Science.gov

Sample records for photon beam therapy

  1. A review on photoneutrons characteristics in radiation therapy with high-energy photon beams.

    PubMed

    Naseri, Alireza; Mesbahi, Asghar

    2010-09-22

    In radiation therapy with high-energy photon beams (E > 10 MeV) neutrons are generated mainly in linacs head thorough (γ,n) interactions of photons with nuclei of high atomic number materials that constitute the linac head and the beam collimation system. These neutrons affect the shielding requirements in radiation therapy rooms and also increase the out-of-field radiation dose of patients undergoing radiation therapy with high-energy photon beams. In the current review, the authors describe the factors influencing the neutron production for different medical linacs based on the performed measurements and Monte Carlo studies in the literature.

  2. A review on photoneutrons characteristics in radiation therapy with high-energy photon beams

    PubMed Central

    Naseri, Alireza; Mesbahi, Asghar

    2010-01-01

    In radiation therapy with high-energy photon beams (E > 10 MeV) neutrons are generated mainly in linacs head thorough (γ,n) interactions of photons with nuclei of high atomic number materials that constitute the linac head and the beam collimation system. These neutrons affect the shielding requirements in radiation therapy rooms and also increase the out-of-field radiation dose of patients undergoing radiation therapy with high-energy photon beams. In the current review, the authors describe the factors influencing the neutron production for different medical linacs based on the performed measurements and Monte Carlo studies in the literature. PMID:24376940

  3. Optimization of photon beam flatness for radiation therapy.

    PubMed

    Olofsson, Jörgen; Nyholm, Tufve; Ahnesjö, Anders; Karlsson, Mikael

    2007-03-21

    In this work, we investigate the relation between lateral fluence/dose distributions and photon beam uniformity, possibly identifying ways to improve these characteristics. The calculations included treatment head scatter properties associated with three common types of linear accelerators in order to study their impact on the results. For 6 and 18 MV photon beams the lateral fluence distributions were optimized with respect to the resulting calculated flatness, as defined by the International Electrotechnical Commission (IEC), at 10 cm depth in six different field sizes. The limits proposed by IEC for maximum dose ratios ('horns') at the depth of dose maximum have also been accounted for in the optimization procedure. The conclusion was that typical head scatter variations among different types of linear accelerators have a very limited effect on the optimized results, which implies that the existing differences in measured off-axis dose distributions are related to non-equivalent optimization objectives. Finally, a comparison between the theoretically optimized lateral dose distributions and corresponding dose measurements for the three investigated accelerator types was performed. Although the measured data generally fall within the IEC requirements the optimized distributions show better results overall for the evaluated uniformity parameters, indicating that there is room for improved flatness performance in clinical photon beams.

  4. Radiation dose enhancement in skin therapy with nanoparticle addition: A Monte Carlo study on kilovoltage photon and megavoltage electron beams.

    PubMed

    Zheng, Xiao J; Chow, James C L

    2017-02-28

    To investigated the dose enhancement due to the incorporation of nanoparticles in skin therapy using the kilovoltage (kV) photon and megavoltage (MV) electron beams. Monte Carlo simulations were used to predict the dose enhancement when different types and concentrations of nanoparticles were added to skin target layers of varying thickness. Clinical kV photon beams (105 and 220 kVp) and MV electron beams (4 and 6 MeV), produced by a Gulmay D3225 orthovoltage unit and a Varian 21 EX linear accelerator, were simulated using the EGSnrc Monte Carlo code. Doses at skin target layers with thicknesses ranging from 0.5 to 5 mm for the photon beams and 0.5 to 10 mm for the electron beams were determined. The skin target layer was added with the Au, Pt, I, Ag and Fe2O3 nanoparticles with concentrations ranging from 3 to 40 mg/mL. The dose enhancement ratio (DER), defined as the dose at the target layer with nanoparticle addition divided by the dose at the layer without nanoparticle addition, was calculated for each nanoparticle type, nanoparticle concentration and target layer thickness. It was found that among all nanoparticles, Au had the highest DER (5.2-6.3) when irradiated with kV photon beams. Dependence of the DER on the target layer thickness was not significant for the 220 kVp photon beam but it was for 105 kVp beam for Au nanoparticle concentrations higher than 18 mg/mL. For other nanoparticles, the DER was dependent on the atomic number of the nanoparticle and energy spectrum of the photon beams. All nanoparticles showed an increase of DER with nanoparticle concentration during the photon beam irradiations regardless of thickness. For electron beams, the Au nanoparticles were found to have the highest DER (1.01-1.08) when the beam energy was equal to 4 MeV, but this was drastically lower than the DER values found using photon beams. The DER was also found affected by the depth of maximum dose of the electron beam and target thickness. For other nanoparticles with

  5. Dosimetric impact of fiducial markers in patients undergoing photon beam radiation therapy.

    PubMed

    Vassiliev, Oleg N; Kudchadker, Rajat J; Kuban, Deborah A; Frank, Steven J; Choi, Seungtaek; Nguyen, Quynh; Lee, Andrew K

    2012-07-01

    Fiducial markers are widely used in image-guided radiation therapy to correct for setup error and organ motion. These markers, however, can cause dose perturbations in the target volume for patients undergoing external-beam radiation therapy. The goal of this study was to determine the dosimetric impact of various types of fiducial markers commonly used in patients receiving photon radiation therapy. Monte Carlo simulations based on a newly developed EGSnrcMP user code were used to investigate three types of gold fiducial markers and a carbon marker. A single photon field with each fiducial in various orientations and two parallel-opposed beams were simulated at 6-MV and 18-MV energies. The results indicated that dose perturbations depended on marker size, material, and orientation, as well as on incident beam energy. Maximum dose perturbations were found for a single 6-MV beam. The increase in dose reached a factor of 1.58 near the upstream surface of the gold marker because of electron backscatter. At the downstream surface, the dose was reduced to a factor of 0.53 at the same point without the marker. For the 18-MV beam, the maximum dose factor was 1.48 and the minimum dose factor was 0.66. For the two parallel-opposed beams, the maximum dose reduction was within 5% at 6 MV and 2% at 18 MV. Dose enhancement, however, remained significant, reaching factors of 1.20 and 1.33 for the two energies near the fiducial surface. Carbon fiducials caused dose perturbations of only ~1%. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Optimization of photon beam energies in gold nanoparticle enhanced arc radiation therapy using Monte Carlo methods.

    PubMed

    Koger, B; Kirkby, C

    2016-12-02

    As a recent area of development in radiation therapy, gold nanoparticle (GNP) enhanced radiation therapy has shown potential to increase tumour dose while maintaining acceptable levels of healthy tissue toxicity. In this study, the effect of varying photon beam energy in GNP enhanced arc radiation therapy (GEART) is quantified through the introduction of a dose scoring metric, and GEART is compared to a conventional radiotherapy treatment. The PENELOPE Monte Carlo code was used to model several simple phantoms consisting of a spherical tumour containing GNPs (concentration: 15 mg Au g(-1) tumour, 0.8 mg Au g(-1) normal tissue) in a cylinder of tissue. Several monoenergetic photon beams, with energies ranging from 20 keV to 6 MeV, as well as 100, 200, and 300 kVp spectral beams, were used to irradiate the tumour in a 360° arc treatment. A dose metric was then used to compare tumour and tissue doses from GEART treatments to a similar treatment from a 6 MV spectrum. This was also performed on a simulated brain tumour using patient computed tomography data. GEART treatments showed potential over the 6 MV treatment for many of the simulated geometries, delivering up to 88% higher mean dose to the tumour for a constant tissue dose, with the effect greatest near a source energy of 50 keV. This effect is also seen with the inclusion of bone in a brain treatment, with a 14% increase in mean tumour dose over 6 MV, while still maintaining acceptable levels of dose to the bone and brain.

  7. Optimization of photon beam energies in gold nanoparticle enhanced arc radiation therapy using Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Koger, B.; Kirkby, C.

    2016-12-01

    As a recent area of development in radiation therapy, gold nanoparticle (GNP) enhanced radiation therapy has shown potential to increase tumour dose while maintaining acceptable levels of healthy tissue toxicity. In this study, the effect of varying photon beam energy in GNP enhanced arc radiation therapy (GEART) is quantified through the introduction of a dose scoring metric, and GEART is compared to a conventional radiotherapy treatment. The PENELOPE Monte Carlo code was used to model several simple phantoms consisting of a spherical tumour containing GNPs (concentration: 15 mg Au g-1 tumour, 0.8 mg Au g-1 normal tissue) in a cylinder of tissue. Several monoenergetic photon beams, with energies ranging from 20 keV to 6 MeV, as well as 100, 200, and 300 kVp spectral beams, were used to irradiate the tumour in a 360° arc treatment. A dose metric was then used to compare tumour and tissue doses from GEART treatments to a similar treatment from a 6 MV spectrum. This was also performed on a simulated brain tumour using patient computed tomography data. GEART treatments showed potential over the 6 MV treatment for many of the simulated geometries, delivering up to 88% higher mean dose to the tumour for a constant tissue dose, with the effect greatest near a source energy of 50 keV. This effect is also seen with the inclusion of bone in a brain treatment, with a 14% increase in mean tumour dose over 6 MV, while still maintaining acceptable levels of dose to the bone and brain.

  8. Dosimetric characterization of a synthetic single crystal diamond detector in clinical radiation therapy small photon beams

    SciTech Connect

    Ciancaglioni, I.; Marinelli, Marco; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Consorti, R.; Petrucci, A.; De Notaristefani, F.

    2012-07-15

    Purpose: To determine the potentialities of synthetic single crystal diamond Schottky diodes for accurate dose measurements in radiation therapy small photon beams. Methods: The dosimetric properties of a diamond-based detector were assessed by comparison with a reference microionization chamber. The diamond device was operated at zero bias voltage under irradiation with high-energy radiotherapic photon beams. The stability of the detector response and its dose and dose rate dependence were measured. Different square field sizes ranging from 1 Multiplication-Sign 1 cm{sup 2} to 10 Multiplication-Sign 10 cm{sup 2} were used during comparative dose distribution measurements by means of percentage depth dose curves (PDDs), lateral beam profiles, and output factors. The angular and temperature dependence of the diamond detector response were also studied. Results: The detector response shows a deviation from linearity of less than {+-}0.5% in the 0.01-7 Gy range and dose rate dependence below {+-}0.5% in the 1-6 Gy/min range. PDDs and output factors are in good agreement with those measured by the reference ionization chamber within 1%. No angular dependence is observed by rotating the detector along its axis, while {approx}3.5% maximum difference is measured by varying the radiation incidence angle in the polar direction. The temperature dependence was investigated as well and a {+-}0.2% variation of the detector response is found in the 18-40 Degree-Sign C range. Conclusions: The obtained results indicate the investigated synthetic diamond-based detector as a candidate for small field clinical radiation dosimetry in advanced radiation therapy techniques.

  9. Dosimetric characterization of a synthetic single crystal diamond detector in clinical radiation therapy small photon beams.

    PubMed

    Ciancaglioni, I; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Consorti, R; Petrucci, A; De Notaristefani, F

    2012-07-01

    To determine the potentialities of synthetic single crystal diamond Schottky diodes for accurate dose measurements in radiation therapy small photon beams. The dosimetric properties of a diamond-based detector were assessed by comparison with a reference microionization chamber. The diamond device was operated at zero bias voltage under irradiation with high-energy radiotherapic photon beams. The stability of the detector response and its dose and dose rate dependence were measured. Different square field sizes ranging from 1 × 1 cm(2) to 10 × 10 cm(2) were used during comparative dose distribution measurements by means of percentage depth dose curves (PDDs), lateral beam profiles, and output factors. The angular and temperature dependence of the diamond detector response were also studied. The detector response shows a deviation from linearity of less than ±0.5% in the 0.01-7 Gy range and dose rate dependence below ±0.5% in the 1-6 Gy∕min range. PDDs and output factors are in good agreement with those measured by the reference ionization chamber within 1%. No angular dependence is observed by rotating the detector along its axis, while ∼3.5% maximum difference is measured by varying the radiation incidence angle in the polar direction. The temperature dependence was investigated as well and a ±0.2% variation of the detector response is found in the 18-40 °C range. The obtained results indicate the investigated synthetic diamond-based detector as a candidate for small field clinical radiation dosimetry in advanced radiation therapy techniques.

  10. Radiation dose enhancement in skin therapy with nanoparticle addition: A Monte Carlo study on kilovoltage photon and megavoltage electron beams

    PubMed Central

    Zheng, Xiao J; Chow, James C L

    2017-01-01

    AIM To investigated the dose enhancement due to the incorporation of nanoparticles in skin therapy using the kilovoltage (kV) photon and megavoltage (MV) electron beams. Monte Carlo simulations were used to predict the dose enhancement when different types and concentrations of nanoparticles were added to skin target layers of varying thickness. METHODS Clinical kV photon beams (105 and 220 kVp) and MV electron beams (4 and 6 MeV), produced by a Gulmay D3225 orthovoltage unit and a Varian 21 EX linear accelerator, were simulated using the EGSnrc Monte Carlo code. Doses at skin target layers with thicknesses ranging from 0.5 to 5 mm for the photon beams and 0.5 to 10 mm for the electron beams were determined. The skin target layer was added with the Au, Pt, I, Ag and Fe2O3 nanoparticles with concentrations ranging from 3 to 40 mg/mL. The dose enhancement ratio (DER), defined as the dose at the target layer with nanoparticle addition divided by the dose at the layer without nanoparticle addition, was calculated for each nanoparticle type, nanoparticle concentration and target layer thickness. RESULTS It was found that among all nanoparticles, Au had the highest DER (5.2-6.3) when irradiated with kV photon beams. Dependence of the DER on the target layer thickness was not significant for the 220 kVp photon beam but it was for 105 kVp beam for Au nanoparticle concentrations higher than 18 mg/mL. For other nanoparticles, the DER was dependent on the atomic number of the nanoparticle and energy spectrum of the photon beams. All nanoparticles showed an increase of DER with nanoparticle concentration during the photon beam irradiations regardless of thickness. For electron beams, the Au nanoparticles were found to have the highest DER (1.01-1.08) when the beam energy was equal to 4 MeV, but this was drastically lower than the DER values found using photon beams. The DER was also found affected by the depth of maximum dose of the electron beam and target thickness. For

  11. Photon beam position monitor

    DOEpatents

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  12. Photon beam position monitor

    DOEpatents

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  13. The use of intensity-modulated radiation therapy photon beams for improving the dose uniformity of electron beams shaped with MLC

    SciTech Connect

    Mosalaei, Homeira; Karnas, Scott; Shah, Sheel; Van Doodewaard, Sharon; Foster, Tim; Chen, Jeff

    2012-04-01

    Electrons are ideal for treating shallow tumors and sparing adjacent normal tissue. Conventionally, electron beams are collimated by cut-outs that are time-consuming to make and difficult to adapt to tumor shape throughout the course of treatment. We propose that electron cut-outs can be replaced using photon multileaf collimator (MLC). Two major problems of this approach are that the scattering of electrons causes penumbra widening because of a large air gap, and available commercial treatment planning systems (TPSs) do not support MLC-collimated electron beams. In this study, these difficulties were overcome by (1) modeling electron beams collimated by photon MLC for a commercial TPS, and (2) developing a technique to reduce electron beam penumbra by adding low-energy intensity-modulated radiation therapy (IMRT) photons (4 MV). We used blocks to simulate MLC shielding in the TPS. Inverse planning was used to optimize boost photon beams. This technique was applied to a parotid and a central nervous system (CNS) clinical case. Combined photon and electron plans were compared with conventional plans and verified using ion chamber, film, and a 2D diode array. Our studies showed that the beam penumbra for mixed beams with 90 cm source to surface distance (SSD) is comparable with electron applicators and cut-outs at 100 cm SSD. Our mixed-beam technique yielded more uniform dose to the planning target volume and lower doses to various organs at risk for both parotid and CNS clinical cases. The plans were verified with measurements, with more than 95% points passing the gamma criteria of 5% in dose difference and 5 mm for distance to agreement. In conclusion, the study has demonstrated the feasibility and potential advantage of using photon MLC to collimate electron beams with boost photon IMRT fields.

  14. Definition of parameters for quality assurance of flattening filter free (FFF) photon beams in radiation therapy

    SciTech Connect

    Fogliata, A.; Garcia, R.; Knoeoes, T.; Nicolini, G.; Clivio, A.; Vanetti, E.; Khamphan, C.; Cozzi, L.

    2012-10-15

    Purpose: Flattening filter free (FFF) beams generated by medical linear accelerators have recently started to be used in radiotherapy clinical practice. Such beams present fundamental differences with respect to the standard filter flattened (FF) beams, making the generally used dosimetric parameters and definitions not always viable. The present study will propose possible definitions and suggestions for some dosimetric parameters for use in quality assurance of FFF beams generated by medical linacs in radiotherapy. Methods: The main characteristics of the photon beams have been analyzed using specific data generated by a Varian TrueBeam linac having both FFF and FF beams of 6 and 10 MV energy, respectively. Results: Definitions for dose profile parameters are suggested starting from the renormalization of the FFF with respect to the corresponding FF beam. From this point the flatness concept has been translated into one of 'unflatness' and other definitions have been proposed, maintaining a strict parallelism between FFF and FF parameter concepts. Conclusions: Ideas for quality controls used in establishing a quality assurance program when introducing FFF beams into the clinical environment are given here, keeping them similar to those used for standard FF beams. By following the suggestions in this report, the authors foresee that the introduction of FFF beams into a clinical radiotherapy environment will be as safe and well controlled as standard beam modalities using the existing guidelines.

  15. Monitor unit calculations for external photon and electron beams: Report of the AAPM Therapy Physics Committee Task Group No. 71

    SciTech Connect

    Gibbons, John P.; Antolak, John A.; Followill, David S.; Huq, M. Saiful; Klein, Eric E.; Lam, Kwok L.; Palta, Jatinder R.; Roback, Donald M.; Reid, Mark; Khan, Faiz M.

    2014-03-15

    A protocol is presented for the calculation of monitor units (MU) for photon and electron beams, delivered with and without beam modifiers, for constant source-surface distance (SSD) and source-axis distance (SAD) setups. This protocol was written by Task Group 71 of the Therapy Physics Committee of the American Association of Physicists in Medicine (AAPM) and has been formally approved by the AAPM for clinical use. The protocol defines the nomenclature for the dosimetric quantities used in these calculations, along with instructions for their determination and measurement. Calculations are made using the dose per MU under normalization conditions, D{sub 0}{sup ′}, that is determined for each user's photon and electron beams. For electron beams, the depth of normalization is taken to be the depth of maximum dose along the central axis for the same field incident on a water phantom at the same SSD, where D{sub 0}{sup ′} = 1 cGy/MU. For photon beams, this task group recommends that a normalization depth of 10 cm be selected, where an energy-dependent D{sub 0}{sup ′} ≤ 1 cGy/MU is required. This recommendation differs from the more common approach of a normalization depth of d{sub m}, with D{sub 0}{sup ′} = 1 cGy/MU, although both systems are acceptable within the current protocol. For photon beams, the formalism includes the use of blocked fields, physical or dynamic wedges, and (static) multileaf collimation. No formalism is provided for intensity modulated radiation therapy calculations, although some general considerations and a review of current calculation techniques are included. For electron beams, the formalism provides for calculations at the standard and extended SSDs using either an effective SSD or an air-gap correction factor. Example tables and problems are included to illustrate the basic concepts within the presented formalism.

  16. Monitor unit calculations for external photon and electron beams: Report of the AAPM Therapy Physics Committee Task Group No. 71.

    PubMed

    Gibbons, John P; Antolak, John A; Followill, David S; Huq, M Saiful; Klein, Eric E; Lam, Kwok L; Palta, Jatinder R; Roback, Donald M; Reid, Mark; Khan, Faiz M

    2014-03-01

    A protocol is presented for the calculation of monitor units (MU) for photon and electron beams, delivered with and without beam modifiers, for constant source-surface distance (SSD) and source-axis distance (SAD) setups. This protocol was written by Task Group 71 of the Therapy Physics Committee of the American Association of Physicists in Medicine (AAPM) and has been formally approved by the AAPM for clinical use. The protocol defines the nomenclature for the dosimetric quantities used in these calculations, along with instructions for their determination and measurement. Calculations are made using the dose per MU under normalization conditions, D'0, that is determined for each user's photon and electron beams. For electron beams, the depth of normalization is taken to be the depth of maximum dose along the central axis for the same field incident on a water phantom at the same SSD, where D'0 = 1 cGy/MU. For photon beams, this task group recommends that a normalization depth of 10 cm be selected, where an energy-dependent D'0 ≤ 1 cGy/MU is required. This recommendation differs from the more common approach of a normalization depth of dm, with D'0 = 1 cGy/MU, although both systems are acceptable within the current protocol. For photon beams, the formalism includes the use of blocked fields, physical or dynamic wedges, and (static) multileaf collimation. No formalism is provided for intensity modulated radiation therapy calculations, although some general considerations and a review of current calculation techniques are included. For electron beams, the formalism provides for calculations at the standard and extended SSDs using either an effective SSD or an air-gap correction factor. Example tables and problems are included to illustrate the basic concepts within the presented formalism.

  17. Study of Dose Perturbation at Bone-Tissue Interfaces in Megavoltage Photon Beam Therapy.

    NASA Astrophysics Data System (ADS)

    Das, Indra Jeet

    Dose perturbations during photon beam irradiation occur at interfaces between two dissimilar media due to the loss of electronic equilibrium. The human body contains many different types of interfaces between soft tissue and other media such as, air cavities, lungs, bones, and high atomic number (Z) materials. The dose to critical organs in the vicinity of high Z interfaces, is what leads to this project. This work describes the dose perturbation at high Z (from bone to lead) interfaces with soft tissue for clinically used megavoltage photon beams in the range of CO-60 gamma rays to 24 MV X-rays. It is divided into three main sections: (1) the dose outside the inhomogeneity in the direction of backscatter, (2) the dose inside the inhomogeneity, and (3) the dose on the photon transmission side of the inhomogeneity. Using different types of parallel plate ion chambers, TLD (powder and chip), and film as dosimeters, the dose perturbation is studied as a function of photon energy, thickness, width, and depth of inhomogeneity, distance from the interface and radiation field size. The concept of Bragg-Gray cavity theory is applied and verified for dose determination inside the inhomogeneity. A significant dose enhancement has been observed on the backscatter side for all photon energies. It is strongly dependent on the atomic number of the inhomogeneity and less dependent on the photon energy, thickness, depth, width, and field size. In the forward direction, a dose reduction occurs at the interface at beam energies lower than 10 MV, whereas a dose enhancement occurs for higher photon energies. The interface effect persists up to a few millimeters on the backscatter side but a distance equivalent to the secondary electron range for the particular photon beams in the forward direction. The dose perturbation is explained on the basis of production and transport of secondary electrons. Empirical functions are derived from the experimental data to predict the dose

  18. Introduction to Ion Beam Therapy

    SciTech Connect

    Martisikova, Maria

    2010-01-05

    Presently, ion beam therapy reaches an increasing interest within the field of radiation therapy, which is caused by the promising clinical results obtained in the last decades. Ion beams enable higher dose conformation to the tumor and increased sparing of the surrounding tissue in comparison to the standard therapy using high energy photons. Heavy ions, like carbon, offer in addition increased biological effectiveness, which makes them suitable for treatment of radioresistant tumors. This contribution gives an overview over the physical and biological properties of ion beams. Common fundamental principles of ion beam therapy are summarized and differences between standard therapy with high energy photons, proton and carbon ion therapy are discussed. The technologies used for the beam production and delivery are introduced, with emphasis to the differences between passive and active beam delivery systems. The last part concentrates on the quality assurance in ion therapy. Specialties of dosimetry in medical ion beams are discussed.

  19. Cerenkov light spectrum in an optical fiber exposed to a photon or electron radiation therapy beam

    SciTech Connect

    Lambert, Jamil; Yin Yongbai; McKenzie, David R.; Law, Sue; Suchowerska, Natalka

    2009-06-20

    A Cerenkov signal is generated when energetic charged particles enter the core of an optical fiber. The Cerenkov intensity can be large enough to interfere with signals transmitted through the fiber. We determine the spectrum of the Cerenkov background signal generated in a poly(methyl methacrylate) optical fiber exposed to photon and electron therapeutic beams from a linear accelerator. This spectral measurement is relevant to discrimination of the signal from the background, as in scintillation dosimetry using optical fiber readouts. We find that the spectrum is approximated by the theoretical curve after correction for the wavelength dependent attenuation of the fiber. The spectrum does not depend significantly on the angle between the radiation beam and the axis of the fiber optic but is dependent on the depth in water at which the fiber is exposed to the beam.

  20. Feasibility of stereotactic body radiation therapy with volumetric modulated arc therapy and high intensity photon beams for hepatocellular carcinoma patients.

    PubMed

    Wang, Po-Ming; Hsu, Wei-Chung; Chung, Na-Na; Chang, Feng-Ling; Jang, Chin-Jyh; Fogliata, Antonella; Scorsetti, Marta; Cozzi, Luca

    2014-01-10

    To report technical features, early outcome and toxicity of stereotactic body radiation therapy (SBRT) treatments with volumetric modulated arc therapy (RapidArc) for patients with hepatocellular carcinoma (HCC). Twenty patients (22 lesions) were prospectively enrolled in a feasibility study. Dose prescription was 50 Gy in 10 fractions. Seven patients (35%) were classified as AJCC stage I-II while 13 (65%) were stages III-IV. Eighteen patients (90%) were Child-Pugh stage A, the remaining were stage B. All patients were treated with RapidArc technique with flattening filter free (FFF) photon beams of 10 MV from a TrueBeam linear accelerator. Technical, dosimetric and early clinical assessment was performed to characterize treatment and its potential outcome. Median age was 68 years, median initial tumor volume was 124 cm3 (range: 6-848). Median follow-up time was 7.4 months (range: 3-13). All patients completed treatment without interruption. Mean actuarial overall survival was of 9.6 ± 0.9 months (95%C.L. 7.8-11.4), median survival was not reached; complete response was observed in 8/22 (36.4%) lesions; partial response in 7/22 (31.8%), stable disease in 6/22 (27.3%), 1/22 (4.4%) showed progression. Toxicity was mild with only 1 case of grade 3 RILD and all other types were not greater than grade 2. Concerning dosimetric data, Paddick conformity index was 0.98 ± 0.02; gradient index was 3.82 ± 0.93; V95% to the clinical target volume was 93.6 ± 7.7%. Mean dose to kidneys resulted lower than 3.0 Gy; mean dose to stomach 4.5 ± 3.0 Gy; D(3) 1(cm) to spinal cord was 8.2 ± 4.5 Gy; D1% to the esophagus was 10.2 ± 9.7 Gy. Average beam on time resulted 0.7 ± 0.2 minutes (range: 0.4-1.4) with the delivery of an average of 4.4 partial arcs (range: 3-6) of those 86% non-coplanar. Clinical results could suggest to introduce VMAT-RapidArc as an appropriate SBRT technique for patients with HCC in view of a prospective dose escalation trial.

  1. Clinical implementation of the Peregrine Monte Carlo dose calculations system for photon beam therapy

    SciTech Connect

    Albright, N; Bergstrom, P M; Daly, T P; Descalle, M; Garrett, D; House, R K; Knapp, D K; May, S; Patterson, R W; Siantar, C L; Verhey, L; Walling, R S; Welczorek, D

    1999-07-01

    PEREGRINE is a 3D Monte Carlo dose calculation system designed to serve as a dose calculation engine for clinical radiation therapy treatment planning systems. Taking advantage of recent advances in low-cost computer hardware, modern multiprocessor architectures and optimized Monte Carlo transport algorithms, PEREGRINE performs mm-resolution Monte Carlo calculations in times that are reasonable for clinical use. PEREGRINE has been developed to simulate radiation therapy for several source types, including photons, electrons, neutrons and protons, for both teletherapy and brachytherapy. However the work described in this paper is limited to linear accelerator-based megavoltage photon therapy. Here we assess the accuracy, reliability, and added value of 3D Monte Carlo transport for photon therapy treatment planning. Comparisons with clinical measurements in homogeneous and heterogeneous phantoms demonstrate PEREGRINE's accuracy. Studies with variable tissue composition demonstrate the importance of material assignment on the overall dose distribution. Detailed analysis of Monte Carlo results provides new information for radiation research by expanding the set of observables.

  2. Photon Collider Physics with Real Photon Beams

    SciTech Connect

    Gronberg, J; Asztalos, S

    2005-11-03

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e{sup +}e{sup -} collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two.

  3. Dose evaluation of Grid Therapy using a 6 MV flattening filter-free (FFF) photon beam: A Monte Carlo study.

    PubMed

    Martínez-Rovira, Immaculada; Puxeu-Vaqué, Josep; Prezado, Yolanda

    2017-07-24

    Spatially fractionated radiotherapy is a strategy to overcome the main limitation of radiotherapy, i.e., the restrained normal tissue tolerances. A well-known example is Grid Therapy, which is currently performed at some hospitals using megavoltage photon beams delivered by Linacs. Grid Therapy has been successfully used in the management of bulky abdominal tumors with low toxicity. The aim of this work was to evaluate whether an improvement in therapeutic index in Grid Therapy can be obtained by implementing it in a flattening filter-free (FFF) Linac. The rationale behind is that the removal of the flattening filter shifts the beam energy spectrum towards lower energies and increase the photon fluence. Lower energies result in a reduction of lateral scattering and thus, to higher peak-to-valley dose ratios (PVDR) in normal tissues. In addition, the gain in fluence might allow using smaller beams leading a more efficient exploitation of dose-volume effects, and consequently, a better normal tissue sparing. Monte Carlo simulations were used to evaluate realistic dose distributions considering a 6 MV FFF photon beam from a standard medical Linac and a cerrobend mechanical collimator in different configurations: grid sizes of 0.3 × 0.3 cm(2) , 0.5 × 0.5 cm(2) , and 1 × 1 cm(2) and a corresponding center-to-center (ctc) distance of 0.6, 1, and 2 cm, respectively (total field size of 10 × 10 cm(2) ). As figure of merit, peak doses in depth, PVDR, output factors (OF), and penumbra values were assessed. Dose at the entrance is slightly higher than in conventional Grid Therapy. However, it is compensated by the large PVDR obtained at the entrance, reaching a maximum of 35 for a grid size of 1 × 1 cm(2) . Indeed, this grid size leads to very high PVDR values at all depths (≥ 10), which are much higher than in standard Grid Therapy. This may be beneficial for normal tissues but detrimental for tumor control, where a lower PVDR might be requested. In

  4. Dosimetric audits of photon beams in radiation therapy centres in Rio de Janeiro, Brazil.

    PubMed

    da Rosa, L A R; Brito, R R A; Gonçalves, M; de Paiva, E; Dovales, A C M; Freire, B L V; Giannoni, R A; Di Prinzio, R; Velasco, A F; Castelo, L H R; Oliveira, R V

    2008-01-01

    Data related to 11 y of high-energy photon radiotherapy beam dosimetry are presented and analysed. Dosimetric evaluations were carried out using water phantoms and thimble ionisation chambers and are part of the radiation protection regulatory licensing process for medicine facilities of Brazilian government. Measurements were done at reference conditions for a standard absorbed dose of 100 cGy [cGy (=1 rad)]. The absolute per cent deviation between the measured and presumed delivered doses should not exceed the tolerance level of +/-3%. The first dosimetry survey from 1996 to 1998 showed a situation that was an object of concern. Deviations of 22 and 18.7% could be measured, although small deviations were also obtained. After 1998, the improvement in dosimetry quality control by the radiotherapy centres became clear, with most of the deviations situated within the +/-3% range. The decrease in the measured deviations presents the effective success of the Institute of Radiation Protection and Dosimetry audit programme for the improvement in the control of radiotherapy photon beams in Rio de Janeiro. Also, it is possible to recommend to Brazilian regulatory organisation a decrease in the tolerance level for dosimetric deviations in order to achieve a more precise dose delivered to patients in radiotherapy centres.

  5. Dependences of mucosal dose on photon beams in head-and-neck intensity-modulated radiation therapy: a Monte Carlo study

    SciTech Connect

    Chow, James C.L.; Owrangi, Amir M.

    2012-07-01

    Dependences of mucosal dose in the oral or nasal cavity on the beam energy, beam angle, multibeam configuration, and mucosal thickness were studied for small photon fields using Monte Carlo simulations (EGSnrc-based code), which were validated by measurements. Cylindrical mucosa phantoms (mucosal thickness = 1, 2, and 3 mm) with and without the bone and air inhomogeneities were irradiated by the 6- and 18-MV photon beams (field size = 1 Multiplication-Sign 1 cm{sup 2}) with gantry angles equal to 0 Degree-Sign , 90 Degree-Sign , and 180 Degree-Sign , and multibeam configurations using 2, 4, and 8 photon beams in different orientations around the phantom. Doses along the central beam axis in the mucosal tissue were calculated. The mucosal surface doses were found to decrease slightly (1% for the 6-MV photon beam and 3% for the 18-MV beam) with an increase of mucosal thickness from 1-3 mm, when the beam angle is 0 Degree-Sign . The variation of mucosal surface dose with its thickness became insignificant when the beam angle was changed to 180 Degree-Sign , but the dose at the bone-mucosa interface was found to increase (28% for the 6-MV photon beam and 20% for the 18-MV beam) with the mucosal thickness. For different multibeam configurations, the dependence of mucosal dose on its thickness became insignificant when the number of photon beams around the mucosal tissue was increased. The mucosal dose with bone was varied with the beam energy, beam angle, multibeam configuration and mucosal thickness for a small segmental photon field. These dosimetric variations are important to consider improving the treatment strategy, so the mucosal complications in head-and-neck intensity-modulated radiation therapy can be minimized.

  6. Radiation Therapy Photon Beams Dose Conformation According to Dose Distribution Around Intracavitary-Applied Brachytherapy Sources

    SciTech Connect

    Jurkovic, Slaven Zauhar, Gordana; Faj, Dario; Radojcic, Deni Smilovic; Svabic, Manda

    2010-04-01

    Intracavitary application of brachytherapy sources followed by external beam radiation is essential for the local treatment of carcinoma of the cervix. Due to very high doses to the central portion of the target volume delivered by brachytherapy sources, this part of the target volume must be shielded while being irradiated by photon beams. Several shielding techniques are available, from rectangular block and standard cervix wedge to more precise, customized step wedge filters. Because the calculation of a step wedge filter's shape was usually based on effective attenuation coefficient, an approach that accounts, in a more precise way, for the scattered radiation, is suggested. The method was verified under simulated clinical conditions using film dosimetry. Measured data for various compensators were compared to the numerically determined sum of the dose distribution around brachytherapy sources and one of compensated beam. Improvements in total dose distribution are demonstrated, using our method. Agreement between calculation and measurements were within 3%. Sensitivity of the method on sources displacement during treatment has also been investigated.

  7. Radiation therapy of large intact breasts using a beam spoiler or photons with mixed energies.

    PubMed

    Lief, Eugene P; Hunt, Margie A; Hong, Linda X; Amols, Howard I

    2007-01-01

    Radiation treatment of large intact breasts with separations of more than 24 cm is typically performed using x-rays with energies of 10 MV and higher, to eliminate high-dose regions in tissue. The disadvantage of the higher energy beams is the reduced dose to superficial tissue in the buildup region. We evaluated 2 methods of avoiding this underdosage: (1) a beam spoiler: 1.7-cm-thick Lucite plate positioned in the blocking tray 35 cm from the isocenter, with 15-MV x-rays; and (2) combining 6- and 15-MV x-rays through the same portal. For the beam with the spoiler, we measured the dose distribution for normal and oblique incidence using a film and ion chamber in polystyrene, as well as a scanning diode in a water tank. In the mixed-energy approach, we calculated the dose distributions in the buildup region for different proportions of 6- and 15-MV beams. The dose enhancement due to the beam spoiler exhibited significant dependence upon the source-to-skin distance (SSD), field size, and the angle of incidence. In the center of a 20 x 20-cm(2) field at 90-cm SSD, the beam spoiler raises the dose at 5-mm depth from 77% to 87% of the prescription, while maintaining the skin dose below 57%. Comparison of calculated dose with measurements suggested a practical way of treatment planning with the spoiler--usage of 2-mm "beam" bolus--a special option offered by in-house treatment planning system. A second method of increasing buildup doses is to mix 6- and 15-MV beams. For example, in the case of a parallel-opposed irradiation of a 27-cm-thick phantom, dose to D(max) for each energy, with respect to midplane, is 114% for pure 6-, 107% for 15-MV beam with the spoiler, and 108% for a 3:1 mixture of 15- and 6-MV beams. Both methods are practical for radiation therapy of large intact breasts.

  8. Radiation Therapy of Large Intact Breasts Using a Beam Spoiler or Photons with Mixed Energies

    SciTech Connect

    Lief, Eugene P. Hunt, Margie A.; Hong, Linda X.; Amols, Howard I.

    2007-01-01

    Radiation treatment of large intact breasts with separations of more than 24 cm is typically performed using x-rays with energies of 10 MV and higher, to eliminate high-dose regions in tissue. The disadvantage of the higher energy beams is the reduced dose to superficial tissue in the buildup region. We evaluated 2 methods of avoiding this underdosage: (1) a beam spoiler: 1.7-cm-thick Lucite plate positioned in the blocking tray 35 cm from the isocenter, with 15-MV x-rays; and (2) combining 6- and 15-MV x-rays through the same portal. For the beam with the spoiler, we measured the dose distribution for normal and oblique incidence using a film and ion chamber in polystyrene, as well as a scanning diode in a water tank. In the mixed-energy approach, we calculated the dose distributions in the buildup region for different proportions of 6- and 15-MV beams. The dose enhancement due to the beam spoiler exhibited significant dependence upon the source-to-skin distance (SSD), field size, and the angle of incidence. In the center of a 20 x 20-cm{sup 2} field at 90-cm SSD, the beam spoiler raises the dose at 5-mm depth from 77% to 87% of the prescription, while maintaining the skin dose below 57%. Comparison of calculated dose with measurements suggested a practical way of treatment planning with the spoiler-usage of 2-mm 'beam' bolus-a special option offered by in-house treatment planning system. A second method of increasing buildup doses is to mix 6- and 15-MV beams. For example, in the case of a parallel-opposed irradiation of a 27-cm-thick phantom, dose to D{sub max} for each energy, with respect to midplane, is 114% for pure 6-, 107% for 15-MV beam with the spoiler, and 108% for a 3:1 mixture of 15- and 6-MV beams. Both methods are practical for radiation therapy of large intact breasts.

  9. Treatment of cancer of the pancreas by precision high dose (PHD) external photon beam and intraoperative electron beam therapy (IOEBT)

    SciTech Connect

    Dobelbower, R.R. Jr.; Howard, J.M.; Bagne, F.R.; Eltaki, A.; Merrick, H.W. III

    1989-01-01

    Twenty-five patients with a diagnosis of unresectable adenocarcinoma of the pancreas were explored in the Clement O. Miniger (COMROC) IOEBT operating amphitheater at the Medical College of Ohio. Seventeen were treated with IOEBT (20-30 Gy, 15 or 18 meV electrons) PHD external beam radiation therapy (40-60 Gy, 1.8 Gy per fraction) plus appropriate operative biliary and gastrointestinal bypass procedures. No intraoperative complications were observed. Two patients died of causes that may have been treatment-related. Two patients developed abdominocutaneous fistulae. Pain was ameliorated in eleven of twelve patients. Jaundice was relieved in all patients. Four of ten patients with weight loss showed a reversal of that trend. Patient survival was not significantly different from that of patients treated with high-dose precision therapy alone.

  10. Monitor unit calculations for external photon and electron beams: Report of the AAPM Therapy Physics Committee Task Group No. 71

    PubMed Central

    Gibbons, John P.; Antolak, John A.; Followill, David S.; Huq, M. Saiful; Klein, Eric E.; Lam, Kwok L.; Palta, Jatinder R.; Roback, Donald M.; Reid, Mark; Khan, Faiz M.

    2014-01-01

    A protocol is presented for the calculation of monitor units (MU) for photon and electron beams, delivered with and without beam modifiers, for constant source-surface distance (SSD) and source-axis distance (SAD) setups. This protocol was written by Task Group 71 of the Therapy Physics Committee of the American Association of Physicists in Medicine (AAPM) and has been formally approved by the AAPM for clinical use. The protocol defines the nomenclature for the dosimetric quantities used in these calculations, along with instructions for their determination and measurement. Calculations are made using the dose per MU under normalization conditions, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$D_0^\\prime $\\end{document}D0′, that is determined for each user's photon and electron beams. For electron beams, the depth of normalization is taken to be the depth of maximum dose along the central axis for the same field incident on a water phantom at the same SSD, where \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$D_0^\\prime $\\end{document}D0′ = 1 cGy/MU. For photon beams, this task group recommends that a normalization depth of 10 cm be selected, where an energy-dependent \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$D_0^\\prime $\\end{document}D0′ ≤ 1 cGy/MU is required. This recommendation differs from the more common approach of a normalization depth of dm, with

  11. Secondary radiation measurements for particle therapy applications: prompt photons produced by 4He, 12C and 16O ion beams in a PMMA target

    NASA Astrophysics Data System (ADS)

    Mattei, I.; Bini, F.; Collamati, F.; De Lucia, E.; Frallicciardi, P. M.; Iarocci, E.; Mancini-Terracciano, C.; Marafini, M.; Muraro, S.; Paramatti, R.; Patera, V.; Piersanti, L.; Pinci, D.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.; Battistoni, G.

    2017-02-01

    Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z  >  1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at {{60}\\circ} and {{90}\\circ} with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from the literature

  12. Secondary radiation measurements for particle therapy applications: prompt photons produced by (4)He, (12)C and (16)O ion beams in a PMMA target.

    PubMed

    Mattei, I; Bini, F; Collamati, F; De Lucia, E; Frallicciardi, P M; Iarocci, E; Mancini-Terracciano, C; Marafini, M; Muraro, S; Paramatti, R; Patera, V; Piersanti, L; Pinci, D; Rucinski, A; Russomando, A; Sarti, A; Sciubba, A; Solfaroli Camillocci, E; Toppi, M; Traini, G; Voena, C; Battistoni, G

    2017-02-21

    Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z  >  1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at [Formula: see text] and [Formula: see text] with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from

  13. High flux photon beam monitor

    SciTech Connect

    Mortazavi, P.; Woodle, M.; Rarback, H.; Shu, D.; Howells, M.

    1985-01-01

    We have designed two photon beam position monitors for use on our x-ray storage ring beam lines. In both designs, a pair of tungsten blades, separated by a pre-determined gap, intercepts a small fraction of the incoming beam. Due to photoemission, an electrical signal is generated which is proportional to the amount of beam intercepted. The thermal load deposited in the blade is transferred by a heat pipe to a heat exchanger outside the vacuum chamber. A prototype monitor with gap adjustment capability was fabricated and tested at a uv beam line. The results show that the generated electrical signal is a good measurement of the photon beam position. In the following sections, design features and test results are discussed.

  14. A comparative dosimetric study on tangential photon beams, intensity-modulated radiation therapy (IMRT) and modulated electron radiotherapy (MERT) for breast cancer treatment

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Ding, M.; Li, J. S.; Lee, M. C.; Pawlicki, T.; Deng, J.

    2003-04-01

    Recently, energy- and intensity-modulated electron radiotherapy (MERT) has garnered a growing interest for the treatment of superficial targets. In this work, we carried out a comparative dosimetry study to evaluate MERT, photon beam intensity-modulated radiation therapy (IMRT) and conventional tangential photon beams for the treatment of breast cancer. A Monte Carlo based treatment planning system has been investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We have compared breast treatment plans generated using this home-grown treatment optimization and dose calculation software for these treatment techniques. The MERT plans were planned with up to two gantry angles and four nominal energies (6, 9, 12 and 16 MeV). The tangential photon treatment plans were planned with 6 MV wedged photon beams. The IMRT plans were planned using both multiple-gantry 6 MV photon beams or two 6 MV tangential beams. Our results show that tangential IMRT can reduce the dose to the lung, heart and contralateral breast compared to conventional tangential wedged beams (up to 50% reduction in high dose volume or 5 Gy in the maximum dose). MERT can reduce the maximum dose to the lung by up to 20 Gy and to the heart by up to 35 Gy compared to conventional tangential wedged beams. Multiple beam angle IMRT can significantly reduce the maximum dose to the lung and heart (up to 20 Gy) but it induces low and medium doses to a large volume of normal tissues including lung, heart and contralateral breast. It is concluded that MERT has superior capabilities to achieve dose conformity both laterally and in the depth direction, which will be well suited for treating superficial targets such as breast cancer.

  15. The Use of Photon Beams of a Flattening Filter-free Linear Accelerator for Hypofractionated Volumetric Modulated Arc Therapy in Localized Prostate Cancer

    SciTech Connect

    Zwahlen, Daniel R.; Lang, Stephanie; Hrbacek, Jan; Glanzmann, Christoph; Kloeck, Stephan; Najafi, Yousef; Streller, Tino; Studer, Gabriela; Zaugg, Kathrin; Luetolf, Urs M.

    2012-08-01

    Purpose: To evaluate the potential usage of flattening filter-free (FFF) photon beams in the treatment of prostate cancer. Methods and Materials: Volumetric-modulated arc therapy (VMAT) treatment planning was performed for 7 patients using TrueBeam{sup Registered-Sign} linear accelerator and photon beams with (X6, X10) and without (X6FFF, X10FFF) flattening filter. Prescribed dose was 19 Multiplication-Sign 3 Gy = 57 Gy. One or two 360 Degree-Sign arcs with dose rate of 600 MU/min for flattened beams, and 1,200 MU/min for FFF beams were used. Results: No difference was detected between the four beams in PTV coverage, conformity, and homogeneity. Mean body dose and body volume receiving 50% of the prescribed dose decreased with increasing mean energy (r{sup 2} = 0.8275, p < 0.01). X6FFF delivered 3.6% more dose compared with the X6 (p < 0.01). X10FFF delivered 3.0% (p < 0.01), and the X10 5.8% (p < 0.01) less mean body dose compared with X6. There was a significant increase in the mean dose to the rectum for the X10 compared with X6 (2.6%, p < 0.01). Mean dose to the bladder increased by 1.3% for X6FFF and decreased by 2.3% for X10FFF. Using a single arc and FFF, treatment time was reduced by 35% (2 SD = 10%). Conclusion: FFF beams resulted in dose distributions similar to flattened beams. X10FFF beam provided the best solution, sparing rectum and bladder and minimizing whole-body dose. FFF beams lead to a time efficient treatment delivery, particularly when combined with hypofractionated VMAT.

  16. Monte Carlo simulation of photon emission below a few hundred kiloelectronvolts for beam monitoring in carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Mitsutaka; Nagao, Yuto; Satoh, Takahiro; Sugai, Hiroyuki; Sakai, Makoto; Arakawa, Kazuo; Kawachi, Naoki

    2017-01-01

    The purpose of this study is to determine whether the main component of the low-energy (63-68 keV) particles emitted perpendicularly to the 12C beam from the 12C-irradiated region in a water phantom is secondary electron bremsstrahlung (SEB). Monte Carlo simulations of a 12C-beam (290 MeV/u) irradiated on a water phantom were performed. A detector was placed beside the water phantom with a lead collimator between the phantom and the detector. To move the Bragg-peak position, a binary filter was placed in an upper stream of the phantom. The energy distributions of the particles incident on the detector and those deposited in the detector were analyzed. The simulation was also performed with suppressed delta-ray and/or bremsstrahlung generation to identify the SEB components. It was found that the particles incident on the detector were predominantly photons and neutrons. The yields of the photons and energy deposition decreased with the suppression of SEB generation. It is concluded that one of the predominant components of the yields in the regions shallower than the Bragg-peak position is due to SEB generation, and these components become significantly smaller in regions deeper than the Bragg-peak position.

  17. Optimization of combined electron and photon beams for breast cancer

    NASA Astrophysics Data System (ADS)

    Xiong, W.; Li, J.; Chen, L.; Price, R. A.; Freedman, G.; Ding, M.; Qin, L.; Yang, J.; Ma, C.-M.

    2004-05-01

    Recently, intensity-modulated radiation therapy and modulated electron radiotherapy have gathered a growing interest for the treatment of breast and head and neck tumours. In this work, we carried out a study to combine electron and photon beams to achieve differential dose distributions for multiple target volumes simultaneously. A Monte Carlo based treatment planning system was investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We compared breast treatment plans generated using this home-grown optimization and dose calculation software for different treatment techniques. Five different planning techniques have been developed for this study based on a standard photon beam whole breast treatment and an electron beam tumour bed cone down. Technique 1 includes two 6 MV tangential wedged photon beams followed by an anterior boost electron field. Technique 2 includes two 6 MV tangential intensity-modulated photon beams and the same boost electron field. Technique 3 optimizes two intensity-modulated photon beams based on a boost electron field. Technique 4 optimizes two intensity-modulated photon beams and the weight of the boost electron field. Technique 5 combines two intensity-modulated photon beams with an intensity-modulated electron field. Our results show that technique 2 can reduce hot spots both in the breast and the tumour bed compared to technique 1 (dose inhomogeneity is reduced from 34% to 28% for the target). Techniques 3, 4 and 5 can deliver a more homogeneous dose distribution to the target (with dose inhomogeneities for the target of 22%, 20% and 9%, respectively). In many cases techniques 3, 4 and 5 can reduce the dose to the lung and heart. It is concluded that combined photon and electron beam therapy may be advantageous for treating breast cancer compared to conventional treatment techniques using tangential wedged photon beams followed by a boost

  18. Long-term cosmetic outcomes and toxicities of proton beam therapy compared with photon-based 3-dimensional conformal accelerated partial-breast irradiation: a phase 1 trial.

    PubMed

    Galland-Girodet, Sigolène; Pashtan, Itai; MacDonald, Shannon M; Ancukiewicz, Marek; Hirsch, Ariel E; Kachnic, Lisa A; Specht, Michelle; Gadd, Michele; Smith, Barbara L; Powell, Simon N; Recht, Abram; Taghian, Alphonse G

    2014-11-01

    To present long-term outcomes of a prospective feasibility trial using either protons or 3-dimensional conformal photon-based (accelerated partial-breast irradiation [APBI]) techniques. From October 2003 to April 2006, 98 evaluable patients with stage I breast cancer were treated with APBI (32 Gy in 8 fractions given twice daily) on a prospective clinical trial: 19 with proton beam therapy (PBT) and 79 with photons or mixed photons/electrons. Median follow-up was 82.5 months (range, 2-104 months). Toxicity and patient satisfaction evaluations were performed at each visit. At 7 years, the physician rating of overall cosmesis was good or excellent for 62% of PBT patients, compared with 94% for photon patients (P=.03). Skin toxicities were more common for the PBT group: telangiectasia, 69% and 16% (P=.0013); pigmentation changes, 54% and 22% (P=.02); and other late skin toxicities, 62% and 18% (P=.029) for PBT and photons, respectively. There were no significant differences between the groups in the incidences of breast pain, edema, fibrosis, fat necrosis, skin desquamation, and rib pain or fracture. Patient-reported cosmetic outcomes at 7 years were good or excellent for 92% and 96% of PBT and photon patients, respectively (P=.95). Overall patient satisfaction was 93% for the entire cohort. The 7-year local failure rate for all patients was 6%, with 3 local recurrences in the PBT group (7-year rate, 11%) and 2 in photon-treated patients (4%) (P=.22). Local failure rates of 3-dimensional APBI and PBT were similar in this study. However, PBT, as delivered in this study, led to higher rates of long-term telangiectasia, skin color changes, and skin toxicities. We recommend the use of multiple fields and treatment of all fields per treatment session or the use of scanning techniques to minimize skin toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Long-term Cosmetic Outcomes and Toxicities of Proton Beam Therapy Compared With Photon-Based 3-Dimensional Conformal Accelerated Partial-Breast Irradiation: A Phase 1 Trial

    SciTech Connect

    Galland-Girodet, Sigolène; Pashtan, Itai; MacDonald, Shannon M.; Ancukiewicz, Marek; Hirsch, Ariel E.; Kachnic, Lisa A.; Specht, Michelle; Gadd, Michele; Smith, Barbara L.; Powell, Simon N.; Recht, Abram; Taghian, Alphonse G.

    2014-11-01

    Purpose: To present long-term outcomes of a prospective feasibility trial using either protons or 3-dimensional conformal photon-based (accelerated partial-breast irradiation [APBI]) techniques. Methods and Materials: From October 2003 to April 2006, 98 evaluable patients with stage I breast cancer were treated with APBI (32 Gy in 8 fractions given twice daily) on a prospective clinical trial: 19 with proton beam therapy (PBT) and 79 with photons or mixed photons/electrons. Median follow-up was 82.5 months (range, 2-104 months). Toxicity and patient satisfaction evaluations were performed at each visit. Results: At 7 years, the physician rating of overall cosmesis was good or excellent for 62% of PBT patients, compared with 94% for photon patients (P=.03). Skin toxicities were more common for the PBT group: telangiectasia, 69% and 16% (P=.0013); pigmentation changes, 54% and 22% (P=.02); and other late skin toxicities, 62% and 18% (P=.029) for PBT and photons, respectively. There were no significant differences between the groups in the incidences of breast pain, edema, fibrosis, fat necrosis, skin desquamation, and rib pain or fracture. Patient-reported cosmetic outcomes at 7 years were good or excellent for 92% and 96% of PBT and photon patients, respectively (P=.95). Overall patient satisfaction was 93% for the entire cohort. The 7-year local failure rate for all patients was 6%, with 3 local recurrences in the PBT group (7-year rate, 11%) and 2 in photon-treated patients (4%) (P=.22). Conclusions: Local failure rates of 3-dimensional APBI and PBT were similar in this study. However, PBT, as delivered in this study, led to higher rates of long-term telangiectasia, skin color changes, and skin toxicities. We recommend the use of multiple fields and treatment of all fields per treatment session or the use of scanning techniques to minimize skin toxicity.

  20. Regenerative photonic therapy: Review

    NASA Astrophysics Data System (ADS)

    Salansky, Natasha; Salansky, Norman

    2012-09-01

    After four decades of research of photobiomodulation phenomena in mammals in vitro and in vivo, a solid foundation is created for the use of photobiomodulation in regenerative medicine. Significant accomplishments are achieved in animal models that demonstrate opportunities for photo-regeneration of injured or pathological tissues: skin, muscles and nerves. However, the use of photobiomodulation in clinical studies leads to controversial results while negative or marginal clinical efficacy is reported along with positive findings. A thor ough analysis of requirements to the optical parameters (dosimetry) for high efficacy in photobimodulation led us to the conclusion that there are several misconceptions in the clinical applications of low level laser therapy (LLLT). We present a novel appr oach of regenerative photonic therapy (RPT) for tissue healing and regeneration that overcomes major drawbacks of LLLT. Encouraging clinical results on RPT efficacy are presented. Requirements for RPT approach and vision for its future development for tissue regeneration is discussed.

  1. SU-E-T-263: Luminescent Dosimetry to Measure the Out-Of-Field Low and High LET Dose Components in High Energy Photon and Proton Therapy Beams.

    PubMed

    Reft, C

    2012-06-01

    Luminescent dosimetry using thermoluminescent detectors (TLDs) and optically stimulated luminescent detectors (OSLDs) were used in mixed radiation fields containing both low LET (photons and protons) and high LET (neutrons)components to obtain their out-of-field absorbed dose, dose equivalent and quality factor. LiF Thermoluminescent Detectors (TLDs) 600 and 700 chips with dimensions 0.31×0.31×0.038 cm(3) were used in a 25.4 cm diameter Bonner sphere centered 42 cm from the isocenter of a 15×x15 cm(2) field to measure the secondary doses for 10, 15 and 18 MV photons and a 200 MeV proton therapy beam. From the sensitivity difference to LET radiation between the210 and 280 C peaks in the glow curve, the areas under the peaks were used to obtain the absorbed dose, dose equivalent and QF of the secondary radiation. The OSLD detector measured the low LET dose component to compare with the TLD dose measurement. The neutron calibration of the TLDs was obtained from an Am-Be source at the Argonne National Laboratory. The photon and proton TLD and OSLD calibrations were obtained in 6 MV and 200 MeV beams, respectively. From the two-peak analysis of the TLDs in the Bonner sphere the ratios of the neutron dose to photon dose were 0.001, 0.014 and 0.17 for 10, 15 and 18 MV, respectively. The low LET OSLD measurements agreed within 10% of the TLD results. From the dose equivalent measurements the QFs (+/-14%) obtained were 4.5, 3.9 and 4.0 for these beam energies. For the 200 MeV proton beam the ratio of neutron to proton dose was 0.28 with a measured QF of 13. Luminescent detectors in a Bonner Sphere provide measurements of the secondary photon, proton and neutron doses and provide an estimate of the neutron QF. © 2012 American Association of Physicists in Medicine.

  2. A new water-equivalent 2D plastic scintillation detectors array for the dosimetry of megavoltage energy photon beams in radiation therapy.

    PubMed

    Guillot, Mathieu; Beaulieu, Luc; Archambault, Louis; Beddar, Sam; Gingras, Luc

    2011-12-01

    The objective of this work is to present a new 2D plastic scintillation detectors array (2D-PSDA) designed for the dosimetry of megavoltage (MV) energy photon beams in radiation therapy and to characterize its basic performance. We developed a 2D detector array consisting of 781 plastic scintillation detectors (PSDs) inserted into a plane of a water-equivalent phantom. The PSDs were distributed on a 26 × 26 cm(2) grid, with an interdetector spacing of 10 mm, except for two perpendicular lines centered on the detection plane, where the spacing was 5 mm. Each PSD was made of a 1 mm diameter by 3 mm long cylindrical polystyrene scintillating fiber coupled to a clear nonscintillating plastic optical fiber. All of the light signals emitted by the PSDs were read simultaneously with an optical system at a rate of one measurement per second. We characterized the performance of the optical system, the angular dependency of the device, and the perturbation of dose distributions caused by the hundreds of PSDs inserted into the phantom. We also evaluated the capacity of the system to monitor complex multileaf collimator (MLC) sequences such as those encountered in step-and-shoot intensity modulated radiation therapy (IMRT) plans. We compared our results with calculations performed by a treatment planning system and with measurements taken with a 2D ionization chamber array and with a radiochromic film. The detector array that we developed allowed us to measure doses with an average precision of better than 1% for cumulated doses equal to or greater than 6.3 cGy. Our results showed that the dose distributions produced by the 6-MV photon beam are not perturbed (within ±1.1%) by the presence of the hundreds of PSDs located into the phantom. The results also showed that the variations in the beam incidences have little effect on the dose response of the device. For all incidences tested, the passing rates of the gamma tests between the 2D-PSDA and the treatment planning

  3. A new water-equivalent 2D plastic scintillation detectors array for the dosimetry of megavoltage energy photon beams in radiation therapy

    SciTech Connect

    Guillot, Mathieu; Beaulieu, Luc; Archambault, Louis; Beddar, Sam; Gingras, Luc

    2011-12-15

    Purpose: The objective of this work is to present a new 2D plastic scintillation detectors array (2D-PSDA) designed for the dosimetry of megavoltage (MV) energy photon beams in radiation therapy and to characterize its basic performance. Methods: We developed a 2D detector array consisting of 781 plastic scintillation detectors (PSDs) inserted into a plane of a water-equivalent phantom. The PSDs were distributed on a 26 x 26 cm{sup 2} grid, with an interdetector spacing of 10 mm, except for two perpendicular lines centered on the detection plane, where the spacing was 5 mm. Each PSD was made of a 1 mm diameter by 3 mm long cylindrical polystyrene scintillating fiber coupled to a clear nonscintillating plastic optical fiber. All of the light signals emitted by the PSDs were read simultaneously with an optical system at a rate of one measurement per second. We characterized the performance of the optical system, the angular dependency of the device, and the perturbation of dose distributions caused by the hundreds of PSDs inserted into the phantom. We also evaluated the capacity of the system to monitor complex multileaf collimator (MLC) sequences such as those encountered in step-and-shoot intensity modulated radiation therapy (IMRT) plans. We compared our results with calculations performed by a treatment planning system and with measurements taken with a 2D ionization chamber array and with a radiochromic film. Results: The detector array that we developed allowed us to measure doses with an average precision of better than 1% for cumulated doses equal to or greater than 6.3 cGy. Our results showed that the dose distributions produced by the 6-MV photon beam are not perturbed (within {+-}1.1%) by the presence of the hundreds of PSDs located into the phantom. The results also showed that the variations in the beam incidences have little effect on the dose response of the device. For all incidences tested, the passing rates of the gamma tests between the 2D-PSDA and

  4. Photon-Electron Interaction and Condense Beams

    SciTech Connect

    Chattopadhyay, S.

    1998-11-01

    We discuss beams of charged particles and radiation from multiple perspectives. These include fundamental acceleration and radiation mechanisms, underlying electron-photon interaction, various classical and quantum phase-space concepts and fluctuational interpretations.

  5. Fast IMRT with narrow high energy scanned photon beams.

    PubMed

    Andreassen, Björn; Strååt, Sara Janek; Holmberg, Rickard; Näfstadius, Peder; Brahme, Anders

    2011-08-01

    Since the first publications on intensity modulated radiation therapy (IMRT) in the early 1980s almost all efforts have been focused on fairly time consuming dynamic or segmental multileaf collimation. With narrow fast scanned photon beams, the flexibility and accuracy in beam shaping increases, not least in combination with fast penumbra trimming multileaf collimators. Previously, experiments have been performed with full range targets, generating a broad bremsstrahlung beam, in combination with multileaf collimators or material compensators. In the present publication, the first measurements with fast narrow high energy (50 MV) scanned photon beams are presented indicating an interesting performance increase even though some of the hardware used were suboptimal. Inverse therapy planning was used to calculate optimal scanning patterns to generate dose distributions with interesting properties for fast IMRT. To fully utilize the dose distributional advantages with scanned beams, it is necessary to use narrow high energy beams from a thin bremsstrahlung target and a powerful purging magnet capable of deflecting the transmitted electron beam away from the generated photons onto a dedicated electron collector. During the present measurements the scanning system, purging magnet, and electron collimator in the treatment head of the MM50 racetrack accelerator was used with 3-6 mm thick bremsstrahlung targets of beryllium. The dose distributions were measured with diodes in water and with EDR2 film in PMMA. Monte Carlo simulations with GEANT4 were used to study the influence of the electrons transmitted through the target on the photon pencil beam kernel. The full width at half-maximum (FWHM) of the scanned photon beam was 34 mm measured at isocenter, below 9.5 cm of water, 1 m from the 3 mm Be bremsstrahlung target. To generate a homogeneous dose distribution in a 10 x 10 cm2 field, the authors used a spot matrix of 100 equal intensity beam spots resulting in a

  6. Proton Beam Therapy Versus Conformal Photon Radiation Therapy for Childhood Craniopharyngioma: Multi-institutional Analysis of Outcomes, Cyst Dynamics, and Toxicity

    SciTech Connect

    Bishop, Andrew J.; Greenfield, Brad; Mahajan, Anita; Paulino, Arnold C.; Okcu, M. Fatih; Allen, Pamela K.; Chintagumpala, Murali; Kahalley, Lisa S.; McAleer, Mary F.; McGovern, Susan L.; Whitehead, William E.; Grosshans, David R.

    2014-10-01

    Purpose: We compared proton beam therapy (PBT) with intensity modulated radiation therapy (IMRT) for pediatric craniopharyngioma in terms of disease control, cyst dynamics, and toxicity. Methods and Materials: We reviewed records from 52 children treated with PBT (n=21) or IMRT (n=31) at 2 institutions from 1996-2012. Endpoints were overall survival (OS), disease control, cyst dynamics, and toxicity. Results: At 59.6 months' median follow-up (PBT 33 mo vs IMRT 106 mo; P<.001), the 3-year outcomes were 96% for OS, 95% for nodular failure-free survival and 76% for cystic failure-free survival. Neither OS nor disease control differed between treatment groups (OS P=.742; nodular failure-free survival P=.546; cystic failure-free survival P=.994). During therapy, 40% of patients had cyst growth (20% requiring intervention); immediately after therapy, 17 patients (33%) had cyst growth (transient in 14), more commonly in the IMRT group (42% vs 19% PBT; P=.082); and 27% experienced late cyst growth (32% IMRT, 19% PBT; P=.353), with intervention required in 40%. Toxicity did not differ between groups. On multivariate analysis, cyst growth was related to visual and hypothalamic toxicity (P=.009 and .04, respectively). Patients given radiation as salvage therapy (for recurrence) rather than adjuvant therapy had higher rates of visual and endocrine (P=.017 and .024, respectively) dysfunction. Conclusions: Survival and disease-control outcomes were equivalent for PBT and IMRT. Cyst growth is common, unpredictable, and should be followed during and after therapy, because it contributes to late toxicity. Delaying radiation therapy until recurrence may result in worse visual and endocrine function.

  7. Photon collider beam simulation with CAIN

    NASA Astrophysics Data System (ADS)

    Zarnecki, Aleksander Filip

    2007-11-01

    The CAIN simulation program was used to study the outgoing beam profile for the photon collider at ILC. The main aim of the analysis was to verify the feasibility of the photon linear collider running with 20 mrad electron beam crossing angle. The main problem is the distorted electron beam, which has to be removed from the interaction region. It is shown that with a new design of the final dipole, it should be possible to avoid large energy losses at the face of the magnet.

  8. Intensity Modulated Radiotherapy with High Energy Photon and Hadron Beams

    NASA Astrophysics Data System (ADS)

    Oelfke, U.

    2004-07-01

    This short contribution will briefly describe the basic concepts of intensity modulated radiation therapy with high energy photons (IMRT) and charged particle beams (IMPT). Dose delivery and optimization strategies like the `Inverse Planning' approach will be explained for both radiation modalities and their potential advantages are demonstrated for characteristic clinical examples. Finally, future development like image guided radiotherapy (IGRT) and adaptive radiation therapy, based on functional imaging methods, will be introduced.

  9. Proton beam therapy facility

    SciTech Connect

    Not Available

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  10. Future radiation therapy: photons, protons and particles.

    PubMed

    Allison, Ron R; Sibata, Claudio; Patel, Rajen

    2013-04-01

    Radiation therapy plays a critical role in the current management of cancer patients. The most common linear accelerator-based treatment device delivers photons of radiation. In an ever more precise fashion, state-of-the-art technology has recently allowed for both modulation of the radiation beam and imaging for this treatment delivery. This has resulted in better patient outcome with far fewer side effects than were achieved even a decade ago. Recently, a push has begun for proton therapy, which may have clinical advantage in select indications, although significant limitations for these devices have become apparent. In addition, currently, heavy particle therapy has been touted as a potential means to improve cancer patient outcomes. This article will highlight current benefits and drawbacks to modern radiation therapy and speculate on future tools that will likely dramatically improve radiation oncology.

  11. Beam modeling and verification of a photon beam multisource model

    SciTech Connect

    Ahnesjoe, Anders; Weber, Lars; Murman, Anders; Saxner, Mikael; Thorslund, Ingvar; Traneus, Erik

    2005-06-15

    Dose calculations for treatment planning of photon beam radiotherapy require a model of the beam to drive the dose calculation models. The beam shaping process involves scattering and filtering that yield radiation components which vary with collimator settings. The necessity to model these components has motivated the development of multisource beam models. We describe and evaluate clinical photon beam modeling based on multisource models, including lateral beam quality variations. The evaluation is based on user data for a pencil kernel algorithm and a point kernel algorithm (collapsed cone) used in the clinical treatment planning systems Helax-TMS and Nucletron-Oncentra. The pencil kernel implementations treat the beam spectrum as lateral invariant while the collapsed cone involves off axis softening of the spectrum. Both algorithms include modeling of head scatter components. The parameters of the beam model are derived from measured beam data in a semiautomatic process called RDH (radiation data handling) that, in sequential steps, minimizes the deviations in calculated dose versus the measured data. The RDH procedure is reviewed and the results of processing data from a large number of treatment units are analyzed for the two dose calculation algorithms. The results for both algorithms are similar, with slightly better results for the collapsed cone implementations. For open beams, 87% of the machines have maximum errors less than 2.5%. For wedged beams the errors were found to increase with increasing wedge angle. Internal, motorized wedges did yield slightly larger errors than external wedges. These results reflect the increased complexity, both experimentally and computationally, when wedges are used compared to open beams.

  12. Efficient beaming of self-collimated light from photonic crystals.

    PubMed

    Park, Jong-Moon; Lee, Sun-Goo; Park, Hae Yong; Kim, Jae-Eun

    2008-12-08

    We propose a novel structure for achieving highly efficient beaming of self-collimated light from two-dimensional photonic crystals. The finite-difference time-domain simulations show that both enhanced transmission and highly directional emission of self-collimated beams from photonic crystals are achieved by using the bending and splitting of self-collimated beams in photonic crystals, and also by introducing an antireflection coating-like photonic crystal collimator to the exit surface of the structure. This structure is potentially important for highly efficient coupling of self-collimated beams from photonic crystals into conventional optical fibers and photonic crystal waveguides.

  13. On beam quality and flatness of radiotherapy megavoltage photon beams

    PubMed Central

    Hossain, Murshed; Rhoades, Jeffrey

    2015-01-01

    Ratio of percentage depth dose (PDD) at two depths, PDD at a depth of 10 cm (PDD10), and beam flatness are monitored regularly for radiotherapy beams for quality assurance. The purpose of this study is to understand the effects of changes in one of these parameters on the other. Is it possible to monitor only the beam flatness and not PDD? The investigation has two components. Naturally occurring i.e., unintended changes in PDD ratio and in-plane flatness for 6 and 10 MV photon beams for one particular Siemens Artiste Linac are monitored for a period of about 4 years. Secondly, deliberate changes in the beam parameters are induced by changing the bending magnet current (BMI). Relationships between various beam parameters for unintended changes as well as deliberate changes are characterized. Long term unintentional changes of PDD ratio are found to have no systematic trend. The flatness in the inplane direction for 6 and 10 MV beams show slow increase of 0.43% and 0.75% respectively in about 4 years while the changes in the PDD ratio show no such trend. Over 10% changes in BMI are required to induce changes in the beam quality indices at 2% level. PDD ratio for the 10 MV beam is found to be less sensitive, while the depth of maximum dose, dmax, is more sensitive to the changes in BMI compared to the 6 MV beam. Tolerances are more stringent for PDD10 than PDD ratio for the 10 MV beam. PDD ratio, PDD10, and flatness must be monitored independently. Furthermore, off axis ratio alone cannot be used to monitor flatness. The effect of beam quality change in the absolute dose is clinically insignificant. PMID:26634604

  14. On beam quality and flatness of radiotherapy megavoltage photon beams.

    PubMed

    Hossain, Murshed; Rhoades, Jeffrey

    2016-03-01

    Ratio of percentage depth dose (PDD) at two depths, PDD at a depth of 10 cm (PDD10), and beam flatness are monitored regularly for radiotherapy beams for quality assurance. The purpose of this study is to understand the effects of changes in one of these parameters on the other. Is it possible to monitor only the beam flatness and not PDD? The investigation has two components. Naturally occurring i.e., unintended changes in PDD ratio and in-plane flatness for 6 and 10 MV photon beams for one particular Siemens Artiste Linac are monitored for a period of about 4 years. Secondly, deliberate changes in the beam parameters are induced by changing the bending magnet current (BMI). Relationships between various beam parameters for unintended changes as well as deliberate changes are characterized. Long term unintentional changes of PDD ratio are found to have no systematic trend. The flatness in the inplane direction for 6 and 10 MV beams show slow increase of 0.43 and 0.75% respectively in about 4 years while the changes in the PDD ratio show no such trend. Over 10% changes in BMI are required to induce changes in the beam quality indices at 2% level. PDD ratio for the 10 MV beam is found to be less sensitive, while the depth of maximum dose, d(max), is more sensitive to the changes in BMI compared to the 6 MV beam. Tolerances are more stringent for PDD10 than PDD ratio for the 10 MV beam. PDD ratio, PDD10, and flatness must be monitored independently. Furthermore, off axis ratio alone cannot be used to monitor flatness. The effect of beam quality change in the absolute dose is clinically insignificant.

  15. Clinical evidence of particle beam therapy (proton).

    PubMed

    Ogino, Takashi

    2012-04-01

    Proton beam therapy (PBT) makes it possible to deliver a high concentration of radiation to a tumor using its Bragg peak, and it is simple to utilize as its radiobiological characteristics are identical to those of photon beams. PBT has now been used for half a century, and more than 60,000 patients worldwide are reported to have been treated with proton beams. The most significant change to PBT occurred in the 1990s, when the Loma Linda University Medical Center became the first hospital in the world to operate a medically dedicated proton therapy facility. Following its success, similar medically dedicated facilities have been constructed. Internationally, results have demonstrated the therapeutic superiority of PBT over alternative treatment options for several disease sites. Further advances in PBT are expected from both clinical and technological perspectives.

  16. Data analysis of photon beam position at PLS-II

    SciTech Connect

    Ko, J.; Shin, S. Huang, Jung-Yun; Kim, D.; Kim, C.; Kim, Ilyou; Lee, T.-Y.; Park, C.-D.; Kim, K. R.; Cho, Moohyun

    2016-07-27

    In the third generation light source, photon beam position stability is critical issue on user experiment. Generally photon beam position monitors have been developed for the detection of the real photon beam position and the position is controlled by feedback system in order to keep the reference photon beam position. In the PLS-II, photon beam position stability for front end of particular beam line, in which photon beam position monitor is installed, has been obtained less than rms 1μm for user service period. Nevertheless, detail analysis for photon beam position data in order to demonstrate the performance of photon beam position monitor is necessary, since it can be suffers from various unknown noises. (for instance, a back ground contamination due to upstream or downstream dipole radiation, undulator gap dependence, etc.) In this paper, we will describe the start to end study for photon beam position stability and the Singular Value Decomposition (SVD) analysis to demonstrate the reliability on photon beam position data.

  17. Impact of different beam directions on intensity-modulated radiation therapy dose delivered to functioning lung tissue identified using single-photon emission computed tomography.

    PubMed

    Tian, Qin; Zhang, Fucheng; Wang, Yanming; Qu, Weiqiang

    2014-01-01

    To use different beam arrangements and numbers to plan intensity-modulated radiation therapy (IMRT) and investigate their effects on low and high radiation doses delivered to the functional lung, in order to reduce radiation-induced lung damage. Ten patients with stage I-III non-small cell lung carcinoma (NSCLC) underwent IMRT. Beam arrangements were selected on the basis of orientation and dose-volume histograms to create SPECT-guided IMRT plans that spared the functional lung and maintained target coverage. Four different plans, including CT-7, SPECT-7, SPECT-4, SPECT-5 with different beam arrangements, were used. The differences of conformity index (CI), heterogeneity index (HI) between the plans were analyzed, by using a paired t-test. The seven-beam SPECT (SPECT-7) plan reduced the volume of the functional lung irradiated with at least 20 Gy (FV20) and 30 Gy (FV30) by 26.02% ±15.45% and 14.41% ±16.66%, respectively, as compared to the seven-beam computed tomography (CT-7) plan. The CI significantly differed between the SPECT-7 and SPECT-4 plans and between the SPECT-5 and SPECT-4 plans, but not between the SPECT-5 and SPECT-7 plans. The CIs in the SPECT-5 and SPECT-7 plans were better than that in the SPECT-4 plan. The heterogeneity index significantly differed among the three SPECT plans and was best in the SPECT-7 plan. The incorporation of SPECT images into IMRT planning for NSCLC greatly affected beam angles and number of beams. Fewer beams and modified beam angles achieved similar or better IMRT quality. The low-dose volumes were lower in SPECT-4.

  18. SU-E-T-24: A Dose Volume Comparison in Stereotactic Body Radiation Therapy Using Flattened and Un-Flattened Photon Beams

    SciTech Connect

    Pangam, S

    2015-06-15

    Purpose: Aim of this study is to compare the dose volume characteristics of 6X FFF (flattening Free Filter) Arc and 6X FB (flattened Beam) arc photon plans in SBRT technique. Methods: Eight patients who received linear Accelearator-based SBRT were retrospectively included in this study. A dose of 50 Gy was given to the target in five fractions. Same data set was used to generate plans for both FFF and FB. ITV was generated using maximum intensity projection and critical structures were derived using average intensity projection. PTV obtained by giving 0.5cm margin to ITV. Results: While both modalities can provide satisfactory target dose coverage, the dose to PTV was more heterogeneous in FFF than 6X FB plans in all cases. The doses in all plans were well below institutional constraints for both modalities. Comparing the results of Homogeneity Index(HI), Conformity Index(CI), PTV-D80% volume, D50% volume and D20% volume (Table-1 ) for both techniques, found all the indices are within limits of RTOG guidelines but the 6X FFF is superior in sparing normal tissues in compare with FB. In all cases studied, more treatment time was required for FB treatment delivery for a given prescription. The results indicate that for large dose delivery FFF is preferable as volumetric parameters like HI and CI are better and dose can be delivered in a short span of time. Conclusion: Both Flattened and Unflattened beam SBRT systems can provide adequate dose coverage for target tumor. While the unflattened beams deliver less normal tissue dose than Flattened beams in all cases. The magnitude of differences in normal tissue dose between both modalities was due to beam characterization of the beams. Flattened beam requires more Monitor Units to deliver similar target prescription to the tumor than unflattened beam SBRT systems. The results of this study may provide a general guideline for patient and treatment modality selection based on volumetric, tumor control and normal tissue

  19. Backscatter correction factor for megavoltage photon beam

    SciTech Connect

    Hu, Yida; Zhu, Timothy C.

    2011-10-15

    Purpose: For routine clinical dosimetry of photon beams, it is often necessary to know the minimum thickness of backscatter phantom material to ensure that full backscatter condition exists. Methods: In case of insufficient backscatter thickness, one can determine the backscatter correction factor, BCF(s,d,t), defined as the ratio of absorbed dose measured on the central-axis of a phantom with backscatter thickness of t to that with full backscatter for square field size s and forward depth d. Measurements were performed in SAD geometry for 6 and 15 MV photon beams using a 0.125 cc thimble chamber for field sizes between 10 x 10 and 30 x 30 cm at depths between d{sub max} (1.5 cm for 6 MV and 3 cm for 15 MV) and 20 cm. Results: A convolution method was used to calculate BCF using Monte-Carlo simulated point-spread kernels generated for clinical photon beams for energies between Co-60 and 24 MV. The convolution calculation agrees with the experimental measurements to within 0.8% with the same physical trend. The value of BCF deviates more from 1 for lower energies and larger field sizes. According to our convolution calculation, the minimum BCF occurs at forward depth d{sub max} and 40 x 40 cm field size, 0.970 for 6 MV and 0.983 for 15 MV. Conclusions: The authors concluded that backscatter thickness is 6.0 cm for 6 MV and 4.0 cm for 15 MV for field size up to 10 x 10 cm when BCF = 0.998. If 4 cm backscatter thickness is used, BCF is 0.997 and 0.983 for field size of 10 x 10 and 40 x 40 cm for 6 MV, and is 0.998 and 0.990 for 10 x 10 and 40 x 40 cm for 15 MV, respectively.

  20. The prognostic value of percentage of positive biopsy cores, percentage of cancer volume, and maximum involvement of biopsy cores in prostate cancer patients receiving proton and photon beam therapy.

    PubMed

    Slater, Jason M; Bush, David A; Grove, Roger; Slater, Jerry D

    2014-06-01

    The purpose of this study was to compare the prognostic value of the percentage of positive biopsy cores (PPBC), the percentage of cancer volume (PCV), and the maximum involvement of biopsy cores (MIBC) as a prognostic factor in low- and intermediate-risk patients with clinically localized prostate cancer who received proton or photon beam therapy. Four hundred and fifty-nine patients with clinically localized prostate carcinoma who were treated with proton or photon beam therapy at Loma Linda University Medical Center were used for this analysis. Patients were treated with a median dose of 74.0 Gy (range 70.2-79.2) proton or combined proton/photon beam radiotherapy. Pathology reports were reviewed and PPBC, PCV, and MIBC were recorded. Analysis of biochemical no evidence of disease (bNED) outcome was assessed using Kaplan-Meier analyses. Cox regression multivariate analyses were performed to assess the impact of the biopsy factors on survival. 285, 291, and 291 patients had biopsy information available for analysis, respectively. Survival analysis showed that a higher PPBC, PCV, and MIBC were each individually associated with an increased risk of biochemical failure on univariate analysis (p < 0.01). Only PPBC and PCV were associated with an increased risk of biochemical failure on multivariate analysis, adjusting for age, NCCN risk group, and dose (p < 0.01). When isolating the intermediate-risk group, only PPBC and PCV were statistically significant on multivariate analysis. Multivariate analysis of the intermediate-risk group comparing PPBC and PCV showed that PPBC was not a significant predictor of biochemical failure, while PCV was a significant predictor of biochemical failure (p = 0.37 and p = 0.03, respectively). PPBC and PCV can potentially be used for additional risk stratification of intermediate-risk patients with PCV potentially being the most clinically relevant predictor bNED survival. MIBC was not found to have utility in the prognosis of low- and

  1. Review of reported trials of neutron beam therapy of malignant glioma

    SciTech Connect

    Olson, M.H.

    1986-01-01

    Fast neutron beam therapy has been tested extensively in the past 10 years as a method to treat malignant gliomas. Thus far there has been no change in survival time using fast neutron beam vs. photon therapy. Autopsy and reoperative studies have revealed brain necrosis and specimens which are tumor-free in much higher frequency using neutrons compared to photon radiation.

  2. Microdosimetry of Megavoltage Photon and Electron Beams

    NASA Astrophysics Data System (ADS)

    Zellmar, Darwin Llewelyn

    Experimental techniques were developed for obtaining microdosimetric spectra on hospital-based linear accelerators. Microdosimetry spectra were measured for Cobalt-60 photons, 10 and 15 MV bremsstrahlung x-rays and 12 to 20 MeV electrons. The x-ray and electrons were produced at ultra-low dose rates (50-200 micro-gray/hour), which enabled direct measurements of lineal energy distributions with a conventional Rossi -type gas proportional counter. Extensive measurements were made to insure that the dosimetric properties of the low dose rate beams are nearly identical to those produced under high dose rate clinical conditions. Analytical procedures were developed to correct measured lineal energy spectra for pulse pileup. The lineal energy spectra for 10 MV X-rays and electrons differ significantly from Cobalt-60 photons with the dose average lineal energy (y(,D)) being lower than Cobalt-60 photons by 15 to 20% and 20 to 30%, respectively. The values of y(,D) for Cobalt gamma rays and 15 MV X-rays are comparable. The calculated spectrum assuming CSDA predicted the peak and the shoulder of the experimental spectra, but was unable to predict the exact shape.

  3. Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor

    PubMed Central

    Boitier, F.; Godard, A.; Dubreuil, N.; Delaye, P.; Fabre, C.; Rosencher, E.

    2011-01-01

    For many years twin beams originating from parametric down-converted light beams have aroused great interest and attention in the photonics community. One particular aspect of the twin beams is their peculiar intensity correlation functions, which are related to the coincidence rate of photon pairs. Here we take advantage of the huge bandwidth offered by two-photon absorption in a semiconductor to quantitatively determine correlation functions of twin beams generated by spontaneous parametric down-conversion. Compared with classical incoherent sources, photon extrabunching is unambiguously and precisely measured, originating from exact coincidence between down-converted pairs of photons, travelling in unison. These results strongly establish that two-photon counting in semiconductors is a powerful tool for the absolute measurement of light beam photon correlations at ultrashort timescales. PMID:21829187

  4. Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor.

    PubMed

    Boitier, F; Godard, A; Dubreuil, N; Delaye, P; Fabre, C; Rosencher, E

    2011-08-09

    For many years twin beams originating from parametric down-converted light beams have aroused great interest and attention in the photonics community. One particular aspect of the twin beams is their peculiar intensity correlation functions, which are related to the coincidence rate of photon pairs. Here we take advantage of the huge bandwidth offered by two-photon absorption in a semiconductor to quantitatively determine correlation functions of twin beams generated by spontaneous parametric down-conversion. Compared with classical incoherent sources, photon extrabunching is unambiguously and precisely measured, originating from exact coincidence between down-converted pairs of photons, travelling in unison. These results strongly establish that two-photon counting in semiconductors is a powerful tool for the absolute measurement of light beam photon correlations at ultrashort timescales.

  5. Application of spherical diodes for megavoltage photon beams dosimetry

    SciTech Connect

    Barbés, Benigno; Azcona, Juan D.; Burguete, Javier; Martí-Climent, Josep M.

    2014-01-15

    Purpose: External beam radiation therapy (EBRT) usually uses heterogeneous dose distributions in a given volume. Designing detectors for quality control of these treatments is still a developing subject. The size of the detectors should be small to enhance spatial resolution and ensure low perturbation of the beam. A high uniformity in angular response is also a very important feature in a detector, because it has to measure radiation coming from all the directions of the space. It is also convenient that detectors are inexpensive and robust, especially to performin vivo measurements. The purpose of this work is to introduce a new detector for measuring megavoltage photon beams and to assess its performance to measure relative dose in EBRT. Methods: The detector studied in this work was designed as a spherical photodiode (1.8 mm in diameter). The change in response of the spherical diodes is measured regarding the angle of incidence, cumulated irradiation, and instantaneous dose rate (or dose per pulse). Additionally, total scatter factors for large and small fields (between 1 × 1 cm{sup 2} and 20 × 20 cm{sup 2}) are evaluated and compared with the results obtained from some commercially available ionization chambers and planar diodes. Additionally, the over-response to low energy scattered photons in large fields is investigated using a shielding layer. Results: The spherical diode studied in this work produces a high signal (150 nC/Gy for photons of nominal energy of 15 MV and 160 for 6 MV, after 12 kGy) and its angular dependence is lower than that of planar diodes: less than 5% between maximum and minimum in all directions, and 2% around one of the axis. It also has a moderated variation with accumulated dose (about 1.5%/kGy for 15 MV photons and 0.7%/kGy for 6 MV, after 12 kGy) and a low variation with dose per pulse (±0.4%), and its behavior is similar to commercial diodes in total scatter factor measurements. Conclusions: The measurements of relative dose

  6. Photon beam description in PEREGRINE for Monte Carlo dose calculations

    SciTech Connect

    Cox, L. J., LLNL

    1997-03-04

    Goal of PEREGRINE is to provide capability for accurate, fast Monte Carlo calculation of radiation therapy dose distributions for routine clinical use and for research into efficacy of improved dose calculation. An accurate, efficient method of describing and sampling radiation sources is needed, and a simple, flexible solution is provided. The teletherapy source package for PEREGRINE, coupled with state-of-the-art Monte Carlo simulations of treatment heads, makes it possible to describe any teletherapy photon beam to the precision needed for highly accurate Monte Carlo dose calculations in complex clinical configurations that use standard patient modifiers such as collimator jaws, wedges, blocks, and/or multi-leaf collimators. Generic beam descriptions for a class of treatment machines can readily be adjusted to yield dose calculation to match specific clinical sites.

  7. Radiological considerations for POE-1 photon shutters, collimators and beam stops of the Biomedical Imaging and Therapy beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Asai, Juhachi; Wysokinski, Tomasz W.; Smith, Sheldon; Chapman, Dean

    2008-01-01

    A study of radiation levels due to primary and secondary gas bremsstrahlung is carried out for the BioMedical Imaging and Therapy (BMIT) beamline at the Canadian Light Source (CLS). The BMIT beamline, being built at present, is a major research and diagnostic tool for X-ray imaging and X-ray radiation therapy for animals and humans. For the BMIT beamline to be as flexible as possible, a movable tungsten collimator is designed. This can move vertically and assumes two positions; up and down. The BMIT beamline is, thus, able to perform two modes of operation: one white beam, the other monochromatic. Gas bremsstrahlung produced in the vacuum chamber propagates with synchrotron radiation and may enter the imaging or therapy hutch. In this study, the dose behind the collimator is investigated in each mode by assessing the energy deposition in a water phantom that surrounds the entire copper shutter-tungsten collimator unit. When estimating the dose, particular attention is given to the opening area of the collimator, since this passage leads to the imaging or therapy hutch. Also examined are the doses when a tungsten safety shutter is closed.

  8. Valley-dependent beam manipulators based on photonic graphene

    NASA Astrophysics Data System (ADS)

    Deng, Fu-Sheng; Sun, Yong; Dong, Li-Juan; Liu, Yan-Hong; Shi, Yun-Long

    2017-02-01

    Trigonal warping distortion in energy band lifts the degeneracy of two valleys (K and K' points) of graphene. In this situation, electron transport becomes valley dependent, which can be used to design the valley beam splitter, collimator, or guiding device. Here, valley-dependent beam manipulators are designed based on artificial photonic graphene. In this scheme, the finite-size artificial photonic graphene is intentionally designed to realize the novel device functionalities. This kind of valley-dependent beam manipulators can work at an arbitrary range of electromagnetic waves from microwave to visible light. It potentially paves the way for the application of photonic graphene in future integrated photonic devices.

  9. Two-photon flow cytometer with laser scanning Bessel beams

    NASA Astrophysics Data System (ADS)

    Wang, Yongdong; Ding, Yu; Ray, Supriyo; Paez, Aurelio; Xiao, Chuan; Li, Chunqiang

    2016-03-01

    Flow cytometry is an important technique in biomedical discovery for cell counting, cell sorting and biomarker detection. In vivo flow cytometers, based on one-photon or two-photon excited fluorescence, have been developed for more than a decade. One drawback of laser beam scanning two-photon flow cytometer is that the two-photon excitation volume is fairly small due to the short Rayleigh range of a focused Gaussian beam. Hence, the sampling volume is much smaller than one-photon flow cytometry, which makes it challenging to count or detect rare circulating cells in vivo. Bessel beams have narrow intensity profiles with an effective spot size (FWHM) as small as several wavelengths, making them comparable to Gaussian beams. More significantly, the theoretical depth of field (propagation distance without diffraction) can be infinite, making it an ideal solution as a light source for scanning beam flow cytometry. The trade-off of using Bessel beams rather than a Gaussian beam is the fact that Bessel beams have small concentric side rings that contribute to background noise. Two-photon excitation can reduce this noise, as the excitation efficiency is proportional to intensity squared. Therefore, we developed a two-photon flow cytometer using scanned Bessel beams to form a light sheet that intersects the micro fluidic channel.

  10. Characteristics of the photon beam from a new 25-MV linear accelerator

    SciTech Connect

    Aldrich, J.E.; Andrew, J.W.; Michaels, H.B.; O'Brien, P.F.

    1985-09-01

    The Therac 25 is a relatively compact therapy machine, the heart of which is a double-pass electron linear accelerator. The electron beam is injected into the accelerator at the treatment head end of the machine and is accelerated back down the arm to an energy of 13 MeV. At this end of the machine a magnet system reflects the beam back into the structure where it gains up to an additional 12 MeV of energy. After leaving the linear accelerator the beam is bent by an achromatic head magnet through 270 degrees to the treatment head. The machine produces eight electron beams and a 25-MV photon beam. In this work only the parameters of the photon beam are addressed based on measurements at the first two clinical sites. Percentage depth doses, tissue phantom ratios, and beam symmetry and stability are presented and discussed.

  11. Characteristics of the photon beam from a new 25-MV linear accelerator.

    PubMed

    Aldrich, J E; Andrew, J W; Michaels, H B; O'Brien, P F

    1985-01-01

    The Therac 25 is a relatively compact therapy machine, the heart of which is a double-pass electron linear accelerator. The electron beam is injected into the accelerator at the treatment head end of the machine and is accelerated back down the arm to an energy of 13 MeV. At this end of the machine a magnet system reflects the beam back into the structure where it gains up to an additional 12 MeV of energy. After leaving the linear accelerator the beam is bent by an achromatic head magnet through 270 degrees to the treatment head. The machine produces eight electron beams and a 25-MV photon beam. In this work only the parameters of the photon beam are addressed based on measurements at the first two clinical sites. Percentage depth doses, tissue phantom ratios, and beam symmetry and stability are presented and discussed.

  12. Partial breast radiation therapy - external beam

    MedlinePlus

    Carcinoma of the breast - partial radiation therapy; Partial external beam radiation - breast; Intensity-modulated radiation therapy - breast cancer; IMRT - breast cancer WBRT; Adjuvant partial breast - IMRT; APBI - ...

  13. Out of Field Doses in Clinical Photon and Proton Beam

    NASA Astrophysics Data System (ADS)

    Kubančák, Ján

    2010-01-01

    Out-of-field doses in homogenous cubical polymethylmethacrylate (PMMA) phantom were studied in this work. Measurements were performed in clinical 171 MeV proton and megavoltae photon beam. As detectors, CaSO:Dy thermoluminescent detectors were used. According to expectancy, results showed that out-of-field doses are substantially lower for clinical proton beam in comparison with clinical proton beam.

  14. Formation of collimated beams behind the woodpile photonic crystal

    SciTech Connect

    Trull, J.; Maigyte, L.; Cojocaru, C.; Mizeikis, V.; Malinauskas, M.; Rutkauskas, M.; Peckus, M.; Sirutkaitis, V.; Juodkazis, S.; Staliunas, K.

    2011-09-15

    We experimentally observe formation of narrow laser beams behind the woodpile photonic crystal, when the beam remains well collimated in free propagation behind the crystal. We show that the collimation depends on the input laser beam's focusing conditions, and we interpret theoretically the observed effect by calculating the spatial dispersion of propagation eigenmodes and by numerical simulation of paraxial propagation model.

  15. Evaluation of beam hardening and photon scatter by brass compensator for IMRT.

    PubMed

    Hashimoto, Shimpei; Karasawa, Katsuyuki; Fujita, Yukio; Miyashita, Hisayuki; Chang, Weishan; Kawachi, Toru; Katayose, Tetsurou; Kobayashi, Nao; Kunieda, Etsuo; Saitoh, Hidetoshi

    2012-11-01

    When a brass compensator is set in a treatment beam, beam hardening may take place. This variation of the energy spectrum may affect the accuracy of dose calculation by a treatment planning system and the results of dose measurement of brass compensator intensity modulated radiation therapy (IMRT). In addition, when X-rays pass the compensator, scattered photons are generated within the compensator. Scattered photons may affect the monitor unit (MU) calculation. In this study, to evaluate the variation of dose distribution by the compensator, dose distribution was measured and energy spectrum was simulated using the Monte Carlo method. To investigate the influence of beam hardening for dose measurement using an ionization chamber, the beam quality correction factor was determined. Moreover, to clarify the effect of scattered photons generated within the compensator for the MU calculation, the head scatter factor was measured and energy spectrum analyses were performed. As a result, when X-rays passed the brass compensator, beam hardening occurred and dose distribution was varied. The variation of dose distribution and energy spectrum was larger with decreasing field size. This means that energy spectrum should be reproduced correctly to obtain high accuracy of dose calculation for the compensator IMRT. On the other hand, the influence of beam hardening on k(Q) was insignificant. Furthermore, scattered photons were generated within the compensator, and scattered photons affect the head scatter factor. These results show that scattered photons must be taken into account for MU calculation for brass compensator IMRT.

  16. Parameterization of photon beam dosimetry for a linear accelerator.

    PubMed

    Lebron, Sharon; Lu, Bo; Yan, Guanghua; Kahler, Darren; Li, Jonathan G; Barraclough, Brendan; Liu, Chihray

    2016-02-01

    In radiation therapy, accurate data acquisition of photon beam dosimetric quantities is important for (1) beam modeling data input into a treatment planning system (TPS), (2) comparing measured and TPS modeled data, (3) the quality assurance process of a linear accelerator's (Linac) beam characteristics, (4) the establishment of a standard data set for comparison with other data, etcetera. Parameterization of the photon beam dosimetry creates a data set that is portable and easy to implement for different applications such as those previously mentioned. The aim of this study is to develop methods to parameterize photon beam dosimetric quantities, including percentage depth doses (PDDs), profiles, and total scatter output factors (S(cp)). S(cp), PDDs, and profiles for different field sizes, depths, and energies were measured for a Linac using a cylindrical 3D water scanning system. All data were smoothed for the analysis and profile data were also centered, symmetrized, and geometrically scaled. The S(cp) data were analyzed using an exponential function. The inverse square factor was removed from the PDD data before modeling and the data were subsequently analyzed using exponential functions. For profile modeling, one halfside of the profile was divided into three regions described by exponential, sigmoid, and Gaussian equations. All of the analytical functions are field size, energy, depth, and, in the case of profiles, scan direction specific. The model's parameters were determined using the minimal amount of measured data necessary. The model's accuracy was evaluated via the calculation of absolute differences between the measured (processed) and calculated data in low gradient regions and distance-to-agreement analysis in high gradient regions. Finally, the results of dosimetric quantities obtained by the fitted models for a different machine were also assessed. All of the differences in the PDDs' buildup and the profiles' penumbra regions were less than 2 and 0

  17. Parameterization of photon beam dosimetry for a linear accelerator

    SciTech Connect

    Lebron, Sharon; Barraclough, Brendan; Lu, Bo; Yan, Guanghua; Kahler, Darren; Li, Jonathan G.; Liu, Chihray

    2016-02-15

    Purpose: In radiation therapy, accurate data acquisition of photon beam dosimetric quantities is important for (1) beam modeling data input into a treatment planning system (TPS), (2) comparing measured and TPS modeled data, (3) the quality assurance process of a linear accelerator’s (Linac) beam characteristics, (4) the establishment of a standard data set for comparison with other data, etcetera. Parameterization of the photon beam dosimetry creates a data set that is portable and easy to implement for different applications such as those previously mentioned. The aim of this study is to develop methods to parameterize photon beam dosimetric quantities, including percentage depth doses (PDDs), profiles, and total scatter output factors (S{sub cp}). Methods: S{sub cp}, PDDs, and profiles for different field sizes, depths, and energies were measured for a Linac using a cylindrical 3D water scanning system. All data were smoothed for the analysis and profile data were also centered, symmetrized, and geometrically scaled. The S{sub cp} data were analyzed using an exponential function. The inverse square factor was removed from the PDD data before modeling and the data were subsequently analyzed using exponential functions. For profile modeling, one halfside of the profile was divided into three regions described by exponential, sigmoid, and Gaussian equations. All of the analytical functions are field size, energy, depth, and, in the case of profiles, scan direction specific. The model’s parameters were determined using the minimal amount of measured data necessary. The model’s accuracy was evaluated via the calculation of absolute differences between the measured (processed) and calculated data in low gradient regions and distance-to-agreement analysis in high gradient regions. Finally, the results of dosimetric quantities obtained by the fitted models for a different machine were also assessed. Results: All of the differences in the PDDs’ buildup and the

  18. Decades of rivalry and complementary of photon and electron beams

    NASA Astrophysics Data System (ADS)

    Lin, Burn J.

    2009-12-01

    Not long after the photon beam was used to delineate circuit patterns in resist, e-beam was called for duty due to the concern of photons running out of resolution. The e-beam counterpart of proximity printing, projection printing, and direct writing quickly took shape as early as 1975. The race was on. Optical projection printing, taking advantage of a high degree of parallelism, excelled in throughput and economy for wafer patterning. However, electrons can be quickly deflected to directly write patterns. It took over mask writing. Rivalry turned into complementary for decades. Recently e-beam has a new opportunity to beat photon beam at its own game of parallelism and eliminate the problems associated with masks altogether. This presentation compares optical and e-beam imaging technically, economically, and historically, pointing to the rewards and challenges for each technology to succeed.

  19. Mycosis fungoides. Electron beam therapy.

    PubMed

    Spittle, M F

    1977-01-01

    The most effective treatment of late mycosis fungoides is total skin electron beam therapy. The beam at the Hammersmith Hospital in London has been adapted to treat these patients. Patients with advanced disease who have failed more conservative methods of treatment are irradiated. The electron beam is modified by the use of carbon and copper scatterers to produce an 80 percent depth dose at 5.5, 8 and 11.5 millimeters below the skin surface. The dose achieved in most patients is between 1500 rads and 2600 rads given in 10 to 13 treatments over 5-7 weeks. Recently the higher dose range has been employed and lithium flouride studies have shown that giving these doses from each of 4 fields, the dose achieved on the skin is approximately twice the given dose. The management of patients and the effects of treatment are discussed.

  20. SU-C-BRC-03: Development of a Novel Strategy for On-Demand Monte Carlo and Deterministic Dose Calculation Treatment Planning and Optimization for External Beam Photon and Particle Therapy

    SciTech Connect

    Yang, Y M; Bush, K; Han, B; Xing, L

    2016-06-15

    Purpose: Accurate and fast dose calculation is a prerequisite of precision radiation therapy in modern photon and particle therapy. While Monte Carlo (MC) dose calculation provides high dosimetric accuracy, the drastically increased computational time hinders its routine use. Deterministic dose calculation methods are fast, but problematic in the presence of tissue density inhomogeneity. We leverage the useful features of deterministic methods and MC to develop a hybrid dose calculation platform with autonomous utilization of MC and deterministic calculation depending on the local geometry, for optimal accuracy and speed. Methods: Our platform utilizes a Geant4 based “localized Monte Carlo” (LMC) method that isolates MC dose calculations only to volumes that have potential for dosimetric inaccuracy. In our approach, additional structures are created encompassing heterogeneous volumes. Deterministic methods calculate dose and energy fluence up to the volume surfaces, where the energy fluence distribution is sampled into discrete histories and transported using MC. Histories exiting the volume are converted back into energy fluence, and transported deterministically. By matching boundary conditions at both interfaces, deterministic dose calculation account for dose perturbations “downstream” of localized heterogeneities. Hybrid dose calculation was performed for water and anthropomorphic phantoms. Results: We achieved <1% agreement between deterministic and MC calculations in the water benchmark for photon and proton beams, and dose differences of 2%–15% could be observed in heterogeneous phantoms. The saving in computational time (a factor ∼4–7 compared to a full Monte Carlo dose calculation) was found to be approximately proportional to the volume of the heterogeneous region. Conclusion: Our hybrid dose calculation approach takes advantage of the computational efficiency of deterministic method and accuracy of MC, providing a practical tool for high

  1. Photonic crystal devices formed by a charged-particle beam

    DOEpatents

    Lin, Shawn-Yu; Koops, Hans W. P.

    2000-01-01

    A photonic crystal device and method. The photonic crystal device comprises a substrate with at least one photonic crystal formed thereon by a charged-particle beam deposition method. Each photonic crystal comprises a plurality of spaced elements having a composition different from the substrate, and may further include one or more impurity elements substituted for spaced elements. Embodiments of the present invention may be provided as electromagnetic wave filters, polarizers, resonators, sources, mirrors, beam directors and antennas for use at wavelengths in the range from about 0.2 to 200 microns or longer. Additionally, photonic crystal devices may be provided with one or more electromagnetic waveguides adjacent to a photonic crystal for forming integrated electromagnetic circuits for use at optical, infrared, or millimeter-wave frequencies.

  2. MO-G-BRF-07: Optical Characterization of Novel Terbium-Doped Nanophosphors Excited by Clinical Electron and Photon Beams for Potential Use in Molecular Imaging Or Photodynamic Therapy

    SciTech Connect

    Darafsheh, A; Paik, T; Tenuto, M; Najmr, S; Friedberg, J; Murray, C; Finlay, J

    2014-06-15

    Purpose: Optical properties of terbium (Tb3+)-doped gadolinium trifluoride (GdF3) nanoplates irradiated by electron and photon beams were investigated for their potential as optical probes. The contribution of induced Cerenkov radiation in exciting the nanophosphors was investigated as well. Methods: The emission spectra of Terbium-doped GdF3 dispersed in hexane, embedded in tissue mimicking phantoms were collected by an optical fiber connected to a CCD-coupled spectrograph, while the samples were irradiated by a medical linear accelerator with electron beams of energies 6, 9, 12, 16, and 20 MeV or X-ray beams of energies of 6, and 15 MV. The contribution of induced Cerenkov radiation in exciting the nanophosphores was investigated in a dedicated experimental apparatus through optical isolation of the samples and also by using 125 kVp X-ray beams whose energy is below the threshold for generating Cerenkov radiation in that medium. Results: Terbium-doped GdF3 nanoplates show characteristic cathodoluminescence emission peaks at 488, 543, 586, and 619 nm, which are responsible for the characteristic f-f transition of terbium ion. In a series of experiments, the contribution of Cerenkov radiation in the luminescence of such nanophosphors was ruled out. Conclusion: We have characterized the optical properties of Terbium-doped GdF3 nanoplates. Such nanocrystals with emission tunability and high surface area that facilitates attachment with targeting reagents are promising in situ light source candidates for molecular imaging or exciting a photosensitizer for ultralow fluence photodynamic therapy. This work is supported by the Department of Radiation Oncology at the University of Pennsylvania, the American Cancer Society through IRG-78-002-28, and the University of Pennsylvania's Nano/Bio Interface Center through NSEC DMR08-32802.

  3. Measuring the neutrino mass using intense photon and neutrino beams

    NASA Astrophysics Data System (ADS)

    Dicus, Duane A.; Repko, Wayne W.; Vega, Roberto

    2000-11-01

    We compute the cross section for neutrino-photon scattering taking into account a neutrino mass. We explore the possibility of using intense neutrino beams, such as those available at proposed muon colliders, together with high powered lasers to probe the neutrino mass in photon-neutrino collisions.

  4. Nonlinear beam deflection in photonic lattices with negative defects

    SciTech Connect

    Wang Jiandong; Ye Zhuoyi; Lou Cibo; Miller, Alexandra; Zhang Peng; Hu Yi; Chen Zhigang; Yang Jianke

    2011-03-15

    We demonstrate both theoretically and experimentally that a nonlinear beam can be reflected by a negative defect in a photonic lattice if the incident angle is below a threshold value. Above this threshold angle, the beam simply passes through the defect. This phenomenon occurs in both one- and two-dimensional photonic lattices, and it provides a way to use the incident angle to control beam propagation in a lattice network. If the defect is absent or positive, no evident transition from reflection to transmission occurs. These nonlinear phenomena are also compared with linear nondiffracting-beam propagation in a photonic lattice with a defect, and both similarities and differences are observed. In addition, some important features in linear and nonlinear beam propagations are explained analytically by using a linear model with a delta-function defect.

  5. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  6. [Dosimetric comparing between protons beam and photons beam
for lung cancer radiotherapy: a meta-analysis].

    PubMed

    Tian, Guangwei; Li, Nan; Li, Guang

    2013-05-01

    The clinical evidences are not sufficient on the proton beam therapy of lung cancer for lacking of the RCTs on the comparing the proton with the photon beam in lung cancer radiotherapy. The aim of this study is to evaluate the dosimetry superiority of the proton beam and provide more valuable evidences to the clinical researches. Clinical trails of dosimetric comparing between protons beam and photons beam for lung cancer radiotherapy were obtained from the Cochrane library, Pubmed, EMbase, CBM, CNKI, VIP, and Wan Fang databases. The data included in the study were evaluated and analyzed using the Cochrane Collaboration's RevMan 5.2 software. Six trails were included. Compared to photon therapy (three-dimensional conformal photon radiotherapy, 3D-CRT), the proton therapy had a significantly lower total lung Dmean (MD=-4.15, 95%CI: -5.56--2.74, P<0.001) and V20, V10, V5 (MD=-10.92, 95%CI: -13.23--8.62, P<0.001); The V20, V10, V5 significantly decreased in proton therapy group. Compared to photon therapy (intensity-modulated photon radiotherapy, IMRT), V20, V10, V5 were also significantly lowered in proton therapy group (MD=-3.70, 95%CI: -5.31--2.10, P<0.001; MD=-8.86, 95%CI: -10.74--6.98, P<0.001; MD=-20.13, 95%CI: -27.11--13.14, P<0.001); The esophagus Dmean was not lowered, while the heart Dmean decreased in proton therapy group. Comparing to photon beam radiotherapy (3D-CRT and IMRT), proton beam therapy is advantageous in dosimetry of the lung cancer radiotherapy and recommended for clinical applying.

  7. Ion Beam Therapy in Europe

    NASA Astrophysics Data System (ADS)

    Kraft, Gerhard

    2009-03-01

    At present, seven facilities in Europe treat deep-seated tumors with particle beams, six with proton beams and one with carbon ions. Three of these facilities are in Moscow, St. Petersburg and Dubna, Russia. Other facilities include the TSL Uppsala, Sweden, CPO Orsay, France, and PSI Villigen, Switzerland, all for proton therapy, and GSI, Darmstadt, Germany, which utilizes carbon ions only. But only two of these facilities irradiate with scanned ion beams: the Paul Scherer Institute (PSI), Villigen (protons) and the Gesellschaft für Schwerionenforschung (GSI), Darmstadt. These two facilities are experimental units within physics laboratories and have developed the technique of intensity-modulated beam scanning in order to produce irradiation conforming to a 3-D target. There are three proton centers presently under construction in Munich, Essen and Orsay, and the proton facility at PSI has added a superconducting accelerator connected to an isocentric gantry in order to become independent of the accelerator shared with the physics research program. The excellent clinical results using carbon ions at National Institute of Radiological Science (NIRS) in Chiba and GSI have triggered the construction of four new heavy-ion therapy projects (carbon ions and protons), located in Heidelberg, Pavia, Marburg and Kiel. The projects in Heidelberg and Pavia will begin patient treatment in 2009, and the Marburg and Kiel projects will begin in 2010 and 2011, respectively. These centers use different accelerator designs but have the same kind of treatment planning system and use the same approach for the calculation of the biological effectiveness of the carbon ions as developed at GSI [1]. There are many other planned projects in the works. Do not replace the word "abstract," but do replace the rest of this text. If you must insert a hard line break, please use Shift+Enter rather than just tapping your "Enter" key. You may want to print this page and refer to it as a style

  8. A photon beam position monitor for SSRL beamline 9

    SciTech Connect

    Cerino, J.A.; Rabedeau, T.; Bowen, W.

    1995-10-01

    We present here the concept of a simple one dimensional photon beam position monitor for use with high power synchrotron radiation beams. It has micron resolution, reasonable linearity in an inexpensive design. Most important, is its insensitivity to diffusely scattered low energy radiation from components upstream of the monitor.

  9. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A [Riverside, CA; Beloussov, Alexandre V [Bernardino, CA; Bakir, Julide [Alta Loma, CA; Armon, Deganit [Redlands, CA; Olsen, Howard B [Colton, CA; Salem, Dana [Riverside, CA

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  10. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2010-09-21

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  11. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

    2013-06-25

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  12. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

    2013-12-03

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  13. Dynamic photonic crystals dimensionality tuning by laser beams polarization changing

    NASA Astrophysics Data System (ADS)

    Golinskaya, Anastasia D.; Stebakova, Yulia V.; Valchuk, Yana V.; Smirnov, Aleksandr M.; Mantsevich, Vladimir N.

    2017-05-01

    A simple way to create dynamic photonic crystals with different lattice symmetry by interference of non-coplanar laser beams in colloidal solution of quantum dots was demonstrated. With the proposed technique we have made micro-periodic dynamic semiconductor structure with strong nonlinear changing of refraction and absorption and analyzed the self-diffraction processes of two, three and four non-coplanar laser beams at the dynamic photonic crystal (diffraction grating) with hexagonal lattice structure. To reach the best uniform contrast of the structure and for better understanding of the problems, specially raised by the interference of multiple laser beams theoretical calculation of the periodic intensity field in the QDs solution were performed. It was demonstrated that dynamic photonic crystal structure and even it's dimension can be easily tuned with a high speed by the laser beams polarization variation without changing the experimental setup geometry.

  14. Photonic bandgap under irradiation of a Gaussian beam

    NASA Astrophysics Data System (ADS)

    Jamshidi-Ghaleh, Kazem; Abdi-Ghaleh, Reza

    2011-01-01

    The transfer matrix of a dielectric slab under propagation of a Gaussian beam was formulated. The derived matrix was applied for a one-dimensional photonic crystal (1DPC) structure and the transmittance spectrum and photonic bandgap (PBG) properties were investigated. An r-dependent (r is the radial coordinate of the Gaussian beam) PBG was obtained. With the increase of r, a redshift and a decrease in the PBG are observed. Higher PBGs experience more shift. Also properties of the photonic crystal (PC) structure with defect layer were investigated and displacement to red and decrease of the defect mode peak height, with an increase of r, were observed. The extra optical path that the outer rays travel due to the oblique propagation compared to the central ray in a Gaussian beam is responsible for these effects. For long Rayleigh ranges our results for the Gaussian beam were the same as that for plane wave.

  15. TOPICAL REVIEW: Monte Carlo modelling of external radiotherapy photon beams

    NASA Astrophysics Data System (ADS)

    Verhaegen, Frank; Seuntjens, Jan

    2003-11-01

    An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. An important component in the treatment planning process is the accurate calculation of dose distributions. The most accurate way to do this is by Monte Carlo calculation of particle transport, first in the geometry of the external or internal source followed by tracking the transport and energy deposition in the tissues of interest. Additionally, Monte Carlo simulations allow one to investigate the influence of source components on beams of a particular type and their contaminant particles. Since the mid 1990s, there has been an enormous increase in Monte Carlo studies dealing specifically with the subject of the present review, i.e., external photon beam Monte Carlo calculations, aided by the advent of new codes and fast computers. The foundations for this work were laid from the late 1970s until the early 1990s. In this paper we will review the progress made in this field over the last 25 years. The review will be focused mainly on Monte Carlo modelling of linear accelerator treatment heads but sections will also be devoted to kilovoltage x-ray units and 60Co teletherapy sources.

  16. A surface energy spectral study on the bone heterogeneity and beam obliquity using the flattened and unflattened photon beams.

    PubMed

    Chow, James C L; Owrangi, Amir M

    2016-01-01

    Using flattened and unflattened photon beams, this study investigated the spectral variations of surface photon energy and energy fluence in the bone heterogeneity and beam obliquity. Surface dose enhancement is a dosimetric concern when using unflattened photon beam in radiotherapy. It is because the unflattened photon beam contains more low-energy photons which are removed by the flattening filter of the flattened photon beam. We used a water and bone heterogeneity phantom to study the distributions of energy, energy fluence and mean energy of the 6 MV flattened and unflattened photon beams (field size = 10 cm × 10 cm) produced by a Varian TrueBEAM linear accelerator. These elements were calculated at the phantom surfaces using Monte Carlo simulations. The photon energy and energy fluence calculations were repeated with the beam angle turned from 0° to 15°, 30° and 45° in the water and bone phantom. Spectral results at the phantom surfaces showed that the unflattened photon beams contained more photons concentrated mainly in the low-energy range (0-2 MeV) than the flattened beams associated with a flattening filter. With a bone layer of 1 cm under the phantom surface and within the build-up region of the 6 MV photon beam, it is found that both the flattened and unflattened beams had slightly less photons in the energy range <0.4 MeV compared to the water phantom. This shows that the presence of the bone decreased the low-energy photon backscatters to the phantom surface. When both the flattened and unflattened photon beams were rotated from 0° to 45°, the number of photon and mean photon energy increased. This indicates that both photon beams became more hardened or penetrate when the beam angle increased. In the presence of bone, the mean energies of both photon beams increased. This is due to the absorption of low-energy photons by the bone, resulting in more beam hardening. This study explores the spectral relationships of surface photon

  17. A surface energy spectral study on the bone heterogeneity and beam obliquity using the flattened and unflattened photon beams

    PubMed Central

    Chow, James C.L.; Owrangi, Amir M.

    2016-01-01

    Aim Using flattened and unflattened photon beams, this study investigated the spectral variations of surface photon energy and energy fluence in the bone heterogeneity and beam obliquity. Background Surface dose enhancement is a dosimetric concern when using unflattened photon beam in radiotherapy. It is because the unflattened photon beam contains more low-energy photons which are removed by the flattening filter of the flattened photon beam. Materials and methods We used a water and bone heterogeneity phantom to study the distributions of energy, energy fluence and mean energy of the 6 MV flattened and unflattened photon beams (field size = 10 cm × 10 cm) produced by a Varian TrueBEAM linear accelerator. These elements were calculated at the phantom surfaces using Monte Carlo simulations. The photon energy and energy fluence calculations were repeated with the beam angle turned from 0° to 15°, 30° and 45° in the water and bone phantom. Results Spectral results at the phantom surfaces showed that the unflattened photon beams contained more photons concentrated mainly in the low-energy range (0–2 MeV) than the flattened beams associated with a flattening filter. With a bone layer of 1 cm under the phantom surface and within the build-up region of the 6 MV photon beam, it is found that both the flattened and unflattened beams had slightly less photons in the energy range <0.4 MeV compared to the water phantom. This shows that the presence of the bone decreased the low-energy photon backscatters to the phantom surface. When both the flattened and unflattened photon beams were rotated from 0° to 45°, the number of photon and mean photon energy increased. This indicates that both photon beams became more hardened or penetrate when the beam angle increased. In the presence of bone, the mean energies of both photon beams increased. This is due to the absorption of low-energy photons by the bone, resulting in more beam hardening. Conclusions This study

  18. NLC Polarized Positron Photon Beam Target Thermal Structural Modeling

    SciTech Connect

    Stein, W; Sheppard, J C

    2002-06-11

    The NLC polarized positron photon beam target is a 0.4 radiation length thick titanium target. Energy deposition from one pulse occurs over 266 nano-seconds and results in heating of the target and pressure pulses straining the material. The 22.1 MeV photon beam has a spot size of 0.75 mm and results in a maximum temperature jump of 233 C. Stresses are induced in the material from thermal expansion of the hotter material. Peak effective stresses reach 19 Ksi (1.34 x 10{sup 8} Pa), which is lower than the yield strength of a titanium alloy by a factor of six.

  19. Applied photonic therapy in veterinary medicine

    NASA Astrophysics Data System (ADS)

    Wood, Terry R.; McLaren, Brian C.

    2005-04-01

    There can be no question that specific systemic physiological results occur, when red light (660nm) is applied to the skin, it is now more a question of detailed mechanisms. Before gathering statistically signifcant clinical trial data, it is important to first enumerate the type of results observed in practice. Case histories are presented highlighting the use of photonic therapy in veterinary medicine. Over 900 surgical procedures have been performed and documented, utilizing the principles of photonic therapy, and while hemostasis, pain relief, and nausea relief, were the primary goals, the peri-operative death rate, the post-operative seroma, and post-operative infection were reduced to almost zero, and there was a noticeable increase in the healing rate. Scientifically applied photonic therapy, rather than supplanting conventional veterinary medicine, compliments and increases the veterinarian's set of skills. This paper proposes a hypothesis of how 660 nm light applied to specific points on the skin, produces various physiological changes in animals. By using animals, there can be no placebo, hypnotic or psychosomatic confounding effects.

  20. Efficient photon beam dose calculations using DOSXYZnrc with BEAMnrc.

    PubMed

    Kawrakow, I; Walters, B R B

    2006-08-01

    This study examines the efficiencies of doses calculated using DOSXYZnrc for 18 MV (10 X 10 cm2 field size) and 6 MV (10 X 10 cm2 and 20 X 20 cm2 field sizes) photon beams simulated using BEAMnrc. Both phase-space sources and full BEAMnrc simulation sources are used in the DOSXYZnrc calculations. BEAMnrc simulation sources consist of a BEAMnrc accelerator simulation compiled as a shared library and run by the user code (DOSXYZnrc in this case) to generate source particles. Their main advantage is in eliminating the need to store intermediate phase-space files. In addition, the efficiency improvements due to photon splitting and particle recycling in the DOSXYZnrc simulation are examined. It is found that photon splitting increases dose calculation efficiency by a factor of up to 6.5, depending on beam energy, field size, voxel size, and the type of secondary collimation used in the BEAMnrc simulation (multileaf collimator vs photon jaws). The optimum efficiency with photon splitting is approximately 55% higher than that with particle recycling, indicating that, while most of the gain is due to time saved by reusing source particle data, there is significant gain due to the uniform distribution of interaction sites and faster DOSXYZnrc simulation time when photon splitting is employed. Use of optimized directional bremsstrahlung splitting in the BEAMnrc simulation sources increases the efficiency of photon beam simulations sufficiently that the peak efficiencies (i.e., with optimum setting of the photon splitting number) of DOSXYZnrc simulations using these sources are only 3-13% lower than those with phase-space file sources. This points towards eliminating the need for storing intermediate phase-space files.

  1. Applications of laser-accelerated particle beams for radiation therapy

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Fourkal, E.; Li, J. S.; Veltchev, I.; Luo, W.; Fan, J. J.; Lin, T.; Tafo, A.

    2011-05-01

    Proton beams are more advantageous than high-energy photons and electrons for radiation therapy because of their finite penetrating range and the Bragg peak near the end of their range, which have been utilized to achieve better dose conformity to the treatment target allowing for dose escalation and/or hypofractionation to increase local tumor control, reduce normal tissue complications and/or treatment time/cost. Proton therapy employing conventional particle acceleration techniques is expensive because of the large accelerators and treatment gantries that require excessive space and shielding. Compact proton acceleration systems are being sought to improve the cost-effectiveness for proton therapy. This paper reviews the physics principles of laser-proton acceleration and the development of prototype laserproton therapy systems as a solution for widespread applications of advanced proton therapy. The system design, the major components and the special delivery techniques for energy and intensity modulation are discussed in detail for laser-accelerated proton therapy.

  2. Measurements and simulations of focused beam for orthovoltage therapy

    SciTech Connect

    Abbas, Hassan; Mahato, Dip N.; Satti, Jahangir; MacDonald, C. A.

    2014-04-15

    Purpose: Megavoltage photon beams are typically used for therapy because of their skin-sparing effect. However, a focused low-energy x-ray beam would also be skin sparing, and would have a higher dose concentration at the focal spot. Such a beam can be produced with polycapillary optics. MCNP5 was used to model dose profiles for a scanned focused beam, using measured beam parameters. The potential of low energy focused x-ray beams for radiation therapy was assessed. Methods: A polycapillary optic was used to focus the x-ray beam from a tungsten source. The optic was characterized and measurements were performed at 50 kV. PMMA blocks of varying thicknesses were placed between optic and the focal spot to observe any variation in the focusing of the beam after passing through the tissue-equivalent material. The measured energy spectrum was used to model the focused beam in MCNP5. A source card (SDEF) in MCNP5 was used to simulate the converging x-ray beam. Dose calculations were performed inside a breast tissue phantom. Results: The measured focal spot size for the polycapillary optic was 0.2 mm with a depth of field of 5 mm. The measured focal spot remained unchanged through 40 mm of phantom thickness. The calculated depth dose curve inside the breast tissue showed a dose peak several centimeters below the skin with a sharp dose fall off around the focus. The percent dose falls below 10% within 5 mm of the focus. It was shown that rotating the optic during scanning would preserve the skin-sparing effect of the focused beam. Conclusions: Low energy focused x-ray beams could be used to irradiate tumors inside soft tissue within 5 cm of the surface.

  3. Metastable Krypton Beam Source via Two-Photon Pumping Technique

    SciTech Connect

    Wong, W.W.; Young, L.

    2003-01-01

    Metastable beams of rare gas atoms have wide applications in chemical analysis of samples, as well as in aiding understanding of fundamental processes and physical attributes. Most current sources of metastable rare gas atomic beams, however, are limited in their flux density, which greatly reduces their utility in applications such as low level trace analysis and precision measurements. Previous work has demonstrated feasibility of metastable krypton production via two-photon pumping, and this paper extends that possibility into beam form. Further optimization on this scheme, moreover, promises 100-fold increase of metastable krypton flux density over that of an rf-driven discharge.

  4. Polarization beam splitting using a birefringent graded photonic crystal.

    PubMed

    Cassan, Eric; Van Do, Khanh; Dellinger, Jean; Le Roux, Xavier; de Fornel, Frédérique; Cluzel, Benoit

    2013-02-15

    The use of a birefringent graded photonic crystal (GPhC) is proposed for the realization of an efficient polarization beam splitter. This approach allows decoupling the two functions of efficient light injection for both polarizations and TE/TM beam splitting. A smooth light polarization splitting is naturally achieved due to the different curved trajectories followed within the graded medium by the TE and TM waves. A 160 nm operating bandwidth with insertion loss around 1 dB and interpolarization crosstalk below -15 dB is predicted by a finite difference time domain simulation. The unusually exploited electromagnetic phenomena are experimentally evidenced by scanning near-field optical measurements performed on samples fabricated using the silicon on insulator photonics technology. These experimental works open perspectives for the use of birefringent GPhCs to manage polarization diversity in silicon photonic circuits.

  5. Equivalent-quality unflattened photon beam modeling, planning, and delivery.

    PubMed

    Huang, Yunfei; Flynn, Ryan T; Siochi, R Alfredo C; Bayouth, John E

    2013-07-08

    The clinical application of the flattening filter-free photon beam (FFF) has enjoyed greater use due to its advantage of reduced treatment time because of the increased dose rate. Its unique beam characteristics, along with the very high-dose rate, require a thorough knowledge of the capability and accuracy in FFF beam modeling, planning, and delivery. This work verifies the feasibility of modeling an equivalent quality unflattened photon beam (eqUF), and the dosimetric accuracy in eqUF beam planning and delivery. An eqUF beam with a beam quality equivalent to a conventional 6 MV photon beam with the filter in place (WF) was modeled for the Pinnacle3 TPS and the beam model quality was evaluated by gamma index test. Results showed that the eqUF beam modeling was similar to that of the WF beam, as the overall passing rate of the 2%/2 mm gamma index test was 99.5% in the eqUF beam model and 96% in the WF beam model. Hypofractionated IMRT plans were then generated with the same constraints using both WF and eqUF beams, and the similarity was evaluated by DVH comparison and generalized 3D gamma index test. The WF and eqUF plans showed no clinically significant differences in DVH comparison and, on average > 98% voxels passed the 3%/3 mm 3D gamma index test. Dosimetric accuracy in gated phantom delivery was verified by ion chamber and film measurements. All ion chamber measurements at the isocenter were within 1% of calculated values and film measurements passed the 3 mm/3% gamma index test with an overall passing rate > 95% in the high-dose and low-gradient region in both WF and eqUF cases. Treatment plan quality assurance (QA), using either measurement-based or independent calculation-based methods of ten clinically treated eqUF IMRT plans were analyzed. In both methods, the point dose differences were all within 2% difference. In the relative 2D dose distribution comparison, >95% points were within 3% dose difference or 3 mm DTA.

  6. Plastic scintillator block as photon beam monitor for EGRET calibration

    NASA Technical Reports Server (NTRS)

    Lin, Y. C.; Hofstadter, R.; Nolan, P. L.; Walker, A. H.; Mattox, J. R.; Hughes, E. B.

    1991-01-01

    The EGRET (Energetic Gamma Ray Experiment Telescope) detector has been calibrated at SLAC (Stanford Linear Accelerator) and, to a lesser degree, at the MIT Bates Linear Accelerator Center. To monitor the photon beams for the calibration, a plastic scintillator block, 5 cm x 5 cm in cross section, 15 cm in length, and viewed by a single photomultiplier tube, was used for the entire beam energy range of 15 MeV to 10 GeV. The design operation, and method of analysis of the beam intensity are presented. A mathematical framework has been developed to treat the general case of a beam with multiphoton beam pulses and with a background component. A procedure to deal with the fluctuations of the beam intensity over a data-taking period was also developed. The photon beam monitor is physically sturdy, electronically steady, simple to construct, and easy to operate. Its major merits lie in its sheer simplicity of construction and operation and in the wide energy range it can cover.

  7. Plastic scintillator block as photon beam monitor for EGRET calibration

    NASA Technical Reports Server (NTRS)

    Lin, Y. C.; Hofstadter, R.; Nolan, P. L.; Walker, A. H.; Mattox, J. R.; Hughes, E. B.

    1991-01-01

    The EGRET (Energetic Gamma Ray Experiment Telescope) detector has been calibrated at SLAC (Stanford Linear Accelerator) and, to a lesser degree, at the MIT Bates Linear Accelerator Center. To monitor the photon beams for the calibration, a plastic scintillator block, 5 cm x 5 cm in cross section, 15 cm in length, and viewed by a single photomultiplier tube, was used for the entire beam energy range of 15 MeV to 10 GeV. The design operation, and method of analysis of the beam intensity are presented. A mathematical framework has been developed to treat the general case of a beam with multiphoton beam pulses and with a background component. A procedure to deal with the fluctuations of the beam intensity over a data-taking period was also developed. The photon beam monitor is physically sturdy, electronically steady, simple to construct, and easy to operate. Its major merits lie in its sheer simplicity of construction and operation and in the wide energy range it can cover.

  8. Radial Moment Calculations of Coupled Electron-Photon Beams

    SciTech Connect

    FRANKE,BRIAN C.; LARSEN,EDWARD W.

    2000-07-19

    The authors consider the steady-state transport of normally incident pencil beams of radiation in slabs of material. A method has been developed for determining the exact radial moments of 3-D beams of radiation as a function of depth into the slab, by solving systems of 1-D transport equations. They implement these radial moment equations in the ONEBFP discrete ordinates code and simulate energy-dependent, coupled electron-photon beams using CEPXS-generated cross sections. Modified P{sub N} synthetic acceleration is employed to speed up the iterative convergence of the 1-D charged particle calculations. For high-energy photon beams, a hybrid Monte Carlo/discrete ordinates method is examined. They demonstrate the efficiency of the calculations and make comparisons with 3-D Monte Carlo calculations. Thus, by solving 1-D transport equations, they obtain realistic multidimensional information concerning the broadening of electron-photon beams. This information is relevant to fields such as industrial radiography, medical imaging, radiation oncology, particle accelerators, and lasers.

  9. Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry.

    PubMed

    Jang, Kyoung Won; Yagi, Takahiro; Pyeon, Cheol Ho; Yoo, Wook Jae; Shin, Sang Hun; Jeong, Chiyoung; Min, Byung Jun; Shin, Dongho; Misawa, Tsuyoshi; Lee, Bongsoo

    2013-02-01

    A Cerenkov fiber-optic dosimeter (CFOD) is fabricated using plastic optical fibers to measure Cerenkov radiation induced by a therapeutic photon beam. We measured the Cerenkov radiation generated in optical fibers in various irradiation conditions to evaluate the usability of Cerenkov radiation for a photon beam therapy dosimetry. As a results, the spectral peak of Cerenkov radiation was measured at a wavelength of 515 nm, and the intensity of Cerenkov radiation increased linearly with increasing irradiated length of the optical fiber. Also, the intensity peak of Cerenkov radiation was measured in the irradiation angle range of 30 to 40 deg. In the results of Monte Carlo N-particle transport code simulations, the relationship between fluxes of electrons over Cerenkov threshold energy and energy deposition of a 6 MV photon beam had a nearly linear trend. Finally, percentage depth doses for the 6 MV photon beam could be obtained using the CFOD and the results were compared with those of an ionization chamber. Here, the mean dose difference was about 0.6%. It is anticipated that the novel and simple CFOD can be effectively used for measuring depth doses in radiotherapy dosimetry.

  10. Radiosurgery with unflattened 6-MV photon beams.

    PubMed

    O'Brien, P F; Gillies, B A; Schwartz, M; Young, C; Davey, P

    1991-01-01

    One of the major drawbacks to doing stereotactic radiosurgery with a linear accelerator is the long time required to deliver the target dose. Single fractions of 25 Gy delivered at the isocenter and at depth in the skull may require beam times in excess of 15 min for a typical linear accelerator with a maximum dose rate of 250 cGy/min in tissue. In an effort to decrease the treatment time for this technique, the flattening filter has been removed from an AECL Therac-6 linear accelerator and the characteristics of the resulting beam have been measured. Flatness is acceptable for the field sizes used with this technique and the dose rate is increased by a factor of 2.75.

  11. Imaging high energy photons with PILATUS II at the tagged photon beam at MAX-lab

    NASA Astrophysics Data System (ADS)

    Lee, V.; Peake, D. J.; Sobott, B.; Schröder, B.; Brönnimann, Ch.; Henrich, B.; Hansen, K.; O'Keefe, G. J.; Taylor, G. N.; Boland, M. J.; Thompson, M. N.; Rassool, R. P.

    2009-05-01

    In photonuclear experiments precise location of the photon beam relative to the experimental sample is critical. Previously used techniques such as using photographic film to identify the position, intensity and centroid of the beam is time-consuming and a faster method is required. PILATUS is a single-photon-counting pixel detector developed at the Paul Scherrer Institute (PSI), Switzerland. It is a silicon-based, two-dimensional detector with a large dynamic range and zero readout noise. Designed as an X-ray detector, its optimal quantum efficiency is between 3 and 30 keV. This paper reports measurements carried out at the MAX-lab tagged photon facility in Lund, Sweden. The beam endpoint energy of approximately 200 MeV is far above the designed optimal energy detection range of PILATUS, and provides a critical test of the use of PILATUS under high energy conditions. The detector was placed in the photon beam and images were taken both downstream of other experiments, and in close range of a 19 mm collimator. The successful measurements demonstrate the versatility and robustness of the detector and provide an effective way of quickly and accurately monitoring beam position and profile in real time.

  12. Role of Stereotactic Body Radiation Therapy with Volumetric-Modulated Arcs and High-Intensity Photon Beams for the Treatment of Abdomino-Pelvic Lymph-Node Metastases.

    PubMed

    Franzese, Ciro; Cozzi, Luca; Franceschini, Davide; D'Agostino, Giuseppe; Comito, Tiziana; De Rose, Fiorenza; Navarria, Pierina; Mancosu, Pietro; Tomatis, Stefano; Fogliata, Antonella; Scorsetti, Marta

    2016-08-08

    To study clinical outcome for oligometastatic patients (abdominal lymph-node metastases) treated with stereotactic body radiation therapy. Seventy-one patients were studied retrospectively. Dose prescription was 45 Gy in six fractions. Clinical outcome was assessed with actuarial analysis. The median follow-up was 1.5 years; 45 patients (63.3%) had solitary metastasis, and 26 (36.6%) had multiple lesions. Local control was achieved in 97.5% with a 1-year actuarial rate of 83%. Two-year progression-free survival was 63.1%, and the overall survival was 76.9%. Two patients (3%) developed grade 2 gastro-enteric toxicity. The treatment provided adequate clinical response in the management of oligometastatic cases.

  13. High intensity X/γ photon beams for nuclear physics and photonics

    NASA Astrophysics Data System (ADS)

    Serafini, L.; Alesini, D.; Bacci, N.; Bliss, N.; Cassou, K.; Curatolo, C.; Drebot, I.; Dupraz, K.; Giribono, A.; Petrillo, V.; Palumbo, L.; Vaccarezza, C.; Variola, A.; Zomer, F.

    2016-05-01

    In this manuscript we review the challenges of Compton backscattering sources in advancing photon beam performances in the 1 - 20 MeV energy range, underlining the design criteria bringing to maximum spectral luminosity and briefly describing the main achievements in conceiving and developing new devices (multi-bunch RF cavities and Laser recirculators) for the case of ELI-NP Gamma Beam System (ELI-NP-GBS).

  14. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOEpatents

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  15. Equivalent (uniform) square field sizes of flattening filter free photon beams

    NASA Astrophysics Data System (ADS)

    Lechner, Wolfgang; Kuess, Peter; Georg, Dietmar; Palmans, Hugo

    2017-10-01

    Various types of treatment units, such as CyberKnife, TomoTherapy and C-arm linear accelerators (LINACs) are operated using flattening filter free (FFF) photon beams. Their reference dosimetry, however, is currently based on codes of practice that provide data which were primarily developed and tested for high-energy photon beams with flattening filter (WFF). The aim of this work was to introduce equivalent uniform square field sizes of FFF beams to serve as a basis of a unified reference dosimetry procedure applicable to all aforementioned FFF machines. For this purpose, in-house determined experimental data together with published data of the ratio of doses at depths of 20 cm and 10 cm in water (D 20,10) were used to characterize the depth dose distribution of 6 and 10 MV WFF and FFF beams. These data were analyzed for field sizes ranging from 2  ×  2 cm2 to 40  ×  40 cm2. A scatter function that takes the lateral profiles of the individual beams into account was fitted to the experimental data. The lateral profiles of the WFF beams were assumed to be uniform, while those of the FFF beams were approximated using fourth or sixth order polynomials. The scatter functions of the FFF beams were recalculated using a uniform lateral profile (the same as the physical profile of the WFF beams), and are henceforth denoted as virtual uniform FFF beams (VUFFF). The field sizes of the VUFFF beams having the same scatter contribution as the corresponding FFF beams at a given field size were defined as the equivalent uniform square field (EQUSF) size. Data from four different LINACs with 18 different beams in total, as well as a CyberKnife beam, were analyzed. The average values of EQUSFs over all investigated LINACs of the conventional 10  ×  10 cm2 reference fields of 6 MV and 10 MV FFF beams for C-arm LINACs and machine-specific reference fields for CyberKnife and TomoTherapy were 9.5 cm, 9 cm, 5.0 cm and 6.5 cm respectively. The

  16. Equivalent (uniform) square field sizes of flattening filter free photon beams.

    PubMed

    Lechner, Wolfgang; Kuess, Peter; Georg, Dietmar; Palmans, Hugo

    2017-09-15

    Various types of treatment units, such as CyberKnife, TomoTherapy and C-arm linear accelerators (LINACs) are operated using flattening filter free (FFF) photon beams. Their reference dosimetry, however, is currently based on codes of practice that provide data which were primarily developed and tested for high-energy photon beams with flattening filter (WFF). The aim of this work was to introduce equivalent uniform square field sizes of FFF beams to serve as a basis of a unified reference dosimetry procedure applicable to all aforementioned FFF machines. For this purpose, in-house determined experimental data together with published data of the ratio of doses at depths of 20 cm and 10 cm in water (D 20,10) were used to characterize the depth dose distribution of 6 and 10 MV WFF and FFF beams. These data were analyzed for field sizes ranging from 2  ×  2 cm(2) to 40  ×  40 cm(2). A scatter function that takes the lateral profiles of the individual beams into account was fitted to the experimental data. The lateral profiles of the WFF beams were assumed to be uniform, while those of the FFF beams were approximated using fourth or sixth order polynomials. The scatter functions of the FFF beams were recalculated using a uniform lateral profile (the same as the physical profile of the WFF beams), and are henceforth denoted as virtual uniform FFF beams (VUFFF). The field sizes of the VUFFF beams having the same scatter contribution as the corresponding FFF beams at a given field size were defined as the equivalent uniform square field (EQUSF) size. Data from four different LINACs with 18 different beams in total, as well as a CyberKnife beam, were analyzed. The average values of EQUSFs over all investigated LINACs of the conventional 10  ×  10 cm(2) reference fields of 6 MV and 10 MV FFF beams for C-arm LINACs and machine-specific reference fields for CyberKnife and TomoTherapy were 9.5 cm, 9 cm, 5.0 cm and 6.5 cm respectively

  17. The Evaluation and Study of Modern Radiation Dosimetry Methods as Applied to Advanced Radiation Therapy Treatments Using Intensity Modulated Megavoltage Photon Beams

    NASA Astrophysics Data System (ADS)

    Stambaugh, Cassandra K. K.

    The purpose of this work is to evaluate quasi-3D arrays for use with intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) and to determine their clinical relevance. This is achieved using a Delta4 from Scandidos and ArcCheck from Sun Nuclear and the associated software. While certain aspects of these devices and software have been previously evaluated, the main goal of this work is to evaluate the new aspects, such as reconstructing dose on a patient CT set, and extending the capabilities. This includes the capability to reconstruct the dose based on a helical delivery as well as studying the dose to a moving target using measurement-guided motion simulations. It was found that Sun Nuclear's ArcCheck/3DVH system exhibited excellent agreement for dose reconstruction for IMRT/VMAT using a traditional C-arm linear accelerator and stringent 2%/2mm comparison constraints. It also is a powerful tool for measurement-guided dose estimates for moving targets, allowing for many simulations to be performed based on one measurement and the target motion data. For dose reconstruction for a helical delivery, the agreement was not as good for the stringent comparison but was reasonable for the clinically acceptable 3%/3mm comparison. Scandidos' Delta4 shows good agreement with stringent 2%/2mm constraints for its dose reconstruction on the phantom. However, the dose reconstruction on the patient CT set was poor and needs more work. Overall, it was found that quasi-3D arrays are powerful tools for dose reconstruction and treatment plan comparisons. The ability to reconstruct the dose allows for a dose resolution comparable to the treatment plan, which negates the previous issues with inadequate sampling and resolution issues found when just comparing the diodes. The ability to quickly and accurately compare many plans and target motions with minimum setup makes the quasi-3D array an attractive tool for both commissioning and patient specific

  18. High-efficiency beam bending using graded photonic crystals.

    PubMed

    Oner, B B; Turduev, M; Kurt, H

    2013-05-15

    We explore beam-bending properties of graded index (GRIN) waveguide with hyperbolic secant profile. The transmission efficiency and bandwidth features are extracted for GRIN photonic crystal (PC) media composed of dielectric rods. Light guiding performance of the GRIN PC medium is analyzed for 90° and 180° waveguide bends. The finite-difference time-domain method is deployed to investigate the performance of the designed GRIN waveguides. By the help of proposed photonic configuration, bending of light is achieved with a high efficiency within a broad bandwidth, which promotes the use of GRIN PC structures for efficient light-bending purposes.

  19. Simultaneous optimization of photons and electrons for mixed beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Fix, M. K.; Joosten, A.; Henzen, D.; Frei, D.; Volken, W.; Kueng, R.; Aebersold, D. M.; Stampanoni, M. F. M.; Manser, P.

    2017-07-01

    The aim of this work is to develop and investigate an inverse treatment planning process (TPP) for mixed beam radiotherapy (MBRT) capable of performing simultaneous optimization of photon and electron apertures. A simulated annealing based direct aperture optimization (DAO) is implemented to perform simultaneous optimization of photon and electron apertures, both shaped with the photon multileaf collimator (pMLC). Validated beam models are used as input for Monte Carlo dose calculations. Consideration of photon pMLC transmission during DAO and a weight re-optimization of the apertures after deliverable dose calculation are utilized to efficiently reduce the differences between optimized and deliverable dose distributions. The TPP for MBRT is evaluated for an academic situation with a superficial and an enlarged PTV in the depth, a left chest wall case including the internal mammary chain and a squamous cell carcinoma case. Deliverable dose distributions of MBRT plans are compared to those of modulated electron radiotherapy (MERT), photon IMRT and if available to those of clinical VMAT plans. The generated MBRT plans dosimetrically outperform the MERT, photon IMRT and VMAT plans for all investigated situations. For the clinical cases of the left chest wall and the squamous cell carcinoma, the MBRT plans cover the PTV similarly or more homogeneously than the VMAT plans, while OARs are spared considerably better with average reductions of the mean dose to parallel OARs and D 2% to serial OARs by 54% and 26%, respectively. Moreover, the low dose bath expressed as V 10% to normal tissue is substantially reduced by up to 45% compared to the VMAT plans. A TPP for MBRT including simultaneous optimization is successfully implemented and the dosimetric superiority of MBRT plans over MERT, photon IMRT and VMAT plans is demonstrated for academic and clinical situations including superficial targets with and without deep-seated part.

  20. Photon Beam Diagnostics for VISA FEL

    SciTech Connect

    Murokh, A.; Pellegrini, C.; Rosenzweig, J.; Frigola, P.; Musumeci, P.; Tremaine, A.; Babzien, M.; Ben-Zvi, I.; Doyuran, A.; Johnson, E.; Skaritka, J.; Wang, X.J.; Van Bibber, K.; Hill, J.M.; LeSage, G.P.; Nguyen, D.; Cornacchia, M.

    1999-11-05

    The VISA (Visible to Infrared SASE Amplifier) project is designed to be a SASE-FEL driven to saturation in the sub-micron wavelength region. Its goal is to test various aspects of the existing theory of Self-Amplified Spontaneous Emission, as well as numerical codes. Measurements include: angular and spectral distribution of the FEL light at the exit and inside of the undulator; electron beam micro-bunching using CTR; single-shot time resolved measurements of the pulse profile, using auto-correlation technique and FROG algorithm. The diagnostics are designed to provide maximum information on the physics of the SASE-FEL process, to ensure a close comparison of the experimental results with theory and simulations.

  1. A comparison of methods for monitoring photon beam energy constancy.

    PubMed

    Gao, Song; Balter, Peter A; Rose, Mark; Simon, William E

    2016-11-08

    In extension of a previous study, we compared several photon beam energy metrics to determine which was the most sensitive to energy change; in addition to those, we accounted for both the sensitivity of each metric and the uncertainty in determining that metric for both traditional flattening filter (FF) beams (4, 6, 8, and 10 MV) and for flattening filter-free (FFF) beams (6 and 10 MV) on a Varian TrueBeam. We examined changes in these energy metrics when photon energies were changed to ± 5% and ± 10% from their nominal energies: 1) an attenuation-based metric (the percent depth dose at 10 cm depth, PDD(10)) and, 2) profile-based metrics, including flatness (Flat) and off-axis ratios (OARs) measured on the orthogonal axes or on the diagonals (diagonal normalized flatness, FDN). Profile-based metrics were measured near dmax and also near 10 cm depth in water (using a 3D scanner) and with ioniza-tion chamber array (ICA). PDD(10) was measured only in water. Changes in PDD, OAR, and FDN were nearly linear to the changes in the bend magnet current (BMI) over the range from -10% to +10% for both FF and FFF beams: a ± 10% change in energy resulted in a ± 1.5% change in PDD(10) for both FF and FFF beams, and changes in OAR and FDN were > 3.0% for FF beams and > 2.2% for FFF beams. The uncertainty in determining PDD(10) was estimated to be 0.15% and that for OAR and FDN about 0.07%. This resulted in minimally detectable changes in energy of 2.5% for PDD(10) and 0.5% for OAR and FDN. We found that the OAR- or FDN- based metrics were the best for detecting energy changes for both FF and FFF beams. The ability of the OAR-based metrics determined with a water scanner to detect energy changes was equivalent to that using an ionization chamber array. We recommend that OAR be measured either on the orthogonal axes or the diagonals, using an ionization chamber array near the depth of maximum dose, as a sensitive and efficient way to confirm stability of photon beam energy.

  2. Characteristics of mobile MOSFET dosimetry system for megavoltage photon beams

    PubMed Central

    Kumar, A. Sathish; Sharma, S. D.; Ravindran, B. Paul

    2014-01-01

    The characteristics of a mobile metal oxide semiconductor field effect transistor (mobile MOSFET) detector for standard bias were investigated for megavoltage photon beams. This study was performed with a brass alloy build-up cap for three energies namely Co-60, 6 and 15 MV photon beams. The MOSFETs were calibrated and the performance characteristics were analyzed with respect to dose rate dependence, energy dependence, field size dependence, linearity, build-up factor, and angular dependence for all the three energies. A linear dose-response curve was noted for Co-60, 6 MV, and 15 MV photons. The calibration factors were found to be 1.03, 1, and 0.79 cGy/mV for Co-60, 6 MV, and 15 MV photon energies, respectively. The calibration graph has been obtained to the dose up to 600 cGy, and the dose-response curve was found to be linear. The MOSFETs were found to be energy independent both for measurements performed at depth as well as on the surface with build-up. However, field size dependence was also analyzed for variable field sizes and found to be field size independent. Angular dependence was analyzed by keeping the MOSFET dosimeter in parallel and perpendicular orientation to the angle of incidence of the radiation with and without build-up on the surface of the phantom. The maximum variation for the three energies was found to be within ± 2% for the gantry angles 90° and 270°, the deviations without the build-up for the same gantry angles were found to be 6%, 25%, and 60%, respectively. The MOSFET response was found to be independent of dose rate for all three energies. The dosimetric characteristics of the MOSFET detector make it a suitable in vivo dosimeter for megavoltage photon beams. PMID:25190992

  3. Characteristics of mobile MOSFET dosimetry system for megavoltage photon beams.

    PubMed

    Kumar, A Sathish; Sharma, S D; Ravindran, B Paul

    2014-07-01

    The characteristics of a mobile metal oxide semiconductor field effect transistor (mobile MOSFET) detector for standard bias were investigated for megavoltage photon beams. This study was performed with a brass alloy build-up cap for three energies namely Co-60, 6 and 15 MV photon beams. The MOSFETs were calibrated and the performance characteristics were analyzed with respect to dose rate dependence, energy dependence, field size dependence, linearity, build-up factor, and angular dependence for all the three energies. A linear dose-response curve was noted for Co-60, 6 MV, and 15 MV photons. The calibration factors were found to be 1.03, 1, and 0.79 cGy/mV for Co-60, 6 MV, and 15 MV photon energies, respectively. The calibration graph has been obtained to the dose up to 600 cGy, and the dose-response curve was found to be linear. The MOSFETs were found to be energy independent both for measurements performed at depth as well as on the surface with build-up. However, field size dependence was also analyzed for variable field sizes and found to be field size independent. Angular dependence was analyzed by keeping the MOSFET dosimeter in parallel and perpendicular orientation to the angle of incidence of the radiation with and without build-up on the surface of the phantom. The maximum variation for the three energies was found to be within ± 2% for the gantry angles 90° and 270°, the deviations without the build-up for the same gantry angles were found to be 6%, 25%, and 60%, respectively. The MOSFET response was found to be independent of dose rate for all three energies. The dosimetric characteristics of the MOSFET detector make it a suitable in vivo dosimeter for megavoltage photon beams.

  4. New limits on hidden photons from past electron beam dumps

    NASA Astrophysics Data System (ADS)

    Andreas, Sarah; Niebuhr, Carsten; Ringwald, Andreas

    2012-11-01

    Hidden sectors with light extra U(1) gauge bosons, so-called hidden photons, have recently attracted some attention because they are a common feature of physics beyond the Standard Model like string theory and supersymmetry and additionally are phenomenologically of great interest regarding recent astrophysical observations. The hidden photon is already constrained by various laboratory experiments and presently searched for in running as well as upcoming experiments. We summarize the current status of limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at the High Energy Accelerator Research Organization in Japan (KEK) and the Laboratoire de l’accelérateur linéaire (LAL, Orsay) that have so far not been considered. All our limits take into account the experimental acceptances obtained from Monte Carlo simulations.

  5. Future Directions in Ion Beam Therapy

    NASA Astrophysics Data System (ADS)

    Habermehl, Daniel; Combs, Stephanie; Debus, Jürgen

    There is a growing interest in ion beam therapy (IBT) worldwide which has led to an increasing number of new treatment facilities. This development is accompanied by intensive radiobiological, physical and clinical research of both proton therapy (PT) and carbon ion radiotherapy (CIRT). Current developments in IBT with high impact for future challenges will be summarized in this chapter.

  6. Particle beam therapy (hadrontherapy): basis for interest and clinical experience.

    PubMed

    Orecchia, R; Zurlo, A; Loasses, A; Krengli, M; Tosi, G; Zurrida, S; Zucali, P; Veronesi, U

    1998-03-01

    The particle or hadron beams deployed in radiotherapy (protons, neutrons and helium, carbon, oxygen and neon ions) have physical and radiobiological characteristics which differ from those of conventional radiotherapy beams (photons) and which offer a number of theoretical advantages over conventional radiotherapy. After briefly describing the properties of hadron beams in comparison to photons, this review discusses the indications for hadrontherapy and analyses accumulated experience on the use of this modality to treat mainly neoplastic lesions, as published by the relatively few hadrontherapy centres operating around the world. The analysis indicates that for selected patients and tumours (particularly uveal melanomas and base of skull/spinal chordomas and chondrosarcomas), hadrontherapy produces greater disease-free survival. The advantages of hadrontherapy are most promisingly realised when used in conjunction with modern patient positioning, radiation delivery and focusing techniques (e.g. on-line imaging, three-dimensional conformal radiotherapy) developed to improve the efficacy of photon therapy. Although the construction and running costs of hadrontherapy units are considerably greater than those of conventional facilities, a comprehensive analysis that considers all the costs, particularly those resulting from the failure of less effective conventional radiotherapy, might indicate that hadrontherapy could be cost effective. In conclusion, the growing interest in this form of treatment seems to be fully justified by the results obtained to date, although more efficacy and dosing studies are required.

  7. Two-dimensional silicon-based detectors for ion beam therapy

    NASA Astrophysics Data System (ADS)

    Martišíková, M.; Granja, C.; Jakůbek, J.; Hartmann, B.; Telsemeyer, J.; Huber, L.; Brons, S.; Pospíšil, S.; Jäkel, O.

    2012-02-01

    Radiation therapy with ion beams is a highly precise kind of cancer treatment. As ion beams traverse material, the highest ionization density occurs at the end of their path. Due to this Bragg-peak, ion beams enable higher dose conformation to the tumor and increased sparing of the surrounding tissue, in comparison to standard radiation therapy using high energy photons. Ions heavier than protons offer in addition increased biological effectiveness and lower scattering. The Heidelberg Ion Beam Therapy Center (HIT) is a state-of-the-art ion beam therapy facility and the first hospital-based facility in Europe. It provides proton and carbon ion treatments. A synchrotron is used for ion acceleration. For dose delivery to the patient, narrow pencil-like beams are scanned over the target volume.

  8. A pencil beam algorithm for helium ion beam therapy.

    PubMed

    Fuchs, Hermann; Strobele, Julia; Schreiner, Thomas; Hirtl, Albert; Georg, Dietmar

    2012-11-01

    To develop a flexible pencil beam algorithm for helium ion beam therapy. Dose distributions were calculated using the newly developed pencil beam algorithm and validated using Monte Carlo (MC) methods. The algorithm was based on the established theory of fluence weighted elemental pencil beam (PB) kernels. Using a new real-time splitting approach, a minimization routine selects the optimal shape for each sub-beam. Dose depositions along the beam path were determined using a look-up table (LUT). Data for LUT generation were derived from MC simulations in water using GATE 6.1. For materials other than water, dose depositions were calculated by the algorithm using water-equivalent depth scaling. Lateral beam spreading caused by multiple scattering has been accounted for by implementing a non-local scattering formula developed by Gottschalk. A new nuclear correction was modelled using a Voigt function and implemented by a LUT approach. Validation simulations have been performed using a phantom filled with homogeneous materials or heterogeneous slabs of up to 3 cm. The beams were incident perpendicular to the phantoms surface with initial particle energies ranging from 50 to 250 MeV/A with a total number of 10(7) ions per beam. For comparison a special evaluation software was developed calculating the gamma indices for dose distributions. In homogeneous phantoms, maximum range deviations between PB and MC of less than 1.1% and differences in the width of the distal energy fall off of the Bragg-Peak from 80% to 20% of less than 0.1 mm were found. Heterogeneous phantoms using layered slabs satisfied a γ-index criterion of 2%/2mm of the local value except for some single voxels. For more complex phantoms using laterally arranged bone-air slabs, the γ-index criterion was exceeded in some areas giving a maximum γ-index of 1.75 and 4.9% of the voxels showed γ-index values larger than one. The calculation precision of the presented algorithm was considered to be sufficient

  9. A pencil beam algorithm for helium ion beam therapy

    SciTech Connect

    Fuchs, Hermann; Stroebele, Julia; Schreiner, Thomas; Hirtl, Albert; Georg, Dietmar

    2012-11-15

    Purpose: To develop a flexible pencil beam algorithm for helium ion beam therapy. Dose distributions were calculated using the newly developed pencil beam algorithm and validated using Monte Carlo (MC) methods. Methods: The algorithm was based on the established theory of fluence weighted elemental pencil beam (PB) kernels. Using a new real-time splitting approach, a minimization routine selects the optimal shape for each sub-beam. Dose depositions along the beam path were determined using a look-up table (LUT). Data for LUT generation were derived from MC simulations in water using GATE 6.1. For materials other than water, dose depositions were calculated by the algorithm using water-equivalent depth scaling. Lateral beam spreading caused by multiple scattering has been accounted for by implementing a non-local scattering formula developed by Gottschalk. A new nuclear correction was modelled using a Voigt function and implemented by a LUT approach. Validation simulations have been performed using a phantom filled with homogeneous materials or heterogeneous slabs of up to 3 cm. The beams were incident perpendicular to the phantoms surface with initial particle energies ranging from 50 to 250 MeV/A with a total number of 10{sup 7} ions per beam. For comparison a special evaluation software was developed calculating the gamma indices for dose distributions. Results: In homogeneous phantoms, maximum range deviations between PB and MC of less than 1.1% and differences in the width of the distal energy falloff of the Bragg-Peak from 80% to 20% of less than 0.1 mm were found. Heterogeneous phantoms using layered slabs satisfied a {gamma}-index criterion of 2%/2mm of the local value except for some single voxels. For more complex phantoms using laterally arranged bone-air slabs, the {gamma}-index criterion was exceeded in some areas giving a maximum {gamma}-index of 1.75 and 4.9% of the voxels showed {gamma}-index values larger than one. The calculation precision of the

  10. AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams.

    PubMed

    Almond, P R; Biggs, P J; Coursey, B M; Hanson, W F; Huq, M S; Nath, R; Rogers, D W

    1999-09-01

    A protocol is prescribed for clinical reference dosimetry of external beam radiation therapy using photon beams with nominal energies between 60Co and 50 MV and electron beams with nominal energies between 4 and 50 MeV. The protocol was written by Task Group 51 (TG-51) of the Radiation Therapy Committee of the American Association of Physicists in Medicine (AAPM) and has been formally approved by the AAPM for clinical use. The protocol uses ion chambers with absorbed-dose-to-water calibration factors, N(60Co)D,w which are traceable to national primary standards, and the equation D(Q)w = MkQN(60Co)D,w where Q is the beam quality of the clinical beam, D(Q)w is the absorbed dose to water at the point of measurement of the ion chamber placed under reference conditions, M is the fully corrected ion chamber reading, and kQ is the quality conversion factor which converts the calibration factor for a 60Co beam to that for a beam of quality Q. Values of kQ are presented as a function of Q for many ion chambers. The value of M is given by M = PionP(TP)PelecPpolMraw, where Mraw is the raw, uncorrected ion chamber reading and Pion corrects for ion recombination, P(TP) for temperature and pressure variations, Pelec for inaccuracy of the electrometer if calibrated separately, and Ppol for chamber polarity effects. Beam quality, Q, is specified (i) for photon beams, by %dd(10)x, the photon component of the percentage depth dose at 10 cm depth for a field size of 10x10 cm2 on the surface of a phantom at an SSD of 100 cm and (ii) for electron beams, by R50, the depth at which the absorbed-dose falls to 50% of the maximum dose in a beam with field size > or =10x10 cm2 on the surface of the phantom (> or =20x20 cm2 for R50>8.5 cm) at an SSD of 100 cm. R50 is determined directly from the measured value of I50, the depth at which the ionization falls to 50% of its maximum value. All clinical reference dosimetry is performed in a water phantom. The reference depth for calibration

  11. Consistency check of photon beam physical data after recommissioning process

    NASA Astrophysics Data System (ADS)

    Kadman, B.; Chawapun, N.; Ua-apisitwong, S.; Asakit, T.; Chumpu, N.; Rueansri, J.

    2016-03-01

    In radiotherapy, medical linear accelerator (Linac) is the key system used for radiation treatments delivery. Although, recommissioning was recommended after major modification of the machine by AAPM TG53, but it might not be practical in radiotherapy center with heavy workloads. The main purpose of this study was to compare photon beam physical data between initial commissioning and recommissioning of 6 MV Elekta Precise linac. The parameters for comparing were the percentage depth dose (PDD) and beam profiles. The clinical commissioning test cases followed IAEA-TECDOC-1583 were planned on REF 91230 IMRT Dose Verification Phantom by Philips’ Pinnacle treatment planning system. The Delta4PT was used for dose distribution verification with 90% passing criteria of the gamma index (3%/3mm). Our results revealed that the PDDs and beam profiles agreed within a tolerance limit recommended by TRS430. Most of the point doses and dose distribution verification passed the acceptance criteria. This study showed the consistency of photon beam physical data after recommissioning process. There was a good agreement between initial commissioning and recommissioning within a tolerance limit, demonstrated that the full recommissioning process might not be required. However, in the complex treatment planning geometry, the initial data should be applied with great caution.

  12. Intermediate Megavoltage Photon Beams for Improved Lung Cancer Treatments

    PubMed Central

    Zhang, Ying; Feng, Yuanming; Ahmad, Munir; Ming, Xin; Zhou, Li; Deng, Jun

    2015-01-01

    The goal of this study is to evaluate the effects of intermediate megavoltage (3-MV) photon beams on SBRT lung cancer treatments. To start with, a 3-MV virtual beam was commissioned on a commercial treatment planning system based on Monte Carlo simulations. Three optimized plans (6-MV, 3-MV and dual energy of 3- and 6-MV) were generated for 31 lung cancer patients with identical beam configuration and optimization constraints for each patient. Dosimetric metrics were evaluated and compared among the three plans. Overall, planned dose conformity was comparable among three plans for all 31 patients. For 21 thin patients with average short effective path length (< 10 cm), the 3-MV plans showed better target coverage and homogeneity with dose spillage index R50% = 4.68±0.83 and homogeneity index = 1.26±0.06, as compared to 4.95±1.01 and 1.31±0.08 in the 6-MV plans (p < 0.001). Correspondingly, the average/maximum reductions of lung volumes receiving 20 Gy (V20Gy), 5 Gy (V5Gy), and mean lung dose (MLD) were 7%/20%, 9%/30% and 5%/10%, respectively in the 3-MV plans (p < 0.05). The doses to 5% volumes of the cord, esophagus, trachea and heart were reduced by 9.0%, 10.6%, 11.4% and 7.4%, respectively (p < 0.05). For 10 thick patients, dual energy plans can bring dosimetric benefits with comparable target coverage, integral dose and reduced dose to the critical structures, as compared to the 6-MV plans. In conclusion, our study indicated that 3-MV photon beams have potential dosimetric benefits in treating lung tumors in terms of improved tumor coverage and reduced doses to the adjacent critical structures, in comparison to 6-MV photon beams. Intermediate megavoltage photon beams (< 6-MV) may be considered and added into current treatment approaches to reduce the adjacent normal tissue doses while maintaining sufficient tumor dose coverage in lung cancer radiotherapy. PMID:26672752

  13. Radical distributions in ammonium tartrate single crystals exposed to photon and neutron beams.

    PubMed

    Marrale, M; Longo, A; Barbon, A; Brustolon, M; Brai, M

    2014-10-01

    The radiation therapy carried out by means of heavy charged particles (such as carbon ions) and neutrons is rapidly becoming widespread worldwide. The success of these radiation therapies relies on the high density of energy released by these particles or by secondary particles produced after primary interaction with matter. The biological damages produced by ionising radiations in tissues and cells depend more properly on the energy released per unit pathlength, which is the linear energy transfer and which determines the radiation quality. To improve the therapy effectiveness, it is necessary to grasp the mechanisms of free radical production and distribution after irradiation with these particles when compared with the photon beams. In this work some preliminary results on the analysis of the spatial distributions of the free radicals produced after exposure of ammonium tartrate crystals to various radiation beams ((60)Co gamma photons and thermal neutrons) were reported. Electron spin resonance analyses were performed by the electron spin echo technique, which allows the determination of local spin concentrations and by double electron-electron resonance technique, which is able to measure the spatial distance distribution (range 1.5-8 nm) among pairs of radicals in solids. The results of these analyses are discussed on the basis of the different distributions of free radicals produced by the two different radiation beams used. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Clinical implementation of photon beam flatness measurements to verify beam quality.

    PubMed

    Goodall, Simon; Harding, Nicholas; Simpson, Jake; Alexander, Louise; Morgan, Steve

    2015-11-08

    This work describes the replacement of Tissue Phantom Ratio (TPR) measurements with beam profile flatness measurements to determine photon beam quality during routine quality assurance (QA) measurements. To achieve this, a relationship was derived between the existing TPR15/5 energy metric and beam flatness, to provide baseline values and clinically relevant tolerances. The beam quality was varied around two nominal beam energy values for four matched Elekta linear accelerators (linacs) by varying the bending magnet currents and reoptimizing the beam. For each adjusted beam quality the TPR15/5 was measured using an ionization chamber and Solid Water phantom. Two metrics of beam flatness were evaluated using two identical commercial ionization chamber arrays. A linear relationship was found between TPR15/5 and both metrics of flatness, for both nominal energies and on all linacs. Baseline diagonal flatness (FDN) values were measured to be 103.0% (ranging from 102.5% to 103.8%) for 6 MV and 102.7% (ranging from 102.6% to 102.8%) for 10 MV across all four linacs. Clinically acceptable tolerances of ± 2% for 6 MV, and ± 3% for 10 MV, were derived to equate to the current TPR15/5 clinical tolerance of ± 0.5%. Small variations in the baseline diagonal flatness values were observed between ionization chamber arrays; however, the rate of change of TPR15/5 with diagonal flatness was found to remain within experimental uncertainty. Measurements of beam flatness were shown to display an increased sensitivity to variations in the beam quality when compared to TPR measurements. This effect is amplified for higher nominal energy photons. The derivation of clinical baselines and associated tolerances has allowed this method to be incorporated into routine QA, streamlining the process whilst also increasing versatility. In addition, the effect of beam adjustment can be observed in real time, allowing increased practicality during corrective and preventive maintenance

  15. On bolus for megavoltage photon and electron radiation therapy

    SciTech Connect

    Vyas, Vedang; Palmer, Lisa; Mudge, Ray; Jiang, Runqing; Fleck, Andre; Schaly, Bryan; Osei, Ernest; Charland, Paule

    2013-10-01

    Frequently, in radiation therapy one must treat superficial lesions on cancer patients; these are at or adjacent to the skin. Megavoltage photon radiotherapy penetrates through the skin to irradiate deep-seated tumors, with skin-sparing property. Hence, to treat superficial lesions, one must use a layer of scattering material to feign as the skin surface. Although megavoltage electron beams are used for superficial treatments, one occasionally needs to enhance the dose near the surface. Such is the function of a “bolus,” a natural or synthetically developed material that acts as a layer of tissue to provide a more effective treatment to the superficial lesions. Other uses of boluses are to correct for varying surface contours and to add scattering material around the patient's surface. Materials used as bolus vary from simple water to metal and include various mixtures and compounds. Even with the modernization of the technology for external-beam therapy and the emergence of various commercial boluses, the preparation and utilization of a bolus in clinical radiotherapy remains an art. Considering the varying experiences and practices, this paper briefly summarizes available boluses that have been proposed and are employed in clinical radiotherapy. Although this review is not exhaustive, it provides some initial guidance and answers questions that may arise in clinical practice.

  16. Workshop on photon activation therapy: proceedings

    SciTech Connect

    Fairchild, R.G.

    1985-04-18

    This Workshop was held concurrently with an IAEA Research Coordination Meeting on Exploration of the Possibility of High-LET Radiation for Non-conventional Radiotherapy in Cancer. The Workshop on Photon Activation Therapy (PAT) was given as a special session on April 18, as it was thoght PAT might eventually be found to be attractive to developing countries, which is a major concern of the IAEA. An effort was made to bring together representatives of the various groups known to be actively working on PAT; these included investigators from Sweden and Japan as well as the US. It is hoped that this compendium of papers will be of use to those currently active in this developing field, as well as to those who might join this area of endeavor in the future.

  17. Analysis and control of the photon beam position at PLS-II

    PubMed Central

    Ko, J.; Kim, I.-Y.; Kim, C.; Kim, D.-T.; Huang, J.-Y.; Shin, S.

    2016-01-01

    At third-generation light sources, the photon beam position stability is a critical issue for user experiments. In general, photon beam position monitors are developed to detect the real photon beam position, and the position is controlled by a feedback system in order to maintain the reference photon beam position. At Pohang Light Source II, a photon beam position stability of less than 1 µm r.m.s. was achieved for a user service period in the beamline, where the photon beam position monitor is installed. Nevertheless, a detailed analysis of the photon beam position data was necessary in order to ensure the performance of the photon beam position monitor, since it can suffer from various unknown types of noise, such as background contamination due to upstream or downstream dipole radiation, and undulator gap dependence. This paper reports the results of a start-to-end study of the photon beam position stability and a singular value decomposition analysis to confirm the reliability of the photon beam position data. PMID:26917132

  18. Fission product yield measurements using monoenergetic photon beams

    NASA Astrophysics Data System (ADS)

    Krishichayan; Bhike, M.; Tonchev, A. P.; Tornow, W.

    2017-09-01

    Measurements of fission products yields (FPYs) are an important source of information on the fission process. During the past couple of years, a TUNL-LANL-LLNL collaboration has provided data on the FPYs from quasi monoenergetic neutron-induced fission on 235U, 238U, and 239Pu and has revealed an unexpected energy dependence of both asymmetric fission fragments at energies below 4 MeV. This peculiar FPY energy dependence was more pronounced in neutron-induced fission of 239Pu. In an effort to understand and compare the effect of the incoming probe on the FPY distribution, we have carried out monoenergetic photon-induced fission experiments on the same 235U, 238U, and 239Pu targets. Monoenergetic photon beams of Eγ = 13.0 MeV were provided by the HIγS facility, the world's most intense γ-ray source. In order to determine the total number of fission events, a dual-fission chamber was used during the irradiation. These irradiated samples were counted at the TUNL's low-background γ-ray counting facility using high efficient HPGe detectors over a period of 10 weeks. Here we report on our first ever photofission product yield measurements obtained with monoenegetic photon beams. These results are compared with neutron-induced FPY data.

  19. Deconfinement of Quarks with TeV Attosecond Photon Beams

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2010-02-01

    Recently, I have proposed a novel heuristic method for the deconfinement of quarks.footnotetextM. Gell-Mann. The Quark and the Jaguar: Adventures in the Simple and the Complex (New York, NY: W.H. Freeman and Co., 1994) [cf. M. Gell-Mann, The Garden of Live Flowers in: V. Stefan (Editor), Physics and Society. Essays Honoring Victor Frederick Weisskopf (Springer, 1998), pp. 109-121]. It proceeds in two phases.footnotetextV. Alexander Stefan, On a Heuristic Point of View About Inertial Deconfinement of Quarks, American Physical Society, 2009 APS April Meeting, May 2-5, 2009, abstract #E1.038. Firstly, a frozen hydrogen pellet is inertially confined by the ultra-intense lasers up to a solid state density. Secondly, a solid state nano-pellet is ``punched'' by the photon beam created in the beat wave driven free electron laser (BW-FEL), leading to the ``rapture'' (in a ``karate chop'' model) of the ``MIT Bag''footnotetextJ. I. Friedman and H. Kendall, Viki, in: V. Stefan (Editor), Physics and Society. (Springer, 1998), pp. 103-108]. before the asymptotically free quarks move apart. Hereby, I propose TeV, a few 100s attosecond, photon beams in interaction with the nano-pellet. The threshold ``rapture force'' of the TeV attosecond photon is 10^7 N. )

  20. Use of CEA TVS film for measuring high energy photon beam dose distributions.

    PubMed

    Cadman, P

    1998-08-01

    CEA TVS film is a therapy verification film that has been recently introduced in the North American market. This film features linear characteristic curves for photon energies from 137Cs to 18 MV as reported by Cheng and Das [Med. Phys. 23, 1225 (1996)]. In Saskatoon, TVS film was investigated for its application in the measurement of dose distributions with 4 and 18 MV linacs and a 60Co unit. The TVS film jacket has a layer of conductive material that has a minimal effect on the film's response. Film sensitivity generally increases for exposures normal to the incident beam as compared with parallel exposures, but was highly dependent on beam energy and depth of measurement. Fractional depth doses obtained in the parallel orientation agreed well with ion chamber measurements for the linac beams at depths beyond Dmax; ion chamber measurements differed by a maximum of 1.6% and 2.6% for the 4 and 18 MV beams, respectively. In the buildup region, an increase in film response was found when compared to the ion chamber measurements for both linac beams. With the 60Co beam, the TVS film showed an increase in sensitivity with depth as the proportion of scattered soft x rays increases; the maximum difference between ion chamber and film fractional depth doses was 7.8%. The TVS film demonstrates a substantial improvement over Kodak X-Omat V film for measuring depth doses in the parallel orientation, for all beams considered. Generally, the results confirm TVS film as an accurate and practical dosimeter for the measurement of dose distributions in high energy photon beams.

  1. Mechanically tunable photonic crystal split-beam nanocavity

    NASA Astrophysics Data System (ADS)

    Lin, Tong; Zou, Yongchao; Zhou, Guangya; Chau, Fook Siong; Deng, Jie

    2016-03-01

    Photonic crystal split-beam nanocavities allow for ultra-sensitive optomechanical transductions but are degraded due to their relatively low optical quality factors. We report our recent work in designing a new type of one-dimensional photonic crystal split-beam nanocavity optimized for an ultra-high optical quality factor. The design is based on the combination of the deterministic method and hill-climbing algorithm. The latter is the simplest and most straightforward method of the local search algorithm, which provides the local maximum of the chosen quality factors. This split-beam nanocavity is made up of two mechanical uncoupled cantilever beams with Bragg mirrors patterned onto it and separated by a 75 nm air gap. Experimental results emphasize that the quality factor of the second order TE mode can be as high as 19,900. Additionally, one beam of the device is actuated in the lateral direction with the aid of a NEMS actuator and the quality factor maintains quite well even there's a lateral offset up to 64 nm. We also apply Fano resonance to further increase the Q-factor by constructing two interfering channels. Before tuning, the original Q-factor is 60,000; it's noteworthy that the topmost Q-factor reaches 67,000 throughout out-of-plane electrostatic force tuning. The dynamic mechanical modes of two devices is analyzed as well. Potentially promising applications, such as ultra-sensitive optomechanical torque sensor, local tuning of fano resonance, all-optical-reconfigurable filters etc, are foreseen.

  2. Characterization of electron contamination in megavoltage photon beams

    SciTech Connect

    Medina, Antonio Lopez; Teijeiro, Antonio; Garcia, Juan; Esperon, Jorge; Terron, J. Antonio; Ruiz, Diego P.; Carrion, Maria C.

    2005-05-01

    The purpose of the present study is to characterize electron contamination in photon beams in different clinical situations. Variations with field size, beam modifier (tray, shaping block) and source-surface distance (SSD) were studied. Percentage depth dose measurements with and without a purging magnet and replacing the air by helium were performed to identify the two electron sources that are clearly differentiated: air and treatment head. Previous analytical methods were used to fit the measured data, exploring the validity of these models. Electrons generated in the treatment head are more energetic and more important for larger field sizes, shorter SSD, and greater depths. This difference is much more noticeable for the 18 MV beam than for the 6 MV beam. If a tray is used as beam modifier, electron contamination increases, but the energy of these electrons is similar to that of electrons coming from the treatment head. Electron contamination could be fitted to a modified exponential curve. For machine modeling in a treatment planning system, setting SSD at 90 cm for input data could reduce errors for most isocentric treatments, because they will be delivered for SSD ranging from 80 to 100 cm. For very small field sizes, air-generated electrons must be considered independently, because of their different energetic spectrum and dosimetric influence.

  3. Characterization of electron contamination in megavoltage photon beams.

    PubMed

    Lopez Medina, Antonio; Teijeiro, Antonio; Garcia, Juan; Esperon, Jorge; Terron, J Antonio; Ruiz, Diego P; Carrion, Maria C

    2005-05-01

    The purpose of the present study is to characterize electron contamination in photon beams in different clinical situations. Variations with field size, beam modifier (tray, shaping block) and source-surface distance (SSD) were studied. Percentage depth dose measurements with and without a purging magnet and replacing the air by helium were performed to identify the two electron sources that are clearly differentiated: air and treatment head. Previous analytical methods were used to fit the measured data, exploring the validity of these models. Electrons generated in the treatment head are more energetic and more important for larger field sizes, shorter SSD, and greater depths. This difference is much more noticeable for the 18 MV beam than for the 6 MV beam. If a tray is used as beam modifier, electron contamination increases, but the energy of these electrons is similar to that of electrons coming from the treatment head. Electron contamination could be fitted to a modified exponential curve. For machine modeling in a treatment planning system, setting SSD at 90 cm for input data could reduce errors for most isocentric treatments, because they will be delivered for SSD ranging from 80 to 100 cm. For very small field sizes, air-generated electrons must be considered independently, because of their different energetic spectrum and dosimetric influence.

  4. TU-A-BRE-01: The Relative Biological Effectiveness of Proton Beams Relative to Photon Beams

    SciTech Connect

    Paganetti, H; Stewart, R; Carabe-Fernandez, A

    2014-06-15

    Proton therapy patients receive a 10% lower physical dose than the dose administered using photons, i.e. the proton relative biological effectiveness (RBE) is 1.1 in comparison to high-energy photons. The use of a generic, spatially invariant RBE within tumor targets and normal tissue structures disregards a large body of evidence indicating that proton RBE tends to increase with increasing linear energy transfer (LET). Because the doseaveraged proton LET in the distal edge of a spread out Bragg peak (SOBP) is larger than the LET in the plateau region or proximal edge of a SOBP, the use of a spatially invariant RBE is not well justified from a mechanistic point of view. On the other hand, the available clinical data on local tumor control rates and early or late side effects do not provide strong evidence against the continued use of a constant and spatially invariant clinical RBE. The only potential downside to the ongoing use of a constant RBE of 1.1 seems to be that we are missing a potential opportunity to enhance the therapeutic ratio, i.e., design proton therapy treatments in ways that exploit, rather than mitigate, spatial variations in proton RBE. Speakers in this symposium will: 1-review the laboratory and clinical evidence for and against the continued use of a spatially invariant RBE of 1.1, 2-examine some of the putative mechanisms connecting spatial variations in particle LET to estimates of the proton RBE at the molecular, cellular and tissue levels 3-assess the possible clinical significance of incorporating models for spatial variations in proton RBE into treatment planning systems. 4-discuss treatment planning and delivery techniques that will exploit the spatial variations of RBE within proton beams. Learning Objectives: To review laboratory and clinical evidence for and against the continued use of a constant RBE of 1.1 To understand major mechanisms connecting proton LET to RBE at the molecular, cellular and tissue levels. To quantify the

  5. Cardiac single-photon emission-computed tomography using combinedcone-beam/fan-beam collimation

    SciTech Connect

    Gullberg, Grant T.; Zeng, Gengsheng L.

    2004-12-03

    The objective of this work is to increase system sensitivity in cardiac single-photon emission-computed tomography (SPECT) studies without increasing patient imaging time. For imaging the heart, convergent collimation offers the potential of increased sensitivity over that of parallel-hole collimation. However, if a cone-beam collimated gamma camera is rotated in a planar orbit, the projection data obtained are not complete. Two cone-beam collimators and one fan-beam collimator are used with a three-detector SPECT system. The combined cone-beam/fan-beam collimation provides a complete set of data for image reconstruction. The imaging geometry is evaluated using data acquired from phantom and patient studies. For the Jaszazck cardiac torso phantom experiment, the combined cone-beam/fan-beam collimation provided 1.7 times greater sensitivity than standard parallel-hole collimation (low-energy high-resolution collimators). Also, phantom and patient comparison studies showed improved image quality. The combined cone-beam/fan-beam imaging geometry with appropriate weighting of the two data sets provides improved system sensitivity while measuring sufficient data for artifact free cardiac images.

  6. Multi-photon resonance phenomena using Laguerre-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Hamideh Kazemi, Seyedeh; Mahmoudi, Mohammad

    2016-12-01

    We study the influence of laser profile on the linewidth of the optical spectrum of multi-photon resonance phenomena. First, we investigate the dependence of the absorption spectrum on the laser profile in a two-level system. Thanks to the Laguerre-Gaussian field, the linewidth of the one-photon optical pumping and two-photon absorption peaks are explicitly narrower than that obtained with a Gaussian field. In the next section, it is shown that, compared to the Gaussian fields, the Laguerre-Gaussian ones reduce the linewidth of the optical spectrum in the coherent population trapping. Interestingly, it turns out that the use of a Laguerre-Gaussian beam makes the linewidth of the spectrum narrower as compared with a Gaussian one in Doppler-broadened electromagnetically induced transparency. Moreover, we study the effect of the laser profile on the Autler-Townes doublet structure in the absorption spectrum for a laser-driven four-level atomic system. We also consider the different values of the Laguerre-Gaussian mode beam waist, and, perhaps more remarkably, we find that for the small waist values, the Autler-Townes doublet can be removed and a prominent narrow central peak appears in the absorption spectrum. Finally, we investigate the effect of the laser profile on the linewidth of the sub-natural three-photon absorption peak of double dark resonance. The differences in the linewidth are quite large, offering potential applications in metrology and isotope separation methods. Our results can be used for super ultra-high resolution laser spectroscopy and to improve the resolution of the technology of isotope/isomer separation and photo-biology even at essential overlap of the spectra of the different particles.

  7. Scanned Carbon Pencil Beams for Tumor Therapy

    NASA Astrophysics Data System (ADS)

    Gemmel, A.; Saito, N.; Chaudhri, N.; Lü; chtenborg, R.; Schardt, D.; Rietzel, E.; Bert, Ch.

    2009-03-01

    At GSI a fully active beam application has been developed for tumor therapy with carbon ions. In this so-called rasterscan system the tumor volume is typically split into ˜60 slices of iso-energies taken from a list of 252 energies ranging from ˜90-430 MeV/u (range: 1.8-30.7 cm). The energies can be combined with variable beam diameters and intensities. For each iso-energy slice beam is requested from the synchrotron and delivered as a narrow pencil beam (beam's full width at half maximum 3-10 mm). For lateral target coverage this pencil beam is deflected to several hundreds of grid positions per iso-energy slice by orthogonal dipole magnets. At each grid position an optimized number of particles is deposited intensity-controlled, i.e. ionization chambers monitor the dose deposition and trigger deflection to the next grid position once the required dose level is achieved. This method allows intensity-modulated treatment fields necessary to deposit a uniform biological effective dose. Additionally, it allows for simultaneous optimization of multiple fields that allow better sparing of organs at risk partially or fully surrounded by the tumor. Scanned beam delivery facilitates target conformal and homogeneous dose delivery for stationary targets. For tumors located in the head & neck as well as tumors in the pelvic region very promising results were achieved in the carbon therapy pilot project started at GSI in 1993. A comparable project is conducted at Paul-Scherrer-Institut (PSI) in Switzerland with a scanned proton beam. One of the current research topics is the treatment of moving targets such as lung tumors. Scanned beam delivery requires but also offers possibilities to conformably irradiate moving target sites.

  8. Beam configuration and physical parameters of clinical high energy photon beam for total body irradiation (TBI).

    PubMed

    Ravichandran, Ramamoorthy; Binukumar, Johnson Pichi; Davis, Chirayathmanjiyil Antony; Sivakumar, Somangali Sathiyamurthy; Krishnamurthy, Kammari; Mandhari, Zahid Al; Rajan, Balakrishnan

    2011-07-01

    To start total body irradiation (TBI) treatments, physical parameters are measured for a magna field irradiation. 6 MV photon beam from Clinac 600 CD linear accelerator (Varian, USA) with fully opened collimator at 45° and gantry at 270° provided a diamond shaped magna field with diagonal dimension 224 cm at 4.0 m source skin distance (SSD). The flatness of the radiation field was measured in the presence of locally designed acrylic beam spoiler and beam flatness filter. Central Axis Depth dose data (CADD), tissue maximum ratios and entrance dose pattern are measured using large phantoms. Methods for clinical dose estimation using semi-conductor diodes and TLD were standardized. PVC beam flattener at the shielding tray position and the presence of acrylic beam spoiler in the radiation field provided a flatness of 100.15% ± 0.44% compared to open beam flatness 101.6 ± 1.5%. A reduction of 2% in percentage depth dose was observed at 10 cm depth in the presence of 15 mm acrylic beam spoiler. However, no changes are observed in the TMRs with presence of beam spoiler. The measured ionization ratios clearly showed change of beam quality with the introduction of beam spoiler. The presence of 15 mm beam spoiler ensured entrance dose 100% at skin and remaining unchanged within 1% upto a depth of 10 mm. Phantom measurements show good agreement between calculated and measured doses. The paper recommends use of modified CADD parameters for treatment planning, if calibration of output is carried out in the presence of beam spoiler. Copyright © 2010. Published by Elsevier Ltd.

  9. Packaging consideration of two-dimensional polymer-based photonic crystals for laser beam steering

    NASA Astrophysics Data System (ADS)

    Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T.

    2009-02-01

    In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results were also reported.

  10. Two-photon fluorescence stereomicroscopy with Bessel beams

    NASA Astrophysics Data System (ADS)

    Yang, Yanlong; Lei, Ming; Zheng, Juanjuan; Li, Runze; Yan, Shaohui; Yao, Baoli; Ye, Tong

    2013-02-01

    Three dimensional distributions of cells can be usually acquired by optical sectioning methods, such as multiphoton excitation and confocal fluorescence laser scanning microscopy. Though the lateral scan rates can reach up to several kHz, the relatively slow axial scan comprises the speed of real-time imaging of a volume. Here we propose a three dimensional imaging method that uses Bessel beams as excitation in multiphoton fluorescence microscopy. The extended focus of the Bessel beam allows recording a volume of cells without scanning the depth. The depth information can be retrieved by recording a pair of parallax views of the same volume. We have demonstrated the stereoscope capability on a homebuilt two-photon fluorescence microscope.

  11. Reduction of metal artifacts: beam hardening and photon starvation effects

    NASA Astrophysics Data System (ADS)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.

  12. Imaging dose assessment for IGRT in particle beam therapy.

    PubMed

    Steiner, Elisabeth; Stock, Markus; Kostresevic, Boris; Ableitinger, Alexander; Jelen, Urszula; Prokesch, Hannah; Santiago, Alina; Trnková, Petra; Wolf, Adam; Wittig, Andrea; Lomax, Antony; Jäkel, Oliver; Baroni, Guido; Georg, Dietmar

    2013-12-01

    Image-guided advanced photon and particle beam treatments are promising options for improving lung treatments. Extensive use of imaging increases the overall patient dose. The aim of this study was to determine the imaging dose for different IGRT solutions used in photon and particle beam therapy. Measurements were performed in an Alderson phantom with TLDs. Clinically applied protocols for orthogonal planar kV imaging, stereoscopic imaging, CT scout views, fluoroscopy, CT, 4D-CT and CBCT were investigated at five ion beam centers and one conventional radiotherapy department. The overall imaging dose was determined for a patient undergoing a lung tumor irradiation with institute specific protocols. OAR doses depended on imaging modality and OAR position. Dose values were in the order of 1 mGy for planar and stereoscopic imaging and 10-50 mGy for volumetric imaging, except for one CBCT device leading to lower doses. The highest dose per exam (up to 150 mGy to the skin) was recorded for a 3-min fluoroscopy. Modalities like planar kV or stereoscopic imaging result in very low doses (≈ 1 mGy) to the patient. Imaging a moving target during irradiation, low-dose protocols and protocol optimization can reduce the imaging dose to the patient substantially. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Fan-beam intensity modulated proton therapy

    SciTech Connect

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-15

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques.Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets.Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  14. Fan-beam intensity modulated proton therapy

    PubMed Central

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-01-01

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  15. Electron contamination in clinical high energy photon beams.

    PubMed

    Sjögren, R; Karlsson, M

    1996-11-01

    The electron contamination in photon beams has been investigated by means of contaminating lepton depth doses and dose profiles in different geometries with two 20 MV beams. Different components of this contamination have been investigated separately by systematically adding contamination to a "clean" reference field. At 20 MV, the air generated electrons were found to be almost negligible compared to the electrons originating from the accelerator head when measurements were performed in standard fields at SSDs between 80 and 120 cm. The total electron part of the depth dose curve was then almost the same, i.e., independent of SSD, when the collimator opening was held fixed. However, when different accessories such as a shaping block and different attenuating plates were located in the beam path below the collimators, a large SSD dependence of the electron contamination was noticed. A comparison was also made between two machines, one equipped with a multileaf collimator, with similar beam qualities at 20 MV. These measurements indicate that the interior view of the treatment head seen by the detector (mainly the flattening filter, monitor chamber, or other electron generating material) influences the magnitude of the electron contamination. When the collimator opening is decreased the electron contamination will also decrease as parts of the electron source will be shielded by the collimator blocks.

  16. Detector dose response in megavoltage small photon beams. II. Pencil beam perturbation effects.

    PubMed

    Bouchard, Hugo; Kamio, Yuji; Palmans, Hugo; Seuntjens, Jan; Duane, Simon

    2015-10-01

    To quantify detector perturbation effects in megavoltage small photon fields and support the theoretical explanation on the nature of quality correction factors in these conditions. In this second paper, a modern approach to radiation dosimetry is defined for any detector and applied to small photon fields. Fano's theorem is adapted in the form of a cavity theory and applied in the context of nonstandard beams to express four main effects in the form of perturbation factors. The pencil-beam decomposition method is detailed and adapted to the calculation of perturbation factors and quality correction factors. The approach defines a perturbation function which, for a given field size or beam modulation, entirely determines these dosimetric factors. Monte Carlo calculations are performed in different cavity sizes for different detection materials, electron densities, and extracameral components. Perturbation effects are detailed with calculated perturbation functions, showing the relative magnitude of the effects as well as the geometrical extent to which collimating or modulating the beam impacts the dosimetric factors. The existence of a perturbation zone around the detector cavity is demonstrated and the approach is discussed and linked to previous approaches in the literature to determine critical field sizes. Monte Carlo simulations are valuable to describe pencil beam perturbation effects and detail the nature of dosimetric factors in megavoltage small photon fields. In practice, it is shown that dosimetric factors could be avoided if the field size remains larger than the detector perturbation zone. However, given a detector and beam quality, a full account for the detector geometry is necessary to determine critical field sizes.

  17. Detector dose response in megavoltage small photon beams. II. Pencil beam perturbation effects

    SciTech Connect

    Bouchard, Hugo Duane, Simon; Kamio, Yuji; Palmans, Hugo; Seuntjens, Jan

    2015-10-15

    Purpose: To quantify detector perturbation effects in megavoltage small photon fields and support the theoretical explanation on the nature of quality correction factors in these conditions. Methods: In this second paper, a modern approach to radiation dosimetry is defined for any detector and applied to small photon fields. Fano’s theorem is adapted in the form of a cavity theory and applied in the context of nonstandard beams to express four main effects in the form of perturbation factors. The pencil-beam decomposition method is detailed and adapted to the calculation of perturbation factors and quality correction factors. The approach defines a perturbation function which, for a given field size or beam modulation, entirely determines these dosimetric factors. Monte Carlo calculations are performed in different cavity sizes for different detection materials, electron densities, and extracameral components. Results: Perturbation effects are detailed with calculated perturbation functions, showing the relative magnitude of the effects as well as the geometrical extent to which collimating or modulating the beam impacts the dosimetric factors. The existence of a perturbation zone around the detector cavity is demonstrated and the approach is discussed and linked to previous approaches in the literature to determine critical field sizes. Conclusions: Monte Carlo simulations are valuable to describe pencil beam perturbation effects and detail the nature of dosimetric factors in megavoltage small photon fields. In practice, it is shown that dosimetric factors could be avoided if the field size remains larger than the detector perturbation zone. However, given a detector and beam quality, a full account for the detector geometry is necessary to determine critical field sizes.

  18. Use of flattening filter-free photon beams in treating medulloblastoma: a dosimetric evaluation.

    PubMed

    Anchineyan, Pichandi; Mani, Ganesh K; Amalraj, Jerrin; Karthik, Balaji; Anbumani, Surega

    2014-01-01

    Aim. To evaluate the dosimetric benefits of flattening filter-free (FFF) photon beams in intensity modulated radiation therapy (IMRT) and Rapid Arc (RA) over conventional CSI methods. Methods and Materials. Five patients treated with IMRT using static multileaf collimators (MLC) were randomly selected for this retrospective study. Dynamic MLC IMRT, RA, and conformal therapy (3DCRT) were iterated with the same CT data sets with and without flattening filter photons. Total dose prescribed was 28.80 Gy in 16 fractions. Dosimetric parameters such as D max⁡, D min⁡, D mean, V 95%, V 107%, DHI, and CI for PTV and D max⁡, D mean, V 80%, V 50%, V 30%, and V 10% for OARs were extracted from DVHs. Beam on time (BOT) for various plans was also compared. Results. FFF RA therapy (6F_RA) resulted in highly homogeneous and conformal doses throughout the craniospinal axis. 3DCRT resulted in the highest V 107% (SD) 46.97 ± 28.6, whereas flattening filter (FF) and FFF dynamic IMRT had a minimum V 107%. 6F_RA and 6F_DMLC resulted in lesser doses to thyroid, eyes, esophagus, liver, lungs, and kidneys. Conclusion. FFF IMRT and FFF RA for CSI have definite dosimetric advantages over 3DCRT technique in terms of target coverage and OAR sparing. Use of FFF in IMRT resulted in 50% reduction in BOT, thereby increasing the treatment efficiency.

  19. Use of Flattening Filter-Free Photon Beams in Treating Medulloblastoma: A Dosimetric Evaluation

    PubMed Central

    Anchineyan, Pichandi; Mani, Ganesh K.; Amalraj, Jerrin; Karthik, Balaji; Anbumani, Surega

    2014-01-01

    Aim. To evaluate the dosimetric benefits of flattening filter-free (FFF) photon beams in intensity modulated radiation therapy (IMRT) and Rapid Arc (RA) over conventional CSI methods. Methods and Materials. Five patients treated with IMRT using static multileaf collimators (MLC) were randomly selected for this retrospective study. Dynamic MLC IMRT, RA, and conformal therapy (3DCRT) were iterated with the same CT data sets with and without flattening filter photons. Total dose prescribed was 28.80 Gy in 16 fractions. Dosimetric parameters such as D max⁡, D min⁡, D mean, V 95%, V 107%, DHI, and CI for PTV and D max⁡, D mean, V 80%, V 50%, V 30%, and V 10% for OARs were extracted from DVHs. Beam on time (BOT) for various plans was also compared. Results. FFF RA therapy (6F_RA) resulted in highly homogeneous and conformal doses throughout the craniospinal axis. 3DCRT resulted in the highest V 107% (SD) 46.97 ± 28.6, whereas flattening filter (FF) and FFF dynamic IMRT had a minimum V 107%. 6F_RA and 6F_DMLC resulted in lesser doses to thyroid, eyes, esophagus, liver, lungs, and kidneys. Conclusion. FFF IMRT and FFF RA for CSI have definite dosimetric advantages over 3DCRT technique in terms of target coverage and OAR sparing. Use of FFF in IMRT resulted in 50% reduction in BOT, thereby increasing the treatment efficiency. PMID:24579052

  20. Interferometric source of multi-color, multi-beam entangled photons with mirror and mixer

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-06-01

    53 Systems and methods are described for an interferometric source of multi-color, multi-beam entangled photons. An apparatus includes: a multi-refringent device optically coupled to a source of coherent energy, the multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device i) including a mirror and a mixer and ii) converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a tunable phase adjuster optically coupled to the condenser device, the tunable phase adjuster changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometeric multi-color entangled photon beam; and a beam splitter optically coupled to the condenser device, the beam splitter combining the first interferometeric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam.

  1. The photon-isoeffective dose in boron neutron capture therapy.

    PubMed

    González, Sara J; Santa Cruz, Gustavo A

    2012-12-01

    With the aim to relate the effects observed in a clinical boron neutron capture therapy protocol to the corresponding outcomes in a standard photon radiation therapy, "RBE-weighted" doses are customarily calculated by adding the contributions of the different radiations, each one weighted by a fixed (dose and dose rate independent) relative biological effectiveness factor. In this study, the use of fixed factors is shown to have a formal inconsistency, which in practice leads to unrealistically high tumor doses. We then introduce a more realistic approach that essentially exploits all the experimental information available from survival experiments. The proposed formalism also includes first-order repair of sublethal lesions by means of the generalized Lea-Catcheside factor in the modified linear-quadratic model, and considers synergistic interactions between different radiations. This formalism is of sufficient simplicity therefore to be directly included in all BNCT treatment planning systems. In light of this formalism, the photon-isoeffective doses for two BNCT clinical targets were computed and compared with the standard dose calculation procedure. For the case of brain tumors and clinically relevant absorbed doses, the proposed approach derives isoeffective doses that are much lower than the fixed RBE method, regardless of considering synergism. Thus, for a tumor that receives a mean total absorbed dose of 15 Gy (value achievable with 50 ppm of boron concentration and typical beams used in the clinic), the photon-isoeffective doses are 28 Gy (IsoE) and 30 Gy (IsoE) (without and with synergism, respectively), in contrast to 51 Gy (RBE) for the fixed RBE method. When the clinical outcome of the Argentine cutaneous melanoma treatments is assessed with regard to the doses derived from the standard procedure, it follows that the fixed RBE approach is not suitable to understand the observed clinical results in terms of the photon radiotherapy data. Moreover, even

  2. Forked grating coupler optical vortex beam interface for silicon photonics

    NASA Astrophysics Data System (ADS)

    Nadovich, Christopher T.; Kosciolek, Derek J.; Jemison, William D.; Crouse, David T.

    2016-09-01

    The forked grating coupler (FGC) is a novel low-profile device compatible with silicon photonics that is capable of sensitive detection or efficient radiation of Optical Vortex (OV) light beams conveying orbital optical angular momentum (OAM). The FGC device combines the idea of a Bragg coupler with the forked hologram to create an integrated optics device that can selectively and efficiently couple selected optical vortex modes at near-normal incidence into planar confined dielectric waveguide modes of a photonic IC. FGCs retain many of the advantages of Bragg couplers, including convenience of placement and fabrication, reasonable bandwidth, small size, and CMOS process compatibility. In this work, prototype designs of FGC structures for 1550 nm wavelength have been developed for implementation on silicon on insulator (SOI) substrate. Fully vectorial three-dimensional (3D) electromagnetic simulation has allowed performance to be optimized over a range of structural parameters. Results have been evaluated against optical performance metrics including overall efficiency, mode match efficiency, and crosstalk between OV modes. Candidate FGC devices have been fabricated on SOI with e-beam lithography and tested optically. Tolerance to etch depth error has been evaluated.

  3. Secondary Neutron Doses for Several Beam Configurations for Proton Therapy

    SciTech Connect

    Shin, Dongho; Yoon, Myonggeun; Kwak, Jungwon; Shin, Jungwook; Lee, Se Byeong Park, Sung Yong; Park, Soah; Kim, Dae Yong; Cho, Kwan Ho

    2009-05-01

    Purpose: To compare possible neutron doses produced in scanning and scattering modes, with the latter assessed using a newly built passive-scattering proton beam line. Methods and Materials: A 40 x 30.5 x 30-cm water phantom was irradiated with 230-MeV proton beams using a gantry angle of 270{sup o}, a 10-cm-diameter snout, and a brass aperture with a diameter of 7 cm and a thickness of 6.5 cm. The secondary neutron doses during irradiation were measured at various points using CR-39 detectors, and these measurements were cross-checked using a neutron survey meter with a 22-cm range and a 5-cm spread-out Bragg peak. Results: The maximum doses due to secondary neutrons produced by a scattering beam-delivery system were on the order of 0.152 mSv/Gy and 1.17 mSv/Gy at 50 cm from the beam isocenter in the longitudinal (0{sup o}) and perpendicular (90{sup o}) directions, respectively. The neutron dose equivalent to the proton absorbed dose, measured from 10 cm to 100 cm from the isocenter, ranged from 0.071 mSv/Gy to 1.96 mSv/Gy in the direction of the beam line (i.e., {phi} = 0 deg.). The largest neutron dose, of 3.88 mSv/Gy, was observed at 135{sup o} and 25 cm from the isocenter. Conclusions: Although the secondary neutron doses in proton therapy were higher when a scattering mode rather than a scanning mode was used, they did not exceed the scattered photon dose in typical photon treatments.

  4. Secondary neutron doses for several beam configurations for proton therapy.

    PubMed

    Shin, Dongho; Yoon, Myonggeun; Kwak, Jungwon; Shin, Jungwook; Lee, Se Byeong; Park, Sung Yong; Park, Soah; Kim, Dae Yong; Cho, Kwan Ho

    2009-05-01

    To compare possible neutron doses produced in scanning and scattering modes, with the latter assessed using a newly built passive-scattering proton beam line. A 40 x 30.5 x 30-cm water phantom was irradiated with 230-MeV proton beams using a gantry angle of 270 degrees , a 10-cm-diameter snout, and a brass aperture with a diameter of 7 cm and a thickness of 6.5 cm. The secondary neutron doses during irradiation were measured at various points using CR-39 detectors, and these measurements were cross-checked using a neutron survey meter with a 22-cm range and a 5-cm spread-out Bragg peak. The maximum doses due to secondary neutrons produced by a scattering beam-delivery system were on the order of 0.152 mSv/Gy and 1.17 mSv/Gy at 50 cm from the beam isocenter in the longitudinal (0 degrees ) and perpendicular (90 degrees ) directions, respectively. The neutron dose equivalent to the proton absorbed dose, measured from 10 cm to 100 cm from the isocenter, ranged from 0.071 mSv/Gy to 1.96 mSv/Gy in the direction of the beam line (i.e., phi = 0 degrees ). The largest neutron dose, of 3.88 mSv/Gy, was observed at 135 degrees and 25 cm from the isocenter. Although the secondary neutron doses in proton therapy were higher when a scattering mode rather than a scanning mode was used, they did not exceed the scattered photon dose in typical photon treatments.

  5. Photonic metallic nanostructures in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Ion, Rodica-Mariana; Fierascu, R. C.; Dumitriu, Irina

    2009-01-01

    Plasmons are resonant modes that involve the interaction between free charges and light. Nanoparticle-based photonic explorers have been developed for photodynamic therapy (PDT). PDT has been widely used in both oncological (e.g., tumors) and nononcological (e.g., age-related macular degeneration, localized infection, and nonmalignant skin conditions) applications. Three primary components are involved in PDT: light, a photosensitizing drug, and oxygen. The photosensitizer adsorbs light energy, which it then transfers to molecular oxygen to create an activated form of oxygen called singlet oxygen. The singlet oxygen is a cytotoxic agent and reacts rapidly with cellular components to cause damage that ultimately leads to cell death and tumor destruction. The changed topography of the film surface after deposition is caused by a local material transport and a material separation between formed particles (probably AgNO3) and an embedding polymer matrix as chitosan. This paper focuses on the current use of injectable in situ Au/(Ag)/chitosan hydrogels in cancer photodynamic treatment. Formulation protocols for their cytotoxic properties, their effect on cell growth in vitro and inhibition of tumor growth in vivo using mouse models, are discussed.

  6. A new concept of pencil beam dose calculation for 40-200 keV photons using analytical dose kernels.

    PubMed

    Bartzsch, Stefan; Oelfke, Uwe

    2013-11-01

    The advent of widespread kV-cone beam computer tomography in image guided radiation therapy and special therapeutic application of keV photons, e.g., in microbeam radiation therapy (MRT) require accurate and fast dose calculations for photon beams with energies between 40 and 200 keV. Multiple photon scattering originating from Compton scattering and the strong dependence of the photoelectric cross section on the atomic number of the interacting tissue render these dose calculations by far more challenging than the ones established for corresponding MeV beams. That is why so far developed analytical models of kV photon dose calculations fail to provide the required accuracy and one has to rely on time consuming Monte Carlo simulation techniques. In this paper, the authors introduce a novel analytical approach for kV photon dose calculations with an accuracy that is almost comparable to the one of Monte Carlo simulations. First, analytical point dose and pencil beam kernels are derived for homogeneous media and compared to Monte Carlo simulations performed with the Geant4 toolkit. The dose contributions are systematically separated into contributions from the relevant orders of multiple photon scattering. Moreover, approximate scaling laws for the extension of the algorithm to inhomogeneous media are derived. The comparison of the analytically derived dose kernels in water showed an excellent agreement with the Monte Carlo method. Calculated values deviate less than 5% from Monte Carlo derived dose values, for doses above 1% of the maximum dose. The analytical structure of the kernels allows adaption to arbitrary materials and photon spectra in the given energy range of 40-200 keV. The presented analytical methods can be employed in a fast treatment planning system for MRT. In convolution based algorithms dose calculation times can be reduced to a few minutes.

  7. Beam alignment test for therapy accelerators

    SciTech Connect

    Lutz, W.R.; Larsen, R.D.; Bjarngard, B.D.

    1981-12-01

    Beam spot displacement, collimator asymmetry, and movement of either collimator or gantry rotational axis can cause misalignment of the X ray beam from a therapy accelerator. A test method, sensitive to all the above problems, consists of double-exposing a film, located at the isocenter, for two gantry positions, 180/sup o/ apart. Opposite halves of the field are blocked for each exposure. A lateral shift of one half with respect to the other indicates the presence of one of the problems mentioned above. Additional tests are described, each of which is sensitive to only one of the problems and capable of quantifying the error.

  8. Beam alignment tests for therapy accelerators

    SciTech Connect

    Lutz, W.R.; Larsen, R.D.; Bjarngard, B.E.

    1981-12-01

    Beam spot displacement, collimator asymmetry, and movement of either collimator or gantry rotational axis can cause misalignment of the X ray beam from a therapy accelerator. A test method, sensitive to all the above problems, consists of double-exposing a film, located at the isocenter, for two gantry positions, 180/sup 0/ apart. Opposite halves of the field are blocked for each exposure. A lateral shift of one half with respect to the other indicates the presence of one of the problems mentioned above. Additional tests are described, each of which is sensitive to only one of the problems and capable of quantifying the error.

  9. Design of a fast multileaf collimator for radiobiological optimized IMRT with scanned beams of photons, electrons, and light ions.

    PubMed

    Svensson, Roger; Larsson, Susanne; Gudowska, Irena; Holmberg, Rickard; Brahme, Anders

    2007-03-01

    Intensity modulated radiation therapy is rapidly becoming the treatment of choice for most tumors with respect to minimizing damage to the normal tissues and maximizing tumor control. Today, intensity modulated beams are most commonly delivered using segmental multileaf collimation, although an increasing number of radiation therapy departments are employing dynamic multileaf collimation. The irradiation time using dynamic multileaf collimation depends strongly on the nature of the desired dose distribution, and it is difficult to reduce this time to less than the sum of the irradiation times for all individual peak heights using dynamic leaf collimation [Svensson et al., Phys. Med. Biol. 39, 37-61 (1994)]. Therefore, the intensity modulation will considerably increase the total treatment time. A more cost-effective procedure for rapid intensity modulation is using narrow scanned photon, electron, and light ion beams in combination with fast multileaf collimator penumbra trimming. With this approach, the irradiation time is largely independent of the complexity of the desired intensity distribution and, in the case of photon beams, may even be shorter than with uniform beams. The intensity modulation is achieved primarily by scanning of a narrow elementary photon pencil beam generated by directing a narrow well focused high energy electron beam onto a thin bremsstrahlung target. In the present study, the design of a fast low-weight multileaf collimator that is capable of further sharpening the penumbra at the edge of the elementary scanned beam has been simulated, in order to minimize the dose or radiation response of healthy tissues. In the case of photon beams, such a multileaf collimator can be placed relatively close to the bremsstrahlung target to minimize its size. It can also be flat and thin, i.e., only 15-25 mm thick in the direction of the beam with edges made of tungsten or preferably osmium to optimize the sharpening of the penumbra. The low height of

  10. Design of a fast multileaf collimator for radiobiological optimized IMRT with scanned beams of photons, electrons, and light ions

    SciTech Connect

    Svensson, Roger; Larsson, Susanne; Gudowska, Irena; Holmberg, Rickard; Brahme, Anders

    2007-03-15

    Intensity modulated radiation therapy is rapidly becoming the treatment of choice for most tumors with respect to minimizing damage to the normal tissues and maximizing tumor control. Today, intensity modulated beams are most commonly delivered using segmental multileaf collimation, although an increasing number of radiation therapy departments are employing dynamic multileaf collimation. The irradiation time using dynamic multileaf collimation depends strongly on the nature of the desired dose distribution, and it is difficult to reduce this time to less than the sum of the irradiation times for all individual peak heights using dynamic leaf collimation [Svensson et al., Phys. Med. Biol. 39, 37-61 (1994)]. Therefore, the intensity modulation will considerably increase the total treatment time. A more cost-effective procedure for rapid intensity modulation is using narrow scanned photon, electron, and light ion beams in combination with fast multileaf collimator penumbra trimming. With this approach, the irradiation time is largely independent of the complexity of the desired intensity distribution and, in the case of photon beams, may even be shorter than with uniform beams. The intensity modulation is achieved primarily by scanning of a narrow elementary photon pencil beam generated by directing a narrow well focused high energy electron beam onto a thin bremsstrahlung target. In the present study, the design of a fast low-weight multileaf collimator that is capable of further sharpening the penumbra at the edge of the elementary scanned beam has been simulated, in order to minimize the dose or radiation response of healthy tissues. In the case of photon beams, such a multileaf collimator can be placed relatively close to the bremsstrahlung target to minimize its size. It can also be flat and thin, i.e., only 15-25 mm thick in the direction of the beam with edges made of tungsten or preferably osmium to optimize the sharpening of the penumbra. The low height of

  11. Dosimetric characteristics of Thermo-Shield material for orthovoltage photon beams.

    PubMed

    Bahmaid, Mohammad; Kim, Siyong; Liu, Chihray R; Palta, Jatinder R

    2003-06-01

    Conventionally, lead has been used for field shaping in orthovoltage radiation therapy. Recently, a compensator material named Thermo-Shield was presented for field shaping in electron beams. Thermo-Shield is composed of nontoxic, high atomic weight metal particles dispersed in a thermoplastic matrix. It is manually moldable and conforms to human anatomy or any shape at temperatures of 108-132 degrees F. It is reusable and can be continuously reshaped to better fit the treatment field. Dosimetric characteristics of thermoplastic material were studied for Philips RT250 orthovoltage photon beams ranging from 75 to 250 kVp. It was found that Thermo-Shield should be four to five times thicker than lead to achieve the same transmission (less than 5%). However, it did not cause significant degradation in penumbra. Clinical procedures for use are discussed.

  12. Alignment of multiradiation isocenters for megavoltage photon beam.

    PubMed

    Zhang, Yin; Ding, Kai; Cowan, Garth; Tryggestad, Erik; Armour, Elwood; Wang, Ken Kang-Hsin

    2015-11-08

    The accurate measurement of the linear accelerator (linac) radiation isocenter is critical, especially for stereotactic treatment. Traditional quality assurance (QA) procedure focuses on the measurement of single radiation isocenter, usually of 6 megavoltage (MV) photon beams. Single radiation isocenter is also commonly assumed in treatment planning systems (TPS). Due to different flattening filters and bending magnet and steering parameters, the radiation isocenter of one energy mode can deviate from another if no special effort was devoted. We present the first experience of the multiradiation isocenters alignment on an Elekta linac, as well as its corresponding QA procedure and clinical impact. An 8 mm ball-bearing (BB) phantom was placed at the 6 MV radiation isocenter using an Elekta isocenter search algorithm, based on portal images. The 3D radiation isocenter shifts of other photon energy modes relative to the 6 MV were determined. Beam profile scanning for different field sizes was used as an independent method to determine the 2D multiradiation isocenters alignment. To quantify the impact of radiation isocenter offset on targeting accuracy, the 10 MV radiation isocenter was manually offset from that for 6 MV by adjusting the bending magnet current. Because our table isocenter was mechanically aligned to the 6 MV radiation isocenter, the deviation of the table isocentric rotation from the "shifted" 10 MV radiation isocenter after bending magnet adjustment was assessed. Winston-Lutz test was also performed to confirm the overall radiation isocenter positioning accuracy for all photon energies. The portal image method showed the radiation isocenter of the 10 MV flattening filter-free mode deviated from others before beam parameter adjustment. After the adjustment, the deviation was greatly improved from 0.96 to 0.35 mm relative to the 6 MV radiation isocenter. The same finding was confirmed by the profile-scanning method. The maximum deviation of the table

  13. Effect of Contrast Media on Megavoltage Photon Beam Dosimetry

    SciTech Connect

    Rankine, Ashley W. Lanzon, Peter J.; Spry, Nigel A.

    2008-10-01

    The purpose of this study was to quantify changes in photon beam dosimetry caused by using contrast media during computed tomography (CT) simulation and determine if the resulting changes are clinically significant. The effect of contrast on dosimetry was first examined for a single 6-MV photon beam incident on a plane phantom with a structure of varying electron densities ({rho}{sub e}) and thickness. Patient studies were then undertaken in which CT data sets were collected with and without contrast for 6 typical patients. Three patients received IV contrast (Optiray-240{sup TM}) only and 3 received IV plus oral (Gastrograffin{sup TM}) contrast. Each patient was planned using conformal multifield techniques in accordance with the department standards. Two methods were used to compare the effect of contrast on dosimetry for each patient. The phantom analysis showed that the change in dose at the isocenter for a single 10 x 10 cm{sup 2} 6-MV photon beam traversing 10 cm of a contrast-enhanced structure with {rho}{sub e} 1.22 was 7.0% (1.22 was the highest average {rho}{sub e} observed in the patient data). As a result of using contrast, increases in {rho}{sub e} were observed in structures for the 6 patients studied. Consequently, when using contrast-enhanced CT data for multifield planning, increases in dose at the isocenter and in critical structures were observed up to 2.1% and 2.5%, respectively. Planning on contrast-enhanced CT images may result in an increase in dose of up to 2.1% at the isocenter, which would generally be regarded as clinically insignificant. If, however, a critical organ is in close proximity to the planning target volume (PTV) and is planned to receive its maximum allowable dose, planning on contrast-enhanced CT images may result in that organ receiving dose beyond the recommended tolerance. In these instances, pre-contrast CT data should be used for dosimetry.

  14. Investigations of high mobility single crystal chemical vapor deposition diamond for radiotherapy photon beam monitoring

    SciTech Connect

    Tromson, D.; Descamps, C.; Tranchant, N.; Bergonzo, P.; Nesladek, M.; Isambert, A.

    2008-03-01

    The intrinsic properties of diamond make this material theoretically very suitable for applications in medical physics. Until now ionization chambers have been fabricated from natural stones and are commercialized by PTW, but their fairly high costs and long delivery times have often limited their use in hospital. The properties of commercialized intrinsic polycrystalline diamond were investigated in the past by many groups. The results were not completely satisfactory due to the nature of the polycrystalline material itself. In contrast, the recent progresses in the growth of high mobility single crystal synthetic diamonds prepared by chemical vapor deposition (CVD) technique offer new alternatives. In the framework of the MAESTRO project (Methods and Advanced Treatments and Simulations for Radio Oncology), the CEA-LIST is studying the potentialities of synthetic diamond for new techniques of irradiation such as intensity modulated radiation therapy. In this paper, we present the growth and characteristics of single crystal diamond prepared at CEA-LIST in the framework of the NoRHDia project (Novel Radiation Hard CVD Diamond Detector for Hadrons Physics), as well as the investigations of high mobility single crystal CVD diamond for radiotherapy photon beam monitoring: dosimetric analysis performed with the single crystal diamond detector in terms of stability and repeatability of the response signal, signal to noise ratio, response speed, linearity of the signal versus the absorbed dose, and dose rate. The measurements performed with photon beams using radiotherapy facilities demonstrate that single crystal CVD diamond is a good alternative for air ionization chambers for beam quality control.

  15. Clinical evidence of particle beam therapy (carbon).

    PubMed

    Kamada, Tadashi

    2012-04-01

    Carbon ion radiotherapy (CIRT) is unique as it possesses well-localized and superior-depth dose distribution in addition to less repairable radiobiological effects. The use of CIRT for various diseases has been explored as clinical trials at the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. Since 1994, when the first clinical study of cancer therapy with carbon ion beams was started, about 50 clinical studies have been completed safely and effectively. These studies revealed that intractable cancers such as inoperable bone and soft-tissue sarcomas can be cured safely in a shorter overall treatment time, as can cancers in the head, neck, lung, liver, prostate, and postoperative pelvic recurrence of rectal cancer. The number of patients receiving CIRT has reached 6,000, and the therapy was approved as a highly advanced medical technology in 2003. Based on these experiences, we embarked on the research and development of new-generation beam delivery facilities such as a 3D scanning method with a pencil beam and a compact rotating gantry. Clinical research using pencil-beam scanning has been in operation since May 2011.

  16. Repeated proton beam therapy for hepatocellular carcinoma

    SciTech Connect

    Hashimoto, Takayuki |. E-mail: hashimoto@pmrc.tsukuba.ac.jp; Tokuuye, Koichi |; Fukumitsu, Nobuyoshi |; Igaki, Hiroshi |; Hata, Masaharu |; Kagei, Kenji |; Sugahara, Shinji; Ohara, Kiyoshi; Matsuzaki, Yasushi; Akine, Yasuyuki |

    2006-05-01

    Purpose: To retrospectively evaluate the safety and effectiveness of repeated proton beam therapy for newly developed or recurrent hepatocellular carcinoma (HCC). Methods and Materials: From June 1989 through July 2000, 225 patients with HCC underwent their first course of proton beam therapy at University of Tsukuba. Of them, 27 with 68 lesions who had undergone two or more courses were retrospectively reviewed in this study. Median interval between the first and second course was 24.5 months (range 3.3-79.8 months). Median total dose of 72 Gy in 16 fractions and 66 Gy in 16 fractions were given for the first course and the rest of the courses, respectively. Results: The 5-year survival rate and median survival period from the beginning of the first course for the 27 patients were 55.6% and 62.2 months, respectively. Five-year local control rate for the 68 lesions was 87.8%. Of the patients, 1 with Child-Pugh class B and another with class C before the last course suffered from acute hepatic failure. Conclusions: Repeated proton beam therapy for HCC is safe when the patient has a target in the peripheral region of the liver and liver function is Child-Pugh class A.

  17. Proton-beam therapy for prostate cancer.

    PubMed

    Kagan, A Robert; Schulz, Robert J

    2010-01-01

    The treatment options for prostate cancer include prostatectomy, external-beam irradiation, brachytherapy, cryosurgery, focused ultrasound, hormonal therapy, watchful waiting, and various combinations of these modalities. Because the prostate abuts the bladder and rectum, the dose distributions of external-beam irradiations and the accuracy of their placement play crucial roles in the probability of tumor cure and the incidence of posttreatment complications. Principal among the newer radiation technologies is proton-beam therapy (PBT), whose dose distributions make it possible to deliver higher tumor doses and smaller doses to surrounding normal tissues than from x-ray systems. However, as the 10-year cause-specific survival for early-stage disease treated by radiation therapy now exceeds 90%, and with severe late toxicities in the range of 2% to 3%, randomized clinical trials provide the only means to demonstrate improved outcomes from PBT. Short of the data provided by such trials, the efficacy of PBT can be gleaned only from reports in the clinical literature, and, to date, these reports are equivocal. In view of the current health care crisis and the higher costs of PBT for prostate cancer, it is reasonable to assess the viability of this in-vogue but not-so-new technology.

  18. Rf-synchronized imaging for particle and photon beam characterizations

    SciTech Connect

    Lumpkin, A.H.

    1993-07-01

    The usefulness of imaging electro-optics for rf-driven accelerators can be enhanced by synchronizing the instruments to the system fundamental frequency or an appropriate subharmonic. This step allows one to obtain micropulse bunch length and phase during a series of linac bunches or storage ring passes. Several examples now exist of the use of synchroscan and dual-sweep streak cameras and/or image dissector tubes to access micropulse scale phenomena (10 to 30 ps) during linac and storage ring operations in the US, Japan, and Europe. As space permits, selections will be presented from the list of phase stability phenomena on photoelectric injectors, micropulse length during a macropulse, micropulse elongation effects, transverse Wakefield effects within a micropulse, and submicropulse phenomena on a stored beam. Potential applications to the subsystems of the Advanced Photon Source (APS) will be briefly addressed.

  19. Inhomogeneity Effects on Dose Deposition for Photon and Electron Beams

    NASA Astrophysics Data System (ADS)

    Yu, Xinsheng

    1989-03-01

    A long-standing problem in radiation therapy has been to correct the dose distributions for the presence of inhomogeneities. The availability of CT and MRI imaging for treatment planning has led to many new algorithms for making such corrections. Unfortunately, each of these methods shows a limited range of validity outside of which errors exceeding 10% may occur due to the assumptions made in the algorithm. In order for valid assumptions to be made, the physical processes involved in the perturbation effects of inhomogeneities on radiation dose deposition must be identified and understood. The work presented in this thesis is to achieve this goal. Inhomogeneity effects on photon dose deposition have been studied by means of experimental measurements and theoretical simulations. The results indicated that changes in atomic number could result in large changes in dose by perturbing the transport of the secondary electrons. Electron transport theory was then studied with the emphasis on the electron multiple scattering. The small angle approximation in the Fermi-Eyges theory and the assumption of semi-infinite slab geometry in current electron dose calculation algorithms were found to cause inaccurate prediction of dose in the vicinity of local inhomogeneities. Using the concept of mean path, a new multiray model has been derived, which is sensitive to local inhomogeneities and gives good agreement with Monte -Carlo simulations. Based on the understanding of both photon and electron transport, a new photon-electron cascade model is proposed for calculating photon dose deposition. The model explicitly includes the transport of the secondary charged particles and is applicable for the presence of inhomogeneities with different electron densities and atomic numbers.

  20. The Evolving Role of Proton Beam Therapy for Sarcomas.

    PubMed

    Frisch, S; Timmermann, B

    2017-08-01

    As an alternative to conventional photon-based radiotherapy, radiation with protons is recognised to offer considerable advantages. Today, central nervous system tumours, various sarcomatous tumours, childhood cancer and head and neck tumours are commonly treated with proton therapy. This review evaluates current data from clinical and dosimetric trials on the treatment of selected sarcomatous tumours like rhabdomyosarcoma, osteosarcoma, chordoma, chondrosarcoma and Ewing sarcoma. Special considerations for paediatric tumours and future prospects of proton therapy are outlined. Proton therapy is already an internal part in the multidisciplinary management of childhood sarcomas in contiguity to sensitive structures, especially at the base of skull, spine and pelvis. It offers special advantages for tumours requiring high-precision radiotherapy, particularly when total resection seems not feasible. Previous and ongoing research is generating evidence for the benefit of protons in sarcoma patients. Up to now, proton therapy has been safely applied with encouraging results. For future research, prospective, multi-institutional, large registries are required to answer open questions. Modern radiotherapy techniques, such as pencil beam scanning and intensity modulation are increasingly established in proton therapy. More research is needed to understand protons' limitations and potential. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  1. On the conversion of infrared radiation from fission reactor-based photon engine into parallel beam

    NASA Astrophysics Data System (ADS)

    Gulevich, Andrey V.; Levchenko, Vladislav E.; Loginov, Nicolay I.; Kukharchuk, Oleg F.; Evtodiev, Denis A.; Zrodnikov, Anatoly V.

    2002-01-01

    The efficiency of infrared radiation conversion from photon engine based on fission reactor into parallel photon beam is discussed. Two different ways of doing that are considered. One of them is to use the parabolic mirror to convert of infrared radiation into parallel photon beam. The another one is based on the use of special lattice consisting of numerous light conductors. The experimental facility and some results are described. .

  2. THE PAIR BEAM PRODUCTION SPECTRUM FROM PHOTON-PHOTON ANNIHILATION IN COSMIC VOIDS

    SciTech Connect

    Schlickeiser, R.; Ibscher, D.; Elyiv, A.; Miniati, F. E-mail: ibscher@tp4.rub.de E-mail: fm@phys.ethz.ch

    2012-10-20

    Highly beamed relativistic e {sup {+-}}-pair energy distributions result in double photon collisions of the beamed gamma rays from TeV blazars at cosmological distances with the isotropically distributed extragalactic background light (EBL) in the intergalactic medium. The typical energies k {sub 0} {approx_equal} 10{sup -7} in units of m{sub e}c {sup 2} of the EBL are more than 10 orders of magnitude smaller than the observed gamma-ray energies k {sub 1} {>=} 10{sup 7}. Using the limit k {sub 0} << k {sub 1}, we demonstrate that the angular distribution of the generated pairs in the lab frame is highly beamed in the direction of the initial gamma-ray photons. For the astrophysically important case of power-law distributions of the emitted gamma-ray beam up to the maximum energy M interacting with Wien-type N(k {sub 0}){proportional_to}k{sup q} {sub 0}exp (- k {sub 0}/{Theta}) soft photon distributions with total number density N {sub 0}, we calculate analytical approximations for the electron production spectrum. For distant objects with luminosity distances d{sub L} >> r {sub 0} = ({sigma} {sub T} N {sub 0}){sup -1} = 0.49N {sup -1} {sub 0} Mpc (with Thomson cross section {sigma} {sub T}), the implied large values of the optical depth {tau}{sub 0} = d{sub L} /r {sub 0} indicate that the electron production spectra differ at energies inside and outside the interval [({Theta}ln {tau}{sub 0}){sup -1}, {tau}{sub 0}/{Theta}], given the maximum gamma-ray energy M >> {Theta}{sup -1}. In the case M >> {Theta}{sup -1}, the production spectrum is strongly peaked near E {approx_equal} {Theta}{sup -1}, being exponentially reduced at small energies and decreasing with the steep power law {proportional_to}E {sup -1-p} up to the maximum energy E = M - (1/2).

  3. Beam Characterization of 10-MV Photon Beam from Medical Linear Accelerator without Flattening Filter.

    PubMed

    Shimozato, Tomohiro; Aoyama, Yuichi; Matsunaga, Takuma; Tabushi, Katsuyoshi

    2017-01-01

    This work investigated the dosimetric properties of a 10-MV photon beam emitted from a medical linear accelerator (linac) with no flattening filter (FF). The aim of this study is to analyze the radiation fluence and energy emitted from the flattening filter free (FFF) linac using Monte Carlo (MC) simulations. The FFF linac was created by removing the FF from a linac in clinical use. Measurements of the depth dose (DD) and the off-axis profile were performed using a three-dimensional water phantom with an ionization chamber. A MC simulation for a 10-MV photon beam from this FFF linac was performed using the BEAMnrc code. The off-axis profiles for the FFF linac exhibited a chevron-like distribution, and the dose outside the irradiation field was found to be lower for the FFF linac than for a linac with an FF (FF linac). The DD curves for the FFF linac included many contaminant electrons in the build-up region. Therefore, for clinical use, a metal filter is additionally required to reduce the effects of the electron contamination. The mean energy of the FFF linac was found to be lower than that of the FF linac owing to the absence of beam hardening caused by the FF.

  4. Beam Characterization of 10-MV Photon Beam from Medical Linear Accelerator without Flattening Filter

    PubMed Central

    Shimozato, Tomohiro; Aoyama, Yuichi; Matsunaga, Takuma; Tabushi, Katsuyoshi

    2017-01-01

    Aim: This work investigated the dosimetric properties of a 10-MV photon beam emitted from a medical linear accelerator (linac) with no flattening filter (FF). The aim of this study is to analyze the radiation fluence and energy emitted from the flattening filter free (FFF) linac using Monte Carlo (MC) simulations. Materials and Methods: The FFF linac was created by removing the FF from a linac in clinical use. Measurements of the depth dose (DD) and the off-axis profile were performed using a three-dimensional water phantom with an ionization chamber. A MC simulation for a 10-MV photon beam from this FFF linac was performed using the BEAMnrc code. Results: The off-axis profiles for the FFF linac exhibited a chevron-like distribution, and the dose outside the irradiation field was found to be lower for the FFF linac than for a linac with an FF (FF linac). The DD curves for the FFF linac included many contaminant electrons in the build-up region. Conclusion: Therefore, for clinical use, a metal filter is additionally required to reduce the effects of the electron contamination. The mean energy of the FFF linac was found to be lower than that of the FF linac owing to the absence of beam hardening caused by the FF. PMID:28706351

  5. Relation between lineal energy distribution and relative biological effectiveness for photon beams according to the microdosimetric kinetic model.

    PubMed

    Okamoto, Hiroyuki; Kanai, Tatsuaki; Kase, Yuki; Matsumoto, Yoshitaka; Furusawa, Yoshiya; Fujita, Yukio; Saitoh, Hidetoshi; Itami, Jun; Kohno, Toshiyuki

    2011-01-01

    Our cell survival data showed the obvious dependence of RBE on photon energy: The RBE value for 200 kV X-rays was approximately 10% greater than those for mega-voltage photon beams. In radiation therapy using mega-voltage photon beams, the photon energy distribution outside the field is different with that in the radiation field because of a large number of low energy scattering photons. Hence, the RBE values outside the field become greater. To evaluate the increase in RBE, the method of deriving the RBE using the Microdosimetric Kinetic model (MK model) was proposed in this study. The MK model has two kinds of the parameters, tissue-specific parameters and the dose-mean lineal energy derived from the lineal energy distributions measured with a Tissue-Equivalent Proportional Counter (TEPC). The lineal energy distributions with the same geometries of the cell irradiations for 200 kV X-rays, (60)Co γ-rays, and 6 MV X-rays were obtained with the TEPC and Monte Carlo code GEANT4. The measured lineal energy distribution for 200 kV X-rays was quite different from those for mega-voltage photon beams. The dose-mean lineal energy of 200 kV X-rays showed the greatest value, 4.51 keV/µm, comparing with 2.34 and 2.36 keV/µm for (60)Co γ-rays and 6 MV X-rays, respectively. By using the results of the TEPC and cell irradiations, the tissue-specific parameters in the MK model were determined. As a result, the RBE of the photon beams (y(D): 2~5 keV/µm) in arbitrary conditions can be derived by the measurements only or the calculations only of the dose-mean lineal energy.

  6. Two-Photon-Absorption Scheme for Optical Beam Tracking

    NASA Technical Reports Server (NTRS)

    Ortiz, Gerardo G.; Farr, William H.

    2011-01-01

    A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.

  7. Asymmetric 2D spatial beam filtering by photonic crystals

    NASA Astrophysics Data System (ADS)

    Gailevicius, D.; Purlys, V.; Maigyte, L.; Gaizauskas, E.; Peckus, M.; Gadonas, R.; Staliunas, K.

    2016-04-01

    Spatial filtering techniques are important for improving the spatial quality of light beams. Photonic crystals (PhCs) with a selective spatial (angular) transmittance can also provide spatial filtering with the added benefit transversal symmetries, submillimeter dimensions and monolithic integration in other devices, such as micro-lasers or semiconductor lasers. Workable bandgap PhC configurations require a modulated refractive index with period lengths that are approximately less than the wavelength of radiation. This imposes technical limitations, whereby the available direct laser write (DLW) fabrication techniques are limited in resolution and refractive index depth. If, however, a deflection mechanism is chosen instead, a functional filter PhC can be produced that is operational in the visible wavelength regime. For deflection based PhCs glass is an attractive choice as it is highly stable medium. 2D and 3D PhC filter variations have already been produced on soda-lime glass. However, little is known about how to control the scattering of PhCs when approaching the smallest period values. Here we look into the internal structure of the initially symmetric geometry 2D PhCs and associating it with the resulting transmittance spectra. By varying the DLW fabrication beam parameters and scanning algorithms, we show that such PhCs contain layers that are comprised of semi-tilted structure voxels. We show the appearance of asymmetry can be compensated in order to circumvent some negative effects at the cost of potentially maximum scattering efficiency.

  8. Beaming Properties of Energetic Electrons and Photons Inside Thunderstorms

    NASA Astrophysics Data System (ADS)

    Cramer, Eric; Briggs, Michael

    2017-01-01

    It has been well established that thunderstorm environments allow relativistic runaway electron avalanches (RREAs) to develop under the influence of strong electric fields. This process can be seeded by external sources, such as cosmic-ray secondary electrons. The resulting bremsstrahlung x-rays and gamma rays that are emitted, propagate through the atmosphere and into space where they are detected by orbiting spacecraft, e.g. NASA Fermi. These high energy radiation blasts are known as Terrestrial Gamma-ray Flashes (TGFs). Using a Monte Carlo particle simulation, we show beaming characteristics of these electrons and photons such as the angular distribution, energy spectra, and the radial distribution from the thunderstorm source to the observation point of orbiting spacecraft. These features are related to the thunderstorm electric field, Earth's geomagnetic field, and the potential inside the thundercloud region. Observations of TGFs made by the Gamma-ray Burst Monitor (GBM) will also be discussed, as well as a future multipoint CubeSat mission targeted to measure the beaming geometry of the gamma rays. This material is based upon work supported by the National Science Foundation under Grant Number 1524533.

  9. Propagation behavior of incoherent beams in one-dimensional photonic crystals.

    PubMed

    Ding, Fei-Na; Chen, Yuan-Yuan; Shi, Jie-Long

    2010-03-01

    The propagation properties of Gaussian Schell-model spatially incoherent beams through a one-dimensional photonic crystal (1DPC) are investigated. The dynamical evolution of incoherent beams in 1DPC and the Goos-Hänchen lateral shift of the transmitted beams are obtained. The mutual effects of coherence and bandgap of the PC on the evolution of incoherent beams are analyzed. The incidence angle of the incoherent beam also has an influence on the incoherent electric field and the lateral shift.

  10. Absolute calibration of photon-number-resolving detectors with an analog output using twin beams

    SciTech Connect

    Peřina, Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2014-01-27

    A method for absolute calibration of a photon-number resolving detector producing analog signals as the output is developed using a twin beam. The method gives both analog-to-digital conversion parameters and quantum detection efficiency for the photon fields. Characteristics of the used twin beam are also obtained. A simplified variant of the method applicable to fields with high signal to noise ratios and suitable for more intense twin beams is suggested.

  11. Absolute calibration of photon-number-resolving detectors with an analog output using twin beams

    NASA Astrophysics Data System (ADS)

    Peřina, Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2014-01-01

    A method for absolute calibration of a photon-number resolving detector producing analog signals as the output is developed using a twin beam. The method gives both analog-to-digital conversion parameters and quantum detection efficiency for the photon fields. Characteristics of the used twin beam are also obtained. A simplified variant of the method applicable to fields with high signal to noise ratios and suitable for more intense twin beams is suggested.

  12. Proton-Beam Therapy for Olfactory Neuroblastoma

    SciTech Connect

    Nishimura, Hideki . E-mail: westvill@med.kobe-u.ac.jp; Ogino, Takashi; Kawashima, Mitsuhiko; Nihei, Keiji; Arahira, Satoko; Onozawa, Masakatsu; Katsuta, Shoichi; Nishio, Teiji

    2007-07-01

    Purpose: To analyze the feasibility and efficacy of proton-beam therapy (PBT) for olfactory neuroblastoma (ONB) as a definitive treatment, by reviewing our preliminary experience. Olfactory neuroblastoma is a rare disease, and a standard treatment strategy has not been established. Radiation therapy for ONB is challenging because of the proximity of ONBs to critical organs. Proton-beam therapy can provide better dose distribution compared with X-ray irradiation because of its physical characteristics, and is deemed to be a feasible treatment modality. Methods and Materials: A retrospective review was performed on 14 patients who underwent PBT for ONB as definitive treatment at the National Cancer Center Hospital East (Kashiwa, Chiba, Japan) from November 1999 to February 2005. A total dose of PBT was 65 cobalt Gray equivalents (Gy{sub E}), with 2.5-Gy{sub E} once-daily fractionations. Results: The median follow-up period for surviving patients was 40 months. One patient died from disseminated disease. There were two persistent diseases, one of which was successfully salvaged with surgery. The 5-year overall survival rate was 93%, the 5-year local progression-free survival rate was 84%, and the 5-year relapse-free survival rate was 71%. Liquorrhea was observed in one patient with Kadish's stage C disease (widely destroying the skull base). Most patients experienced Grade 1 to 2 dermatitis in the acute phase. No other adverse events of Grade 3 or greater were observed according to the RTOG/EORTC acute and late morbidity scoring system. Conclusions: Our preliminary results of PBT for ONB achieved excellent local control and survival outcomes without serious adverse effects. Proton-beam therapy is considered a safe and effective modality that warrants further study.

  13. Sulfonated aluminum phthalocyanines for two-photon photodynamic cancer therapy: the effect of the excitation wavelength

    NASA Astrophysics Data System (ADS)

    Wang, J.; Li, W.; Yu, H. B.; Cheung, N. H.; Chen, J. Y.

    2014-03-01

    Sulfonated aluminum phthalocyanine (AlPcS) is a well-studied photosensitizer which has been widely used in research and in clinical applications of the photodynamic therapy of cancers. Conventionally, one-photon excitation was used, but it was unknown whether two-photon excitation of AlPcS was equally effective. In this study, the two-photon absorption cross sections of AlPcS at near infrared wavelengths were deduced from femtosecond (fs) laser-induced fluorescence. We found that the two-photon absorption cross section of AlPcS was strongly dependent on the excitation wavelength. It was about 19 GM when excited at 800 nm, but grew to 855 GM when excited at 750 nm. The 750 nm fs-laser-induced fluorescence images of AlPcS in human nasopharyngeal carcinoma cells were clearly visible while the corresponding images were very dim when excited at 800 nm. Singlet oxygen production was 13 times higher when excited at 750 nm relative to 800 nm. Our subsequent in vitro experiments showed that 750 nm two-photon excitation with an unfocused fs laser beam damaged cancer cells in a light-dose-dependent manner typical of photodynamic therapy (PDT). The killing at 750 nm was about 9-10 times more efficient than at 800 nm. These results demonstrated for the first time that AlPcS has good potential for two-photon PDT of cancers.

  14. SU-E-T-796: Variation of Surface Photon Energy Spectra On Bone Heterogeneity and Beam Obliquity Between Flattened and Unflattened Beam

    SciTech Connect

    Chow, J; Owrangi, A; Grigorov, G

    2015-06-15

    Purpose: This study investigates the spectra of surface photon energy and energy fluence in the bone heterogeneity and beam obliquity using flattened and unflattened photon beams. The spectra were calculated in a bone and water phantom using Monte Carlo simulation (the EGSnrc code). Methods: Spectra of energy, energy fluence and mean energy of the 6 MV flattened and unflattened photon beams (field size = 10 × 10 cm{sup 2}) produced by a Varian TrueBEAM linear accelerator were calculated at the surfaces of a bone and water phantom using Monte Carlo simulations. The spectral calculations were repeated with the beam angles turned from 0° to 15°, 30° and 45° in the phantoms. Results: It is found that the unflattened photon beams contained more photons in the low-energy range of 0 – 2 MeV than the flattened beams with a flattening filter. Compared to the water phantom, both the flattened and unflattened beams had slightly less photons in the energy range < 0.4 MeV when a bone layer of 1 cm is present under the phantom surface. This shows that the presence of the bone decreased the low-energy photons backscattered to the phantom surface. When the photon beams were rotated from 0° to 45°, the number of photon and mean photon energy increased with the beam angle. This is because both the flattened and unflattened beams became more hardened when the beam angle increased. With the bone heterogeneity, the mean energies of both photon beams increased correspondingly. This is due to the absorption of low-energy photons by the bone, resulting in more significant beam hardening. Conclusion: The photon spectral information is important in studies on the patient’s surface dose enhancement when using unflattened photon beams in radiotherapy.

  15. A flatness and calibration monitor for accelerator photon and electron beams.

    PubMed

    Martell, E; Galbraith, D; Munro, P; Rawlinson, J A; Taylor, W B

    1986-02-01

    A flatness monitor has been built to quickly and accurately check accelerator beam flatness and dose calibration. Consisting of a 7 X 7 ion chamber array, the unit operates in photon beams from 60Co energies to 25 MV and electron beams (scattered or scanned) from 6 MeV to 25 MeV.

  16. Neutron beam design, development, and performance for neutron capture therapy

    SciTech Connect

    Harling, O.K.; Bernard, J.A. ); Zamenhof, R.G. )

    1990-01-01

    The report presents topics presented at a workshop on neutron beams and neutron capture therapy. Topics include: neutron beam design; reactor-based neutron beams; accelerator-based neutron beams; and dosimetry and treatment planning. Individual projects are processed separately for the databases. (CBS)

  17. Poster — Thur Eve — 37: Respiratory gating with an Elekta flattening filter free photon beam

    SciTech Connect

    Péloquin, S; Furstoss, C; Munger, P; Wierzbicki, W; Carrier, J-F

    2014-08-15

    In cases where surgery is not possible for lung cancer treatment, stereotactic body radiation therapy (SBRT) may be an option. One problem when treating this type of cancer is the motion of the lungs caused by the patient's respiration. It is possible to reduce the impact of this movement with the use of respiratory gating. By combining respiratory gating with a flattening filter free (FFF) photon beam linac, the increased treatment time caused by a reduced beam-on time of respiratory gating methods can be compensated by the inherent increased dose rate of FFF beams. This project's aim is to create hardware and software interfaces allowing free respiration gating on an Elekta Synergy-S linac specially modified to deliver 6 MV FFF photon beams. First, a printed circuit board was created for reading the signal from a Bellows Belt from Philips (a respiration monitor belt) and transmitting an On/Off signal to the accelerator. A software was also developed to visualize patient respiration. Secondly, a FFF model was created with the Pinnacle treatment planning system from Philips. Gamma (Γ) analysis (2%, 2 mm) was used to evaluate model. For fields going from 5.6 × 5.6 to 12 × 12 cm{sup 2}, central axis depth dose model fitting shows an average gamma value of 0.2 and 100% of gamma values remain under the Γ = 1 limit. For smaller fields (0.8 × 0.8 and 1.6 × 1.6 cm{sup 2}), Pinnacle has more trouble trying to fit the measurements, overestimating dose in penumbra and buildup regions.

  18. Proton Beam Therapy for Large Hepatocellular Carcinoma

    SciTech Connect

    Sugahara, Shinji; Oshiro, Yoshiko; Nakayama, Hidetsugu; Fukuda, Kuniaki; Mizumoto, Masashi; Abei, Masato; Shoda, Junichi; Matsuzaki, Yasushi; Thono, Eriko; Tokita, Mari B.A.; Tsuboi, Koji; Tokuuye, Koichi

    2010-02-01

    Purpose: To investigate the safety and efficacy of proton beam therapy (PBT) in patients with large hepatocellular carcinoma (HCC). Methods and Materials: Twenty-two patients with HCC larger than 10 cm were treated with proton beam therapy at our institution between 1985 and 2006. Twenty-one of the 22 patients were not surgical candidates because of advanced HCC, intercurrent disease, or old age. Median tumor size was 11 cm (range, 10-14cm), and median clinical target volume was 567 cm{sup 3} (range, 335-1,398 cm{sup 3}). Hepatocellular carcinoma was solitary in 18 patients and multifocal in 4 patients. Tumor types were nodular and diffuse in 18 and 4 patients, respectively. Portal vein tumor thrombosis was present in 11 patients. Median total dose delivered was 72.6 GyE in 22 fractions (range, 47.3-89.1 GyE in 10-35 fractions). Results: The median follow-up period was 13.4 months (range, 1.5-85 months). Tumor control rate at 2 years was 87%. One-year overall and progression-free survival rates were 64% and 62%, respectively. Two-year overall and progression-free survival rates were 36% and 24%, respectively. The predominant tumor progression pattern was new hepatic tumor development outside the irradiated field. No late treatment-related toxicity of Grade 3 or higher was observed. Conclusions: The Bragg peak properties of PBT allow for improved conformality of the treatment field. As such, large tumor volumes can be irradiated to high doses without significant dose exposure to surrounding normal tissue. Proton beam therapy therefore represents a promising modality for the treatment of large-volume HCC. Our study shows that PBT is an effective and safe method for the treatment of patients with large HCC.

  19. Simultaneous two-photon excitation of photodynamic therapy agents

    SciTech Connect

    Wachter, E.A.; Fisher, W.G. |; Partridge, W.P.; Dees, H.C.; Petersen, M.G.

    1998-01-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type 1 and type 2 photodynamic therapy (PDT) agents are examined.

  20. A 4 MV flattening filter-free beam: commissioning and application to conformal therapy and volumetric modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Stevens, S. W.; Rosser, K. E.; Bedford, J. L.

    2011-07-01

    Recent studies have indicated that radiotherapy treatments undertaken on a flattening filter-free (FFF) linear accelerator have a number of advantages over treatments undertaken on a conventional linear accelerator. In addition, 4 MV photon beams may give improved isodose coverage for some treatment volumes at air/tissue interfaces, compared to when utilizing the clinical standard of 6 MV photons. In order to investigate these benefits, FFF beams were established on an Elekta Beam Modulator linear accelerator for 4 MV photons. Commissioning beam data were obtained for open and wedged fields. The measured data were then imported into a treatment planning system and a beam model was commissioned. The beam model was optimized to improve dose calculations at shallow, clinically relevant depths. Following verification, the beam model was utilized in a treatment planning study, including volumetric modulated arc therapy, for a selection of lung, breast/chest wall and larynx patients. Increased dose rates of around 800 MU min-1 were recorded for open fields (relative to 320 MU min-1 for filtered open fields) and reduced head scatter was inferred from output factor measurements. Good agreement between planned and delivered dose was observed in verification of treatment plans. The planning study indicated that with a FFF beam, equivalent (and in some cases improved) isodose profiles could be achieved for small lung and larynx treatment volumes relative to 4 MV filtered treatments. Furthermore, FFF treatments with wedges could be replicated using open fields together with an 'effective wedge' technique and isocentre shift. Clinical feasibility of a FFF beam was therefore demonstrated, with beam modelling, treatment planning and verification being successfully accomplished.

  1. Field shaping in electron beam therapy.

    PubMed

    Khan, F M; Moore, V C; Levitt, S H

    1976-10-01

    In the treatment of superficial lesions with 8-13 MeV electrons, lead shields are often used to protect the underlying tissue. Measurements were made with film and ion chamber to analyse various aspects of external and internal shielding in electron beam therapy. Data were obtained on the thickness of lead required for shielding, the effect of blocking on dose-rate, electron-backscattering from lead and X-ray contamination. Practical applications of a lead clay for shielding are discussed.

  2. Proton and photon beams interaction with radiosensitizing agents in human glioblastoma cells

    NASA Astrophysics Data System (ADS)

    Lafiandra, M.

    2016-03-01

    In oncological field, chemoradiotherapy treatments that combine radiations to radiosensitizing chemical agents are spreading out. The aim of this kind of treatment is to obtain a better tumor local control and at the same time to reduce the distant failure. The combination of radiation with microtubule-stabilizing agents is very promising in cancer therapy. In the present study, the combination of clinical proton beams and the microtubule-stabilizing agent Epothilone B has been investigated in human glioblastoma cells cultured in vitro. Photon beams have been used for comparison. Cell survival has been evaluated by colony forming assay and the interaction mechanism between radiation and Epothilone B has been investigated: survival curves relative to the combined treatment (protons or photons with Epothilone B) showed a linear trend, different from the linear quadratic behavior found with radiation alone. The analysis performed showed a synergism in the radiation-drug interaction. Thus, Epothilone B in conjunction with radiation acts as a radiosensitizer. Finally proton Relative Biological Effectiveness has been determined and results are reported in this paper.

  3. Evaluation of multileaf collimator design for a photon beam.

    PubMed

    Galvin, J M; Smith, A R; Moeller, R D; Goodman, R L; Powlis, W D; Rubenstein, J; Solin, L J; Michael, B; Needham, M; Huntzinger, C J

    1992-01-01

    Various aspects of multileaf collimator (MLC) design are examined relative to clinical requirements. The characteristics studied included: (a) irregular field edge definition or "effective" penumbra, (b) optimum field coverage for the multileaf portion of the field, and (c) leaf velocity. A film dosimetry technique was developed to measure the rapid 2-dimensional change in dose at an edge defined by a multileaf collimator with the segments staggered. The method applies a correction factor which allows for the changing ratio of scattered to primary photons at the field edge so that the energy dependence of the film is corrected. Stepped lead alloy blocks were irradiated with 6 MV photons to obtain films simulating a double-focused multileaf collimator, and the results were compared to films of fields shaped with standard divergent blocks. The effect of the shape of the leaf face (the end of the leaf) on penumbra was also studied. Proper shaping of the leaf ends may eliminate the need to exactly match beam divergence so that the mechanical of the collimator system is simplified. Leaves having several different end shapes and moving horizontally to intercept a vertical beam were compared to the divergent design where a straight face moves along an arc. The measurements showed that the "effective" penumbra (measured as the distance from the 80 to 20% isodose lines) for the multileaf collimator is a function of the angle between the direction of leaf motion and the edge defined by the leaves. In addition, all leaf end shapes showed some increase in penumbra compared to standard divergent blocking and also had increasing penumbra width as they moved over or back from the field center line. A total of 459 treatment fields and six disease sites were examined to determine the percentage of fields potentially shaped by multileaf segments of specified length. This study showed 93% of the fields had lengths of 30 cm or less and 99% had widths of 25 cm or less. A study

  4. Exotic radiation from a photonic crystal excited by an ultrarelativistic electron beam.

    PubMed

    Horiuchi, N; Ochiai, T; Inoue, J; Segawa, Y; Shibata, Y; Ishi, K; Kondo, Y; Kanbe, M; Miyazaki, H; Hinode, F; Yamaguti, S; Ohtaka, K

    2006-11-01

    We report the observation of an exotic radiation (unconventional Smith-Purcell radiation) from a one-dimensional photonic crystal. The physical origin of the exotic radiation is direct excitation of the photonic bands by an ultrarelativistic electron beam. The spectrum of the exotic radiation follows photonic bands of a certain parity, in striking contrast to the conventional Smith-Purcell radiation, which shows solely a linear dispersion. Key ingredients for the observation are the facts that the electron beam is in an ultrarelativistic region and that the photonic crystal is finite. The origin of the radiation was identified by comparison of experimental and theoretical results.

  5. Combined modulated electron and photon beams planned by a Monte-Carlo-based optimization procedure for accelerated partial breast irradiation.

    PubMed

    Palma, Bianey Atriana; Sánchez, Ana Ureba; Salguero, Francisco Javier; Arráns, Rafael; Sánchez, Carlos Míguez; Zurita, Amadeo Walls; Hermida, María Isabel Romero; Leal, Antonio

    2012-03-07

    The purpose of this study was to present a Monte-Carlo (MC)-based optimization procedure to improve conventional treatment plans for accelerated partial breast irradiation (APBI) using modulated electron beams alone or combined with modulated photon beams, to be delivered by a single collimation device, i.e. a photon multi-leaf collimator (xMLC) already installed in a standard hospital. Five left-sided breast cases were retrospectively planned using modulated photon and/or electron beams with an in-house treatment planning system (TPS), called CARMEN, and based on MC simulations. For comparison, the same cases were also planned by a PINNACLE TPS using conventional inverse intensity modulated radiation therapy (IMRT). Normal tissue complication probability for pericarditis, pneumonitis and breast fibrosis was calculated. CARMEN plans showed similar acceptable planning target volume (PTV) coverage as conventional IMRT plans with 90% of PTV volume covered by the prescribed dose (D(p)). Heart and ipsilateral lung receiving 5% D(p) and 15% D(p), respectively, was 3.2-3.6 times lower for CARMEN plans. Ipsilateral breast receiving 50% D(p) and 100% D(p) was an average of 1.4-1.7 times lower for CARMEN plans. Skin and whole body low-dose volume was also reduced. Modulated photon and/or electron beams planned by the CARMEN TPS improve APBI treatments by increasing normal tissue sparing maintaining the same PTV coverage achieved by other techniques. The use of the xMLC, already installed in the linac, to collimate photon and electron beams favors the clinical implementation of APBI with the highest efficiency.

  6. Calculation of energy deposition, photon and neutron production in proton therapy of thyroid gland using MCNPX.

    PubMed

    Mowlavi, Ali Asghar; Fornasie, Maria Rosa; de Denaro, Mario

    2011-01-01

    In this study, the MCNPX code has been used to simulate a proton therapy in thyroid gland, in order to calculate the proton energy deposition in the target region. As well as, we have calculated the photon and neutron production spectra due to proton interactions with the tissue. We have considered all the layers of tissue, from the skin to the thyroid gland, and an incident high energy pencil proton beam. The results of the simulation show that the best proton energy interval, to cover completely the thyroid tissue, is from 42 to 54 MeV, assuming that the thyroid gland has a 14 mm thickness and is located 11.2mm under the skin surface. The most percentage of deposited energy (78%) is related to the 54 MeV proton energy beam. Total photon and neutron production are linear and polynomial second order functions of the proton energy, respectively.

  7. Beam quality conversion factors for parallel-plate ionization chambers in MV photon beams

    SciTech Connect

    Muir, B. R.; McEwen, M. R.; Rogers, D. W. O.

    2012-03-15

    Purpose: To investigate the behavior of plane-parallel ion chambers in high-energy photon beams through measurements and Monte Carlo simulations. Methods: Ten plane-parallel ion chamber types were obtained from the major ion chamber manufacturers. Absorbed dose-to-water calibration coefficients are measured for these chambers and k{sub Q} factors are determined. In the process, the behaviors of the chambers are characterized through measurements of leakage currents, chamber settling in cobalt-60, polarity and ion recombination behavior, and long-term stability. Monte Carlo calculations of the absorbed dose to the air in the ion chamber and absorbed dose to water are obtained to calculate k{sub Q} factors. Systematic uncertainties in Monte Carlo calculated k{sub Q} factors are investigated by varying material properties and chamber dimensions. Results: Chamber behavior was variable in MV photon beams, especially with regard to chamber leakage and ion recombination. The plane-parallel chambers did not perform as well as cylindrical chambers. Significant differences up to 1.5% were observed in calibration coefficients after a period of eight months although k{sub Q} factors were consistent on average within 0.17%. Chamber-to-chamber variations in k{sub Q} factors for chambers of the same type were at the 0.2% level. Systematic uncertainties in Monte Carlo calculated k{sub Q} factors ranged between 0.34% and 0.50% depending on the chamber type. Average percent differences between measured and calculated k{sub Q} factors were - 0.02%, 0.18%, and - 0.16% for 6, 10, and 25 MV beams, respectively. Conclusions: Excellent agreement is observed on average at the 0.2% level between measured and Monte Carlo calculated k{sub Q} factors. Measurements indicate that the behavior of these chambers is not adequate for their use for reference dosimetry of high-energy photon beams without a more extensive QA program than currently used for cylindrical reference-class ion chambers.

  8. Beam quality conversion factors for parallel-plate ionization chambers in MV photon beams.

    PubMed

    Muir, B R; McEwen, M R; Rogers, D W O

    2012-03-01

    To investigate the behavior of plane-parallel ion chambers in high-energy photon beams through measurements and Monte Carlo simulations. Ten plane-parallel ion chamber types were obtained from the major ion chamber manufacturers. Absorbed dose-to-water calibration coefficients are measured for these chambers and k(Q) factors are determined. In the process, the behaviors of the chambers are characterized through measurements of leakage currents, chamber settling in cobalt-60, polarity and ion recombination behavior, and long-term stability. Monte Carlo calculations of the absorbed dose to the air in the ion chamber and absorbed dose to water are obtained to calculate k(Q) factors. Systematic uncertainties in Monte Carlo calculated k(Q) factors are investigated by varying material properties and chamber dimensions. Chamber behavior was variable in MV photon beams, especially with regard to chamber leakage and ion recombination. The plane-parallel chambers did not perform as well as cylindrical chambers. Significant differences up to 1.5% were observed in calibration coefficients after a period of eight months although k(Q) factors were consistent on average within 0.17%. Chamber-to-chamber variations in k(Q) factors for chambers of the same type were at the 0.2% level. Systematic uncertainties in Monte Carlo calculated k(Q) factors ranged between 0.34% and 0.50% depending on the chamber type. Average percent differences between measured and calculated k(Q) factors were - 0.02%, 0.18%, and - 0.16% for 6, 10, and 25 MV beams, respectively. Excellent agreement is observed on average at the 0.2% level between measured and Monte Carlo calculated k(Q) factors. Measurements indicate that the behavior of these chambers is not adequate for their use for reference dosimetry of high-energy photon beams without a more extensive QA program than currently used for cylindrical reference-class ion chambers.

  9. Polarization-entangled photon generation using partial spatially coherent pump beam.

    PubMed

    Ismail, Yaseera; Joshi, Stuti; Petruccione, Francesco

    2017-09-21

    The generation of two photon fields, to date, has been demonstrated utilizing a fully coherent pump beam. In this paper we demonstrate, the theoretical and experimental generation of polarization entangled single photon pairs by varying the spatial coherence of the pump beam. The effect of the pump beam spatial coherence on the visibility of a polarization-entangled single photon source is investigated. A comparison of the visibility measurements using a fully coherent and partially coherent pump beam is performed. It is shown that the partial coherence of the pump beam contributes to an increase in the visibility. The coherence properties of the beam are significant for free-space optical transmission in particular for long range free-space quantum communication.

  10. In-beam PET at high-energy photon beams: a feasibility study

    NASA Astrophysics Data System (ADS)

    Müller, H.; Enghardt, W.

    2006-04-01

    For radiation therapy with carbon ion beams, either for the stable isotope 12C or for the radioactive one 11C, it has been demonstrated that the β+-activity distribution created or deposited, respectively, within the irradiated volume can be visualized by means of positron emission tomography (PET). The PET images provide valuable information for quality assurance and precision improvement of ion therapy. Dedicated PET scanners have been integrated into treatment sites at the Heavy Ion Medical Accelerator at Chiba (HIMAC), Japan, and the Gesellschaft für Schwerionenforschung (GSI), Germany, to make PET imaging feasible during therapeutic irradiation (in-beam PET). A similar technique may be worthwhile for radiotherapy with high-energy bremsstrahlung. In addition to monitoring the dose delivery process which in-beam PET has been primarily developed for, it may be expected that radiation response of tissue can be detected by means of in-beam PET. We investigate the applicability of PET for treatment control in the case of using bremsstrahlung spectra produced by 15-50 MeV electrons. Target volume activation due to (γ, n) reactions at energies above 20 MeV yields moderate β+-activity levels, which can be employed for imaging. The radiation from positrons produced by pair production is not presently usable because the detectors are overloaded due to the low duty factor of medical electron linear accelerators. However, the degradation of images caused by positron motion between creation and annihilation seems to be tolerable.

  11. Femtosecond correlated photon echo in CdS crystal under two-photon excitation by two pairs of crossed laser beams

    NASA Astrophysics Data System (ADS)

    Samartsev, V. V.; Leontiev, A. V.; Mitrofanova, T. G.

    2015-07-01

    We consider the possibility of observing a femtosecond correlated photon echo (FCPE) under two-photon excitation of CdS crystal by two pairs of crossed laser beams. The peculiarities of FCPE signals and their possible applications are discussed.

  12. Comptonization of thermal photons by relativistic electron beams

    NASA Technical Reports Server (NTRS)

    Daugherty, Joseph K.; Harding, Alice K.

    1989-01-01

    This paper presents a numerical calculation of gamma-ray emission produced by Compton scattering of relativistic electron beams on background thermal radiation, which includes spatial dependence of electron energy losses and cyclotron resonance scattering in a strong magnetic field. In the first version, the scattering is described by the fully relativistic Klein-Nishina cross section, but the magnetic field is neglected. In the second version, the scattering is described by the magnetic resonant cross section in the Thomson limit. It is found that when the magnetic field is not included, electron energy losses are important only at higher neutron star surface temperatures (T about 3,000,000 K). In the presence of a strong magnetic field, (10 to the 12th G), resonant scattering greatly increases electron energy losses, making scattering very efficient even at lower surface temperatures. Resulting photon and electron spectra for both cases ae discussed in relation to models for pulsar X-ray and gamma-ray emission.

  13. Ionization chamber radial response deconvolution in megavoltage photon beam

    NASA Astrophysics Data System (ADS)

    Kulmala, A.; Tenhunen, M.

    2017-09-01

    The aim of this paper is to study a radial response model as a method, to correct output factor results gathered with ionization chambers of different size and shape in cone collimated RT fields. An enhanced version of a non-parametric super-resolution deconvolution method able to model a radial response function of a small cylinder symmetric ionization chamber is described and demonstrated. The radial response of four ionization chambers with different geometry and radius are estimated using 6 MV photon beam in water at the isocentre plane. Finally the validity of the estimates is tested by applying the response functions to the output factor measurements of 4–20 mm conical collimators. The enhanced method is demonstrated by obtaining the response function characteristics with a spatial uncertainty smaller than 0.1 mm when the distance from chamber axis is larger than 0.5 mm. In all studied ionization chambers, a significant local response maximum is found close to the air cavity boundary. The agreement between the output factor results of different chambers is promising, the largest difference (max—min) in output factor is 4% obtained for the smallest 4 mm cone size.

  14. Respiratory gating for proton beam scanning versus photon 3D-CRT for breast cancer radiotherapy.

    PubMed

    Flejmer, Anna M; Edvardsson, Anneli; Dohlmar, Frida; Josefsson, Dan; Nilsson, Mats; Witt Nyström, Petra; Dasu, Alexandru

    2016-05-01

    Background Respiratory gating and proton therapy have both been proposed to reduce the cardiopulmonary burden in breast cancer radiotherapy. This study aims to investigate the additional benefit of proton radiotherapy for breast cancer with and without respiratory gating. Material and methods Twenty left-sided patients were planned on computed tomography (CT)-datasets acquired during enhanced inspiration gating (EIG) and free-breathing (FB), using photon three-dimensional conformal radiation therapy (3D-CRT) and scanned proton beams. Ten patients received treatment to the whole breast only (WBO) and 10 were treated to the breast and the regional lymph nodes (BRN). Dosimetric parameters characterizing the coverage of target volumes and the cardiopulmonary burden were compared using a paired, two-tailed Student's t-test. Results Protons ensured comparable or better target coverage than photons in all patients during both EIG and FB. The heterogeneity index decreased from 12% with photons to about 5% with protons. The mean dose to the ipsilateral lung was reduced in BRN patients from 12 Gy to 7 Gy  (RBE) in EIG and from 14 Gy to 6-7 Gy (RBE) in FB, while for WBO patients all values were about 5-6 Gy (RBE). The mean dose to heart decreased by a factor of four in WBO patients [from 1.1 Gy to 0.3 Gy (RBE) in EIG and from 2.1 Gy to 0.5 Gy (RBE) in FB] and 10 in BRN patients [from 2.1 Gy to 0.2 Gy (RBE) in EIG and from 3.4 Gy to 0.3 Gy (RBE) in FB]. Similarly, the mean and the near maximum dose to the left anterior descending artery (LAD) were significantly lower (p < 0.05) with protons in comparison with photons. Conclusion Proton spot scanning has a high potential to reduce the irradiation of organs at risk and other normal tissues for most patients, beyond what could be achieved with EIG and photon therapy. The largest dose sparing has been seen for BRN patients, both in terms of cardiopulmonary burden and integral dose.

  15. SU-E-T-577: Obliquity Factor and Surface Dose in Proton Beam Therapy

    SciTech Connect

    Das, I; Andersen, A; Coutinho, L

    2015-06-15

    Purpose: The advantage of lower skin dose in proton beam may be diminished creating radiation related sequalae usually seen with photon and electron beams. This study evaluates the surface dose as a complex function of beam parameters but more importantly the effect of beam angle. Methods: Surface dose in proton beam depends on the beam energy, source to surface distance, the air gap between snout and surface, field size, material thickness in front of surface, atomic number of the medium, beam angle and type of nozzle (ie double scattering, (DS), uniform scanning (US) or pencil beam scanning (PBS). Obliquity factor (OF) is defined as ratio of surface dose in 0° to beam angle Θ. Measurements were made in water phantom at various beam angles using very small microdiamond that has shown favorable beam characteristics for high, medium and low proton energy. Depth dose measurements were performed in the central axis of the beam in each respective gantry angle. Results: It is observed that surface dose is energy dependent but more predominantly on the SOBP. It is found that as SSD increases, surface dose decreases. In general, SSD, and air gap has limited impact in clinical proton range. High energy has higher surface dose and so the beam angle. The OF rises with beam angle. Compared to OF of 1.0 at 0° beam angle, the value is 1.5, 1.6, 1,7 for small, medium and large range respectively for 60 degree angle. Conclusion: It is advised that just like range and SOBP, surface dose should be clearly understood and a method to reduce the surface dose should be employed. Obliquity factor is a critical parameter that should be accounted in proton beam therapy and a perpendicular beam should be used to reduce surface dose.

  16. Beam-Gas and Thermal Photon Scattering in the NLC Main Linac as a Source of Beam Halo (LCC-0051)

    SciTech Connect

    Tenenbaum, P

    2004-03-19

    Scattering of primary beam electrons off of residual gas molecules or blackbody radiation photons in the NLC main linac has been identified as a potential source of beam haloes which must be collimated in the beam delivery system. We consider the contributions from four scattering mechanisms: inelastic thermal-photon scattering, elastic beam-gas (Coulomb) scattering inelastic beam-gas (Bremsstrahlung) scattering, and atomic-electron scattering. In each case we develop the formalism necessary to estimate the backgrounds generated in the main linac, and determine the expected number of off-energy or large-amplitude particles from each process, assuming a main linac injection energy of 8 GeV and extraction energy of 500 GeV.

  17. Evaluation of dosimetric properties of 6 MV & 10 MV photon beams from a linear accelerator with no flattening filter

    NASA Astrophysics Data System (ADS)

    Pearson, David

    A linear accelerator manufactured by Elekta, equipped with a multi leaf collimation (MLC) system has been modelled using Monte Carlo simulations with the photon flattening filter removed. The purpose of this investigation was to show that more efficient and more accurate Intensity Modulated Radiation Therapy (IMRT) treatments can be delivered from a standard linear accelerator with the flattening filter removed from the beam. A range of simulations of 6 MV and 10 MV photon were studied and compared to a model of a standard accelerator which included the flattening filter for those beams. Measurements using a scanning water phantom were also performed after the flattening filter had been removed. We show here that with the flattening filter removed, an increase to the dose on the central axis by a factor of 2.35 and 4.18 is achieved for 6 MV and 10 MV photon beams respectively using a standard 10x 10cm2 field size. A comparison of the dose at points at the field edges led to the result that, removal of the flattening filter reduced the dose at these points by approximately 10% for the 6 MV beam over the clinical range of field sizes. A further consequence of removing the flattening filter was the softening of the photon energy spectrum leading to a steeper reduction in dose at depths greater than dmax. Also studied was the electron contamination brought about by the removal of the filter. To reduce this electron contamination and thus reduce the skin dose to the patient we consider the use of an electron scattering foil in the beam path. The electron scattering foil had very little effect on dmax. From simulations of a standard 6MV beam, a filter-free beam and a filter-free beam with electron scattering foil, we deduce that the proportion of electrons in the photon beam is 0.35%, 0.28% and 0.27%, consecutively. In short, higher dose rates will result in decreased treatment times and the reduced dose outside of the field is indicative of reducing the dose to the

  18. Enhanced transmission and beaming via a zero-index photonic crystal

    SciTech Connect

    Hajian, Hodjat; Ozbay, Ekmel; Caglayan, Humeyra

    2016-07-18

    Certain types of photonic crystals with Dirac cones at the Γ point of their band structure have a zero effective index of refraction at Dirac cone frequency. Here, by an appropriate design of the photonic structure, we obtain a strong coupling between modes around the Dirac cone frequency of an all-dielectric zero-index photonic crystal and the guided ones supported by a photonic crystal waveguide. Consequently, we experimentally demonstrate that the presence of the zero-index photonic crystal at the inner side of the photonic crystal waveguide leads to an enhancement in the transmission of some of the guided waves passing through this hybrid system. Moreover, those electromagnetic waves extracted from the structure with enhanced transmission exhibit high directional beaming due to the presence of the zero-index photonic crystal at the outer side of the photonic crystal waveguide.

  19. Analyzing the characteristics of 6 MV photon beam at low monitor unit settings

    PubMed Central

    Nithya, L.; Raj, N. Arunai Nambi; Rathinamuthu, Sasikumar

    2016-01-01

    Analyzing the characteristics of a low monitor unit (MU) setting is essential, particularly for intensity-modulated techniques. Intensity modulation can be achieved through intensity-modulated radiotherapy (IMRT) or volumetric-modulated arc therapy (VMAT). There is possibility for low MUs in the segments of IMRT and VMAT plans. The minimum MU/segment must be set by the physicist in the treatment planning system at the time of commissioning. In this study, the characteristics such as dose linearity, stability, flatness, and symmetry of 6 MV photon beam of a Synergy linear accelerator at low MU settings were investigated for different dose rates. The measurements were performed for Synergy linear accelerator using a slab phantom with a FC65-G chamber and Profiler 2. The MU linearity was studied for 1–100 MU using a field size of 10 cm ×10 cm. The linearity error for 1 MU was 4.2%. Flatness of the beam was deteriorated in 1 MU condition. The beam stability and symmetry was well within the specification. Using this study, we conclude that the treatment delivered with <3 MU may result in uncertainty in dose delivery. To ensure the correct dose delivery with less uncertainty, it is recommended to use ≥3 MU as the minimum MU per segment in IMRT and VMAT plans. PMID:27051168

  20. Analyzing the characteristics of 6 MV photon beam at low monitor unit settings.

    PubMed

    Nithya, L; Raj, N Arunai Nambi; Rathinamuthu, Sasikumar

    2016-01-01

    Analyzing the characteristics of a low monitor unit (MU) setting is essential, particularly for intensity-modulated techniques. Intensity modulation can be achieved through intensity-modulated radiotherapy (IMRT) or volumetric-modulated arc therapy (VMAT). There is possibility for low MUs in the segments of IMRT and VMAT plans. The minimum MU/segment must be set by the physicist in the treatment planning system at the time of commissioning. In this study, the characteristics such as dose linearity, stability, flatness, and symmetry of 6 MV photon beam of a Synergy linear accelerator at low MU settings were investigated for different dose rates. The measurements were performed for Synergy linear accelerator using a slab phantom with a FC65-G chamber and Profiler 2. The MU linearity was studied for 1-100 MU using a field size of 10 cm ×10 cm. The linearity error for 1 MU was 4.2%. Flatness of the beam was deteriorated in 1 MU condition. The beam stability and symmetry was well within the specification. Using this study, we conclude that the treatment delivered with <3 MU may result in uncertainty in dose delivery. To ensure the correct dose delivery with less uncertainty, it is recommended to use ≥3 MU as the minimum MU per segment in IMRT and VMAT plans.

  1. Fast optimization and dose calculation in scanned ion beam therapy.

    PubMed

    Hild, S; Graeff, C; Trautmann, J; Kraemer, M; Zink, K; Durante, M; Bert, C

    2014-07-01

    Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  2. Fast optimization and dose calculation in scanned ion beam therapy

    SciTech Connect

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-07-15

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  3. Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals.

    PubMed

    Shemer, Keren; Voloch-Bloch, Noa; Shapira, Asia; Libster, Ana; Juwiler, Irit; Arie, Ady

    2013-12-15

    We experimentally demonstrate that the orbital angular momentum (OAM) of a second harmonic (SH) beam, generated within twisted nonlinear photonic crystals, depends both on the OAM of the input pump beam and on the quasi-angular momentum of the crystal. In addition, when the pump's radial index is zero, the radial index of the SH beam is equal to that of the nonlinear crystal. Furthermore, by mixing two noncollinear pump beams in this crystal, we generate, in addition to the SH beams, a new "virtual beam" having multiple values of OAM that are determined by the nonlinear process.

  4. Photon-number statistics of twin beams: Self-consistent measurement, reconstruction, and properties

    SciTech Connect

    Peřina, Jan Jr.; Haderka, Ondřej; Michálek, Václav

    2014-12-04

    A method for the determination of photon-number statistics of twin beams using the joint signal-idler photocount statistics obtained by an iCCD camera is described. It also provides absolute quantum detection efficiency of the camera. Using the measured photocount statistics, quasi-distributions of integrated intensities are obtained. They attain negative values occurring in characteristic strips an a consequence of pairing of photons in twin beams.

  5. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    NASA Astrophysics Data System (ADS)

    Heck, Martijn J. R.

    2016-06-01

    Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  6. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    NASA Astrophysics Data System (ADS)

    Heck, Martijn J. R.

    2017-01-01

    Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  7. Surface dose measurements in and out of field: Implications for breast radiotherapy with megavoltage photon beams.

    PubMed

    Lonski, Peta; Ramachandran, Prabhakar; Franich, Rick; Kron, Tomas

    2017-06-05

    This study examines the difference in surface dose between flat and flattening filter free (FFF) photon beams in the context of breast radiotherapy. The surface dose was measured for 6MV, 6MV FFF, 10MV, 10MV FFF and 18MV photon beams using a thin window ionisation chamber for various field sizes. Profiles were acquired to ascertain the change in surface dose off-axis. Out-of-field measurements were included in a clinically representative half beam block tangential breast field. In the field centres of FFF beams the surface dose was found to be increased for small fields and decreased for large fields compared to flat beams. For FFF beams, surface dose was found to decrease off-axis and resulted in lower surface dose out-of-field compared to flat beams. Copyright © 2017. Published by Elsevier GmbH.

  8. SU-E-T-597: Parameterization of the Photon Beam Dosimetry for a Commercial Linear Accelerator

    SciTech Connect

    Lebron, S; Lu, B; Yan, G; Kahler, D; Li, J; Barraclough, B; Liu, C

    2015-06-15

    Purpose: In radiation therapy, accurate data acquisition of photon beam dosimetric quantities is important for (1) beam modeling data input into a treatment planning system (TPS), (2) comparing measured and TPS modelled data, (3) a linear accelerator’s (linac) beam characteristics quality assurance process, and (4) establishing a standard data set for data comparison, etcetera. Parameterization of the photon beam dosimetry creates a portable data set that is easy to implement for different applications such as those previously mentioned. The aim of this study is to develop methods to parameterize photon percentage depth doses(PDD), profiles, and total scatter output factors(Scp). Methods: Scp, PDDs and profiles for different field sizes (from 2×2 to 40×40cm{sup 2}), depths and energies were measured in a linac using a three-dimensional water tank. All data were smoothed and profile data were also centered, symmetrized and geometrically scaled. The Scp and PDD data were analyzed using exponential functions. For modelling of open and wedge field profiles, each side was divided into three regions described by exponential, sigmoid and Gaussian equations. The model’s equations were chosen based on the physical principles described by these dosimetric quantities. The equations’ parameters were determined using a least square optimization method with the minimal amount of measured data necessary. The model’s accuracy was then evaluated via the calculation of absolute differences and distance–to–agreement analysis in low gradient and high gradient regions, respectively. Results: All differences in the PDDs’ buildup and the profiles’ penumbra regions were less than 2 mm and 0.5 mm, respectively. Differences in the low gradient regions were 0.20 ± 0.20% and 0.50 ± 0.35% for PDDs and profiles, respectively. For Scp data, all differences were less than 0.5%. Conclusion: This novel analytical model with minimum measurement requirements proved to accurately

  9. Overview of Light-Ion Beam Therapy

    SciTech Connect

    Chu, William T.

    2006-03-16

    compared to those in conventional (photon) treatments. Wilson wrote his personal account of this pioneering work in 1997. In 1954 Cornelius Tobias and John Lawrence at the Radiation Laboratory (former E.O. Lawrence Berkeley National Laboratory) of the University of California, Berkeley performed the first therapeutic exposure of human patients to hadron (deuteron and helium ion) beams at the 184-Inch Synchrocyclotron. By 1984, or 30 years after the first proton treatment at Berkeley, programs of proton radiation treatments had opened at: University of Uppsala, Sweden, 1957; the Massachusetts General Hospital-Harvard Cyclotron Laboratory (MGH/HCL), USA, 1961; Dubna (1967), Moscow (1969) and St Petersburg (1975) in Russia; Chiba (1979) and Tsukuba (1983) in Japan; and Villigen, Switzerland, 1984. These centers used the accelerators originally constructed for nuclear physics research. The experience at these centers has confirmed the efficacy of protons and light ions in increasing the tumor dose relative to normal tissue dose, with significant improvements in local control and patient survival for several tumor sites. M.R. Raju reviewed the early clinical studies. In 1990, the Loma Linda University Medical Center in California heralded in the age of dedicated medical accelerators when it commissioned its proton therapy facility with a 250-MeV synchrotron. Since then there has been a relatively rapid increase in the number of hospital-based proton treatment centers around the world, and by 2006 there are more than a dozen commercially-built facilities in use, five new facilities under construction, and more in planning stages. In the 1950s larger synchrotrons were built in the GeV region at Brookhaven (3-GeV Cosmotron) and at Berkeley (6-GeV Bevatron), and today most of the world's largest accelerators are synchrotrons. With advances in accelerator design in the early 1970s, synchrotrons at Berkeley and Princeton accelerated ions with atomic numbers between 6 and 18, at

  10. Upgrading prostate cancer following proton beam therapy.

    PubMed

    Logan, Jennifer K; Rais-Bahrami, Soroush; Merino, Maria J; Pinto, Peter A

    2015-01-01

    Pre- and post-radiation therapy (RT) effects on prostate histology have not been rigorously studied, but there appears to be a correlation between escalating radiation dosage and increasing post-RT histologic changes. Despite this dose-response relationship, radiation-induced changes may be heterogenous among different patients and even within a single tumor. When assessing residual tumor it is important to understand biopsy evaluation in the post-RT setting. We present the case of a poorly differentiated prostate adenocarcinoma following proton beam RT in a 45-year-old man with pre-RT Gleason 4 + 3 = 7 disease diagnosed in the setting of an elevated serum prostate-specific antigen level.

  11. Proton beam therapy in Japan: current and future status.

    PubMed

    Sakurai, Hideyuki; Ishikawa, Hitoshi; Okumura, Toshiyuki

    2016-10-01

    The number of patients treated by proton beam therapy in Japan since 2000 has increased; in 2016, 11 proton facilities were available to treat patients. Notably, proton beam therapy is very useful for pediatric cancer; since the pediatric radiation dose to normal tissues should be reduced as much as possible because of the effect of radiation on growth, intellectual development, endocrine organ function and secondary cancer development. Hepatocellular carcinoma is common in Asia, and most of the studies of proton beam therapy for liver cancer have been reported by Japanese investigators. Proton beam therapy is also a standard treatment for nasal and paranasal lesions and lesions at the base of the skull, because the radiation dose to critical organs such as the eyes, optic nerves and central nervous system can be reduced with proton beam therapy. For prostate cancer, comparative studies that address adverse effects, safety, patient quality of life and socioeconomic issues should be performed to determine the appropriate use of proton beam therapy for prostate cancer. Regarding new proton beam therapy applications, experience with proton beam therapy combined with chemotherapy is limited, although favorable outcomes have been recently reported for locally advanced lung cancer, esophageal cancer and pancreatic cancer. Therefore, 'chemoproton' therapy appears to be a very attractive field for further clinical investigations. In conclusion, there are cost issues and considerations regarding national insurance for the use of proton beam therapy in Japan. Further studies and discussions are needed to address the use of proton beam therapy for several types of cancers, and for maintaining the quality of life of patients while retaining a high cure rate. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Beam control and multi-color routing with spatial photonic defect modes.

    PubMed

    Wang, Xiaosheng; Chen, Zhigang

    2009-09-14

    We demonstrate tunable re-directing, blocking, and splitting of a light beam along defect channels based on spatial bandgap guidance in two-dimensional photonic lattices. We show the possibility for linear control of beam propagation and multicolor routing with specially designed junctions and surface structures embedded in otherwise uniform square lattices.

  13. Formation of "photonic jet" upon irradiation of spherical microparticles by a focused laser beam

    NASA Astrophysics Data System (ADS)

    Geints, Yurii E.; Zemlyanov, Alexander A.; Panina, Ekaterina K.

    2014-11-01

    Features of formation "photonic nanojets" (PNJs) near the surface of spherical dielectric microparticles irradiated by a spatially limited laser beam are theoretically investigated. The influence of the waist size of a light beam with the Gaussian transverse intensity profile on PNJ spatial parameters and peak intensity is found for the first time.

  14. Absorbed-dose beam quality conversion factors for cylindrical chambers in high energy photon beams.

    PubMed

    Seuntjens, J P; Ross, C K; Shortt, K R; Rogers, D W

    2000-12-01

    Recent working groups of the AAPM [Almond et al., Med. Phys. 26, 1847 (1999)] and the IAEA (Andreo et al., Draft V.7 of "An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water," IAEA, 2000) have described guidelines to base reference dosimetry of high energy photon beams on absorbed dose to water standards. In these protocols use is made of the absorbed-dose beam quality conversion factor, kQ which scales an absorbed-dose calibration factor at the reference quality 60Co to a quality Q, and which is calculated based on state-of-the-art ion chamber theory and data. In this paper we present the measurement and analysis of beam quality conversion factors kQ for cylindrical chambers in high-energy photon beams. At least three chambers of six different types were calibrated against the Canadian primary standard for absorbed dose based on a sealed water calorimeter at 60Co [TPR10(20)=0.572, %dd(10)x=58.4], 10 MV [TPR10(20)=0.682, %dd(10)x=69.6), 20 MV (TPR10(20)=0.758, %dd(10)x= 80.5] and 30 MV [TPR10(20) = 0.794, %dd(10)x= 88.4]. The uncertainty on the calorimetric determination of kQ for a single chamber is typically 0.36% and the overall 1sigma uncertainty on a set of chambers of the same type is typically 0.45%. The maximum deviation between a measured kQ and the TG-51 protocol value is 0.8%. The overall rms deviation between measurement and the TG-51 values, based on 20 chambers at the three energies, is 0.41%. When the effect of a 1 mm PMMA waterproofing sleeve is taken into account in the calculations, the maximum deviation is 1.1% and the overall rms deviation between measurement and calculation 0.48%. When the beam is specified using TPR10(20), and measurements are compared with kQ values calculated using the version of TG-21 with corrected formalism and data, differences are up to 1.6% when no sleeve corrections are taken into account. For the NE2571 and the NE2611A chamber types, for which the most literature data are

  15. Microdosimetry in ion-beam therapy

    NASA Astrophysics Data System (ADS)

    Magrin, Giulio; Mayer, Ramona

    2015-05-01

    The information of the dose is not sufficiently describing the biological effects of ions on tissue since it does not express the radiation quality, i.e. the heterogeneity of the processes due to the slowing-down and the fragmentation of the particles when crossing a target. Depending on different circumstances, the radiation quality can be determined using measurements, calculations, or simulations. Microdosimeters are the primary tools used to provide the experimental information of the radiation quality and their role is becoming crucial for the recent clinical developments in particular with carbon ion therapy. Microdosimetry is strongly linked to the biological effectiveness of the radiation since it provides the physical parameters which explicitly distinguish the radiation for its capability of damaging cells. In the framework of ion-beam therapy microdosimetry can be used in the preparation of the treatment to complement radiobiological experiments and to analyze the modification of the radiation quality in phantoms. A more ambitious goal is to perform the measurements during the irradiation procedure to determine the non-targeted radiation and, more importantly, to monitor the modification of the radiation quality inside the patient. These procedures provide the feedback of the treatment directly beneficial for the single patient but also for the characterization of the biological effectiveness in general with advantages for all future treatment. Traditional and innovative tools are currently under study and an outlook of present experience and future development is presented here.

  16. Comparison of Gafchromic EBT2 and EBT3 films for clinical photon and proton beams

    SciTech Connect

    Reinhardt, S.; Hillbrand, M.; Wilkens, J. J.; Assmann, W.

    2012-08-15

    Purpose: Dose verification in highly conformal radiation therapy such as IMRT or proton therapy can benefit from the high spatial resolution offered by radio-chromic films such as Gafchromic EBT or EBT2. Recently, a new generation of these films, EBT3, has become available. The composition and thickness of the sensitive layer are the same as for the previous EBT2 films. The most important change is the symmetric layer configuration to eliminate side orientation dependence, which is reported for EBT2 films. Methods: The general film characteristics such as sensitivity to read-out orientation and postexposure darkening evolution of the new EBT3 film are evaluated. Film response has been investigated in clinical photon and proton beams and compared to former EBT2 films. Quenching effects in the proton Bragg peak region have been studied for both, EBT2 and EBT3 films. Results: The general performance of EBT3 is comparable to EBT2, and the orientation dependence with respect to film side is completely eliminated in EBT3 films. Response differences of EBT2 and EBT3 films are of the same order of magnitude as batch-to-batch variations observed for EBT2 films. No significant difference has been found for both generations of EBT films between photon and proton exposure. Depth dose measurements of EBT2 and EBT3 show an excellent agreement, though underestimating dose by up to 20% in the Bragg peak region. Conclusions: The symmetric configuration of EBT3 presents a major improvement for film handling. EBT3 has similar dosimetric performance as its precursor EBT2 and can, thus, be applied to dose verification in IMRT in the same way. For dose verification in proton therapy the underresponse in the Bragg peak region has to be taken into account.

  17. Simultaneous production of mixed electron--photon beam in a medical LINAC: A feasibility study.

    PubMed

    Khaledi, Navid; Arbabi, Azim; Sardari, Dariush; Mohammadi, Mohammad; Ameri, Ahmad

    2015-06-01

    The electron or photon beams might be used for treatment of tumors. Each beam has its own advantage and disadvantages. Combo beam can increase the advantages. No investigation has been performed for producing simultaneous mixed electron and photon beam. In current study a device has been added to the Medical Linac to produce a mixed photon-electron beam. Firstly a Varian 2300CD head was simulated by MCNP Monte Carlo Code. Two sets of perforated lead sheets with 1 and 2 mm thickness and 0.2, 0.3, and 0.5 cm punches then placed at the top of the applicator holder tray. This layer produces bremsstrahlung x-ray upon impinging fraction electrons on it. The remaining fraction of electrons passes through the holes. The simulation was performed for 10 × 10, 6 × 6, and 4 × 4 cm(2) field size. For 10 × 10 cm(2) field size, among the punched targets, the largest penumbra difference between the depth of 1 and 7 cm was 72%. This difference for photon and electron beams were 31% and 325% respectively. A maximum of 39% photon percentage was produced by 2 mm target with 0.2 cm holes diameter layer. The minimum surface dose value was 4% lesser than pure electron beam. For small fields, unlike the pure electron beam, the PDD, penumbra, and flatness variations were negligible. The advantages of mixing the electron and photon beam is reduction of pure electron's penumbra dependency with the depth, especially for small fields, also decreasing of dramatic changes of PDD curve with irradiation field size. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Surface dose measurements with GafChromic EBT film for 6 and 18MV photon beams.

    PubMed

    Bilge, Hatice; Cakir, Aydin; Okutan, Murat; Acar, Hilal

    2009-06-01

    The aim of this study was to determine the surface doses using GafChromic EBT films and compare them with plane-parallel ionization chamber measurements for 6 and 18 MV high energy photon beams. The measurements were made in a water equivalent solid phantom in the build-up region of the 6 and 18MV photon beams at 100 cm SSD for various field sizes. Markus type plane-parallel ion chamber with fixed-separation between collecting electrodes was used to measure the percent depth doses. GafChromic EBT film measurements were performed both on the phantom surface and maximum dose depth at the same geometry with ion chamber measurements. The surface doses found using GafChromic EBT film were 15%, 20%, 29%and 39%+/-2% (1SD) for 6 MV photons, 6%, 11%, 23% and 32%+/-2% (1SD) for 18 MV photons at 5, 10, 20 and 30 cm(2) field sizes, respectively. GafChromic EBT film provides precise measurements for surface dose in the high energy photons. Agreement between film and plane-parallel chamber measurements was found to be within +/-3% for 18 MV photon beams. There was 5% overestimate on the surface doses when compared with the plane-parallel chamber measurements for all field sizes in the 6 MV photon beams.

  19. Proton Arc Reduces Range Uncertainty Effects and Improves Conformality Compared With Photon Volumetric Modulated Arc Therapy in Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer

    SciTech Connect

    Seco, Joao; Gu, Guan; Marcelos, Tiago; Kooy, Hanne; Willers, Henning

    2013-09-01

    Purpose: To describe, in a setting of non-small cell lung cancer (NSCLC), the theoretical dosimetric advantages of proton arc stereotactic body radiation therapy (SBRT) in which the beam penumbra of a rotating beam is used to reduce the impact of range uncertainties. Methods and Materials: Thirteen patients with early-stage NSCLC treated with proton SBRT underwent repeat planning with photon volumetric modulated arc therapy (Photon-VMAT) and an in-house-developed arc planning approach for both proton passive scattering (Passive-Arc) and intensity modulated proton therapy (IMPT-Arc). An arc was mimicked with a series of beams placed at 10° increments. Tumor and organ at risk doses were compared in the context of high- and low-dose regions, represented by volumes receiving >50% and <50% of the prescription dose, respectively. Results: In the high-dose region, conformality index values are 2.56, 1.91, 1.31, and 1.74, and homogeneity index values are 1.29, 1.22, 1.52, and 1.18, respectively, for 3 proton passive scattered beams, Passive-Arc, IMPT-Arc, and Photon-VMAT. Therefore, proton arc leads to a 30% reduction in the 95% isodose line volume to 3-beam proton plan, sparing surrounding organs, such as lung and chest wall. For chest wall, V30 is reduced from 21 cm{sup 3} (3 proton beams) to 11.5 cm{sup 3}, 12.9 cm{sup 3}, and 8.63 cm{sup 3} (P=.005) for Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. In the low-dose region, the mean lung dose and V20 of the ipsilateral lung are 5.01 Gy(relative biological effectiveness [RBE]), 4.38 Gy(RBE), 4.91 Gy(RBE), and 5.99 Gy(RBE) and 9.5%, 7.5%, 9.0%, and 10.0%, respectively, for 3-beam, Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. Conclusions: Stereotactic body radiation therapy with proton arc and Photon-VMAT generate significantly more conformal high-dose volumes than standard proton SBRT, without loss of coverage of the tumor and with significant sparing of nearby organs, such as chest wall. In addition

  20. Modeling silicon diode energy response factors for use in therapeutic photon beams.

    PubMed

    Eklund, Karin; Ahnesjö, Anders

    2009-10-21

    Silicon diodes have good spatial resolution, which makes them advantageous over ionization chambers for dosimetry in fields with high dose gradients. However, silicon diodes overrespond to low-energy photons, that are more abundant in scatter which increase with large fields and larger depths. We present a cavity-theory-based model for a general response function for silicon detectors at arbitrary positions within photon fields. The model uses photon and electron spectra calculated from fluence pencil kernels. The incident photons are treated according to their energy through a bipartition of the primary beam photon spectrum into low- and high-energy components. Primary electrons from the high-energy component are treated according to Spencer-Attix cavity theory. Low-energy primary photons together with all scattered photons are treated according to large cavity theory supplemented with an energy-dependent factor K(E) to compensate for energy variations in the electron equilibrium. The depth variation of the response for an unshielded silicon detector has been calculated for 5 x 5 cm(2), 10 x 10 cm(2) and 20 x 20 cm(2) fields in 6 and 15 MV beams and compared with measurements showing that our model calculates response factors with deviations less than 0.6%. An alternative method is also proposed, where we show that one can use a correlation with the scatter factor to determine the detector response of silicon diodes with an error of less than 3% in 6 MV and 15 MV photon beams.

  1. Matching extended-SSD electron beams to multileaf collimated photon beams in the treatment of head and neck cancer.

    PubMed

    Steel, Jared; Stewart, Allan; Satory, Philip

    2009-09-01

    Matching the penumbra of a 6 MeV electron beam to the penumbra of a 6 MV photon beam is a dose optimization challenge, especially when the electron beam is applied from an extended source-to-surface distance (SSD), as in the case of some head and neck treatments. Traditionally low melting point alloy blocks have been used to define the photon beam shielding over the spinal cord region. However, these are inherently time consuming to construct and employ in the clinical situation. Multileaf collimators (MLCs) provide a fast and reproducible shielding option but generate geometrically nonconformal approximations to the desired beam edge definition. The effects of substituting Cerrobend for the MLC shielding mode in the context of beam matching with extended-SSD electron beams are the subject of this investigation. Relative dose beam data from a Varian EX 2100 linear accelerator were acquired in a water tank under the 6 MeV electron beam at both standard and extended-SSD and under the 6 MV photon beam defined by Cerrobend and a number of MLC stepping regimes. The effect of increasing the electron beam SSD on the beam penumbra was assessed. MLC stepping was also assessed in terms of the effects on both the mean photon beam penumbra and the intraleaf dose-profile nonuniformity relative to the MLC midleaf. Computational techniques were used to combine the beam data so as to simulate composite relative dosimetry in the water tank, allowing fine control of beam abutment gap variation. Idealized volumetric dosimetry was generated based on the percentage depth-dose data for the beam modes and the abutment geometries involved. Comparison was made between each composite dosimetry dataset and the relevant ideal dosimetry dataset by way of subtraction. Weighted dose-difference volume histograms (DDVHs) were produced, and these, in turn, summed to provide an overall dosimetry score for each abutment and shielding type/angle combination. Increasing the electron beam SSD increased

  2. A diamond detector in the dosimetry of high-energy electron and photon beams.

    PubMed

    Laub, W U; Kaulich, T W; Nüsslin, F

    1999-09-01

    A diamond detector type 60003 (PTW Freiburg) was examined for the purpose of dosimetry with 4-20 MeV electron beams and 4-25 MV photon beams. Results were compared with those obtained by using a Markus chamber for electron beams and an ionization chamber for photon beams. Dose distributions were measured in a water phantom with the detector connected to a Unidos electrometer (PTW Freiburg). After a pre-irradiation of about 5 Gy the diamond detector shows a stability in response which is better than that of an ionization chamber. The current of the diamond detector was measured under variation of photon beam dose rate between 0.1 and 7 Gy min(-1). Different FSDs were chosen. Furthermore the pulse repetition frequency and the depth of the detector were changed. The electron beam dose rate was varied between 0.23 and 4.6 Gy min(-1) by changing the pulse-repetition frequency. The response shows no energy dependence within the covered photon-beam energy range. Between 4 MeV and 18 MeV electron beam energy it shows only a small energy dependence of about 2%, as expected from theory. For smaller electron energies the response increases significantly and an influence of the contact material used for the diamond detector can be surmised. A slight sublinearity of the current and dose rate was found. Detector current and dose rate are related by the expression i alpha Ddelta, where i is the detector current, D is the dose rate and delta is a correction factor of approximately 0.963. Depth-dose curves of photon beams, measured with the diamond detector, show a slight overestimation compared with measurements with the ionization chamber. This overestimation is compensated for by the above correction term. The superior spatial resolution of the diamond detector leads to minor deviations between depth-dose curves of electron beams measured with a Markus chamber and a diamond detector.

  3. Two photons on an atomic beam splitter: Nonlinear scattering and induced correlations

    NASA Astrophysics Data System (ADS)

    Roulet, Alexandre; Le, Huy Nguyen; Scarani, Valerio

    2016-03-01

    Optical emitters strongly coupled to photons propagating in one-dimensional waveguides are a promising platform for optical quantum information processing. Here, we present a theoretical study of the scattering of two indistinguishable photons on a single two-level atom in a Hong-Ou-Mandel setup. By computing the dynamics, we can describe the system at any time of the scattering event. This allows us to highlight the one-to-one correspondence between the saturation of the atom and the effective interaction induced between the photons. Furthermore, we discuss the integrability of the atomic beam splitter and provide an intuitive picture for the correlations observed between the outgoing photons.

  4. Entanglement of Photon-Added Nonlinear Coherent States Via a Beam Splitter

    NASA Astrophysics Data System (ADS)

    Honarasa, Gholamreza; Bagheri, Alireza; Gharaati, Abdolrasoul

    2016-10-01

    Nonlinear coherent states, photon-added coherent states and photon-added nonlinear coherent states are three of the important generalizations of standard coherent states. In this article, a photon-added nonlinear coherent state and a vacuum state are injected on two input modes of a beam splitter and the entanglement of the output state is investigated using linear entropy as the measure. Then, the impact of nonclassicality of the photon-added nonlinear coherent state on entanglement of the output state is studied.

  5. Thomson scattering of polarized photons in an intense laser beam

    SciTech Connect

    Byung Yunn

    2006-02-21

    We present a theoretical analysis of the Thomson scattering of linearly and circularly polarized photons from a pulsed laser by electrons. The analytical expression for the photon distribution functions presented in this paper should be useful to designers of Thomson scattering experiments.

  6. Target, purging magnet and electron collector design for scanned high-energy photon beams

    NASA Astrophysics Data System (ADS)

    Svensson, Roger; Åsell, Mats; Näfstadius, Peder; Brahme, Anders

    1998-05-01

    A new method for producing very narrow and intense 50 MV bremsstrahlung beams with a half-width as low as 35 mm at a distance of 1 m from the target is presented. Such a beam is well suited for intensity modulation using scanned photon beams. An algorithm has been developed to minimize the width of the bremsstrahlung beam generated in a multilayer target by varying the individual layer thicknesses and atomic numbers under given constraints on the total target thickness and the mean energy of the transmitted electrons. Under such constraints the narrowest possible bremsstrahlung beam is obtained with a target composed of layers of monotonically increasing atomic number starting with the lowest possible value at the entrance side where the electrons impinge. It is also shown that the narrowest photon beam profile is associated with the highest possible forward photon yield. To be able to use the optimized target clinically it is desirable to be able to collect and stop all the electrons that are transmitted through the target. The electrons are most efficiently collected if they are kept close together, i.e. by minimizing the multiple scatter of the electrons and consequently the half-width of the generated bremsstrahlung beam. This is achieved by a thin low-atomic-number target. A dedicated electron stopper has been developed and integrated with the purging magnet. When the electron stopper is combined with a purging magnet, a primary photon collimator and a multileaf collimator, almost all of the transmitted electrons and their associated bremsstrahlung contamination can effectively be collected. The narrow photon beams from thin low-atomic-number targets have the additional advantage of producing the hardest and most penetrative photon spectrum possible, which is ideal for treating large deep-seated tumours.

  7. Target, purging magnet and electron collector design for scanned high-energy photon beams.

    PubMed

    Svensson, R; Asell, M; Näfstadius, P; Brahme, A

    1998-05-01

    A new method for producing very narrow and intense 50 MV bremsstrahlung beams with a half-width as low as 35 mm at a distance of 1 m from the target is presented. Such a beam is well suited for intensity modulation using scanned photon beams. An algorithm has been developed to minimize the width of the bremsstrahlung beam generated in a multilayer target by varying the individual layer thicknesses and atomic numbers under given constraints on the total target thickness and the mean energy of the transmitted electrons. Under such constraints the narrowest possible bremsstrahlung beam is obtained with a target composed of layers of monotonically increasing atomic number starting with the lowest possible value at the entrance side where the electrons impinge. It is also shown that the narrowest photon beam profile is associated with the highest possible forward photon yield. To be able to use the optimized target clinically it is desirable to be able to collect and stop all the electrons that are transmitted through the target. The electrons are most efficiently collected if they are kept close together, i.e. by minimizing the multiple scatter of the electrons and consequently the half-width of the generated bremsstrahlung beam. This is achieved by a thin low-atomic-number target. A dedicated electron stopper has been developed and integrated with the purging magnet. When the electron stopper is combined with a purging magnet, a primary photon collimator and a multileaf collimator, almost all of the transmitted electrons and their associated bremsstrahlung contamination can effectively be collected. The narrow photon beams from thin low-atomic-number targets have the additional advantage of producing the hardest and most penetrative photon spectrum possible, which is ideal for treating large deep-seated tumours.

  8. Spatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle therapy

    PubMed Central

    Guan, Fada; Bronk, Lawrence; Titt, Uwe; Lin, Steven H.; Mirkovic, Dragan; Kerr, Matthew D.; Zhu, X. Ronald; Dinh, Jeffrey; Sobieski, Mary; Stephan, Clifford; Peeler, Christopher R.; Taleei, Reza; Mohan, Radhe; Grosshans, David R.

    2015-01-01

    The physical properties of particles used in radiation therapy, such as protons, have been well characterized, and their dose distributions are superior to photon-based treatments. However, proton therapy may also have inherent biologic advantages that have not been capitalized on. Unlike photon beams, the linear energy transfer (LET) and hence biologic effectiveness of particle beams varies along the beam path. Selective placement of areas of high effectiveness could enhance tumor cell kill and simultaneously spare normal tissues. However, previous methods for mapping spatial variations in biologic effectiveness are time-consuming and often yield inconsistent results with large uncertainties. Thus the data needed to accurately model relative biological effectiveness to guide novel treatment planning approaches are limited. We used Monte Carlo modeling and high-content automated clonogenic survival assays to spatially map the biologic effectiveness of scanned proton beams with high accuracy and throughput while minimizing biological uncertainties. We found that the relationship between cell kill, dose, and LET, is complex and non-unique. Measured biologic effects were substantially greater than in most previous reports, and non-linear surviving fraction response was observed even for the highest LET values. Extension of this approach could generate data needed to optimize proton therapy plans incorporating variable RBE. PMID:25984967

  9. Cherenkov imaging during volumetric modulated arc therapy for real-time radiation beam tracking and treatment response monitoring

    NASA Astrophysics Data System (ADS)

    Andreozzi, Jacqueline M.; Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-03-01

    External beam radiotherapy utilizes high energy radiation to target cancer with dynamic, patient-specific treatment plans. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high energy beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to track the radiation beam on the surface of the patient in real-time, even for complex cases such as volumetric modulated arc therapy (VMAT). Two patients undergoing VMAT of the head and neck were imaged and analyzed, and the viability of the system to provide clinical feedback was established.

  10. Boosting runtime-performance of photon pencil beam algorithms for radiotherapy treatment planning.

    PubMed

    Siggel, M; Ziegenhein, P; Nill, S; Oelfke, U

    2012-10-01

    Pencil beam algorithms are still considered as standard photon dose calculation methods in Radiotherapy treatment planning for many clinical applications. Despite their established role in radiotherapy planning their performance and clinical applicability has to be continuously adapted to evolving complex treatment techniques such as adaptive radiation therapy (ART). We herewith report on a new highly efficient version of a well-established pencil beam convolution algorithm which relies purely on measured input data. A method was developed that improves raytracing efficiency by exploiting the capability of modern CPU architecture for a runtime reduction. Since most of the current desktop computers provide more than one calculation unit we used symmetric multiprocessing extensively to parallelize the workload and thus decreasing the algorithmic runtime. To maximize the advantage of code parallelization, we present two implementation strategies - one for the dose calculation in inverse planning software, and one for traditional forward planning. As a result, we could achieve on a 16-core personal computer with AMD processors a superlinear speedup factor of approx. 18 for calculating the dose distribution of typical forward IMRT treatment plans. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Fabrication of novel three-dimensional photonic crystals using multi-beam interference lithography

    NASA Astrophysics Data System (ADS)

    Ramanan, Vinayak

    Optical Communications has seen an explosion in recent times with new types of devices and materials. In the last decade, considerable study has been devoted to the control of the optical properties of materials and guiding the propagation of light through the use of photonic crystals. Photonic crystals are materials with a periodic arrangement of dielectric medium in one, two or three dimensions, with periodicities on the order of the wavelength of the electromagnetic radiation in use. Photonic crystals exhibit photonic band gaps depending on their geometry and refractive index. Holographic lithography has been proven to be an attractive technique for the creation of large area, defect-free, three-dimensional photonic crystals. Structures with potential in photonic applications are fabricated in the photoresist SU-8, through concurrent exposure with four non-coplanar coherent beams of laser radiation. Polymer-air structures with face centered cubic symmetry are used as a template to create higher refractive index contrast photonic crystals by infilling using Atomic Layer Deposition and Chemical Vapor Deposition. These photonic crystals exhibit excellent optical properties with strong reflectance peaks at the calculated band gap frequencies. Two-photon polymerization is used to demonstrate the ability to create designed defect structures such as waveguides in silicon-air photonic crystals. Genetic algorithms are demonstrated as a technique to design an interference lithography experiment. A four-beam setup with beams originating in opposite hemispheres and linear polarizations is found to generate a structure with diamond symmetry and a large complete photonic band gap. Band gap studies on structures that possess both high band gap and high contrast are performed. The optical setup for a diamond structure utilizing two right-angled prisms is discussed and promising experimental results are presented.

  12. Radiation therapy planning with photons and protons for early and advanced breast cancer: an overview

    PubMed Central

    Weber, Damien C; Ares, Carmen; Lomax, Antony J; Kurtz, John M

    2006-01-01

    Postoperative radiation therapy substantially decreases local relapse and moderately reduces breast cancer mortality, but can be associated with increased late mortality due to cardiovascular morbidity and secondary malignancies. Sophistication of breast irradiation techniques, including conformal radiotherapy and intensity modulated radiation therapy, has been shown to markedly reduce cardiac and lung irradiation. The delivery of more conformal treatment can also be achieved with particle beam therapy using protons. Protons have superior dose distributional qualities compared to photons, as dose deposition occurs in a modulated narrow zone, called the Bragg peak. As a result, further dose optimization in breast cancer treatment can be reasonably expected with protons. In this review, we outline the potential indications and benefits of breast cancer radiotherapy with protons. Comparative planning studies and preliminary clinical data are detailed and future developments are considered. PMID:16857055

  13. A comparison of phantom scatter from flattened and flattening filter free high-energy photon beams.

    PubMed

    Richmond, Neil; Allen, Vince; Daniel, Jim; Dacey, Rob; Walker, Chris

    2015-01-01

    Flattening filter free (FFF) photon beams have different dosimetric properties from those of flattened beams. The aim of this work was to characterize the collimator scatter (Sc) and total scatter (Scp) from 3 FFF beams of differing quality indices and use the resulting mathematical fits to generate phantom scatter (Sp) data. The similarities and differences between Sp of flattened and FFF beams are described. Sc and Scp data were measured for 3 flattened and 3 FFF high-energy photon beams (Varian 6 and 10MV and Elekta 6MV). These data were fitted to logarithmic power law functions with 4 numerical coefficients. The agreement between our experimentally determined flattened beam Sp and published data was within ± 1.2% for all 3 beams investigated and all field sizes from 4 × 4 to 40 × 40cm(2). For the FFF beams, Sp was only within 1% of the same flattened beam published data for field sizes between 6 × 6 and 14 × 14cm(2). Outside this range, the differences were much greater, reaching - 3.2%, - 4.5%, and - 4.3% for the fields of 40 × 40cm(2) for the Varian 6-MV, Varian 10-MV, and Elekta 6-MV FFF beams, respectively. The FFF beam Sp increased more slowly with increasing field size than that of the published and measured flattened beam of a similar reference field size quality index, i.e., there is less Phantom Scatter than that found with flattened beams for a given field size. This difference can be explained when the fluence profiles of the flattened and FFF beams are considered. The FFF beam has greatly reduced fluence off axis, especially as field size increases, compared with the flattened beam profile; hence, less scatter is generated in the phantom reaching the central axis. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  14. Combining tissue-phantom ratios to provide a beam-quality specifier for flattening filter free photon beams.

    PubMed

    Dalaryd, Mårten; Knöös, Tommy; Ceberg, Crister

    2014-11-01

    There are currently several commercially available radiotherapy treatment units without a flattening filter in the beam line. Unflattened photon beams have an energy and lateral fluence distribution that is different from conventional beams and, thus, their attenuation properties differ. As a consequence, for flattening filter free (FFF) beams, the relationship between the beam-quality specifier TPR20,10 and the Spencer-Attix restricted water-to-air mass collision stopping-power ratios, L̄/ρair (water), may have to be refined in order to be used with equivalent accuracy as for beams with a flattening filter. The purpose of this work was twofold. First, to study the relationship between TPR20,10 and L̄/ρair (water) for FFF beams, where the flattening filter has been replaced by a metal plate as in most clinical FFF beams. Second, to investigate the potential of increasing the accuracy in determining L̄/ρair (water) by adding another beam-quality metric, TPR10,5. The relationship between L̄/ρair (water) and %dd(10)x for beams with and without a flattening filter was also included in this study. A total of 24 realistic photon beams (10 with and 14 without a flattening filter) from three different treatment units have been used to calculate L̄/ρair (water), TPR20,10, and TPR10,5 using the EGSnrc Monte Carlo package. The relationship between L̄/ρair (water) and the dual beam-quality specifier TPR20,10 and TPR10,5 was described by a simple bilinear equation. The relationship between the photon beam-quality specifier %dd(10)x used in the AAPM's TG-51 dosimetry protocol and L̄/ρair (water) was also investigated for the beams used in this study, by calculating the photon component of the percentage depth dose at 10 cm depth with SSD 100 cm. The calculated L̄/ρair (water) for beams without a flattening filter was 0.3% lower, on average, than for beams with a flattening filter and comparable TPR20,10. Using the relationship in IAEA, TRS-398 resulted in a root

  15. Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method

    PubMed Central

    2012-01-01

    A method for fabrication of three-dimensional (3D) silicon nanostructures based on selective formation of porous silicon using ion beam irradiation of bulk p-type silicon followed by electrochemical etching is shown. It opens a route towards the fabrication of two-dimensional (2D) and 3D silicon-based photonic crystals with high flexibility and industrial compatibility. In this work, we present the fabrication of 2D photonic lattice and photonic slab structures and propose a process for the fabrication of 3D woodpile photonic crystals based on this approach. Simulated results of photonic band structures for the fabricated 2D photonic crystals show the presence of TE or TM gap in mid-infrared range. PMID:22824206

  16. Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method.

    PubMed

    Dang, Zhiya; Breese, Mark Bh; Recio-Sánchez, Gonzalo; Azimi, Sara; Song, Jiao; Liang, Haidong; Banas, Agnieszka; Torres-Costa, Vicente; Martín-Palma, Raúl José

    2012-07-23

    A method for fabrication of three-dimensional (3D) silicon nanostructures based on selective formation of porous silicon using ion beam irradiation of bulk p-type silicon followed by electrochemical etching is shown. It opens a route towards the fabrication of two-dimensional (2D) and 3D silicon-based photonic crystals with high flexibility and industrial compatibility. In this work, we present the fabrication of 2D photonic lattice and photonic slab structures and propose a process for the fabrication of 3D woodpile photonic crystals based on this approach. Simulated results of photonic band structures for the fabricated 2D photonic crystals show the presence of TE or TM gap in mid-infrared range.

  17. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum

    PubMed Central

    Chaitanya, N. Apurv; Jabir, M. V.; Banerji, J.; Samanta, G. K.

    2016-01-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs. PMID:27581625

  18. Optical activities of micro-spiral photonic crystals fabricated by multi-beam holographic lithography

    NASA Astrophysics Data System (ADS)

    Hung, Jenny; Gao, Wensheng; Tam, Wing Yim

    2011-09-01

    We report on the optical activities of left- and right-handed micro-spirals fabricated in dichromate gelatin emulsions using a holographic interference technique involving six linearly polarized side beams and one circularly polarized central beam. Photonic bandgaps in the visible range are observed. More importantly, opposite optical activities—a polarization rotation of a few degrees and a circular dichroism (CD) of about 20% at the photonic band edges—are observed for the left- and right-handed spirals. Furthermore, the transmittance of circularly polarized light obeys the Lorentz reciprocity lemma for forward and backward incidence. However neither polarization rotation nor CD is observed for achiral split rings and hollow rods fabricated using all linearly polarized beams and six side beams without the central beam, respectively; this indicates that the chiral nature of the spirals is essential for the observed optical activities.

  19. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Chaitanya, N. Apurv; Jabir, M. V.; Banerji, J.; Samanta, G. K.

    2016-09-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.

  20. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum.

    PubMed

    Chaitanya, N Apurv; Jabir, M V; Banerji, J; Samanta, G K

    2016-09-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.

  1. Requirements on the LWFA electron beam for the user-oriented photon source

    NASA Astrophysics Data System (ADS)

    Molodozhentsev, Alexander; Přibyl, Lukáš; Korn, Georg; Winkler, Paul; Maier, Andreas R.

    2017-05-01

    The laser-driven Undulator X-ray source (LUX) is designed to be a user beamline providing ultra-short EUV photon pulses with a central wavelength tuneable in the range of 0.4 to 4.5 nm and a peak brilliance of up to 1021 photons/(s.mrad2.mm2.0.1% B.W.), which makes this source comparable with modern synchrotron sources. The source shall provide a focal spot size well below 10 μm and a range of auxiliary beams for complex pump-and-probe experiments and it is also an important experimental milestone towards a future laser driven Free Electron Laser. Unique femtosecond nature of the laser-plasma electron acceleration in combination with extremely small transverse emittance of the electron beam is the major advantage of the LWFA technique. Preservation of the electron beam quality is a complicated task for a dedicated electron beam line, which has to be designed to transport the electron beam from the LWFA source up to the undulator. In this report we discuss main requirements on the LWFA source and the electron beam optics of the LUX source and solutions to produce required quality photon beam in the undulator and we also discuss the effect of realistic setup parameters on the quality of the electron beam in the undulator within the range of systematic errors.

  2. Analytical considerations of beam hardening in medical accelerator photon spectra.

    PubMed

    Kleinschmidt, C

    1999-09-01

    Beam hardening is a well-known phenomenon for therapeutic accelerator beams passing through matter in narrow beam geometry. This study assesses quantitatively the magnitude of beam hardening of therapeutic beams in water. A formal concept of beam hardening is proposed which is based on the decrease of the mean attenuation coefficient with depth. On the basis of this concept calculations of beam hardening effects are easily performed by means of a commercial spreadsheet program. Published accelerator spectra and the tabulated values of attenuation coefficients serve as input for these calculations. It is shown that the mean attenuation coefficient starts at depth zero with an almost linear decrease and then slowly levels off to a limit value. A similar behavior is found for the beam hardening coefficient. A physically reasonable, semianalytical model is given which fits the data better than previously published functions. The energy dependence of the initial attenuation coefficient is evaluated and shown. It fits well to published experimental data. The initial beam hardening coefficient, however, shows no energy dependence. Its mean value (eta0) approximately 0.006 cm(-1)) is also in close agreement to the measured data.

  3. Beam hardening artefacts in computed tomography with photon counting, charge integrating and energy weighting detectors: a simulation study.

    PubMed

    Shikhaliev, Polad M

    2005-12-21

    Photon counting x-ray imaging provides efficient rejection of the electronics noise, no pulse height (Swank) noise, less noise due to optimal photon energy weighting and the possibility of energy resolved image acquisition. These advantages apply also to CT when projection data are acquired using a photon counting detector. However, photon counting detectors assign a weighting factor of 1 to all detected photons whereas the weighting factor of a charge integrating detector is proportional to the energy of the detected photon. Therefore, data collected by photon counting and charge integrating detectors represent the 'hardening' of the photon beam passed through the object differently. This affects the beam hardening artefacts in the reconstructed CT images. This work represents the first comparative evaluation of the effect of photon counting, charge integrating and energy weighting photon detectors on beam hardening artefacts in CT. Beam hardening artefacts in CT images were evaluated for 20 cm and 14 cm diameter water cylinders with bone and low contrast inserts, at 120 kVp and 90 kVp x-ray tube voltages, respectively. It was shown that charge integrating results in 1.8% less beam hardening artefacts from bone inserts (i.e., CT numbers in the 'shadow' of the bone are less by 1.8% as compared to CT numbers over the periphery of the image), as compared to photon counting. However, optimal photon energy weighting, which provides highest SNR, results in 7.7% higher beam hardening artefacts from bone inserts as compared to photon counting. The magnitude of the 'cupping' artefacts was lower by 1% for charge integrating and higher by 6.1% for energy weighting acquisitions as compared to photon counting. Only the photon counting systems provide an accurate representation of the beam hardening effect due to its flat energy weighting. Because of their energy dependent weighting factors, the charge integrating and energy weighting systems do not provide accurate

  4. Surface dose measurements and comparison of unflattened and flattened photon beams

    PubMed Central

    Sigamani, Ashokkumar; Nambiraj, Arunai; Yadav, Girigesh; Giribabu, Ananda; Srinivasan, Karthikeyan; Gurusamy, Venkadamanickam; Raman, Kothanda; Karunakaran, Kaviarasu; Thiyagarajan, Rajesh

    2016-01-01

    The purpose of this study was to evaluate the central axis dose in the build-up region and the surface dose of a 6 MV and 10 MV flattened photon beam (FB) and flattening filter free (FFF) therapeutic photon beam for different square field sizes (FSs) for a Varian Truebeam linear accelerator using parallel-plate ionization chamber and Gafchromic film. Knowledge of dosimetric characteristics in the build-up region and surface dose of the FFF is essential for clinical care. The dose measurements were also obtained empirically using two different commonly used dosimeters: a p-type photon semiconductor dosimeter and a cylindrical ionization chamber. Surface dose increased linearly with FS for both FB and FFF photon beams. The surface dose values of FFF were higher than the FB FSs. The measured surface dose clearly increases with increasing FS. The FFF beams have a modestly higher surface dose in the build-up region than the FB. The dependence of source to skin distance (SSD) is less significant in FFF beams when compared to the flattened beams at extended SSDs. PMID:27217619

  5. Surface dose measurements and comparison of unflattened and flattened photon beams.

    PubMed

    Sigamani, Ashokkumar; Nambiraj, Arunai; Yadav, Girigesh; Giribabu, Ananda; Srinivasan, Karthikeyan; Gurusamy, Venkadamanickam; Raman, Kothanda; Karunakaran, Kaviarasu; Thiyagarajan, Rajesh

    2016-01-01

    The purpose of this study was to evaluate the central axis dose in the build-up region and the surface dose of a 6 MV and 10 MV flattened photon beam (FB) and flattening filter free (FFF) therapeutic photon beam for different square field sizes (FSs) for a Varian Truebeam linear accelerator using parallel-plate ionization chamber and Gafchromic film. Knowledge of dosimetric characteristics in the build-up region and surface dose of the FFF is essential for clinical care. The dose measurements were also obtained empirically using two different commonly used dosimeters: a p-type photon semiconductor dosimeter and a cylindrical ionization chamber. Surface dose increased linearly with FS for both FB and FFF photon beams. The surface dose values of FFF were higher than the FB FSs. The measured surface dose clearly increases with increasing FS. The FFF beams have a modestly higher surface dose in the build-up region than the FB. The dependence of source to skin distance (SSD) is less significant in FFF beams when compared to the flattened beams at extended SSDs.

  6. Generation of highly confined optical bottle beams by exploiting the photonic nanojet effect

    NASA Astrophysics Data System (ADS)

    Kim, Myun-Sik; Scharf, Toralf; Mühlig, Stefan; Rockstuhl, Carsten; Herzig, Hans Peter

    2012-03-01

    We report on the generation of photonic nanojets, which resemble optical bottle beams. They are realized by manipulating the illumination of dielectric microspheres. As illumination we use the outer region of deliberately truncated Bessel-Gauss beam or a focused Gaussian beam with intentionally induced spherical aberrations. For the Bessel-Gauss beam possessing a single side lobe only, the nanojet spot resembles an optical bottle beam with a strong confinement due to the nanojet effect. When multiple side lobes of the aberrated focal spot are used, a chain of 3D optical bottle beams appears. We show the 3D intensity distributions close to the spot and discuss the main characteristics of such optical bottle beams.

  7. Compact beam splitters with deep gratings for miniature photonic integrated circuits: design and implementation aspects.

    PubMed

    Chen, Chin-Hui; Klamkin, Jonathan; Nicholes, Steven C; Johansson, Leif A; Bowers, John E; Coldren, Larry A

    2009-09-01

    We present an extensive study of an ultracompact grating-based beam splitter suitable for photonic integrated circuits (PICs) that have stringent density requirements. The 10 microm long beam splitter exhibits equal splitting, low insertion loss, and also provides a high extinction ratio in an integrated coherent balanced receiver. We further present the design strategies for avoiding mode distortion in the beam splitter and discuss optimization of the widths of the detectors to improve insertion loss and extinction ratio of the coherent receiver circuit. In our study, we show that the grating-based beam splitter is a competitive technology having low fabrication complexity for ultracompact PICs.

  8. In situ synchrotron x-ray photon beam characterization

    SciTech Connect

    Kyele, Nicholas R.; Silfhout, Roelof G. van; Manolopoulos, Spyros; Nikitenko, S.

    2007-03-15

    We have investigated two in situ methods of measuring x-ray beam parameters such as integrated intensity, position, and intensity distribution. These virtually transparent methods both rely on the collection of scattered radiation from a thin amorphous foil. The scattered radiation is collected by an active pixel sensor placed below the foil, well out of the direction of the beam path. These methods measure a cross-sectional image of the beam as opposed to a profile or beam centroid position provided by existing in situ detection methods. We present the results of measurements taken at a third generation synchrotron radiation source and provide analytical methods of deriving beam profile, position, and absolute intensity.

  9. Comparison of Flattening Filter (FF) and Flattening-Filter-Free (FFF) 6 MV photon beam characteristics for small field dosimetry using EGSnrc Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Sangeetha, S.; Sureka, C. S.

    2017-06-01

    increased with the increase in field size. It is also observed that the photon energy spectrum gets increased with the increase in field size for FFF beam mode. Finally, the output factors for FFF beams were relatively quite low for small field sizes than FF beams whereas it gets higher for magna-field sizes. From this study, it is concluded that the FFF beams depicted minimal deviations in the treatment field region irrespective to the normal tissue region for small field dosimetry compared to FF beams. The more prominent result observed from the study is that the shape of the beam profile remains similar for FF and FFF beams in the case of smaller field size that leads to more accurate treatment planning in the case of IMRT (Image-Guided Radiation Therapy), IGAT (Image-Guided Adaptive Radiation Therapy), SBRT (Stereotactic Body Radiation Therapy), SRS (Stereotactic Radio Surgery), and Tomotherapy techniques where homogeneous dose is not necessary. On the whole, the determination of dosimetric beam characteristics of Varian linac machine using Monte Carlo simulation provides accurate dose calculation as the clinical golden data.

  10. Applying a polynomial formula to photon beam output and equivalent square field

    SciTech Connect

    Chen, F. )

    1990-05-01

    The polynomial formula proposed by Chen (Med. Phys. {bold 15}, 348 (1988)) in calculating the electron beam output from a Therac 20 linear accelerator has been applied to generating the output factor of various machines with photon energies ranging from 100 kVp to 18 MeV. The calculated outputs are within 1% of the measured values. This formula can be very useful to the physicist in preparing an output table of photon beams or electron beams for a therapeutic unit. An equation is derived from this formula to calculate the equivalent square. The derivation shows that only under special circumstances is the equivalent square field equivalent to 2{ital ab}/({ital a}+{ital b}); otherwise the equivalent square field depends on the formula's parameters as well as the sides of the rectangular field. These parameters, in turn, are dependent on the photon energy, the medium irradiated, and the collimator design.

  11. Applying a polynomial formula to photon beam output and equivalent square field.

    PubMed

    Chen, F S

    1990-01-01

    The polynomial formula proposed by Chen [Med. Phys. 15, 348 (1988)] in calculating the electron beam output from a Therac 20 linear accelerator has been applied to generating the output factor of various machines with photon energies ranging from 100 kVp to 18 MeV. The calculated outputs are within 1% of the measured values. This formula can be very useful to the physicist in preparing an output table of photon beams or electron beams for a therapeutic unit. An equation is derived from this formula to calculate the equivalent square. The derivation shows that only under special circumstances is the equivalent square field equivalent to 2ab/(a + b); otherwise the equivalent square field depends on the formula's parameters as well as the sides of the rectangular field. These parameters, in turn, are dependent on the photon energy, the medium irradiated, and the collimator design.

  12. Signatures of light-beam spatial filtering in a three-dimensional photonic crystal

    SciTech Connect

    Maigyte, L.; Trull, J.; Cojocaru, C.; Gertus, T.; Peckus, M.; Sirutkaitis, V.; Staliunas, K.

    2010-10-15

    We report experimental evidence of spatial filtering of light beams by three-dimensional, low-refraction-index-contrast photonic crystals. The photonic crystals were fabricated in a glass bulk, where the refraction index has been periodically modulated using tightly focused femtosecond laser pulses. We observe filtered areas in the angular distributions of the transmitted radiation, and we interpret the observations by theoretical and numerical study of light propagation in index-modulated material in paraxial model.

  13. Evaluation of two water-equivalent phantom materials for output calibration of photon and electron beams.

    PubMed

    Liu, Lizhong; Prasad, Satish C; Bassano, Daniel A

    2003-01-01

    Two commercially available water-equivalent solid phantom materials were evaluated for output calibration in both photon (6-15 MV) and electron (6-20 MeV) beams. The solid water 457 and virtual water materials have the same chemical composition but differ in manufacturing process and density. A Farmer-type ionization chamber was used for measuring the output of the photon beams at 5- and 10-cm depth and electron beams at maximum buildup depth in the solid phantoms and in natural water. The water-equivalency correction factor for the solid materials is defined as the ratio of the chamber reading in natural water to that in the solid at the same linear depth. For photon beams, the correction factor was found to be independent of depth and was 0.987 and 0.993 for 6- and 15-MV beams, respectively, for solid water. For virtual water, the corresponding correction factors were 0.993 and 0.998 for 6- and 15-MV beams, respectively. For electron beams, the correction factors ranged from 1.013 to 1.007 for energies of 6 to 20 MeV for both solid materials. This indicated that the water-equivalency of these materials is within +/- 1.3%, making them suitable substitutes for natural water in both photon and electron beam output measurements over a wide energy range. These correction factors are slightly larger than the manufacturers' advertised values (+/- 1.0% for solid water and +/- 0.5% for virtual water). We suggest that these corrections are large enough in most cases and should be applied in the calculation of beam outputs.

  14. What to Know about External Beam Radiation Therapy

    MedlinePlus

    ... wife and children.” U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health About the treatment: What is external beam radiation therapy? ■ It is a common cancer treatment that ...

  15. External beam radiation therapy for tracheobronchial amyloidosis.

    PubMed

    Neben-Wittich, Michelle A; Foote, Robert L; Kalra, Sanjay

    2007-07-01

    Tracheobronchial amyloidosis is a rare form of primary amyloidosis. There have been no regimens for treatment of this disease that have proven to be effective. There have been case reports of external beam radiation therapy (EBRT) providing marked improvement in symptoms and the appearance of lesions. We report a series of seven consecutive patients who were treated with EBRT. All patients with tracheobronchial amyloidosis were identified who had received EBRT at Mayo Clinic, Rochester, MN. A retrospective chart review was performed. Data were collected including symptoms, method of diagnosis, treatments, result of treatments, and side effects. All patients received 20 Gy of radiation in 10 fractions. All patients had a favorable response to treatment ranging from symptom relief to a decrease in the frequency of pulmonary infections and objective improvement in pulmonary function. The time to subjective improvement ranged from 1 month to 1 year from the completion of EBRT. Grade 1 esophagitis developed in four patients, and grade 2 esophagitis developed in one patient. Grade 2 pneumonitis that resolved after 10 days of treatment with antibiotics and corticosteroids developed in one patient. FEV(1) was the most consistently used method of objective follow-up, and three of seven patients showed improvement. Follow-up ranged from 10 to 69 months (median, 40 months). The recurrence of asymptomatic endobronchial narrowing requiring no additional treatment was noted on bronchoscopy in one patient after 17 months. Tracheobronchial amyloidosis has been difficult to treat due to the limitations of treatment, recurrence, and complications. EBRT appears to be safe and can provide symptomatic as well as objective improvement.

  16. Calculation of the characteristics of clinical high-energy photon beams with EGS5-MPI

    NASA Astrophysics Data System (ADS)

    Shimizu, M.; Morishita, Y.; Kato, M.; Kurosawa, T.; Tanaka, T.; Takata, N.; Saito, N.

    2014-03-01

    A graphite calorimeter has been developed as a Japanese primary standard of absorbed dose to water in the high-energy photon beams from a clinical linac. To obtain conversion factors for the graphite calorimeter, the beam characteristics of the high-energy photon beams from the clinical linac at National Metrology Institute of Japan were calculated with the EGS5 Monte Carlo simulation code. To run the EGS5 code on High Performance Computing machines that have more than 1000 CPU cores, we developed the EGS5 parallelisation package "EGS5-MPI" by implementing a message-passing interface. We calculated the photon energy spectra, which are in good agreement with those previously calculated by D. Sheikh-Bagheri and D. W. O. Rogers (Med. Phys. 29 3). We also estimated the percentage-depth-dose distributions of photon beams from the linac using the calculated photon energy spectra. These calculated percentage-depth-dose distributions were compared with our measured distributions and were found they are in good agreement as well. We will calculate conversion factors for the graphite calorimeter using our results.

  17. Three-dimensional dynamic photonic crystal creation by four laser beams interference in colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Smirnov, A. M.; Mantsevich, V. N.; Ezhova, K. V.; Tikhonov, I. V.; Dneprovskii, V. S.

    2016-04-01

    We investigate a simple way to create dynamic photonic crystals with different lattice symmetry by interference of four non-coplanar laser beams in colloidal solution of CdSe/ZnS quantum dots (QDs). The formation of dynamic photonic crystal was confirmed by the observed diffraction of the beams that have excited photonic crystal at the angles equal to that calculated for the corresponding three-dimensional lattice (self-diffraction regime). Self-diffraction from an induced 3D transient photonic crystal has been discovered in the case of resonant excitation of the excitons (electron - hole transitions) in CdSe/ZnS QDs (highly absorbing colloidal solution) by powerful beams of mode-locked laser with picosecond pulse duration. Self-diffraction arises for four laser beams intersecting in the cell with colloidal CdSe/ZnS QDs due to the induced 3D dynamic photonic crystal. The physical processes that arise in CdSe/ZnS QDs and are responsible for the observed self-action effects are discussed.

  18. NLC Polarized Positron Photon Beam Target Thermal Structural Modeling(LCC-0087)

    SciTech Connect

    Stein, W.

    2003-10-07

    The NLC polarized positron photon beam target is a 0.4 radiation length thick titanium target. Energy deposition from one pulse occurs over 266 nano-seconds and results in heating of the target and pressure pulses straining the material. The 22.1 MeV photon beam has a spot size of 0.75 mm and results in a maximum temperature jump of 233 C. Stresses are induced in the material from thermal expansion of the hotter material. Peak effective stresses reach 19 Ksi (1.34 x 10{sup 8} Pa), which is lower than the yield strength of a titanium alloy by a factor of six.

  19. Measurement of Electron Beam Polarization from Unstrained Bulk GaAs via Two Photon Photoemission

    SciTech Connect

    J L McCarter, T J Gay, J Hansknecht, M Poelker, M L Stutzman

    2011-06-01

    This paper describes measurements of the beam polarization and quantum efficiency for photoemission using two-photon excitation from unstrained bulk GaAs illuminated with pulsed, high intensity 1560nm laser light. Quantum efficiency is linearly proportional to 1560nm peak laser intensity, which was varied in three independent ways, indicating that the emitted electrons are promoted from the valence to the conduction band via two-photon absorption. Beam polarization was measured using a microMott polarimeter, with a value of 16.8(4)% polarization at 1560nm, which is roughly half the measured value of 33.4(8)% using 778 nm light.

  20. Nondestructive inspection of explosive materials using linearly polarized two-colored photon beam

    NASA Astrophysics Data System (ADS)

    Toyokawa, H.; Hayakawa, T.; Shizuma, T.; Hajima, R.; Masuda, K.; Ohgaki, H.

    2011-10-01

    A nondestructive inspection method for screening explosive materials that are hidden in passenger vehicles, trucks, and cargo containers with radiation shielding was presented. The method was examined experimentally using linearly polarized two-colored photon beam. A sample object was irradiated with the photon beam, followed by an emission of gamma-rays in nuclear resonance fluorescence. The gamma-rays from oxygen and nitrogen emitted through nuclear resonance fluorescence were measured using high-purity germanium detectors. We were able to evaluate the element concentration ratio.

  1. Atom Interferometry with up to 24-Photon-Momentum-Transfer Beam Splitters

    SciTech Connect

    Mueller, Holger; Chiow, Sheng-wey; Long, Quan; Herrmann, Sven; Chu, Steven

    2008-05-09

    We present up to 24-photon Bragg diffraction as a beam splitter in light-pulse atom interferometers to achieve the largest splitting in momentum space so far. Relative to the 2-photon processes used in the most sensitive present interferometers, these large momentum transfer beam splitters increase the phase shift 12-fold for Mach-Zehnder (MZ) and 144-fold for Ramsey-Borde (RB) geometries. We achieve a high visibility of the interference fringes (up to 52% for MZ or 36% for RB) and long pulse separation times that are possible only in atomic fountain setups. As the atom's internal state is not changed, important systematic effects can cancel.

  2. Genetic algorithms optimization of photonic crystal fibers for half diffraction angle reduction of output beam.

    PubMed

    Lu, Jyun-Hong; Cai, Dong-Po; Tsai, Ya-Lun; Chen, Chii-Chang; Lin, Chu-En; Yen, Ta-Jen

    2014-09-22

    In this work, we optimize the structure of the photonic crystal fibers by using genetic algorithms to provide strong light confinement in fiber and small half diffraction angle of output beam. Furthermore, this article shows the potentials of this study, such as optimizing three purposes at the same time and the arbitrary structure design is achieved. We report two optimized results obtained by different optimization conditions. The results show that the half diffraction angle of the output beam of the photonic crystal fibers can be reduced.

  3. Postmastectomy chest wall radiation with electron-beam therapy: outcomes and complications at the University of Louisville.

    PubMed

    Amin-Zimmerman, F; Paris, K; Minor, G I; Spanos, W

    2005-01-01

    Postmastectomy chest wall radiation therapy using electron-beam therapy has been reported to increase lung radiation dose and the potential for pneumonitis. These reports describe treatment with varying energy electron beams prescribed to the breast/chest wall junction. Because the tissue at risk includes dermal lymphatics and subcutaneous tissues, low-energy electron beams may reduce lung radiation dose and the incidence of pneumonitis yet preserve good local control. At the University of Louisville, patients who have undergone mastectomy are treated with 6-MeV electron beam and bolus. From 1985 through 1998, 273 patients underwent postmastectomy radiation therapy at the University of Louisville. The chest wall was treated using 6-MeV electron beam with 5-mm bolus prescribed to the 90% isodose-line, ensuring adequate dermal lymphatic dose. Internal mammary nodes were treated with electron-beam energy sufficient to treat to depth (approximately 15 MeV). Supraclavicular nodes were treated using 6-MV photon beam. Patients' charts were reviewed with respect to complications and outcome. Radiation pneumonitis was confirmed in one case (0.4%). The pneumonitis resolved with prednisone treatment. Twenty patients experienced locoregional failure (7.3%), 14 of whom failed in the chest wall (5.1%). Local control in our study is excellent and comparable to results expected for postmastectomy radiation therapy as reported in the literature. We conclude that postmastectomy patients can be treated with low-energy electron beam radiation therapy, protecting underlying lung without sacrificing local disease control.

  4. Review of ion beam therapy: Present and Future

    SciTech Connect

    Alonso, Jose R.

    2000-06-01

    First therapy efforts at the Bevalac using neon ions took place in the 70's and 80's. Promising results led to construction of HIMAC in Chiba Japan, and more recently to therapy trials at GSI. Both these facilities are now treating patients with carbon beams. Advances in both accelerator technology and beam delivery have taken place at these two centers. Plans are well along for new facilities in Europe and Japan.

  5. Bandgap control using strained beam structures for Si photonic devices.

    PubMed

    Yoshimoto, Kohei; Suzuki, Ryota; Ishikawa, Yasuhiko; Wada, Kazumi

    2010-12-06

    We have demonstrated that bandgap energy of Si can be controlled by micro-mechanically structured Si beams (250 nm thick, 3 μm wide, and 15 μm long) elastically deformed by an external force. Microscopic photoluminescence spectroscopy reveals that downward bending of the beam by 3 μm reveals a red shift in the peak from ~1100 nm up to ~1300 nm. It is found from calculations based on deformation potentials and finite element method that tensile strain as large as ~1.5% is generated in the top surface of the deformed beam and responsible for the red shift of the peak. The presented result should be a proof of concept to cancel wavelength fluctuation unavoidably occurring on uncooled LSIs in terms of stress application, and thereby an enabler of wavelength division multiplexing implementation on a chip. The applications of other beam materials such as Ge and GaAs are discussed.

  6. Acceptance criteria for flattening filter-free photon beam from standard medical electron linear accelerator: AERB task group recommendations

    PubMed Central

    Sahani, G.; Sharma, S. D.; Sharma, P. K. Dash; Deshpande, D. D.; Negi, P. S.; Sathianarayanan, V. K.; Rath, G. K.

    2014-01-01

    Medical electron linear accelerators with the capability of generating unflat photon (flattening filter-free, FFF) beams are also available commercially for clinical applications in radiotherapy. However, the beam characteristics evaluation criteria and parameters are not yet available for such photon beams. Atomic Energy Regulatory Board (AERB) of India constituted a Task Group comprising experts from regulatory agency, advisory body/research and technical institutions, and clinical radiotherapy centers in the country to evolve and recommend the acceptance criteria for the flattening filter-free (FFF) photon beams. The Task Group thoroughly reviewed the literature and inputs of the manufactures/suppliers of the FFF linac and recommended a set of dosimetry parameters for evaluating the characteristics of the unflat photon beam. The recommendations included the evaluation of quality index, degree of unflatness, difference in percentage surface dose between flat and unflat photon beams, percentage depth dose at 10 cm depth, off-axis-ratios and radiation beam penumbra. The recommended parameters were evaluated for FFF photon beams generated by three different models of the linac, and it was observed that recommended evaluation methods are simple and easy to be implemented with the existing dosimetry and quality assurance infrastructure of the linac facilities of the radiotherapy departments. Recommendations were also made for periodic quality control check of the unflat photon beams and constancy evaluation in the beam characteristics. PMID:25525307

  7. Hyperfractionated Concomitant Boost Proton Beam Therapy for Esophageal Carcinoma

    SciTech Connect

    Mizumoto, Masashi; Sugahara, Shinji; Okumura, Toshiyuki; Hashimoto, Takayuki; Oshiro, Yoshiko; Fukumitsu, Nobuyoshi; Nakahara, Akira; Terashima, Hideo; Tsuboi, Koji; Sakurai, Hideyuki

    2011-11-15

    Purpose: To evaluate the efficacy and safety of hyperfractionated concomitant boost proton beam therapy (PBT) for patients with esophageal cancer. Methods and Materials: The study participants were 19 patients with esophageal cancer who were treated with hyperfractionated photon therapy and PBT between 1990 and 2007. The median total dose was 78 GyE (range, 70-83 GyE) over a median treatment period of 48 days (range, 38-53 days). Ten of the 19 patients were at clinical T Stage 3 or 4. Results: There were no cases in which treatment interruption was required because of radiation-induced esophagitis or hematologic toxicity. The overall 1- and 5-year actuarial survival rates for all 19 patients were 79.0% and 42.8%, respectively, and the median survival time was 31.5 months (95% limits: 16.7- 46.3 months). Of the 19 patients, 17 (89%) showed a complete response within 4 months after completing treatment and 2 (11%) showed a partial response, giving a response rate of 100% (19/19). The 1- and 5-year local control rates for all 19 patients were 93.8% and 84.4 %, respectively. Only 1 patient had late esophageal toxicity of Grade 3 at 6 months after hyperfractionated PBT. There were no other nonhematologic toxicities, including no cases of radiation pneumonia or cardiac failure of Grade 3 or higher. Conclusions: The results suggest that hyperfractionated PBT is safe and effective for patients with esophageal cancer. Further studies are needed to establish the appropriate role and treatment schedule for use of PBT for esophageal cancer.

  8. High Energy Photon Beam Generation For QCD Explorer Based γP Colliders

    NASA Astrophysics Data System (ADS)

    Ciftci, A. K.; Aksakal, H.; Nergiz, Z.

    2007-04-01

    Combination of two linear accelerator projects, namely CLIC (Compact Linear Collider) and ILC (International Linear Collider) with LHC(Large Hadron Collider) offer an opportunity to build γp collider. High energy photons are produced by the Compton backscattering of the laser photons off high energy electrons at the conversion region. Then, Compton backscattered photons are collided with protons at the interaction region. In this study, conversion properties and optimum laser and electron beam parameters for CLIC and ILC are determined using CAIN simulation program.

  9. White beam slits and pink beam slits for the hard x-ray nanoprobe beamline at the Advanced Photon Source.

    SciTech Connect

    Benson, C.; Jaski, Y.; Maser, J.; Powers, T.; Schmidt, O.; Rossi, E.

    2007-01-01

    A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a clean cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam. The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.

  10. White Beam Slits and Pink Beam Slits for the Hard X-ray Nanoprobe Beamline at the Advanced Photon Source

    SciTech Connect

    Benson, C.; Jaski, Y.; Powers, T.; Schmidt, O.; Rossi, E.; Maser, J.

    2007-01-19

    A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a clean cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam.The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits' accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.

  11. A microwave beam waveguide undulator for a brilliant above 100 keV photon source.

    SciTech Connect

    Kang, Y. W.

    1999-04-19

    For generation of photons above 100-keV with a magnetic field strength in the range 0.2-0.5 Tesla, an undulator wavelength {lambda}{sub u} shorter than 5 mm may be needed with beam in the Advanced Photon Source (APS) storage ring. A microwave beam waveguide undulator system has been investigated for generation of such light. The waveguide structure consists of two parallel reflector surfaces that can be derived from an elliptically cylindrical waveguide. The structure can support deflecting TE{sub m0} modes with very low microwave loss. A microwave ring resonator circuit employing the beam waveguide is considered to construct an undulator with the above requirement. Microwave properties of the beam waveguide structure have been investigated, and the design criteria for a microwave undulator are discussed.

  12. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus.

    PubMed

    Song, Minsoo; Yoon, Tai Hyun

    2013-02-01

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s(2)(1)S0↔ 6s7s (1)S0) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm(3) and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s(1)S0 state via the intercombination 6s6p(3)P1 state with a high signal-to-noise ratio even at the temperature of 340 °C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  13. Polarised Photon Beams for the BGO-OD Experiment at ELSA

    NASA Astrophysics Data System (ADS)

    Zimmermann, T.; Bella, A.; Alef, S.; Bayadilov, D.; Beck, R.; Becker, M.; Bielefeldt, P.; Boese, S.; Braghieri, A.; Brinkmann, K.; Cole, P.; Curciarello, F.; De Leo, V.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Gervino, G.; Ghio, F.; Giardina, G.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hartmann, P.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I. V.; Mandaglio, G.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Mushkarenkov, A.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Reitz, B.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Schaerf, C.; Scheluchin, G.; Schmieden, H.; Stugelev, A.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.

    The new BGO-OD experiment at the electron accelerator ELSA, of the University of Bonn, is designed to study the reaction dynamics of nucleon excitations in meson photoproduction. It consists of a central BGO calorimeter with a magnetic spectrometer in forward direction. The physics programme includes the measurement of polarisation observables using linearly and circularly polarised photon beams. Linear polarisation is obtained by coherent bremsstrahlung off a diamond crystal, and circular polarisation is obtained via bremsstrahlung from longitudinally polarised electrons. The degree of linear polarisation is determined from the bremsstrahlung spectrum itself. To determine the polarisation of the circularly polarised photon beam, the polarisation of the electron beam is measured by a Møller polarimeter. As a preliminary consistency check, the (linear) polarisation observable, Σ, was compared to world data for π0 and η photoproduction. To determine the degree of circular polarisation, a Møller polarimeter was setup and first measurements of the electron beam polarisation performed.

  14. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    NASA Astrophysics Data System (ADS)

    Song, Minsoo; Yoon, Tai Hyun

    2013-02-01

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s2 1S0↔ 6s7s 1S0) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm3 and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s1S0 state via the intercombination 6s6p3P1 state with a high signal-to-noise ratio even at the temperature of 340 °C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  15. Commissioning of a medical accelerator photon beam Monte Carlo simulation using wide-field profiles

    NASA Astrophysics Data System (ADS)

    Pena, J.; Franco, L.; Gómez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pazos, A.; Pardo, J.; Pombar, M.; Rodríguez, A.; Sendón, J.

    2004-11-01

    A method for commissioning an EGSnrc Monte Carlo simulation of medical linac photon beams through wide-field lateral profiles at moderate depth in a water phantom is presented. Although depth-dose profiles are commonly used for nominal energy determination, our study shows that they are quite insensitive to energy changes below 0.3 MeV (0.6 MeV) for a 6 MV (15 MV) photon beam. Also, the depth-dose profile dependence on beam radius adds an additional uncertainty in their use for tuning nominal energy. Simulated 40 cm × 40 cm lateral profiles at 5 cm depth in a water phantom show greater sensitivity to both nominal energy and radius. Beam parameters could be determined by comparing only these curves with measured data.

  16. Photon distribution at the output of a beam splitter for imbalanced input states

    NASA Astrophysics Data System (ADS)

    Nakazato, Hiromichi; Pascazio, Saverio; Stobińska, Magdalena; Yuasa, Kazuya

    2016-02-01

    In the Hong-Ou-Mandel interferometric scheme, two identical photons that illuminate a balanced beam splitter always leave through the same exit port. Similar effects have been predicted and (partially) experimentally confirmed for multiphoton Fock-number states. In the limit of large photon numbers, the output distribution follows a (1-x2) -1 /2 law, where x is the normalized imbalance in the output photon numbers at the two output ports. We derive an analytical formula that is also valid for imbalanced input photon numbers with a large total number of photons, and focus on the extent to which the hypothesis of perfect balanced input can be relaxed, discussing the robustness and universal features of the output distribution.

  17. Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy.

    PubMed

    Bauer, J; Sommerer, F; Mairani, A; Unholtz, D; Farook, R; Handrack, J; Frey, K; Marcelos, T; Tessonnier, T; Ecker, S; Ackermann, B; Ellerbrock, M; Debus, J; Parodi, K

    2014-08-21

    Monte Carlo (MC) simulations of beam interaction and transport in matter are increasingly considered as essential tools to support several aspects of radiation therapy. Despite the vast application of MC to photon therapy and scattered proton therapy, clinical experience in scanned ion beam therapy is still scarce. This is especially the case for ions heavier than protons, which pose additional issues like nuclear fragmentation and varying biological effectiveness. In this work, we present the evaluation of a dedicated framework which has been developed at the Heidelberg Ion Beam Therapy Center to provide automated FLUKA MC simulations of clinical patient treatments with scanned proton and carbon ion beams. Investigations on the number of transported primaries and the dimension of the geometry and scoring grids have been performed for a representative class of patient cases in order to provide recommendations on the simulation settings, showing that recommendations derived from the experience in proton therapy cannot be directly translated to the case of carbon ion beams. The MC results with the optimized settings have been compared to the calculations of the analytical treatment planning system (TPS), showing that regardless of the consistency of the two systems (in terms of beam model in water and range calculation in different materials) relevant differences can be found in dosimetric quantities and range, especially in the case of heterogeneous and deep seated treatment sites depending on the ion beam species and energies, homogeneity of the traversed tissue and size of the treated volume. The analysis of typical TPS speed-up approximations highlighted effects which deserve accurate treatment, in contrast to adequate beam model simplifications for scanned ion beam therapy. In terms of biological dose calculations, the investigation of the mixed field components in realistic anatomical situations confirmed the findings of previous groups so far reported only in

  18. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    NASA Astrophysics Data System (ADS)

    Sengbusch, Evan R.

    Physical properties of proton interactions in matter give them a theoretical advantage over photons in radiation therapy for cancer treatment, but they are seldom used relative to photons. The primary barriers to wider acceptance of proton therapy are the technical feasibility, size, and price of proton therapy systems. Several aspects of the proton therapy landscape are investigated, and new techniques for treatment planning, optimization, and beam delivery are presented. The results of these investigations suggest a means by which proton therapy can be delivered more efficiently, effectively, and to a much larger proportion of eligible patients. An analysis of the existing proton therapy market was performed. Personal interviews with over 30 radiation oncology leaders were conducted with regard to the current and future use of proton therapy. In addition, global proton therapy market projections are presented. The results of these investigations serve as motivation and guidance for the subsequent development of treatment system designs and treatment planning, optimization, and beam delivery methods. A major factor impacting the size and cost of proton treatment systems is the maximum energy of the accelerator. Historically, 250 MeV has been the accepted value, but there is minimal quantitative evidence in the literature that supports this standard. A retrospective study of 100 patients is presented that quantifies the maximum proton kinetic energy requirements for cancer treatment, and the impact of those results with regard to treatment system size, cost, and neutron production is discussed. This study is subsequently expanded to include 100 cranial stereotactic radiosurgery (SRS) patients, and the results are discussed in the context of a proposed dedicated proton SRS treatment system. Finally, novel proton therapy optimization and delivery techniques are presented. Algorithms are developed that optimize treatment plans over beam angle, spot size, spot spacing

  19. Heavy Charged Particle Radiobiology: Using Enhanced Biological Effectiveness and Improved Beam Focusing to Advance Cancer Therapy

    PubMed Central

    Allen, Christopher; Borak, Thomas B.; Tsujii, Hirohiko; Nickoloff, Jac A.

    2011-01-01

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. PMID:21376738

  20. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    PubMed

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-03

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation.

  1. Polarity correction factor for flattening filter free photon beams in several cylindrical ionization chambers.

    PubMed

    Ogata, Toshiyuki; Uehara, Kazuyuki; Nakayama, Masao; Tsudou, Shinji; Masutani, Takashi; Okayama, Takanobu

    2016-07-01

    In this study, we aimed to compare the polarity correction factor in ionization chambers for flattening filter free (FFF) photon beams and flattening filter (FF) beams. Measurements were performed with both 6 and 10 MV FFF and FF beams. Five commercial ionization chambers were evaluated: PTW TN30013; IBA Dosimetry CC01, CC04, and CC13; and Exradin A12S. Except for the CC01 ionization chamber, the other four chambers showed less than a 0.3 % difference in the polarity effect between the FFF and the FF beams. The CC01 chamber showed a strong field-size-dependence, unlike the other chambers. The polarity effect for all chambers with FFF beams did not change with the dose rate. Except in the case of the CC01 chamber, the difference in the polarity effect between FFF and FF beams was not significant.

  2. Dosimetric properties of a flattening filter-free 6-MV photon beam: a Monte Carlo study.

    PubMed

    Mesbahi, Asghar; Mehnati, Parinaz; Keshtkar, Ahmad; Farajollahi, Alireza

    2007-08-01

    The dosimetric features of an unflattened 6-MV photon beam of an Elekta SL-25 linac was calculated by the Monte Carlo (MC) method. The head of the Elekta SL-25 linac was simulated using the MCNP4C MC code. The accuracy of the model was evaluated using measured dosimetric features, including depth dose values and dose profiles in a water phantom. The flattening filter was then removed, and beam dosimetric properties were calculated by the MC method and compared with those of the flattened photon beam. Our results showed a significant (twofold) increase in the dose rate for all field sizes. Also, the photon beam spectra for an unflattened beam were softer, which led to a steeper reduction in depth doses. The decrease in the out-of-field dose and increase in the contamination electrons and a buildup region dose were the other consequences of removing the flattening filter. Our study revealed that, for recent radiotherapy techniques, the use of multileaf collimators for beam shaping removing the flattening filter could offer some advantages, including an increased dose rate and decreased out-of-field dose.

  3. Interaction of Photon Vortex Beams with Atomic Matter

    NASA Astrophysics Data System (ADS)

    Solyanik, Maria; Afanasev, Andrei; Carlson, Carl E.

    2017-01-01

    In our work we consider helical Bessel beams' (BB's) propagation and interaction with isotropic matter. Dynamical properties of the beams with non-zero orbital angular momentum (OAM), which are determined by spatial degrees of freedom and polarization, modify the fundamental processes in light-matter interactions. Circular dichroism of BBs propagating in hydrogen gas was considered within the frame of studying the vortex beams' attenuation due to photoabsorption in hydrogen gas. In this case, the phenomenon is due to the topology of the wave front, contrary to the zero OAM case, when the change in polarization state is due to matter inhomogeneity. The effect of circular dichroism has been predicted by calculating the beam ellipticity evolution when traversing an isotropic target. According to our results, the BBs' transverse ellipticity profile has a structure of concentric circular maxima which correspond to minima of the intensity. The characteristic polarization singularity arises on the beam axis as the result of interaction with matter. It is shown, that even for the case of the paraxial approximation the effect of circular dichroism takes place. These signatures can be used for theoretical and experimental analysis of the interactions of optical vortices with atomic matter.

  4. Simulation of a 6 MV Elekta Precise Linac photon beam using GATE/GEANT4

    NASA Astrophysics Data System (ADS)

    Grevillot, L.; Frisson, T.; Maneval, D.; Zahra, N.; Badel, J.-N.; Sarrut, D.

    2011-02-01

    The GEANT4-based GATE Monte Carlo (MC) platform was initially focused on PET and SPECT simulations. The new release v6.0 (February 2010) proposes new tools dedicated for radiation therapy simulations. In this work, we investigated some part of this extension and proposed a general methodology for Linac simulations. Details of the modeling of a 6 MV photon beam delivered by an Elekta Precise Linac, with radiation fields ranging from 5 × 5 to 30 × 30 cm2 at the isocenter are presented. Comparisons were performed with measurements in water. The simulations were performed in two stages: first, the patient-independent part was simulated and a phase space (PhS) was built above the secondary collimator. Then, a multiple source model (MSM) derived from the PhS was proposed to simulate the photon fluence interacting with the patient-dependent part. The selective bremsstrahlung splitting (SBS) variance reduction technique proposed in GATE was used in order to speed up the accelerator head simulation. Further investigations showed that the SBS can be safely used without biasing the simulations. Additional comparisons with full simulations performed on the EGEE grid, in a single stage from the electron source to the water phantom, allowed the evaluation of the MSM. The proposed MSM allowed for calculating depth dose and transverse profiles in 48 hours on a single 2.8 GHz CPU, with a statistical uncertainty of 0.8% for a 10 × 10 cm2 radiation field, using voxels of 5 × 5 × 5 mm3. Good agreement between simulations and measurements in water was observed, with dose differences of about 1% and 2% for depth doses and dose profiles, respectively. Additional gamma index comparisons were performed; more than 90% of the points for all simulations passed the 3%/3 mm gamma criterion. To our knowledge, this feasibility study is the first one illustrating the potential of GATE for external radiotherapy applications.

  5. Simulation of a 6 MV Elekta Precise Linac photon beam using GATE/GEANT4.

    PubMed

    Grevillot, L; Frisson, T; Maneval, D; Zahra, N; Badel, J-N; Sarrut, D

    2011-02-21

    The GEANT4-based GATE Monte Carlo (MC) platform was initially focused on PET and SPECT simulations. The new release v6.0 (February 2010) proposes new tools dedicated for radiation therapy simulations. In this work, we investigated some part of this extension and proposed a general methodology for Linac simulations. Details of the modeling of a 6 MV photon beam delivered by an Elekta Precise Linac, with radiation fields ranging from 5 × 5 to 30 × 30 cm(2) at the isocenter are presented. Comparisons were performed with measurements in water. The simulations were performed in two stages: first, the patient-independent part was simulated and a phase space (PhS) was built above the secondary collimator. Then, a multiple source model (MSM) derived from the PhS was proposed to simulate the photon fluence interacting with the patient-dependent part. The selective bremsstrahlung splitting (SBS) variance reduction technique proposed in GATE was used in order to speed up the accelerator head simulation. Further investigations showed that the SBS can be safely used without biasing the simulations. Additional comparisons with full simulations performed on the EGEE grid, in a single stage from the electron source to the water phantom, allowed the evaluation of the MSM. The proposed MSM allowed for calculating depth dose and transverse profiles in 48 hours on a single 2.8 GHz CPU, with a statistical uncertainty of 0.8% for a 10 × 10 cm(2) radiation field, using voxels of 5 × 5 × 5 mm(3). Good agreement between simulations and measurements in water was observed, with dose differences of about 1% and 2% for depth doses and dose profiles, respectively. Additional gamma index comparisons were performed; more than 90% of the points for all simulations passed the 3%/3 mm gamma criterion. To our knowledge, this feasibility study is the first one illustrating the potential of GATE for external radiotherapy applications.

  6. Multi-beam-interference-based methodology for the fabrication of photonic crystal structures

    NASA Astrophysics Data System (ADS)

    Stay, Justin L.

    Photonic crystal (PC) technology offers the potential of lossless control of the propagation of light at microelectronic and nanoelectronic size scales. Numerous important physical characteristics have already been demonstrated. These phenomena include the photonic bandgap, the superprism effect, negative refraction, and negative diffraction. Individual components that have been demonstrated include waveguides, resonators, filters, waveguide couplers, directional couplers, demultiplexers, antennas, switches, and sensors. The integration of optimized versions of these components would produce the first truly dense integrated photonic circuits and systems (DIPCS) that would perform functions such as interconnection, communication, image acquisition, image processing, image recognition, A-to-D conversion, control, and bio/chem-sensing. A variety of techniques are available to enable the fabrication of photonic crystal structures. Multi-beam-interference lithography (MBIL) is a relatively new technique which offers many advantages over more traditional means of fabrication. Unlike the more common fabrication methods such as optical and electron-beam lithography, MBIL is a method that can produce both two- and three-dimensional large-area photonic crystal structures for use in the infrared and visible light regimes. While multi-beam-interference lithography represents a promising methodology for the fabrication of PC structures, there has been an incomplete understanding of MBIL itself. The research in this thesis focuses on providing a more complete, systematic description of MBIL in order to demonstrate its full capabilities. Analysis of both three- and four-beam interference is investigated and described in terms of contrast and crystallography. The concept of a condition for primitive-lattice-vector-direction equal contrasts is introduced in this thesis. These conditions are developed as nonlinear constraints when optimizing absolute contrast for producing

  7. Quality assurance of electron and photon beam energy using the BQ-CHECK phantom.

    PubMed

    Speight, Richard J; Esmail, Ashraf; Weston, Steve J

    2011-02-01

    The BQ-CHECK phantom (PTW Freiburg, Germany) has been designed to be used with a 2D ion chamber array to facilitate the quality assurance (QA) of electron and photon beam qualities (BQ). The BQ-CHECK phantom has three wedges covering the diagonal axes of the beam: two opposed aluminum wedges used to measure electron energy and a single copper wedge used to measure photon energy. The purpose of this work was to assess the suitability of the BQ-CHECK phantom for use in a routine QA program. A range of percentage depth dose (PDD) curves for two photon beams and four electron beams were measured using a MP3 plotting tank (PTW Freiburg). These beams were used to irradiate a STARCHECK array (PTW Freiburg) with and without the BQ-CHECK phantom on top of the array. For photons, the ratio of the signals from two chambers underneath the copper wedge was used as an effective TPR measurement (TPR(eff)) and, for electrons, the full width at half maximum of the profile (E(FWHM)) underneath the aluminum wedges was used as an electron energy constancy measurement. PDD measurements were compared with TPR(eff) and E(FWHM) to assess the sensitivity of the BQ-CHECK phantom. The clinical tolerances of TPReff were determined for 6 MV (0.634-0.649), and 10MV (0.683-0.692). For electrons, the clinical tolerances of EFWHM were determined for 6 MeV (94.8-103.4 mm), 8 MeV (105.5-114.0 mm), 10 MeV (125.4-133.9 mm) and 12 MeV (138.8-147.3 mm).Electron and photon energy metrics are presented which demonstrate that the BQ-CHECK phantom could be used to form part of an efficient routine monthly QA program. Acceptable beam quality limits for various nominal beam energies were established and at these limits, modified profiles were acquired using the STARCHECK array. From the modified profiles, E(FWHM) and TPR(eff) were determined for the electron and photon beams, respectively. It was demonstrated that both E(FWHM) and the TPR(eff) have a linear relationship with conventional beam quality metrics.

  8. A beam monitor using silicon pixel sensors for hadron therapy

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zou, Shuguang; Fan, Yan; Liu, Jun; Sun, Xiangming; Wang, Dong; Kang, Huili; Sun, Daming; Yang, Ping; Pei, Hua; Huang, Guangming; Xu, Nu; Gao, Chaosong; Xiao, Le

    2017-03-01

    We report the design and test results of a beam monitor developed for online monitoring in hadron therapy. The beam monitor uses eight silicon pixel sensors, Topmetal-II-, as the anode array. Topmetal-II- is a charge sensor designed in a CMOS 0.35 μm technology. Each Topmetal-II- sensor has 72×72 pixels and the pixel size is 83×83 μm2. In our design, the beam passes through the beam monitor without hitting the electrodes, making the beam monitor especially suitable for monitoring heavy ion beams. This design also reduces radiation damage to the beam monitor itself. The beam monitor is tested with a carbon ion beam at the Heavy Ion Research Facility in Lanzhou (HIRFL). Results indicate that the beam monitor can measure position, incidence angle and intensity of the beam with a position resolution better than 20 μm, angular resolution about 0.5° and intensity statistical accuracy better than 2%.

  9. Beam-induced radiation heating on the superconducting undulator at the advanced photon source

    NASA Astrophysics Data System (ADS)

    Boon, Laura Elizabeth

    2014-09-01

    In January 2013 the Advanced Photon Source (APS), a 7 GeV synchrotron X-ray source, commissioned a Superconducting Undulator (SCU). The superconducting magnet is thermally isolated from the beam vacuum chamber, which absorbs the beam-induced heating. Previous beam induced heat load studies at other laboratories had not included a robust calculation of radiation heating from the upstream dipole magnet. The mitigation of the radiation heating mechanism, and production of photoelectrons to seed an electron cloud was studied for this thesis. An analytical model was developed to predict the radiation heat load on the SCU chamber. This model was benchmarked with ray tracings and simulations. Results from this synchrotron radiation model were used to guide the design of the installed SCU beam chamber. A 3D Monte-Carlo simulation on synchrotron radiation on the beam chamber was developed. The model considered the effect of diffuse scattering and complex chamber geometries. It was found that a simulation assuming no photon scattering gave a power that agreed within 0.4% of the analytical model. Comparison between analytical calculations and measured temperature rise on the installed SCU show the analytical model agrees with the measured temperature rise within 20%. Previous models of similar superconducting devices in accelerators have reached at best 200% difference between the measured and modeled heat load. The beam heat load model presented in this thesis represents a significant improvement in modeling of superconducting devices in high energy particle accelerators. In addition to heating the SCU chamber, absorbed photons produce photoelectrons which seed electron clouds, another source of beam induced heating. Measurements of the technical aluminum samples show peaks in the quantum efficiency for photon energies equal to the K edges of oxygen, carbon, and aluminum. These results can be added to electron cloud simulation codes to improve simulation results.

  10. Determination of ion recombination correction factors for a liquid ionization chamber in megavoltage photon beams

    NASA Astrophysics Data System (ADS)

    Choi, Sang Hyoun; Kim, Kum-Bae; Ji, Young Hoon; Kim, Chan Hyeong; Kim, Seonghoon; Huh, Hyun Do

    2015-05-01

    The aim of this study is to determine the ion recombination correction factor for a liquid ionization chamber in a high energy photon beam by using our experimental method. The ion recombination correction factors were determined by using our experimental method and were compared with theoretical and experimental methods proposed by using the theoretical method (Greening, Johansson) and the two-dose rate method in a cobalt beam and a high energy photon beam. In order to apply the liquid ionization chamber in a reference and small field dosimetry, we acquired the absorbed dose to water correction coefficient, the beam quality correction factor, and the influence quantities for the microLion chamber according to the TRS-398 protocol and applied the results to a high energy photon beam used in clinical fields. As a result, our experimental method for ion recombination in a cobalt beam agreed with the results from the heoretical method (Greening theory) better than it did with the results from the two-dose rate method. For high energy photon beams, the two-dose rate and our experimental methods were in good agreement, less than 2% deviation, while the theoretical general collection efficiency (Johansson et al.) deviated greatly from the experimental values. When we applied the factors for the absorbed dose to water measurement, the absorbed dose to water for the microLion chamber was in good agreement, within 1%, compared with the values for the PTW 30013 chamber in 6 and 10 MV Clinac iX and 6 and 15 MV Oncor impression. With these results, not only can the microLion ionization chamber be used to measure the absorbed dose to water in a reference condition, it can also be used to a the chamber for small, non-standard field dosimetry.

  11. Modelling 6 MV photon beams of a stereotactic radiosurgery system for Monte Carlo treatment planning

    NASA Astrophysics Data System (ADS)

    Deng, Jun; Guerrero, Thomas; Ma, C.-M.; Nath, Ravinder

    2004-05-01

    The goal of this work is to build a multiple source model to represent the 6 MV photon beams from a Cyberknife stereotactic radiosurgery system for Monte Carlo treatment planning dose calculations. To achieve this goal, the 6 MV photon beams have been characterized and modelled using the EGS4/BEAM Monte Carlo system. A dual source model has been used to reconstruct the particle phase space at a plane immediately above the secondary collimator. The proposed model consists of two circular planar sources for the primary photons and the scattered photons, respectively. The dose contribution of the contaminant electrons was found to be in the order of 10-3 of the total maximum dose and therefore has been omitted in the source model. Various comparisons have been made to verify the dual source model against the full phase space simulated using the EGS4/BEAM system. The agreement in percent depth dose (PDD) curves and dose profiles between the phase space and the source model was generally within 2%/1 mm for various collimators (5 to 60 mm in diameter) at 80 to 100 cm source-to-surface distances (SSD). Excellent agreement (within 1%/1 mm) was also found between the dose distributions in heterogeneous lung and bone geometry calculated using the original phase space and those calculated using the source model. These results demonstrated the accuracy of the dual source model for Monte Carlo treatment planning dose calculations for the Cyberknife system.

  12. Analysis of guided-resonance-based polarization beam splitting in photonic crystal slabs.

    PubMed

    Kilic, Onur; Fan, Shanhui; Solgaard, Olav

    2008-11-01

    We present an analysis of the phase and amplitude responses of guided resonances in a photonic crystal slab. Through this analysis, we obtain the general rules and conditions under which a photonic crystal slab can be employed as a general elliptical polarization beam splitter, separating an incoming beam equally into its two orthogonal constituents, so that half the power is reflected in one polarization state, and half the power is transmitted in the other state. We show that at normal incidence a photonic crystal slab acts as a dual quarter-wave retarder in which the fast and slow axes are switched for reflection and transmission. We also analyze the case where such a structure operates at oblique incidences. As a result we show that the effective dielectric constant of the photonic crystal slab imposes the Brewster angle as a boundary, separating two ranges of angles with different mechanisms of polarization beam splitting. We show that the diattenuation can be tuned from zero to one to make the structure a circular or linear polarization beam splitter. We verify our analytical analysis through finite-difference time-domain simulations and experimental measurements at infrared wavelengths.

  13. Extended calibration range for prompt photon emission in ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Bellini, F.; Boehlen, T. T.; Chin, M. P. W.; Collamati, F.; De Lucia, E.; Faccini, R.; Ferrari, A.; Lanza, L.; Mancini-Terracciano, C.; Marafini, M.; Mattei, I.; Morganti, S.; Ortega, P. G.; Patera, V.; Piersanti, L.; Russomando, A.; Sala, P. R.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Voena, C.

    2014-05-01

    Monitoring the dose delivered during proton and carbon ion therapy is still a matter of research. Among the possible solutions, several exploit the measurement of the single photon emission from nuclear decays induced by the irradiation. To fully characterize such emission the detectors need development, since the energy spectrum spans the range above the MeV that is not traditionally used in medical applications. On the other hand, a deeper understanding of the reactions involving gamma production is needed in order to improve the physic models of Monte Carlo codes, relevant for an accurate prediction of the prompt-gamma energy spectrum. This paper describes a calibration technique tailored for the range of energy of interest and reanalyzes the data of the interaction of a 80 MeV/u fully stripped carbon ion beam with a Poly-methyl methacrylate target. By adopting the FLUKA simulation with the appropriate calibration and resolution a significant improvement in the agreement between data and simulation is reported.

  14. Generation of terahertz hollow beams by a photonic quasi-crystal flat lens

    NASA Astrophysics Data System (ADS)

    Feng, Bo; Liu, Exian; Wang, Ziming; Cai, Weicheng; Liu, Hongfei; Wang, Shuo; Liang, Taiyuan; Xiao, Wei; Liu, Jianjun

    2016-06-01

    We have designed a decagonal photonic quasi-crystal (PQC) flat lens, which turns an incident terahertz (THz) plane wave into a hollow beam easily and flexibly. The features of the THz hollow beam can be controlled by varying the parameters of a point defect in the center of the lens, i.e., the PQC flat lens can be used as a flexible tool for THz optical captivity or optical tweezer. The results showing that an airy disk, whose mean beam width is similar to the incident wavelength and power-in-the-bucket (PIB) is more than 96%, can be generated in the far field.

  15. Absorbed dose measurements in the build-up region of flattened versus unflattened megavoltage photon beams.

    PubMed

    De Puysseleyr, Annemieke; Lechner, Wolfgang; De Neve, Wilfried; Georg, Dietmar; De Wagter, Carlos

    2016-06-01

    This study evaluated absorbed dose measurements in the build-up region of conventional (FF) versus flattening filter-free (FFF) photon beams. The absorbed dose in the build-up region of static 6 and 10MV FF and FFF beams was measured using radiochromic film and extrapolation chamber dosimetry for single beams with a variety of field sizes, shapes and positions relative to the central axis. Removing the flattening filter generally resulted in slightly higher relative build-up doses. No considerable impact on the depth of maximum dose was found. Copyright © 2016. Published by Elsevier GmbH.

  16. Design of the beam shut-off current monitor upgrade for the Advanced Photon Source

    SciTech Connect

    Pietryla, A.; Decker, G.

    2000-05-05

    Plans to eliminate the positron accumulator ring (PAR) from the Advanced Photon Source (APS) injector complex have created the need for a device to limit the allowable beam charge injected into the APS injector synchrotrons. The beam shut-off current monitor (BESOCM) was chosen to provide this function. This new application of the BESOCM provided the opportunity to explore new design philosophies. Two design goals were to de-emphasize reliance on external signals and to become insensitive to timing variations. Both of these goals were accomplished by deriving the trigger directly from the beam. This paper will discuss the features of the new BESOCM design and present data demonstrating its function.

  17. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum

    SciTech Connect

    Zhang, Shi-Jie; Li, Yan Liu, Zhao-Pei; Ren, Jin-Li; Xiao, Yun-Feng; Yang, Hong; Gong, Qihuang

    2014-08-11

    The focus of a beam with orbital angular momentum exhibits internal structure instead of an elliptical intensity distribution of a Gaussian beam, and the superposition of Gauss-Laguerre beams realized by two-dimensional phase modulation can generate a complex three-dimensional (3D) focus. By taking advantage of the flexibility of this 3D focus tailoring, we have fabricated a 3D microstructure with high resolution by two-photon polymerization with a single exposure. Furthermore, we have polymerized an array of double-helix structures that demonstrates optical chirality.

  18. Beam splitting at the output of photonic crystal waveguides with discrete surface point defects.

    PubMed

    Wang, Qi; Zhang, Lanlan; Li, Qi

    2010-11-08

    With the method of adding two point defects on modulated surface, novel photonic crystal (PC) waveguide-based beam splitters were presented. The modulated surface layer supports surface states, and introduced discrete point defects can serve as discrete light emitters. The finite-difference time-domain (FDTD) simulations show that the number of beams is sensitive to the distance of two point defects. By adjusting the positions of the point defects, 1-to-N beam splitters can be realized. These simple, easy-to-fabricate and controllable structures have important potential applications in integrated optical circuits.

  19. A diamond detector in the dosimetry of high-energy electron and photon beams

    NASA Astrophysics Data System (ADS)

    Laub, Wolfram U.; Kaulich, Theodor W.; Nüsslin, Fridtjof

    1999-09-01

    A diamond detector type 60003 (PTW Freiburg) was examined for the purpose of dosimetry with 4-20 MeV electron beams and 4-25 MV photon beams. Results were compared with those obtained by using a Markus chamber for electron beams and an ionization chamber for photon beams. Dose distributions were measured in a water phantom with the detector connected to a Unidos electrometer (PTW Freiburg). After a pre-irradiation of about 5 Gy the diamond detector shows a stability in response which is better than that of an ionization chamber. The current of the diamond detector was measured under variation of photon beam dose rate between 0.1 and 7 Gy min-1. Different FSDs were chosen. Furthermore the pulse repetition frequency and the depth of the detector were changed. The electron beam dose rate was varied between 0.23 and 4.6 Gy min-1 by changing the pulse-repetition frequency. The response shows no energy dependence within the covered photon-beam energy range. Between 4 MeV and 18 MeV electron beam energy it shows only a small energy dependence of about 2%, as expected from theory. For smaller electron energies the response increases significantly and an influence of the contact material used for the diamond detector can be surmised. A slight sublinearity of the current and dose rate was found. Detector current and dose rate are related by the expression ipropto(dotD)Delta, where i is the detector current, (dotD) is the dose rate and Delta is a correction factor of approximately 0.963. Depth-dose curves of photon beams, measured with the diamond detector, show a slight overestimation compared

  20. Effects on the photon beam from an electromagnetic array used for patient localization and tumor tracking.

    PubMed

    Zou, Wei; Betancourt, Ricardo; Yin, Lingshu; Metz, James; Avery, Stephen; Kassaee, Alireza

    2013-05-06

    One of the main components in a Calypso 4D localization and tracking system is an electromagnetic array placed above patients that is used for target monitoring during radiation treatment. The beam attenuation and beam spoiling properties of the Calypso electromagnetic array at various beam angles were investigated. Measurements were performed on a Varian Clinac iX linear accelerator with 6 MV and 15 MV photon beams. The narrow beam attenuation properties were measured under a field size of 1 cm × 1 cm, with a photon diode placed in a cylindrical graphite buildup cap. The broad beam attenuation properties were measured under a field size of 10 cm × 10 cm, with a 0.6 cc cylindrical Farmer chamber placed in a polystyrene buildup cap. Beam spoiling properties of the array were studied by measuring depth-dose change from the array under a field size of 10 cm × 10 cm in a water-equivalent plastic phantom with an embedded Markus parallel plate chamber. Change in depth doses were measured with the array placed at distances of 2, 5, and 10 cm from the phantom surface. Narrow beam attenuation and broad beam attenuation from the array were found to be less than 2%-3% for both 6 MV and 15 MV beams at angles less than 40°, and were more pronounced at more oblique angles. Spoiling effects are appreciable at beam buildup region, but are insignificant at depths beyond dmax. Dose measurements in a QA phantom using patient IMRT and VMAT treatment plans were shown to have less than 2.5% dose difference with the Calypso array. The results indicate that the dose difference due to the placement of Calypso array is clinically insignificant.

  1. Measurement of electron beam polarization from unstrained GaAs via two-photon photoemission

    SciTech Connect

    McCarter, James L.; Afanasev, A.; Gay, T. J.; Hansknecht, John C.; Kechiantz, A.; Poelker, B. Matthew

    2014-02-01

    Two-photon absorption of 1560 nm light was used to generate polarized electron beams from unstrained GaAs photocathodes of varying thickness: 625 {mu}m, 0.32 {mu}m, and 0.18 {mu}m. For each photocathode, the degree of spin polarization of the photoemitted beam was less than 50%, contradicting earlier predictions based on simple quantum mechanical selection rules for spherically-symmetric systems but consistent with the more sophisticated model of Bhat et al. (Phys. Rev. B 71 (2005) 035209). Polarization via two-photon absorption was the highest from the thinnest photocathode sample and comparable to that obtained via one-photon absorption (using 778 nm light), with values 40.3 +- 1.0% and 42.6 +- 1.0%, respectively.

  2. Unveiling the photonic spin Hall effect of freely propagating fan-shaped cylindrical vector vortex beams.

    PubMed

    Zhang, Yi; Li, Peng; Liu, Sheng; Zhao, Jianlin

    2015-10-01

    An intriguing photonic spin Hall effect (SHE) for a freely propagating fan-shaped cylindrical vector (CV) vortex beam in a paraxial situation is theoretically and experimentally studied. A developed model to describe this kind of photonic SHE is proposed based on angular spectrum diffraction theory. With this model, the close dependences of spin-dependent splitting on the azimuthal order of polarization, the topological charge of the spiral phase, and the propagation distance are accurately revealed. Furthermore, it is demonstrated that the asymmetric spin-dependent splitting of a fan-shaped CV beam can be consciously managed, even with a constant azimuthal order of polarization. Such a controllable photonic SHE is experimentally verified by measuring the Stokes parameters.

  3. Highly directional emission and photon beaming from nanocrystal quantum dots embedded in metallic nanoslit arrays.

    PubMed

    Livneh, Nitzan; Strauss, Ayelet; Schwarz, Ilai; Rosenberg, Itamar; Zimran, Adiel; Yochelis, Shira; Chen, Gang; Banin, Uri; Paltiel, Yossi; Rapaport, Ronen

    2011-04-13

    We demonstrate a directional beaming of photons emitted from nanocrystal quantum dots that are embedded in a subwavelength metallic nanoslit array with a divergence angle of less than 4°. We show that the eigenmodes of the structure result in localized electromagnetic field enhancements at the Bragg cavity resonances, which could be controlled and engineered in both real and momentum space. The photon beaming is achieved using the enhanced resonant coupling of the quantum dots to these Bragg cavity modes, which dominates the emission properties of the quantum dots. We show that the emission probability of a quantum dot into the narrow angular mode is 20 times larger than the emission probability to all other modes. Engineering nanocrystal quantum dots with subwavelength metallic nanostructures is a promising way for a range of new types of active optical devices, where spatial control of the optical properties of nanoemitters is essential, on both the single and many photons level.

  4. Photodynamic therapy by in situ nonlinear photon conversion

    NASA Astrophysics Data System (ADS)

    Kachynski, A. V.; Pliss, A.; Kuzmin, A. N.; Ohulchanskyy, T. Y.; Baev, A.; Qu, J.; Prasad, P. N.

    2014-06-01

    In photodynamic therapy, light is absorbed by a therapy agent (photosensitizer) to generate reactive oxygen, which then locally kills diseased cells. Here, we report a new form of photodynamic therapy in which nonlinear optical interactions of near-infrared laser radiation with a biological medium in situ produce light that falls within the absorption band of the photosensitizer. The use of near-infrared radiation, followed by upconversion to visible or ultraviolet light, provides deep tissue penetration, thus overcoming a major hurdle in treatment. By modelling and experiment, we demonstrate activation of a known photosensitizer, chlorin e6, by in situ nonlinear optical upconversion of near-infrared laser radiation using second-harmonic generation in collagen and four-wave mixing, including coherent anti-Stokes Raman scattering, produced by cellular biomolecules. The introduction of coherent anti-Stokes Raman scattering/four-wave mixing to photodynamic therapy in vitro increases the efficiency by a factor of two compared to two-photon photodynamic therapy alone, while second-harmonic generation provides a fivefold increase.

  5. Simultaneous two-photon excitation of photodynamic therapy agents

    NASA Astrophysics Data System (ADS)

    Wachter, Eric A.; Partridge, W. P., Jr.; Fisher, Walter G.; Dees, Craig; Petersen, Mark G.

    1998-07-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type I and type II photodynamic therapy (PDT) agents are examined. In general, while SPE and TPE selection rules may be somewhat different, the excited state photochemical properties are equivalent for both modes of excitation. In vitro promotion of a two-photon photodynamic effect is demonstrated using bacterial and human breast cancer models. These results suggest that use of TPE may be beneficial for PDT, since the technique allows replacement of visible or ultraviolet excitation with non- damaging near infrared light. Further, a comparison of possible excitation sources for TPE indicates that the titanium:sapphire laser is exceptionally well suited for non- linear excitation of PDT agents in biological systems due to its extremely short pulse width and high repetition rate; these features combine to effect efficient PDT activation with minimal potential for non-specific biological damage.

  6. Assessment of radiotherapy photon beams: A practical and low cost methodology

    NASA Astrophysics Data System (ADS)

    Reis, C. Q. M.; Nicolucci, P.

    2017-02-01

    Dosimetric properties of radiation beams used in radiotherapy are directly related to the energy spectrum produced by the treatment unit. Therefore, the development of methodologies to evaluate in a simple and accurate way the spectra of clinical beams can help establishing the quality control of the treatment. The purpose of this study is to present a practical and low cost methodology for determining primary spectra of radiotherapy photon beams from transmission measurements in attenuators of aluminum and using the method of the inverse Laplace transform. Monte Carlo simulation with PENELOPE code was used in order to evaluate and validate the reconstructed spectra by the calculation of dosimetric parameters that characterize the beam. Percentage depth dose values simulated with a 6 MV reconstructed spectrum shows maximum difference of 4.4% when compared to values measured at the corresponding clinical beam. For a 10 MV beam that difference was around 4.2%. Results obtained in this study confirm the adequacy of the proposed methodology for assessing primary photon beams produced by clinical accelerators.

  7. Experimental validation of the dual parameter beam quality specifier for reference dosimetry in flattening-filter-free (FFF) photon beams.

    PubMed

    Simpson, Emma; Gajewski, Romuald; Flower, Emily; Stensmyr, Rachel

    2015-07-21

    Removal of the flattening filter alters the energy spectrum of the photon beam such that current beam quality specifiers may not correctly account for this change when predicting the Spencer-Attix restricted water-to-air mass collision stopping-power ratio, (L/ρ)(water)(air). Johnsson et al (2000 Phys. Med. Biol. 45 2733-45) proposed a beam quality specifier, known as the dual parameter beam quality specifier, which was calculated via Monte Carlo (MC) simulations using transmission data of primary kerma through two differing thicknesses of water material. Ceberg et al (2010 Med. Phys. 37 1164-8) extended this MC study to include relevant flattening filter free (FFF) beam data. Experimental investigations of this dual parameter beam quality specifier have not previously been published, therefore the purpose of this work was to validate that the dual parameter beam quality specifier could be measured experimentally for clinical beams (both with a flattening filter (WFF) and without (FFF)). Transmission measurements of primary kerma were performed by employing the setup outlined in Johnsson et al (1999 Phys. Med. Biol. 44 2445-50). Varying absorber thicknesses, in 5 cm increments from 5 to 40 cm, were placed at isocentre with the chamber positioned at an extended source to chamber distance of 300 cm. Experimental setup for TPR20,10 and %dd(10)x followed the methodology outlined in IAEA TRS398 (2004) and TG-51 (1999) with AAPM Addendum to TG-51 (2014) respectively. The maximum difference of (L/ρ)(water)(air) determined using the different beam quality specifiers was found to be 0.35%. Analysis of the absorber thickness combination found that small thicknesses (<10 cm) for the first absorber and absorbers similar in thickness (<10 cm) should be avoided. Stopping-power ratios of the beams investigated were determined using three different beam quality specifiers. The results demonstrated successful experimental determination of the dual parameter beam quality

  8. Estimation of organs doses and radiation-induced secondary cancer risk from scattered photons for conventional radiation therapy of nasopharynx: a Monte Carlo study.

    PubMed

    Mesbahi, Asghar; Seyednejad, Farshad; Gasemi-Jangjoo, Amir

    2010-06-01

    We used Monte Carlo modeling to calculate the organs doses due to out-of field photons during radiation therapy of the nasopharynx. A medical internal radiation dose (MIRD)-based mathematical phantom resembling an adult man was modeled by MCNP4C MC code. Three validated models of a cobalt-60 machine, a 6-MV photon beam of a Varian 2300 C/D linac, and a 9-MV photon beam of a Neptun linac were used to simulate the isocentric irradiation of a mathematical phantom with two lateral fields of the nasopharynx. The organspecific dose, effective dose, and cancer risk estimates were obtained. The effective doses for out-of-field radiation were 320, 295, and 248 mSv for the (60)Co beam, 6-MV beam, and 9-MV beam devices, respectively, for a 70-Gy tumor dose. The fatal cancer risks of 1.6%, 1.5%, and 1.2% were estimated for a 70-Gy tumor dose of (60)Co and the 6- and 9-MV photon beams, respectively. Our results regarding the effective dose and cancer risk are in agreement with previously published experimental results on conventional radiation therapy. Further investigation on patients' out-of-field dose to provide more knowledge on various radiotherapy techniques is suggested.

  9. Use of a two-dimensional ionization chamber array for proton therapy beam quality assurance.

    PubMed

    Arjomandy, Bijan; Sahoo, Narayan; Ding, Xiaoning; Gillin, Michael

    2008-09-01

    Two-dimensional ion chamber arrays are primarily used for conventional and intensity modulated radiotherapy quality assurance. There is no commercial device of such type available on the market that is offered for proton therapy quality assurance. We have investigated suitability of the MatriXX, a commercial two-dimensional ion chamber array detector for proton therapy QA. This device is designed to be used for photon and electron therapy QA. The device is equipped with 32 x 32 parallel plate ion chambers, each with 4.5 mm diam and 7.62 mm center-to-center separation. A 250 MeV proton beam was used to calibrate the dose measured by this device. The water equivalent thickness of the buildup material was determined to be 3.9 mm using a 160 MeV proton beam. Proton beams of different energies were used to measure the reproducibility of dose output and to evaluate the consistency in the beam flatness and symmetry measured by MatriXX. The output measurement results were compared with the clinical commissioning beam data that were obtained using a 0.6 cc Farmer chamber. The agreement was consistently found to be within 1%. The profiles were compared with film dosimetry and also with ion chamber data in water with an excellent agreement. The device is found to be well suited for quality assurance of proton therapy beams. It provides fast two-dimensional dose distribution information in real time with the accuracy comparable to that of ion chamber measurements and film dosimetry.

  10. Interaction of nonthermal muon beam with electron-positron-photon plasma: A thermal field theory approach

    SciTech Connect

    Noorian, Zainab; Eslami, Parvin; Javidan, Kurosh

    2013-11-15

    Interaction of a muon beam with hot dense QED plasma is investigated. Plasma system contains electrons and positrons with Fermi-Dirac distribution and Bose-Einstein distributed photons while the beam particles have nonthermal distribution. The energy loss of the beam particles during the interaction with plasma is calculated to complete leading order of interaction in terms of the QED coupling constant using thermal field theory approach. The screening effects of the plasma are computed consistently using resummation of perturbation theory with hard thermal loop approximation according to the Braaten-Pisarski method. Time evolution of the plasma characteristics and also plasma identifications during the interaction are investigated. Effects of the nonthermal parameter of the beam distribution on the energy exchange and the evolution of plasma-beam system are also explained.

  11. Investigation of buildup dose from electron contamination of clinical photon beams.

    PubMed

    Petti, P L; Goodman, M S; Gabriel, T A; Mohan, R

    1983-01-01

    The contribution made by contaminating electrons present in a clinical photon beam to the buildup dose in a polystyrene phantom has been calculated and compared to measurements. A Monte Carlo technique was employed. The calculation was divided into two parts. First, the accelerator treatment head was simulated in detail using the EGS-PEGS electromagnetic shower code. Then, information obtained from these calculations was used to compute dose curves in a polystyrene phantom. Two cases were considered, one in which both electrons and photons were incident upon the phantom, and another in which electrons were eliminated from the incident beam. Results of these calculations agree with recent experimental findings. A decrease in buildup dose as well as a shift in dmax was observed when electrons were eliminated from the beam.

  12. Design of a novel multi channel photonic crystal fiber polarization beam splitter

    NASA Astrophysics Data System (ADS)

    Zhao, Yunyan; Li, Shuguang; Wang, Xinyu; Wang, Guangyao; Shi, Min; Wu, Junjun

    2017-10-01

    A kind of multi channel dual-core photonic crystal fiber polarization beam splitter is designed. We analyze the effects of the lattice parameters and the thickness of gold layer on the beam splitting by the finite element method. Numerical results show that the thickness of metal layer and the size of the air holes near the fiber cores are closely linked with the nature of the polarization beam splitter. We also obtain that extinction ratio can reach -73.87 dB at 1 . 55 μm wavelength and at 1 . 41 μm, 1 . 65 μm extinction ratio can reach 30.8978 dB and 31.1741 dB, respectively. The comparison of the effect on the characteristic of the photonic crystal fiber with coating no gold is also taken into account.

  13. Photon spectra calculation for an Elekta linac beam using experimental scatter measurements and Monte Carlo techniques.

    PubMed

    Juste, B; Miro, R; Campayo, J M; Diez, S; Verdu, G

    2008-01-01

    The present work is centered in reconstructing by means of a scatter analysis method the primary beam photon spectrum of a linear accelerator. This technique is based on irradiating the isocenter of a rectangular block made of methacrylate placed at 100 cm distance from surface and measuring scattered particles around the plastic at several specific positions with different scatter angles. The MCNP5 Monte Carlo code has been used to simulate the particles transport of mono-energetic beams to register the scatter measurement after contact the attenuator. Measured ionization values allow calculating the spectrum as the sum of mono-energetic individual energy bins using the Schiff Bremsstrahlung model. The measurements have been made in an Elekta Precise linac using a 6 MeV photon beam. Relative depth and profile dose curves calculated in a water phantom using the reconstructed spectrum agree with experimentally measured dose data to within 3%.

  14. Neutron doses due to beam losses in a novel concept of a proton therapy gantry

    NASA Astrophysics Data System (ADS)

    Talanov, V.; Kiselev, D. C.; Meer, D.; Rizzoglio, V.; Schippers, J. M.; Seidel, M.; Wohlmuther, M.

    2017-07-01

    A novel design of a gantry for proton therapy is investigated in which a degrader and emittance limiting collimators are mounted on the gantry. Due to the interactions of protons in these components there will be an additional neutron dose at the location where a patient is positioned during a proton therapy. The results of numerical study of this additional dose are presented. Neutron prompt dose at the patient position is estimated through the Monte Carlo simulation using the MCNPX 2.7.0 particle transport code. Secondary neutron and photon fluxes from the distinct beam loss points are taken into consideration and the resulting dose is calculated using realistic estimates of beam losses. The dependence of the dose on the beam energy and individual impacts of each loss point on the total dose at the patient position as well as on critical beam line components are estimated and potential design constraints are discussed. It has been found that compared with a conventional gantry the expected additional dose is higher but the optimization of the beam line configuration and additional shielding shall help to reduce the dose to an acceptable value.

  15. Nanophotonic ensembles for targeted multi-photon photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Spangler, Charles W.; Meng, Fanqing; Gong, Aijun; Drobizhev, Mikhail A.; Karotki, Aliaksandr; Rebane, Aleksander, II

    2004-06-01

    There has been a dramatic increase in the application of new technologies for the treatment of cancerous tumors over the past decade, but for the most part, the treatment of most tumors still involves some combination of invasive surgery, chemotherapy and radiation treatments. Photodynamic therapy (PDT), which involves the activation of an administered compound with laser light followed by a series of events leading to programmed cell death of the tumor, has been proposed as a noninvasive alternative treatment to replace the standard surgery/chemotherapy/radiation protocol. However, currently approved PDT agents operate in the Visible portion of the spectrum, and laser light in this region cannot penetrate the skin more than a few millimeters. Two-photon irradiation using more highly penetrating Near-infrared (NIR) light in the tissue transparency window (700-1000 nm) has been proposed for the treatment of subcutaneous tumors, but most porphyrins exhibit extremely small two-photon cross-sections. Classical PDT also suffers from the lengthy time necessary for accumulation at the tumor site, a relative lack of discrimination between healthy and diseased tissue, particularly at the tumor margins, and difficulty in clearing from the system in a reasonable amount of time. We have recently discovered a new design paradigm for porphyrins with greatly enhanced two-photon cross-sections, and are now proposing a nano-ensemble that would also incorporate small molecule targeting agents, and possibly one-photon NIR imaging agents along with these porphyrins in one therapeutic agent. Thus these ensembles would incorporate targeting/imaging/PDT functions in one therapeutic agent, and hold the promise of single-session outpatient treatment of a large variety of subcutaneous tumors.

  16. A comparison of phantom scatter from flattened and flattening filter free high-energy photon beams

    SciTech Connect

    Richmond, Neil; Allen, Vince; Daniel, Jim; Dacey, Rob; Walker, Chris

    2015-04-01

    Flattening filter free (FFF) photon beams have different dosimetric properties from those of flattened beams. The aim of this work was to characterize the collimator scatter (S{sub c}) and total scatter (S{sub cp}) from 3 FFF beams of differing quality indices and use the resulting mathematical fits to generate phantom scatter (S{sub p}) data. The similarities and differences between S{sub p} of flattened and FFF beams are described. S{sub c} and S{sub cp} data were measured for 3 flattened and 3 FFF high-energy photon beams (Varian 6 and 10 MV and Elekta 6 MV). These data were fitted to logarithmic power law functions with 4 numerical coefficients. The agreement between our experimentally determined flattened beam S{sub p} and published data was within ± 1.2% for all 3 beams investigated and all field sizes from 4 × 4 to 40 × 40 cm{sup 2}. For the FFF beams, S{sub p} was only within 1% of the same flattened beam published data for field sizes between 6 × 6 and 14 × 14 cm{sup 2}. Outside this range, the differences were much greater, reaching − 3.2%, − 4.5%, and − 4.3% for the fields of 40 × 40 cm{sup 2} for the Varian 6-MV, Varian 10-MV, and Elekta 6-MV FFF beams, respectively. The FFF beam S{sub p} increased more slowly with increasing field size than that of the published and measured flattened beam of a similar reference field size quality index, i.e., there is less Phantom Scatter than that found with flattened beams for a given field size. This difference can be explained when the fluence profiles of the flattened and FFF beams are considered. The FFF beam has greatly reduced fluence off axis, especially as field size increases, compared with the flattened beam profile; hence, less scatter is generated in the phantom reaching the central axis.

  17. Equivalent square formula for determining the surface dose of rectangular field from 6 MV therapeutic photon beam.

    PubMed

    Apipunyasopon, Lukkana; Srisatit, Somyot; Phaisangittisakul, Nakorn

    2013-09-06

    The purpose of the study was to investigate the use of the equivalent square formula for determining the surface dose from a rectangular photon beam. A 6 MV therapeutic photon beam delivered from a Varian Clinac 23EX medical linear accelerator was modeled using the EGS4nrc Monte Carlo simulation package. It was then used to calculate the dose in the build-up region from both square and rectangular fields. The field patterns were defined by various settings of the X- and Y-collimator jaw ranging from 5 to 20 cm. Dose measurements were performed using a thermoluminescence dosimeter and a Markus parallel-plate ionization chamber on the four square fields (5 × 5, 10 × 10, 15 × 15, and 20 × 20 cm2). The surface dose was acquired by extrapolating the build-up doses to the surface. An equivalent square for a rectangular field was determined using the area-to-perimeter formula, and the surface dose of the equivalent square was estimated using the square-field data. The surface dose of square field increased linearly from approximately 10% to 28% as the side of the square field increased from 5 to 20 cm. The influence of collimator exchange on the surface dose was found to be not significant. The difference in the percentage surface dose of the rectangular field compared to that of the relevant equivalent square was insignificant and can be clinically neglected. The use of the area-to-perimeter formula for an equivalent square field can provide a clinically acceptable surface dose estimation for a rectangular field from a 6 MV therapy photon beam.

  18. Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams

    NASA Astrophysics Data System (ADS)

    Mao, Weidong; Zhong, Yongchun; Dong, Jianwen; Wang, Hezhou

    2005-05-01

    A systematically theoretical study on how to form two-dimensional photonic lattices with various plane groups by three elliptically polarized beams is presented. It is shown that nine plane groups can be formed in the photonic lattices by use of an intuitionistic intensity pattern-superposition method; however, we demonstrate that the other eight plane groups cannot be constructed. A phase shift associated with the interference intensity and the elliptic polarization is derived, and a relevant formula for interference intensity is deduced. The phase shift can be used to obtain the lower symmetries in some wallpaper groups such as p1, pm, cm, and p3m1 without introducing additional undesired symmetries. This analysis may lay the foundation for the study of space groups in holographic three-dimensional photonic crystals and multidimensional photonic quasicrystals.

  19. SU-E-T-221: Investigation of Lower Energy (< 6 MV) Photon Beams for Cancer Radiotherapy

    SciTech Connect

    Zhang, Y; Ming, X; Feng, Y; Zhou, L; Ahmad, M; Deng, J; Nguyen, K; Griffin, M

    2014-06-01

    Purpose: To study the potential applications of the lower energy (< 6MV) photon beams in the radiotherapeutic management of pediatric cancer and lung cancer patients. Methods: Photon beams of 2, 3, 4, 5 and 6MV were first simulated with EGS4/BEAM and then used for Monte-Carlo dose calculations. For four pediatric patients with abdominal and brain lesions, six 3D-conformal radiotherapy (3DCRT) plans were generated using single photon energy (2 to 6MV) or mixed energies (3 and 6MV). Furthermore, a virtual machine of 3 and 6MV was commissioned in a treatment planning system (TPS) based on Monte-Carlo simulated data. Three IMRT plans of a lung cancer patient were generated on this virtual machine. All plans were normalized to D95% of target dose for 6MV plan and then compared in terms of integral dose and OAR sparing. Results: For the four pediatric patients, the integral dose for the 2, 3, 4 and 5MV plans increased by 9%, 5%, 3.5%, 1.7%, respectively as compared to 6MV. Almost all OARs in the 2MV plan received more than 10% more doses than 6MV. Mixed energy 3DCRT plans were of the same quality as 6MV plans. For the lung IMRT plans, both the 3MV plan and the mixed beam plan showed better OAR sparing in comparison to 6MV plan. Specifically, the maximum and mean doses to the spinal cord in the mixed energy plan were lower by 21% and 16%, respectively. Conclusion: Single lower energy photon beam was found to be inferior to 6MV in the radiotherapy of pediatric patients and lung cancer patients when the integral doses and the doses to the OARs were considered. However, mixed energy plans combining low with high energy beams showed significant OAR sparing while maintaining the same PTV coverage. Investigation with more patient data is ongoing for further confirmation.

  20. A Polarized High-Energy Photon Beam for Production of Exotic Mesons

    SciTech Connect

    Senderovich, Igor

    2012-01-01

    This work describes design, prototyping and testing of various components of the Jefferson Lab Hall D photon beamline. These include coherent bremsstrahlung radiators to be used in this facility for generating the photon beam, a fine resolution hodoscope for the facility's tagging spectrometer, and a photon beam position sensor for stabilizing the beam on a collimator. The principal instrumentation project was the hodoscope: its design, implementation and beam testing will be thoroughly described. Studies of the coherent bremsstrahlung radiators involved X-ray characterization of diamond crystals to identify the appropriate line of manufactured radiators and the proper techniques for thinning them to the desired specification of the beamline. The photon beam position sensor project involved completion of a designed detector and its beam test. The results of these shorter studies will also be presented. The second part of this work discusses a Monte Carlo study of a possible photo-production and decay channel in the GlueX experiment that will be housed in the Hall D facility. Specifically, the γ p → Xp → b1 π → ω π+1 π-1 channel was studied including its Amplitude Analysis. This exercise attempted to generate a possible physics signal, complete with internal angular momentum states, and be able to reconstruct the signal in the detector and find the proper set of JPC quantum numbers through an amplitude fit. Derivation of the proper set of amplitudes in the helicity basis is described, followed by a discussion of the implementation, generation of the data sets, reconstruction techniques, the amplitude fit and results of this study.

  1. The response of a radiophotoluminescent glass dosimeter in megavoltage photon and electron beams.

    PubMed

    Araki, Fujio; Ohno, Takeshi

    2014-12-01

    This study investigated the response of a radiophotoluminescent glass dosimeter (RGD) in megavoltage photon and electron beams. The RGD response was compared with ion chamber measurements for 4-18 MV photons and 6-20 MeV electrons in plastic water phantoms. The response was also calculated via Monte Carlo (MC) simulations with EGSnrc/egs_chamber and Cavity user-codes, respectively. In addition, the response of the RGD cavity was analyzed as a function of field sizes and depths according to Burlin's general cavity theory. The perturbation correction factor, PQ, in the RGD cavity was also estimated from MC simulations for photon and electron beams. The calculated and measured RGD energy response at reference conditions with a 10 × 10 cm(2) field and 10 cm depth in photons was lower by up to 2.5% with increasing energy. The variation in RGD response in the field size range of 5 × 5 cm(2) to 20 × 20 cm(2) was 3.9% and 0.7%, at 10 cm depth for 4 and 18 MV, respectively. The depth dependence of the RGD response was constant within 1% for energies above 6 MV but it increased by 2.6% and 1.6% for a large (20 × 20 cm(2)) field at 4 and 6 MV, respectively. The dose contributions from photon interactions (1 - d) in the RGD cavity, according to Burlin's cavity theory, decreased with increasing energy and decreasing field size. The variation in (1 - d) between field sizes became larger with increasing depth for the lower energies of 4 and 6 MV. PQ for the RGD cavity was almost constant between 0.96 and 0.97 at 10 MV energies and above. Meanwhile, PQ depends strongly on field size and depth for 4 and 6 MV photons. In electron beams, the RGD response at a reference depth, dref, varied by less than 1% over the electron energy range but was on average 4% lower than the response for 6 MV photons. The RGD response for photon beams depends on both (1 - d) and perturbation effects in the RGD cavity. Therefore, it is difficult to predict the energy dependence of RGD response by

  2. Measurement of percentage depth dose and lateral beam profile for kilovoltage x-ray therapy beams.

    PubMed

    Li, X A; Ma, C M; Salhani, D

    1997-12-01

    In this work, nine commonly used dosimetry detectors have been investigated to determine suitable relative dosimeters for kilovoltage x-ray beams. By comparison with the Monte Carlo calculated data, it was determined that for the detectors studied the PTW N23342, Markus and NACP parallel-plate chambers are more suitable for the measurement of percentage depth dose (PDD) data for this beam quality range with an uncertainty of about 3%. A diode detector may be used to measure the PDD for the 100 kVp beam, but it is not suitable for higher energies (300 kVp). The Capintec parallel-plate chamber may be adequate for medium-energy photons, but it has a slightly higher uncertainty for low-energy x-rays (100 kVp). For the measurement of beam profiles, diode and film yield incorrect profile tails, which can be corrected using the RK ionization chamber.

  3. Analytical description of photon beam phase spaces in inverse Compton scattering sources

    NASA Astrophysics Data System (ADS)

    Curatolo, C.; Drebot, I.; Petrillo, V.; Serafini, L.

    2017-08-01

    We revisit the description of inverse Compton scattering sources and the photon beams generated therein, emphasizing the behavior of their phase space density distributions and how they depend upon those of the two colliding beams of electrons and photons. The main objective is to provide practical formulas for bandwidth, spectral density, brilliance, which are valid in general for any value of the recoil factor, i.e. both in the Thomson regime of negligible electron recoil, and in the deep Compton recoil dominated region, which is of interest for gamma-gamma colliders and Compton sources for the production of multi-GeV photon beams. We adopt a description based on the center of mass reference system of the electron-photon collision, in order to underline the role of the electron recoil and how it controls the relativistic Doppler/boost effect in various regimes. Using the center of mass reference frame greatly simplifies the treatment, allowing us to derive simple formulas expressed in terms of rms momenta of the two colliding beams (emittance, energy spread, etc.) and the collimation angle in the laboratory system. Comparisons with Monte Carlo simulations of inverse Compton scattering in various scenarios are presented, showing very good agreement with the analytical formulas: in particular we find that the bandwidth dependence on the electron beam emittance, of paramount importance in Thomson regime, as it limits the amount of focusing imparted to the electron beam, becomes much less sensitive in deep Compton regime, allowing a stronger focusing of the electron beam to enhance luminosity without loss of mono-chromaticity. A similar effect occurs concerning the bandwidth dependence on the frequency spread of the incident photons: in deep recoil regime the bandwidth comes out to be much less dependent on the frequency spread. The set of formulas here derived are very helpful in designing inverse Compton sources in diverse regimes, giving a quite accurate first

  4. Photonic cancer therapy: modulating cellular metabolism with light

    NASA Astrophysics Data System (ADS)

    Coutinho, Isabel; Correia, Manuel; Viruthachalam, Thiagarajan; Gajula, Gnana Prakash; Petersen, Steffen B.; Neves-Petersen, Maria Teresa

    2013-03-01

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases. EGFR activation upon binding of ligands (such as EGF and TGF-α) results in cell signaling cascades that promote cell proliferation, survival and apoptosis inhibition. As reported for many solid tumors, EGFR overactivation is associated with tumor development and progression, resistance to cancer therapies and poor prognosis. Therefore, inhibition of EGFR function is a rational cancer therapy approach. We have shown previously that 280 nm UV illumination of two cancer cell lines overexpressing EGFR could prevent phosphorylation of EGFR and of its downstream signalling molecules despite the presence of EGF. Our earlier studies demonstrated that UV illumination of aromatic residues in proteins leads to the disruption of nearby disulphide bridges. Since human EGFR is rich in disulphide bridges and aromatic residues, it is likely that structural changes can be induced upon UV excitation of its pool of aromatic residues (Trp, Tyr and Phe). Such changes may impair the correct binding of ligands to EGFR which will halt the process of tumor growth. In this paper we report structural changes induced by UV light on the extracellular domain of human EGFR. Steady state fluorescence spectroscopy and binding immunoassays were carried out. Our goal is to gain insight at the protein structure level that explains the way the new photonic cancer therapy works. This technology can be applicable to the treatment of various forms of cancer, alone or in combination with other therapies to improve treatment outcome.

  5. Spatial-mode two-photon interference at a beam splitter

    SciTech Connect

    Deng, L.-P.; Dang, G.-F.; Wang, K.

    2006-12-15

    We present a general theory on the interference of a two-photon wave packet associated with spatial modes at a beam splitter. We find that the topological symmetry of the two-photon angular spectrum governs the nature of the two-photon interference. We distinguish between the coalescence interference and anticoalescence interference according to the decrease or increase of the coincidence probability in the absence of interference, respectively, and demonstrate that the symmetric and antisymmetric two-photon angular spectra are responsible for perfect coalescence interference and anticoalescence interference, respectively. Then we prove that anticoalescence interference never occurs for two independent photons, and it turns out that anticoalescence interference is the signature of two-photon entanglement. On the basis of this feature, we propose a special Mach-Zehnder interferometer, incorporated with two spiral phase plates, which can change the interference from a coalescence to an anticoalescence type only for a two-photon entangled state. The scheme is simple and straightforward compared with a test of Bell's inequality.

  6. On Monte Carlo modeling of megavoltage photon beams: A revisited study on the sensitivity of beam parameters

    SciTech Connect

    Chibani, Omar; Moftah, Belal; Ma, C.-M. Charlie

    2011-01-15

    Purpose: To commission Monte Carlo beam models for five Varian megavoltage photon beams (4, 6, 10, 15, and 18 MV). The goal is to closely match measured dose distributions in water for a wide range of field sizes (from 2x2 to 35x35 cm{sup 2}). The second objective is to reinvestigate the sensitivity of the calculated dose distributions to variations in the primary electron beam parameters. Methods: The GEPTS Monte Carlo code is used for photon beam simulations and dose calculations. The linear accelerator geometric models are based on (i) manufacturer specifications, (ii) corrections made by Chibani and Ma [''On the discrepancies between Monte Carlo dose calculations and measurements for the 18 MV Varian photon beam,'' Med. Phys. 34, 1206-1216 (2007)], and (iii) more recent drawings. Measurements were performed using pinpoint and Farmer ionization chambers, depending on the field size. Phase space calculations for small fields were performed with and without angle-based photon splitting. In addition to the three commonly used primary electron beam parameters (E{sub AV} is the mean energy, FWHM is the energy spectrum broadening, and R is the beam radius), the angular divergence ({theta}) of primary electrons is also considered. Results: The calculated and measured dose distributions agreed to within 1% local difference at any depth beyond 1 cm for different energies and for field sizes varying from 2x2 to 35x35 cm{sup 2}. In the penumbra regions, the distance to agreement is better than 0.5 mm, except for 15 MV (0.4-1 mm). The measured and calculated output factors agreed to within 1.2%. The 6, 10, and 18 MV beam models use {theta}=0 deg., while the 4 and 15 MV beam models require {theta}=0.5 deg. and 0.6 deg., respectively. The parameter sensitivity study shows that varying the beam parameters around the solution can lead to 5% differences with measurements for small (e.g., 2x2 cm{sup 2}) and large (e.g., 35x35 cm{sup 2}) fields, while a perfect agreement is

  7. Beam-bending in spatially variant photonic crystals at telecommunications wavelengths

    NASA Astrophysics Data System (ADS)

    Digaum, Jennefir L.; Sharma, Rashi; Batista, Daniel; Pazos, Javier J.; Rumpf, Raymond C.; Kuebler, Stephen M.

    2016-03-01

    This work reports the fabrication of micron-scale spatially variant photonic crystals (SVPCs) and their use for steering light beams through turns with bending radius Rbend on the order of ten times the optical wavelength λ0. Devices based on conventional photonic crystals, metamaterials, plasmonics and transformation optics have all been explored for controlling light beams and steering them through tight turns. These devices offer promise for photonic interconnects, but they are based on exotic materials, including metals, that make them impractically lossy or difficult to fabricate. Waveguides can also be used to steer light using total internal reflection; however, Rbend of a waveguide must be hundreds of times λ0 to guide light efficiently, which limits their use in optical circuits. SVPCs are spatially variant 3D lattices which can be created in transparent, low-refractive-index media and used to control the propagation of light through the self-collimation effect. SVPCs were fabricated by multi-photon lithography using the commercially available photo-polymer IP-DIP. The SVPCs were structurally and optically characterized and found to be capable of bending light having λ0 = 1.55 μm through a 90-degree turn with Rbend = 10 μm. Curved waveguides with Rbend = 15 μm and 35 μm were also fabricated using IP-DIP and optically characterized. The SVPCs were able to steer the light beams through tighter turns than either waveguide and with higher efficiency.

  8. Beam diagnostics for the heavy ion cancer therapy facility

    NASA Astrophysics Data System (ADS)

    Peters, Andreas; Forck, Peter

    2000-11-01

    A dedicated accelerator facility for cancer treatment is planned for the university hospital in Heidelberg. At GSI the detailed layout of this heavy ion cancer therapy (HICAT) facility has been worked out. The relevant beam parameters and the required diagnostic devices are summarized for the different parts of the facility (Linac, Synchroton, transfer lines and Gantry sections). In addition, special requirements of beam diagnostics concerning the timing and control system will be discussed.

  9. SU-E-T-238: Deriving Electron Contamination Spectra From Pure and Clinical Photon Beams

    SciTech Connect

    Smit, C; Plessis, F du

    2015-06-15

    Purpose: To extract the electron contamination energy spectra for an Elekta Precise Linac, based on pure photon and measured clinical beam percentage depth dose data. And to include this as an additional source in isource 4 in DOSXYZnrc. Methods: A pure photon beam was simulated for the Linac using isource 4 in the DOSXYZnrc Monte Carlo (MC) code. Percentage depth dose (PDD) data were extracted afterwards for a range of field sizes (FS). These simulated dose data were compared to actual measured dose PDD data, with the data normalized at 10 cm depth. The resulting PDD data resembled the electron contamination depth dose. Since the dose fall-off is a strictly decreasing function, a method was adopted to derive the contamination electron spectrum. Afterwards this spectrum was used in a DOSXYZnrc MC simulation run to verify that the original electron depth dose could be replicated. Results: Various square aperture FS’s for 6, 8 and 15 megavolt (MV) photon beams were modeled, simulated and compared to their respective actual measured PDD data. As FS increased, simulated pure photon depth-dose profiles shifted deeper, thus requiring electron contamination to increase the surface dose. The percentage of electron weight increased with increase in FS. For a FS of 15×15 cm{sup 2}, the percentage electron weight is 0.1%, 0.2% and 0.4% for 6, 8 and 15 MV beams respectively. Conclusion: From the PDD results obtained, an additional electron contamination source was added to the photon source model so that simulation and measured PDD data could match within 2 % / 2 mm gamma-index criteria. The improved source model could assure more accurate simulations of surface doses. This research project was funded by the South African Medical Research Council (MRC) with funds from National Treasury under its Economic Competitiveness and Support package.

  10. Out-of-field photon and neutron dose equivalents from step-and-shoot intensity-modulated radiation therapy

    SciTech Connect

    Kry, Stephen F.; Salehpour, Mohammad . E-mail: msalehpour@mdanderson.org; Followill, David S.; Stovall, Marilyn; Kuban, Deborah A.; White, R. Allen; Rosen, Isaac I.

    2005-07-15

    Purpose: To measure the photon and neutron out-of-treatment-field dose equivalents to various organs from different treatment strategies (conventional vs. intensity-modulated radiation therapy [IMRT]) at different treatment energies and delivered by different accelerators. Methods and Materials: Independent measurements were made of the photon and neutron out-of-field dose equivalents resulting from one conventional and six IMRT treatments for prostate cancer. The conventional treatment used an 18-MV beam from a Clinac 2100; the IMRT treatments used 6-MV, 10-MV, 15-MV, and 18-MV beams from a Varian Clinac 2100 accelerator and 6-MV and 15-MV beams from a Siemens Primus accelerator. Photon doses were measured with thermoluminescent dosimeters in a Rando phantom, and neutron fluence was measured with gold foils. Dose equivalents to the colon, liver, stomach, lung, esophagus, thyroid, and active bone marrow were determined for each treatment approach. Results: For each treatment approach, the relationship between dose equivalent per MU, distance from the treatment field, and depth in the patient was examined. Photon dose equivalents decreased approximately exponentially with distance from the treatment field. Neutron dose equivalents were independent of distance from the treatment field and decreased with increasing tissue depth. Neutrons were a significant contributor to the out-of field dose equivalent for beam energies {>=}15 MV. Conclusions: Out-of-field photon and neutron dose equivalents can be estimated to any point in a patient undergoing a similar treatment approach from the distance of that point to the central axis and from the tissue depth. This information is useful in determining the dose to critical structures and in evaluating the risk of associated carcinogenesis.

  11. Combining tissue-phantom ratios to provide a beam-quality specifier for flattening filter free photon beams

    SciTech Connect

    Dalaryd, Mårten Knöös, Tommy; Ceberg, Crister

    2014-11-01

    Purpose: There are currently several commercially available radiotherapy treatment units without a flattening filter in the beam line. Unflattened photon beams have an energy and lateral fluence distribution that is different from conventional beams and, thus, their attenuation properties differ. As a consequence, for flattening filter free (FFF) beams, the relationship between the beam-quality specifier TPR{sub 20,10} and the Spencer–Attix restricted water-to-air mass collision stopping-power ratios, (L{sup -}/ρ){sub air}{sup water}, may have to be refined in order to be used with equivalent accuracy as for beams with a flattening filter. The purpose of this work was twofold. First, to study the relationship between TPR{sub 20,10} and (L{sup -}/ρ){sub air}{sup water} for FFF beams, where the flattening filter has been replaced by a metal plate as in most clinical FFF beams. Second, to investigate the potential of increasing the accuracy in determining (L{sup -}/ρ){sub air}{sup water} by adding another beam-quality metric, TPR{sub 10,5}. The relationship between (L{sup -}/ρ){sub air}{sup water} and %dd(10){sub x} for beams with and without a flattening filter was also included in this study. Methods: A total of 24 realistic photon beams (10 with and 14 without a flattening filter) from three different treatment units have been used to calculate (L{sup -}/ρ){sub air}{sup water}, TPR{sub 20,10}, and TPR{sub 10,5} using the EGSnrc Monte Carlo package. The relationship between (L{sup -}/ρ){sub air}{sup water} and the dual beam-quality specifier TPR{sub 20,10} and TPR{sub 10,5} was described by a simple bilinear equation. The relationship between the photon beam-quality specifier %dd(10){sub x} used in the AAPM’s TG-51 dosimetry protocol and (L{sup -}/ρ){sub air}{sup water} was also investigated for the beams used in this study, by calculating the photon component of the percentage depth dose at 10 cm depth with SSD 100 cm. Results: The calculated (L{sup -}/

  12. Study of head scatter factor in 4MV photon beam used in radiotherapy.

    PubMed

    Appasamy, Murugan; Xavier, Sidonia Valas; Kuppusamy, Thayalan; Velayudham, Ramasubramanian

    2013-06-01

    The 4 MV photon beam offers equal build-up region behavior like Co-60 beam and it plays a major role in head and neck and pediatric radiotherapy. In this study an attempt is made to study the head scatter factor (SC) for 4 MV photon beam using locally designed PMMA and Brass miniphantoms. The SC is measured in combination of PMMA miniphantom with 0.6 cc chamber and Brass miniphantom with 0.6 cc and 0.13 cc chambers. The measured SC is compared with the literature data and it agrees within ± 1.98%. The study reveals that either 0.13 cc or 0.6 cc chamber with PMMA or Brass phantom materials can be used for SC measurements in a 4 MV photon beam. The variation of SSD does not alter the head scatter factor. The collimator exchange effect is found to be within 1, and it is less than that of other linear accelerators. It is also found that the presence of internal wedge has significant contribution to head scatter factor. The Phantom scatter factor is also calculated and it agrees within ±1% with published data.

  13. Designing and Dosimetry of a Shield for Photon Fields of Radiation Therapy in Oral Cavity Cancer

    PubMed Central

    Jabbari, Keyvan; Senobari, Somayeh; Roayaei, Mahnaz; Rostampour, Masoumeh

    2015-01-01

    The cancer of oral cavity is related to lesions of mucous membrane of tongue and gum that can be treated with radiation therapy. A lateral photon field can be used to treat this kind of tumor, which has a side-effect on normal tissue in the opposite side of the oral cavity. In this study the dosimetric effect of the various shields in oral cavity is evaluated. In this study, a special phantom similar to the structure of oral cavity with capability of film dosimetry was designed and constructed. The various shield slabs were made of five materials: Lead, Plexiglas, Acrylic resin, Silicon and Plaster. For irradiation, Cobalt 60 (60Co) and 6 MV photon beams were used. The film dosimetry before and after the shield was performed using GAFCHROMIC EBT2 films. The film before the shield measures the magnitude of backscattering radiation from the shield. The prescribed dose was 150 cGy. Results showed that 3 cm of the lead in both energies had the maximum absorption of radiation. The absorbed dose to opposite side of shield for 6 MV photon beams and 60Co were 21 and 32 cGy, respectively. The minimum attenuation on radiation was observed in silicon shield for which the dose of opposite side were 116 and 147 cGy for 6 MV and 60Co respectively. The maximum backscattered dose was measured 177 cGy and 219 cGy using 3 cm thickness of lead, which was quite considerable. The minimum backscattering where for acrylic resin 101 and 118 cGy for 6 MV and cobalt. In this study, it was concluded that the amount of backscattering for 3 cm Lead shield is quite considerable and increases the dose significantly. A composite layer of shield with 1–2 cm lead and 1 cm acrylic resin can have the protective effect and low backscattering radiation at the same time. PMID:26120570

  14. Designing and Dosimetry of a Shield for Photon Fields of Radiation Therapy in Oral Cavity Cancer.

    PubMed

    Jabbari, Keyvan; Senobari, Somayeh; Roayaei, Mahnaz; Rostampour, Masoumeh

    2015-01-01

    The cancer of oral cavity is related to lesions of mucous membrane of tongue and gum that can be treated with radiation therapy. A lateral photon field can be used to treat this kind of tumor, which has a side-effect on normal tissue in the opposite side of the oral cavity. In this study the dosimetric effect of the various shields in oral cavity is evaluated. In this study, a special phantom similar to the structure of oral cavity with capability of film dosimetry was designed and constructed. The various shield slabs were made of five materials: Lead, Plexiglas, Acrylic resin, Silicon and Plaster. For irradiation, Cobalt 60 (60Co) and 6 MV photon beams were used. The film dosimetry before and after the shield was performed using GAFCHROMIC EBT2 films. The film before the shield measures the magnitude of backscattering radiation from the shield. The prescribed dose was 150 cGy. Results showed that 3 cm of the lead in both energies had the maximum absorption of radiation. The absorbed dose to opposite side of shield for 6 MV photon beams and 60Co were 21 and 32 cGy, respectively. The minimum attenuation on radiation was observed in silicon shield for which the dose of opposite side were 116 and 147 cGy for 6 MV and 60Co respectively. The maximum backscattered dose was measured 177 cGy and 219 cGy using 3 cm thickness of lead, which was quite considerable. The minimum backscattering where for acrylic resin 101 and 118 cGy for 6 MV and cobalt. In this study, it was concluded that the amount of backscattering for 3 cm Lead shield is quite considerable and increases the dose significantly. A composite layer of shield with 1-2 cm lead and 1 cm acrylic resin can have the protective effect and low backscattering radiation at the same time.

  15. Experimental verification of a commercial Monte Carlo-based dose calculation module for high-energy photon beams

    NASA Astrophysics Data System (ADS)

    Künzler, Thomas; Fotina, Irina; Stock, Markus; Georg, Dietmar

    2009-12-01

    The dosimetric performance of a Monte Carlo algorithm as implemented in a commercial treatment planning system (iPlan, BrainLAB) was investigated. After commissioning and basic beam data tests in homogenous phantoms, a variety of single regular beams and clinical field arrangements were tested in heterogeneous conditions (conformal therapy, arc therapy and intensity-modulated radiotherapy including simultaneous integrated boosts). More specifically, a cork phantom containing a concave-shaped target was designed to challenge the Monte Carlo algorithm in more complex treatment cases. All test irradiations were performed on an Elekta linac providing 6, 10 and 18 MV photon beams. Absolute and relative dose measurements were performed with ion chambers and near tissue equivalent radiochromic films which were placed within a transverse plane of the cork phantom. For simple fields, a 1D gamma (γ) procedure with a 2% dose difference and a 2 mm distance to agreement (DTA) was applied to depth dose curves, as well as to inplane and crossplane profiles. The average gamma value was 0.21 for all energies of simple test cases. For depth dose curves in asymmetric beams similar gamma results as for symmetric beams were obtained. Simple regular fields showed excellent absolute dosimetric agreement to measurement values with a dose difference of 0.1% ± 0.9% (1 standard deviation) at the dose prescription point. A more detailed analysis at tissue interfaces revealed dose discrepancies of 2.9% for an 18 MV energy 10 × 10 cm2 field at the first density interface from tissue to lung equivalent material. Small fields (2 × 2 cm2) have their largest discrepancy in the re-build-up at the second interface (from lung to tissue equivalent material), with a local dose difference of about 9% and a DTA of 1.1 mm for 18 MV. Conformal field arrangements, arc therapy, as well as IMRT beams and simultaneous integrated boosts were in good agreement with absolute dose measurements in the

  16. Peripheral photon and neutron doses from prostate cancer external beam irradiation.

    PubMed

    Bezak, Eva; Takam, Rundgham; Marcu, Loredana G

    2015-12-01

    Peripheral photon and neutron doses from external beam radiotherapy (EBRT) are associated with increased risk of carcinogenesis in the out-of-field organs; thus, dose estimations of secondary radiation are imperative. Peripheral photon and neutron doses from EBRT of prostate carcinoma were measured in Rando phantom. (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescence dosemeters (TLDs) were inserted in slices of a Rando phantom followed by exposure to 80 Gy with 18-MV photon four-field 3D-CRT technique. The TLDs were calibrated using 6- and 18-MV X-ray beam. Neutron dose equivalents measured with CR-39 etch-track detectors were used to derive readout-to-neutron dose conversion factor for (6)LiF:Mg,Cu,P TLDs. Average neutron dose equivalents per 1 Gy of isocentre dose were 3.8±0.9 mSv Gy(-1) for thyroid and 7.0±5.4 mSv Gy(-1) for colon. For photons, the average dose equivalents per 1 Gy of isocentre dose were 0.2±0.1 mSv Gy(-1) for thyroid and 8.1±9.7 mSv Gy(-1) for colon. Paired (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P TLDs can be used to measure photon and neutron doses simultaneously. Organs in close proximity to target received larger doses from photons than those from neutrons whereas distally located organs received higher neutron versus photon dose.

  17. Compact terahertz wave polarization beam splitter using photonic crystal.

    PubMed

    Mo, Guo-Qiang; Li, Jiu-Sheng

    2016-09-01

    Electromagnetic polarization conveys valuable information for signal processing. Manipulation of a terahertz wave polarization state exhibits tremendous potential in developing applications of terahertz science and technology. We propose an approach to efficiently split transverse-electric and transverse-magnetic polarized terahertz waves into different propagation directions over the frequency range from 0.9998 to 1.0007 THz. Both the plane wave expansion method and the finite-difference time-domain method are used to calculate and analyze the transmission characteristics of the proposed device. The present device is very compact and the total size is 1.02  mm×0.99  mm. This polarization beam splitter performance indicates that the structure has a potential application for forthcoming terahertz-wave integrated circuit fields.

  18. Dosimetry and techniques for simultaneous hyperthermia and external beam radiation therapy.

    PubMed

    Straube, W L; Klein, E E; Moros, E G; Low, D A; Myerson, R J

    2001-01-01

    An increased biological effect is realized when hyperthermia and radiation therapy are combined simultaneously. To take advantage of this effect, techniques have been developed that combine existing hyperthermia devices with a linear accelerator. This allows concomitant delivery of either ultrasound or microwave hyperthermia with photon radiation therapy. Two techniques have been used clinically: the orthogonal technique, in which the microwave or ultrasound beam and the radiation beam are orthogonal to one another, and the en face technique, in which the ultrasound or microwave beam and the radiation beam travel into the tumour through the same treatment window. The en face technique has necessitated the development of special attachments so that the hyperthermia device can be mounted to the linear accelerator and so that non-uniform portions of the hyperthermia device can be removed from the radiation beam. For microwave therapy, applicators are mounted onto the linear accelerator using the compensating filter tray holder. For ultrasound, special reflector devices are mounted to a frame that is mounted onto the compensating filter tray holder of the linear accelerator. Because the linear accelerator is an isocentric device, the height of the radiation source is fixed, and this has necessitated specially designed devices so that the ultrasound support system is compatible with the linear accelerator. The treatment setups for both the en face technique and the orthogonal technique require the interaction of both hyperthermia and radiation therapy personnel and equipment. The dosimetry and day-to-day operations for each technique are unique. The simulation for the en face technique is much different from the simulation of a normal radiation treatment and requires the presence of a hyperthermia physicist. Also, for the en face technique, the attenuation of the microwave applicator and the thickness and attenuation of the ultrasound reflector system are taken into

  19. Analysis of a photonic nanojet assuming a focused incident beam instead of a plane wave

    NASA Astrophysics Data System (ADS)

    Dong, Aotuo; Su, Chin

    2014-12-01

    The analysis of a photonic nanojet formed by dielectric spheres almost always assumes that the incident field is a plane wave. In this work, using vector spherical harmonics representations, we analyze the case of a more realistic incident field consisting of a focused beam formed by a microscope objective. Also included is the situation in which the sphere is not at the focal plane of the focus beam. We find that the dimension of the nanojet beam waist is less sensitive with respect to the azimuthal angle when compared with the plane wave case. Also, by shifting the particle away from the focal plane, the nanojet beam waist can be positioned outside the particle which otherwise would be inside or at the particle surface. Inherently, no such adjustment is possible with an incident plane wave assumption.

  20. An analytical formalism to calculate phantom scatter factors for flattening filter free (FFF) mode photon beams.

    PubMed

    Chung, Heeteak; Prado, Karl L; Yi, Byong Yong

    2014-02-21

    Phantom Scatter Factors, Sp in the Khan formalism (Khan et al 1980 J. Radiat. Oncol. Biol. Phys. 6 745-51) describe medium-induced changes in photon-beam intensity as a function of size of the beam. According to the British Journal of Radiology, Supplement 25, megavoltage phantom scatter factors are invariant as a function of photon-beam energy. However, during the commissioning of an accelerator with flattening filter free (FFF) photon beams (Varian TrueBeam(TM) 6-MV FFF and 10-MV FFF), differences were noted in phantom scatter between the filtered beams and FFF-mode beams. The purpose of this work was to evaluate this difference and provide an analytical formalism to explain the phantom scatter differences between FFF-mode and the filtered mode. An analytical formalism was devised to demonstrate the source of phantom scatter differences between the filtered and the FFF-mode beams. The reason for the differences in the phantom scatter factors between the filtered and the FFF-mode beams is hypothesized to be the non-uniform beam profiles of the FFF-mode beams. The analytical formalism proposed here is based on this idea, taking the product of the filtered phantom scatter factors and the ratio of the off-axis ratio between the FFF-mode and the filtered beams. All measurements were performed using a Varian TrueBeam(TM) linear accelerator with photon energies of 6-MV and 10-MV in both filtered and FFF-modes. For all measurements, a PTW Farmer type chamber and a Scanditronix CC04 cylindrical ionization were used. The in-water measurements were made at depth dose maximum and 100 cm source-to-axis distance. The in-air measurements were done at 100 cm source-to-axis distance with appropriate build-up cap. From these measurements, the phantom scatter factors were derived for the filtered beams and the FFF-mode beams for both energies to be evaluated against the phantoms scatter factors calculated using the proposed algorithm. For 6-MV, the difference between the measured

  1. An analytical formalism to calculate phantom scatter factors for flattening filter free (FFF) mode photon beams

    NASA Astrophysics Data System (ADS)

    Chung, Heeteak; Prado, Karl L.; Yi, Byong Yong

    2014-02-01

    Phantom Scatter Factors, Sp in the Khan formalism (Khan et al 1980 J. Radiat. Oncol. Biol. Phys. 6 745-51) describe medium-induced changes in photon-beam intensity as a function of size of the beam. According to the British Journal of Radiology, Supplement 25, megavoltage phantom scatter factors are invariant as a function of photon-beam energy. However, during the commissioning of an accelerator with flattening filter free (FFF) photon beams (Varian TrueBeamTM 6-MV FFF and 10-MV FFF), differences were noted in phantom scatter between the filtered beams and FFF-mode beams. The purpose of this work was to evaluate this difference and provide an analytical formalism to explain the phantom scatter differences between FFF-mode and the filtered mode. An analytical formalism was devised to demonstrate the source of phantom scatter differences between the filtered and the FFF-mode beams. The reason for the differences in the phantom scatter factors between the filtered and the FFF-mode beams is hypothesized to be the non-uniform beam profiles of the FFF-mode beams. The analytical formalism proposed here is based on this idea, taking the product of the filtered phantom scatter factors and the ratio of the off-axis ratio between the FFF-mode and the filtered beams. All measurements were performed using a Varian TrueBeamTM linear accelerator with photon energies of 6-MV and 10-MV in both filtered and FFF-modes. For all measurements, a PTW Farmer type chamber and a Scanditronix CC04 cylindrical ionization were used. The in-water measurements were made at depth dose maximum and 100 cm source-to-axis distance. The in-air measurements were done at 100 cm source-to-axis distance with appropriate build-up cap. From these measurements, the phantom scatter factors were derived for the filtered beams and the FFF-mode beams for both energies to be evaluated against the phantoms scatter factors calculated using the proposed algorithm. For 6-MV, the difference between the measured and

  2. Monte Carlo evaluations of the absorbed dose and quality dependence of AL2O3 in radiotherapy photon beams.

    PubMed

    Chen, Shao Wen; Wang, Xue Tao; Chen, Li Xin; Tang, Qiang; Liu, Xiao Wei

    2009-10-01

    The purpose of this work was to evaluate the absorbed dose to AL2O3 dosimeter at various depths of water phantom in radiotherapy photon beams by Monte Carlo simulation and evaluate the beam quality dependence. The simulations were done using EGSnrc. The cylindrical Al2O3 dosimeter (Phi4 mm x 1 mm) was placed at the central axis of the water phantom (Phi16 cm x 16 cm) at depths between 0.5 and 8 cm. The incident beams included monoenergetic photon beams ranging from 1 to 18 MeV, 60Co gamma beams, Varian 6 MV beams using phase space files based on a full simulation of the linac, and Varian beams between 4 and 24 MV using Mohan's spectra. The absorbed dose to the dosimeter and the water at the corresponding position in the absence of the dosimeter, as well as absorbed dose ratio factor fmd, was calculated. The results show that fmd depends obviously on the photon energy at the shallow depths. However, as the depth increases, the change in fmd becomes small, beyond the buildup region, the maximum discrepancy of fmd to the average value is not more than 1%. These simulation results confirm the use of Al2O3 dosimeter in radiotherapy photon beams and clearly indicate that more attention should be paid when using such a dosimeter in the buildup region of high-energy radiotherapy photon beams.

  3. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    SciTech Connect

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-26

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  4. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    NASA Astrophysics Data System (ADS)

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-01

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  5. Photon beam quality variations of a flattening filter free linear accelerator

    SciTech Connect

    Georg, Dietmar; Kragl, Gabriele; Wetterstedt, Sacha af; McCavana, Patrick; McClean, Brendan; Knoeoes, Tommy

    2010-01-15

    Purpose: Recently, there has been an increasing interest in operating conventional linear accelerators without a flattening filter. The aim of this study was to determine beam quality variations as a function of off-axis ray angle for unflattened beams. In addition, a comparison was made with the off-axis energy variation in flattened beams. Methods: Two Elekta Precise linear accelerators were modified in order to enable radiation delivery with and without the flattening filter in the beam line. At the Medical University Vienna (Vienna, Austria), half value layer (HVL) measurements were performed for 6 and 10 MV with an in-house developed device that can be easily mounted on the gantry. At St. Luke's Hospital (Dublin, Ireland), measurements were performed at 6 MV in narrow beam geometry with the gantry tilted around 270 deg. with pinhole collimators, an attenuator, and the chamber positioned on the table. All attenuation measurements were performed with ionization chambers and a buildup cap (2 mm brass) or a PMMA mini phantom (diameter 3 cm, measurement depth 2.5 cm). Results: For flattened 6 and 10 MV photon beams from the Elekta linac the relative HVL({theta}) varies by about 11% for an off-axis ray angle {theta}=10 deg. These results agree within {+-}2% with a previously proposed generic off-axis energy correction. For unflattened beams, the variation was less than 5% in the whole range of off-axis ray angles up to 10 deg. The difference in relative HVL data was less than 1% for unflattened beams at 6 and 10 MV. Conclusions: Off-axis energy variation is rather small in unflattened beams and less than half the one for flattened beams. Thus, ignoring the effect of off-axis energy variation for dose calculations in unflattened beams can be clinically justified.

  6. Radiation beam therapy evolution: From X-rays to hadrons

    SciTech Connect

    Khoroshkov, V. S.

    2006-10-15

    The history of external radiation beam therapy (radiotherapy)-in particular, proton therapy (PT)-is brietly outlined. Two possible strategies in increasing the efficacy of radiotherapy are considered. The radiotherapy methods and techniques are brietly described. The possibilities of PT in providing effective treatment and the main achievements are demonstrated. The state of the art in the PT development involving the active creation of large clinical PT centers since 1990 is analyzed.

  7. Is Prostate Cancer a Good Candidate for Ion Beam Therapy?

    NASA Astrophysics Data System (ADS)

    Rossi, Carl J.

    Organ-confined prostate cancer now constitutes one of the most commonly treated malignancies with ion beam therapy (IBT). Because of this, questions have been raised regarding the efficacy and cost-effectiveness of such treatment. This chapter details the clinical results obtained with both proton and carbon ion therapy, discusses ongoing clinical trials, and seeks to place IBT in the context of other technological evolutions in radiation oncology.

  8. Design of a Compton camera for 3D prompt-γ imaging during ion beam therapy

    NASA Astrophysics Data System (ADS)

    Roellinghoff, F.; Richard, M.-H.; Chevallier, M.; Constanzo, J.; Dauvergne, D.; Freud, N.; Henriquet, P.; Le Foulher, F.; Létang, J. M.; Montarou, G.; Ray, C.; Testa, E.; Testa, M.; Walenta, A. H.

    2011-08-01

    We investigate, by means of Geant4 simulations, a real-time method to control the position of the Bragg peak during ion therapy, based on a Compton camera in combination with a beam tagging device (hodoscope) in order to detect the prompt gamma emitted during nuclear fragmentation. The proposed set-up consists of a stack of 2 mm thick silicon strip detectors and a LYSO absorber detector. The γ emission points are reconstructed analytically by intersecting the ion trajectories given by the beam hodoscope and the Compton cones given by the camera. The camera response to a polychromatic point source in air is analyzed with regard to both spatial resolution and detection efficiency. Various geometrical configurations of the camera have been tested. In the proposed configuration, for a typical polychromatic photon point source, the spatial resolution of the camera is about 8.3 mm FWHM and the detection efficiency 2.5×10-4 (reconstructable photons/emitted photons in 4π). Finally, the clinical applicability of our system is considered and possible starting points for further developments of a prototype are discussed.

  9. One- and two-photon absorption in solution: The effects of a passive auxiliary beam

    SciTech Connect

    Ford, J. S.; Andrews, D. L.

    2014-07-21

    The efficiencies of one- and two-photon absorption by chromophores in solution may be significantly modified by a sufficiently intense beam of off-resonant light. A molecular analysis based on quantum electrodynamics (QED) fully accounts for this phenomenon of laser-modified absorption. A time-dependent perturbation-theory treatment describes the process in terms of stimulated forward Rayleigh-scattering of the auxiliary beam occurring simultaneously with the absorption interaction(s). Our formulation accommodates media modifications to the basic character of light-matter interactions, taking into account the refractive and dispersive properties of a solution-phase environment. This introduces the bulk refractive index of the solvent directly into the QED framework. The measurable electronic response of molecules freely rotating in solution is defined by an average of all orientations. We explicitly derive fixed-orientation and rotationally averaged calculations for the Fermi-rule rate of laser-modified one- and two-photon absorption. For a given beam polarization geometry, the solution-phase molecular response is expressible as a set of natural invariant scalars. These results reveal details of the dependence on the beam polarisations and on the rotationally averaged molecular response: we illustrate the breadth of variation available via geometric manipulation of beam polarization, and raise new possibilities for quantum weak measurements of laser states.

  10. Monte Carlo-based energy response studies of diode dosimeters in radiotherapy photon beams.

    PubMed

    Arun, C; Palani Selvam, T; Dinkar, Verma; Munshi, Prabhat; Kalra, Manjit Singh

    2013-01-01

    This study presents Monte Carlo-calculated absolute and normalized (relative to a (60)Co beam) sensitivity values of silicon diode dosimeters for a variety of commercially available silicon diode dosimeters for radiotherapy photon beams in the energy range of (60)Co-24 MV. These values were obtained at 5 cm depth along the central axis of a water-equivalent phantom of 10 cm × 10 cm field size. The Monte Carlo calculations were based on the EGSnrc code system. The diode dosimeters considered in the calculations have different buildup materials such as aluminum, brass, copper, and stainless steel + epoxy. The calculated normalized sensitivity values of the diode dosimeters were then compared to previously published measured values for photon beams at (60)Co-20 MV. The comparison showed reasonable agreement for some diode dosimeters and deviations of 5-17 % (17 % for the 3.4 mm brass buildup case for a 10 MV beam) for some diode dosimeters. Larger deviations of the measurements reflect that these models of the diode dosimeter were too simple. The effect of wall materials on the absorbed dose to the diode was studied and the results are presented. Spencer-Attix and Bragg-Gray stopping power ratios (SPRs) of water-to-diode were calculated at 5 cm depth in water. The Bragg-Gray SPRs of water-to-diode compare well with Spencer-Attix SPRs for ∆ = 100 keV and above at all beam qualities.

  11. One- and two-photon absorption in solution: the effects of a passive auxiliary beam.

    PubMed

    Ford, J S; Andrews, D L

    2014-07-21

    The efficiencies of one- and two-photon absorption by chromophores in solution may be significantly modified by a sufficiently intense beam of off-resonant light. A molecular analysis based on quantum electrodynamics (QED) fully accounts for this phenomenon of laser-modified absorption. A time-dependent perturbation-theory treatment describes the process in terms of stimulated forward Rayleigh-scattering of the auxiliary beam occurring simultaneously with the absorption interaction(s). Our formulation accommodates media modifications to the basic character of light-matter interactions, taking into account the refractive and dispersive properties of a solution-phase environment. This introduces the bulk refractive index of the solvent directly into the QED framework. The measurable electronic response of molecules freely rotating in solution is defined by an average of all orientations. We explicitly derive fixed-orientation and rotationally averaged calculations for the Fermi-rule rate of laser-modified one- and two-photon absorption. For a given beam polarization geometry, the solution-phase molecular response is expressible as a set of natural invariant scalars. These results reveal details of the dependence on the beam polarisations and on the rotationally averaged molecular response: we illustrate the breadth of variation available via geometric manipulation of beam polarization, and raise new possibilities for quantum weak measurements of laser states.

  12. One- and two-photon absorption in solution: The effects of a passive auxiliary beam

    NASA Astrophysics Data System (ADS)

    Ford, J. S.; Andrews, D. L.

    2014-07-01

    The efficiencies of one- and two-photon absorption by chromophores in solution may be significantly modified by a sufficiently intense beam of off-resonant light. A molecular analysis based on quantum electrodynamics (QED) fully accounts for this phenomenon of laser-modified absorption. A time-dependent perturbation-theory treatment describes the process in terms of stimulated forward Rayleigh-scattering of the auxiliary beam occurring simultaneously with the absorption interaction(s). Our formulation accommodates media modifications to the basic character of light-matter interactions, taking into account the refractive and dispersive properties of a solution-phase environment. This introduces the bulk refractive index of the solvent directly into the QED framework. The measurable electronic response of molecules freely rotating in solution is defined by an average of all orientations. We explicitly derive fixed-orientation and rotationally averaged calculations for the Fermi-rule rate of laser-modified one- and two-photon absorption. For a given beam polarization geometry, the solution-phase molecular response is expressible as a set of natural invariant scalars. These results reveal details of the dependence on the beam polarisations and on the rotationally averaged molecular response: we illustrate the breadth of variation available via geometric manipulation of beam polarization, and raise new possibilities for quantum weak measurements of laser states.

  13. Projection imaging of photon beams by the Čerenkov effect

    PubMed Central

    Glaser, Adam K.; Davis, Scott C.; McClatchy, David M.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J.

    2013-01-01

    Purpose: A novel technique for beam profiling of megavoltage photon beams was investigated for the first time by capturing images of the induced Čerenkov emission in water, as a potential surrogate for the imparted dose in irradiated media. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire 2D projection images of Čerenkov emission from a 4 × 4 cm2 6 MV linear accelerator (LINAC) x-ray photon beam operating at a dose rate of 400 MU/min incident on a water tank with transparent walls. The ICCD acquisition was gated to the LINAC sync pulse to reduce background light artifacts, and the measurement quality was investigated by evaluating the signal to noise ratio and measurement repeatability as a function of delivered dose. Monte Carlo simulations were used to derive a calibration factor for differences between the optical images and deposited dose arising from the anisotropic angular dependence of Čerenkov emission. Finally, Čerenkov-based beam profiles were compared to a percent depth dose (PDD) and lateral dose profile at a depth of dmax from a reference dose distribution generated from the clinical Varian ECLIPSE treatment planning system (TPS). Results: The signal to noise ratio was found to be 20 at a delivered dose of 66.6 cGy, and proportional to the square root of the delivered dose as expected from Poisson photon counting statistics. A 2.1% mean standard deviation and 5.6% maximum variation in successive measurements were observed, and the Monte Carlo derived calibration factor resulted in Čerenkov emission images which were directly correlated to deposited dose, with some spatial issues. The dose difference between the TPS and PDD predicted by Čerenkov measurements was within 20% in the buildup region with a distance to agreement (DTA) of 1.5–2 mm and ±3% at depths beyond dmax. In the lateral profile, the dose difference at the beam penumbra was within ±13% with a DTA of 0–2 mm, ±5% in the central beam region

  14. Surface dose investigation of the flattening filter-free photon beams.

    PubMed

    Wang, Yuenan; Khan, Mohammad K; Ting, Joseph Y; Easterling, Stephen B

    2012-06-01

    Flattening filter-free (FFF) x-rays can provide more efficient use of photons and a significant increase of dose rate compared with conventional flattened x-rays, features that are especially beneficial for stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT). The available data on the entrance doses of the FFF photon beams remain limited. The purpose of this study was to investigate the entrance dose of FFF photons in the buildup region and to compare it with that of conventional flattened photons. A Varian TrueBeam linear accelerator has been in full clinical operation with 6-MV and 10-MV FFF and flattened x-ray photons. Entrance dose at the surface was measured using a parallel plate ionization chamber in a solid water phantom with buildup depth = 0~15 mm for 6X and 0~25 mm for 10X. Different field size (FS) patterns were created in the Eclipse Treatment Planning System by multileaf collimator (MLC) rather than jaws (FS = 2 × 2, 3 × 3, 4 × 4, 6 × 6, and 10 × 10 cm(2) by MLC and jaw size = 2.2 × 2.2, 3.2 × 3.2, 4.2 × 4.2, 6 × 6, and 10 × 10 cm(2)). The smallest FS was about four times larger than the ion chamber dimension. All buildup dose measurements were normalized to FS = 10 × 10 cm(2) at the depth of dose maximum (dmax). Good repeatability was demonstrated and surface dose increased linearly with FS for both flattened and FFF photons. The entrance dose of the FFF photons was modestly larger than that of the corresponding flattened photons for both 6X and 10X for different FS ranging from 2 × 2 cm(2) to 10 × 10 cm(2). The FFF photons have a higher entrance dose than that of the corresponding flattened photons for FS smaller than 10 × 10 cm(2). However, the difference is not substantial and may be clinically insignificant. Published by Elsevier Inc.

  15. Surface Dose Investigation of the Flattening Filter-Free Photon Beams

    SciTech Connect

    Wang Yuenan; Khan, Mohammad K.; Ting, Joseph Y.; Easterling, Stephen B.

    2012-06-01

    Purpose: Flattening filter-free (FFF) x-rays can provide more efficient use of photons and a significant increase of dose rate compared with conventional flattened x-rays, features that are especially beneficial for stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT). The available data on the entrance doses of the FFF photon beams remain limited. The purpose of this study was to investigate the entrance dose of FFF photons in the buildup region and to compare it with that of conventional flattened photons. Methods and Materials: A Varian TrueBeam linear accelerator has been in full clinical operation with 6-MV and 10-MV FFF and flattened x-ray photons. Entrance dose at the surface was measured using a parallel plate ionization chamber in a solid water phantom with buildup depth = 0{approx}15 mm for 6X and 0{approx}25 mm for 10X. Different field size (FS) patterns were created in the Eclipse Treatment Planning System by multileaf collimator (MLC) rather than jaws (FS = 2 Multiplication-Sign 2, 3 Multiplication-Sign 3, 4 Multiplication-Sign 4, 6 Multiplication-Sign 6, and 10 Multiplication-Sign 10 cm{sup 2} by MLC and jaw size = 2.2 Multiplication-Sign 2.2, 3.2 Multiplication-Sign 3.2, 4.2 Multiplication-Sign 4.2, 6 Multiplication-Sign 6, and 10 Multiplication-Sign 10 cm{sup 2}). The smallest FS was about four times larger than the ion chamber dimension. All buildup dose measurements were normalized to FS = 10 Multiplication-Sign 10 cm{sup 2} at the depth of dose maximum (dmax). Results: Good repeatability was demonstrated and surface dose increased linearly with FS for both flattened and FFF photons. The entrance dose of the FFF photons was modestly larger than that of the corresponding flattened photons for both 6X and 10X for different FS ranging from 2 Multiplication-Sign 2 cm{sup 2} to 10 Multiplication-Sign 10 cm{sup 2}. Conclusions: The FFF photons have a higher entrance dose than that of the corresponding flattened photons for FS

  16. Field match verification during combination proton, photon, and electron therapy for oligometastatic inflammatory breast cancer.

    PubMed

    Amos, Richard A; Woodward, Wendy A

    2012-01-01

    Postmastectomy radiation therapy (PMRT) has been shown in randomized trials to improve overall survival for patients with locally advanced breast cancer. The standard PMRT clinical target volume (CTV) encompasses the chest wall and undissected regional lymphatics. Conformal isodose distributions covering the standard CTV with acceptable dose limits to normal tissue can typically be achieved with a combination of photon and electron fields. Field borders are marked on the patient's skin using a light field projection of each beam and are subsequently used to verify daily field matching clinically. Initial imaging of a patient with oligometastatic inflammatory breast cancer demonstrated direct extension of disease from the involved internal mammary lymph node chain into the anterior mediastinum as the only site of metastatic disease. The patient achieved a pathologic complete response to neoadjuvant chemotherapy and underwent mastectomy. The initial sites of gross disease, including the anterior mediastinal node was included in the CTV for PMRT, and treatment planning demonstrated a clear advantage to the inclusion of proton fields in this case. The absence of a light source on the proton delivery system that accurately projects proton field edges onto the patient's skin posed a significant challenge for daily verification of proton-to-photon and -electron field matching. Proton field-specific radiographic imaging devices were designed and used such that proton field edges could be delineated on the patient's skin and used for daily matching with photon and electron fields. Manufacture of the imaging devices was quick and inexpensive. Weekly verification of proton field alignment with the proton field delineation on the skin demonstrated agreement within 3-mm tolerance. The patient remains with no evidence of disease 18 months after completing radiation. Other patients with similar indications may benefit from multimodality radiation therapy. Copyright © 2012

  17. Field match verification during combination proton, photon, and electron therapy for oligometastatic inflammatory breast cancer

    SciTech Connect

    Amos, Richard A.; Woodward, Wendy A.

    2012-01-01

    Postmastectomy radiation therapy (PMRT) has been shown in randomized trials to improve overall survival for patients with locally advanced breast cancer. The standard PMRT clinical target volume (CTV) encompasses the chest wall and undissected regional lymphatics. Conformal isodose distributions covering the standard CTV with acceptable dose limits to normal tissue can typically be achieved with a combination of photon and electron fields. Field borders are marked on the patient's skin using a light field projection of each beam and are subsequently used to verify daily field matching clinically. Initial imaging of a patient with oligometastatic inflammatory breast cancer demonstrated direct extension of disease from the involved internal mammary lymph node chain into the anterior mediastinum as the only site of metastatic disease. The patient achieved a pathologic complete response to neoadjuvant chemotherapy and underwent mastectomy. The initial sites of gross disease, including the anterior mediastinal node was included in the CTV for PMRT, and treatment planning demonstrated a clear advantage to the inclusion of proton fields in this case. The absence of a light source on the proton delivery system that accurately projects proton field edges onto the patient's skin posed a significant challenge for daily verification of proton-to-photon and -electron field matching. Proton field-specific radiographic imaging devices were designed and used such that proton field edges could be delineated on the patient's skin and used for daily matching with photon and electron fields. Manufacture of the imaging devices was quick and inexpensive. Weekly verification of proton field alignment with the proton field delineation on the skin demonstrated agreement within 3-mm tolerance. The patient remains with no evidence of disease 18 months after completing radiation. Other patients with similar indications may benefit from multimodality radiation therapy.

  18. Influence of ion chamber response on in-air profile measurements in megavoltage photon beams.

    PubMed

    Tonkopi, E; McEwen, M R; Walters, B R B; Kawrakow, I

    2005-09-01

    This article presents an investigation of the influence of the ion chamber response, including buildup caps, on the measurement of in-air off-axis ratio (OAR) profiles in megavoltage photon beams using Monte Carlo simulations with the EGSnrc system. Two new techniques for the calculation of OAR profiles are presented. Results of the Monte Carlo simulations are compared to measurements performed in 6, 10 and 25 MV photon beams produced by an Elekta Precise linac and shown to agree within the experimental and simulation uncertainties. Comparisons with calculated in-air kerma profiles demonstrate that using a plastic mini phantom gives more accurate air-kerma measurements than using high-Z material buildup caps and that the variation of chamber response with distance from the central axis must be taken into account.

  19. Automated Sample Exchange Robots for the Structural Biology Beam Lines at the Photon Factory

    SciTech Connect

    Hiraki, Masahiko; Watanabe, Shokei; Yamada, Yusuke; Matsugaki, Naohiro; Igarashi, Noriyuki; Gaponov, Yurii; Wakatsuki, Soichi

    2007-01-19

    We are now developing automated sample exchange robots for high-throughput protein crystallographic experiments for onsite use at synchrotron beam lines. It is part of the fully automated robotics systems being developed at the Photon Factory, for the purposes of protein crystallization, monitoring crystal growth, harvesting and freezing crystals, mounting the crystals inside a hutch and for data collection. We have already installed the sample exchange robots based on the SSRL automated mounting system at our insertion device beam lines BL-5A and AR-NW12A at the Photon Factory. In order to reduce the time required for sample exchange further, a prototype of a double-tonged system was developed. As a result of preliminary experiments with double-tonged robots, the sample exchange time was successfully reduced from 70 seconds to 10 seconds with the exception of the time required for pre-cooling and warming up the tongs.

  20. Magnetic fields with photon beams: dose calculation using electron multiple-scattering theory.

    PubMed

    Jette, D

    2000-08-01

    Strong transverse magnetic fields can produce large dose enhancements and reductions in localized regions of a patient under irradiation by a photon beam. We have developed a new equation of motion for the transport of charged particles in an arbitrary magnetic field, incorporating both energy loss and multiple scattering. Key to modeling the latter process is a new concept, that of "typical scattered particles." The formulas which we have arrived at are particularly applicable to the transport of, and deposition of energy by, Compton electrons and pair-production electrons and positrons generated within a medium by a photon beam, and we have shown qualitatively how large dose enhancements and reductions can occur. A companion article examines this dose modification effect through systematic Monte Carlo simulations.

  1. Linearly polarised photon beams at ELSA and measurement of the beam asymmetry in π0_{} photoproduction off the proton

    NASA Astrophysics Data System (ADS)

    Elsner, D.; Bantes, B.; Bartholomy, O.; Bayadilov, D. E.; Beck, R.; Beloglazov, Y. A.; Castelijns, R.; Crede, V.; Ehmanns, A.; Essig, K.; Ewald, R.; Fabry, I.; Frommberger, F.; Fornet-Ponse, K.; Fuchs, M.; Funke, C.; Gridnev, A. B.; Gutz, E.; Hillert, W.; Höffgen, S.; Hoffmeister, P.; Horn, I.; Jaegle, I.; Junkersfeld, J.; Kalinowsky, H.; Klein, Frank; Klein, Friedrich; Klempt, E.; Konrad, M.; Kotulla, M.; Krusche, B.; Löhner, H.; Lopatin, I. V.; Lotz, J.; Lugert, S.; Menze, D.; Mertens, T.; Messchendorp, J. G.; Metag, V.; Morales, C.; Nanova, M.; Novinski, D. V.; Novotny, R.; Ostrick, M.; Pant, L. M.; van Pee, H.; Pfeiffer, M.; Sarantsev, A. V.; Schmidt, C.; Schmieden, H.; Schoch, B.; Shende, S.; Süle, A.; Sumachev, V. V.; Szczepanek, T.; Thoma, U.; Trnka, D.; Walther, D.; Weinheimer, C.; Wendel, C.

    2009-03-01

    At the electron accelerator ELSA a linearly polarised tagged photon beam is produced by coherent bremsstrahlung off a diamond crystal. Orientation and energy range of the linear polarisation can be deliberately chosen by accurate positioning of the crystal with a goniometer. The degree of polarisation is determined by the form of the scattered electron spectrum. Good agreement between experiment and expectations on the basis of the experimental conditions is obtained. Polarisation degrees of ensuremath P_{γ}=40 % are typically achieved at half of the primary electron energy. The determination of ensuremath P_{γ} is confirmed by measuring the beam asymmetry, Σ , in π0_{} photoproduction and by a comparison of the results to independent measurements using laser backscattering.

  2. Tight control of light beams in photonic crystals with spatially-variant lattice orientation.

    PubMed

    Digaum, Jennefir L; Pazos, Javier J; Chiles, Jeffrey; D'Archangel, Jeffrey; Padilla, Gabriel; Tatulian, Adrian; Rumpf, Raymond C; Fathpour, Sasan; Boreman, Glenn D; Kuebler, Stephen M

    2014-10-20

    Spatially-variant photonic crystals (SVPCs), in which the orientation of the unit cell changes as a function of position, are shown to be capable of abruptly controlling light beams using just low index materials and can be made to have high polarization selectivity. Multi-photon direct laser writing in the photo-polymer SU-8 was used to fabricate three-dimensional SVPCs that direct the flow of light around a 90 degree bend. The lattice spacing and fill factor were maintained nearly constant throughout the structure. The SVPCs were characterized at a wavelength of 2.94 μm by scanning the faces with optical fibers and the results were compared to electromagnetic simulations. The lattices were shown to direct infrared light of one polarization through sharp bends while the other polarization propagated straight through the SVPC. This work introduces a new scheme for controlling light that should be useful for integrated photonics.

  3. Using photon funnels based on metamaterial cloaks to compress electromagnetic wave beams.

    PubMed

    Ma, Hua; Qu, Shaobo; Xu, Zhuo; Wang, Jiafu

    2008-08-10

    Based on the metamaterial cloaking technique, we propose the use of a new photon funnel to compress a plane electromagnetic (EM) wave. The theoretical analysis and numerical simulations indicate that the compression ratio can be designed optionally and the compressed wave beam remains the original wave shape without any distortions. Here we apply the method to EM waves but it can be applied to acoustic waves and other fields as well.

  4. Dosimetric study of thermoluminescent detectors in clinical photon beams using liquid water and PMMA phantoms.

    PubMed

    Matsushima, Luciana C; Veneziani, Glauco R; Sakuraba, Roberto K; da Cruz, José C; Campos, Letícia L

    2012-07-01

    The purpose of this study was the dosimetric evaluation of thermoluminescent detectors of calcium sulphate doped with dysprosium (CaSO4:Dy) produced by IPEN compared to the TL response of lithium fluoride doped with magnesium and titanium (LiF:Mg,Ti) dosimeters and microdosimeters produced by Harshaw Chemical Company to clinical photon beams dosimetry (6 and 15 MV) using liquid water and PMMA phantoms.

  5. Wide-angle beam splitting by use of positive-negative refraction in photonic crystals.

    PubMed

    Luo, Ye; Zhang, Wei; Huang, Yidong; Zhao, Jianhui; Peng, Jiangde

    2004-12-15

    We present a positive-negative refraction effect in which, under certain conditions, an incident plane wave launched into a photonic crystal excites a positive-refracted Bloch wave and a negative-refracted Bloch wave simultaneously, both of which maintain the polarization. By utilizing this phenomenon, wide-angle beam splitting can be realized at the microscale level. Numerical simulations are employed to demonstrate this anomalous refraction behavior.

  6. Beam quality study for single-mode oxide-confined and photonic crystal VCSELs

    NASA Astrophysics Data System (ADS)

    Blane, Janice T.; North, William K.; Zeidler, Peter R.; Dencker, Jonathan B.; Chacko, David B.; Souhan, Brian; Ingold, Kirk A.; Raftery, James J.

    2016-03-01

    A high-quality single mode beam is desirable for the efficient use of lasers as light sources for optical data communications and interconnects. This work shows a parametric study of the beam quality of vertical-cavity surface-emitting lasers (VCSELs). Using a novel vertical setup we calculated the beam quality factor, M2, from beam radius measurements across the operating range of on-wafer devices. The device operating range is determined from the light-current-voltage measurement. We measured spectral content across the operating range to determine the number of operating modes, with single mode devices being of primary interest, and calculate the root-mean-square linewidths and side-mode suppression-ratio to further quantify the beam quality. We characterized the beam quality of VCSEL devices emitting ≍ 850 nm with oxide-confined apertures of the 2.5 and 5 μm and photonic crystal confinement with varying hole etch depths and b/a ratios. Device characterization and beam quality data for each of the studied devices is presented and discussed.

  7. Investigation of low-frequency beam motion at the Advanced Photon Source

    SciTech Connect

    Kim, S.; Decker, G.; Doose, C.; Hogrefe, R.; Mangra, D.; Merl, R.; Milton, S.

    1996-09-01

    The storage ring of the Advanced Photon Source has relatively tight tolerance requirements for beam stability. The tolerances of the rms beam motion in the insertion device straight sections are set to be less than 4.4 {mu}m and 17 {mu}m in the vertical and horizontal planes, respectively, in a bandwidth of 4{endash}50 Hz. Sources of beam motions have been investigated for mechanical vibrations of the magnets and vacuum chambers induced by ground motion and water systems and for power supply ripple. Horizontal beam motions in a bandwidth of 9{endash}12 Hz have been significantly reduced by inserting viscoelastic damping pads between the girder supports and pedestals, and by welding the magnet cooling headers to the ceiling of the storage ring tunnel. Current ripple of S1A sextupoles has been identified as a source of beam motion in a bandwidth of 5{endash}8 Hz. The eddy current induced by the ripple field in the sextupole produced a vertical dipole field to drive the beam horizontally. After modification of the sextupole power supplies, the beam stability requirements have now been met even without activating the feedback system. {copyright} {ital 1996 American Institute of Physics.}

  8. Dosimetric characterization of CyberKnife radiosurgical photon beams using polymer gels

    SciTech Connect

    Pantelis, E.; Antypas, C.; Petrokokkinos, L.; Karaiskos, P.; Papagiannis, P.; Kozicki, M.; Georgiou, E.; Sakelliou, L.; Seimenis, I.

    2008-06-15

    Dose distributions registered in water equivalent, polymer gel dosimeters were used to measure the output factors and off-axis profiles of the radiosurgical photon beams employed for CyberKnife radiosurgery. Corresponding measurements were also performed using a shielded silicon diode commonly employed for CyberKnife commissioning, the PinPoint ion chamber, and Gafchromic EBT films, for reasons of comparison. Polymer gel results of this work for the output factors of the 5, 7.5, and 10 mm diameter beams are (0.702{+-}0.029), (0.872{+-}0.039), and (0.929{+-}0.041), respectively. Comparison of polymer gel and diode measurements shows that the latter overestimate output factors of the two small beams (5% for the 5 mm beam and 3% for the 7.5 mm beams). This is attributed to the nonwater equivalence of the high atomic number silicon material of the diode detector. On the other hand, the PinPoint chamber is found to underestimate output factors up to 10% for the 5 mm beam due to volume averaging effects. Polymer gel and EBT film output factor results are found in close agreement for all beam sizes, emphasizing the importance of water equivalence and fine detector sensitive volume for small field dosimetry. Relative off-axis profile results are in good agreement for all dosimeters used in this work, with noticeable differences observed only in the PinPoint estimate of the 80%-20% penumbra width, which is relatively overestimated.

  9. Carbon Beam Radio-Therapy and Research Activities at HIMAC

    NASA Astrophysics Data System (ADS)

    Kanazawa, Mitsutaka

    2007-05-01

    Radio-therapy with carbon ion beam has been carried out since 1994 at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences). Now, many types of tumors can be treated with carbon beam with excellent local controls of the tumors. Stimulated with good clinical results, requirement of the dedicated compact facility for carbon beam radio-therapy is increased. To realize this requirement, design study of the facility and the R&D's of the key components in this design are promoted by NIRS. According successful results of these activities, the dedicated compact facility will be realized in Gunma University. In this facility, the established irradiation method is expected to use, which is passive irradiation method with wobbler magnets and ridge filter. In this presentation, above R&D's will be presented together with clinical results and basic research activities at HIMAC.

  10. Proton beam therapy for the treatment of prostate cancer.

    PubMed

    Pugh, Thomas J; Lee, Andrew K

    2014-01-01

    Through unique physical dose deposition properties, proton beam therapy (PBT) potentiates radiation dose escalation to target tissue while minimizing radiation exposure to nontarget organs. Proton beam therapy has been used to treat prostate cancer for several decades; however, access to proton centers has been restricted to the limited number of proton centers. Because of recent enhancements in availability and treatment delivery systems, interest in PBT has been burgeoning among oncologists, industry experts, and prostate cancer patients. As a result, the importance of understanding the collective experience to date and technical aspects of PBT delivery has become increasingly important in cancer medicine. This review article is intended to discuss the fundamentals of PBT treatment, critically review the literature on PBT for localized prostate cancer, and describe the continued development of proton beam technology for the treatment of prostate cancer.

  11. Preliminary studies of PQS PET detector module for dose verification of carbon beam therapy

    NASA Astrophysics Data System (ADS)

    Kim, H.-I.; An, S. Jung; Lee, C. Y.; Jo, W. J.; Min, E.; Lee, K.; Kim, Y.; Joung, J.; Chung, Y. H.

    2014-05-01

    PET imaging can be used to verify dose distributions of therapeutic particle beams such as carbon ion beams. The purpose of this study was to develop a PET detector module which was designed for an in-beam PET scanner geometry integrated into a carbon beam therapy system, and to evaluate its feasibility as a monitoring system of patient dose distribution. A C-shaped PET geometry was proposed to avoid blockage of the carbon beam by the detector modules. The proposed PET system consisted of 14 detector modules forming a bore with 30.2 cm inner diameter for brain imaging. Each detector module is composed of a 9 × 9 array of 4.0 mm × 4.0 mm × 20.0 mm LYSO crystal module optically coupled with four 29 mm diameter PMTs using Photomultiplier-quadrant-sharing (PQS) technique. Because the crystal pixel was identified based upon the distribution of scintillation lights of four PMTs, the design of the reflector between crystal elements should be well optimized. The optical design of reflectors was optimized using DETECT2000, a Monte Carlo code for light photon transport. A laser-cut reflector set was developed using the Enhanced Specular Reflector (ESR, 3M Co.) mirror-film with a high reflectance of 98% and a thickness of 0.064 mm. All 81 crystal elements of detector module were identified. Our result demonstrates that the C-shaped PET system is under development and we present the first reconstructed image.

  12. Real-time in vivo Cherenkoscopy imaging during external beam radiation therapy.

    PubMed

    Zhang, Rongxiao; Gladstone, David J; Jarvis, Lesley A; Strawbridge, Rendall R; Jack Hoopes, P; Friedman, Oscar D; Glaser, Adam K; Pogue, Brian W

    2013-11-01

    Cherenkov radiation is induced when charged particles travel through dielectric media (such as biological tissue) faster than the speed of light through that medium. Detection of this radiation or excited luminescence during megavoltage external beam radiotherapy (EBRT) can allow emergence of a new approach to superficial dose estimation, functional imaging, and quality assurance for radiation therapy dosimetry. In this letter, the first in vivo Cherenkov images of a real-time Cherenkoscopy during EBRT are presented. The imaging system consisted of a time-gated intensified charge coupled device (ICCD) coupled with a commercial lens. The ICCD was synchronized to the linear accelerator to detect Cherenkov photons only during the 3.25-μs radiation bursts. Images of a tissue phantom under irradiation show that the intensity of Cherenkov emission is directly proportional to radiation dose, and images can be acquired at 4.7 frames/s with SNR>30. Cherenkoscopy was obtained from the superficial regions of a canine oral tumor during planned, Institutional Animal Care and Use Committee approved, conventional (therapeutically appropriate) EBRT irradiation. Coregistration between photography and Cherenkoscopy validated that Cherenkov photons were detected from the planned treatment region. Real-time images correctly monitored the beam field changes corresponding to the planned dynamic wedge movement, with accurate extent of overall beam field, and expected cold and hot regions.

  13. A beam intensity monitor for the Loma Linda cancer therapy proton accelerator.

    PubMed

    Coutrakon, G; Miller, D; Kross, B J; Anderson, D F; DeLuca, P; Siebers, J

    1991-01-01

    A beam intensity monitor was tested in a 230-MeV proton beam at the Loma Linda Proton Therapy Accelerator during its commissioning at Fermi National Accelerator Laboratory. The intensity monitor was designed to regulate the beam intensity extracted from the proton synchrotron. The proton beam is tunable between 70 and 250 MeV with an adjustable intensity between 10(10) and 10(11) protons per spill. A beam spill is typically 1 s long with a 2-s repetition period. The intensity monitor must be radiation hard, expose minimum mass to the beam, and measure intensity to 1% in 1-ms time intervals. To this end, a 5-cm-thick xenon gas scintillator optically coupled to a photomultiplier tube (PMT) was tested to measure its response to the proton beam. The gas cell was operated at 1.2 atm of pressure and has 12.7-microns-thick titanium entrance and exit foils. The total mass exposed to the beam is 0.14 g/cm2 and is dominated by the titanium windows. This mass corresponds to a range attenuation equal to 1.4 mm of water. The energy lost to the xenon gas is about 70 keV per proton. Each passing proton will produce approximately 2000 photons. With a detection efficiency on the order of 0.05% for this UV light, one would anticipate over 10(10) photoelectrons per second. In a 1-ms time bin there will be approximately 10(7) photoelectrons. This yields a resolution limited by systematics. For unregulated 0.4-s proton spills, we observe a response bandwidth in excess of 10(4) Hz. While signal-to-noise and linearity were not easily measured, we estimate as few as 10(3) protons can be observed suggesting a dynamic range in excess of 10(5) is available.

  14. High effective neutralizer for negative hydrogen and deuterium ion beams on base of nonresonance adiabatic trap of photons

    NASA Astrophysics Data System (ADS)

    Popov, S. S.; Atluhanov, M. G.; Burdakov, A. V.; Ivanov, A. A.; Kolmogorov, A. V.; Ushkova, M. Yu.

    2017-08-01

    High efficiency of negative ion beam neutralization by using a photon target is presented in this work. The target was designed and manufactured on principles of nonresonance adiabatic confinement of photons. This photon trap shaped a long arc blended with end spherical mirrors. The arc part consists several cylinder mirrors. Trap sizes was about 30×50×250 mm3. A photon flux from an industrial fiber laser (λ =1070 nm, Δλ=7nm, P=2.1 kW) was injected into trap normally to one cylinder mirror through small entrance hole with angular spread about 3 degree. Test negative ion beams were passed through photon confinement region and suppressing ion current was registered. These experiments has been carried out with H-, D- beams. High neutralization degree more than 95% has been demonstrated.

  15. Nonlinear Interaction of the Beat-Photon Beams with the Brain Neurocenters: Laser Neurophysics

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2010-03-01

    I propose a novel mechanism for laser-brain interaction: Nonlinear interaction of ultrashort pulses of beat-photon, (φ1-- φ2), or double-photon, (φ1+φ2), footnotetextMaria Goeppert-Mayer, "Uber Elementarakte mit zwei Quantenspr"ungen, Ann Phys 9, 273, 95. (1931). beams with the corrupted brain neurocenters, causing a particular neurological disease. The open-scull cerebral tissue can be irradiated with the beat-photon pulses in the range of several 100s fs, with the laser irradiances in the range of a few mW/cm^2, repetition rate of a few 100s Hz, and in the frequency range of 700-1300nm generated in the beat-wave driven free electron laser.footnotetextV. Alexander Stefan, The Interaction of Photon Beams with the DNA Molecules: Genomic Medical Physics. American Physical Society, 2009 APS March Meeting, March 16-20, 2009, abstract #K1.276; V. Stefan, B. I. Cohen, and C. Joshi, Nonlinear Mixing of Electromagnetic Waves in Plasmas Science 27 January 1989:Vol. 243. no. 4890, pp. 494 -- 500 (January 1989). This method may prove to be an effective mechanism in the treatment of neurological diseases: Parkinson's, Lou Gehrig's, and others.

  16. Vector meson and associated strangeness production using a linearly polarized photon beam at Jefferson Lab

    SciTech Connect

    Philip L. Cole

    2004-09-01

    The set of experiments forming the g8a run took place in the summer of 2001 in Hall B of Jefferson Lab. The g8a run was the commissioning experiment for the linearly-polarized photon beam at CLAS. The aim of these experiments is to improve the understanding of the underlying symmetry of the quark degrees of freedom in the nucleon, the nature of the parity exchange between the incident photon and the target nucleon, and the mechanism of associated strangeness production in electromagnetic reactions. A beam of tagged and collimated linearly polarized photons (energy range 1.8-2.2 GeV) in conjunction with the large solid angle coverage of CLAS make possible the extraction of the differential cross-sections and polarization observables for the photoproduction of vector mesons and kaons. The reaction channels are under investigation to search for possibly missing nucleon resonances. An overview of the experiment and preliminary results on the measurement of the photon asymmetries of the aforementioned reactions will be presented in this paper.

  17. Three-photon resonant atomic excitation in spatially incoherent laser beams

    SciTech Connect

    Peet, Victor; Shchemeljov, Sergei

    2003-10-01

    Two-color excitation by spatially coherent and incoherent laser beams has been used to study three-photon-resonant excitation and subsequent ionization of xenon in conditions, when internally generated sum-frequency field plays an important role in excitation of atomic resonances through interfering one-photon excitation pathway. We show that the incoherence in one of the pumping fields reduces the efficiency of generated sum-frequency field, and thus suppresses the interference between the three- and the one-photon excitation channels. The degree of suppression is controlled by varying the crossing angle between coherent and incoherent laser beams. We show that ionization profiles can be analyzed on the basis of the well-studied interference of one- and three-photon transition amplitudes, but with pumping field decomposed into multiple small-scale uncorrelated domains where coherent process of four-wave mixing occurs. The gain length for a coherent process in these domains depends on the coherence degree and excitation geometry. It gives a possibility of controlling the contribution of coherent processes to the excitation of multiphoton resonances.

  18. Photon beam asymmetry Σ for η and η‧ photoproduction from the proton

    NASA Astrophysics Data System (ADS)

    Collins, P.; Ritchie, B. G.; Dugger, M.; Anisovich, A. V.; Döring, M.; Klempt, E.; Nikonov, V. A.; Rönchen, D.; Sadasivan, D.; Sarantsev, A.; Adhikari, K. P.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Balossino, I.; Bashkanov, M.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, Frank Thanh; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Wei, X.; Zachariou, N.; Zhang, J.

    2017-08-01

    Measurements of the linearly-polarized photon beam asymmetry Σ for photoproduction from the proton of η and η‧ mesons are reported. A linearly-polarized tagged photon beam produced by coherent bremsstrahlung was incident on a cryogenic hydrogen target within the CEBAF Large Acceptance Spectrometer. Results are presented for the γp → ηp reaction for incident photon energies from 1.070 to 1.876 GeV, and from 1.516 to 1.836 GeV for the γp →η‧ p reaction. For γp → ηp, the data reported here considerably extend the range of measurements to higher energies, and are consistent with the few previously published measurements for this observable near threshold. For γp →η‧ p, the results obtained are consistent with the few previously published measurements for this observable near threshold, but also greatly expand the incident photon energy coverage for that reaction. Initial analysis of the data reported here with the Bonn-Gatchina model strengthens the evidence for four nucleon resonances - the N (1895) 1 /2-, N (1900) 3 /2+, N (2100) 1 /2+ and N (2120) 3 /2- resonances - which presently lack the ;four-star; status in the current Particle Data Group compilation, providing examples of how these new measurements help refine models of the photoproduction process.

  19. Photon beam asymmetry Σ for η and η' photoproduction from the proton

    DOE PAGES

    Collins, P.; Ritchie, B. G.; Dugger, M.; ...

    2017-05-18

    Measurements of the linearly-polarized photon beam asymmetrymore » $$\\Sigma$$ for photoproduction from the proton of $$\\eta$$ and $$\\eta^\\prime$$ mesons are reported. A linearly-polarized tagged photon beam produced by coherent bremsstrahlung was incident on a cryogenic hydrogen target within the CEBAF Large Acceptance Spectrometer. Results are presented for the $$\\gamma p \\to \\eta p$$ reaction for incident photon energies from 1.070 to 1.876 GeV, and from 1.516 to 1.836 GeV for the $$\\gamma p \\to \\eta^\\prime p$$ reaction. For $$\\gamma p \\to \\eta p$$, the data reported here considerably extend the range of measurements to higher energies, and are consistent with the few previously published measurements for this observable near threshold. For $$\\gamma p \\to \\eta^\\prime p$$, the results obtained are consistent with the few previously published measurements for this observable near threshold, but also greatly expand the incident photon energy coverage for that reaction. In conclusion, initial analysis of the data reported here with the Bonn-Gatchina model strengthens the evidence for four nucleon resonances -- the $N(1895)1/2^-$, $N(1900)3/2^+$, $N(2100)1/2^+$ and $N(2120)3/2^-$ resonances -- which presently lack the "four-star" status in the current Particle Data Group compilation, providing examples of how these new measurements help refine models of the photoproduction process.« less

  20. The influence of bowtie filtration on x-ray photons distribution in cone beam CT

    NASA Astrophysics Data System (ADS)

    Jiang, Shanghai; Feng, Peng; Wei, Biao; He, Peng; Deng, Luzhen; Zhang, Wei

    2015-10-01

    Bowtie filters are used to modulate an incoming x-ray beam as a function of the angle of the x-ray to balance the photon flux on a detector array. Because of their key roles in radiation dose reduction and multi-energy imaging, bowtie filters have attracted a major attention in modern X-ray computed tomography (CT). However, few researches are concerned on the effects of the structure and materials for the bowtie filter in the Cone Beam CT (CBCT). In this study, the influence of bowtie filters' structure and materials on X-ray photons distribution are analyzed using Monte Carlo (MC) simulations by MCNP5 code. In the current model, the phantom was radiated by virtual X-ray source (its' energy spectrum calculated by SpekCalc program) filtered using bowtie, then all photons were collected through array photoncounting detectors. In the process above, two bowtie filters' parameters which include center thickness (B), edge thickness (controlled by A), changed respectively. Two kinds of situation are simulated: 1) A=0.036, B=1, 2, 3, 4, 5, 6mm and the material is aluminum; 2) A=0.016, 0.036, 0.056, 0.076, 0.096, B=2mm and the material is aluminum. All the X-ray photons' distribution are measured through MCNP. The results show that reduction in center thickness and edge thickness can reduce the number of background photons in CBCT. Our preliminary research shows that structure parameters of bowtie filter can influence X-ray photons, furthermore, radiation dose distribution, which provide some evidences in design of bowtie filter for reducing radiation dose in CBCT.

  1. Influence of photon beam irradiation on Lymnaea natalensis snails infected with Fasciola gigantica.

    PubMed

    Said, Doaa E; Rostom, Yousry A

    2006-04-01

    Lymnaea natalensis is the intermediate host of Fasciola gigantica in Egypt. The effect of photon beam irradiation on the ability of the laboratory reared L. natalensis to support the larval development of F. gigantica has been studied. 120 snails were divided into two groups: The control infected non irradiated group (GI) and the experimental infected irradiated group (GII). The later group was subdivided into two subgroups: GIIa: snails irradiated before infection and GIIb: snails irradiated after infection. Photon beam irradiation had non significant effect on the survival rate between the all groups at the 30th day post infection. The life span, the number of infected snails and the length of the shedding period were significantly decreased in the two irradiated subgroups than the control group. The effect was more obvious on GIIb without significant difference. The number of metacercariae significantly decreased in the 2 irradiated subgroups than the control one. Also, it was significantly decreased in GIIb when compared with GIIa. So, photon beam irradiation has a great role on retarding larval development of F. gigantica inside the snail. This opens the way to a new strategy for fascioliasis control of in Egypt.

  2. Production and dosimetry of simultaneous therapeutic photons and electrons beam by linear accelerator: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Khledi, Navid; Arbabi, Azim; Sardari, Dariush; Mohammadi, Mohammad; Ameri, Ahmad

    2015-02-01

    Depending on the location and depth of tumor, the electron or photon beams might be used for treatment. Electron beam have some advantages over photon beam for treatment of shallow tumors to spare the normal tissues beyond of the tumor. In the other hand, the photon beam are used for deep targets treatment. Both of these beams have some limitations, for example the dependency of penumbra with depth, and the lack of lateral equilibrium for small electron beam fields. In first, we simulated the conventional head configuration of Varian 2300 for 16 MeV electron, and the results approved by benchmarking the Percent Depth Dose (PDD) and profile of the simulation and measurement. In the next step, a perforated Lead (Pb) sheet with 1mm thickness placed at the top of the applicator holder tray. This layer producing bremsstrahlung x-ray and a part of the electrons passing through the holes, in result, we have a simultaneous mixed electron and photon beam. For making the irradiation field uniform, a layer of steel placed after the Pb layer. The simulation was performed for 10×10, and 4×4 cm2 field size. This study was showed the advantages of mixing the electron and photon beam by reduction of pure electron's penumbra dependency with the depth, especially for small fields, also decreasing of dramatic changes of PDD curve with irradiation field size.

  3. Production and dosimetry of simultaneous therapeutic photons and electrons beam by linear accelerator: A Monte Carlo study

    SciTech Connect

    Khledi, Navid; Sardari, Dariush; Arbabi, Azim; Ameri, Ahmad; Mohammadi, Mohammad

    2015-02-24

    Depending on the location and depth of tumor, the electron or photon beams might be used for treatment. Electron beam have some advantages over photon beam for treatment of shallow tumors to spare the normal tissues beyond of the tumor. In the other hand, the photon beam are used for deep targets treatment. Both of these beams have some limitations, for example the dependency of penumbra with depth, and the lack of lateral equilibrium for small electron beam fields. In first, we simulated the conventional head configuration of Varian 2300 for 16 MeV electron, and the results approved by benchmarking the Percent Depth Dose (PDD) and profile of the simulation and measurement. In the next step, a perforated Lead (Pb) sheet with 1mm thickness placed at the top of the applicator holder tray. This layer producing bremsstrahlung x-ray and a part of the electrons passing through the holes, in result, we have a simultaneous mixed electron and photon beam. For making the irradiation field uniform, a layer of steel placed after the Pb layer. The simulation was performed for 10×10, and 4×4 cm2 field size. This study was showed the advantages of mixing the electron and photon beam by reduction of pure electron's penumbra dependency with the depth, especially for small fields, also decreasing of dramatic changes of PDD curve with irradiation field size.

  4. Highly Effective Light Beam Diffraction on Holographic PDLC Photonic Structure, Controllable by the Spatially Inhomogeneous Electric Field

    NASA Astrophysics Data System (ADS)

    Semkin, A. O.; Sharangovich, S. N.

    In this work the highly effiective light beam diffraction on holographic photonic structure formed in polymer-dispersed liquid crystal (PDLCs) is theoretically described. The ability to manage its diffraction characteristics by the spatially inhomogeneous electric field is also shown.

  5. Ecliptic method for the determination of backscatter into the beam monitor chambers in photon beams of medical accelerators.

    PubMed

    Sanz, Darío Esteban; Alvarez, Guillermo Daniel; Nelli, Flavio Enrico

    2007-03-21

    A new method to measure the effect of the backscatter into the beam monitor chambers in linear accelerators is introduced from first principles. The technique, applicable to high-energy photon beams, is similar to the well-known telescopic method although here the heavy blocks are replaced by a very small, centred block on the shadow tray, thus the name 'ecliptic method'. This effect, caused mainly by backscattering from the secondary collimators, is known to be an output factor constituent and must be accounted for when detailed calculations involving the machine's head are required. Since its magnitude is generally small, experimental errors might obscure the behaviour of the phenomenon. Consequently, the procedure introduced goes along with an uncertainty assessment. Our theory was confirmed via measurements in cobalt-60 beams, where the studied effect does not contribute to the output factor. Measurements were also performed on our Saturne 41 linear accelerator and the results were qualitatively similar to those described elsewhere. The collimation systems were studied separately by varying one jaw setting while keeping the other at its maximum value. In the light of these results, we deduced an algorithm that can correlate the former data with the effect of backscattering to the beam monitor chambers for any rectangular field within 0.5%, which is of the order of the experimental uncertainty (0.6%). As we show, the experimental procedure is safe, simple, not invasive for the linac and requires only basic dosimetry equipment.

  6. Correlation study of a beam-position monitor and a photon-beam-position monitor in the PLS-II

    NASA Astrophysics Data System (ADS)

    Kim, Changbum; Shin, Seunghwan; Hwang, Ilmoon; Lee, Byung-Joon; Joo, Young-Do; Ha, Taekyun; Yoon, Jong Chel; Kim, Ghyung Hwa; Kim, Mungyung; Lee, Eun Hee; Kim, Ilyou; Huang, Jung-Yun

    2015-01-01

    The beam stability is one of the most important issues for the user service of the synchrotron radiation facility. After the upgrade of the Pohang Light Source (PLS-II), the electron-beam orbit is maintained within a root-mean-squred (rms) 1- μm range by using an orbit feedback system. However, that does not guarantee the radiation stability at the end of the beamline because unknown factors, such as focusing mirrors and double-crystal monocrometers, are present in the beamline. As a first step to solve this problem, photon-beam-position monitors (PBPMs) are installed in the front ends of the beamline to monitor the radiation stability. If the radiation is stable at the starting point of the beamline, we can move to the other components downstream that make the radiation unstable. In this paper, a correlation study will be presented between the beam-position monitor (BPM) and the PBPM. In addition, the effect of the orbit feedback system on the correlation will be described.

  7. The water equivalence of solid phantoms for low energy photon beams

    SciTech Connect

    Hill, Robin; Kuncic, Zdenka; Baldock, Clive

    2010-08-15

    Purpose: To compare and evaluate the dosimetric water equivalence of several commonly used solid phantoms for low energy photon beams. Methods: A total of ten different solid phantom materials was used in the study. The PENELOPE Monte Carlo code was used to calculate depth doses and beam profiles in all the phantom materials as well as the dose to a small water voxel at the surface of the solid phantom. These doses were compared to the corresponding doses calculated in a water phantom. The primary photon beams used ranged in energy from 50 to 280 kVp. Results: A number of phantom materials had excellent agreement in dose compared to water for all the x-ray beam energies studied. RMI457 Solid Water, Virtual Water, PAGAT, A150, and Plastic Water DT all had depth doses that agreed with those in water to within 2%. For these same phantom materials, the dose changes in the water voxel at the surface of the solid phantom were within 2%, except for A150, which agreed to within 2.7%. By comparison, the largest differences in depth doses occurred for Plastic Water (-21.7%) and polystyrene (17.6%) for the 50 kVp energy photon beam and 8 cm diameter field size. Plastic Water gave the largest difference in the normalized beam profiles with differences of up to 3.5% as compared to water. Surface dose changes, due to the presence of the solid phantom acting as the backscatter material, were found to be up to 9.1% for polystyrene with significant differences also found for Plastic Water, PMMA, and RW3 phantoms. Conclusions: The following solid phantoms can be considered water equivalent and are recommended for relative dosimetry of low energy photon beams: A150, PAGAT, Plastic Water DT, RMI457 Solid Water, and Virtual Water. However, the following solid phantoms give significant differences, compared to water, in depth doses, profiles, and/or in surface doses due to backscatter changes: Plastic Water, PMMA, polystyrene, PRESAGE, and RW3.

  8. First experimental-based characterization of oxygen ion beam depth dose distributions at the Heidelberg Ion-Beam Therapy Center

    NASA Astrophysics Data System (ADS)

    Kurz, C.; Mairani, A.; Parodi, K.

    2012-08-01

    Over the last decades, the application of proton and heavy-ion beams to external beam radiotherapy has rapidly increased. Due to the favourable lateral and depth dose profile, the superposition of narrow ion pencil beams may enable a highly conformal dose delivery to the tumour, with better sparing of the surrounding healthy tissue in comparison to conventional radiation therapy with photons. To fully exploit the promised clinical advantages of ion beams, an accurate planning of the patient treatments is required. The clinical treatment planning system (TPS) at the Heidelberg Ion-Beam Therapy Center (HIT) is based on a fast performing analytical algorithm for dose calculation, relying, among others, on laterally integrated depth dose distributions (DDDs) simulated with the FLUKA Monte Carlo (MC) code. Important input parameters of these simulations need to be derived from a comparison of the simulated DDDs with measurements. In this work, the first measurements of 16O ion DDDs at HIT are presented with a focus on the determined Bragg peak positions and the understanding of factors influencing the shape of the distributions. The measurements are compared to different simulation approaches aiming to reproduce the acquired data at best. A simplified geometrical model is first used to optimize important input parameters, not known a priori, in the simulations. This method is then compared to a more realistic, but also more time-consuming simulation approach better accounting for the experimental set-up and the measuring process. The results of this work contributed to a pre-clinical oxygen ion beam database, which is currently used by a research TPS for corresponding radio-biological cell experiments. A future extension to a clinical database used by the clinical TPS at HIT is foreseen. As a side effect, the performed investigations showed that the typical water equivalent calibration approach of experimental data acquired with water column systems leads to slight

  9. Relative biological damage in and out of field of 6, 10 and 18 MV clinical photon beams

    NASA Astrophysics Data System (ADS)

    Ezzati, A. O.

    2016-08-01

    The lower energy of scattered radiation in and out of a megavoltage (MV) photon beam suggests that relative biological damage (RBD) may change from in- to out-of-field regions for unit absorbed dose. Because of high linear energy transfer (LET) and potential of causing severe damage to the DNA, low-energy (10 eV-1 keV) slowing down electrons should be included in radiation biological damage calculations. In this study RBD was calculated in and out of field of 6, 10 and 18 MV clinical photon beams including low-energy slowing down electrons in the track length estimated method. Electron spectra at energies higher than 2 keV were collected in a water phantom at different depths and off-axis points by using the MCNP code. A new extrapolation method was used to estimate the electron spectra at energies lower than 2 keV. The obtained spectra at energies lower than 2 keV merged with spectra at energies higher than 2 keV by using continuity of the spectra. These spectra were used as an input to a validated microdosimetric Monte Carlo (MC) code, MC damage simulation (MCDS), to calculate the RBD of induced DSB in DNA at points in and out of the primary radiation field under fully aerobic (100% O2 and anoxic (0% O2 conditions. There was an observable difference in the energy spectra for electrons for points in the primary radiation field and those points out of field. RBD had maximum variation, 11% in 6 MV photons at field size of 20×20 cm2. This variation was less than 11% for 10 and 18 MV photons and field sizes smaller than 20×20 cm2. Our simulations also showed that under the anoxic condition, RBD increases up to 6% for 6 and 10 MV photons and the 20×20 cm2 field size. This work supports the hypothesis that in megavoltage treatments out-of-field radiation quality can vary enough to have an impact on RBD per unit dose and that this may play a role as the radiation therapy community explores biological optimization as a tool to assist treatment planning.

  10. Beam angle selection incorporation of anatomical heterogeneities for pencil beam scanning charged-particle therapy

    NASA Astrophysics Data System (ADS)

    Toramatsu, Chie; Inaniwa, Taku

    2016-12-01

    In charged particle therapy with pencil beam scanning (PBS), localization of the dose in the Bragg peak makes dose distributions sensitive to lateral tissue heterogeneities. The sensitivity of a PBS plan to lateral tissue heterogeneities can be reduced by selecting appropriate beam angles. The purpose of this study is to develop a fast and accurate method of beam angle selection for PBS. The lateral tissue heterogeneity surrounding the path of the pencil beams at a given angle was quantified with the heterogeneity number representing the variation of the Bragg peak depth across the cross section of the beams using the stopping power ratio of body tissues with respect to water. To shorten the computation time, one-dimensional dose optimization was conducted along the central axis of the pencil beams as they were directed by the scanning magnets. The heterogeneity numbers were derived for all possible beam angles for treatment. The angles leading to the minimum mean heterogeneity number were selected as the optimal beam angle. Three clinical cases of head and neck cancer were used to evaluate the developed method. Dose distributions and their robustness to setup and range errors were evaluated for all tested angles, and their relation to the heterogeneity numbers was investigated. The mean heterogeneity number varied from 1.2 mm-10.6 mm in the evaluated cases. By selecting a field with a low mean heterogeneity number, target dose coverage and robustness against setup and range errors were improved. The developed method is simple, fast, accurate and applicable for beam angle selection in charged particle therapy with PBS.

  11. Beam angle selection incorporation of anatomical heterogeneities for pencil beam scanning charged-particle therapy.

    PubMed

    Toramatsu, Chie; Inaniwa, Taku

    2016-12-21

    In charged particle therapy with pencil beam scanning (PBS), localization of the dose in the Bragg peak makes dose distributions sensitive to lateral tissue heterogeneities. The sensitivity of a PBS plan to lateral tissue heterogeneities can be reduced by selecting appropriate beam angles. The purpose of this study is to develop a fast and accurate method of beam angle selection for PBS. The lateral tissue heterogeneity surrounding the path of the pencil beams at a given angle was quantified with the heterogeneity number representing the variation of the Bragg peak depth across the cross section of the beams using the stopping power ratio of body tissues with respect to water. To shorten the computation time, one-dimensional dose optimization was conducted along the central axis of the pencil beams as they were directed by the scanning magnets. The heterogeneity numbers were derived for all possible beam angles for treatment. The angles leading to the minimum mean heterogeneity number were selected as the optimal beam angle. Three clinical cases of head and neck cancer were used to evaluate the developed method. Dose distributions and their robustness to setup and range errors were evaluated for all tested angles, and their relation to the heterogeneity numbers was investigated. The mean heterogeneity number varied from 1.2 mm-10.6 mm in the evaluated cases. By selecting a field with a low mean heterogeneity number, target dose coverage and robustness against setup and range errors were improved. The developed method is simple, fast, accurate and applicable for beam angle selection in charged particle therapy with PBS.

  12. Nano-scale processes behind ion-beam cancer therapy

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Garcia, Gustavo; Mason, Nigel; Solov'yov, Andrey V.

    2016-04-01

    This topical issue collates a series of papers based on new data reported at the third Nano-IBCT Conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy, held in Boppard, Germany, from October 27th to October 31st, 2014. The Nano-IBCT COST Action was launched in December 2010 and brought together more than 300 experts from different disciplines (physics, chemistry, biology) with specialists in radiation damage of biological matter from hadron-therapy centres, and medical institutions. This meeting followed the first and the second conferences of the Action held in October 2011 in Caen, France and in May 2013 in Sopot, Poland respectively. This conference series provided a focus for the European research community and has highlighted the pioneering research into the fundamental processes underpinning ion beam cancer therapy.

  13. Beam-on imaging of short-lived positron emitters during proton therapy

    NASA Astrophysics Data System (ADS)

    Buitenhuis, H. J. T.; Diblen, F.; Brzezinski, K. W.; Brandenburg, S.; Dendooven, P.

    2017-06-01

    In vivo dose delivery verification in proton therapy can be performed by positron emission tomography (PET) of the positron-emitting nuclei produced by the proton beam in the patient. A PET scanner installed in the treatment position of a proton therapy facility that takes data with the beam on will see very short-lived nuclides as well as longer-lived nuclides. The most important short-lived nuclide for proton therapy is 12N (Dendooven et al 2015 Phys. Med. Biol. 60 8923-47), which has a half-life of 11 ms. The results of a proof-of-principle experiment of beam-on PET imaging of short-lived 12N nuclei are presented. The Philips Digital Photon Counting Module TEK PET system was used, which is based on LYSO scintillators mounted on digital SiPM photosensors. A 90 MeV proton beam from the cyclotron at KVI-CART was used to investigate the energy and time spectra of PET coincidences during beam-on. Events coinciding with proton bunches, such as prompt gamma rays, were removed from the data via an anti-coincidence filter with the cyclotron RF. The resulting energy spectrum allowed good identification of the 511 keV PET counts during beam-on. A method was developed to subtract the long-lived background from the 12N image by introducing a beam-off period into the cyclotron beam time structure. We measured 2D images and 1D profiles of the 12N distribution. A range shift of 5 mm was measured as 6  ±  3 mm using the 12N profile. A larger, more efficient, PET system with a higher data throughput capability will allow beam-on 12N PET imaging of single spots in the distal layer of an irradiation with an increased signal-to-background ratio and thus better accuracy. A simulation shows that a large dual panel scanner, which images a single spot directly after it is delivered, can measure a 5 mm range shift with millimeter accuracy: 5.5  ±  1.1 mm for 1  ×  108 protons and 5.2  ±  0.5 mm for 5  ×  108 protons. This makes

  14. Photodynamic therapy by nonresonant two-photon excitation

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter

    1999-07-01

    Intracellular photodynamic reactions by nonlinear excitation of porphyrin photosensitizers have been induced using near infrared ultrashort laser pulses at 200 fs pulse width, 80 MHz pulse repetition rate and 2 mW mean laser power. In particular, a highly focused 780 nm pulsed laser scanning beam was employed at a frame rate of 1/16 s-1 (60 microsecond(s) pixel dwell time) to expose Photofrin-labeled and aminolevulinic acid (ALA)-labeled Chinese hamster ovary cells. Intracellular accumulation and photobleaching of the fluorescent photosensitizers protoporphyrin IX and Photofrin have been studied by non-resonant two-photon fluorescence excitation. Subsequent scanning of the sensitizer-labeled cells resulted in reduced cloning efficiency of 50% and 0% after about 13 scans (approximately equals 10 mJ) and 50 scans, respectively, in the case of Photofrin accumulation (5 (mu) g/ml) and after about 24 scans and 100 scans in the case of ALA administration (1.5 mg/ml). Live/dead assays revealed the loss of vitality of most of cells after 50 scans for Photofrin-labeled cells and 100 scans for ALA-labeled cells. Sensitizer-free control cells could be scanned more than 250 times (1.1 h) without impact on the reproduction behavior, morphology, and vitality.

  15. Dosimetric impact of monoenergetic photon beams in the small-animal irradiation with inhomogeneities: A Monte Carlo evaluation

    NASA Astrophysics Data System (ADS)

    Chow, James C. L.

    2013-05-01

    This study investigated the variations of the dose and dose distribution in a small-animal irradiation due to the photon beam energy and presence of inhomogeneity. Based on the same mouse computed tomography image set, three Monte Carlo phantoms namely, inhomogeneous, homogeneous and bone-tissue phantoms were used in this study. These phantoms were generated by overriding the relative electron density of no voxel (inhomogeneous), all voxel (homogeneous) and the bone voxel (bone-tissue) to one. 360° photon arcs with beam energies of 50-1250 kV were used in mouse irradiations. Doses in the above phantoms were calculated using the EGSnrc-based DOSXYZnrc code through the DOSCTP. It was found that the dose conformity increased with the increase of the photon beam energy from the kV to MV range. For the inhomogeneous mouse phantom, increasing the photon beam energy from 50 kV to 1250 kV increased about 21 times the dose deposited at the isocenter. For the bone dose enhancement, the mean dose was 1.4 times higher when the bone inhomogeneity was not neglected using the 50 kV photon beams in the mouse irradiation. Bone dose enhancement affecting the mean dose in the mouse irradiation can be found in the photon beams with energy range of 50-200 kV, and the dose enhancement decreases with an increase of the beam energy. Moreover, the MV photon beam has a higher dose at the isocenter, and a better dose conformity compared to the kV beam.

  16. Monte Carlo simulation on pre-clinical irradiation: A heterogeneous phantom study on monoenergetic kilovoltage photon beams

    NASA Astrophysics Data System (ADS)

    Chow, James C. L.

    2012-10-01

    This study investigated radiation dose variations in pre-clinical irradiation due to the photon beam energy and presence of tissue heterogeneity. Based on the same mouse computed tomography image dataset, three phantoms namely, heterogeneous, homogeneous and bone homogeneous were used. These phantoms were generated by overriding the relative electron density of no voxel (heterogeneous), all voxel (homogeneous) and the bone voxel (bone homogeneous) to one. 360° photon arcs with beam energies of 50 - 1250 keV were used in mouse irradiations. Doses in the above phantoms were calculated using the EGSnrc-based DOSXYZnrc code through the DOSCTP. Monte Carlo simulations were carried out in parallel using multiple nodes in a high-performance computing cluster. It was found that the dose conformity increased with the increase of the photon beam energy from the keV to MeV range. For the heterogeneous mouse phantom, increasing the photon beam energy from 50 keV to 1250 keV increased seven times the dose deposited at the isocenter. For the bone dose enhancement, the mean dose was 2.7 times higher when the bone heterogeneity was not neglected using the 50 keV photon beams in the mouse irradiation. Bone dose enhancement affecting the mean dose was found in the photon beams with energy range of 50 - 200 keV and the dose enhancement decreased with an increase of the beam energy. Moreover, the MeV photon beam had a higher dose at the isocenter, and a better dose conformity compared to the keV beam.

  17. Positive operator-valued measure reconstruction of a beam-splitter tree-based photon-number-resolving detector.

    PubMed

    Piacentini, F; Levi, M P; Avella, A; López, M; Kück, S; Polyakov, S V; Degiovanni, I P; Brida, G; Genovese, M

    2015-04-01

    Here we present a reconstruction of the positive operator-value measurement of a photon-number-resolving detector comprised of three 50∶50 beam-splitters in a tree configuration, terminated with four single-photon avalanche detectors. The four detectors' outputs are processed by an electronic board that discriminates detected photon number states from 0 to 4 and implements a "smart counting" routine to compensate for dead time issues at high count rates.

  18. Study of the dosimetric properties of an unflattened 6-MV photon beam by using the BEAMnrc code

    NASA Astrophysics Data System (ADS)

    Kajaria, Ankit; Sharma, Neeraj; Sharma, Shiru; Pradhan, Satyajit; Mandal, Abhijit; Aggarwal, Lalit. M.

    2016-08-01

    This study investigated the basic dosimetric properties of a Flattening-filter-free 6-MV photon beam based on the unique performance model of the Varian Clinic 600 linac operated with and without a flattening filter. Dosimetric features, including the central-axis absorbed dose, the beam profiles and the photon and electron fluences were calculated for the flattened and unflattened cases separately by using Monte Carlo simulations. We observe that the dosimetric field size and penumbra were slightly smaller for the unflattened beam, but the beam's non-flatness is unlikely to present a problem for treatments with small fields. Absolute depth dose calculations showed an increase in the dose rate by a factor of more than 2.4 for the unflattened 6-MV beam which depended on the depth. These results suggest that the removal of the filter could result in higher central-axis dose rates and hence, shorter beam delivery times for treatments. Surface doses were found to be higher for the unflattened beam due to more contamination electrons and low-energy photons being present in the beam. The total scatter factor, SCP, varies less with the field sizes, indicating that removing the filter from the beam line can reduce significantly the amount of head scatter photons and therefore, doses to normal tissues and organs.

  19. Characteristics of Movement-Induced Dose Reduction in Target Volume: A Comparison Between Photon and Proton Beam Treatment

    SciTech Connect

    Yoon, Myonggeun; Shin, Dongho; Kwak, Jungwon; Park, Soah; Lim, Young Kyung; Kim, Dongwook; Park, Sung Yong Lee, Se Byeong; Shin, Kyung Hwan; Kim, Tae Hyun; Cho, Kwan Ho

    2009-10-01

    We compared the main characteristics of movement-induced dose reduction during photon and proton beam treatment, based on an analysis of dose-volume histograms. To simulate target movement, a target contour was delineated in a scanned phantom and displaced by 3 to 20 mm. Although the dose reductions to the target in the 2 treatment systems were similar for transverse (perpendicular to beam direction) target motion, they were completely different for longitudinal (parallel to beam direction) target motion. While both modalities showed a relationship between the degree of target shift and the reduction in dose coverage, dose reduction showed a strong directional dependence in proton beam treatment. Clinical simulation of target movement for a prostate cancer patient showed that, although coverage and conformity indices for a 6-mm lateral movement of the prostate were reduced by 9% and 16%, respectively, for proton beam treatment, they were reduced by only 1% and 7%, respectively, for photon treatment. This difference was greater for a 15-mm target movement in the lateral direction, which lowered the coverage and conformity indices by 34% and 54%, respectively, for proton beam treatment, but changed little during photon treatment. In addition, we found that the equivalent uniform dose (EUD) and homogeneity index show similar characteristics during target movement. These results suggest that movement-induced dose reduction differs significantly between photon and proton beam treatment. Attention should be paid to the target margin in proton beam treatment due to the distinct characteristics of heavy ion beams.

  20. Tumour dose enhancement using modified megavoltage photon beams and contrast media

    NASA Astrophysics Data System (ADS)

    Robar, James L.; Riccio, Silvia A.; Martin, M. A.

    2002-07-01

    This study examines the magnitude of tumour dose enhancement achieved by injection of gadolinium or iodine contrast media (CM) and treatment using modified x-ray photon spectra from linear accelerators. Monte Carlo modelling of the linear accelerator and patient geometry was used to explore the effect of removing the flattening filter for various beam qualities and the resultant effect on dose enhancement. In addition, ionization measurements were conducted to observe dose enhancement within a phantom containing CM. Simulation results indicate that for flattened 6-24 MV photon beams and realistic CM tumour concentrations, the dose enhancement remains below 5%. However, if the flattening filter is removed, dose enhancement is increased significantly. For a 30 mg ml-1 gadolinium CM tumour concentration, for example, 8.4%, 10.8%, 13.7% and 23.1% dose enhancements are achieved for 18 MV, 6 MV, 4 MV and 2 MV unflattened beams, respectively. In contrast to the phototherapy technique, which uses the orthovoltage beam from a modified CT scanner to achieve dose enhancement, all unflattened spectra preserve the dose build-up at the surface, and thus the skin and bone are spared.

  1. WE-A-207-02: Electron Beam Therapy - Current Status and Future Directions

    SciTech Connect

    Wu, Q.

    2015-06-15

    In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medical physics.

  2. The bremsstrahlung tagged photon beam in Hall B at the Jefferson Laboratory

    SciTech Connect

    Daniel I. Sober; Hall Crannell; Alberto Longhi; Scott Matthews; James T. O'Brien; Barry L. Berman; William Briscoe; Philip L. Cole; James Connelly; W.R. Dodge; Luc Y. Murphy; S.A. Phillips; Michael Dugger; David Lawrence; Barry G. Ritchie; Elton Smith; J.M. Lambert; Eric P.M. Anciant; Gerad Audit; Thierry Auger; Claude Marchand; Michael Klusman; James Napolitano; M.A. Khandaker; Carlos Salgado; Adam Sarty

    2000-02-01

    We describe the design and commissioning of the photon tagging beamline installed in experimental Hall B at the Thomas Jefferson National Accelerator Facility (Jlab). This system can tag photon energies over a range from 20% to 95% of the incident electron energy, and is capable of operation with beam energies up to 6.1 GeV. A single dipole magnet is combined with a hodoscope containing two planar arrays of plastic scintillators to detect energy-degraded electrons from a thin bremsstrahlung radiator. The first layer of 384 partially overlapping small scintillators provides photon energy resolution, while the second layer of 61 larger scintillators provides the timing resolution necessary to form a coincidence with the corresponding nuclear interaction triggered by the tagged photon. The definitions of overlap channels in the first counter plane and of geometric correlation between the two planes are determined using digitized time information from the individual counters. Auxiliary beamline devices are briefly described, and performance results to date under real operating conditions are presented. The entire photon-tagging system has met or exceeded its design goals.

  3. Post mastectomy chest wall irradiation using mixed electron-photon beams with or without isocentric technique.

    PubMed

    Hamdy, H K; Zikry, M S

    2008-01-01

    To describe our technique in delivering post mastectomy radiotherapy to chest wall using electron-photon mixed beam with or without isocentric application of the tangential photon portals, and to evaluate the associated acute and delayed morbidities. Twenty-two females with invasive breast cancer were subjected to modified radical mastectomy with adequate axillary dissection. All the patients have either tumour > or = 5 cm and/ or positive axillary nodes > 3. Chest wall was irradiated by a mixed beam of 6-Mev electrons (10Gy) and opposed tangential fields using 6 Mev-photons (36 Gy) followed by 6-Mev electrons boost to the scar of mastectomy for 4 Gy/2 fractions. We randomly allocated our patients to receive the photon beam with or without the isocentric technique. The mean dose to the planned target volume (PTV) by mixed beam was 44 Gy (96%) with a mean dose of 42 Gy (91%) to the overlying skin for the whole study group. In cases with right breast disease (17 cases), the mean right lung tissue volume within the PTV was 220 ml (15%). It was relatively higher with the non-iscocentric technique, 281 ml (19%), compared to the isocentric technique of 159 ml (10.5%). In cases with left breast disease (5 cases), the mean left lung volume within the PTV was 175 ml (14%). Larger volume of the lung tissue was included with the non-isocentric technique, 197 ml (16%) compared to the isocentric technique of 153 ml (12%). The mean scattered doses to the rest of the lung tissue, the rest of the heart in left breast cases, and the contra-lateral breast for the whole study group were 2.8 Gy, 1.8 Gy, and 1.4 Gy respectively and was comparable in both treatment arms. None of the cases developed any element of acute radiation related pneumonitis. Delayed radiation induced pneumonitis was seen in 2 cases (18%), with the chest wall treated with radiation with the non-isocentric technique. This study clearly demonstrated the utility of mixed beam in irradiating the chest wall after

  4. Dosimetric effects on small-field beam-modeling for stereotactic body radiation therapy

    NASA Astrophysics Data System (ADS)

    Cho, Woong; Kim, Suzy; Kim, Jung-In; Wu, Hong-Gyun; Jung, Joo-Young; Kim, Min-Joo; Suh, Tae-Suk; Kim, Jin-Young; Kim, Jong Won

    2015-02-01

    The treatment planning of stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) requires high accuracy of dosimetric data for small radiation fields. The dosimetric effects on the beam-modeling process of a treatment planning system (TPS) were investigated using different measured small-field data sets. We performed small-field dosimetry with three detectors: a CC13 ion chamber, a CC01 ion chamber, and an edge detector. Percentage depth doses (PDDs) and dose profiles for field sizes given by 3 × 3 cm2, 2 × 2 cm2, and 1 × 1 cm2 were obtained for 6 MV and 15 MV photon beams. Each measured data set was used as data input for a TPS, in which a beam-modeling process was implemented using the collapsed cone convolution (CCC) algorithm for dose calculation. The measured data were used to generate six beam-models based on each combination of detector type and photon energy, which were then used to calculate the corresponding PDDs and dose profiles for various depths and field sizes. Root mean square differences (RMSDs) between the calculated and the measured doses were evaluated for the PDDs and the dose profiles. The RMSDs of PDDs beyond the maximum dose depth were within an accuracy of 0.2-0.6%, being clinically acceptable. The RMSDs of the dose profiles corresponding to the CC13, the CC01, and the edge detector were 2.80%, 1.49%, and 1.46% for a beam energy of 6 MV and 2.34%, 1.15%, and 1.44% for a beam energy of 15 MV, respectively. The calculated results for the CC13 ion chamber showed the most discrepancy compared to the measured data, due to the relatively large sensitive volume of this detector. However, the calculated dose profiles for the detectors were not significantly different from another. The physical algorithm used in the beam-modeling process did not seem to be sensitive to blurred data measured with detectors with large sensitive volumes. Each beam-model was used to clinically evaluate lung and lymphatic node SBRT plans

  5. Pencil beam scanning proton therapy for pediatric intracranial ependymoma.

    PubMed

    Ares, Carmen; Albertini, Francesca; Frei-Welte, Martina; Bolsi, Alessandra; Grotzer, Michael A; Goitein, Gudrun; Weber, Damien C

    2016-05-01

    To assess the clinical outcome and late side effect profile of pencil beam scanning proton therapy (PT) delivered to children with intracranial ependymoma. Between July-2004 and March-2013, 50 patients with intracranial ependymoma (n = 46, grade 3) received involved-field PT at Paul Scherrer Institute (PSI). Median age at time of PT was 2.6 years (range 1.1-15.2). Thirty-six patients had infratentorial and 14 supratentorial ependymomas. Seventeen patients presented with macroscopic residual disease after subtotal resection before starting PT (8 with ≤1.5 cc and 9 with >1.5 cc residual tumor respectively). Forty-three (86 %) patients received post-operative chemotherapy before PT according to protocols; 44 (88 %) patients younger than 5 years required general anesthesia. Median prescribed dose was 59.4 Gy (RBE) (range 54-60) delivered in 1.8-2 Gy (RBE) per fraction. Late toxicity was assessed according to CTCAE v4.0. With a mean follow-up time of 43.4 months (range 8.5-113.7) seven patients experienced local failure (6 with infratentorial tumors and 1 with supratentorial tumor); four of the local failures were in patients with residual disease ≥1.5 cc at the time of PT and 3 without residual macroscopic disease. Five patients died from tumor progression. Actuarial 5-year Local Control rates were 78 ± 7.5 % and 5-year OS rates were 84 ± 6.8 %. Three patients developed grade ≥3 toxicity: 2 developed unilateral deafness (infratentorial tumors infiltrating into the internal acoustic canal), one patient developed a fatal brainstem necrosis. Repeated general anesthesia in children younger than 5 years was delivered without complications. Our data indicate the safety and the effectiveness of PT for pediatric ependymomas. Local control and survival rates are encouraging considering the high grade histology in 92 % of the patients and the number of patients with residual tumor ≥1.5 cc. The rates of late effects compare favorably with published

  6. Characterization of a Fricke dosimeter at high energy photon and electron beams used in radiotherapy.

    PubMed

    Moussous, O; Khoudri, S; Benguerba, M

    2011-12-01

    The dosimetric features of the Fricke dosimeter in clinical linear accelerator beams are considered. Experimental data were obtained using various nominal energies 6 and 18 MV, 12 and 15 MeV, including the (60)Co γ-ray beam. The calibration of the dosimeters was performed using the ionization chamber as a reference dosimeter. Some general characteristics of Fricke dosimeter such as energy dependence, optical density (OD)-dose relationship, reproducibility, accuracy, dose rate dependence were analyzed. The Fricke solution shows linearity in OD-dose relationship, energy independence and a good reproducibility over the energy range investigated. The Fricke dosimeter was found to be suitable for carrying out absorbed dose to water measurements in the calibration of high energy electron and photon beams.

  7. Two-photon excitation photodynamic therapy with Photofrin

    NASA Astrophysics Data System (ADS)

    Karotki, Aliaksandr; Khurana, Mamta; Lepock, James R.; Wilson, Brian C.

    2005-09-01

    Photodynamic therapy (PDT) based on simultaneous two-photon (2-γ) excitation has a potential advantage of highly targeted treatment by means of nonlinear localized photosensitizer excitation. One of the possible applications of 2-γ PDT is a treatment of exodus age-related macular degeneration where highly targeted excitation of photosensitizer in neovasculature is vital for reducing collateral damage to healthy surrounding tissue. To investigate effect of 2-γ PDT Photofrin was used as an archetypal photosensitizer. First, 2-γ absorption properties of Photofrin in the 750 - 900 nm excitation wavelength range were investigated. It was shown that above 800 nm 2-γ interaction was dominant mode of excitation. The 2-γ cross section of Photofrin was rather small and varied between 5 and 10 GM (1 GM = 10-50 cm4s/photon) in this wavelength range. Next, endothelial cells treated with Photofrin were used to model initial effect of 2-γ PDT on neovasculature. Ultrashort laser pulses provided by mode-locked Ti:sapphire laser (pulse duration at the sample 300 fs, repetition rate 90 MHz, mean laser power 10 mW, excitation wavelength 850 nm) were used for the excitation of the photosensitizer. Before 2-γ excitation of the Photofrin cells formed a single continuous sheet at the bottom of the well. The tightly focused laser light was scanned repeatedly over the cell layer. After irradiation the cell layer of the control cells stayed intact while cells treated with photofrin became clearly disrupted. The light doses required were high (6300 Jcm(-2) for ~ 50% killing), but 2-γ cytotoxicity was unequivocally demonstrated.

  8. MO-A-213AB-01: Potential for Focused Low Energy X-Ray Beam for Therapy.

    PubMed

    Abbas, H; Mahato, D; Satti, J; MacDonald, C

    2012-06-01

    Megavoltage photon beams are typically used for therapy because of their skin sparing effect. However, a focused low-energy x-ray beam would also be skin sparing, and would have a higher dose concentration at the focal spot. Such a beam can be produced with polycapillary optics. MCNP5 was used to model dose profiles for a scanned focused beam, using measured beam parameters. The potential of low energy focused x-ray beams for radiation therapy was assessed. A polycapillary optic was used to focus the x-ray beam from a tungsten source. The optic was characterized and measurements were performed at 50 KV. PMMA blocks of varying thicknesses were placed between optic and the focal spot to observe any variation in the focusing of the beam after passing through the tissue-equivalent material. The measured energy spectrum was used to model the focused beam in MCNP5. A source card (SDEF) in MCNP5 was used to simulate the converging x-ray beam. Dose calculations were performed inside a breast tissue phantom. The measured focal spot size for the polycapillary optic was 0.2 mm with a depth of field of 5 mm. Focusing was found to remain unchanged through 40 mm of phantom thickness. The calculated depth dose curve inside the breast tissue showed a dose peak several centimeters below the skin with a sharp dose fall off around the focus. The percent dose falls below 10% within 5 mm of the focus. Rotating the optic during scanning preserves the skin-sparing effect of the focused beam. Low energy focused x-ray beams could be used to irradiate tumors inside soft tissue within 5 cm of the surface. © 2012 American Association of Physicists in Medicine.

  9. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.

    PubMed

    Chibani, Omar; Ma, Chang-Ming Charlie

    2003-08-01

    The dose from photon-induced nuclear particles (neutrons, protons, and alpha particles) generated by high-energy photon beams from medical linacs is investigated. Monte Carlo calculations using the MCNPX code are performed for three different photon beams from two different machines: Siemens 18 MV, Varian 15 MV, and Varian 18 MV. The linac head components are simulated in detail. The dose distributions from photons, neutrons, protons, and alpha particles are calculated in a tissue-equivalent phantom. Neutrons are generated in both the linac head and the phantom. This study includes (a) field size effects, (b) off-axis dose profiles, (c) neutron contribution from the linac head, (d) dose contribution from capture gamma rays, (e) phantom heterogeneity effects, and (f) effects of primary electron energy shift. Results are presented in terms of absolute dose distributions and also in terms of DER (dose equivalent ratio). The DER is the maximum dose from the particle (neutron, proton, or alpha) divided by the maximum photon dose, multiplied by the particle quality factor and the modulation scaling factor. The total DER including neutrons, protons, and alphas is about 0.66 cSv/Gy for the Siemens 18 MV beam (10 cm x 10 cm). The neutron DER decreases with decreasing field size while the proton (or alpha) DER does not vary significantly except for the 1 cm x 1 cm field. Both Varian beams (15 and 18 MV) produce more neutrons, protons, and alphas particles than the Siemens 18 MV beam. This is mainly due to their higher primary electron energies: 15 and 18.3 MeV, respectively, vs 14 MeV for the Siemens 18 MV beam. For all beams, neutrons contribute more than 75% of the total DER, except for the 1 cm x 1 cm field (approximately 50%). The total DER is 1.52 and 2.86 cSv/Gy for the 15 and 18 MV Varian beams (10 cm x 10 cm), respectively. Media with relatively high-Z elements like bone may increase the dose from heavy charged particles by a factor 4. The total DER is sensitive to

  10. Commissioning measurements for photon beam data on three TrueBeam linear accelerators, and comparison with Trilogy and Clinac 2100 linear accelerators.

    PubMed

    Beyer, Gloria P

    2013-01-07

    This study presents the beam data measurement results from the commissioning of three TrueBeam linear accelerators. An additional evaluation of the measured beam data within the TrueBeam linear accelerators contrasted with two other linear accelerators from the same manufacturer (i.e., Clinac and Trilogy) was performed to identify and evaluate any differences in the beam characteristics between the machines and to evaluate the possibility of beam matching for standard photon energies. We performed a comparison of commissioned photon beam data for two standard photon energies (6 MV and 15 MV) and one flattening filter-free ("FFF") photon energy (10 FFF) between three different TrueBeam linear accelerators. An analysis of the beam data was then performed to evaluate the reproducibility of the results and the possibility of "beam matching" between the TrueBeam linear accelerators. Additionally, the data from the TrueBeam linear accelerator was compared with comparable data obtained from one Clinac and one Trilogy linear accelerator models produced by the same manufacturer to evaluate the possibility of "beam matching" between the TrueBeam linear accelerators and the previous models. The energies evaluated between the linear accelerator models are the 6 MV for low energy and the 15 MV for high energy. PDD and output factor data showed less than 1% variation and profile data showed variations within 1% or 2 mm between the three TrueBeam linear accelerators. PDD and profile data between the TrueBeam, the Clinac, and Trilogy linear accelerators were almost identical (less than 1% variation). Small variations were observed in the shape of the profile for 15 MV at shallow depths (< 5 cm) probably due to the differences in the flattening filter design. A difference in the penumbra shape was observed between the TrueBeam and the other linear accelerators; the TrueBeam data resulted in a slightly greater penumbra width. The diagonal scans demonstrated significant differences

  11. Tuning beam power-splitting characteristics through modulating a photonic crystal slab’s output surface

    NASA Astrophysics Data System (ADS)

    Feng, Shuai; Xiao, Ting-Hui; Gan, Lin; Wang, Yi-Quan

    2017-01-01

    Light-beam-splitting characteristics are theoretically and experimentally studied in 2D square-lattice photonic crystals (PhCs) with delicately designed and modulated output surfaces. Compared with the traditional branch-waveguide and self-collimation-type PhC splitters, our proposed structure can not only split the input light beam into different numbers of branches but also realize the adjustment of their relative light intensities in each branch. Moreover, the influence of a light beam’s incident angle on both the output branch beams’ relative intensity and propagation direction is investigated. This proposed light beam splitter is able to work within a broad frequency range, and the propagation directions of the output split beams can be modified with the incident beam’s frequency. In addition, when the PhC device becomes thicker, a kind of light-beam-focusing phenomenon is observed. Advantageously, our light-beam-splitting device has no restriction as to the incident light beam’s location and width, so it is much more convenient and practical for achieving optical connection with other functional devices in complicated, large-scale, all-optical integrated circuits.

  12. SU-E-T-781: Using An Electronic Portal Imaging Device (EPID) for Correlating Linac Photon Beam Energies

    SciTech Connect

    Yaddanapudi, S; Cai, B; Sun, B; Noel, C; Goddu, S; Mutic, S

    2015-06-15

    Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful for measuring several parameters of interest in linear accelerator (linac) quality assurance (QA). The purpose of this project was to evaluate the feasibility of using EPIDs for determining linac photon beam energies. Methods: Two non-clinical Varian TrueBeam linacs (Varian Medical Systems, Palo Alto, CA) with 6MV and 10MV photon beams were used to perform the measurements. The linacs were equipped with an amorphous silicon based EPIDs (aSi1000) that were used for the measurements. We compared the use of flatness versus percent depth dose (PDD) for predicting changes in linac photon beam energy. PDD was measured in 1D water tank (Sun Nuclear Corporation, Melbourne FL) and the profiles were measured using 2D ion-chamber array (IC-Profiler, Sun Nuclear) and the EPID. Energy changes were accomplished by varying the bending magnet current (BMC). The evaluated energies conformed with the AAPM TG142 tolerance of ±1% change in PDD. Results: BMC changes correlating with a ±1% change in PDD corresponded with a change in flatness of ∼1% to 2% from baseline values on the EPID. IC Profiler flatness values had the same correlation. We observed a similar trend for the 10MV beam energy changes. Our measurements indicated a strong correlation between changes in linac photon beam energy and changes in flatness. For all machines and energies, beam energy changes produced change in the uniformity (AAPM TG-142), varying from ∼1% to 2.5%. Conclusions: EPID image analysis of beam profiles can be used to determine linac photon beam energy changes. Flatness-based metrics or uniformity as defined by AAPM TG-142 were found to be more sensitive to linac photon beam energy changes than PDD. Research funding provided by Varian Medical Systems. Dr. Sasa Mutic receives compensation for providing patient safety training services from Varian Medical Systems, the sponsor of this study.

  13. An experiment of X-ray photon-photon elastic scattering with a Laue-case beam collider

    NASA Astrophysics Data System (ADS)

    Yamaji, T.; Inada, T.; Yamazaki, T.; Namba, T.; Asai, S.; Kobayashi, T.; Tamasaku, K.; Tanaka, Y.; Inubushi, Y.; Sawada, K.; Yabashi, M.; Ishikawa, T.

    2016-12-01

    We report a search for photon-photon elastic scattering in vacuum in the X-ray region at an energy in the center of mass system of ωcms = 6.5keV for which the QED cross section is σQED = 2.5 ×10-47m2. An X-ray beam provided by the SACLA X-ray Free Electron Laser is split and the two beamlets are made to collide at right angle, with a total integrated luminosity of (1.24 ± 0.08) ×1028m-2. No signal X rays from the elastic scattering that satisfy the correlation between energy and scattering angle were detected. We obtain a 95% C.L. upper limit for the scattering cross section of 1.9 ×10-27m2 at ωcms = 6.5keV. The upper limit is the lowest upper limit obtained so far by keV experiments.

  14. [Determination of absorbed dose to water for high energy photon and electron beams--comparison of different dosimetry protocols].

    PubMed

    Zakaria, Golam Abu; Schütte, Wilhelm

    2003-01-01

    The determination of absorbed dose to water for high-energy photon and electron beams is performed in Germany according to the dosimetry protocol DIN 6800-2 (1997). At an international level, the main protocols used are the AAPM dosimetry protocol TG-51 (1999) and the IAEA Code of Practice TRS-398 (2000). The present paper systematically compares these three dosimetry protocols, and identifies similarities and differences. The investigations were performed using 4 and 10 MV photon beams, as well as 6, 8, 9, 10, 12 and 14 MeV electron beams. Two cylindrical and two plane-parallel type chambers were used for measurements. In general, the discrepancies among the three protocols were 1.0% for photon beams and 1.6% for electron beams. Comparative measurements in the context of measurement technical control (MTK) with TLD showed a deviation of less than 1.3% between the measurements obtained according to protocols DIN 6800-2 and MTK (exceptions: 4 MV photons with 2.9% and 6 MeV electrons with 2.4%). While only cylindrical chambers were used for photon beams, measurements of electron beams were performed using both cylindrical and plane-parallel chambers (the latter used after a cross-calibration to a cylindrical chamber, as required by the respective dosimetry protocols). Notably, unlike recommended in the corresponding protocols, we found out that cylindrical chambers can be used also for energies from 6 to 10 MeV.

  15. Validation of Monte Carlo calculated surface doses for megavoltage photon beams.

    PubMed

    Abdel-Rahman, Wamied; Seuntjens, Jan P; Verhaegen, Frank; Deblois, François; Podgorsak, Ervin B

    2005-01-01

    Recent work has shown that there is significant uncertainty in measuring build-up doses in mega-voltage photon beams especially at high energies. In this present investigation we used a phantom-embedded extrapolation chamber (PEEC) made of Solid Water to validate Monte Carlo (MC)-calculated doses in the dose build-up region for 6 and 18 MV x-ray beams. The study showed that the percentage depth ionizations (PDIs) obtained from measurements are higher than the percentage depth doses (PDDs) obtained with Monte Carlo techniques. To validate the MC-calculated PDDs, the design of the PEEC was incorporated into the simulations. While the MC-calculated and measured PDIs in the dose build-up region agree with one another for the 6 MV beam, a non-negligible difference is observed for the 18 MV x-ray beam. A number of experiments and theoretical studies of various possible effects that could be the source of this discrepancy were performed. The contribution of contaminating neutrons and protons to the build-up dose region in the 18 MV x-ray beam is negligible. Moreover, the MC calculations using the XCOM photon cross-section database and the NIST bremsstrahlung differential cross section do not explain the discrepancy between the MC calculations and measurement in the dose build-up region for the 18 MV. A simple incorporation of triplet production events into the MC dose calculation increases the calculated doses in the build-up region but does not fully account for the discrepancy between measurement and calculations for the 18 MV x-ray beam.

  16. Variation of sensitometric curves of radiographic films in high energy photon beams.

    PubMed

    Danciu, C; Proimos, B S; Rosenwald, J C; Mijnheer, B J

    2001-06-01

    Film dosimetry is an important tool for the verification of irradiation techniques. The shape of the sensitometric curve depends on the type of film as well as on the irradiation and processing conditions. Existing data concerning the influence of irradiation geometry on the sensitometric curve are conflicting. In particular the variation of optical density, OD, with field size and depth in a phantom shows large differences in magnitude between various authors. This variation, as well as the effect of beam energy and film plane orientation on OD, was therefore investigated for two types of film, Kodak X-Omat V and Agfa Structurix D2. Films were positioned in a solid phantom, either perpendicular or (almost) parallel to the beam axis, and irradiated to different dose levels using various photon beams (Co-60, 6 MV, 15 MV, 18 MV, 45 MV). It was found that the sensitometric curves of the Kodak film derived at different depths are almost identical for the four x-ray beams. For the Kodak film the differences in OD with depth are less than 2%, except for the Co-60 beam, where the difference is about 4% at 10 cm depth for a 15 cm x 15 cm field. The slope of the sensitometric curve of the Agfa film is somewhat more dependent on photon beam energy, depth and field size. The sensitometric curves of both types of film are almost independent of the film plane orientation, except for shallow depths. For Co-60 and for the same dose, the Kodak and Agfa films gave at dose maximum an OD lower by 4% and 6%, respectively, for the parallel compared to the perpendicular geometry. Good dosimetric results can be obtained if films from the same batch are irradiated with small to moderate field sizes (up to about 15 cm x 15 cm), at moderate depths (up to about 15 cm), using a single calibration curve, e.g., for a 10 cm x 10 cm field.

  17. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    PubMed Central

    Hofmann, Kerstin M; Schell, Stefan; Wilkens, Jan J

    2012-01-01

    Abstract Laser-accelerated particles are a promising option for radiation therapy of cancer by potentially combining a compact, cost-efficient treatment unit with the physical advantages of charged particle beams. To design such a treatment unit we consider different dose delivery schemes and analyze the necessary devices in the required particle beam line for each case. Furthermore, we point out that laser-driven treatment units may be ideal tools for motion adaptation during radiotherapy. Reasons for this are the potential of a flexible gantry and the time structure of the beam with high particle numbers in ultrashort bunches. One challenge that needs to be addressed is the secondary radiation produced in several beam line elements. (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) PMID:22930653

  18. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams.

    PubMed

    Hofmann, Kerstin M; Schell, Stefan; Wilkens, Jan J

    2012-11-01

    Laser-accelerated particles are a promising option for radiation therapy of cancer by potentially combining a compact, cost-efficient treatment unit with the physical advantages of charged particle beams. To design such a treatment unit we consider different dose delivery schemes and analyze the necessary devices in the required particle beam line for each case. Furthermore, we point out that laser-driven treatment units may be ideal tools for motion adaptation during radiotherapy. Reasons for this are the potential of a flexible gantry and the time structure of the beam with high particle numbers in ultrashort bunches. One challenge that needs to be addressed is the secondary radiation produced in several beam line elements.

  19. Sparing of tissue by using micro-slit-beam radiation therapy reduces neurotoxicity compared with broad-beam radiation therapy

    PubMed Central

    Mukumoto, Naritoshi; Nakayama, Masao; Akasaka, Hiroaki; Shimizu, Yasuyuki; Osuga, Saki; Miyawaki, Daisuke; Yoshida, Kenji; Ejima, Yasuo; Miura, Yasushi; Umetani, Keiji; Kondoh, Takeshi; Sasaki, Ryohei

    2017-01-01

    Micro-slit-beam radiation therapy (MRT) using synchrotron-generated X-ray beams allows for extremely high-dose irradiation. However, the toxicity of MRT in central nervous system (CNS) use is still unknown. To gather baseline toxicological data, we evaluated mortality in normal mice following CNS-targeted MRT. Male C57BL/6 J mice were head-fixed in a stereotaxic frame. Synchrotron X-ray-beam radiation was provided by the SPring-8 BL28B2 beam-line. For MRT, radiation was delivered to groups of mice in a 10 × 12 mm unidirectional array consisting of 25-μm-wide beams spaced 100, 200 or 300 μm apart; another group of mice received the equivalent broad-beam radiation therapy (BRT) for comparison. Peak and valley dose rates of the MRT were 120 and 0.7 Gy/s, respectively. Delivered doses were 96–960 Gy for MRT, and 24–120 Gy for BRT. Mortality was monitored for 90 days post-irradiation. Brain tissue was stained using hematoxylin and eosin to evaluate neural structure. Demyelination was evaluated by Klüver–Barrera staining. The LD50 and LD100 when using MRT were 600 Gy and 720 Gy, respectively, and when using BRT they were 80 Gy and 96 Gy, respectively. In MRT, mortality decreased as the center-to-center beam spacing increased from 100 μm to 300 μm. Cortical architecture was well preserved in MRT, whereas BRT induced various degrees of cerebral hemorrhage and demyelination. MRT was able to deliver extremely high doses of radiation, while still minimizing neuronal death. The valley doses, influenced by beam spacing and irradiated dose, could represent important survival factors for MRT. PMID:27422939

  20. Dosimetric properties of radiophotoluminescent glass detector in low-energy photon beams.

    PubMed

    Kadoya, Noriyuki; Shimomura, Kouhei; Kitou, Satoshi; Shiota, Yasuo; Fujita, Yukio; Dobashi, Suguru; Takeda, Ken; Jingu, Keiichi; Matsushita, Haruo; Namito, Yoshihito; Ban, Syuichi; Koyama, Syuji; Tabushi, Katsuyoshi

    2012-10-01

    A radiophotoluminescent glass rod dosimeter (RGD) has recently become commercially available. It is being increasingly used for dosimetry in radiotherapy to measure the absorbed dose including scattered low-energy photons on the body surface of a patient and for postal dosimetry audit. In this article, the dosimetric properties of the RGD, including energy dependence of the dose response, reproducibly, variation in data obtained by the RGD for each energy, and angular dependence in low-energy photons, are discussed. An RGD (GD-301, Asahi Techno Glass Corporation, Shizuoka, Japan) was irradiated with monochromatic low-energy photon beams generated by synchrotron radiation at Photon Factory, High Energy Accelerator Research Organization (KEK). The size of GD-301 was 1.5 mm in diameter and 8.5 mm in length and the active dose readout volume being 1 mm diameter and 0.6 mm depth located 0.7 mm from the end of the detector. The energy dependence of the dose response and reproducibility and variation were investigated for RGDs irradiated with a plastic holder and those irradiated without the plastic holder. Response of the RGD was obtained by not only conventional single field irradiation but also bilateral irradiation. Angular dependence of the RGD was measured in the range of 0°-90° for 13, 17, 40, and 80 keV photon beams by conventional single field irradiation. The dose responses had a peak at around 40 keV. For the energy range of less than 25 keV, all dose response curves steeply decreased in comparison with the ratio of mass energy absorption coefficient of the RGD to that of air. As for the reproducibility and variation in data obtained by the RGD, the coefficient of variance increased with decrease in photon energy. Furthermore, the variation for bilateral irradiation was less than that for single field irradiation. Regarding angular dependence of the RGD, for energies of 13 and 17 keV, the response decreased with increase in the irradiation angle, and the

  1. Flattening Filter-Free Beams in Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy for Sinonasal Cancer.

    PubMed

    Lu, Jia-Yang; Zheng, Jing; Zhang, Wu-Zhe; Huang, Bao-Tian

    2016-01-01

    To evaluate the dosimetric impacts of flattening filter-free (FFF) beams in intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) for sinonasal cancer. For fourteen cases, IMRT and VMAT planning was performed using 6-MV photon beams with both conventional flattened and FFF modes. The four types of plans were compared in terms of target dose homogeneity and conformity, organ-at-risk (OAR) sparing, number of monitor units (MUs) per fraction, treatment time and pure beam-on time. FFF beams led to comparable target dose homogeneity, conformity, increased number of MUs and lower doses to the spinal cord, brainstem and normal tissue, compared with flattened beams in both IMRT and VMAT. FFF beams in IMRT resulted in improvements by up to 5.4% for sparing of the contralateral optic structures, with shortened treatment time by 9.5%. However, FFF beams provided comparable overall OAR sparing and treatment time in VMAT. With FFF mode, VMAT yielded inferior homogeneity and superior conformity compared with IMRT, with comparable overall OAR sparing and significantly shorter treatment time. Using FFF beams in IMRT and VMAT is feasible for the treatment of sinonasal cancer. Our results suggest that the delivery mode of FFF beams may play an encouraging role with better sparing of contralateral optic OARs and treatment efficiency in IMRT, but yield comparable results in VMAT.

  2. Flattening Filter-Free Beams in Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy for Sinonasal Cancer

    PubMed Central

    Huang, Bao-Tian

    2016-01-01

    Purpose To evaluate the dosimetric impacts of flattening filter-free (FFF) beams in intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) for sinonasal cancer. Methods For fourteen cases, IMRT and VMAT planning was performed using 6-MV photon beams with both conventional flattened and FFF modes. The four types of plans were compared in terms of target dose homogeneity and conformity, organ-at-risk (OAR) sparing, number of monitor units (MUs) per fraction, treatment time and pure beam-on time. Results FFF beams led to comparable target dose homogeneity, conformity, increased number of MUs and lower doses to the spinal cord, brainstem and normal tissue, compared with flattened beams in both IMRT and VMAT. FFF beams in IMRT resulted in improvements by up to 5.4% for sparing of the contralateral optic structures, with shortened treatment time by 9.5%. However, FFF beams provided comparable overall OAR sparing and treatment time in VMAT. With FFF mode, VMAT yielded inferior homogeneity and superior conformity compared with IMRT, with comparable overall OAR sparing and significantly shorter treatment time. Conclusions Using FFF beams in IMRT and VMAT is feasible for the treatment of sinonasal cancer. Our results suggest that the delivery mode of FFF beams may play an encouraging role with better sparing of contralateral optic OARs and treatment efficiency in IMRT, but yield comparable results in VMAT. PMID:26734731

  3. Determination of Endpoint Energy and Bremsstrahlung Spectra for High-Energy Radiation-Therapy Beams

    NASA Astrophysics Data System (ADS)

    Landry, Danny Joe

    Few attempts have been made to experimentally determine thick-target bremsstrahlung spectra of megavoltage therapy beams. For spectral studies using the Compton scattering technique, sodium iodine (NaI) detectors with relatively poor energy resolution have been used. Other experimental techniques for determining spectra are generally not suited for a clinical environment with the inherent time and space constraints. To gather more spectral information than previously obtained in the region near the endpoint energy, the use of a high-resolution intrinsic-germanium (Ge) detector was proposed. A response function matrix was determined from experimentally obtained pulse height distributions on the multichannel analyzer. The distributions were for nine various monoenergetic sources between 280 adn 1525 keV. The response function was used to convert the measured pulse height distributions to photon flux spectra using an iterative approximation technique with a computer. Photon flux spectra from the Sagittaire Linear Accelerator were obtained at average-electron endpoint energies of 15, 20, and 25 MeV. Two spectra were measured at the 25 MeV setting; one spectrum was measured along the central axis and one spectrum at 4(DEGREES) off axis. Photon spectra were also obtained for a Van de Graaff generator at the nominal endpoint energies of 2.2, 2.35, and 2.5 MeV. The results for both the linac and the Van de Graaff generator were compared with theoretical spectra and previously measured spectra where available. Also, photon spectra from a Theratron-80 (('60)Co) unit were determined for three field sizes and for a 10 x 10 cm. field with a lucite tray or a 45(DEGREES) wedge in the beam. The resulting spectra were compared to previously measured ('60)Co spectra.

  4. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  5. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  6. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  7. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  8. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  9. Dosimetric properties of equivalent-quality flattening filter-free (FFF) and flattened photon beams of Versa HD linear accelerator.

    PubMed

    Meshram, Mukesh N; Pramanik, Srimanta; Ranjith, C P; Gopal, Saravana K; Dobhal, Rishabh

    2016-05-08

    This study presents the basic dosimetric properties of photon beams of a Versa HD linear accelerator (linac), which is capable of delivering flattening filter-free (FFF) beams with a beam quality equivalent to the corresponding flattened beams based on comprehensive beam data measurement. The analyzed data included the PDDs, profiles, penumbra, out-of-field doses, surface doses, output factors, head and phantom scatter factors, and MLC transmissions for both FFF and flattened beams of 6 MV and 10 MV energy from an Elekta Versa HD linac. The 6MVFFF and 10MVFFF beams had an equivalent mean energy to the flattened beams and showed less PDD variations with the field sizes. Compared with their corresponding flattened beams, Dmax was deeper for FFF beams for all field sizes; the ionization ratio variations with the field size were lower for FFF beams; the out-of-field doses were lower and the penumbras were sharper for the FFF beams; the off-axis profile variations with the depths were lesser for the FFF beams. Further, the 6MVFFF and 10MVFFF beams had 35.7% and 40.9% less variations in output factor with the field size, respectively. The collimator exchange effect was reduced in the FFF mode. The head scatter factor showed 59.1% and 73.6% less variations, on average, for the 6MVFFF and 10MVFFF beams, respectively; the variations in the phantom scatter factor were also smaller. The surface doses for all beams increased linearly with the field size. The 6MVFFF and 10MVFFF beams had higher surface doses than the corresponding flattened beams for field sizes of up to 10 ×10cm2 but had lower surface doses for larger fields. Both FFF beams had lower average MLC transmissions than the flattened beams. The finding that the FFF beams were of equivalent quality to the corresponding flattened beams indicates a significant dif-ference from the data on unmatched FFF beams.

  10. Optimal electron and combined electron and photon therapy in the phase space of complication-free cure.

    PubMed

    Asell, M; Hyödynmaa, S; Söderström, S; Brahme, A

    1999-01-01

    The possibility of using intensity-modulated high-energy electrons beams alone or in combination with photon beams to treat tumours located at depths from 5 cm to 25 cm has been investigated. A radiobiologically based optimization algorithm using the probability of complication-free tumour control has been used to calculate the optimal dose distributions. Two different target volumes have been used; one advanced cervical cancer with locally involved lymph nodes and one astrocytoma in the upper brain hemisphere. Treatments with only electron beams and also combinations between electron and photon beams have been investigated. The dependence of the expected treatment outcome on the beam energy and directions was investigated, and to some extent on the number of beam portals. It is shown that the beam direction intervals resulting in a high expected treatment outcome increase with increasing electron energy and also with some electron-photon combinations. For an eccentrically placed, not too deeply situated tumour surrounded by sensitive normal tissue it is shown that the expected treatment outcome can be improved by using electron beams in combination with photon beams compared with using two photon beams, and using two electron beams results in almost as high an expected treatment outcome. The possibility of improving the dose conformity from electron beams by adding photon fields parallel or orthogonal to the electron beams is demonstrated.

  11. Optimal electron and combined electron and photon therapy in the phase space of complication-free cure

    NASA Astrophysics Data System (ADS)

    Åsell, Mats; Hyödynmaa, Simo; Söderström, Svante; Brahme, Anders

    1999-01-01

    The possibility of using intensity-modulated high-energy electrons beams alone or in combination with photon beams to treat tumours located at depths from 5 cm to 25 cm has been investigated. A radiobiologically based optimization algorithm using the probability of complication-free tumour control has been used to calculate the optimal dose distributions. Two different target volumes have been used; one advanced cervical cancer with locally involved lymph nodes and one astrocytoma in the upper brain hemisphere. Treatments with only electron beams and also combinations between electron and photon beams have been investigated. The depende