of DNA within single array microspots before and after target hybridization. Principal component analysis (PCA) applied to TOF-SIMS imaging datasets demonstrated that the combination of these two techniques provides information not readily observable in TOF-SIMS images alone, particularly in identifying species associated with array spot nonuniformities (e.g., "halo" or "donut" effects often observed in fluorescence images). Chemically specific spot images were compared to conventional fluorescence scanned images in microarrays to provide new information on spot-to-spot DNA variations that affect current diagnostic reliability, assay variance, and sensitivity.

  9. Fluorescence, XPS, and TOF-SIMS surface chemical state image analysis of DNA microarrays.

    PubMed

    Lee, Chi-Ying; Harbers, Gregory M; Grainger, David W; Gamble, Lara J; Castner, David G

    2007-08-01

    Performance improvements in DNA-modified surfaces required for microarray and biosensor applications rely on improved capabilities to accurately characterize the chemistry and structure of immobilized DNA molecules on micropatterned surfaces. Recent innovations in imaging X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) now permit more detailed studies of micropatterned surfaces. We have exploited the complementary information provided by imaging XPS and imaging TOF-SIMS to detail the chemical composition, spatial distribution, and hybridization efficiency of amine-terminated single-stranded DNA (ssDNA) bound to commercial polyacrylamide-based, amine-reactive microarray slides, immobilized in both macrospot and microarray diagnostic formats. Combinations of XPS imaging and small spot analysis were used to identify micropatterned DNA spots within printed DNA arrays on slide surfaces and quantify DNA elements within individual microarray spots for determination of probe immobilization and hybridization efficiencies. This represents the first report of imaging XPS of DNA immobilization and hybridization efficiencies for arrays fabricated on commercial microarray slides. Imaging TOF-SIMS provided distinct analytical data on the lateral distribution of DNA within single array microspots before and after target hybridization. Principal component analysis (PCA) applied to TOF-SIMS imaging datasets demonstrated that the combination of these two techniques provides information not readily observable in TOF-SIMS images alone, particularly in identifying species associated with array spot nonuniformities (e.g., "halo" or "donut" effects often observed in fluorescence images). Chemically specific spot images were compared to conventional fluorescence scanned images in microarrays to provide new information on spot-to-spot DNA variations that affect current diagnostic reliability, assay variance, and sensitivity. PMID:17625851

  10. XPS and Raman study of slope-polished Cu(In,Ga)Se2 thin films

    NASA Astrophysics Data System (ADS)

    Beak, Gun Yeol; Jeon, Chan-Wook

    2016-05-01

    The growth of quality Cu(In,Ga)Se2 photovoltaic absorber without secondary phases is very important for improving the solar cell efficiency. Although X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy can identify the secondary phases, they provide insufficient information because of their insufficient resolution and complexity in analysis. In general, normal Raman spectroscopy is better for the analysis of secondary phases. On the other hand, the Raman signal provides information for film depths of less than 300 nm, and the Raman information cannot represent the properties of the entire film. In this regard, the authors introduce a new way of identifying secondary phases in Cu(In,Ga)Se2 films using depth Raman analysis. The as-prepared film was polished using a dimple grinder, which expanded a 2 μm thick film to approximately 1 mm, which is more than sufficient to resolve the depth distribution. Raman analysis indicated that the Cu(In,Ga)Se2 film showed different secondary phases, such as CuIn3Se5, InSe and CuSe, present in different depths of the film, whereas XPS provided complex information about the phases. Overall, the present study emphasizes that the Raman depth profile is more efficient for the identification of secondary phases in Cu(In,Ga)Se2 thin films than XPS and XRD. [Figure not available: see fulltext.

  11. Organic adlayer on inorganic materials: XPS analysis selectivity to cope with adventitious contamination

    NASA Astrophysics Data System (ADS)

    Landoulsi, Jessem; Genet, Michel J.; Fleith, Sandrine; Touré, Yetioman; Liascukiene, Irma; Méthivier, Christophe; Rouxhet, Paul G.

    2016-10-01

    This work addresses the ubiquitous presence of organic contaminants at inorganic solid surfaces and the improvement of XPS analysis selectivity to cope with it. Water contact angle measurements showed that the adsorption of organic contaminants occurs readily in ambient air, and faster and more extensively under high vacuum. It is stronger on stainless steel (SS) compared to silica and is significantly reduced when SS is sterilized by autoclaving. The reliability of XPS data was evaluated (selectivity, precision, accuracy) by correlations between spectral data incorporating a large amount of results obtained with different XPS spectrometers on SS and glass samples cleaned in different ways and conditioned with several biomacromolecules. The methodology used allows a discrimination to be made between contaminants and deliberately adsorbed biomacromolecules, and offers perspectives for tracking the source of contamination. Furthermore, a discrimination can be made between oxygen from the organic adlayer and oxygen from the substrate, and the O 1s component above 532.0 eV observed for SS is shown to be due to organic contaminants rather than adsorbed water. This approach offers new perspectives to examine the interactions (displacement or not) between contaminants and compounds of interest, e.g. proteins, at the stage of the adsorption process.

  12. Adsorption of Cu(II) on the (0001) plane of mica: A REFLEXAFS and XPS study

    SciTech Connect

    Farquhar, M.L.; England, K.E.R.; Vaughan, D.J.; Charnock, J.M. |

    1996-02-10

    Using reflection extended X-ray absorption fine structure spectroscopy (REFLEXAFS) and X-ray photoelectron spectroscopy (XPS) it has been established that Cu(II) in low concentration in aqueous media can be chemisorbed onto the (0001) surface of muscovite mica. From the XPS studies it is suggested that the Cu species is in a similar bonding environment to the copper in copper hydroxide. A depth profile of the reacted mica surface was also carried out using XPS and this suggests that there had been no diffusion of the Cu into the mica surface. REFLEXAFS studies of the reacted mica surface provided information about shells of O, AlSi, and Cu surrounding a central Cu absorber. The best-fit bond distances are as follows: O{single_bond}Cu, 1.98 {angstrom}; Cu{single_bond}Cu, 2.64 {angstrom}; Al/Si{single_bond}Cu, 3.09 {angstrom}. This provides direct evidence for Cu being bound to the surface at aluminate or silicate groups and suggests that the Cu species adsorbed onto the surface are similar to the copper species found in copper hydroxide, plancheite, and shattuckite. It is proposed that Cu is chemisorbed at atomic imperfections, such as steps and kinks, on the mica surface.

  13. Multiplet splitting for the XPS of heavy elements: Dependence on oxidation state

    NASA Astrophysics Data System (ADS)

    Bagus, Paul S.; Nelin, Connie J.; Al-Salik, Yahya; Ilton, Eugene S.; Idriss, Hicham

    2016-01-01

    Multiplet splittings in X-ray Photo-electron Spectroscopy, XPS, are a means of distinguishing different open shell occupations, or different oxidation states, in a material being studied. Indeed, especially for 3d transition metal complexes, they have provided fingerprints of the metal oxidation state. The present work provides theoretical and experimental evidence that it may also be possible to use multiplets to characterize the oxidation state of heavy metal, lanthanide and actinide, cations in complexes. However, it is important to make a proper choice of the XPS region to study in order to obtain large multiplet splittings. We identify a low binding energy, BE, peak that had been observed for Ce(III) in CeOx as a high spin coupled multiplet. Furthermore, we show that a low BE feature with reasonable intensity is characteristic of other XPS regions and of other metals. This feature arises from a high spin multiplet and serves as a fingerprint to distinguish closed shell from open shell cations. Evidence is presented that it may also be possible to distinguish different open shell occupations.

  14. Dynamic XPS measurements of ultrathin polyelectrolyte films containing antibacterial Ag–Cu nanoparticles

    SciTech Connect

    Taner-Camcı, Merve; Suzer, Sefik

    2014-03-15

    Ultrathin films consisting of polyelectrolyte layers prepared by layer-by-layer deposition technique and containing also Ag and Cu nanoparticles exhibit superior antibacterial activity toward Escherichia coli. These films have been investigated with XPS measurements under square wave excitation at two different frequencies, in order to further our understanding about the chemical/physical nature of the nanoparticles. Dubbed as dynamical XPS, such measurements bring out similarities and differences among the surface structures by correlating the binding energy shifts of the corresponding XPS peaks. Accordingly, it is observed that the Cu2p, Ag3d of the metal nanoparticles, and S2p of cysteine, the stabilizer and the capping agent, exhibit similar shifts. On the other hand, the C1s, N1s, and S2p peaks of the polyelectrolyte layers shift differently. This finding leads us the claim that the Ag and Cu atoms are in a nanoalloy structure, capped with cystein, as opposed to phase separated entities.

  15. XPS Investigation of Surface Secondary Phase Segregation in CIGS Thin Film

    SciTech Connect

    Al-Thani, H. A.; Abdullah, M. M.; Hasoon, F. S.

    2011-01-01

    Cu(In, Ga)Se{sub 2} (CIGS) thin films were deposited on Molybdenum (Mo) coated soda lime glass (SLG/Mo) substrates, using physical vapor deposition (PVD) 3-stage process. The Mo thin films were sputtered on SLG substrates using DC planar magnetron sputtering at a working gas (Ar) pressure that varies from 0.8 mT to 12 mT with a sputtering power density of 1.2 W/cm{sub 2}. The sputtering pressure of Mo thin films was varied in order to induce variations in the sputtered films morphology and porosity; as well as to subsequently induce variations in the Na out-diffusion from SLG substrate. The surface chemistry of CIGS thin films was investigated by X-Ray Photoelectron Spectroscopy (XPS). The XPS surface surveys (top 30A) and depth profiling survey (top 100A) for the elements, their chemical states, and their relative concentration were analyzed for CIGS thin films. The XPS surface analysis and composition of CIGS thin films were correlated to the bulk composition and Na out-diffusion in the CIGS films from SLG substrates.

  16. Chandra Spectra of the Cassiopeia A Point Source

    NASA Astrophysics Data System (ADS)

    Stage, Michael D.; Joss, Paul C.

    2001-09-01

    We present the first Chandra High Energy Transmission Grating (HETG) spectra of the X-ray point source (XPS) at the center of the Cassiopeia A supernova remnant, using our recent HETGS observation of Cas A (Obsid 1046), as well as spectra extracted from the long duration archival 50 ksec ACIS-S3 observation (Obsid 114). Discovered in the Chandra first light image, the flux and spectrum of XPS strongly indicate that it is associated with the remnant, but it has been difficult to classify the point source unambiguously. The assertion that the XPS is a weakly magnetized neutron star (B <= 1010 G) radiating primarily via thermal emission is supported by the recent discovery of weak X-ray pulsations with a 13 ms period (H. Tananbaum, talk presented at 198th Mtg. AAS). Such a source is an ideal candidate to fit with our new theoretical atmosphere models (Joss, Madej, and Stage, these proceedings). Early data fit well to a variety of spectral forms, including power laws, model neutron star atmospheres, pure blackbody, and thermal bremsstrahlung (Chakrabarty et al., ApJ 548: 800; Pavlov et al., ApJ 531: L53). With our longer duration and higher resolution observations, we have greater ability to discriminate among the possible spectral models. We have previously carried out model atmosphere fits to a spectrum extracted from the archival 50 ksec observation. Our results yielded effective temperatures (kTeff ~= 0.2 keV) and radii (Reff ~= 2 km) that are comparable to those obtained in earlier fits to neutron-star model atmospheres (Chakrabarty et. al.). The lack of detection of radio pulsations or of a synchrotron nebula from the location of the XPS (McLaughlin et al., ApJ 547: L41) suggests that the XPS is not a classical young pulsar, a result with which we agree. The quality of our model atmosphere fits is superior to those we obtained using simple power law or blackbody models. Furthermore, recent upper limits on the emission from the XPS at near infrared and optical

  17. Photon-impenetrable, electron-permeable: the carbon nanotube forest as a medium for multiphoton thermal-photoemission.

    PubMed

    Vahdani Moghaddam, Mehran; Yaghoobi, Parham; Sawatzky, George A; Nojeh, Alireza

    2015-04-28

    Combining the photoelectric and thermionic mechanisms to generate free electrons has been of great interest since the early days of quantum physics as exemplified by the Fowler-DuBridge theory, and recently proposed for highly efficient solar conversion. We present experimental evidence of this combined effect over the entire range spanning room-temperature photoemission to thermionic emission. Remarkably, the optical stimulus alone is responsible for both heating and photoemission at the same time. Moreover, the current depends on optical intensity quadratically, indicating two-photon photoemission, for intensities of ca. 1-50 W/cm(2), which are orders of magnitude below the intensities required for two-photon photoemission from bulk metals. This surprising behavior appears to be enabled by the internal nanostructure of the carbon nanotube forest, which captures photons effectively, yet allows electrons to escape easily.

  18. Significant relaxation of residual negative carrier in polar Alq3 film directly detected by high-sensitivity photoemission

    NASA Astrophysics Data System (ADS)

    Kinjo, Hiroumi; Lim, Hyunsoo; Sato, Tomoya; Noguchi, Yutaka; Nakayama, Yasuo; Ishii, Hisao

    2016-02-01

    Tris(8-hydroxyquinoline)aluminum (Alq3) has been widely applied as a good electron-injecting layer (EIL) in organic light-emitting diodes. High-sensitivity photoemission measurement revealed a clear photoemission by visible light, although its ionization energy is 5.7 eV. This unusual photoemission is ascribed to Alq3 anions captured by positive polarization charges. The observed electron detachment energy of the anion was about 1 eV larger than the electron affinity reported by inverse photoemission. This difference suggests that the injected electron in the Alq3 layer is energetically relaxed, leading to the reduction in injection barrier. This nature is one of the reasons why Alq3 worked well as the EIL.

  19. Photon-impenetrable, electron-permeable: the carbon nanotube forest as a medium for multiphoton thermal-photoemission.

    PubMed

    Vahdani Moghaddam, Mehran; Yaghoobi, Parham; Sawatzky, George A; Nojeh, Alireza

    2015-04-28

    Combining the photoelectric and thermionic mechanisms to generate free electrons has been of great interest since the early days of quantum physics as exemplified by the Fowler-DuBridge theory, and recently proposed for highly efficient solar conversion. We present experimental evidence of this combined effect over the entire range spanning room-temperature photoemission to thermionic emission. Remarkably, the optical stimulus alone is responsible for both heating and photoemission at the same time. Moreover, the current depends on optical intensity quadratically, indicating two-photon photoemission, for intensities of ca. 1-50 W/cm(2), which are orders of magnitude below the intensities required for two-photon photoemission from bulk metals. This surprising behavior appears to be enabled by the internal nanostructure of the carbon nanotube forest, which captures photons effectively, yet allows electrons to escape easily. PMID:25769341

  20. Action spectra again?

    PubMed

    Coohill, T P

    1991-11-01

    Action spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response. But due to the severe absorption of ultraviolet (UV) radiation by biological samples, UV action spectra were first limited to small cells (bacteria and fungi). Advances in techniques (e.g. single cell culture) and analysis allowed accurate action spectra to be reported even for mammalian cells. But precise analytical action spectra are often difficult to obtain when large, pigmented, or groups of cells are investigated. Here some action spectra are limited in interpretation and merely supply a wavelength vs effect curve. When polychromatic sources are employed, the interpretation of action spectra is even more complex and formidable. But such polychromatic action spectra can be more directly related to ambient responses. Since precise action spectra usually require the completion of a relatively large number of careful experiments using somewhat sophisticated equipment over a range of at least six wavelengths, they are often not pursued. But they remain central to the elucidation of the effect being studied. The worldwide community has agreed that stratospheric ozone is depleting, with the possibility of a consequent rise in the amount of UV-B (290-320 nm) reaching the earth's surface. It is therefore essential that new action spectra be completed for UV-B effects on a large variety of responses of human, animal, and aquatic plant systems. Combining these action spectra with the known amounts of UV-B reaching the biosphere can give rise to solar UV effectiveness spectra that, in turn, can give rise to estimates

  1. Photoemission studies of classic and novel thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Greanya, Viktoria Augusta

    Thermoelectric materials have been studied vigorously since the 1950s. Recent advances in materials synthesis and theory have rejuvinated the field in the last decade. The thermoelectric properties of materials are related to their electronic structure. In addition, many of these materials behave quasi-low-dimensionally, making them ideal candidates for study using angle resolved and angle integrated photoelectron spectroscopy (ARPES and AIPES). We report the first detailed study of the valence band electronic structure of Bi2Te3, Bi2Se3 and CsBi 4Te6 using ARPES and AIPES. Experimental results are compared with local density approximation (LDA) band structure calculations and (when available) with de Haas-van Alphen and Shubnikov-de Haas experiments. Bi2Te3 is currently the best room temperature thermoelectric material known. Dispersions of the valence bands were determined using ARPES. A six-fold k-space degeneracy in the valence band maximum is found. The quasi-two-dimensional nature of the electronic structure was demonstrated by the weakly dispersive bands along the Gamma-Z direction. The density of states (DOS) for this material was also studied using AIPES. Spectra were taken at multiple photon energies. Six valence band peaks were found. Good correspondence with the calculated DOS was found. Bi2Se3 is isostructural to Bi2Te 3 but its thermoelectric performance is significantly worse. The valence band dispersions for this material have been determined, as well as the DOS. We find the valence band maximum to be located at Gamma. Ten easily identifiable bands are seen within 4 eV of the Fermi level. The energy bands in the Gamma-Z direction are found to be flatter than those predicted by theory. The APES measurements revealed a total of nine bands, which correspond well to the calculated DOS. CsBi4Te6 is a novel thermoelectric material, recently discovered in the chemistry department of Michigan State University. This material exhibits quasi

  2. Conduction-band electronic states of YbInCu{sub 4} studied by photoemission and soft x-ray absorption spectroscopies

    SciTech Connect

    Utsumi, Yuki; Kurihara, Hidenao; Maso, Hiroyuki; Tobimatsu, Komei; Sato, Hitoshi; Shimada, Kenya; Namatame, Hirofumi; Hiraoka, Koichi; Kojima, Kenichi; Ohkochi, Takuo; Fujimori, Shin-ichi; Takeda, Yukiharu; Saitoh, Yuji; Mimura, Kojiro; Ueda, Shigenori; Yamashita, Yoshiyuki; Yoshikawa, Hideki; Kobayashi, Keisuke; Oguchi, Tamio; Taniguchi, Masaki

    2011-09-15

    We have studied conduction-band (CB) electronic states of a typical valence-transition compound YbInCu{sub 4} by means of temperature-dependent hard x-ray photoemission spectroscopy (HX-PES) of the Cu 2p{sub 3/2} and In 3d{sub 5/2} core states taken at h{nu}=5.95 keV, soft x-ray absorption spectroscopy (XAS) of the Cu 2p{sub 3/2} core absorption region around h{nu}{approx}935 eV, and soft x-ray photoemission spectroscopy (SX-PES) of the valence band at the Cu 2p{sub 3/2} absorption edge of h{nu}=933.0 eV. With decreasing temperature below the valence transition at T{sub V}=42 K, we have found that (1) the Cu 2p{sub 3/2} and In 3d{sub 5/2} peaks in the HX-PES spectra exhibit the energy shift toward the lower binding-energy side by {approx}40 and {approx}30 meV, respectively, (2) an energy position of the Cu 2p{sub 3/2} main absorption peak in the XAS spectrum is shifted toward higher photon-energy side by {approx}100 meV, with an appearance of a shoulder structure below the Cu 2p{sub 3/2} main absorption peak, and (3) an intensity of the Cu L{sub 3}VV Auger spectrum is abruptly enhanced. These experimental results suggest that the Fermi level of the CB-derived density of states is shifted toward the lower binding-energy side. We have described the valence transition in YbInCu{sub 4} in terms of the charge transfer from the CB to Yb 4f states.

  3. Shakeup in soft-x-ray emission. II. Plasmon satellites and x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Livins, Peteris; Schnatterly, S. E.

    1988-04-01

    We report the first observation of a plasmon satellite in the K emission spectrum of diamond. The previously identified plasmon satellites of Al and graphite are also presented, and data is compared with an oscillator model applicable to soft-x-ray emission and photoemission. The graphite satellite is shown to exhibit an anomalous location with respect to the parent emission. We report for the Al LI-LII,III core-core transitions a spin-orbit splitting of 0.42+/-0.02 eV with a Lorentzian width of 0.67+/-0.02 eV. The oscillator model applied to x-ray photoemission predicts a shift of the plasmon satellite with respect to the zero loss line as the final-electron kinetic energy is varied.

  4. In Vacuo Photoemission Studies of Platinum Atomic Layer Deposition Using Synchrotron Radiation.

    PubMed

    Geyer, Scott M; Methaapanon, Rungthiwa; Shong, Bonggeun; Pianetta, Piero A; Bent, Stacey F

    2013-01-01

    The mechanism of platinum atomic layer deposition using (methylcyclopentadienyl)trimethylplatinum and oxygen is investigated with in vacuo photoemission spectroscopy at the Stanford Synchrotron Radiation Lightsource. With this surface-sensitive technique, the surface species following the Pt precursor half cycle and the oxygen counter-reactant half cycle can be directly measured. We observed significant amounts of carbonaceous species following the Pt precursor pulse, consistent with dehydrogenation of the precursor ligands. Significantly more carbon is observed when deposition is carried out in the thermal decomposition temperature region. The carbonaceous layer is removed during the oxygen counter reactant pulse, and the photoemission spectrum shows that a layer of adsorbed oxygen remains on the surface as previously predicted. PMID:26291229

  5. TOF Electron Energy Analyzer for Spin and Angular Resolved Photoemission Spectroscopy

    SciTech Connect

    Lebedev, Gennadi; Jozwiak, Chris; Andresen, Nord; Lanzara, Alessandra; Hussain, Zahid

    2008-07-09

    Current pulsed laser and synchrotron x-ray sources provide new opportunities for Time-Of- Flight (TOF) based photoemission spectroscopy to increase photoelectron energy resolution and efficiency compared to current standard techniques. The principals of photoelectron timing front formation, temporal aberration minimization, and optimization of electron beam transmission are presented. We have developed these concepts into a high resolution Electron Optical Scheme (EOS) of a TOF Electron Energy Analyzer (TOF-EEA) for photoemission spectroscopy. The EOS of the analyzer includes an electrostatic objective lens, three columns of transport lenses and a 90 degree energy band pass filter (BPF). The analyzer has two modes of operation: Spectrometer Mode (SM) with straight passage of electrons through the EOS undeflected by the BPF, allowing the entire spectrum to be measured, and Monochromator Mode (MM) in which the BPF defines a certain energy window inside the scope of the electron energy spectrum.

  6. TOF Electron Energy Analyzer for Spin and Angular Resolved Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lebedev, Gennadi; Jozwiak, Chris; Andresen, Nord; Hussain, Zahid; Lanzara, Alessandra

    2007-03-01

    Current pulsed laser and synchrotron x-ray sources provide new opportunities for Time-Of- Flight (TOF) based photoemission spectroscopy to increase photoelectron energy resolution and efficiency compared to current standard techniques. The principals of photoelectron timing front formation, temporal aberration minimization, and optimization of electron beam transmission are presented. We have developed these concepts into a high resolution a TOF Electron Energy Analyzer for photoemission spectroscopy. The electron optical scheme of the analyzer includes an electrostatic objective lens, three columns of transport lenses and a 90 degree energy band pass filter (BPF). High efficiency exchange scattering based spin polarimeter [1] is used for electron spin detection. The analyzer support two modes of operation: Spectrometer Mode allowing the entire spectrum to be measured, and Monochromator Mode in which the BPF passes a specified energy window inside the scope of the electron energy spectrum. [1] J. Graf, C. Jozwiak, A. K. Schmid, Z. Hussain, and A. Lanzara, Physical. Rev. B 71, 144429 (2005)

  7. Interference of spin states in resonant photoemission induced by circularly polarized light from magnetized Gd

    SciTech Connect

    Mueller, N.; Khalil, T.; Pohl, M.; Uphues, T.; Heinzmann, U.; Polcik, M.; Rader, O.; Heigl, F.; Starke, K.; Fritzsche, S.; Kabachnik, N. M.

    2006-10-15

    We have observed the spin-state interference by measuring the photoelectron spin polarization in the resonant preedge 4d{yields}4f photoemission from magnetized Gd. The photoemission is induced by circularly polarized light which determines one preferential direction of electron spin orientation due to polarization transfer and spin-orbit interaction. Another direction perpendicular to the first one is determined by the target electron spin orientation connected with the target magnetization. We have measured the component of spin polarization perpendicular to those two directions which can only appear due to spin-state interference which implies coherence of the spin states produced by the two mechanisms of the photoelectron spin polarization.

  8. Communication: Induced photoemission from nonadiabatic dynamics assisted by dynamical Stark effect.

    PubMed

    Arasaki, Yasuki; Scheit, Simona; Takatsuka, Kazuo

    2013-04-28

    Through nonadiabatic interaction due to electron transfer as that in alkali halides, vibrational dynamics on the ionic potential energy surface (large dipole moment) is coupled to that on the covalent surface (small dipole moment). Thus, population transfer between the states should cause long-range electron jump between two remote sites, which thereby leads to a sudden change of the large molecular dipole moment. Therefore, by making repeated use of the dynamical Stark effect, one may expect emission of photons from it. We show with coupled quantum wavepacket dynamics calculation that such photoemission can indeed occur and can be controlled by an external field. The present photoemission can offer an alternative scheme to study femtosecond and subfemtosecond vibrational and electronic dynamics and may serve as a unique optical source. PMID:23635103

  9. Quantum-electrodynamic treatment of photoemission by a single-electron wave packet

    NASA Astrophysics Data System (ADS)

    Corson, John P.; Peatross, Justin

    2011-11-01

    A quantum-field-theory description of photoemission by a laser-driven single-electron wave packet is presented. We show that, when the incident light is represented with multimode coherent states then, to all orders of perturbation theory, the relative phases of the electron's constituent momenta have no influence on the amount of scattered light. These results are extended using the Furry picture, where the (unidirectional) arbitrary incident light pulse is treated nonperturbatively with Volkov functions. This analysis increases the scope of our prior results in [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.84.053831 84, 053831 (2011)], which demonstrate that the spatial size of the electron wave packet does not influence photoemission.

  10. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    SciTech Connect

    Zhou, X.J.

    2010-04-30

    In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not

  11. Enhanced the photocatalytic activity of Ni-doped ZnO thin films: Morphological, optical and XPS analysis

    NASA Astrophysics Data System (ADS)

    Abdel-wahab, M. Sh.; Jilani, Asim; Yahia, I. S.; Al-Ghamdi, Attieh A.

    2016-06-01

    Pure and Ni-doped ZnO thin films with different concentration of Ni (3.5 wt%, 5 wt%, 7 wt%) were prepared by DC/RF magnetron sputtering technique. The X-rays diffraction pattern showed the polycrystalline nature of pure and Ni-doped ZnO thin films. The surface morphology of pure and Ni doped ZnO thin films were investigated through atomic force microscope, which indicated the increase in the grain dimension and surface roughness with increasing the Ni doping. The UV-Visible transmission spectra showed the decrease in the transmittance of doped ZnO thin films with the incorporation of Ni dopants. The surface and chemical state analysis of pure and Ni doped ZnO thin films were investigated by X-rays photoelectron spectroscopy (XPS). The photocatalytic activities were evaluated by an aqueous solution of methyl green dye. The tungsten lamp of 500 W was used as a source of visible light for photocatalytic study. The degradation results showed that the Ni-doped ZnO thin films exhibit highly enhanced photocatalytic activity as compared to the pure ZnO thin films. The enhanced photocatalytic activities of Ni-doped ZnO thin films were attributed to the enhanced surface area (surface defects), surface roughness and decreasing the band gap of Ni-doped ZnO thin films. Our work supports the applications of thin film metal oxides in waste water treatment.

  12. A photoemission study of Pd ultrathin films on Pt(111)

    SciTech Connect

    Mun, Bongjin Simon; Lee, Choongman; Stamenkovic, Vojislav; Markovic, Nenad M.; Ross Jr., Philip N.

    2005-05-11

    The origin of surface core-level shift (SCLS) of Pd thin films on Pt(111) substrate is investigated. At sub-monolayer coverage of Pd thin films, the splitting of Pd 3d core level peaks indicate the contribution of both initial and final-state of photo-ionization processes while there is almost no change on valence band (VB) spectra. When the coverage of Pd reaches to single monolayer, the final-state relaxation effect on the Pd 3d vanishes and only the initial-state effect, a negative SCLS, is present. Also, the VB spectrum at Pd monolayer films shows a clear band narrowing, that is the origin of the negative SCLS at monolayer coverage. As the Pd coverage is increased to more than monolayer thickness, the Pd 3d peaks start to show the surface layer contribution from second and third layers, positive SCLS, and the VB spectrum shows even narrower band width, possibly due to the formation of surface states and strained effect of Pd adlayers on top of the first pseudomorphic layer.

  13. Lily Pad Spectra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The color image on the lower left from the panoramic camera on the Mars Exploration Rover Opportunity shows the 'Lily Pad' bounce-mark area at Meridiani Planum, Mars. This image was acquired on the 3rd sol, or martian day, of Opportunity's mission (Jan.26, 2004). The upper left image is a monochrome (single filter) image from the rover's panoramic camera, showing regions from which spectra were extracted from the 'Lily Pad' area. As noted by the line graph on the right, the green spectra is from the undisturbed surface and the red spectra is from the airbag bounce mark.

  14. A sample holder with integrated laser optics for an ELMITEC photoemission electron microscope

    SciTech Connect

    Gierster, L.; Pape, L.; Ünal, A. A.; Kronast, F.

    2015-02-15

    We present a new sample holder compatible with ELMITEC Photoemission Electron Microscopes (PEEMs) containing an optical lens and a mirror. With the integrated optical elements, a laser beam is focused from the back side of the sample at normal incidence, yielding a minimum spot size of about 1 μm. This opens up new possibilities for local laser excitations in PEEM experiments such as imaging all-optical magnetization switching at a small length scale.

  15. Two-photon photoemission and the dynamics of electrons at interfaces

    SciTech Connect

    Padowitz, D.F.; Harris, C.B.; Jordan, R.E.; Lingle, R.L. Jr.; McNeill, J.D.; Merry, W.R.

    1994-01-01

    A new instrument for angle-resolved two-photon photoemission with exceptional sensitivity and energy resolution has allowed a detailed examination of the interaction of image-state electrons with adsorbates. In addition to measuring the electrostatic properties of molecular-thickness films, the technique serves as a probe of adsorbate growth modes, and provides new opportunities to explore the dynamics of electrons in well-controlled two-dimensional systems.

  16. GW Γ + Bethe-Salpeter equation approach for photoabsorption spectra: Importance of self-consistent GW Γ calculations in small atomic systems

    NASA Astrophysics Data System (ADS)

    Kuwahara, Riichi; Noguchi, Yoshifumi; Ohno, Kaoru

    2016-09-01

    The self-consistent GW Γ method satisfies the Ward-Takahashi identity (i.e., the gauge invariance or the local charge continuity) for arbitrary energy (ω ) and momentum (q ) transfers. Its self-consistent first-principles treatment of the vertex Γ =Γv or ΓW is possible to first order in the bare (v ) or dynamically screened (W ) Coulomb interaction. It is developed within a linearized scheme and combined with the Bethe-Salpeter equation (BSE) to accurately calculate photoabsorption spectra (PAS) and photoemission (or inverse photoemission) spectra (PES) simultaneously. The method greatly improves the PAS of Na, Na3, B2, and C2H2 calculated using the standard one-shot G0W0+BSE method that results in significantly redshifted PAS by 0.8-3.1 eV, although the PES are well reproduced already in G0W0 .

  17. Electronic properties of atomic layer deposition films, anatase and rutile TiO2 studied by resonant photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Das, C.; Richter, M.; Tallarida, M.; Schmeisser, D.

    2016-07-01

    The TiO2 films are prepared by atomic layer deposition (ALD) method using titanium isopropoxide precursors at 250 °C and analyzed using resonant photoemission spectroscopy (resPES). We report on the Ti2p and O1s core levels, on the valence band (VB) spectra and x-ray absorption spectroscopy (XAS) data, and on the resonant photoelectron spectroscopy (resPES) profiles at the O1s and the Ti3p absorption edges. We determine the elemental abundance, the position of the VB maxima, the partial density of states (PDOS) in the VB and in the conduction band (CB) and collect these data in a band scheme. In addition, we analyze the band-gap states as well as the intrinsic states due to polarons and charge-transfer excitations. These states are found to cause multiple Auger decay processes upon resonant excitation. We identify several of these processes and determine their relative contribution to the Auger signal quantitatively. As our resPES data allow a quantitative analysis of these defect states, we determine the relative abundance of the PDOS in the VB and in CB and also the charge neutrality level. The anatase and rutile polymorphs of TiO2 are analyzed in the same way as the TiO2 ALD layer. The electronic properties of the TiO2 ALD layer are compared with the anatase and rutile polymorphs of TiO2. In our comparative study, we find that ALD has its own characteristic electronic structure that is distinct from that of anatase and rutile. However, many details of the electronic structure are comparable and we benefit from our spectroscopic data and our careful analysis to find these differences. These can be attributed to a stronger hybridization of the O2p and Ti3d4s states for the ALD films when compared to the anatase and rutile polymorphs.

  18. X-ray photo-emission and energy dispersive spectroscopy of HA coated titanium

    SciTech Connect

    Drummond, J.L.; Steinberg, A.D.; Krauss, A.R.

    1997-08-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (x-ray photo-emission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls, 30 minutes and 3 hours aged specimens in distilled water or 0.2M sodium phosphate buffer (pH 7.2) at room temperature. Each x-ray photo-emission cycle consisted of 3 scans followed by argon sputtering for 10 minutes for a total of usually 20 cycles, corresponding to a sampling depth of {approximately} 1500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {mu}m area for 500 sec. Scanning electron microscopy examination showed crystal formation (3P{sub 2}O{sub 5}*2CAO*?H{sub 2}O by energy dispersive spectroscopy analysis) on the HA coating for the specimens aged in sodium phosphate buffer. The x-ray photo-emission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorous. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis. The crystal growth was only observed for the sodium phosphate buffer specimens and only on the HA surface.

  19. Plasmonic Field Enhancement of Individual Nanoparticles by Correlated Scanning and Photoemission Electron Microscopy

    SciTech Connect

    Peppernick, Samuel J.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.

    2011-01-21

    We present results of a combined two-photon photoemission and scanning electron microscopy investigation to determine the electromagnetic enhancement factors of silver-coated spherical nanoparticles deposited on an atomically flat mica substrate. Femtosecond laser excitation, of the nanoparticles, produces intense photoemission, attributed to near-resonant excitation of localized surface plasmons. Enhancement factors are determined by comparing the respective two-photon photoemission yield measured for equal areas between single nanoparticles to that of the surrounding flat surface. For s-polarized, 400 nm (~ 3.1 eV) femtosecond radiation a distribution of enhancement factors are found with a large percentage (77%) of the nanoparticles falling within a median range. A correlated scanning electron microscopy analysis demonstrated that the nanoparticles typifying the median of the distribution were characterized by ideal spherical shapes and defect-free morphologies. The single largest enhancement factors were in contrast produced by a very small percentage (8%) of the total, for which evidence of silver defect anomalies were found that contributed to the overall structure of the nanoparticle. Comparisons are made between the experimentally measured enhancement factors and previously reported theoretical predictions of the localized surface plasmon near-field intensities for isolated nanometer-sized silver spheres.

  20. Photoemission electron microscopy of localized surface plasmons in silver nanostructures at telecommunication wavelengths

    SciTech Connect

    Mårsell, Erik; Larsen, Esben W.; Arnold, Cord L.; Xu, Hongxing; Mauritsson, Johan; Mikkelsen, Anders

    2015-02-28

    We image the field enhancement at Ag nanostructures using femtosecond laser pulses with a center wavelength of 1.55 μm. Imaging is based on non-linear photoemission observed in a photoemission electron microscope (PEEM). The images are directly compared to ultra violet PEEM and scanning electron microscopy (SEM) imaging of the same structures. Further, we have carried out atomic scale scanning tunneling microscopy on the same type of Ag nanostructures and on the Au substrate. Measuring the photoelectron spectrum from individual Ag particles shows a larger contribution from higher order photoemission processes above the work function threshold than would be predicted by a fully perturbative model, consistent with recent results using shorter wavelengths. Investigating a wide selection of both Ag nanoparticles and nanowires, field enhancement is observed from 30% of the Ag nanoparticles and from none of the nanowires. No laser-induced damage is observed of the nanostructures neither during the PEEM experiments nor in subsequent SEM analysis. By direct comparison of SEM and PEEM images of the same nanostructures, we can conclude that the field enhancement is independent of the average nanostructure size and shape. Instead, we propose that the variations in observed field enhancement could originate from the wedge interface between the substrate and particles electrically connected to the substrate.

  1. Thermodynamic analysis of spectra

    SciTech Connect

    Mitchell, G. E.; Shriner, J. F. Jr.

    2008-04-04

    Although random matrix theory had its initial application to neutron resonances, there is a relative scarcity of suitable nuclear data. The primary reason for this is the sensitivity of the standard measures used to evaluate spectra--the spectra must be essential pure (no state with a different symmetry) and complete (no states missing). Additional measures that are less sensitive to these experimental limitations are of significant value. The standard measure for long range order is the {delta}{sub 3} statistic. In the original paper that introduced this statistic, Dyson and Mehta also attempted to evaluate spectra with thermodynamic variables obtained from the circular orthogonal ensemble. We consider the thermodynamic 'internal energy' and evaluate its sensitivity to experimental limitations such as missing and spurious levels. Monte Carlo simulations suggest that the internal energy is less sensitive to mistakes than is {delta}{sub 3}, and thus the internal energy can serve as a addition to the tool kit for evaluating experimental spectra.

  2. High-energy Ce-3d photoemission: Bulk properties of CeM2 (M=Fe,Co,Ni) and Ce7Ni3

    NASA Astrophysics Data System (ADS)

    Braicovich, L.; Brookes, N. B.; Dallera, C.; Salvietti, M.; Olcese, G. L.

    1997-12-01

    We study the photon energy dependence of Ce-3d photoemission in CeM2 compounds (M=Fe,Co,Ni) and in Ce7Ni3 with measurements taken with synchrotron radiation in the photon energy range 1050-3850 eV. The results show a drastic increase of the bulk sensitivity at the higher energies due to the increase of the photoelectron escape depth. The spectra at 3850 eV are largely dominated by the bulk contribution, which is typically 85% of the total intensity in the CeM2 compounds. The results allow us to obtain the bulk contribution to the spectra in CeM2 with a procedure presented here and giving the fractional weights of the bulk f0, f1, and f2 configurations. In the CeM2 compounds a correlation is found between these spectral weights and the crystallographic data showing that the hybridization is nonmonotonic versus the atomic number of the transition metal. We discuss the results both in connection with an impurity model and with the available calculations in an itinerant model. Moreover, the results suggest that the bulk hybridization in CeM2 systems with heavy transition metals has been probably underestimated up to now.

  3. Photoemission and near-edge X-ray absorption fine structure studies of the bacterial surface protein layer of Bacillus sphaericus NCTC 9602.

    PubMed

    Vyalikh, Denis V; Kirchner, Alexander; Danzenbächer, Steffen; Dedkov, Yuriy S; Kade, Andreas; Mertig, Michael; Molodtsov, Serguei L

    2005-10-01

    The electronic structure of the regular, two-dimensional bacterial surface protein layer of Bacillus sphaericus NCTC 9602 has been examined by photoemission (PE) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Both the O 1s and the N 1s core-level PE spectra show a single structure, whereas the C 1s core-level spectrum appears manifold, suggesting similar chemical states for each oxygen atom and also for each nitrogen atom, while carbon atoms exhibit a range of chemical environments in the different functional groups of the amino acids. This result is supported by the element-specific NEXAFS spectra of the unoccupied valence electronic states, which exhibit a series of characteristic NEXAFS peaks that can be assigned to particular molecular orbitals of the amino acids by applying a phenomenological building-block model. The relative contributions of the C-O, C-N, and C-C bond originating signals into the C 1s PE spectrum are in good agreement with the number ratios of the corresponding bonds calculated from the known primary structure of the bacterial surface protein. First interpretation of the PE spectrum of the occupied valence states is achieved on the basis of electronic density-of-states calculations performed for small peptides. It was found that mainly the pi clouds of the aromatic rings contribute to both the lowest unoccupied and the highest occupied molecular orbitals.

  4. HREELS and photoemission study of GaSb( 1 0 0 )-(1×3) surfaces prepared by optimal atomic hydrogen cleaning

    NASA Astrophysics Data System (ADS)

    Veal, T. D.; Lowe, M. J.; McConville, C. F.

    2002-03-01

    High-resolution electron-energy-loss spectroscopy (HREELS) and synchrotron-radiation photoemission spectroscopy (SRPES) have been used to study the Sb-stabilised GaSb(1 0 0)-(1×3) surface prepared by a two-stage low-temperature atomic hydrogen cleaning (AHC) procedure. The use of a maximum annealing temperature of 300 °C avoids the degradation of surface stoichiometry associated with higher annealing temperatures. After AHC at a sample temperature of 100 °C, SRPES results show that all Sb oxides have been removed and only a small amount of Ga oxide remains. Further AHC treatment at 300 °C results in a clean surface with a sharp (1×3) low energy electron diffraction pattern. SRPES results indicate that the surface stoichiometry is identical to that previously found for GaSb(1 0 0)-(1×3) prepared by in situ molecular beam epitaxy. Electron energy-dependent HREEL spectra exhibit a coupled plasmon-phonon mode which has been used to study the electronic structure of the near-surface region. Semi-classical dielectric theory simulations of the HREEL spectra of the clean GaSb(1 0 0)-(1×3) surface indicate no detectable electronic damage or dopant passivation results from the AHC treatment. Valence band SRPES indicates that the surface Fermi level is close to the valence band maximum, suggesting the presence of an inversion layer at the surface.

  5. Hard and soft x-ray standing-wave photoelectron spectroscopy and angle-resolved photoemission spectroscopy study of LaNiO3/SrTiO 3 superlattice and its interfaces

    NASA Astrophysics Data System (ADS)

    Eiteneer, Daria N.

    Abstract Many classes of materials that exhibit interesting characteristics in the modulation of the electronic and magnetic properties when they are made of more than one compound, often arranged in multilayers and superlattices. In such cases, the electronic, electric, and magnetic properties of the multilayer, as well as their densities-of-states, are vastly different from the properties of the constituent materials, with the most important features often located at the interfaces. Specifically, perovskite nickelates are examples of materials that lie at the heart of correlated electron physics. Prior studies have been done on superlattices that contain multilayers of two perovskites. Specifically, it has been shown that LaNiO3 (LNO) undergoes a Mott metal-insulator transition when sandwiched between the layers of SrTiO3 (STO). However, even with prior theoretical simulations and experimental studies, no conclusion has been reached so far as to the exact reason for such a transition. To further the investigation of these ideas, we are undertaking a detailed study of the electronic structure of a LaNiO3/SrTiO3 superlattice with 10 repeats of [4 unit-cell LNO/3 unit-cell STO] bilayer grown on an (LaAlO3)0.3(Sr2AlTaO6)0.7 substrate. To provide a complete characterization of this superlattice, it is crucial to characterize the core levels of the atoms at the interface, as well as to measure the depth-dependent density of states and the element-specific magnetization through the interface. The standing-wave photoemission technique provides a unique capability for characterizing the LNO/STO interfaces by depth-resolving the electronic structure of the superlattice, particularly in its momentum-resolving form of standing-wave angle-resolved photoemission using soft x-rays in the ca. 1 keV regime. The main advantages of SW-XPS are its non-destructiveness, large effective attenuation length, and the enhanced depth resolution for buried interfaces via standing

  6. Hard and soft x-ray standing-wave photoelectron spectroscopy and angle-resolved photoemission spectroscopy study of LaNiO3/SrTiO 3 superlattice and its interfaces

    NASA Astrophysics Data System (ADS)

    Eiteneer, Daria N.

    Abstract Many classes of materials that exhibit interesting characteristics in the modulation of the electronic and magnetic properties when they are made of more than one compound, often arranged in multilayers and superlattices. In such cases, the electronic, electric, and magnetic properties of the multilayer, as well as their densities-of-states, are vastly different from the properties of the constituent materials, with the most important features often located at the interfaces. Specifically, perovskite nickelates are examples of materials that lie at the heart of correlated electron physics. Prior studies have been done on superlattices that contain multilayers of two perovskites. Specifically, it has been shown that LaNiO3 (LNO) undergoes a Mott metal-insulator transition when sandwiched between the layers of SrTiO3 (STO). However, even with prior theoretical simulations and experimental studies, no conclusion has been reached so far as to the exact reason for such a transition. To further the investigation of these ideas, we are undertaking a detailed study of the electronic structure of a LaNiO3/SrTiO3 superlattice with 10 repeats of [4 unit-cell LNO/3 unit-cell STO] bilayer grown on an (LaAlO3)0.3(Sr2AlTaO6)0.7 substrate. To provide a complete characterization of this superlattice, it is crucial to characterize the core levels of the atoms at the interface, as well as to measure the depth-dependent density of states and the element-specific magnetization through the interface. The standing-wave photoemission technique provides a unique capability for characterizing the LNO/STO interfaces by depth-resolving the electronic structure of the superlattice, particularly in its momentum-resolving form of standing-wave angle-resolved photoemission using soft x-rays in the ca. 1 keV regime. The main advantages of SW-XPS are its non-destructiveness, large effective attenuation length, and the enhanced depth resolution for buried interfaces via standing

  7. UHV and Ambient Pressure XPS: Potentials for Mg, MgO, and Mg(OH)2 Surface Analysis

    NASA Astrophysics Data System (ADS)

    Head, Ashley R.; Schnadt, Joachim

    2016-10-01

    The surface sensitivity of x-ray photoelectron spectroscopy (XPS) has positioned the technique as a routine analysis tool for chemical and electronic structure information. Samples ranging from ideal model systems to industrial materials can be analyzed. Instrumentational developments in the past two decades have popularized ambient pressure XPS, with pressures in the tens of mbar now commonplace. Here, we briefly review the technique, including a discussion of developments that allow data collection at higher pressures. We illustrate the information XPS can provide by using examples from the literature, including MgO studies. We hope to illustrate the possibilities of ambient pressure XPS to Mg, MgO, and Mg(OH)2 systems, both in fundamental and applied studies.

  8. Repair and Utilization of the Kratos XSAM 800 X-Ray Photoelectron Spectrometer (XPS)

    NASA Technical Reports Server (NTRS)

    Hampton, Michael D.

    2002-01-01

    The objectives for this summer faculty fellowship were first to repair the Kratos XSAM 800 X-ray Photoelectron Spectrometer (XPS) and then to utilize the instrument to participate in ongoing research projects at KSC and in the researcher's own laboratory at UCF. The first 6 weeks were used in repairing the instrument. Working both alone and with the Kratos service engineer, a number of hardware problems, largely associated with the sample stage control system, were corrected. Defective parts were identified and fixed in the computer driver boards, the stage power supply, and the driver interface. The power supply was completely replaced. After four weeks of work, the instrument was functional. This occurred on a Wednesday. The following Friday the instrument had to be completely shut down because the power to the O & C Building was to be turned off. The instrument was properly secured. On Monday, the instrument was powered up and the original problems returned. After another 2 weeks of work, a software problem was identified. This problem caused the computer to use a defective port for the sample stage control. It was circumvented by rewriting the startup routine. The final 3 weeks of the fellowship were spent using the XPS to analyze samples being studied in the Langley materials project (Martha Williams) and a catalyst project (Dr. Orlando Melendez). During this time, several sample analysis requests from other groups at KSC also came in and those samples were run as well. The summer faculty fellowship also allowed many contacts to be made. After meeting with the sensors group, two projects were identified for collaboration and white papers are being prepared. One project aims to develop small, very sensitive hydrogen detectors and the other to develop a broad area, easily monitored, zero power consumption hydrogen detector. In addition to the work mentioned above, the XPS was utilized in a study underway in Dr. Hampton's laboratory at UCF.

  9. XPS study on the use of 3-aminopropyltriethoxysilane to bond chitosan to a titanium surface.

    PubMed

    Martin, Holly J; Schulz, Kirk H; Bumgardner, Joel D; Walters, Keisha B

    2007-06-01

    Chitosan, a biopolymer found in the exoskeletons of shellfish, has been shown to be antibacterial, biodegradable, osteoconductive, and has the ability to promote organized bone formation. These properties make chitosan an ideal material for use as a bioactive coating on medical implant materials. In this study, coatings made from 86.4% de-acetylated chitosan were bound to implant-quality titanium. The chitosan films were bound through a three-step process that involved the deposition of 3-aminopropyltriethoxysilane (APTES) in toluene, followed by a reaction between the amine end of APTES with gluteraldehyde, and finally, a reaction between the aldehyde end of gluteraldehyde and chitosan. Two different metal treatments were examined to determine if major differences in the ability to bind chitosan could be seen. X-ray photoelectron spectroscopy (XPS) was used to examine the surface of the titanium metal and to study the individual reaction steps. The changes to the titanium surface were consistent with the anticipated reaction steps, with significant changes in the amounts of nitrogen, silicon, and titanium that were present. It was demonstrated that more APTES was bound to the piranha-treated titanium surface as compared to the passivated titanium surface, based on the amounts of titanium, carbon, nitrogen, and silicon that were present. The metal treatments did not affect the chemistry of the chitosan films. Using toluene to bond APTES on titanium surfaces, rather than aqueous solutions, prevented the formation of unwanted polysiloxanes and increased the amount of silane on the surface for forming bonds to the chitosan films. Qualitatively, the films were more strongly attached to the titanium surfaces after using toluene, which could withstand the ultrahigh vacuum environment of XPS, as compared to the aqueous solutions, which were removed from the titanium surface when exposed to the ultrahigh vacuum environment of XPS.

  10. Al2O3 e-Beam Evaporated onto Silicon (100)/SiO2, by XPS

    SciTech Connect

    Madaan, Nitesh; Kanyal, Supriya S.; Jensen, David S.; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Samha, Hussein; Linford, Matthew R.

    2013-09-25

    We report the XPS characterization of a thin film of Al2O3 (35 nm) deposited via e-beam evaporation onto silicon (100). The film was characterized with monochromatic Al Ka radiation. An XPS survey scan, an Al 2p narrow scan, and the valence band spectrum were collected. The Al2O3 thin film is used as a diffusion barrier layer for templated carbon nanotube (CNT) growth in the preparation of microfabricated thin layer chromatography plates.

  11. An investigation of the corrosion of polycrystalline iron by XPS, TMS and CEMS

    NASA Astrophysics Data System (ADS)

    Idczak, K.; Idczak, R.; Konieczny, R.

    2016-06-01

    The room temperature studies of polycrystalline iron exposed to air at various temperatures were performed using: the transmission Mössbauer spectroscopy (TMS), the conversion electron Mössbauer spectroscopy (CEMS) and the X-ray photoelectron spectroscopy (XPS). The unique combination of these techniques allows to determine changes of chemical composition and content of iron oxides simultaneously on the surface region, the 300 nm pre-surface region and the bulk of the samples. The results show that the chemical composition of samples changes significantly and it is strongly dependent on temperature at which the iron sample is exposed to air as well as on investigated region.

  12. Multiwalled Carbon Nanotube Forest Grown via Chemical Vapor Deposition from Iron Catalyst Nanoparticles, by XPS

    SciTech Connect

    Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-25

    Carbon nanotubes (CNTs) have unique chemical and physical properties. Herein, we report an XPS analysis of a forest of multiwalled CNTs using monochromatic Al Kα radiation. Survey scans show only one element: carbon. The carbon 1s peak is centered 284.5 eV. The C 1s envelope also shows the expected π → π* shake-up peak at ca. 291 eV. The valence band and carbon KVV Auger signals are presented. When patterned, the CNT forests can be used as a template for subsequent deposition of metal oxides to make thin layer chromatography plates.1-3

  13. Dissolution reaction and surface iron speciation of UICC crocidolite in buffered solution at pH 7.4: A combined ICP-OES, XPS and TEM investigation

    NASA Astrophysics Data System (ADS)

    Pacella, Alessandro; Fantauzzi, Marzia; Turci, Francesco; Cremisini, Carlo; Montereali, Maria Rita; Nardi, Elisa; Atzei, Davide; Rossi, Antonella; Andreozzi, Giovanni B.

    2014-02-01

    The dissolution reaction and the surface modifications of crocidolite asbestos fibres incubated for 0.5, 1, 24, 48, 168 and 1440 h in a phosphate buffered solution at pH 7.4 with and without hydrogen peroxide were investigated. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) was used to monitor the ion release into solution, X-ray Photoelectron Spectroscopy (XPS) was performed to unveil the chemistry of the leached surface, and High Resolution Transmission Electron Microscopy (HR-TEM) was carried out to monitor the structural modifications of the fibres. No significant differences were observed between dissolution experiments carried out with and without H2O2 with the exception of results after the first hour, from which it may be inferred that the dissolution proceeds faster in the presence of H2O2 but only in its very early steps. Congruent mobilization of Si and Mg from crocidolite was observed, increasing with time especially in the range between 1 and 48 h, while Ca decreased after 48 h and Fe was not detected at any incubation time. In the undersaturated conditions (0-48 h), dissolution rate of UICC crocidolite fibres has been estimated to be d(Si)/dt = 0.079 μmol h-1. The fibre surface modification is continuous with time: XPS results showed a regular depletion of Si and Mg and enrichment of Fe along dissolution. The Fe2p3/2 signal on the surface was fitted with four components at 709.0, 710.5, 711.6 and 712.8 eV binding energy values corresponding to: (i) Fe(II)-O and (ii) Fe(III)-O surrounded by oxygen atoms in the silicate structure, (iii) Fe(III)-OOH as a product of the dissolution process, and (iv) Fe in a phosphate precipitate (Fe-P), respectively. The evolution of Fe speciation on the crocidolite surface was followed by integrating the four photoemission peaks, and results showed that the oxidative environment promotes the formation of Fe(III)-O (up to 37% Fetot) and of Fe-P species (up to 16% Fetot), which are found on the fibre

  14. An XPS analytical approach for elucidating the microbially mediated enargite oxidative dissolution.

    PubMed

    Fantauzzi, M; Rossi, G; Elsener, B; Loi, G; Atzei, D; Rossi, A

    2009-04-01

    In this work, the microbe-mediated oxidative dissolution of enargite surfaces (Cu(3)AsS(4)) was studied on powdered samples exposed to 9K nutrient solution (pH 2.3) inoculated by Acidithiobacillus ferrooxidans initially adapted to arsenopyrite. These conditions simulate the acid mine environment. The redox potential of the inoculated solutions increased up to +0.72 V vs normal hydrogen electrode (NHE), indicating the increase of the Fe(3+) to Fe(2+) ratio, and correspondingly the pH decreased to values as low as 1.9. In the sterile 9K control, the redox potential and pH remained constant at +0.52 V NHE and 2.34, respectively. Solution analyses showed that in inoculated medium Cu and As dissolved stoichiometrically with a dissolution rate of about three to five times higher compared to the sterile control. For the first time, X-ray photoelectron spectroscopy (XPS) was carried out on the bioleached enargite powder with the aim of clarifying the role of the microorganisms in the dissolution process. XPS results provide evidence of the formation of a thin oxidized layer on the mineral surface. Nitrogen was also detected on the bioleached surfaces and was attributed to the presence of an extracellular polymer substance layer supporting a mechanism of bacteria attachment via the formation of a biofilm a few nanometers thick, commonly known as nanobiofilm.

  15. Investigation of damaged interior walls using synchrotron-based XPS and XANES.

    PubMed

    Poo-arporn, Yingyot; Thachepan, Surachai; Palangsuntikul, Rungtiva

    2015-01-01

    Evidence of internal sulfate attack in field exposure was demonstrated by the damaged interior wall of a three-year-old house situated in Nakhon Ratchasima Province, Thailand. Partial distension of the mortar was clearly observed together with an expansion of a black substance. Removal of the black substance revealed a dense black layer. This layer was only found in the vicinity of the damaged area, suggesting that this black material is possibly involved in the wall cracking. By employing synchrotron-based X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) techniques, the unknown sample was chemically identified. The S 2p and O 1s XPS results mutually indicated the existence of sulfate species in the materials collected from the damaged area. The XANES results indicated the presence of ferrous (II) sulfate, confirming sulfate-induced expansion and cracking. The sulfate attack in the present case appeared to physically affect the structure whereas the chemical integrity at the molecular level of the calcium silicate hydrate phase was retained since there was a lack of spectroscopic evidence for calcium sulfate. It was speculated that internal sulfate probably originated from the contaminated aggregates used during the construction. The current findings would be beneficial for understanding the sulfate-attack mechanism as well as for future prevention against sulfate attack during construction.

  16. XPS study of nitrided molybdena/titania catalyst for the hydrodesulfurization of dibenzothiophene

    SciTech Connect

    Nagai, Masatoshi; Takada, Jumpei; Omi, Shinzo

    1999-11-18

    The relationship between the molybdenum species of nitrided Mo/TiO{sub 2} catalysts and the HDS activity of the catalysts was studied by XPS and X-ray diffraction. The HDS of dibenzothiophene was carried out in a fixed-bed microreactor at 573 K and 10.1 MPa of total pressure. The 10.3% MoO{sub 3}/TiO{sub 2}catalyst was nitrided by a temperature-programmed reaction with ammonia at 4 L h{sup {minus}1} at various temperatures. The 1,023 K nitrided catalyst held the highest TOF (based on CO adsorption). From XPS analysis, it was found that the 1023 K nitrided molybdenum catalyst was significantly difficult to sulfide the surface molybdenum species of the nitrided catalyst. The 773 K nitrided catalyst had more sulfur accumulation and less nitrogen release than the 1,023 K nitrided catalyst. For the Mo/TiO{sub 2} nitrided above 973 K, titania was reduced and nitrided to form TiO and TiN but was not transformed to rutile. The molybdenum oxidation states of the nitrided Mo/TiO{sub 2} catalysts decreased with increasing nitriding temperature, and Mo{sup 2+} and Mo{sup 0} ions were the most active for the HDS of dibenzothiophene.

  17. XAS and XPS Characterization of Mercury Binding on Brominated Activated Carbon

    SciTech Connect

    Hutson,N.; Attwood, B.; Scheckel, K.

    2007-01-01

    Brominated powdered activated carbon sorbents have been shown to be quite effective for mercury capture when injected into the flue gas duct at coal-fired power plants and are especially useful when burning Western low-chlorine subbituminous coals. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) have been used to determine information about the speciation and binding of mercury on two commercially available brominated activated carbons. The results are compared with similar analysis of a conventional (non-halogenated) and chlorinated activated carbon. Both the XAS and XPS results indicate that the mercury, though introduced as elemental vapor, is consistently bound on the carbon in the oxidized form. The conventional and chlorinated activated carbons appeared to contain mercury bound to chlorinated sites and possibly to sulfate species that have been incorporated onto the carbon from adsorbed SO{sub 2}. The mercury-containing brominated sorbents appear to contain mercury bound primarily at bromination sites. The mechanism of capture for the sorbents likely consists of surface-enhanced oxidation of the elemental mercury vapor via interaction with surface-bound halide species with subsequent binding by surface halide or sulfate species.

  18. XAS and XPS characterization of mercury binding on brominated activated carbon

    SciTech Connect

    Nick D. Hutson; Brian C. Attwood; Kirk G. Scheckel

    2007-03-01

    Brominated powdered activated carbon sorbents have been shown to be quite effective for mercury capture when injected into the flue gas duct at coal-fired power plants and are especially useful when burning Western low-chlorine subbituminous coals. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) have been used to determine information about the speciation and binding of mercury on two commercially available brominated activated carbons. The results are compared with similar analysis of a conventional (non-halogenated) and chlorinated activated carbon. Both the XAS and XPS results indicate that the mercury, though introduced as elemental vapor, is consistently bound on the carbon in the oxidized form. The conventional and chlorinated activated carbons appeared to contain mercury bound to chlorinated sites and possibly to sulfate species that have been incorporated onto the carbon from adsorbed SO{sub 2}. The mercury-containing brominated sorbents appear to contain mercury bound primarily at bromination sites. The mechanism of capture for the sorbents likely consists of surface-enhanced oxidation of the elemental mercury vapor via interaction with surface-bound halide species with subsequent binding by surface halide or sulfate species. 22 refs., 3 figs., 2 tabs.

  19. [XPS study on the influence of calcination conditions to cerium ion valence].

    PubMed

    Mei, Yan; Yan, Jian-ping; Nie, Zuo-ren

    2010-01-01

    For the system of Ce(NO3)2.6H2O and urea solution during homogeneous precipitation method, X-ray diffraction (XRD), infrared spectrum (IR) and especially X-ray photoelectron spectroscopy (XPS) were used to study and characterize the product structure, variety of cerium ion valence, compound surface character and kernel electronic configurations. The results of XRD and IR showed that calcination temperature had a great effect on the cerium ion valence. The products are orthorhombic Ce2 O(CO3)2.H2O with valence III by using homogeneous precipitation method directly. When heated from the temperature 200 degrees C to 250 degrees C, the product of CeO(CO3)2.H2O with valence VI was finally changed into stable CeO2 with valence IV. XPS was used to study the surface character and kernel electronic configurations of the three different compounds through fine scanning of O(1s), Ce(3d) and Ce(4d) apices, and the results approved that the compounds with different valences are caused by the different valence electronic configurations of the products.

  20. Modification of titanium and titanium dioxide surfaces by ion implantation: Combined XPS and DFT study

    NASA Astrophysics Data System (ADS)

    Boukhvalov, D. W.; Korotin, D. M.; Efremov, A. V.; Kurmaev, E. Z.; Borchers, Ch.; Zhidkov, I. S.; Gunderov, D. V.; Valiev, R. Z.; Gavrilov, N. V.; Cholakh, S. O.

    2015-04-01

    The results of XPS measurements (core levels and valence bands) of P+, Ca+, P+Ca+ and Ca+P+ ion implanted (E=30 keV, D=1x1017 cm-2) commercially pure titanium (cp-Ti) and first-principles density functional theory (DFT) calculations demonstrates formation of various structural defects in titanium dioxide films formed on the surface of implanted materials. We have found that for double implantation (Ti:P+,Ca+ and Ti:Ca+,P+) the outermost surface layer formed mainly by Ca and P, respectively, i.e. the implantation sequence is very important. The DFT calculations show that under P+ and Ca+P+ ion implantation the formation energies for both cation (P-Ti) and anion (P-O) substitutions are comparable which can induce the creation of [PO4]3- and Ti-P species. For Ca+ and P+Ca+-ion implantation the calculated formation energies correspond to Ca2+-Ti4+ cation substitution. This conclusion is in agreement with XPS Ca 2p and Ti 2p core levels and valence band measurements and DFT calculations of electronic structure of related compounds. The conversion of implanted ions to Ca2+ and [PO4]3- species provides a good biocompatibility of cp-Ti for further formation of hydroxyapatite.

  1. Near-ambient XPS characterization of interfacial copper species in ceria-supported copper catalysts.

    PubMed

    Monte, Manuel; Munuera, Guillermo; Costa, Dominique; Conesa, José C; Martínez-Arias, Arturo

    2015-11-28

    Catalysts based on combinations of copper and cerium oxides are interesting alternatives to noble metal ones for processes involved in the production/purification of hydrogen produced from hydrocarbons or biomass like the water-gas shift or the preferential oxidation of CO reactions. Active sites for such processes have been proposed to correspond to reduced species formed at the interface between both oxides. The present work provides direct evidence of reduced copper species located at the interface and observed during the course of near-ambient XPS experiments performed over samples of copper oxide supported on ceria nanospheres and nanocubes subjected to interaction with CO at different temperatures. The analysis of XPS results is based on DFT+U calculations employed as a complementary method for the analysis of redox properties of the catalysts and core-level shifts produced upon such redox changes. Differences observed in interfacial redox properties as a function of the ceria support morphology appear to be most useful to explain catalytic properties of this type of system for mentioned processes.

  2. Surface composition XPS analysis of a plasma treated polystyrene: Evolution over long storage periods.

    PubMed

    Ba, Ousmane M; Marmey, Pascal; Anselme, Karine; Duncan, Anthony C; Ponche, Arnaud

    2016-09-01

    A polystyrene surface (PS) was initially treated by cold nitrogen and oxygen plasma in order to incorporate in particular amine and hydroxyl functions, respectively. The evolution of the chemical nature of the surface was further monitored over a long time period (580 days) by chemical assay, XPS and contact angle measurements. Surface density quantification of primary amine groups was performed using three chemical amine assays: 4-nitrobenzaldehyde (4-NBZ), Sulfo succinimidyl 6-[3'(2 pyridyldithio)-pionamido] hexanoate (Sulfo-LC-SPDP) and iminothiolane (ITL). The results showed amine densities were in the range of 2 per square nanometer (comparable to the results described in the literature) after 5min of nitrogen plasma treatment. Over the time period investigated, chemical assays, XPS and contact angles suggest a drastic significant evolution of the chemical nature of the surface within the first two weeks. Beyond that time period and up to almost two years, nitrogen plasma modified substrates exhibits a slow and continuous oxidation whereas oxygen plasma modifed polystyrene surface is chemically stable after two weeks of storage. The latter appeared to "ease of" showing relatively mild changes within the one year period. Our results suggest that it may be preferable to wait for a chemical "stabilization" period of two weeks before subsequent covalent immobilization of proteins onto the surface. The originality of this work resides in the study of the plasma treated surface chemistry evolution over long periods of storage time (580 days) considerably exceeding those described in the literature. PMID:27131091

  3. Surface composition XPS analysis of a plasma treated polystyrene: Evolution over long storage periods.

    PubMed

    Ba, Ousmane M; Marmey, Pascal; Anselme, Karine; Duncan, Anthony C; Ponche, Arnaud

    2016-09-01

    A polystyrene surface (PS) was initially treated by cold nitrogen and oxygen plasma in order to incorporate in particular amine and hydroxyl functions, respectively. The evolution of the chemical nature of the surface was further monitored over a long time period (580 days) by chemical assay, XPS and contact angle measurements. Surface density quantification of primary amine groups was performed using three chemical amine assays: 4-nitrobenzaldehyde (4-NBZ), Sulfo succinimidyl 6-[3'(2 pyridyldithio)-pionamido] hexanoate (Sulfo-LC-SPDP) and iminothiolane (ITL). The results showed amine densities were in the range of 2 per square nanometer (comparable to the results described in the literature) after 5min of nitrogen plasma treatment. Over the time period investigated, chemical assays, XPS and contact angles suggest a drastic significant evolution of the chemical nature of the surface within the first two weeks. Beyond that time period and up to almost two years, nitrogen plasma modified substrates exhibits a slow and continuous oxidation whereas oxygen plasma modifed polystyrene surface is chemically stable after two weeks of storage. The latter appeared to "ease of" showing relatively mild changes within the one year period. Our results suggest that it may be preferable to wait for a chemical "stabilization" period of two weeks before subsequent covalent immobilization of proteins onto the surface. The originality of this work resides in the study of the plasma treated surface chemistry evolution over long periods of storage time (580 days) considerably exceeding those described in the literature.

  4. XPS characterization scheme for phase-pure epitaxial NbO2

    NASA Astrophysics Data System (ADS)

    Hadamek, Tobias; Posadas, Agham; Demkov, Alex

    NbO2 shows a semiconductor-to-metal transition with an associated structural transition of Peierls type. NbO2 and Nb2O5 or mixtures thereof have also shown electrically induced insulator-to-metal transitions. To shed light on the nature of the electrically induced insulator-to-metal transition it is important to grow high phase purity NbO2 and Nb2O5 and compare electrical measurements with mixed niobium oxides and with different electrode materials. Processing NbO2 and avoiding surface oxidation requires ultra-high vacuum (UHV) conditions. Niobium oxide thin films where grown in UHV by molecular beam epitaxy on 111-oriented STO substrates and analyzed by X-ray photoelectron spectroscopy (XPS). It was shown that the NbO2 3d core level spectrum exhibits an asymmetric spin-orbit peak pair with more spectral weight on the high binding energy side. Based on the shape of the Nb 3d core levels, peak positions relative to the oxygen O 1s peak, and the valence band shape and height ratio of the niobium 4dxy split-off band to the oxygen 2p band, an identification scheme for NbO2 by XPS was devised. Complementary the NbO2 phase was confirmed by reflection high-energy electron and x-ray diffraction analysis.

  5. Chemical and morphological characterization of TSP and PM2.5 by SEM-EDS, XPS and XRD collected in the metropolitan area of Monterrey, Mexico

    NASA Astrophysics Data System (ADS)

    González, Lucy T.; Rodríguez, F. E. Longoria; Sánchez-Domínguez, M.; Leyva-Porras, C.; Silva-Vidaurri, L. G.; Acuna-Askar, Karim; Kharisov, B. I.; Villarreal Chiu, J. F.; Alfaro Barbosa, J. M.

    2016-10-01

    Total suspended particles (TSP) and particles smaller than 2.5 μm (PM2.5) were collected at four sites in the metropolitan area of Monterrey (MAM) in Mexico. The samples were characterized by X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and Scanning Electron Microscopy (SEM). In order to determine the possible sources of emissions of atmospheric particulate matter, a principal component analysis (PCA) was performed. The XRD results showed that the major crystalline compounds found in the TPS were CaCO3 and SiO2; while in the PM2.5 CaSO4 was found. The XPS analysis showed that the main elements found on the surface of the particles were C, O, Si, Ca, S, and N. The deconvolution carried out on the high-resolution spectra for C1s, S2p and N1s, showed that the aromatics, sulfates and pyrrolic-amides were the main groups contributing to the signal of these elements, respectively. The C-rich particles presented a spherical morphology, while the Ca- and Si-based particles mostly showed a prismatic shape. The PCA analysis together with the results obtained from the characterization techniques, suggested that the main contributors to the CaCO3 particles collected in the PM were most probably produced and emitted into the atmosphere by local construction industries and exploitation of rich-deposits of calcite. Meanwhile, the SiO2 found in the MAM originated from the suspension of geological material abundant in the region, and the carbon particles were mainly produced by the combustion of fossil fuels.

  6. As-Received, Ozone Cleaned and Ar+ Sputtered Surfaces of Hafnium Oxide Grown by Atomic Layer Deposition and Studied by XPS

    SciTech Connect

    Engelhard, Mark H.; Herman, Jacob A.; Wallace, Robert; Baer, Donald R.

    2012-06-27

    In this study, X-ray photoelectron spectroscopy (XPS) characterization was performed on 47 nm thick hafnium oxide (HfO{sub 2}) films grown by atomic layer deposition using TEMA-Hf/H{sub 2}O at 250 C substrate temperature. HfO{sub 2} is currently being studied as a possible replacement for Silicon Oxide (SiO{sub 2}) as a gate dielectric in electronics transistors. XPS spectra were collected on a Physical Electronics Quantum 2000 Scanning ESCA Microprobe using a monochromatic Al K{sub a} X-ray (1486.7 eV) excitation source. The sample was analyzed under the following conditions: as received, after UV irradiation for five minutes, and after sputter cleaning with 2 kV Ar{sup +} ions for 180 seconds. Survey scans showed carbon, oxygen, and hafnium as the major species in the film, while the only minor species of argon and carbide was detected after sputtering. Adventitious carbon initially composed approximately 18.6 AT% of the surface, but after UV cleaning it was reduced to 2.4 AT%. This demonstrated that that the majority of carbon was due to adventitious carbon. However, after 2 kV Ar{sup +} sputtering there was still only trace amounts of carbon at {approx}1 AT%, Some of this trace carbon is now in the form of a carbide due to the interaction with Ar{sup +} used for sputter cleaning. Furthermore, the stoiciometric ratio of oxygen and hafnium is consistent with a high quality HfO{sub 2} film.

  7. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  8. Photoemission Studies of Quantum Confinement in Nonmagnetic/Magnetic Film and Wedge Structures

    NASA Astrophysics Data System (ADS)

    Li, Dongqi

    1996-03-01

    The field of giant magnetoresistance (GMR) has generated much excitement. Photoemission provides a powerful tool to address some of the outstanding, yet fundamental issues in this field. It probes the spin-polarized metallic quantum well (QW) states in GMR materials, which underlie the oscillatory exchange coupling.(J. E. Ortega and F. J. Himpsel, Phys. Rev. Lett. 69, 844 (1992).) Angle- and spin-resolved photoemission experiments were performed at NSLS undulator beamline U5. For the Cu/Co system, both sp- and d-band derived minority-spin QW states of Cu overlayers on Co(100) grown on a Cu(100) substrate are identified. Also, the degree of confinement of these states is quantified by inserting a Co wedge to form a barrier between the Cu overlayer and substrate.(Dongqi Li, et al., Phys. Rev. B 51, 7195 (1995).) The characteristic length scale for the quantum confinement coincides with that known to influence the GMR. This provides a glimpse into understanding the importance of spin-dependent interfacial scattering. Another basic issue still under debate is the origin of the "long-period" oscillation in systems such as Fe/Cr. The QW picture is recognized as equivalent to the RKKY description of the coupling periodicity. There are three regions of the Cr Fermi surface whose spanning vectors can explain the periodicity, and thus, where the characteristic QW states might emerge: (i) the nested region (due to aliasing); (ii) the N-centered ellipse; or (iii) the d-derived "lens". Angle- resolved photoemission provides a novel methodology to search k-space for the features responsible for the coupling. Work done in collaboration with S. D. Bader, D.-J. Huang, P. D. Johnson, J. E. Mattson, J. Pearson, E. Vescovo. * Supported by DOE BES-MS under #W-31-109-ENG-38 and ONR under #N-00014- 94-F-0085.

  9. Photoemission Study of the Rare Earth Intermetallic Compounds: RNi2Ge2 (R=Eu, Gd)

    SciTech Connect

    Jongik Park

    2004-12-19

    EuNi{sub 2}Ge{sub 2} and GdNi{sub 2}Ge{sub 2} are two members of the RT{sub 2}X{sub 2} (R = rare earth, T = transition metal and X = Si, Ge) family of intermetallic compounds, which has been studied since the early 1980s. These ternary rare-earth intermetallic compounds with the tetragonal ThCr{sub 2}Si{sub 2} structure are known for their wide variety of magnetic properties, Extensive studies of the RT{sub 2}X{sub 2} series can be found in Refs [ 1,2,3]. The magnetic properties of the rare-earth nickel germanides RNi{sub 2}Ge{sub 2} were recently studied in more detail [4]. The purpose of this dissertation is to investigate the electronic structure (both valence band and shallow core levels) of single crystals of EuNi{sub 2}Ge{sub 2} and GdNi{sub 2}Ge{sub 2} and to check the assumptions that the f electrons are non-interacting and, consequently, the rigid-band model for these crystals would work [11], using synchrotron radiation because, to the best of our knowledge, no photoemission measurements on those have been reported. Photoemission spectroscopy has been widely used to study the detailed electronic structure of metals and alloys, and especially angle-resolved photoemission spectroscopy (ARPES) has proven to be a powerful technique for investigating Fermi surfaces (FSs) of single-crystal compounds.

  10. Photoemission determination of the band diagram of the Te/CdTe interface

    NASA Astrophysics Data System (ADS)

    Niles, David W.; Li, Xiaonan; Sheldon, Peter

    1995-05-01

    A band diagram of the Te/CdTe interface was believed to be a prerequisite in understanding how the Te layer on the CdTe surface lowered the resistance of contacts to CdTe solar cell devices. A two-stage experiment was therefore designed. First, the application of x-ray photoelectron and Auger electron spectroscopies was discussed to comprehend the etching process. Second, the valence-band offset by vacuum deposition of Te on a sputtered CdTe surface was measured employing ultraviolet photoemission spectroscopy.

  11. Measurement of Electron Beam Polarization from Unstrained Bulk GaAs via Two Photon Photoemission

    SciTech Connect

    J L McCarter, T J Gay, J Hansknecht, M Poelker, M L Stutzman

    2011-06-01

    This paper describes measurements of the beam polarization and quantum efficiency for photoemission using two-photon excitation from unstrained bulk GaAs illuminated with pulsed, high intensity 1560nm laser light. Quantum efficiency is linearly proportional to 1560nm peak laser intensity, which was varied in three independent ways, indicating that the emitted electrons are promoted from the valence to the conduction band via two-photon absorption. Beam polarization was measured using a microMott polarimeter, with a value of 16.8(4)% polarization at 1560nm, which is roughly half the measured value of 33.4(8)% using 778 nm light.

  12. Induced photoemission from driven nonadiabatic dynamics in an avoided crossing system

    SciTech Connect

    Arasaki, Yasuki; Mizuno, Yuta; Takatsuka, Kazuo; Scheit, Simona

    2014-12-21

    When vibrational dynamics on an ionic state (large dipole moment) is coupled to that on a neutral state (small dipole moment) such as at an avoided crossing in the alkali halide system, the population transfer between the states cause oscillation of the molecular dipole, leading to dipole emission. Such dynamics may be driven by an external field. We study how the coupled wavepacket dynamics is affected by the parameters (intensity, frequency) of the driving field with the aim of making use of the photoemission as an alternative detection scheme of femtosecond and subfemtosecond vibrational and electronic dynamics or as a characteristic optical source.

  13. First-principles and angle-resolved photoemission study of lithium doped metallic black phosphorous

    NASA Astrophysics Data System (ADS)

    Sanna, A.; Fedorov, A. V.; Verbitskiy, N. I.; Fink, J.; Krellner, C.; Petaccia, L.; Chikina, A.; Usachov, D. Yu; Grüneis, A.; Profeta, G.

    2016-06-01

    First principles calculations demonstrate the metallization of phosphorene by means of Li doping filling the unoccupied antibonding p z states. The electron–phonon coupling in the metallic phase is strong enough to eventually lead to a superconducting phase at T c = 17 K for LiP8 stoichiometry. Using angle-resolved photoemission spectroscopy we confirm that the surface of black phosphorus can be chemically functionalized using Li atoms which donate their 2s electron to the conduction band. The combined theoretical and experimental study demonstrates the semiconductor-metal transition indicating a feasible way to induce a superconducting phase in phosphorene and few-layer black phosphorus.

  14. Photoemission studies of a clean and oxidized niobium-aluminum alloy using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Oshima, M.; Pate, B. B.; Lu, Z. M.; Jupiter, P. J.; Lindau, I.; Spicer, W. E.

    1983-06-01

    The alloy formation and oxidation of a Nb-rich Nb-Al alloy has been studied using core level photoemission in combination with synchroton radiation as a surface sensitive probe. Exactly the same chemical shifts were observed from both the Nb-Al alloy and an Al-evaporated Nb surface, indicating similar structural arrangements. It is found that the oxidation rate of Nb in these structures is drastically decreased in comparison to either pure Nb metal or Nb 3Sn. Two stages in the oxidation of the Nb-Al alloy are clearly distinguished by chemical shifts of the Al 2 p, Nb 4 p and O 2 p levels.

  15. X-ray photoemission analysis of chemically modified TlBr surfaces for improved radiation detectors

    DOE PAGESBeta

    Nelson, A. J.; Voss, L. F.; Beck, P. R.; Graff, R. T.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Lee, J. -S.; Kim, H.; Cirignano, L.; et al

    2013-01-12

    We subjected device-grade TlBr to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. As-polished TlBr was treated separately with HCl, SOCl2, Br:MeOH and HF solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p and S 2p core lines were used to evaluate surface chemistry and shallow heterojunction formation. Surface chemistry and valence band electronic structure were correlated with the goal of optimizing the long-term stability and radiation response.

  16. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    SciTech Connect

    Zheng, Y. |; Shirley, D.A.

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  17. Laser-based spin- and angle-resolved photoemission spectroscopy for rapid, high-resolution measurements

    NASA Astrophysics Data System (ADS)

    Gotlieb, Kenneth; Bostwick, Aaron; Hussain, Zahid; Lanzara, Alessandra; Jozwiak, Christopher

    2014-03-01

    A unique spin-and angle-resolved photoemission spectrometer (spin-ARPES) is coupled with a 6 eV laser to achieve unprecedented measurements of near-EF physics in topological insulators and Rashba systems. The pairing of the spin-ARPES system with the laser allows for energy and angular resolutions never before seen in a spin-ARPES experiment. Most importantly, the high efficiency of the system and high photon flux of the laser make measurements very rapid, permitting exploration of a large experimental phase space.

  18. Orientation-Dependent C60 Electronic Structures Revealed byPhotoemission Spectroscopy

    SciTech Connect

    Brouet, V.; Yang, W.L.; Zhou, X.J.; Choi, H.J.; Louie, S.G.; Cohen, M.L.; Goldoni, A.; Parmigiani, F.; Hussain, Z.; Shen, Z.X.

    2004-11-05

    We observe, with angle-resolved photoemission, a dramatic change in the electronic structure of two C60 monolayers, deposited,respectively, on Ag (111) and (100) substrates, and similarly doped with potassium to half filling of the C60 lowest unoccupied molecular orbital.The Fermi surface symmetry, the bandwidth, and the curvature of the dispersion at Gamma point are different. Orientations of the C60molecules on the two substrates are known to be the main structural difference between the two monolayers, and we present new band-structure calculations for some of these orientations. We conclude that orientations play a key role in the electronic structure of fullerides.

  19. Ultrahigh-resolution spin-resolved photoemission spectrometer with a mini Mott detector.

    PubMed

    Souma, S; Takayama, A; Sugawara, K; Sato, T; Takahashi, T

    2010-09-01

    We have developed an ultrahigh-resolution spin-resolved photoemission spectrometer with a highly efficient mini Mott detector and an intense xenon plasma discharge lamp. The spectrometer achieves the energy resolutions of 0.9 and 8 meV for non-spin-resolved and spin-resolved modes, respectively. Three-dimensional spin-polarization is determined by using a 90° electron deflector situated before the Mott detector. The performance of spectrometer is demonstrated by observation of a clear Rashba splitting of the Bi(111) surface states.

  20. Doppler effect in resonant photoemission from SF6: correlation between Doppler profile and Auger emission anisotropy.

    PubMed

    Kitajima, M; Ueda, K; De Fanis, A; Furuta, T; Shindo, H; Tanaka, H; Okada, K; Feifel, R; Sorensen, S L; Gel'mukhanov, F; Baev, A; Agren, H

    2003-11-21

    Fragmentation of the SF6 molecule upon F 1s excitation has been studied by resonant photoemission. The F atomiclike Auger line exhibits the characteristic Doppler profile that depends on the direction of the photoelectron momentum relative to the polarization vector of the radiation as well as on the photon energy. The measured Doppler profiles are analyzed by the model simulation that takes account of the anisotropy of the Auger emission in the molecular frame. The Auger anisotropy extracted from the data decreases with an increase in the F-SF5 internuclear distance.

  1. Optical communication with two-photon coherent states. III - Quantum measurements realizable with photoemissive detectors

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Shapiro, J. H.

    1980-01-01

    Homodyne detection is shown to achieve the same signal-to-noise ratio as the quantum field quadrature measurement, thus providing a receiver which realizes linear modulation TCS performance gain. The full equivalence of homodyne detection and single-quadrature field measurement is established. A heterodyne configuration which uses a TCS image-band oscillator in addition to the usual coherent state local oscillator is studied. Results are obtained by means of a representation theorem which shows that photoemissive detection realizes the photon flux density measurement.

  2. An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode

    SciTech Connect

    Bormann, Reiner; Strauch, Stefanie; Schäfer, Sascha Ropers, Claus

    2015-11-07

    We experimentally and numerically investigate the performance of an advanced ultrafast electron source, based on two-photon photoemission from a tungsten needle cathode incorporated in an electron microscope gun geometry. Emission properties are characterized as a function of the electrostatic gun settings, and operating conditions leading to laser-triggered electron beams of very low emittance (below 20 nm mrad) are identified. The results highlight the excellent suitability of optically driven nano-cathodes for the further development of ultrafast transmission electron microscopy.

  3. Superconducting Gap Anisotropy and Quasiparticle Interactions: A Doping Dependent Photoemission Study

    SciTech Connect

    Mesot, J.; Norman, M.R.; Campuzano, J.C.; Mesot, J.; Campuzano, J.C.; Fretwell, H.M.; Kaminski, A.; Ding, H.; Randeria, M.; Paramekanti, A.; Takeuchi, T.; Yokoya, T.; Sato, T.; Takahashi, T.; Mochiku, T.; Kadowaki, K.

    1999-07-01

    Comparing photoemission measurements on Bi2212 with penetration depth data, we show that a description of the nodal excitations of the d -wave superconducting state in terms of noninteracting quasiparticles is inadequate, and we estimate the magnitude and doping dependence of the Landau interaction parameter which renormalizes the linear T contribution to the superfluid density. Furthermore, although consistent with d -wave symmetry, the gap with underdoping cannot be fit by the simple cos k{sub x}{minus}cos k{sub y} form, which suggests an increasing importance of long range interactions as the insulator is approached. {copyright} {ital 1999} {ital The American Physical Society }

  4. Whispering gallery mode photoemission from self-assembled poly-para-phenylenevinylene microspheres

    SciTech Connect

    Kushida, Soh; Yamamoto, Yohei; Braam, Daniel; Lorke, Axel

    2015-12-31

    Poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMOPPV) self-assembles to form well-defined spheres with several micrometers in diameter upon addition of a methanol vapor into a chloroform solution of MDMOPPV. The single sphere of MDMOPPV with 5.7 µm diameter exhibits whispering gallery mode (WGM) photoemission upon excitation with focused laser beam. The periodic emission lines are characterized by transverse electric and magnetic WGMs, and Q-factor reaches ∼345 at the highest.

  5. Design of electrostatic microcolumn for nanoscale photoemission source in massively parallel electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Wen, Ye; Du, Zhidong; Pan, Liang

    2015-10-01

    Microcolumns are widely used for parallel electron-beam lithography because of their compactness and the ability to achieve high spatial resolution. A design of an electrostatic microcolumn for our recent nanoscale photoemission sources is presented. We proposed a compact column structure (as short as several microns in length) for the ease of microcolumn fabrication and lithography operation. We numerically studied the influence of several design parameters on the optical performance such as microcolumn diameter, electrode thickness, beam current, working voltages, and working distance. We also examined the effect of fringing field between adjacent microcolumns during parallel lithography operations.

  6. An innovative Yb-based ultrafast deep ultraviolet source for time-resolved photoemission experiments.

    PubMed

    Boschini, F; Hedayat, H; Dallera, C; Farinello, P; Manzoni, C; Magrez, A; Berger, H; Cerullo, G; Carpene, E

    2014-12-01

    Time- and angle-resolved photoemission spectroscopy is a powerful technique to study ultrafast electronic dynamics in solids. Here, an innovative optical setup based on a 100-kHz Yb laser source is presented. Exploiting non-collinear optical parametric amplification and sum-frequency generation, ultrashort pump (hν = 1.82 eV) and ultraviolet probe (hν = 6.05 eV) pulses are generated. Overall temporal and instrumental energy resolutions of, respectively, 85 fs and 50 meV are obtained. Time- and angle-resolved measurements on BiTeI semiconductor are presented to show the capabilities of the setup. PMID:25554305

  7. Theory of photoemission from cesium antimonide using an alpha-semiconductor model

    NASA Astrophysics Data System (ADS)

    Jensen, Kevin L.; Jensen, Barbara L.; Montgomery, Eric J.; Feldman, Donald W.; O'Shea, Patrick G.; Moody, Nathan

    2008-08-01

    A model of photoemission from cesium antimonide (Cs3Sb) that does not rely on adjustable parameters is proposed and compared to the experimental data of Spicer [Phys. Rev. 112, 114 (1958)] and Taft and Philipp [Phys. Rev. 115, 1583 (1959)]. It relies on the following components for the evaluation of all relevant parameters: (i) a multidimensional evaluation of the escape probability from a step-function surface barrier, (ii) scattering rates determined using a recently developed alpha-semiconductor model, and (iii) evaluation of the complex refractive index using a harmonic oscillator model for the evaluation of reflectivity and extinction coefficient.

  8. First-principles and angle-resolved photoemission study of lithium doped metallic black phosphorous

    NASA Astrophysics Data System (ADS)

    Sanna, A.; Fedorov, A. V.; Verbitskiy, N. I.; Fink, J.; Krellner, C.; Petaccia, L.; Chikina, A.; Usachov, D. Yu; Grüneis, A.; Profeta, G.

    2016-06-01

    First principles calculations demonstrate the metallization of phosphorene by means of Li doping filling the unoccupied antibonding p z states. The electron-phonon coupling in the metallic phase is strong enough to eventually lead to a superconducting phase at T c = 17 K for LiP8 stoichiometry. Using angle-resolved photoemission spectroscopy we confirm that the surface of black phosphorus can be chemically functionalized using Li atoms which donate their 2s electron to the conduction band. The combined theoretical and experimental study demonstrates the semiconductor-metal transition indicating a feasible way to induce a superconducting phase in phosphorene and few-layer black phosphorus.

  9. Ultrahigh-resolution spin-resolved photoemission spectrometer with a mini Mott detector

    SciTech Connect

    Souma, S.; Sugawara, K.; Takayama, A.; Sato, T.; Takahashi, T.

    2010-09-15

    We have developed an ultrahigh-resolution spin-resolved photoemission spectrometer with a highly efficient mini Mott detector and an intense xenon plasma discharge lamp. The spectrometer achieves the energy resolutions of 0.9 and 8 meV for non-spin-resolved and spin-resolved modes, respectively. Three-dimensional spin-polarization is determined by using a 90 deg. electron deflector situated before the Mott detector. The performance of spectrometer is demonstrated by observation of a clear Rashba splitting of the Bi(111) surface states.

  10. An innovative Yb-based ultrafast deep ultraviolet source for time-resolved photoemission experiments

    SciTech Connect

    Boschini, F.; Hedayat, H.; Dallera, C.; Cerullo, G.; Farinello, P.; Manzoni, C.; Carpene, E.; Magrez, A.; Berger, H.

    2014-12-15

    Time- and angle-resolved photoemission spectroscopy is a powerful technique to study ultrafast electronic dynamics in solids. Here, an innovative optical setup based on a 100-kHz Yb laser source is presented. Exploiting non-collinear optical parametric amplification and sum-frequency generation, ultrashort pump (hν = 1.82 eV) and ultraviolet probe (hν = 6.05 eV) pulses are generated. Overall temporal and instrumental energy resolutions of, respectively, 85 fs and 50 meV are obtained. Time- and angle-resolved measurements on BiTeI semiconductor are presented to show the capabilities of the setup.

  11. Standing-wave excited soft x-ray photoemission microscopy: application to Co microdot magnetic arrays

    SciTech Connect

    Gray, Alexander; Kronast, Florian; Papp, Christian; Yang, See-Hun; Cramm, Stefan; Krug, Ingo P.; Salmassi, Farhad; Gullikson, Eric M.; Hilken, Dawn L.; Anderson, Erik H.; Fischer, Peter; Durr, Hermann A.; Schneider, Claus M.; Fadley, Charles S.

    2010-10-29

    We demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM), with application to a square array of circular magnetic Co microdots. The method is based on excitation with soft x-ray standing-waves generated by Bragg reflection from a multilayer mirror substrate. Standing wave is moved vertically through sample simply by varying the photon energy around the Bragg condition. Depth-resolved PEEM images were obtained for all of the observed elements. Photoemission intensities as functions of photon energy were compared to x-ray optical calculations in order to quantitatively derive the depth-resolved film structure of the sample.

  12. Role of Strong Correlation in the Recent Angle-Resolved Photoemission Spectroscopy Experiments on Cuprate Superconductors

    SciTech Connect

    Yunoki, S.; Dagotto, Elbio R; Sorella, S.

    2005-01-01

    Motivated by recent photoemission experiments on cuprates, the low-lying excitations of a strongly correlated superconducting state are studied numerically. It is observed that along the nodal direction these low-lying one-particle excitations show a linear momentum dependence for a wide range of excitation energies and, thus, they do not present a kinklike structure. The nodal Fermi velocity vF, as well as other observables, are systematically evaluated directly from the calculated dispersions, and they are found to compare well with experiments. It is argued that the parameter dependence of v{sub F} is quantitatively explained by a simple picture of a renormalized Fermi velocity.

  13. Two-photon Photo-emission of Ultrathin Film PTCDA Morphologies on Ag(111)

    SciTech Connect

    Yang, Aram; Yang, Aram; Shipman, Steven T.; Garrett-Roe, Sean; Johns, James; Strader, Matt; Szymanski, Paul; Muller, Eric; Harris, Charles B.

    2007-11-29

    Morphology- and layer-dependent electronic structure and dynamics at the PTCDA/Ag(111) interface have been studied with angle-resolved two-photon photoemission. In Stranski-Krastanov growth modes, the exposed wetting layer inhibited the evolution of the vacuum level and valence band to bulk values. For layer-by-layer growth, we observed the transition of electron structure from monolayer to bulk values within eight monolayers. Effective masses and lifetimes of the conduction band and the n=1 image potential state were measured to be larger for disordered layers. The effective mass was interpreted in the context of charge mobility measurements.

  14. Photoemission electron microscopy and scanning electron microscopy of Magnetospirillum magnetotacticum's magnetosome chains.

    PubMed

    Keutner, Christoph; von Bohlen, Alex; Berges, Ulf; Espeter, Philipp; Schneider, Claus M; Westphal, Carsten

    2014-10-01

    Magnetotactic bacteria are of great interdisciplinary interest, since a vast field of applications from magnetic recording media to medical nanorobots is conceivable. A key feature for a further understanding is the detailed knowledge about the magnetosome chain within the bacteria. We report on two preparation procedures suitable for UHV experiments in reflective geometry. Further, we present the results of scanning electron microscopy, as well as the first photoemission electron microscopy experiments, both accessing the magnetosomes within intact magnetotactic bacteria and compare these to scanning electron microscopy data from the literature. From the images, we can clearly identify individual magnetosomes within their chains.

  15. Interfacial electronic structure of Na deposited on rubrene thin film studied by synchrotron radiation photoemission

    NASA Astrophysics Data System (ADS)

    Wei, Ching-Hsuan; Cheng, Chiu-Ping; Lin, Hong-Cheu; Pi, Tun-Wen

    2015-12-01

    The electronic structure of rubrene doped with various concentrations of Na was studied by synchrotron-radiation photoemission. Three stages of development were found with increasing Na concentration; Na penetrating deep into the organic film, followed by development of gap states, and ended with a metallic Na film. The charge transfer from Na to rubrene resulted in a vacuum-level shift. By doping Na into rubrene, we could control the IP of the organic molecule, which is favorable for application in organic semiconductor devices.

  16. A comparative theoretical study on core-hole excitation spectra of azafullerene and its derivatives

    SciTech Connect

    Deng, Yunfeng; Gao, Bin; Deng, Mingsen; Luo, Yi

    2014-03-28

    The core-hole excitation spectra—near-edge x-ray absorption spectroscopy (NEXAFS), x-ray emission spectroscopy (XES), and x-ray photoelectron spectroscopy (XPS) shake-up satellites have been simulated at the level of density functional theory for the azafullerene C{sub 59}N and its derivatives (C{sub 59}N){sup +}, C{sub 59}HN, (C{sub 59}N){sub 2}, and C{sub 59}N–C{sub 60}, in which the XPS shake-up satellites were simulated using our developed equivalent core hole Kohn-Sham (ECH-KS) density functional theory approach [B. Gao, Z. Wu, and Y. Luo, J. Chem. Phys. 128, 234704 (2008)] which aims for the study of XPS shake-up satellites of large-scale molecules. Our calculated spectra are generally in good agreement with available experimental results that validates the use of the ECH-KS method in the present work. The nitrogen K-edge NEXAFS, XES, and XPS shake-up satellites spectra in general can be used as fingerprints to distinguish the azafullerene C{sub 59}N and its different derivatives. Meanwhile, different carbon K-edge spectra could also provide detailed information of (local) electronic structures of different molecules. In particular, a peak (at around 284.5 eV) in the carbon K-edge NEXAFS spectrum of the heterodimer C{sub 59}N–C{sub 60} is confirmed to be related to the electron transfer from the C{sub 59}N part to the C{sub 60} part in this charge-transfer complex.

  17. RHEED, AES and XPS studies of the passive films formed on ion implanted stainless steel

    SciTech Connect

    Clayton, C.R.; Doss, K.G.K.; Wang, Y.F.; Warren, J.B.; Hubler, G.K.

    1981-12-01

    P-implantation (10/sup 17/ ions cm/sup -2/, 40 KeV) into 304 stainless steel (ss) has been carried out, and an amorphous surface alloy was formed. Polarization studies in deaerated 1N H/sub 2/SO/sub 4/+ 2% NaCl showed that P-implantation improved both the general and localized corrosion resistance of 304 ss. A comparative study has been carried out between the implanted and unimplanted steel to determine what influence P-implantation has upon the properties of the passive film formed 1N H/sub 2/SO/sub 4/. The influence of Cl ions on pre-formed passive films was also studied. RHEED, XPS and AES were used to evaluate the nature of the passive films formed in these studies.

  18. Study of gadolinia-doped ceria solid electrolyte surface by XPS

    SciTech Connect

    Datta, Pradyot Majewski, Peter; Aldinger, Fritz

    2009-02-15

    Gadolinia-doped ceria (CGO) is an important material to be used as electrolyte for solid oxide fuel cell for intermediate temperature operation. Ceria doped with 10 mol% gadolinia (Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95}) was prepared by conventional solid state synthesis and found to be single phase by room temperature X-ray diffraction (XRD). The chemical states of the surface of the prepared sample were analyzed by X-ray photoelectron spectroscopy (XPS). Though Gd was present in its characteristic chemical state, Ce was found in both Ce{sup 4+} and Ce{sup 3+} states. Presence of Ce{sup 3+} state was ascribed to the differential yield of oxygen atoms in the sputtering process.

  19. XPS/STM study of model bimetallic Pd-Au/HOPG catalysts

    NASA Astrophysics Data System (ADS)

    Bukhtiyarov, Andrey V.; Prosvirin, Igor P.; Bukhtiyarov, Valerii I.

    2016-03-01

    The preparation of model bimetallic Pd-Au/HOPG catalysts has been investigated using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) techniques. Initially, model "core-shell" type Pd-Au/HOPG catalysts with similar particle size distribution (5-8 nm), but with different densities of particle locations on the HOPG surface and Pd/Au atomic ratios are prepared. Further, their thermal stability is studied within a temperature range of 50-500 °C at UHV conditions. It has been shown that annealing the model catalysts at a temperature range of 300-400 °C leads to formation of Pd-Au alloyed particles. Enhancement of heating temperature up to 500 °C results in sintering of bimetallic nanoparticles. Contribution of different parameters controlling the properties of Pd-Au alloyed particles has been discussed.

  20. InP/ZnS nanocrystals: coupling NMR and XPS for fine surface and interface description.

    PubMed

    Virieux, Héloïse; Le Troedec, Marianne; Cros-Gagneux, Arnaud; Ojo, Wilfried-Solo; Delpech, Fabien; Nayral, Céline; Martinez, Hervé; Chaudret, Bruno

    2012-12-01

    Advanced (1)H, (13)C, and (31)P solution- and solid-state NMR studies combined with XPS were used to probe, at the molecular scale, the composition (of the core, the shell, and the interface) and the surface chemistry of InP/ZnS core/shell quantum dots prepared via a non-coordinating solvent strategy. The interface between the mismatched InP and ZnS phases is composed of an amorphous mixed oxide phase incorporating InPO(x) (with x = 3 and predominantly 4), In(2)O(3), and InO(y)(OH)(3-2y) (y = 0, 1). Thanks to the analysis of the underlying reaction mechanisms, we demonstrate that the oxidation of the upper part of the InP core is the consequence of oxidative conditions brought by decarboxylative coupling reactions (ketonization). These reactions occur during both the core preparation and the coating process, but according to different mechanisms. PMID:23131073

  1. [The study on energy band structure of silicon nanowires with XPS].

    PubMed

    Fu, Zhong; Fu, Yan; Hu, Hui; Shao, Ming-Wang; Pan, Shi-Yan

    2007-09-01

    Silicon nanowires were obtained via oxide-assisted method, which was operated in a high temperature furnace at 1250 degrees C under 1000 Pa for 5 h using Ar as carrier gas. The silicon nanowires were etched with 5% HF aqueous solution for 5 min, and reacted with 1 X 10(-3) mol X L(-1) AuCL3 solution, and Au-modified silicon nanowires were obtained. The crystal structure of the products was characterized with XRD, and both of the patterns of Si and Au were observed. The morphology checked with SEM and TEM indicated large scale uniform silicon nanowires and Au particles on the surface of silicon nanowires. The average diameter of Au nanoparticls was 8 nm. The energy band structures obtained with XPS showed that gold nanoparticles are in negative charge and exist both at donor and acceptor levels. The Fermi level moved towards the top of valence band due to oxygen.

  2. Interfacial analysis of tribological systems containing molybdenum disulfide and iron using XPS and CEMS

    NASA Technical Reports Server (NTRS)

    Zabinski, J. S.; George, T.; Tatarchuk, B. J.

    1989-01-01

    In the present evaluation of results from studies of the interfacial chemistry and morphology of a buried lubricant-substrate interface, specimens of increasing complexity that culminated with the effects of excess sulfur and defects were characterized by XPS and SEM, as well as conversion-electron Moessbauer spectroscopy (CEMS). In order to simulate sputtered systems, single crystals of MoS2 were damaged with Ar(+) bombardment and coated with Fe. Fe is found to react differently with MoS2 depending on surface treatments, surface defects, annealing treatments, and the presence of excess sulfur. The annealing temperature determines which compounds are formed, as well as the crystal habit and plane at the Fe-MoS2 interface.

  3. [Surface and interface analysis of PTCDA/ITO using X-ray photoelectron spectroscopy (XPS)].

    PubMed

    Ou, Gu-ping; Song, Zhen; Gui, Wen-ming; Zhang, Fu-jia

    2006-04-01

    X-ray photoelectron spectroscopy (XPS) of surface and interface of PTCDA/ITO in PTCDA/p-Si organic-on-inorganic photoelectric detector was investigated. From C1s fine spectrum we found that the binding energy of C atoms in perylene rings was 284.6 eV; and the binding energy of C atoms in acid radical was 288.7 eV; moreover, some C atoms were oxidized by O atoms from ITO. The binding energy of O atoms in C=O bonds and C-O-C bonds was 531.5 and 533.4 eV, respectively. At the interface, the peak of high binding energy in C1s spectrum disappeared, and the main peak shifted toward lower binding energy.

  4. Adsorption and decomposition of hexamethyldisiloxane on platinum: an XPS, UPS and TDS study

    NASA Astrophysics Data System (ADS)

    Colin, L.; Cassuto, A.; Ehrhardt, J. J.; Ruiz-Lopez, M. F.; Jamois, D.

    1996-07-01

    We have studied with XPS, UPS and TDS, in UHV conditions, the adsorption of HMDS on various platinum surfaces and different temperatures. At low temperature, a multilayer is formed which desorbs at 150 K, leaving on the surface an undistorted monolayer. With temperature increase, several products appear in the gas phase (methane, lighter organodisiloxanes and hydrogen) leaving on the surface methyl radicals that undergo progressive dehydrogenation leading to the formation of amorphous carbon and graphitization at above 700 K. The carbon residue is readily removed by an oxygen treatment at moderate temperatures. Almost no silicon or oxygen remain on the surface above 300 K, a result which cannot explain the poisoning effect of HMDS on platinum sensors used to detect methane in coal mines. It shows that the low pressure mechanism differs from the ambient pressure mechanism. Differences are possibly due to the presence of oxygen at ambient pressures and deserve further investigations.

  5. [XPS characterization of auto-reconditioning layer on worn metal surfaces].

    PubMed

    Yang, He; Zhang, Zheng-ye; Li, Sheng-hua; Jin, Yuan-sheng

    2005-06-01

    An auto-reconditioner package for in situ reconditioning of worn surfaces of machinery parts under normal running was applied to diesel engines of DF locomotives. A reconditioning layer was generated on the cylinder bore after running a mileage of 300,000 km, and no wear was measured for the piston rings and cylinder bores. Evaluations with SEM, nanohardness tester and XPS indicated that the protective layer assumed a thickness of 8-10 microm, a nano-hardness twice as high as that of the cast iron substrate, and a main elemental composition of Fe, O and C corresponding to the existence of Fe3O4 and Fe3C. A possible formation mechanism of the protective layer was suggested based on the mechanochemical activation of metal surfaces and the catalytic activation of the auto-reconditioner molecules.

  6. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques.

    PubMed

    Fantauzzi, Marzia; Licheri, Cristina; Atzei, Davide; Loi, Giovanni; Elsener, Bernhard; Rossi, Giovanni; Rossi, Antonella

    2011-10-01

    In this work, a multi-technical bulk and surface analytical approach was used to investigate the bioleaching of a pyrite and arsenopyrite flotation concentrate with a mixed microflora mainly consisting of Acidithiobacillus ferrooxidans. X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy mineral surfaces investigations, along with inductively coupled plasma-atomic emission spectroscopy and carbon, hydrogen, nitrogen and sulphur determination (CHNS) analyses, were carried out prior and after bioleaching. The flotation concentrate was a mixture of pyrite (FeS(2)) and arsenopyrite (FeAsS); after bioleaching, 95% of the initial content of pyrite and 85% of arsenopyrite were dissolved. The chemical state of the main elements (Fe, As and S) at the surface of the bioreactor feed particles and of the residue after bioleaching was investigated by X-ray photoelectron and X-ray excited Auger electron spectroscopy. After bioleaching, no signals of iron, arsenic and sulphur originating from pyrite and arsenopyrite were detected, confirming a strong oxidation and the dissolution of the particles. On the surfaces of the mineral residue particles, elemental sulphur as reaction intermediate of the leaching process and precipitated secondary phases (Fe-OOH and jarosite), together with adsorbed arsenates, was detected. Evidence of microbial cells adhesion at mineral surfaces was also produced: carbon and nitrogen were revealed by CHNS, and nitrogen was also detected on the bioleached surfaces by XPS. This was attributed to the deposition, on the mineral surfaces, of the remnants of a bio-film consisting of an extra-cellular polymer layer that had favoured the bacterial action.

  7. Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.

    PubMed

    Bulavchenko, O A; Vinokurov, Z S; Afonasenko, T N; Tsyrul'nikov, P G; Tsybulya, S V; Saraev, A A; Kaichev, V V

    2015-09-21

    A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.

  8. Electronic structure of YBa2Cu3O7-δ as a function of δ : determination of the valency of copper atoms by X-ray absorption and photoemission experiments

    NASA Astrophysics Data System (ADS)

    Maurer, M.; Ravet, M. F.; Gourieux, T.; Krill, G.; Fontaine, A.; Tolentino, H.; Dartyge, E.; Tourillon, G.

    The electronic structure of YBa2Cu3O7- δ compounds has been studied in the range 0 < 8 < 1, by performing X-ray Absorption (XAS) on the Cu K edge and X-ray Photoemission experiments (XPS) on the Cu2p and O1s core levels. The absorption experiments have been performed by following continuously the Copper K edge during isothermal cycles of oxy-deoxygenation. Such experiments bring the absolute modifications of the electronic structure, thus minimizing the use of reference compounds in the discussion. An highly correlated mixed-valent ground state in these high Tc materials is suggested. A comparison with the XPS results is made and it confirms this assumption. Les structures électroniques de composés YBa2Cu3O 7-δ ont été étudiées dans la gamme de concentration 0 < δ < 1, à partir d'expériences d'absorption X au seuil K du cuivre et de photoémission X sur les niveaux internes Cu2p et O1 s. Les expériences d'absorption X ont été effectuées en suivant continûment le seuil K du cuivre lors de cycles isothermes d'oxy-désoxygénation des échantillons. Ces expériences nous permettent de discuter les modifications des structures électroniques, en minimisant l'utilisation de composés de référence. L'hypothèse de l'existence d'un état fondamental fortement corrélé, de type valence intermédiaire, est suggérée. Nous discutons également des résultats obtenus par spectroscopie XPS et montrons que ces expériences confortent notre précédente hypothèse.

  9. Parmeterization of spectra

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1983-01-01

    Following reception and analog to digital conversion (A/D) conversion, atmospheric radar backscatter echoes need to be processed so as to obtain desired information about atmospheric processes and to eliminate or minimize contaminating contributions from other sources. Various signal processing techniques have been implemented at mesosphere-stratosphere-troposphere (MST) radar facilities to estimate parameters of interest from received spectra. Such estimation techniques need to be both accurate and sufficiently efficient to be within the capabilities of the particular data-processing system. The various techniques used to parameterize the spectra of received signals are reviewed herein. Noise estimation, electromagnetic interference, data smoothing, correlation, and the Doppler effect are among the specific points addressed.

  10. Rock Outcrop Spectra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The color image on the lower left shows a rock outcrop at Meridiani Planum, Mars. This image was taken by the panoramic camera on the Mars Exploration Rover Opportunity, looking north, and was acquired on the 4th sol, or martian day, of the rover's mission (Jan. 27, 2004). The yellow box outlines an area detailed in the top left image, which is a monochrome (single filter) image from the rover's panoramic camera. The top image uses solid colors to show several regions on or near the rock outcrop from which spectra were extracted: the dark soil above the outcrop (yellow), the distant horizon surface (aqua), a bright rock in the outcrop (green), a darker rock in the outcrop (red), and a small dark cobblestone (blue). Spectra from these regions are shown in the plot to the right.

  11. Barnacle Bill Spectra

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These IMP spectra show the characteristics of the rock surface measured by the Alpha Proton X-Ray Spectrometer (blue), the soil trapped in pits on the rock surface (red), and the deposit of bright drift on the top of the rock. The area measured by the APXS has the properties expected for nearly unweathered igneous rock, and the soil trapped in the pits is intermediate to the unweathered rock and the highly weathered drift material.

  12. Spin-Orbit Effects in Spin-Resolved L2,3 Core Level Photoemission of 3d Ferromagnetic Thin Films

    SciTech Connect

    Komesu, T; Waddill, G D; Yu, S W; Butterfield, M; Tobin, J G

    2007-10-02

    We present spin-resolved 2p core level photoemission for the 3d transition metal films of Fe and Co grown on Cu(100). We observe clear spin asymmetry in the main 2p core level photoemission peaks of Fe and Co films consistent with trends in the bulk magnetic moments. The spin polarization can be strongly enhanced, by variation of the experimental geometry, when the photoemission is undertaken with circularly polarized light, indicating that spin-orbit interaction can have a profound in spin polarized photoemission. Further spin polarized photoemission studies using variable circularly polarized light at high photon energies, high flux are indicated, underscoring the value of synchrotron measurements at facilities with increased beam stability.

  13. The influence of surface chemistry on GSR particles: using XPS to complement SEM/EDS analytical techniques

    NASA Astrophysics Data System (ADS)

    Schwoeble, A. J.; Strohmeier, Brian R.; Piasecki, John D.

    2010-06-01

    Gunshot residue particles (GSR) were examined using scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) to illustrate the size, shape, morphology, and elemental composition normally observed in particulate resulting from a discharged firearm. Determining the presence of lead (Pb), antimony (Sb), and barium (Ba), barring other elemental tags, fused together in a single particle with the correct morphology, is all that is required for the positive identification of GSR. X-ray photoelectron spectroscopy (XPS), however, can reveal more detailed information on surface chemistry than SEM/EDS. XPS is a highly surface-sensitive (<= ~10 nm), non-destructive, analytical technique that provides qualitative information for all elements except hydrogen and helium. Nanometer-scale sampling depth and its ability to provide unique chemical state information make XPS a potential technique for providing important knowledge on the surface chemistry of GSR that complements results obtained from SEM/EDS analysis.

  14. Synchrotron-radiation photoemission study of CdS/CuInSe2 heterojunction formation

    NASA Astrophysics Data System (ADS)

    Nelson, Art J.; Gebhard, Steve; Rockett, Angus; Colavita, Elio; Engelhardt, Mike; Höchst, Hartmut

    1990-10-01

    Synchrotron-radiation soft-x-ray photoemission spectroscopy was used to investigate the development of the electronic structure at the CdS/CuInSe2 heterojunction interface. CdS overlayers were deposited in steps on single-crystal p- and n-type CuInSe2 at 250 °C. Results indicate that the CdS grows in registry with the substrate, initially in a two-dimensional growth mode followed by three-dimensional island growth as is corroborated by reflection high-energy electron-diffraction analysis. Photoemission measurements were acquired after each growth in order to observe changes in the valence-band electronic structure as well as changes in the In 4d, Se 3d, Cd 4d, and S 2p core lines. The results were used to correlate the interface chemistry with the electronic structure at these interfaces and to directly determine the CdS/CuInSe2 heterojunction valence-band discontinuity and the consequent heterojunction band diagram. These results show that the Katnani-Margaritondo method is unreliable in determining offsets for heterojunctions where significant Fermi-level pinning may occur and where the local structure and chemistry of the interface depends strongly on the specific heterojunction.

  15. Exploring three-dimensional orbital imaging with energy-dependent photoemission tomography

    PubMed Central

    Weiß, S.; Lüftner, D.; Ules, T.; Reinisch, E. M.; Kaser, H.; Gottwald, A.; Richter, M.; Soubatch, S.; Koller, G.; Ramsey, M. G.; Tautz, F. S.; Puschnig, P.

    2015-01-01

    Recently, it has been shown that experimental data from angle-resolved photoemission spectroscopy on oriented molecular films can be utilized to retrieve real-space images of molecular orbitals in two dimensions. Here, we extend this orbital tomography technique by performing photoemission initial state scans as a function of photon energy on the example of the brickwall monolayer of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on Ag(110). The overall dependence of the photocurrent on the photon energy can be well accounted for by assuming a plane wave for the final state. However, the experimental data, both for the highest occupied and the lowest unoccupied molecular orbital of PTCDA, exhibits an additional modulation attributed to final state scattering effects. Nevertheless, as these effects beyond a plane wave final state are comparably small, we are able, with extrapolations beyond the attainable photon energy range, to reconstruct three-dimensional images for both orbitals in agreement with calculations for the adsorbed molecule. PMID:26437297

  16. Probing the electronic and spintronic properties of buried interfaces by extremely low energy photoemission spectroscopy

    PubMed Central

    Fetzer, Roman; Stadtmüller, Benjamin; Ohdaira, Yusuke; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Aeschlimann, Martin; Cinchetti, Mirko

    2015-01-01

    Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature. PMID:25702631

  17. Two-photon photoemission from image-potential states of epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Gugel, Dieter; Niesner, Daniel; Eickhoff, Christian; Wagner, Stefanie; Weinelt, Martin; Fauster, Thomas

    2015-12-01

    Using angle- and time-resolved two-photon photoelectron spectroscopy we observe a single series of image-potential states of graphene on monolayer (MLG) and bilayer graphene (BLG) on SiC(0001). The first image-potential state on MLG (BLG) has a binding energy of 0.93 eV (0.84 eV). Lifetimes of the first three image-potential states of MLG are 9, 44 and 110 fs. On hydrogen-intercalated, quasi-freestanding graphene no unoccupied states are observed. We attribute this to the absence of occupied initial states for direct transitions into image-potential states at photon energies below the work function used in two-photon photoemission. The work function varies between 4.14 and 4.79 eV, but the vacuum level stays ∼4.5 eV above the Dirac point for all surfaces studied. This finding suggests that direct excitation of image-potential states cannot be achieved by doping and the electron dynamics for free-standing graphene is not accessible by two-photon photoemission using photon energies below the work function.

  18. Rotatable spin-polarized electron source for inverse-photoemission experiments

    SciTech Connect

    Stolwijk, S. D. Wortelen, H.; Schmidt, A. B.; Donath, M.

    2014-01-15

    We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111) highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces.

  19. Modeling Photoemission of Spin-Polarized Electrons from NEA GaAs Photocathodes

    NASA Astrophysics Data System (ADS)

    Chubenko, Oksana; Afanasev, Andrei

    2015-04-01

    At present, photoemission from strained GaAs activated to negative electron affinity (NEA) is a main source of polarized electrons for modern nuclear-physics and particle-physics facilities. Future experiments at advanced electron colliders will require high-current polarized electron beams, which could provide high polarization and luminosity. This sets new requirements for photocathodes in terms of high quantum efficiency (QE) (>>1%) and spin polarization (~85%). Detailed simulation and modeling of physics processes in photocathodes is important for optimization of their design in order to achieve high QE and reduce depolarization mechanisms. The purpose of the present work was to develop a semi-phenomenological model, which could predict photoemission and electron spin polarization from NEA GaAs photocathodes. Effect of the presence of nanostructures was also studied. Simulation results were compared to the experimental results obtained by the polarized electron source group at Thomas Jefferson National Accelerator Facility. Work supported by Thomas Jefferson Accelerator Facility and George Washington University.

  20. Circular Dichroism Observed by Photoemission from Ultrathin Bi2Te3 Films

    NASA Astrophysics Data System (ADS)

    Xu, Cai-Zhi; Liu, Yang; Yukawa, Ryu; Zhang, Long-Xiang; Miller, Tom; Chiang, Tai-Chang

    2015-03-01

    Circular dichroism (CD) observed by photoemission from the surface states of topological insulators has drawn much interest. It was initially attributed to the spin polarization or chiral orbital momentum of the initial states, but later proven to also involve the final states. The detailed mechanism remains controversial. To address this question, we have performed measurements of ultrathin films of the prototypical topological insulator Bi2Te3 over a wide range of film thickness and photon energy. The results show that the CD depends not only on the photon energy, but also on the film thickness in a nontrivial manner. A theoretical model has been developed that involves dipole transition, surface photoemission, and spin-orbit coupling. The computed results are in good agreement with the general trends of the data including sign reversals as a function of photon energy and film thickness. The complex behavior of the measured CD function is partially caused by modifications of both the initial and final states in the thin film geometry.

  1. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates

    SciTech Connect

    Leenheer, Andrew J.; Narang, Prineha; Atwater, Harry A.; Lewis, Nathan S.

    2014-04-07

    Collection of hot electrons generated by the efficient absorption of light in metallic nanostructures, in contact with semiconductor substrates can provide a basis for the construction of solar energy-conversion devices. Herein, we evaluate theoretically the energy-conversion efficiency of systems that rely on internal photoemission processes at metal-semiconductor Schottky-barrier diodes. In this theory, the current-voltage characteristics are given by the internal photoemission yield as well as by the thermionic dark current over a varied-energy barrier height. The Fowler model, in all cases, predicts solar energy-conversion efficiencies of <1% for such systems. However, relaxation of the assumptions regarding constraints on the escape cone and momentum conservation at the interface yields solar energy-conversion efficiencies as high as 1%–10%, under some assumed (albeit optimistic) operating conditions. Under these conditions, the energy-conversion efficiency is mainly limited by the thermionic dark current, the distribution of hot electron energies, and hot-electron momentum considerations.

  2. Ultrahigh-spatial-resolution chemical and magnetic imaging by laser-based photoemission electron microscopy

    SciTech Connect

    Taniuchi, Toshiyuki Kotani, Yoshinori; Shin, Shik

    2015-02-15

    We report the first experiments carried out on a new chemical and magnetic imaging system, which combines the high spatial resolution of a photoemission electron microscope (PEEM) with a continuous-wave deep-ultraviolet laser. Threshold photoemission is sensitive to the chemical and magnetic structures of the surface of materials. The spatial resolution of PEEM is limited by space charging when using pulsed photon sources as well as aberrations in the electron optics. We show that the use of a continuous-wave laser enabled us to overcome such a limit by suppressing the space-charge effect, allowing us to obtain a resolution of approximately 2.6 nm. With this system, we demonstrated the imaging of surface reconstruction domains on Si(001) by linear dichroism with normal incidence of the laser beam. We also succeeded in magnetic imaging of thin films with the use of magnetic circular dichroism near the Fermi level. The unique features of the ultraviolet laser will give us fast switching of the incident angles and polarizations of the photon source, which will be useful for the characterization of antiferromagnetic materials as well as ferromagnetic materials.

  3. Probing the electronic and spintronic properties of buried interfaces by extremely low energy photoemission spectroscopy.

    PubMed

    Fetzer, Roman; Stadtmüller, Benjamin; Ohdaira, Yusuke; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Aeschlimann, Martin; Cinchetti, Mirko

    2015-01-01

    Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature.

  4. Intrinsic spin polarized electronic structure of CrO{sub 2} epitaxial film revealed by bulk-sensitive spin-resolved photoemission spectroscopy

    SciTech Connect

    Fujiwara, Hirokazu; Sunagawa, Masanori; Kittaka, Tomoko; Terashima, Kensei; Wakita, Takanori; Muraoka, Yuji; Yokoya, Takayoshi

    2015-05-18

    We have performed bulk-sensitive spin-resolved photoemission spectroscopy in order to clarify the intrinsic spin-resolved electronic states of half-metallic ferromagnet CrO{sub 2}. We used CrO{sub 2} epitaxial films on TiO{sub 2}(100), which shows a peak at 1 eV with a clear Fermi edge, consistent with the bulk-sensitive PES spectrum for CrO{sub 2}. In spin-resolved spectra at 40 K, while the Fermi edge was observed in the spin up (majority spin) state, no states at the Fermi level (E{sub F}) with an energy gap of 0.5 eV below E{sub F} were observed in the spin down (minority spin) state. At 300 K, the gap in the spin down state closes. These results are consistent with resistivity measurements and magnetic hysteresis curves of the fabricated CrO{sub 2} film, constituting spectroscopic evidence for the half-metallicity of CrO{sub 2} at low temperature and reducing the spin polarization at room temperature. We also discuss the electron correlation effects of Cr 3d.

  5. IUE archived spectra

    NASA Technical Reports Server (NTRS)

    Sullivan, Edward C.; Bohlin, Ralph C.; Heap, Sara R.; West, Donald K.; Schmitz, Marion

    1988-01-01

    The International Ultraviolet Explorer (IUE) Satellite has been in continuous operation since January 26, 1978. To date, approximately 65,000 spectra have been stored in an archive at Goddard Space Flight Center in Greenbelt, MD. A number of procedures have been generated to facilitate access to the data in the IUE spectral archive. This document describes the procedures which include on-line quick look of the displays, search of an observation data base for selected observations, and several methods for ordering data from the archive.

  6. Multi-atom resonant photoemission and the development of next-generation software and high-speed detectors for electron spectroscopy

    SciTech Connect

    Kay, Alexander William

    2000-09-01

    This dissertation has involved the exploration of a new effect in photoelectron emission, multi-atom resonant photoemission (MARPE), as well as the development of new software, data analysis techniques, and detectors of general use in such research. We present experimental and theoretical results related to MARPE, in which the photoelectron intensity from a core level on one atom is influenced by a core-level absorption resonance on another. We point out that some of our and others prior experimental data has been strongly influenced by detector non-linearity and that the effects seen in new corrected data are smaller and of different form. Corrected data for the MnO(001) system with resonance between the O 1s and Mn 2p energy levels are found to be well described by an extension of well-known intraatomic resonant photoemission theory to the interatomic case, provided that interactions beyond the usual second-order Kramers-Heisenberg treatment are included. This theory is also found to simplify under certain conditions so as to yield results equivalent to a classical x-ray optical approach, with the latter providing an accurate and alternative, although less detailed and general, physical picture of these effects. Possible future applications of MARPE as a new probe of near-neighbor identities and bonding and its relationship to other known effects are also discussed. We also consider in detail specially written data acquisition software that has been used for most of the measurements reported here. This software has been used with an existing experimental system to develop the method of detector characterization and then data correction required for the work described above. The development of a next generation one-dimensional, high-speed, electron detector is also discussed. Our goal has been to design, build and test a prototype high-performance, one-dimensional pulse-counting detector that represents a significant advancement in detector technology and is well

  7. The electronic and chemical structure of the a-B3CO0.5:Hy-to-metal interface from photoemission spectroscopy: implications for Schottky barrier heights.

    PubMed

    Driver, M Sky; Paquette, Michelle M; Karki, S; Nordell, B J; Caruso, A N

    2012-11-01

    The electronic and chemical structure of the metal-to-semiconductor interface was studied by photoemission spectroscopy for evaporated Cr, Ti, Al and Cu overlayers on sputter-cleaned as-deposited and thermally treated thin films of amorphous hydrogenated boron carbide (a-B(x)C:H(y)) grown by plasma-enhanced chemical vapor deposition. The films were found to contain ~10% oxygen in the bulk and to have approximate bulk stoichiometries of a-B(3)CO(0.5):H(y). Measured work functions of 4.7/4.5 eV and valence band maxima to Fermi level energy gaps of 0.80/0.66 eV for the films (as-deposited/thermally treated) led to predicted Schottky barrier heights of 1.0/0.7 eV for Cr, 1.2/0.9 eV for Ti, 1.2/0.9 eV for Al, and 0.9/0.6 eV for Cu. The Cr interface was found to contain a thick partial metal oxide layer, dominated by the wide-bandgap semiconductor Cr(2)O(3), expected to lead to an increased Schottky barrier at the junction and the formation of a space-charge region in the a-B(3)CO(0.5):H (y) layer. Analysis of the Ti interface revealed a thick layer of metal oxide, comprising metallic TiO and Ti (2)O (3), expected to decrease the barrier height. A thinner, insulating Al(2)O(3) layer was observed at the Al-to-a-B(3)CO(0.5):H(y) interface, expected to lead to tunnel junction behavior. Finally, no metal oxides or other new chemical species were evident at the Cu-to-a-B(3)CO(0.5):H(y) interface in either the core level or valence band photoemission spectra, wherein characteristic metallic Cu features were observed at very thin overlayer coverages. These results highlight the importance of thin-film bulk oxygen content on the metal-to-semiconductor junction character as well as the use of Cu as a potential Ohmic contact material for amorphous hydrogenated boron carbide semiconductor devices such as high-efficiency direct-conversion solid-state neutron detectors.

  8. XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions.

    PubMed

    Baltrusaitis, Jonas; Jayaweera, Pradeep M; Grassian, Vicki H

    2009-10-01

    The adsorption of nitrogen dioxide on gamma aluminium oxide (gamma-Al(2)O(3)) and alpha iron oxide (alpha-Fe(2)O(3)) particle surfaces under various conditions of relative humidity, presence of molecular oxygen and UV light has been investigated. X-Ray photoelectron spectroscopy (XPS) is used to monitor the different surface species that form under these environmental conditions. Adsorption of NO(2) on aluminum oxide particle surfaces results primarily in the formation of surface nitrate, NO(3)(-) with an oxidation state of +5, as indicated by a peak with binding energy of 407.3 eV in the N1s region. An additional minority species, sensitive to the presence of relative humidity and molecular oxygen, is also observed in the N1s region with lower binding energy of 405.9 eV. This peak is assigned to a surface species in the +4 oxidation state. When irradiated with UV light, other species form on the surface. These surface-bound photochemical products all have lower binding energy, between 400 and 402 eV, indicating reduced nitrogen species in the range of N oxidations states spanning +1 to -1. Co-adsorbed water decreases the amount of these reduced surface-bound products while the presence of molecular oxygen completely suppresses the formation of all reduced nitrogen species on aluminum oxide particle surfaces. For NO(2) on iron oxide particle surfaces, photoreduction is enhanced relative to gamma-Al(2)O(3) and surface bound photoreduced species are observed under all environmental conditions. Complementing the experimental data, N1s core electron binding energies (CEBEs) were calculated using DFT for a number of nitrogen-containing species in the gas phase and adsorbed on an Al(8)O(12) cluster. A range of CEBEs is calculated for various nitrogen species in different adsorption modes and oxidation states. These calculated values are discussed in light of the peaks observed in the XPS N1s region and the possible species that form following NO(2) adsorption and

  9. Composition-dependent structure of polycrystalline magnetron-sputtered V–Al–C–N hard coatings studied by XRD, XPS, XANES and EXAFS

    PubMed Central

    Krause, Bärbel; Darma, Susan; Kaufholz, Marthe; Mangold, Stefan; Doyle, Stephen; Ulrich, Sven; Leiste, Harald; Stüber, Michael; Baumbach, Tilo

    2013-01-01

    V–Al–C–N hard coatings with high carbon content were deposited by reactive radio-frequency magnetron sputtering using an experimental combinatorial approach, deposition from a segmented sputter target. The composition-dependent coexisting phases within the coating were analysed using the complementary methods of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine-structure spectroscopy (EXAFS). For the analysis of the X-ray absorption near-edge spectra, a new approach for evaluation of the pre-edge peak was developed, taking into account the self-absorption effects in thin films. Within the studied composition range, a mixed face-centred cubic (V,Al)(C,N) phase coexisting with a C–C-containing phase was observed. No indication of hexagonal (V,Al)(N,C) was found. The example of V–Al–C–N demonstrates how important a combination of complementary methods is for the detection of coexisting phases in complex multi-element coatings. PMID:24046506

  10. Meteors and meteorites spectra

    NASA Astrophysics Data System (ADS)

    Koukal, J.; Srba, J.; Gorková, S.; Lenža, L.; Ferus, M.; Civiš, S.; Knížek, A.; Kubelík, P.; Kaiserová, T.; Váňa, P.

    2016-01-01

    The main goal of our meteor spectroscopy project is to better understand the physical and chemical properties of meteoroids. Astrometric and spectral observations of real meteors are obtained via spectroscopic CCD video systems. Processed meteor data are inserted to the EDMOND database (European viDeo MeteOr Network Database) together with spectral information. The fully analyzed atmospheric trajectory, orbit and also spectra of a Leonid meteor/meteoroid captured in November 2015 are presented as an example. At the same time, our target is the systematization of spectroscopic emission lines for the comparative analysis of meteor spectra. Meteoroid plasma was simulated in a laboratory by laser ablation of meteorites samples using an (ArF) excimer laser and the LIDB (Laser Induced Dielectric Breakdown) in a low pressure atmosphere and various gases. The induced plasma emissions were simultaneously observed with the Echelle Spectrograph and the same CCD video spectral camera as used for real meteor registration. Measurements and analysis results for few selected meteorite samples are presented and discussed.

  11. Angle Resolved Photoemission Study of a Mott Insulator and Its Evolution to a High Temperature Superconductor

    NASA Astrophysics Data System (ADS)

    Ronning, F.

    2002-03-01

    One of the most remarkable facts about the high temperature superconductors is their close proximity to an antiferromagnetically ordered Mott insulating phase. This fact suggests that to understand superconductivity in the cuprates we must first understand the insulating regime. Due to material properties the technique of angle resolved photoemission is ideally suited to study the electronic structure in the cuprates. Thus, a natural starting place to unlocking the secrets of high Tc would appears to be with a photoemission investigation of insulating cuprates. This dissertation presents the results of precisely such a study. In particular, we have focused on the compound Ca2-xNaxCuO2Cl2. With increasing Na content this system goes from an antiferromagnetic Mott insulator with a Neel transition of 256K to a superconductor with an optimal transition temperature of 28K. At half filling we have found an asymmetry in the integrated spectral weight, which can be related to the occupation probability, n(k). This has led us to identify a d-wave-like dispersion in the insulator, which in turn implies that the high energy pseudogap as seen by photoemission is a remnant property of the insulator. These results are robust features of the insulator which we found in many different compounds and experimental conditions. By adding Na we were able to study the evolution of the electronic structure across the insulator to metal transition. We found that the chemical potential shifts as holes are doped into the system. This picture is in sharp contrast to the case of La2-xSrxCuO4 where the chemical potential remains fixed and states are created inside the gap. Furthermore, the low energy excitations (ie the Fermi surface) in metallic Ca1.9Na0.1CuO2Cl2 is most well described as a Fermi arc, although the high binding energy features reveal the presence of shadow bands. Thus, the results in this dissertation provide a new avenue for understanding the evolution of the Mott insulator to

  12. Modeling the PbI2 formation in perovskite solar cells using XRD/XPS patterns

    NASA Astrophysics Data System (ADS)

    Sohrabpoor, Hamed; Elyasi, Majid; Aldosari, Marouf; Gorji, Nima E.

    2016-09-01

    The impact of prolonged irradiation and air humidity on the stability of perovskite solar cells is modeled using X-ray diffraction and X-ray photoelectron spectroscopy patterns reported in the literature. Light or air-moisture causes the formation of a thin PbI2 or oxide defective layers (in nanoscale) at the interface of perovskite/hole-transport-layer or at the junction with metallic back contact. This thin layer blocks the carrier transport/passivation at the interfaces and cause degradation of device parameters. Variation in thickness of defective layers, changes the XRD and XPS peaks. This allows detection and estimation of the type, crystallinity and thickness of the defective layer. A simple model is developed here to extract the thickness of such thin defective layers formed in nanometer scale at the back region of several perovskite devices. Based on this information, corrected energy band diagram of every device before and after degradation/aging is drawn and discussed in order to obtain insight into the carrier transport and charge collection at the barrier region. In addition, graphene contacted perovskite devices are investigated showing that honey-comb network of graphene contact reduces the effect of aging leading to formation of a thinner defective layer at the perovskite surface compared to perovskite devices with conventional inorganic contacts i.e. Au, Al.

  13. XPS characterization of (copper-based) coloured stains formed on limestone surfaces of outdoor Roman monuments

    PubMed Central

    2012-01-01

    Limestone basements holding bronzes or other copper alloys artefacts such as sculptures, decorations and dedicatory inscriptions are frequently met both in modern and ancient monuments. In outdoor conditions, such a combination implies the corrosion products of the copper based alloy, directly exposed to rainwater, will be drained off and migrate through the porous surfaces, forming stains of different colours and intensities, finally causing the limestone structures to deteriorate. In this work we have analysed samples from two modern limestone monuments in Rome, the Botticino surfaces of the ‘Vittoriano’ (by G.Sacconi, 1885-1911- Piazza Venezia) and the travertine basement of the ‘Statua dello Studente’ (by A.Cataldi, 1920- University city, La Sapienza), and focussed our investigation on the chemical composition of the copper-stained zones using XPS (X-ray Photoelectron Spectroscopy) as a surface-specific technique. Based on observations reporting on the structure and bonding at the calcite surfaces we have identified copper complexes and mixed calcium/copper carbonates associated with the stains, as well as the chemical state of other elements therein included, and related the compositional changes with differences in chromatic characteristics and sampling locations. PMID:22594435

  14. XPS characterization of (copper-based) coloured stains formed on limestone surfaces of outdoor Roman monuments.

    PubMed

    Salvi, Anna Maria; Langerame, Fausto; Macchia, Andrea; Sammartino, Maria Pia; Tabasso, Marisa Laurenzi

    2012-01-01

    Limestone basements holding bronzes or other copper alloys artefacts such as sculptures, decorations and dedicatory inscriptions are frequently met both in modern and ancient monuments. In outdoor conditions, such a combination implies the corrosion products of the copper based alloy, directly exposed to rainwater, will be drained off and migrate through the porous surfaces, forming stains of different colours and intensities, finally causing the limestone structures to deteriorate.In this work we have analysed samples from two modern limestone monuments in Rome, the Botticino surfaces of the 'Vittoriano' (by G.Sacconi, 1885-1911- Piazza Venezia) and the travertine basement of the 'Statua dello Studente' (by A.Cataldi, 1920- University city, La Sapienza), and focussed our investigation on the chemical composition of the copper-stained zones using XPS (X-ray Photoelectron Spectroscopy) as a surface-specific technique.Based on observations reporting on the structure and bonding at the calcite surfaces we have identified copper complexes and mixed calcium/copper carbonates associated with the stains, as well as the chemical state of other elements therein included, and related the compositional changes with differences in chromatic characteristics and sampling locations. PMID:22594435

  15. Chemistry Characterization of Jet Aircraft Engine Particulate by XPS: Results from APEX III

    NASA Technical Reports Server (NTRS)

    Vander Wal, Randy L.; Bryg, Victoria M.

    2014-01-01

    This paper reports XPS analysis of jet exhaust particulate from a B737, Lear, ERJ, and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and platforms. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20 percent or more. By lower resolution survey scans various elements including transition metals are identified along with lighter elements such as S, N, and O in the form of oxides. Burning additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their presence can be used as a tracer for identifying soots from aircraft engines as well as diagnostic for monitoring engine performance and wear.

  16. Interfacial chemistry of a perfluoropolyether lubricant studied by XPS and TDS

    NASA Technical Reports Server (NTRS)

    Herrera-Fierro, Pilar C.; Jones, William R., Jr.; Pepper, Stephen V.

    1992-01-01

    The interfacial chemistry of Fomblin Z25, a commercial perfluoropolyether used as lubricant for space applications, with different metallic surfaces: 440C steel, gold and aluminum was studied. Thin layers of Fomblin Z25 were evaporated onto the oxide-free substrates and the interfacial chemistry studied using XPS and TDS. The reactions were induced by heating the substrate and by rubbing the substrate with a steel ball. Gold was found to be completely unreactive towards Fomblin at any temperature. Reaction at room temperature was observed only in the case of the aluminum substrate, the most reactive towards Fomblin Z25 of the substrates studied. It was necessary to heat the 440C steel substrate to 190 degree C to induce decomposition of the fluid. The degradation of the fluid was indicated by the formation of a debris layer at the interface. This debris layer, composed of inorganic and organic reaction products, when completely formed, passivated the surface from further attack to the Fromblin on top. The tribologically induced reactions on 440C steel formed a debris layer of similar chemical characteristics to the thermally induced layer. In all cases, the degradation reaction resulted in preferential consumption of the difluoroformyl carbon (-OCF2O-).

  17. FTIR and XPS studies of surface chemistry of pyrite in flotation

    SciTech Connect

    Leppinen, J.; Laajalehto, K.; Kartio, I.; Suoninen, E.

    1995-12-31

    Efficient separation of pyrite is of great importance for the metallurgical performance of flotation processes. Presently, separation of pyrite by flotation is becoming more and more important for reduction of sulfur in coal. In this work Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) were used to study the surface chemistry of pyrite in depression, activation and xanthate adsorption under conditions of controlled potential. Modifications of pyrite surfaces after treatment with depressants (lime, sulfur dioxide, sodium cyanide) and after activation with metal ions (Cu, Pb) were studied. The principal adsorption product identified on pyrite was dixanthogen whose formation started at about +0.15 V and +0.25 V (vs, SHE) in ethyl and amyl xanthate solutions, respectively. Copper xanthate was formed on copper(II) activated pyrite. Activation mechanism of pyrite by copper(II) salts is likely to be electrochemical where copper occurs as copper(I) on the surface of pyrite. Effective depression is achieved by sulfur dioxide and sodium cyanide. Depression at high pH is due to formation of iron(III) hydroxides. Calcium ions do not affect the electrochemistry but adsorb on pyrite and reduce the surface sites for dixanthogen adsorption.

  18. XPS and STM studies of the oxidation of hydrogen chloride at Cu(100) surfaces

    NASA Astrophysics Data System (ADS)

    Altass, Hatem; Carley, Albert F.; Davies, Philip R.; Davies, Robert J.

    2016-08-01

    The dissociative chemisorption of HCl on clean and oxidized Cu(100) surfaces has been investigated using x-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Whereas the dissociation of HCl at the clean surface is limited to the formation of a (√ 2 × √ 2)-R45° Cl(a) monolayer, the presence of surface oxygen removes this barrier, leading to chlorine coverages up to twice that obtained at the clean surface. Additional features in the STM images that appear at these coverages are tentatively assigned to the nucleation of CuCl islands. The rate of reaction of the HCl was slightly higher on the oxidized surface but unaffected by the initial oxygen concentration or the availability of clean copper sites. Of the two distinct domains of adsorbed oxygen identified at room temperature on the Cu(100) surfaces, the (√ 2 × √ 2)-R45° structure reacts slightly faster with HCl than the missing row (√ 2 × 2 √ 2)-R45° O(a) structure. The results address the first stages in the formation of a copper chloride and present an interesting comparison with the HCl/O(a) reaction at Cu(110) surfaces, where oxygen also increased the extent of HCl reactions. The results emphasize the importance of the exothermic reaction to form water in the HCl/O(a) reaction on copper.

  19. The nature of nitrate at the ice surface studied by XPS and NEXAFS.

    PubMed

    Krepelová, Adéla; Newberg, John; Huthwelker, Thomas; Bluhm, Hendrik; Ammann, Markus

    2010-08-21

    Trace contaminants such as strong acids have been suggested to affect the thickness of the quasi-liquid layer at the ice/air interface, which is at the heart of heterogeneous chemical reactions between snowpacks or cirrus clouds and the surrounding air. We used X-ray photoelectron spectroscopy (XPS) and electron yield near edge X-ray absorption fine structure (NEXAFS) spectroscopy at the Advanced Light Source (ALS) to probe the ice surface in the presence of HNO(3) formed from the heterogeneous hydrolysis of NO(2) at 230 K. We studied the nature of the adsorbed species at the ice/vapor interfaces as well as the effect of HNO(3) on the hydrogen bonding environment at the ice surface. The NEXAFS spectrum of ice with adsorbed HNO(3) can be represented as linear combination of the clean ice and nitrate solution spectrum, thus indicating that in the presence of HNO(3) the ice surface consists of a mixture of clean ice and nitrate ions that are coordinated as in a concentrated solution at the same temperature but higher HNO(3) pressures. PMID:20532376

  20. The nature of nitrate at the ice surface studied by XPS and NEXAFS.

    PubMed

    Krepelová, Adéla; Newberg, John; Huthwelker, Thomas; Bluhm, Hendrik; Ammann, Markus

    2010-08-21

    Trace contaminants such as strong acids have been suggested to affect the thickness of the quasi-liquid layer at the ice/air interface, which is at the heart of heterogeneous chemical reactions between snowpacks or cirrus clouds and the surrounding air. We used X-ray photoelectron spectroscopy (XPS) and electron yield near edge X-ray absorption fine structure (NEXAFS) spectroscopy at the Advanced Light Source (ALS) to probe the ice surface in the presence of HNO(3) formed from the heterogeneous hydrolysis of NO(2) at 230 K. We studied the nature of the adsorbed species at the ice/vapor interfaces as well as the effect of HNO(3) on the hydrogen bonding environment at the ice surface. The NEXAFS spectrum of ice with adsorbed HNO(3) can be represented as linear combination of the clean ice and nitrate solution spectrum, thus indicating that in the presence of HNO(3) the ice surface consists of a mixture of clean ice and nitrate ions that are coordinated as in a concentrated solution at the same temperature but higher HNO(3) pressures.

  1. XPS analysis of 440C steel surfaces lubricated with perfluoropolyethers under sliding conditions in high vacuum

    NASA Technical Reports Server (NTRS)

    Herrera-Fierro, Pilar; Masuko, Masabumi; Jones, William R., Jr.; Pepper, Stephen V.

    1994-01-01

    This work presents the results of the X-Ray Photoelectron Spectroscopy (XPS) analysis of AISI 440C ball surfaces lubricated with perfluoropolyether (PFPE) oils after friction experiments under sliding conditions at high load in air and vacuum environments. The PFPE lubricants tested were Demnum S100, Fomblin Z-25, and Krytox 143AB. It was found that all the PFPE lubricants were degraded by sliding contact causing the formation of inorganic fluorides on the metallic surfaces and a layer of organic decomposition products. KRYTOX 143AB was the least reactive of the three lubricants tested. It was also found that metal fluoride formed at off-scar areas. This suggests the formation of reactive species, such as COF2 or R(sub f)COF, during sliding experiments, which can diffuse through the lubricant film and react with the metallic surfaces away from the contact region. Comparison of reference specimens before sliding with those that had undergone the sliding tests showed that the amount of non-degraded PFPE remaining on the surface of the balls after the sliding experiments was greater than that of the balls without sliding.

  2. Chemical and structural characterization of Zrsbnd Csbnd Nsbnd Ag coatings: XPS, XRD and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Calderon V, S.; Cavaleiro, A.; Carvalho, S.

    2015-08-01

    In this report Zrsbnd Csbnd Nsbnd Ag coatings produced by dual magnetron sputtering are characterized by X-ray photoelectron spectroscopy (XPS) and complemented by X-ray diffraction, scanning electron microscopy, electron-probe microanalysis and Raman spectroscopy, in order to determine the chemical bonds and phases formed during the production process. The results demonstrate the possibility of producing coatings with different silver content (0-16 at.%), in which zirconium carbonitrides (70-95 at.%), amorphous carbon nitride phases (0-16 at.%) and residual zirconium oxide phases (∼5 at.%) coexists with the metallic silver. The profile analysis evidenced a highly oxidized surface due to the affinity of Zr to form ZrO2, and silver segregation to the surface. The composition after Ar+ bombardment revealed the contribution of silver clusters and metallic silver, together with the mentioned phases that vary in content depending on the deposition parameters utilized. STEM images revealed silver nanoparticles distributed in the Zrsbnd Csbnd N matrix with sizes around 5-20 nm, as well as silver surface agglomeration with sizes <80 nm.

  3. [In situ FTIR and XPS study on selective hydrodesulfurization catalyst of FCC gasoline].

    PubMed

    Qiherima; Yuan, Hui; Zhang, Yun-hong; Li, Hui-feng; Xu, Guang-tong

    2011-07-01

    Improvement of the selectivity of hydrodesulfurization (HDS) for hydrogenation (HYD) of olefins is crucial to produce sulfur-free (S < 0.001%) gasoline from fluid catalytic-cracked (FCC) gasoline. A series of sulfided CoMo/Al2O3 catalysts with different metal loading were prepared by pore-filling impregnation. MoS2 and COMoS active phases on the surface of sulfided COMo/Al2O3 catalyst were identified and analyzed quantitatively by XPS and in-situ FTIR of adsorbed CO. The results reveal that the increase in COMoS phase on the catalyst surface improves the HDS activity and selectivity. And the HDS selectivity correlates linearly with the ratio of active site number of CoMoS and MoS2, the higher the ratio of active site number of CoMoS and MoS2, the better the HDS selectivity. In situ variable temperature FTIR analysis shows that CoMoS phase has stronger electron accepting ability than MoS2. The strong electron deficient property of CoMoS active sites is the main reason for its excellent HDS activity and selectivity. PMID:21942017

  4. IR and XPS study of NO and CO interaction with palladium catalysts supported on aluminosilicates

    SciTech Connect

    Venezia, A.M.; Liotta, L.F.; Deganello, G. |; Terreros, P.; Pena, M.A.; Fierro, J.L.G.

    1999-02-16

    Adsorption of CO and NO individually and as a mixture of both on palladium catalysts has been investigated by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The effect of sodium ions has been considered by comparing Pd/SiO{sub 2} catalyst, sodium-doped Pd/SiO{sub 2}, and Pd on natural and synthetic silicoaluminates containing sodium in their bulk structure but differing in the surface area of the support. The presence of sodium induces a different adsorption behavior depending on its location, either at the surface of the catalysts or inside the support structure. As a consequence, different species are formed from the reaction between NO and CO at room temperature and at high temperature. Modification of the metal surface of the various catalysts is observed upon the gas treatments. Palladium is oxidized to a certain extent depending on the type of the catalyst support. Moreover, different chemical states of the adsorbed nitrogen species are found.

  5. An Application for Near Real-time Analysis of XPS Data

    SciTech Connect

    Lea, Alan S.; Swanson, Kenneth R.; Haack, Jereme N.; Castle, James E.; Tougaard, Sven M.; Baer, Donald R.

    2010-04-22

    Real-time analysis of x-ray photoelectron spectroscopy (XPS) data has significant potential advantages to scientists and analysts in that it has the potential to qualitatively alter the way an experiment is carried forward. As an example, immediate information about the magnitude of contamination and the layering of the surface could allow the scientist to immediately ask the next level of question and quickly re-direct the next experiment or test, even before the sample has been removed from the spectrometer. In addition to changing the nature of possible experiments, the immediate automated analysis of relatively simple procedures that an operator would normally conduct manually after the data files are saved, the report generation summarizing these analyses, and saving of this report to files with the critical metadata attached, has the potential to improve the turn-around time for data analysis, increase the sophistication of data analysis reportable to the scientist and reduce the labor involved in data analysis, resulting in significant time and cost savings.

  6. Chemistry characterization of jet aircraft engine particulate matter by XPS: Results from APEX III

    NASA Astrophysics Data System (ADS)

    Vander Wal, Randy L.; Bryg, Victoria M.; Huang, Chung-Hsuan

    2016-09-01

    This paper reports X-ray photoelectron spectroscopy (XPS) analysis of jet exhaust particulate matter (PM) from a B737, Lear, ERJ and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and powers. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20% or more. By survey scans various elements including transition metals are identified along with lighter elements such as S, N and O in the form of oxides. Additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their collective presence could serve as an environmental tracer for identifying PM originating from aircraft engines and serving as a diagnostic for engine performance and wear.

  7. Corrosion prevention capability of polyaniline (emeraldine base and salt): An XPS study

    SciTech Connect

    Jasty, S.; Epstein, A.J.

    1995-12-01

    There has been a keen interest in the use of polyaniline coatings for the corrosion protection of Fe and its alloys. To date, the primary focus has been on the doped form of the emeraldine oxidation state; also, the polyaniline has been applied, electrochemically or chemically, as an overcoat on the metal. In the present study, the surface sensitive XPS technique has been applied to investigate (1) the effectiveness of the neutral emeraldine base as well as the doped emeraldine hydrochloride forms of polyaniline in corrosion inhibition and (2) the ability of a polyaniline undercoat in providing corrosion protection by passivating the exposed metal surface. Here 350{Angstrom} and 70{Angstrom} thick Fe was sputter deposited onto the polyaniline and control polymer (non-electroactive) substrates and exposed to different environments. We conclude that an undercoat of the neutral emeraldine base form of polyaniline passivates the outer metal (Fe) surface with a thin ({approximately} 30-50{Angstrom}) oxide layer of mainly hematite (Fe{sub 2}O{sub 3}) and that the passivation mechanism has an electronic origin. In contrast, Fe sputtered onto doped emeraldine hydrochloride forms a thicker oxide layer with a distribution of oxidation states, effectively providing much less corrosion protection.

  8. Modeling angle-resolved photoemission of graphene and black phosphorus nano structures

    PubMed Central

    Park, Sang Han; Kwon, Soonnam

    2016-01-01

    Angle-resolved photoemission spectroscopy (ARPES) data on electronic structure are difficult to interpret, because various factors such as atomic structure and experimental setup influence the quantum mechanical effects during the measurement. Therefore, we simulated ARPES of nano-sized molecules to corroborate the interpretation of experimental results. Applying the independent atomic-center approximation, we used density functional theory calculations and custom-made simulation code to compute photoelectron intensity in given experimental setups for every atomic orbital in poly-aromatic hydrocarbons of various size, and in a molecule of black phosphorus. The simulation results were validated by comparing them to experimental ARPES for highly-oriented pyrolytic graphite. This database provides the calculation method and every file used during the work flow. PMID:27164313

  9. Unoccupied electronic resonances of Sc adsorbed on W(001) by k-resolved inverse photoemission

    NASA Technical Reports Server (NTRS)

    Lamouri, A.; Krainsky, I. L.; Petukhov, A. G.; Lambrecht, W. R. L.; Segall, B.

    1995-01-01

    Scandium adsorbed on the (001) face of tungsten has been studied using Auger-electron spectroscopy, low-energy electron diffraction, k-resolved inverse photoelectron spectroscopy, work-function measurements, and relativistic-electronic-structure calculations. We find that the work function of W(001) does not decrease monotonically as a function of scandium adsorption but reaches a minimum value of Phi = 3.25 eV at 50% coverage. For a complete monolayer, an order 1 X 1 Sc overlayer is formed. Inverse photoemission in the isochromat mode was used to map the unoccupied energy levels of this overlayer along the bar-Gamma(bar-Mu) symmetry direction of the surface Brillouin zone. Local-density-functional calculations using the muffin-tin orbital method were performed for a 1 X 1 Sc overlayer on W and are compared with the experimental two-dimensional band structure.

  10. Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source

    NASA Astrophysics Data System (ADS)

    Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; Ben-Zvi, I.; Boulware, C. H.; Grimm, T. L.; Hayes, T.; Litvinenko, Vladimir N.; Mernick, K.; Narayan, G.; Orfin, P.; Pinayev, I.; Rao, T.; Severino, F.; Skaritka, J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Xiao, B.; Xie, H.; Zaltsman, A.

    2016-09-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers. Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory to produce high-brightness and high-bunch-charge bunches for the coherent electron cooling proof-of-principle experiment. The gun utilizes a quarter-wave resonator geometry for assuring beam dynamics and uses high quantum efficiency multi-alkali photocathodes for generating electrons.

  11. Electron-vibration coupling induced renormalization in the photoemission spectrum of diamondoids

    NASA Astrophysics Data System (ADS)

    Gali, Adam; Demján, Tamás; Vörös, Márton; Thiering, Gergő; Cannuccia, Elena; Marini, Andrea

    2016-04-01

    The development of theories and methods devoted to the accurate calculation of the electronic quasi-particle states and levels of molecules, clusters and solids is of prime importance to interpret the experimental data. These quantum systems are often modelled by using the Born-Oppenheimer approximation where the coupling between the electrons and vibrational modes is not fully taken into account, and the electrons are treated as pure quasi-particles. Here, we show that in small diamond cages, called diamondoids, the electron-vibration coupling leads to the breakdown of the electron quasi-particle picture. More importantly, we demonstrate that the strong electron-vibration coupling is essential to properly describe the overall lineshape of the experimental photoemission spectrum. This cannot be obtained by methods within Born-Oppenheimer approximation. Moreover, we deduce a link between the vibronic states found by our many-body perturbation theory approach and the well-known Jahn-Teller effect.

  12. Spin- and angle-resolved photoemission on the topological Kondo insulator candidate: SmB6.

    PubMed

    Xu, Nan; Ding, Hong; Shi, Ming

    2016-09-14

    Topological Kondo insulators are a new class of topological insulators in which metallic surface states protected by topological invariants reside in the bulk band gap at low temperatures. Unlike other 3D topological insulators, a truly insulating bulk state, which is critical for potential applications in next-generation electronic devices, is guaranteed by many-body effects in the topological Kondo insulator. Furthermore, the system has strong electron correlations that can serve as a testbed for interacting topological theories. This topical review focuses on recent advances in the study of SmB6, the most promising candidate for a topological Kondo insulator, from the perspective of spin- and angle-resolved photoemission spectroscopy with highlights of some important transport results.

  13. Photoemission from cesium-oxide-activated InGaAsP.

    NASA Technical Reports Server (NTRS)

    James, L. W.; Antypas, G. A.; Moon, R. L.; Edgecumbe, J.; Bell, R. L.

    1973-01-01

    Zinc-doped InGaAsP quaternary III-V material of the proper composition range shows superior photoemission properties to either InGaAs or InAsP ternary material. The minority-carrier diffusion length in the quaternary material is at least as long as that in InAsP and much longer than observed in InGaAs. The barrier height at the InGaAsP-Cs2O interface is lowered by cooling, giving increased electron escape probability and new highs in quantum efficiency over a wide wavelength range. For example, a 1.06-micron quantum efficiency of 7.5%/incident photon was observed at -90 C.

  14. X-ray photoemission electron microscopy, a tool for the investigation of complex magnetic structures.

    SciTech Connect

    Scholl, Andreas; Ohldag, Hendrik; Nolting, Frithjof; Stohr, Joachim; Padmore, Howard A.

    2001-08-30

    X-ray Photoemission Electron Microscopy unites the chemical specificity and magnetic sensitivity of soft x-ray absorption techniques with the high spatial resolution of electron microscopy. The discussed instrument possesses a spatial resolution of better than 50 nm and is located at a bending magnet beamline at the Advanced Light Source, providing linearly and circularly polarized radiation between 250 and 1300 eV. We will present examples which demonstrate the power of this technique applied to problems in the field of thin film magnetism. The chemical and elemental specificity is of particular importance for the study of magnetic exchange coupling because it allows separating the signal of the different layers and interfaces in complex multi-layered structures.

  15. Angle resolved photoemission study of the strongly correlated metal V2O3

    NASA Astrophysics Data System (ADS)

    Lo Vecchio, Irene; Denlinger, Jonathan D.; Krupin, Oleg; Kim, Bumjoon; Metcalf, Patricia; Lupi, Stefano; Allen, James W.; Lanzara, Alessandra

    V2O3 is often considered as the textbook example for the Mott metal-insulator transition. It has been the playground for multiple theoretical approaches and attempts to describe its metallic ground state for half a century. However, the experimental electronic structure is still unknown because of difficulties related to the three-dimensional character of the Fermi surface and the inhomogeneous cleavage of single crystals. Here we reveal for the first time the band structure of V2O3 using angle resolved photoemission spectroscopy. Direct comparison with theory is presented highlighting the important role of electron correlation for the physics of this material. Experiments at the Advanced Light Source were supported by the U.S. DOE Basic Energy Sciences (DE-AC02-05CH11231).

  16. Time-resolved photoemission of correlated electrons driven out of equilibrium

    SciTech Connect

    Moritz, B.; Devereaux, T. P.; Freericks, J. K.

    2010-04-15

    We describe the temporal evolution of the time-resolved photoemission response of the spinless Falicov-Kimball model driven out of equilibrium by strong applied fields. The model is one of the few possessing a metal-insulator transition and admitting an exact solution in the time domain. The nonequilibrium dynamics, evaluated using an extension of dynamical mean-field theory, show how the driven system differs from two common viewpoints--a quasiequilibrium system at an elevated effective temperature (the 'hot' electron model) or a rapid interaction quench ('melting' of the Mott gap) - due to the rearrangement of electronic states and redistribution of spectral weight. The results demonstrate the inherent trade-off between energy and time resolution accompanying the finite width probe pulses, characteristic of those employed in pump-probe time-domain experiments, which can be used to focus attention on different aspects of the dynamics near the transition.

  17. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy

    SciTech Connect

    Jiang, Rui; Mou, Daixiang; Wu, Yun; Huang, Lunan; Kaminski, Adam; McMillen, Colin D.; Kolis, Joseph; Giesber, Henry G.; Egan, John J.

    2014-03-15

    We have developed an angle-resolved photoemission spectrometer with tunable vacuum ultraviolet laser as a photon source. The photon source is based on the fourth harmonic generation of a near IR beam from a Ti:sapphire laser pumped by a CW green laser and tunable between 5.3 eV and 7 eV. The most important part of the set-up is a compact, vacuum enclosed fourth harmonic generator based on potassium beryllium fluoroborate crystals, grown hydrothermally in the US. This source can deliver a photon flux of over 10{sup 14} photon/s. We demonstrate that this energy range is sufficient to measure the k{sub z} dispersion in an iron arsenic high temperature superconductor, which was previously only possible at synchrotron facilities.

  18. Interband quasiparticle scattering in superconducting LiFeAs reconciles photoemission and tunneling measurements.

    PubMed

    Hess, Christian; Sykora, Steffen; Hänke, Torben; Schlegel, Ronny; Baumann, Danny; Zabolotnyy, Volodymyr B; Harnagea, Luminita; Wurmehl, Sabine; van den Brink, Jeroen; Büchner, Bernd

    2013-01-01

    Several angle-resolved photoemission spectroscopy (ARPES) studies reveal a poorly nested Fermi surface of LiFeAs, far away from a spin density wave instability, and clear-cut superconducting gap anisotropies. On the other hand a very different, more nested Fermi surface and dissimilar gap anisotropies have been obtained from quasiparticle interference (QPI) data, which were interpreted as arising from intraband scattering within holelike bands. Here we show that this ARPES-QPI paradox is completely resolved by interband scattering between the holelike bands. The resolution follows from an excellent agreement between experimental quasiparticle scattering data and T-matrix QPI calculations (based on experimental band structure data), which allows disentangling interband and intraband scattering processes.

  19. Substrate interactions with suspended and supported monolayer MoS2: Angle-resolved photoemission spectroscopy

    DOE PAGESBeta

    Jin, Wencan; Yeh, Po -Chun; Zaki, Nader; Zhang, Datong; Liou, Jonathan T.; Dadap, Jerry I.; Barinov, Alexey; Yablonskikh, Mikhail; Sadowski, Jerzy T.; Sutter, Peter; et al

    2015-03-17

    We report the directly measured electronic structure of exfoliated monolayer molybdenum disulfide (MoS₂) using micrometer-scale angle-resolved photoemission spectroscopy. Measurements of both suspended and supported monolayer MoS₂ elucidate the effects of interaction with a substrate. Thus, a suggested relaxation of the in-plane lattice constant is found for both suspended and supported monolayer MoS₂ crystals. For suspended MoS₂, a careful investigation of the measured uppermost valence band gives an effective mass at Γ¯ and Κ¯ of 2.00m₀ and 0.43m₀, respectively. We also measure an increase in the band linewidth from the midpoint of Γ¯Κ¯ to the vicinity of Κ¯ and briefly discussmore » its possible origin.« less

  20. Rashba splitting in an image potential state investigated by circular dichroism two-photon photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakazawa, T.; Takagi, N.; Kawai, Maki; Ishida, H.; Arafune, R.

    2016-09-01

    We have explored the band splitting and spin texture of the image potential state (IPS) on Au(001) derived from the Rashba-type spin-orbit interaction (SOI) by using angle-resolved bichromatic two-photon photoemission (2PPE) spectroscopy in combination with circular dichroism (CD). The Rashba parameter for the first (n =1 ) IPS is determined to be 48-20+8meV Å , which is consistent with the spin-polarized band structure calculated from the embedded Green's function technique for semi-infinite crystals. The present results demonstrate that bichromatic CD-2PPE spectroscopy is powerful for mapping the spin-polarized unoccupied band structures originating from SOIs in various classes of condensed matter.