NASA Astrophysics Data System (ADS)
Yu, Guoyang; Song, Yunfei; Wang, Yang; He, Xing; Liu, Yuqiang; Liu, Weilong; Yang, Yanqiang
2011-12-01
A modified photon echo (PE) technique, the supercontinuum probing photon echo (SCPPE), is introduced and performed to investigate the vibrational coherence in organic dye IR780 perchlorate doped polyvinyl alcohol (PVA) film. The coherences of multiple vibrational states which belong to four vibrational modes create complex oscillations in SCPPE signal. The frequencies of vibrational modes are confirmed from the results of Raman calculation which accord fairly well with the results of Raman scattering experiment. Compared with conventional one-color PE, the SCPPE technique can realize broadband detection and make the experiment about vibrational coherence more efficient.
Spectrally resolved femtosecond photon echo spectroscopy of astaxanthin
NASA Astrophysics Data System (ADS)
Kumar, Ajitesh; Karthick Kumar, S. K.; Gupta, Aditya; Goswami, Debabrata
2010-12-01
We have studied the coherence and population dynamics of Astaxanthin solution in methanol and acetonitrile by spectrally resolving their photon echo signals. Our experiments indicate that methanol has a much stronger interaction with the ultrafast dynamics of Astaxanthin in comparison to that of acetonitrile.
Spectrally resolved femtosecond photon echo spectroscopy of astaxanthin
NASA Astrophysics Data System (ADS)
Kumar, Ajitesh; Karthick Kumar, S. K.; Gupta, Aditya; Goswami, Debabrata
2011-08-01
We have studied the coherence and population dynamics of Astaxanthin solution in methanol and acetonitrile by spectrally resolving their photon echo signals. Our experiments indicate that methanol has a much stronger interaction with the ultrafast dynamics of Astaxanthin in comparison to that of acetonitrile.
Collision-induced stimulated photon echoes in ‘strong’ magnetic field
NASA Astrophysics Data System (ADS)
Reshetov, V. A.
2018-05-01
Collision-induced stimulated photon echoes formed in a gaseous medium on the transition with the angular momentum change Ja=0 → Jb=1 under the action of ‘strong’ longitudinal magnetic field, when the echo pulse becomes unpolarized, are considered with an account of elastic depolarizing collisions. In the case of narrow spectral line the explicit expressions for the echo polarization density matrix and the degree of polarization are obtained. In the case of broad spectral line the results of the numeric calculations reproduce qualitatively the curve obtained in the experiments with ytterbium vapor.
Fidelity of an optical memory based on stimulated photon echoes.
Staudt, M U; Hastings-Simon, S R; Nilsson, M; Afzelius, M; Scarani, V; Ricken, R; Suche, H; Sohler, W; Tittel, W; Gisin, N
2007-03-16
We investigated the preservation of information encoded into the relative phase and amplitudes of optical pulses during storage and retrieval in an optical memory based on stimulated photon echo. By interfering photon echoes produced in a single-mode Ti:Er:LiNbO(3) waveguide, we found that decoherence in the medium translates only as loss and not as degradation of information. We measured a visibility for interfering echoes close to 100%. These results may have important implications for future long-distance quantum communication protocols.
Polarization properties of long-lived stimulated photon echo
NASA Astrophysics Data System (ADS)
Reshetov, V. A.; Popov, E. N.
2015-01-01
The polarization properties of the long-lived stimulated photon echo formed on the transition ja → jb with the atomic levels degenerate in the projections of the angular momenta are studied theoretically. The two particular transitions ja = 1 → jb = 0 and ja = 1 → jb = 1 with degenerate ground state ja = 1 are discussed. For the transitions ja = 1 → jb = 1 the polarizations and areas of the first (‘write’) and the third (‘read’) excitation pulses are found when the echo polarization faithfully reproduces the arbitrary polarization of the weak (single-photon) second (‘information’) pulse, so that this echo scheme may implement the quantum memory for a single-photon polarization qubit, while for the transitions ja = 1 → jb = 0 it is shown, that the echo polarization differs from that of the second pulse at any conditions.
NASA Astrophysics Data System (ADS)
Poltavtsev, S. V.; Langer, L.; Yugova, I. A.; Salewski, M.; Kapitonov, Y. V.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.
2016-10-01
We use spontaneous (two-pulse) and stimulated (three-pulse) photon echoes for studying the coherent evolution of optically excited ensemble of trions which are localized in semiconductor CdTe/CdMgTe quantum well. Application of transverse magnetic field leads to the Larmor precession of the resident electron spins, which shuffles optically induced polarization between optically accessible and inaccessible states. This results in several spectacular phenomena. First, magnetic field induces oscillations of spontaneous photon echo amplitude. Second, in three-pulse excitation scheme, the photon echo decay is extended by several orders of magnitude. In this study, short-lived optical excitation which is created by the first pulse is coherently transferred into a long-lived electron spin state using the second optical pulse. This coherent spin state of electron ensemble persists much longer than any optical excitation in the system, preserving information on initial optical field, which can be retrieved as a photon echo by means of third optical pulse.
Precision spectral manipulation of optical pulses using a coherent photon echo memory.
Buchler, B C; Hosseini, M; Hétet, G; Sparkes, B M; Lam, P K
2010-04-01
Photon echo schemes are excellent candidates for high efficiency coherent optical memory. They are capable of high-bandwidth multipulse storage, pulse resequencing and have been shown theoretically to be compatible with quantum information applications. One particular photon echo scheme is the gradient echo memory (GEM). In this system, an atomic frequency gradient is induced in the direction of light propagation leading to a Fourier decomposition of the optical spectrum along the length of the storage medium. This Fourier encoding allows precision spectral manipulation of the stored light. In this Letter, we show frequency shifting, spectral compression, spectral splitting, and fine dispersion control of optical pulses using GEM.
A controlled ac Stark echo for quantum memories.
Ham, Byoung S
2017-08-09
A quantum memory protocol of controlled ac Stark echoes (CASE) based on a double rephasing photon echo scheme via controlled Rabi flopping is proposed. The double rephasing scheme of photon echoes inherently satisfies the no-population inversion requirement for quantum memories, but the resultant absorptive echo remains a fundamental problem. Herein, it is reported that the first echo in the double rephasing scheme can be dynamically controlled so that it does not affect the second echo, which is accomplished by using unbalanced ac Stark shifts. Then, the second echo is coherently controlled to be emissive via controlled coherence conversion. Finally a near perfect ultralong CASE is presented using a backward echo scheme. Compared with other methods such as dc Stark echoes, the present protocol is all-optical with advantages of wavelength-selective dynamic control of quantum processing for erasing, buffering, and channel multiplexing.
Control of photon storage time using phase locking.
Ham, Byoung S
2010-01-18
A photon echo storage-time extension protocol is presented by using a phase locking method in a three-level backward propagation scheme, where phase locking serves as a conditional stopper of the rephasing process in conventional two-pulse photon echoes. The backward propagation scheme solves the critical problems of extremely low retrieval efficiency and pi rephasing pulse-caused spontaneous emission noise in photon echo based quantum memories. The physics of the storage time extension lies in the imminent population transfer from the excited state to an auxiliary spin state by a phase locking control pulse. We numerically demonstrate that the storage time is lengthened by spin dephasing time.
Development and test of photon counting lidar
NASA Astrophysics Data System (ADS)
Wang, Chun-hui; Wang, Ao-you; Tao, Yu-liang; Li, Xu; Peng, Huan; Meng, Pei-bei
2018-02-01
In order to satisfy the application requirements of spaceborne three dimensional imaging lidar , a prototype of nonscanning multi-channel lidar based on receiver field of view segmentation was designed and developed. High repetition frequency micro-pulse lasers, optics fiber array and Geiger-mode APD, combination with time-correlated single photon counting technology, were adopted to achieve multi-channel detection. Ranging experiments were carried out outdoors. In low echo photon condition, target photon counting showed time correlated and noise photon counting were random. Detection probability and range precision versus threshold were described and range precision increased from 0.44 to 0.11 when threshold increased from 4 to 8.
Dynamic time-correlated single-photon counting laser ranging
NASA Astrophysics Data System (ADS)
Peng, Huan; Wang, Yu-rong; Meng, Wen-dong; Yan, Pei-qin; Li, Zhao-hui; Li, Chen; Pan, Hai-feng; Wu, Guang
2018-03-01
We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector (SPD). The multi-channel SPD improve the counting rate more than 4×107 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting (TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×107 cps.
Photon echo spectroscopy reveals structure-dynamics relationships in carotenoids
NASA Astrophysics Data System (ADS)
Christensson, N.; Polivka, T.; Yartsev, A.; Pullerits, T.
2009-06-01
Based on simultaneous analysis of the frequency-resolved transient grating, peak shift, and echo width signals, we present a model for the third-order optical response of carotenoids including population dynamics and system-bath interactions. Our frequency-resolved photon echo experiments show that the model needs to incorporate the excited-state absorption from both the S2 and the S1 states. We apply our model to analyze the experimental results on astaxanthin and lycopene, aiming to elucidate the relation between structure and system-bath interactions. Our analysis allows us to relate structural motifs to changes in the energy-gap correlation functions. We find that the terminal rings of astaxanthin lead to increased coupling between slow molecular motions and the electronic transition. We also find evidence for stronger coupling to higher frequency overdamped modes in astaxanthin, pointing to the importance of the functional groups in providing coupling to fluctuations influencing the dynamics in the passage through the conical intersection governing the S2-S1 relaxation.
NASA Astrophysics Data System (ADS)
Brynjolfsson, Ari
2002-04-01
Einstein's general theory of relativity assumes that photons don't change frequency as they move from Sun to Earth. This assumption is correct in classical physics. All experiments proving the general relativity are in the domain of classical physics. This include the tests by Pound et al. of the gravitational redshift of 14.4 keV photons; the rocket experiments by Vessot et al.; the Galileo solar redshift experiments by Krisher et al.; the gravitational deflection of light experiments by Riveros and Vucetich; and delay of echoes of radar signals passing close to Sun as observed by Shapiro et al. Bohr's correspondence principle assures that quantum mechanical theory of general relativity agrees with Einstein's classical theory when frequency and gravitational field gradient approach zero, or when photons cannot interact with the gravitational field. When we treat photons as quantum mechanical particles; we find that gravitational force on photons is reversed (antigravity). This modified theory contradicts the equivalence principle, but is consistent with all experiments. Solar lines and distant stars are redshifted in accordance with author's plasma redshift theory. These changes result in a beautiful consistent cosmology.
Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory
NASA Astrophysics Data System (ADS)
Rui, Jun; Jiang, Yan; Yang, Sheng-Jun; Zhao, Bo; Bao, Xiao-Hui; Pan, Jian-Wei
2015-09-01
Spin echo is a powerful technique to extend atomic or nuclear coherence times by overcoming the dephasing due to inhomogeneous broadenings. However, there are disputes about the feasibility of applying this technique to an ensemble-based quantum memory at the single-quanta level. In this experimental study, we find that noise due to imperfections of the rephasing pulses has both intense superradiant and weak isotropic parts. By properly arranging the beam directions and optimizing the pulse fidelities, we successfully manage to operate the spin echo technique in the quantum regime by observing nonclassical photon-photon correlations as well as the quantum behavior of retrieved photons. Our work for the first time demonstrates the feasibility of harnessing the spin echo method to extend the lifetime of ensemble-based quantum memories at the single-quanta level.
NASA Astrophysics Data System (ADS)
Bikbov, I. S.; Zuikov, V. A.; Popov, I. I.; Popova, G. L.; Samartsev, V. V.
1995-10-01
An analysis is made of the results of an investigation of the physical principles underlying the operation of an associative optical memory and of processors utilising the photon (optical) echo phenomenon. The feasibility of constructing such optical memories is considered.
Ultrafast Dephasing and Incoherent Light Photon Echoes in Organic Amorphous Systems
NASA Astrophysics Data System (ADS)
Yano, Ryuzi; Matsumoto, Yoshinori; Tani, Toshiro; Nakatsuka, Hiroki
1989-10-01
Incoherent light photon echoes were observed in organic amorphous systems (cresyl violet in polyvinyl alcohol and 1,4-dihydroxyanthraquinone in polymethacrylic acid) by using temporally-incoherent nanosecond laser pulses. It was found that an echo decay curve of an organic amorphous system is composed of a sharp peak which decays very rapidly and a slowly decaying wing at the tail. We show that the persistent hole burning (PHB) spectra were reproduced by the Fourier-cosine transforms of the echo decay curves. We claim that in general, we must take into account the multi-level feature of the system in order to explain ultrafast dephasing at very low temperatures.
Quantum teleportation from a propagating photon to a solid-state spin qubit
NASA Astrophysics Data System (ADS)
Gao, W. B.; Fallahi, P.; Togan, E.; Delteil, A.; Chin, Y. S.; Miguel-Sanchez, J.; Imamoğlu, A.
2013-11-01
A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.
Quantum teleportation from a propagating photon to a solid-state spin qubit.
Gao, W B; Fallahi, P; Togan, E; Delteil, A; Chin, Y S; Miguel-Sanchez, J; Imamoğlu, A
2013-01-01
A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.
NASA Astrophysics Data System (ADS)
Rubtsova, N. N.; Gol’dort, V. G.; Khvorostov, E. B.; Kochubei, S. A.; Reshetov, V. A.
2018-06-01
Collision-induced stimulated photon echo generated at transition was analyzed theoretically and investigated experimentally in the gaseous mixture of ytterbium vapour diluted with a large amount of buffer gas xenon in the presence of a weak longitudinal magnetic field. The inter-combination transition of 174Yb (6s2) 1S(6s6p) 3P1 was used; all experimental parameters were carefully controlled for their correspondence to the broad spectral line conditions. The curve representing the collision-induced stimulated photon echo variations versus a weak magnetic field strength showed very good agreement with the corresponding theoretical curve; this agreement permitted getting the decay rates for 174Yb level 3P1 orientation and alignment in collisions with Xe.
NASA Astrophysics Data System (ADS)
Rubtsova, N. N.; Gol'dort, V. G.; Ishchenko, V. N.; Khvorostov, E. B.; Kochubei, S. A.; Borisov, G. M.; Ledovskikh, D. V.; Reshetov, V. A.
2018-04-01
For the first time, the collision induced stimulated photon echo generated at transition 1S0 → 3 P1 of 174Yb (type 0-1) in the mixture of gases Yb + Xe was investigated in the presence of weak longitudinal magnetic field, with experimental parameters corresponding to broad spectral line conditions. Comparison of the experimental echo amplitude versus magnetic field strength dependence with the theoretical curve shows a very good agreement, giving rise to an improved estimate for the difference between alignment and orientation decay rates.
Ha, Jeong-Hyon; Lee, Kyung-Koo; Park, Kwang-Hee; Choi, Jun-Ho; Jeon, Seung-Joon; Cho, Minhaeng
2009-05-28
By means of integrated and dispersed IR photon echo measurement methods, the vibrational dynamics of C-N stretch modes in 4-cyanophenol and 4-cyanophenoxide in methanol is investigated. The vibrational frequency-frequency correlation function (FFCF) is retrieved from the integrated photon echo signals by assuming that the FFCF is described by two exponential functions with about 400 fs and a few picosecond components. The excited state lifetimes of the C-N stretch modes of neutral and anionic 4-cyanophenols are 1.45 and 0.91 ps, respectively, and the overtone anharmonic frequency shifts are 25 and 28 cm(-1). At short waiting times, a notable underdamped oscillation, which is attributed to a low-frequency intramolecular vibration coupled to the CN stretch, in the integrated and dispersed vibrational echo as well as transient grating signals was observed. The spectral bandwidths of IR absorption and dispersed vibrational echo spectra of the 4-cyanophenoxide are significantly larger than those of its neutral form, indicating that the strong interaction between phenoxide and methanol causes large frequency fluctuation and rapid population relaxation. The resonance effects in a paradisubstituted aromatic compound would be of interest in understanding the conjugation effects and their influences on chemical reactivity of various aromatic compounds in organic solvents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Kazumasa; Ishi-Hayase, Junko; Akahane, Kouichi
2013-12-04
We performed the proof-of-principle demonstration of photon-echo quantum memory using strain-compensated InAs quantum dot ensemble in the telecommunication wavelength range. We succeeded in transfer and retrieval of relative phase of a time-bin pulse with a high fidelity. Our demonstration suggests the possibility of realizing ultrabroadband, high time-bandwidth products, multi-mode quantum memory which is operable at telecommunication wavelength.
Adiabatic passage in photon-echo quantum memories
NASA Astrophysics Data System (ADS)
Demeter, Gabor
2013-11-01
Photon-echo-based quantum memories use inhomogeneously broadened, optically thick ensembles of absorbers to store a weak optical signal and employ various protocols to rephase the atomic coherences for information retrieval. We study the application of two consecutive, frequency-chirped control pulses for coherence rephasing in an ensemble with a “natural” inhomogeneous broadening. Although propagation effects distort the two control pulses differently, chirped pulses that drive adiabatic passage can rephase atomic coherences in an optically thick storage medium. Combined with spatial phase-mismatching techniques to prevent primary echo emission, coherences can be rephased around the ground state to achieve secondary echo emission with close to unit efficiency. Potential advantages over similar schemes working with π pulses include greater potential signal fidelity, reduced noise due to spontaneous emission, and better capability for the storage of multiple memory channels.
Optical resonance imaging: An optical analog to MRI with sub-diffraction-limited capabilities.
Allodi, Marco A; Dahlberg, Peter D; Mazuski, Richard J; Davis, Hunter C; Otto, John P; Engel, Gregory S
2016-12-21
We propose here optical resonance imaging (ORI), a direct optical analog to magnetic resonance imaging (MRI). The proposed pulse sequence for ORI maps space to time and recovers an image from a heterodyne-detected third-order nonlinear photon echo measurement. As opposed to traditional photon echo measurements, the third pulse in the ORI pulse sequence has significant pulse-front tilt that acts as a temporal gradient. This gradient couples space to time by stimulating the emission of a photon echo signal from different lateral spatial locations of a sample at different times, providing a widefield ultrafast microscopy. We circumvent the diffraction limit of the optics by mapping the lateral spatial coordinate of the sample with the emission time of the signal, which can be measured to high precision using interferometric heterodyne detection. This technique is thus an optical analog of MRI, where magnetic-field gradients are used to localize the spin-echo emission to a point below the diffraction limit of the radio-frequency wave used. We calculate the expected ORI signal using 15 fs pulses and 87° of pulse-front tilt, collected using f /2 optics and find a two-point resolution 275 nm using 800 nm light that satisfies the Rayleigh criterion. We also derive a general equation for resolution in optical resonance imaging that indicates that there is a possibility of superresolution imaging using this technique. The photon echo sequence also enables spectroscopic determination of the input and output energy. The technique thus correlates the input energy with the final position and energy of the exciton.
NASA Technical Reports Server (NTRS)
Hartmann, S. R.; Happer, W.
1974-01-01
The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.
Single photon ranging system using two wavelengths laser and analysis of precision
NASA Astrophysics Data System (ADS)
Chen, Yunfei; He, Weiji; Miao, Zhuang; Gu, Guohua; Chen, Qian
2013-09-01
The laser ranging system based on time correlation single photon counting technology and single photon detector has the feature of high precision and low emergent energy etc. In this paper, we established a single photon laser ranging system that use the supercontinuum laser as light source, and two wavelengths (532nm and 830nm) of echo signal as the stop signal. We propose a new method that is capable to improve the single photon ranging system performance. The method is implemented by using two single-photon detectors to receive respectively the two different wavelength signals at the same time. We extracted the firings of the two detectors triggered by the same laser pulse at the same time and then took mean time of the two firings as the combined detection time-of-flight. The detection by two channels using two wavelengths will effectively improve the detection precision and decrease the false alarm probability. Finally, an experimental single photon ranging system was established. Through a lot of experiments, we got the system precision using both single and two wavelengths and verified the effectiveness of the method.
DC Stark addressing for quantum memory in Tm:YAG
NASA Astrophysics Data System (ADS)
Gerasimov, Konstantin; Minnegaliev, Mansur; Urmancheev, Ravil; Moiseev, Sergey
2017-10-01
We observed a linear DC Stark effect for 3H6 - 3H4 optical transition of Tm3+ ions in Y3Al5O12. We observed that application of electric field pulse suppresses the two-pulse photon echo signal. If we then apply a second electric pulse of opposite polarity the echo signal is restored again, which indicates the linear nature of the observed effect. The effect is present despite the D2 symmetry of the Tm3+ sites that prohibits a linear Stark effect. Experimental data analysis shows that the observed electric field influence can be attributed to defects that break the local crystal field symmetry near Tm3+ ions. Using this effect we demonstrate selective retrieval of light pulses in two-pulse photon echo.
NASA Astrophysics Data System (ADS)
Bakhodurov, A. U.; Vashourin, N. S.; Vinogradov, E. A.; Gazizov, K. Sh.; Kompanets, V. O.; Popov, I. I.; Putilin, S. E.; Chekalin, S. V.
2017-10-01
This paper reflects the results of the research on the character of the dependence of the non-Faraday rotation of the femtosecond stimulated photon echo polarization plane on the time interval between the second and third exciting pulses, discretely varying from 180 to 900 fs in increments 180 fs. The time interval between the first and second pulses was equal to zero. The echo signal was formed at room temperature on exciton states localized on the surface defects of a thin three-layer textured ZnO/Si(P)/Si(B) film in the presence of a homogeneous magnetic field of 0.25 mT applied longitudinally to the optical excitation axis. The qualitative coincidence of the investigated dependence with the theoretical prediction of the investigated effect for gaseous medium is shown.
NASA Technical Reports Server (NTRS)
Herman, R. M.
1983-01-01
A general theory of atomic dipole coherence under the influence of collisional phase changes, inelastic effects and optically active atom velocity changes, including those due to anisotropic interactions is presented. Velocity change effects are obtained in closed form. Line shapes appear as convolutions of standard pressure broadening contours with velocity-change contours. Width and shift parameters for the He-broadened Na D lines at 2 m bar pressure, 380 K are calculated, as are He-induced photon echo decay rates for these lines. Overall agreement with xperiment is reasonably good.
2D THz-THz-Raman Photon-Echo Spectroscopy of Molecular Vibrations in Liquid Bromoform.
Finneran, Ian A; Welsch, Ralph; Allodi, Marco A; Miller, Thomas F; Blake, Geoffrey A
2017-09-21
Fundamental properties of molecular liquids are governed by long-range interactions that most prominently manifest at terahertz (THz) frequencies. Here we report the detection of nonlinear THz photon-echo (rephasing) signals in liquid bromoform using THz-THz-Raman spectroscopy. Together, the many observed signatures span frequencies from 0.5 to 8.5 THz and result from couplings between thermally populated ladders of vibrational states. The strongest peaks in the spectrum are found to be multiquantum dipole and 1-quantum polarizability transitions and may arise from nonlinearities in the intramolecular dipole moment surface driven by intermolecular interactions.
Nanophotonic photon echo memory based on rare-earth-doped crystals
NASA Astrophysics Data System (ADS)
Zhong, Tian; Kindem, Jonathan; Miyazono, Evan; Faraon, Andrei; Caltech nano quantum optics Team
2015-03-01
Rare earth ions (REIs) are promising candidates for implementing solid-state quantum memories and quantum repeater devices. Their high spectral stability and long coherence times make REIs a good choice for integration in an on-chip quantum nano-photonic platform. We report the coupling of the 883 nm transition of Neodymium (Nd) to a Yttrium orthosilicate (YSO) photonic crystal nano-beam resonator, achieving Purcell enhanced spontaneous emission by 21 times and increased optical absorption. Photon echoes were observed in nano-beams of different doping concentrations, yielding optical coherence times T2 up to 80 μs that are comparable to unprocessed bulk samples. This indicates the remarkable coherence properties of Nd are preserved during nanofabrication, therefore opening the possibility of efficient on-chip optical quantum memories. The nano-resonator with mode volume of 1 . 6(λ / n) 3 was fabricated using focused ion beam, and a quality factor of 3200 was measured. Purcell enhanced absorption of 80% by an ensemble of ~ 1 × 106 ions in the resonator was measured, which fulfills the cavity impedance matching condition that is necessary to achieve quantum storage of photons with unity efficiency.
Ham, Byoung S
2010-08-16
Lengthening of photon storage time has been an important issue in quantum memories for long distance quantum communications utilizing quantum repeaters. Atom population transfer into an auxiliary spin state has been adapted to increase photon storage time of photon echoes. In this population transfer process phase shift to the collective atoms is inevitable, where the phase recovery condition must be multiple of 2pi to satisfy rephasing mechanism. Recent adaptation of the population transfer method to atomic frequency comb (AFC) echoes [Afzelius et al., Phys. Rev. Lett. 104, 040503 (2010)], where the population transfer method is originated in a controlled reversible inhomogeneous broadening technique [Moiseev and Kroll, Phys. Rev. Lett. 87, 173601 (2001)], however, shows contradictory phenomenon violating the phase recovery condition. This contradiction in AFC is reviewed as a general case of optical locking applied to a dilute medium for an optical depth-dependent coherence leakage resulting in partial retrieval efficiency.
The research of data acquisition system for Raman spectrometer
NASA Astrophysics Data System (ADS)
Cui, Xiao; Guo, Pan; Zhang, Yinchao; Chen, Siying; Chen, He; Chen, Wenbo
2011-11-01
Raman spectrometer has been widely used as an identification tool for analyzing material structure and composition in many fields. However, Raman scattering echo signal is very weak, about dozens of photons at most in one laser plus signal. Therefore, it is a great challenge to design a Raman spectrum data acquisition system which could accurately receive the weak echo signal. The system designed in this paper receives optical signals with the principle of photon counter and could detect single photon. The whole system consists of a photoelectric conversion module H7421-40 and a photo counting card including a field programmable gate array (FPGA) chip and a PCI9054 chip. The module H7421-40 including a PMT, an amplifier and a discriminator has high sensitivity on wavelength from 300nm to 720nm. The Center Wavelength is 580nm which is close to the excitation wavelength (532nm), QE 40% at peak wavelength, Count Sensitivity is 7.8*105(S-1PW-1) and Count Linearity is 1.5MHZ. In FPGA chip, the functions are divided into three parts: parameter setting module, controlling module, data collection and storage module. All the commands, parameters and data are transmitted between FPGA and computer by PCI9054 chip through the PCI interface. The result of experiment shows that the Raman spectrum data acquisition system is reasonable and efficient. There are three primary advantages of the data acquisition system: the first one is the high sensitivity with single photon detection capability; the second one is the high integrated level which means all the operation could be done by the photo counting card; and the last one is the high expansion ability because of the smart reconfigurability of FPGA chip.
NASA Astrophysics Data System (ADS)
Zakharov, S. M.; Manykin, Eduard A.
1995-02-01
The principles of optical processing based on dynamic spatial—temporal properties of two-pulse photon echo signals are considered. The properties of a resonant medium as an on-line filter of temporal and spatial frequencies are discussed. These properties are due to the sensitivity of such a medium to the Fourier spectrum of the second exiting pulse. Degeneracy of quantum resonant systems, demonstrated by the coherent response dependence on the square of the amplitude of the second pulse, can be used for 'simultaneous' correlation processing of optical 'signals'. Various methods for the processing of the Fourier optical image are discussed.
NASA Astrophysics Data System (ADS)
Shvyd'ko, Yuri
2016-02-01
X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.
Probing the magnetsophere with artificial electron beams
NASA Technical Reports Server (NTRS)
Winckler, J. R.
1981-01-01
An analysis is conducted of the University of Minnesota Electron Echo experiments, which so far have included five sounding rocket experiments. The concept of the Echo experiment is to inject electron beam pulses from a rocket into the ionosphere at altitudes in the range from 100 to 300 km. The electrons move to the conjugate hemisphere following magnetic field lines and return on neighboring field lines to the neighborhood of the rocket where the pulses may be detected and analyzed. Attention is given to the detection and analysis of echoes, the structure of echoes, and the Echo V experiment. The Echo V experiment showed clearly that detection of remote echo beams by atmospheric fluorescence using low light level TV system is not a viable technique. A future experiment is to use throw-away detectors for direct remote echo detection.
NASA Astrophysics Data System (ADS)
Lin, J. W.-I.; Tada, T.; Saikan, S.; Kushida, T.; Tani, T.
1991-10-01
The femtosecond accumulated photon echoes in iron-free myoglobin and iron-free cytochrome-C reveal that the linear electron-phonon coupling is extremely weak in these materials. This feature also manifests itself in the absence of the Stokes shift in the fluorescence spectrum over a wide range of temperatures from liquid-helium temperatures to near room temperatures. The origin of the weak coupling is attributed to the close packing of the porphyrin chromophores into a hydrophobic environment, which is constructed out of the polypeptide chain of the protein. The present results hint at the so-called hydrophobic compartmentalization of the chromophores as one of the important factors in reducing markedly the electron-phonon coupling in dye-polymer systems.
X-ray echo spectroscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Shvyd'ko, Yuri V.
2016-09-01
X-ray echo spectroscopy, a counterpart of neutron spin-echo, was recently introduced [1] to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-meV and 0.02-meV ultra-high-resolution IXS applications (resolving power > 10^8) with broadband 5-13 meV dispersing systems will be presented featuring more than 1000-fold signal enhancement. The technique is general, applicable in different photon frequency domains. [1.] Yu. Shvyd'ko, Phys. Rev. Lett. 116, accepted (2016), arXiv:1511.01526.
Dispersed three-pulse infrared photon echoes of nitrous oxide in water and octanol.
Shattuck, J T; Schneck, J R; Chieffo, L R; Erramilli, S; Ziegler, L D
2013-12-12
Dispersed IR three-pulse photon echoes due to the antisymmetric (ν3) stretch mode of N2O dissolved in H2O and 1-octanol at room temperature are reported and analyzed. The experimentally determined transition frequency-frequency correlation function (FFCF) in these two solvents is explained in terms of inertial solvent contributions, hydrogen bond network fluctuations, and, for octanol, the motions of the alkyl chains. The H2O hydrogen bond fluctuations result in 1.5 ps FFCF decay, in agreement with relaxation rates determined from photon echo based measurements of other aqueous solutions including salt solutions. In octanol, hydrogen bond fluctuations decay on a slower time scale of 3.3 ps and alkyl chain motions result in an inhomogeneous broadening contribution to the ν3 absorption spectrum that decays on a 35 ps time scale. Rotational reorientation of N2O is nearly 3 times faster in octanol as compared to water. Although the vibrational ν3 N2O absorption line shapes in water and octanol are similar, the line widths result from different coherence loss mechanisms. A hot band contribution in the N2O in octanol solution is found to have a significant effect on the echo spectrum due to its correspondingly stronger transition moment than that of the fundamental transition. The dephasing dynamics of the N2O ν3 stretch mode is of interest as a probe in ultrafast studies of complex or nanoconfined systems with both hydrophobic and hydrophilic regions such as phospholipids, nucleic acids, and proteins. These results demonstrate the value of the N2O molecule to act as a reporter of equilibrium fluctuations in such complex systems particularly due to its solubility characteristics and long vibrational lifetime.
NASA Astrophysics Data System (ADS)
Lisin, V. N.; Shegeda, A. M.; Samartsev, V. V.
2015-09-01
A relative phase shift between the different groups of excited dipoles, which appears as result of its frequency splitting due to action of a pulse of electric or magnetic fields, depends on a time, if the pulse overlaps in time with echo-pulse. As а consequence, the echo waveform is changed. The echo time form is modulated. The inverse modulation period well enough approximates Zeeman and pseudo-Stark splitting in the cases of magnetic and, therefore, electrical fields. Thus the g-factors of ground 4I15/2 and excited 4F9/2 optical states of Er3+ ion in LuLiF4 and YLiF4 have been measured and pseudo-Stark shift of R1 line in ruby has been determined.
Transient quantum coherent effects in the acetylene-filled hollow-core photonic crystal fiber
NASA Astrophysics Data System (ADS)
Stepanov, S.; Rodríguez Casillas, N.; Ocegueda Miramontes, M.; Hernández Hernández, E.
2017-02-01
Low-pressure acetylene in the hollow-core photonic crystal structure fibers is an excellent medium for the room-temperature investigation of the coherent quantum effects in communication wavelength region. Pulsed excitation enables observation of new coherent phenomena like optical nutation or photon echo and evaluation of important temporal characteristics of the light-molecule interactions. We also report original experimental results on the pulsed excitation of the electromagnetically induced transparency in co- and counter-propagation configurations.
Anti-dynamic-crosstalk method for single photon LIDAR detection
NASA Astrophysics Data System (ADS)
Zhang, Fan; Liu, Qiang; Gong, Mali; Fu, Xing
2017-11-01
With increasing number of vehicles equipped with light detection and ranging (LIDAR), crosstalk is identified as a critical and urgent issue in the range detection for active collision avoidance. Chaotic pulse position modulation (CPPM) applied in the transmitting pulse train has been shown to prevent crosstalk as well as range ambiguity. However, static and unified strategy on discrimination threshold and the number of accumulated pulse is not valid against crosstalk with varying number of sources and varying intensity of each source. This paper presents an adaptive algorithm to distinguish the target echo from crosstalk with dynamic and unknown level of intensity in the context of intelligent vehicles. New strategy is given based on receiver operating characteristics (ROC) curves that consider the detection requirements of the probability of detection and false alarm for the scenario with varying crosstalk. In the adaptive algorithm, the detected results are compared by the new strategy with both the number of accumulated pulses and the threshold being raised step by step, so that the target echo can be exactly identified from crosstalk with the dynamic and unknown level of intensity. The validity of the algorithm has been verified through the experiments with a single photon detector and the time correlated single photo counting (TCSPC) technique, demonstrating a marked drop in required shots for identifying the target compared with static and unified strategy
Aubauer, R; Au, W W; Nachtigall, P E; Pawloski, D A; DeLong, C M
2000-05-01
Animal behavior experiments require not only stimulus control of the animal's behavior, but also precise control of the stimulus itself. In discrimination experiments with real target presentation, the complex interdependence between the physical dimensions and the backscattering process of an object make it difficult to extract and control relevant echo parameters separately. In other phantom-echo experiments, the echoes were relatively simple and could only simulate certain properties of targets. The echo-simulation method utilized in this paper can be used to transform any animal echolocation sound into phantom echoes of high fidelity and complexity. The developed phantom-echo system is implemented on a digital signal-processing board and gives an experimenter fully programmable control over the echo-generating process and the echo structure itself. In this experiment, the capability of a dolphin to discriminate between acoustically simulated phantom replicas of targets and their real equivalents was tested. Phantom replicas were presented in a probe technique during a materials discrimination experiment. The animal accepted the phantom echoes and classified them in the same manner as it classified real targets.
Techniques for measuring the atomic recoil frequency using a grating-echo atom interferometer
NASA Astrophysics Data System (ADS)
Barrett, Brynle
I have developed three types of time-domain echo atom interferometer (AIs) that use either two or three standing-wave pulses in different configurations. Experiments approaching the transit time limit are achieved using samples of laser-cooled rubidium atoms with temperatures < 5 μK contained within a glass vacuum chamber—an environment that is largely free of both magnetic fields and field gradients. The principles of the atom-interferometric measurement of Eq can be understood based on a description of the "two-pulse" AI. This interferometer uses two standing-wave pulses applied at times t = 0 and t = T 21 to create a superposition of atomic momentum states differing by multiples of the two-photon momentum, ħq = 2 ħk where k is the optical wave number, that interfere in the vicinity of t = 2T 21. This interference or "echo" manifests itself as a density grating in the atomic sample, and is probed by applying a near-resonant traveling-wave "read-out" pulse and measuring the intensity of the coherent light Bragg-scattered in the backward direction. The scattered light from the grating is associated with a λ/2-periodic modulation produced by the interference of momentum states differing by ħq. Interfering states that differ by more than ħq—which produce higher-frequency spatial modulation within the sample—cannot be detected due to the nature of the Bragg scattering detection technique employed in the experiment. The intensity of the scattered light varies in a periodic manner as a function of the standing-wave pulse separation, T21. The fundamental frequency of this modulation is the two-photon atomic recoil frequency, ω q = ħq2/2M, where q = 2k and M is the mass of the atom (a rubidium isotope in this case). The recoil frequency, ω q, is related to the recoil energy, Eq = ħωq, which is the kinetic energy associated with the recoil of the atom after a coherent two-photon scattering process. By performing the experiment on a suitably long time scale ( T21 >> τq = π/ω q ˜32 μs), ωq can be measured precisely. Since ωq contains the ratio of Planck's constant to the mass of the atom, h/M, a precise measurement of ωq can be used as a strict test of quantum theories of the electromagnetic force. This two-pulse technique has a number of disadvantages for a precision measurement of ωq, such as a complicated functional dependence on T21 (due to the nature of Kapitza-Dirac diffraction, the level structure of the atom, and spontaneous emission). However, many of these difficulties can be avoided by using a three-pulse "perturbative" echo technique, where a third standing-wave pulse is applied at t = T21 + δT , with δT < T21. The function of the third pulse is to convert the difference between interfering momentum states from nħq (n > 1) to ħq. In this manner, interference between high-order momentum states contributes more significantly to the three-pulse echo than to the two-pulse echo. By fixing T21 and varying δT between the second standing-wave pulse and the echo time, the signal exhibits a simple shape with narrow fringes that revive periodically at the recoil period, τq. Using this technique, I have achieved a single measurement of ωq with a relative statistical uncertainty of ˜ 180 parts per 109 (ppb) on a time scale of 2T21 ˜ 72 ms in ˜ 15 minutes of data acquisition. Further improvements are anticipated by extending the experimental time scale and narrowing the signal fringe width. To demonstrate the final statistical uncertainty using the current configuration of the experiment, I acquired 82 individual measurements of ω q under the same experimental conditions. This resulted in a final measurement with a statistical precision of 37 ppb. However, this measurement is currently overwhelmed by systematic errors at the level of ˜ 5.7 parts per 106 (ppm). The first survey of systematic effects on the measurement of ωq with this technique has also been carried out, where individual measurements had relative statistical uncertainties of ≲ 1 ppm. These experimental studies, along with theoretical calculations, can be used to reduce and eliminate such effects in future rounds of experimentation. (Abstract shortened by UMI.).
Coherent optical pulse sequencer for quantum applications.
Hosseini, Mahdi; Sparkes, Ben M; Hétet, Gabriel; Longdell, Jevon J; Lam, Ping Koy; Buchler, Ben C
2009-09-10
The bandwidth and versatility of optical devices have revolutionized information technology systems and communication networks. Precise and arbitrary control of an optical field that preserves optical coherence is an important requisite for many proposed photonic technologies. For quantum information applications, a device that allows storage and on-demand retrieval of arbitrary quantum states of light would form an ideal quantum optical memory. Recently, significant progress has been made in implementing atomic quantum memories using electromagnetically induced transparency, photon echo spectroscopy, off-resonance Raman spectroscopy and other atom-light interaction processes. Single-photon and bright-optical-field storage with quantum states have both been successfully demonstrated. Here we present a coherent optical memory based on photon echoes induced through controlled reversible inhomogeneous broadening. Our scheme allows storage of multiple pulses of light within a chosen frequency bandwidth, and stored pulses can be recalled in arbitrary order with any chosen delay between each recalled pulse. Furthermore, pulses can be time-compressed, time-stretched or split into multiple smaller pulses and recalled in several pieces at chosen times. Although our experimental results are so far limited to classical light pulses, our technique should enable the construction of an optical random-access memory for time-bin quantum information, and have potential applications in quantum information processing.
Access to long-term optical memories using photon echoes retrieved from semiconductor spins
NASA Astrophysics Data System (ADS)
Langer, L.; Poltavtsev, S. V.; Yugova, I. A.; Salewski, M.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.
2014-11-01
The ability to store optical information is important for both classical and quantum communication. Achieving this in a comprehensive manner (converting the optical field into material excitation, storing this excitation, and releasing it after a controllable time delay) is greatly complicated by the many, often conflicting, properties of the material. More specifically, optical resonances in semiconductor quantum structures with high oscillator strength are inevitably characterized by short excitation lifetimes (and, therefore, short optical memory). Here, we present a new experimental approach to stimulated photon echoes by transferring the information contained in the optical field into a spin system, where it is decoupled from the optical vacuum field and may persist much longer. We demonstrate this for an n-doped CdTe/(Cd,Mg)Te quantum well, the storage time of which could be increased by more than three orders of magnitude, from the picosecond range up to tens of nanoseconds.
Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase.
Lu, Jian; Zhang, Yaqing; Hwang, Harold Y; Ofori-Okai, Benjamin K; Fleischer, Sharly; Nelson, Keith A
2016-10-18
Ultrafast 2D spectroscopy uses correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum; its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. We report a demonstration of ultrafast 2D terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by multiple terahertz field-dipole interactions. The nonlinear time domain orientation signals are mapped into the frequency domain in 2D rotational spectra that reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.
Xue, Li; Li, Zhulian; Zhang, Labao; Zhai, Dongsheng; Li, Yuqiang; Zhang, Sen; Li, Ming; Kang, Lin; Chen, Jian; Wu, Peiheng; Xiong, Yaoheng
2016-08-15
Satellite laser ranging operating at 1064 nm wavelength using superconducting nanowire single-photon detectors (SNSPDs) is successfully demonstrated. A SNSPD with an intrinsic quantum efficiency of 80% and a dark count rate of 100 cps at 1064 nm wavelength is developed and introduced to Yunnan Observatory in China. With improved closed-loop telescope systems (field of view of about 26''), satellites including Cryosat, Ajisai, and Glonass with ranges of 1600 km, 3100 km, and 19,500 km, respectively, are experimentally ranged with mean echo rates of 1200/min, 4200/min, and 320/min, respectively. To the best of our knowledge, this is the first demonstration of laser ranging for satellites using SNSPDs at 1064 nm wavelength. Theoretical analysis of the detection efficiency and the mean echo rate for typical satellites indicate that it is possible for a SNSPD to range satellites from low Earth orbit to geostationary Earth orbit.
Electronic and Vibrational Coherence in Charge-Transfer Reactions
NASA Astrophysics Data System (ADS)
Scherer, Norbert
1996-03-01
The ultrafast dynamics associated with optically-induced intervalence charge-transfer reactions in solution and protein environments are reported. These studies include the Fe^(II)-Fe^(III) MMCT complex Prussian blue and the mixed valence dimer (CN)_5Ru^(II)CNRuRu^(III)(NH_3)_5. The protein systems include blue copper proteins and the bacterial photosynthetic reaction center. The experimental approaches include photon echo, wavelength-resolved pump-probe and anisotropy measurements performed with 12-16fs duration optical pulses. Complicated time-domain waveforms reflect the several different p[rocesses and time scales for relaxation of coherences (both electronic and vibrational) and populations within these systems. The photon echo and anisotropy results probe electronic coherence and dephasing prior to back electron transfer. Wavelength-resolved pump-probe results reveal vibrational modes coupled to the CT-coordinate as well as formation of new product states or vibrational cooling in the ground state following back electron transfer.
Fast REDOR with CPMG multiple-echo acquisition
NASA Astrophysics Data System (ADS)
Hung, Ivan; Gan, Zhehong
2014-01-01
Rotational-Echo Double Resonance (REDOR) is a widely used experiment for distance measurements in solids. The conventional REDOR experiment measures the signal dephasing from hetero-nuclear recoupling under magic-angle spinning (MAS) in a point by point manner. A modified Carr-Purcell Meiboom-Gill (CPMG) multiple-echo scheme is introduced for fast REDOR measurement. REDOR curves are measured from the CPMG echo amplitude modulation under dipolar recoupling. The real time CPMG-REDOR experiment can speed up the measurement by an order of magnitude. The effects from hetero-nuclear recoupling, the Bloch-Siegert shift and echo truncation to the signal acquisition are discussed and demonstrated.
NASA Technical Reports Server (NTRS)
Kazanas, Demosthenes; Fukumura, K.
2009-01-01
We present detailed computations of photon orbits emitted by flares at the ISCO of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. $a > 0.94 M$, following a flare at ISCO, a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of $\\Delta T \\simeq 14 M$. This constant time delay, then, leads to the presence of a QPO in the source power spectrum at a frequency $\
NASA Astrophysics Data System (ADS)
Corrales, Lia
2015-05-01
X-ray bright quasars might be used to trace dust in the circumgalactic and intergalactic medium through the phenomenon of X-ray scattering, which is observed around Galactic objects whose light passes through a sufficient column of interstellar gas and dust. Of particular interest is the abundance of gray dust larger than 0.1 μ m, which is difficult to detect at other wavelengths. To calculate X-ray scattering from large grains, one must abandon the traditional Rayleigh-Gans approximation. The Mie solution for the X-ray scattering optical depth of the universe is ∼ 1%. This presents a great difficulty for distinguishing dust scattered photons from the point source image of Chandra, which is currently unsurpassed in imaging resolution. The variable nature of AGNs offers a solution to this problem, as scattered light takes a longer path and thus experiences a time delay with respect to non-scattered light. If an AGN dims significantly (≳ 3 dex) due to a major feedback event, the Chandra point source image will be suppressed relative to the scattering halo, and an X-ray echo or ghost halo may become visible. I estimate the total number of scattering echoes visible by Chandra over the entire sky: {{N}ech}∼ {{10}3}({{ν }fb}/y{{r}-1}), where {{ν }fb} is the characteristic frequency of feedback events capable of dimming an AGN quickly.
The effects of preceding lead-alone and lag-alone click trains on the buildup of echo suppression.
Bishop, Christopher W; Yadav, Deepak; London, Sam; Miller, Lee M
2014-08-01
Spatial perception in echoic environments is influenced by recent acoustic history. For instance, echo suppression becomes more effective or "builds up" with repeated exposure to echoes having a consistent acoustic relationship to a temporally leading sound. Four experiments were conducted to investigate how buildup is affected by prior exposure to unpaired lead-alone or lag-alone click trains. Unpaired trains preceded lead-lag click trains designed to evoke and assay buildup. Listeners reported how many sounds they heard from the echo hemifield during the lead-lag trains. Stimuli were presented in free field (experiments 1 and 4) or dichotically through earphones (experiments 2 and 3). In experiment 1, listeners reported more echoes following a lead-alone train compared to a period of silence. In contrast, listeners reported fewer echoes following a lag-alone train; similar results were observed with earphones. Interestingly, the effects of lag-alone click trains on buildup were qualitatively different when compared to a no-conditioner trial type in experiment 4. Finally, experiment 3 demonstrated that the effects of preceding click trains on buildup cannot be explained by a change in counting strategy or perceived click salience. Together, these findings demonstrate that echo suppression is affected by prior exposure to unpaired stimuli.
Setting a disordered password on a photonic memory
NASA Astrophysics Data System (ADS)
Su, Shih-Wei; Gou, Shih-Chuan; Chew, Lock Yue; Chang, Yu-Yen; Yu, Ite A.; Kalachev, Alexey; Liao, Wen-Te
2017-06-01
An all-optical method of setting a disordered password on different schemes of photonic memory is theoretically studied. While photons are regarded as ideal information carriers, it is imperative to implement such data protection on all-optical storage. However, we wish to address the intrinsic risk of data breaches in existing schemes of photonic memory. We theoretically demonstrate a protocol using spatially disordered laser fields to encrypt data stored on an optical memory, namely, encrypted photonic memory. To address the broadband storage, we also investigate a scheme of disordered echo memory with a high fidelity approaching unity. The proposed method increases the difficulty for the eavesdropper to retrieve the stored photon without the preset password even when the randomized and stored photon state is nearly perfectly cloned. Our results pave ways to significantly reduce the exposure of memories, required for long-distance communication, to eavesdropping and therefore restrict the optimal attack on communication protocols. The present scheme also increases the sensitivity of detecting any eavesdropper and so raises the security level of photonic information technology.
Light Echos in Kerr Geometry: A Source of High Frequency QPOs from Random X-ray Bursts
NASA Technical Reports Server (NTRS)
Fukumura, K.; Kazanas, D.
2008-01-01
We propose that high frequency quasi-periodic oscillations (HFQPOs) can be produced from randomly-formed X-ray bursts (flashes) by plasma interior to the ergosphere of a rapidly-rotating black hole. We show by direct computation of their orbits that the photons comprising the observed X-ray light curves, if due to a multitude of such flashes, are affected significantly by the black hole's dragging of inertial frames; the photons of each such burst arrive to an observer at infinity in multiple (double or triple), distinct 'bunches' separated by a roughly constant time lag of t/M approximately equal to 14, regardless of the bursts' azimuthal position. We argue that every other such 'bunch' represents photons that follow trajectories with an additional orbit around the black hole at the photon circular orbit radius (a photon 'echo'). The presence of this constant lag in the response function of the system leads to a QPO feature in its power density spectra, even though the corresponding light curve consists of a totally stochastic signal. This effect is by and large due to the black hole spin and is shown to gradually diminish as the spin parameter a decreases or the radial position of the burst moves outside the static limit surface (ergosphere). Our calculations indicate that for a black hole with Kerr parameter of a/M=0.99 and mass of M=10*Msun the QPO is expected at a frequency of approximately 1.3-1.4 kHz. We discuss the plausibility and observational implications of our model/results as well as its limitations.
Looking for Dust-Scattering Light Echoes
NASA Astrophysics Data System (ADS)
Mills, Brianna; Heinz, Sebastian; Corrales, Lia
2018-01-01
Galactic X-ray transient sources such as neutron stars or black holes sometimes undergo an outburst in X-rays. Ring structures have been observed around three such sources, produced by the X-ray photons being scattered by interstellar dust grains along our line of sight. These dust-scattering light echoes have proven to be a useful tool for measuring and constraining Galactic distances, mapping the dust structure of the Milky Way, and determining the dust composition in the clouds producing the echo. Detectable light echoes require a sufficient quantity of dust along our line of sight, as well as bright, short-lived Galactic X-ray flares. Using data from the Monitor of All-Sky X-ray Image (MAXI) on-board the International Space Station, we ran a peak finding algorithm in Python to look for characteristic flare events. Each flare was characterized by its fluence, the integrated flux of the flare over time. We measured the distribution of flare fluences to show how many observably bright flares were recorded by MAXI. This work provides a parent set for dust echo searches in archival X-ray data and will inform observing strategies with current and future X-ray missions such as Athena and Lynx.
Time-resolved photon echoes from donor-bound excitons in ZnO epitaxial layers
NASA Astrophysics Data System (ADS)
Poltavtsev, S. V.; Kosarev, A. N.; Akimov, I. A.; Yakovlev, D. R.; Sadofev, S.; Puls, J.; Hoffmann, S. P.; Albert, M.; Meier, C.; Meier, T.; Bayer, M.
2017-07-01
The coherent optical response from 140 nm and 65 nm thick ZnO epitaxial layers is studied using four-wave-mixing spectroscopy with picosecond temporal resolution. Resonant excitation of neutral donor-bound excitons results in two-pulse and three-pulse photon echoes. For the donor-bound A exciton (D0XA ) at temperature of 1.8 K we evaluate optical coherence times T2=33 -50 ps corresponding to homogeneous line widths of 13 -19 μ eV , about two orders of magnitude smaller as compared with the inhomogeneous broadening of the optical transitions. The coherent dynamics is determined mainly by the population decay with time T1=30 -40 ps, while pure dephasing is negligible. Temperature increase leads to a significant shortening of T2 due to interaction with acoustic phonons. In contrast, the loss of coherence of the donor-bound B exciton (D0XB ) is significantly faster (T2=3.6 ps ) and governed by pure dephasing processes.
2015-01-01
Implementing parallel and multivalued logic operations at the molecular scale has the potential to improve the miniaturization and efficiency of a new generation of nanoscale computing devices. Two-dimensional photon-echo spectroscopy is capable of resolving dynamical pathways on electronic and vibrational molecular states. We experimentally demonstrate the implementation of molecular decision trees, logic operations where all possible values of inputs are processed in parallel and the outputs are read simultaneously, by probing the laser-induced dynamics of populations and coherences in a rhodamine dye mounted on a short DNA duplex. The inputs are provided by the bilinear interactions between the molecule and the laser pulses, and the output values are read from the two-dimensional molecular response at specific frequencies. Our results highlights how ultrafast dynamics between multiple molecular states induced by light–matter interactions can be used as an advantage for performing complex logic operations in parallel, operations that are faster than electrical switching. PMID:25984269
Ultrafast NMR diffusion measurements exploiting chirp spin echoes.
Ahola, Susanna; Mankinen, Otto; Telkki, Ville-Veikko
2017-04-01
Standard diffusion NMR measurements require the repetition of the experiment multiple times with varying gradient strength or diffusion delay. This makes the experiment time-consuming and restricts the use of hyperpolarized substances to boost sensitivity. We propose a novel single-scan diffusion experiment, which is based on spatial encoding of two-dimensional data, employing the spin-echoes created by two successive adiabatic frequency-swept chirp π pulses. The experiment is called ultrafast pulsed-field-gradient spin-echo (UF-PGSE). We present a rigorous derivation of the echo amplitude in the UF-PGSE experiment, justifying the theoretical basis of the method. The theory reveals also that the standard analysis of experimental data leads to a diffusion coefficient value overestimated by a few per cent. Although the overestimation is of the order of experimental error and thus insignificant in many practical applications, we propose that it can be compensated by a bipolar gradient version of the experiment, UF-BP-PGSE, or by corresponding stimulated-echo experiment, UF-BP-pulsed-field-gradient stimulated-echo. The latter also removes the effect of uniform background gradients. The experiments offer significant prospects for monitoring fast processes in real time as well as for increasing the sensitivity of experiments by several orders of magnitude by nuclear spin hyperpolarization. Furthermore, they can be applied as basic blocks in various ultrafast multidimensional Laplace NMR experiments. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
A simple method for MR elastography: a gradient-echo type multi-echo sequence.
Numano, Tomokazu; Mizuhara, Kazuyuki; Hata, Junichi; Washio, Toshikatsu; Homma, Kazuhiro
2015-01-01
To demonstrate the feasibility of a novel MR elastography (MRE) technique based on a conventional gradient-echo type multi-echo MR sequence which does not need additional bipolar magnetic field gradients (motion encoding gradient: MEG), yet is sensitive to vibration. In a gradient-echo type multi-echo MR sequence, several images are produced from each echo of the train with different echo times (TEs). If these echoes are synchronized with the vibration, each readout's gradient lobes achieve a MEG-like effect, and the later generated echo causes a greater MEG-like effect. The sequence was tested for the tissue-mimicking agarose gel phantoms and the psoas major muscles of healthy volunteers. It was confirmed that the readout gradient lobes caused an MEG-like effect and the later TE images had higher sensitivity to vibrations. The magnitude image of later generated echo suffered the T2 decay and the susceptibility artifacts, but the wave image and elastogram of later generated echo were unaffected by these effects. In in vivo experiments, this method was able to measure the mean shear modulus of the psoas major muscle. From the results of phantom experiments and volunteer studies, it was shown that this method has clinical application potential. Copyright © 2014 Elsevier Inc. All rights reserved.
Light Echoes in Kerr Geometry: A Source of High Frequency QPOs from Random X-ray Bursts
NASA Technical Reports Server (NTRS)
Fukumura, Keigo; Kazanas, Demosthenes
2008-01-01
We propose that high frequency quasi-periodic oscillations (HFQPOs) can be produced from randomly-formed X-ray bursts (flashes) by plasma interior to the ergosphere of a rapidly-rotating black hole. We show by direct computation of their orbits that the photons comprising the observed X-ray light curves, if due to a multitude of such flashes, are affected significantly by the black hole's dragging of inertial frames; the photons of each such burst arrive to an observer at infinity in multiple (double or triple), distinct "bunches" separated by a roughly constant time lag of Deltat(t(sub lag))/M approx. 14, regardless of the bursts' azimuthal position. We argue that every other such "bunch" represents photons that follow trajectories with an additional orbit around the black hole at the photon circular orbit radius (a photon "echo"). The presence of this constant lag in the response function of the system leads to a QPO feature in its power density spectra, even though the corresponding light curve consists of a totally stochastic signal. This effect is by and large due to the black hole spin and is shown to gradually diminish as the spin parameter a decreases or the radial position of the burst moves outside the static limit surface (ergosphere). Our calculations indicate that for a black hole with Kerr parameter of a/M = 0.99 and mass of M = 10Stellar Mass the QPO is expected at a frequency of v(sub QPO) approx. 1.3 - 1.4 kHz. We discuss the plausibility and observational implications of our model/results as well as its limitations. Subject headings: accretion, accretion disks - black hole physics - X-rays: galaxies - stars: oscillations
Coherence rephasing combined with spin-wave storage using chirped control pulses
NASA Astrophysics Data System (ADS)
Demeter, Gabor
2014-06-01
Photon-echo based optical quantum memory schemes often employ intermediate steps to transform optical coherences to spin coherences for longer storage times. We analyze a scheme that uses three identical chirped control pulses for coherence rephasing in an inhomogeneously broadened ensemble of three-level Λ systems. The pulses induce a cyclic permutation of the atomic populations in the adiabatic regime. Optical coherences created by a signal pulse are stored as spin coherences at an intermediate time interval, and are rephased for echo emission when the ensemble is returned to the initial state. Echo emission during a possible partial rephasing when the medium is inverted can be suppressed with an appropriate choice of control pulse wave vectors. We demonstrate that the scheme works in an optically dense ensemble, despite control pulse distortions during propagation. It integrates conveniently the spin-wave storage step into memory schemes based on a second rephasing of the atomic coherences.
NASA Astrophysics Data System (ADS)
Dugan, Mark Allen
1990-08-01
The theoretical basis for new signal transients and spectral features generated in field correlated four wave mixing (4WM) spectroscopies is developed. Special attention is given to those signal responses that are sensitive to phase/amplitude correlation among the input driving fields and not simply their intensity correlation. Thus, the cases of incoherent broadband excitation and of coherent short pulsed excitation will be discussed and compared. Applications to the coherent Raman spectroscopies, both electronically nonresonant and fully resonant, are analyzed. Novel interferometric oscillatory behavior is exposed in terms of field-matter detuning beats and matter-matter bi-level and tri-level quantum beats. In addition new detuning resonances are found that have sub-material linewidths and lock onto the mode frequency of the driven chromophore. These spectral features are a member of a class of bichromophore resonant lineshapes arising from nonlinear mixing with correlated driving fields. The origin of such bichromophore resonances can be based on a coupling between two field-matter superposition states driven by correlated fields on separate chromophores. Analytic results are presented and modelled to anticipate the experimental results presented in a following chapter. The onset of resolvable homogeneous electronic memory is reported in room temperature solutions of dye molecules. A narrowing of the homogeneous linewidths with increasing concentration of these dye solutions is observed in sub-picosecond photon echo experiments. This effect is attributed to aggregation which results in a delocalization of the electronic states over several molecules. Ultra -fast spectral diffusion in these dye aggregates is observed in stimulated photon echo measurements. Aggregate bands, seen in the linear absorption spectrum only at high concentrations, can be probed in more dilute solutions with nonlinear four wave mixing.
NASA Astrophysics Data System (ADS)
Mukherjee, Prabuddha; Krummel, Amber T.; Fulmer, Eric C.; Kass, Itamar; Arkin, Isaiah T.; Zanni, Martin T.
2004-06-01
Heterodyned two-dimensional infrared (2D IR) spectroscopy has been used to study the amide I vibrational dynamics of a 27-residue peptide in lipid vesicles that encompasses the transmembrane domain of the T-cell receptor CD3ζ. Using 1-13C=18O isotope labeling, the amide I mode of the 49-Leucine residue was spectroscopically isolated and the homogeneous and inhomogeneous linewidths of this mode were measured by fitting the 2D IR spectrum collected with a photon echo pulse sequence. The pure dephasing and inhomogeneous linewidths are 2 and 32 cm-1, respectively. The population relaxation time of the amide I band was measured with a transient grating, and it contributes 9 cm-1 to the linewidth. Comparison of the 49-Leucine amide I mode and the amide I band of the entire CD3ζ peptide reveals that the vibrational dynamics are not uniform along the length of the peptide. Possible origins for the large amount of inhomogeneity present at the 49-Leucine site are discussed.
The extraordinary radar echoes from Europa, Ganymede, and Callisto: A geological perspective
Ostro, S.J.; Shoemaker, E.M.
1990-01-01
This outline of plausible geologic explanations for the icy Galilean satellites' radar properties takes into consideration electromagnetic scattering models for the echoes, available empirical and theoretical information about regolith formation, and ice physics. The strange radar signatures arise because (1) ice is electrically different from silicates and/or (2) icy regoliths contain bulk-density (and hence refractive-index) structures absent within silicate regoliths. Ice's relatively high radar-frequency transparency compared with that of silicates permits longer photon path lengths, deeper radar sounding, and a greater number of scattering events. Consequently, scattering mechanisms that cannot contribute significantly to lunar echoes can dominate icy-satellite echoes. Possible phenomena unique to icy regoliths include (1) smoothing out of discontinuities between solid ejecta fragments and more porous surroundings under the action of thermal annealing to form refraction-scattering (RS) "lenses" and (2) formation of density enhancements in the shape of crater floors that result in RS and/or total internal reflection (TIR). In either case, high-order multiple scattering is more likely to be responsible for the echoes than low-order scattering. Radar/radio observations can constrain the order of the scattering and the scale of the structures responsible for the echoes but might not determine whether TIR or RS dominates the scattering. Multiwavelength investigations of the degree of correlation between radar properties and geologic terrain type should prove most useful, because inter- and intrasatellite variations in radar properties probably correspond to variations in ice purity, regolith thickness, and regolith thermal history and age. ?? 1990.
Examining the robustness of automated aural classification of active sonar echoes.
Murphy, Stefan M; Hines, Paul C
2014-02-01
Active sonar systems are used to detect underwater man-made objects of interest (targets) that are too quiet to be reliably detected with passive sonar. Performance of active sonar can be degraded by false alarms caused by echoes returned from geological seabed structures (clutter) in shallow regions. To reduce false alarms, a method of distinguishing target echoes from clutter echoes is required. Research has demonstrated that perceptual-based signal features similar to those employed in the human auditory system can be used to automatically discriminate between target and clutter echoes, thereby reducing the number of false alarms and improving sonar performance. An active sonar experiment on the Malta Plateau in the Mediterranean Sea was conducted during the Clutter07 sea trial and repeated during the Clutter09 sea trial. The dataset consists of more than 95,000 pulse-compressed echoes returned from two targets and many geological clutter objects. These echoes were processed using an automatic classifier that quantifies the timbre of each echo using a number of perceptual signal features. Using echoes from 2007, the aural classifier was trained to establish a boundary between targets and clutter in the feature space. Temporal robustness was then investigated by testing the classifier on echoes from the 2009 experiment.
Poletto, S; Gambetta, Jay M; Merkel, Seth T; Smolin, John A; Chow, Jerry M; Córcoles, A D; Keefe, George A; Rothwell, Mary B; Rozen, J R; Abraham, D W; Rigetti, Chad; Steffen, M
2012-12-14
We report a system where fixed interactions between noncomputational levels make bright the otherwise forbidden two-photon |00}→|11} transition. The system is formed by hand selection and assembly of two discrete component transmon-style superconducting qubits inside a rectangular microwave cavity. The application of a monochromatic drive tuned to this transition induces two-photon Rabi-like oscillations between the ground and doubly excited states via the Bell basis. The system therefore allows all-microwave two-qubit universal control with the same techniques and hardware required for single qubit control. We report Ramsey-like and spin echo sequences with the generated Bell states, and measure a two-qubit gate fidelity of F(g)=90% (unconstrained) and 86% (maximum likelihood estimator).
Echolocation versus echo suppression in humans
Wallmeier, Ludwig; Geßele, Nikodemus; Wiegrebe, Lutz
2013-01-01
Several studies have shown that blind humans can gather spatial information through echolocation. However, when localizing sound sources, the precedence effect suppresses spatial information of echoes, and thereby conflicts with effective echolocation. This study investigates the interaction of echolocation and echo suppression in terms of discrimination suppression in virtual acoustic space. In the ‘Listening’ experiment, sighted subjects discriminated between positions of a single sound source, the leading or the lagging of two sources, respectively. In the ‘Echolocation’ experiment, the sources were replaced by reflectors. Here, the same subjects evaluated echoes generated in real time from self-produced vocalizations and thereby discriminated between positions of a single reflector, the leading or the lagging of two reflectors, respectively. Two key results were observed. First, sighted subjects can learn to discriminate positions of reflective surfaces echo-acoustically with accuracy comparable to sound source discrimination. Second, in the Listening experiment, the presence of the leading source affected discrimination of lagging sources much more than vice versa. In the Echolocation experiment, however, the presence of both the lead and the lag strongly affected discrimination. These data show that the classically described asymmetry in the perception of leading and lagging sounds is strongly diminished in an echolocation task. Additional control experiments showed that the effect is owing to both the direct sound of the vocalization that precedes the echoes and owing to the fact that the subjects actively vocalize in the echolocation task. PMID:23986105
Biomimetic Signal Processing Using the Biosonar Measurement Tool (BMT)
NASA Astrophysics Data System (ADS)
Abawi, Ahmad T.; Hursky, Paul; Porter, Michael B.; Tiemann, Chris; Martin, Stephen
2004-11-01
In this paper data recorded on the Biosonar Measurement Tool (BMT) during a target echolocation experiment are used to 1) find ways to separate target echoes from clutter echoes, 2) analyze target returns and 3) find features in target returns that distinguish them from clutter returns. The BMT is an instrumentation package used in dolphin echolocation experiments developed at SPAWARSYSCEN. It can be held by the dolphin using a bite-plate during echolocation experiments and records the movement and echolocation strategy of a target-hunting dolphin without interfering with its motion through the search field. The BMT was developed to record a variety of data from a free-swimming dolphin engaged in a bottom target detection task. These data include the three dimensional location of the dolphin, including its heading, pitch roll and velocity as well as passive acoustic data recorded on three channels. The outgoing dolphin click is recorded on one channel and the resulting echoes are recorded on the two remaining channels. For each outgoing click the BMT records a large number of echoes that come from the entire ensonified field. Given the large number of transmitted clicks and the returned echoes, it is almost impossible to find a target return from the recorded data on the BMT. As a means of separating target echoes from those of clutter, an echo-mapping tool was developed. This tool produces an echomap on which echoes from targets (and other regular objects such as surface buoys, the side of a boat and so on) stack together as tracks, while echoes from clutter are scattered. Once these tracks are identified, the retuned echoes can easily be extracted for further analysis.
Car, B; Veissier, L; Louchet-Chauvet, A; Le Gouët, J-L; Chanelière, T
2018-05-11
In Er^{3+}:Y_{2}SiO_{5}, we demonstrate the selective optical addressing of the ^{89}Y^{3+} nuclear spins through their superhyperfine coupling with the Er^{3+} electronic spins possessing large Landé g factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y^{3+} nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.
NASA Astrophysics Data System (ADS)
Car, B.; Veissier, L.; Louchet-Chauvet, A.; Le Gouët, J.-L.; Chanelière, T.
2018-05-01
In Er3 +:Y2SiO5 , we demonstrate the selective optical addressing of the
Polarisation in spin-echo experiments: Multi-point and lock-in measurements
NASA Astrophysics Data System (ADS)
Tamtögl, Anton; Davey, Benjamin; Ward, David J.; Jardine, Andrew P.; Ellis, John; Allison, William
2018-02-01
Spin-echo instruments are typically used to measure diffusive processes and the dynamics and motion in samples on ps and ns time scales. A key aspect of the spin-echo technique is to determine the polarisation of a particle beam. We present two methods for measuring the spin polarisation in spin-echo experiments. The current method in use is based on taking a number of discrete readings. The implementation of a new method involves continuously rotating the spin and measuring its polarisation after being scattered from the sample. A control system running on a microcontroller is used to perform the spin rotation and to calculate the polarisation of the scattered beam based on a lock-in amplifier. First experimental tests of the method on a helium spin-echo spectrometer show that it is clearly working and that it has advantages over the discrete approach, i.e., it can track changes of the beam properties throughout the experiment. Moreover, we show that real-time numerical simulations can perfectly describe a complex experiment and can be easily used to develop improved experimental methods prior to a first hardware implementation.
NASA Astrophysics Data System (ADS)
Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper
2017-12-01
Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.
Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre
NASA Astrophysics Data System (ADS)
Saglamyurek, Erhan; Jin, Jeongwan; Verma, Varun B.; Shaw, Matthew D.; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang
2015-02-01
The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.
On the application of magic echo cycles for quadrupolar echo spectroscopy of spin-1 nuclei.
Mananga, E S; Roopchand, R; Rumala, Y S; Boutis, G S
2007-03-01
Magic echo cycles are introduced for performing quadrupolar echo spectroscopy of spin-1 nuclei. An analysis is performed via average Hamiltonian theory showing that the evolution under chemical shift or static field inhomogeneity can be refocused simultaneously with the quadrupolar interaction using these cycles. Due to the higher convergence in the Magnus expansion, with sufficient RF power, magic echo based quadrupolar echo spectroscopy outperforms the conventional two pulse quadrupolar echo in signal to noise. Experiments highlighting a signal to noise enhancement over the entire bandwidth of the quadrupolar pattern of a powdered sample of deuterated polyethelene are shown.
Echo Mapping of Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Peterson, B. M.; Horne, K.
2004-01-01
Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.
NASA Astrophysics Data System (ADS)
Poletto, S.; Gambetta, Jay M.; Merkel, Seth T.; Smolin, John A.; Chow, Jerry M.; Córcoles, A. D.; Keefe, George A.; Rothwell, Mary B.; Rozen, J. R.; Abraham, D. W.; Rigetti, Chad; Steffen, M.
2012-12-01
We report a system where fixed interactions between noncomputational levels make bright the otherwise forbidden two-photon |00⟩→|11⟩ transition. The system is formed by hand selection and assembly of two discrete component transmon-style superconducting qubits inside a rectangular microwave cavity. The application of a monochromatic drive tuned to this transition induces two-photon Rabi-like oscillations between the ground and doubly excited states via the Bell basis. The system therefore allows all-microwave two-qubit universal control with the same techniques and hardware required for single qubit control. We report Ramsey-like and spin echo sequences with the generated Bell states, and measure a two-qubit gate fidelity of Fg=90% (unconstrained) and 86% (maximum likelihood estimator).
Gordon, Jeremy W.; Niles, David J.; Fain, Sean B.; Johnson, Kevin M.
2014-01-01
Purpose To develop a novel imaging technique to reduce the number of excitations and required scan time for hyperpolarized 13C imaging. Methods A least-squares based optimization and reconstruction is developed to simultaneously solve for both spatial and spectral encoding. By jointly solving both domains, spectral imaging can potentially be performed with a spatially oversampled single echo spiral acquisition. Digital simulations, phantom experiments, and initial in vivo hyperpolarized [1-13C]pyruvate experiments were performed to assess the performance of the algorithm as compared to a multi-echo approach. Results Simulations and phantom data indicate that accurate single echo imaging is possible when coupled with oversampling factors greater than six (corresponding to a worst case of pyruvate to metabolite ratio < 9%), even in situations of substantial T2* decay and B0 heterogeneity. With lower oversampling rates, two echoes are required for similar accuracy. These results were confirmed with in vivo data experiments, showing accurate single echo spectral imaging with an oversampling factor of 7 and two echo imaging with an oversampling factor of 4. Conclusion The proposed k-t approach increases data acquisition efficiency by reducing the number of echoes required to generate spectroscopic images, thereby allowing accelerated acquisition speed, preserved polarization, and/or improved temporal or spatial resolution. Magn Reson Med PMID:23716402
NASA Astrophysics Data System (ADS)
Solovev, I. A.; Poltavtsev, S. V.; Kapitonov, Yu. V.; Akimov, I. A.; Sadofev, S.; Puls, J.; Yakovlev, D. R.; Bayer, M.
2018-06-01
We study optically the coherent evolution of trions and excitons in a δ -doped 3.5-nm-thick ZnO/Zn0.91Mg0.09O multiple quantum well by means of time-resolved four-wave mixing at a temperature of 1.5 K. Employing spectrally narrow picosecond laser pulses in the χ(3 ) regime allows us to address differently localized trion and exciton states, thereby avoiding many-body interactions and excitation-induced dephasing. The signal in the form of photon echoes from the negatively charged A excitons (TA, trions) decays with coherence times varying from 8 up to 60 ps, depending on the trion energy: more strongly localized trions reveal longer coherence dynamics. The localized neutral excitons decay on the picosecond time scale with coherence times up to T2=4.5 ps. The coherent dynamics of the XB exciton and TB trion are very short (T2<1 ps), which is attributed to the fast energy relaxation from the trion and exciton B states to the respective A states. The trion population dynamics is characterized by the decay time T1, rising from 30 to 100 ps with decreasing trion energy.
High Frequency QPOs due to Black Hole Spin
NASA Technical Reports Server (NTRS)
Kazanas, Demos; Fukumura, K.
2009-01-01
We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.
A Simulation Tool for Dynamic Contrast Enhanced MRI
Mauconduit, Franck; Christen, Thomas; Barbier, Emmanuel Luc
2013-01-01
The quantification of bolus-tracking MRI techniques remains challenging. The acquisition usually relies on one contrast and the analysis on a simplified model of the various phenomena that arise within a voxel, leading to inaccurate perfusion estimates. To evaluate how simplifications in the interstitial model impact perfusion estimates, we propose a numerical tool to simulate the MR signal provided by a dynamic contrast enhanced (DCE) MRI experiment. Our model encompasses the intrinsic and relaxations, the magnetic field perturbations induced by susceptibility interfaces (vessels and cells), the diffusion of the water protons, the blood flow, the permeability of the vessel wall to the the contrast agent (CA) and the constrained diffusion of the CA within the voxel. The blood compartment is modeled as a uniform compartment. The different blocks of the simulation are validated and compared to classical models. The impact of the CA diffusivity on the permeability and blood volume estimates is evaluated. Simulations demonstrate that the CA diffusivity slightly impacts the permeability estimates ( for classical blood flow and CA diffusion). The effect of long echo times is investigated. Simulations show that DCE-MRI performed with an echo time may already lead to significant underestimation of the blood volume (up to 30% lower for brain tumor permeability values). The potential and the versatility of the proposed implementation are evaluated by running the simulation with realistic vascular geometry obtained from two photons microscopy and with impermeable cells in the extravascular environment. In conclusion, the proposed simulation tool describes DCE-MRI experiments and may be used to evaluate and optimize acquisition and processing strategies. PMID:23516414
del Mestre, Lorenzo; Compassi, Rossana; Badano, Luigi P; Monti, Maria Luisa; Ciani, Rosanna; Buiese, Simonetta; Gianfagna, Pasquale; Fioretti, Paolo M
2006-12-01
Cardiac sonographers play a key role in the management of echo-laboratories in anglo-saxon countries. In Italy, and generally in "latin" countries nearly all echocardiographic studies are performed by cardiologists. However, because of the increasing demand for echocardiography, this practice will no longer be feasible (medical schools do not graduate enough cardiologists!), and cost-effective (the cost of echocardiography performed by cardiologists only is becoming too high!). Introduction of cardiac sonographers in Italian echo-laboratories may represent a feasible and cost-effective solution to the ever increasing demand for echocardiography. In order to contribute to the debate, we report the experience of our echo-laboratory that employs cardiac sonographers since 1984.
Measurement of short transverse relaxation times by pseudo-echo nutation experiments
NASA Astrophysics Data System (ADS)
Ferrari, Maude; Moyne, Christian; Canet, Daniel
2018-07-01
Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R1 and R2. A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way.
Measurement of short transverse relaxation times by pseudo-echo nutation experiments.
Ferrari, Maude; Moyne, Christian; Canet, Daniel
2018-05-03
Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R 1 and R 2 . A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R 1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way. Copyright © 2018 Elsevier Inc. All rights reserved.
Large efficiency at telecom wavelength for optical quantum memories.
Dajczgewand, Julián; Le Gouët, Jean-Louis; Louchet-Chauvet, Anne; Chanelière, Thierry
2014-05-01
We implement the ROSE protocol in an erbium-doped solid, compatible with the telecom range. The ROSE scheme is an adaptation of the standard two-pulse photon echo to make it suitable for a quantum memory. We observe a retrieval efficiency of 40% for a weak laser pulse in the forward direction by using specific orientations of the light polarizations, magnetic field, and crystal axes.
Noninterferometric Two-Dimensional Fourier-Transform Spectroscopy of Multilevel Systems
NASA Astrophysics Data System (ADS)
Davis, J. A.; Dao, L. V.; Do, M. T.; Hannaford, P.; Nugent, K. A.; Quiney, H. M.
2008-06-01
We demonstrate a technique that determines the phase of the photon-echo emission from spectrally resolved intensity data without requiring phase-stabilized input pulses. The full complex polarization of the emission is determined from spectral intensity measurements. The validity of this technique is demonstrated using simulated data, and is then applied to the analysis of two-color data obtained from the light-harvesting molecule lycopene.
Backscattering of sound from targets in an Airy caustic formed by a curved reflecting surface
NASA Astrophysics Data System (ADS)
Dzikowicz, Benjamin Robert
The focusing of a caustic associated with the reflection of a locally curved sea floor or surface affects the scattering of sound by underwater targets. The most elementary caustic formed when sound reflects off a naturally curved surface is an Airy caustic. The case of a spherical target is examined here. With a point source acting also as a receiver, a point target lying in a shadow region returns only one echo directly from the target. When the target is on the Airy caustic, there are two echoes: one path is directly to the target and the other focuses off the curved surface. Echoes may be focused in both directions, the doubly focused case being the largest and the latest echo. With the target in the lit region, these different paths produce multiple echoes. For a finite sized sphere near an Airy caustic, all these echoes are manifest, but they occur at shifted target positions. Echoes of tone bursts reflecting only once overlap and interfere with each other, as do those reflecting twice. Catastrophe theory is used to analyze the echo amplitudes arising from these overlaps. The echo pressure for single reflections is shown to have a dependence on target position described by an Airy function for both a point and a finite target. With double focusing, this dependence is the square of an Airy function for a point target. With a finite sized target, (as in the experiment) this becomes a hyperbolic umbilic catastrophe integral with symmetric arguments. The arguments of each of these functions are derived from only the relative echo times of a transient pulse. Transient echo times are calculated using a numerical ray finding technique. Experiment confirms the predicted merging of transient echoes in the time domain, as well as the Airy and hyperbolic umbilic diffraction integral amplitudes for a tone burst. This method allows targets to be observed at greater distances in the presence of a focusing surface.
Increasing sensitivity of pulse EPR experiments using echo train detection schemes.
Mentink-Vigier, F; Collauto, A; Feintuch, A; Kaminker, I; Tarle, V; Goldfarb, D
2013-11-01
Modern pulse EPR experiments are routinely used to study the structural features of paramagnetic centers. They are usually performed at low temperatures, where relaxation times are long and polarization is high, to achieve a sufficient Signal/Noise Ratio (SNR). However, when working with samples whose amount and/or concentration are limited, sensitivity becomes an issue and therefore measurements may require a significant accumulation time, up to 12h or more. As the detection scheme of practically all pulse EPR sequences is based on the integration of a spin echo--either primary, stimulated or refocused--a considerable increase in SNR can be obtained by replacing the single echo detection scheme by a train of echoes. All these echoes, generated by Carr-Purcell type sequences, are integrated and summed together to improve the SNR. This scheme is commonly used in NMR and here we demonstrate its applicability to a number of frequently used pulse EPR experiments: Echo-Detected EPR, Davies and Mims ENDOR (Electron-Nuclear Double Resonance), DEER (Electron-Electron Double Resonance|) and EDNMR (Electron-Electron Double Resonance (ELDOR)-Detected NMR), which were combined with a Carr-Purcell-Meiboom-Gill (CPMG) type detection scheme at W-band. By collecting the transient signal and integrating a number of refocused echoes, this detection scheme yielded a 1.6-5 folds SNR improvement, depending on the paramagnetic center and the pulse sequence applied. This improvement is achieved while keeping the experimental time constant and it does not introduce signal distortion. Copyright © 2013 Elsevier Inc. All rights reserved.
... echo” (as opposed to spin-echo or proton beam) imaging. Gradient-echo MRI is most efficient at ... radiosurgery for cavernous malformations: Kjellberg's experience with proton beam therapy in 98 cases at the Harvard Cyclotron. ...
Quantum memory with a controlled homogeneous splitting
NASA Astrophysics Data System (ADS)
Hétet, G.; Wilkowski, D.; Chanelière, T.
2013-04-01
We propose a quantum memory protocol where an input light field can be stored onto and released from a single ground state atomic ensemble by controlling dynamically the strength of an external static and homogeneous field. The technique relies on the adiabatic following of a polaritonic excitation onto a state for which the forward collective radiative emission is forbidden. The resemblance with the archetypal electromagnetically induced transparency is only formal because no ground state coherence-based slow-light propagation is considered here. As compared to the other grand category of protocols derived from the photon-echo technique, our approach only involves a homogeneous static field. We discuss two physical situations where the effect can be observed, and show that in the limit where the excited state lifetime is longer than the storage time; the protocols are perfectly efficient and noise free. We compare the technique with other quantum memories, and propose atomic systems where the experiment can be realized.
Beam echoes in the presence of coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, Axel
2017-10-03
Transverse beam echoes could provide a new technique of measuring diusion characteristics orders of magnitude faster than the current methods; however, their interaction with many accelerator parameters is poorly understood. Using a program written in C, we explored the relationship between coupling and echo strength. We found that echoes could be generated in both dimensions, even with a dipole kick in only one dimension. We found that the echo eects are not destroyed even when there is strong coupling, falling o only at extremely high coupling values. We found that at intermediate values of skew quadrupole strength, the decoherence timemore » of the beam is greatly increased, causing a destruction of the echo eects. We found that this is caused by a narrowing of the tune width of the particles. Results from this study will help to provide recommendations to IOTA (Integrable Optics Test Accelerator) for their upcoming echo experiment.« less
A whale better adjusts the biosonar to ordered rather than to random changes in the echo parameters.
Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee
2012-09-01
A false killer whale's (Pseudorca crassidens) sonar clicks and auditory evoked potentials (AEPs) were recorded during echolocation with simulated echoes in two series of experiments. In the first, both the echo delay and transfer factor (which is the dB-ratio of the echo sound-pressure level to emitted pulse source level) were varied randomly from trial to trial until enough data were collected (random presentation). In the second, a combination of the echo delay and transfer factor was kept constant until enough data were collected (ordered presentation). The mean click level decreased with shortening the delay and increasing the transfer factor, more at the ordered presentation rather than at the random presentation. AEPs to the self-heard emitted clicks decreased with shortening the delay and increasing the echo level equally in both series. AEPs to echoes increased with increasing the echo level, little dependent on the echo delay at random presentations but much more dependent on delay with ordered presentations. So some adjustment of the whale's biosonar was possible without prior information about the echo parameters; however, the availability of prior information about echoes provided additional whale capabilities to adjust both the transmitting and receiving parts of the biosonar.
NASA Astrophysics Data System (ADS)
Malcolm, Perry Robert
The ECHO-6 sounding rocket was launched from the Poker Flat Research Range, Alaska on 30 March 1983. A Terrier-Black Brant launch vehicle carried the payload on a northward trajectory over an auroral arc and to an apogee of 216 kilometers. The primary objective of the ECHO-6 experiment was to evaluate electric fields, magnetic fields, and plasma processes in the distant magnetosphere by injecting electron beams in the ionosphere and observing conjugate echoes. The experiment succeeded in injecting 10-36 KeV beams during the existence of a moderate growth phase aurora, an easterly electrojet system, and a pre -midnight inflation condition of the magnetosphere. The ECHO-6 payload system consisted of an accelerator MAIN payload, a free-flying Plasma Diagnostics Package (PDP), and four rocket propelled Throw Away Detectors (TADs). The PDP was ejected from the MAIN payload to analyze electric fields, plasma particles, energetic electrons, and photometric effects produced by beam injections. The TADs were ejected from the MAIN payload in a pattern to detect echoes in the conjugate echo region south of the beam emitting MAIN payload. The TADs reached distances exceeding 3 kilometers from the MAIN payload and made measurements of the ambient electrons by means of solid state detectors and electrostatic analyzers. In spite of the perfect operation of the TAD system and a rigorous analysis of the particle data, no conjugate echoes have been identified. Through the use of a new dynamic magnetic field model (Olson and Pfitzer, 1982) and satellite magnetometer measurements, it has been determined that the echoing electrons returned out of range of the TADs as a result of their bounce times and curvature-gradient drifts being increased beyond the expected limits for an inflated magnetic field. This dynamic model was then applied to the study of echoes seen during the ECHO-4 flight resulting in a significant increase in the calculated energy of the echo electrons and better agreement between the locally measured and bounce integrated electric field.
NASA Astrophysics Data System (ADS)
Abdi, Amir H.; Luong, Christina; Tsang, Teresa; Allan, Gregory; Nouranian, Saman; Jue, John; Hawley, Dale; Fleming, Sarah; Gin, Ken; Swift, Jody; Rohling, Robert; Abolmaesumi, Purang
2017-02-01
Echocardiography (echo) is the most common test for diagnosis and management of patients with cardiac condi- tions. While most medical imaging modalities benefit from a relatively automated procedure, this is not the case for echo and the quality of the final echo view depends on the competency and experience of the sonographer. It is not uncommon that the sonographer does not have adequate experience to adjust the transducer and acquire a high quality echo, which may further affect the clinical diagnosis. In this work, we aim to aid the operator during image acquisition by automatically assessing the quality of the echo and generating the Automatic Echo Score (AES). This quality assessment method is based on a deep convolutional neural network, trained in an end-to-end fashion on a large dataset of apical four-chamber (A4C) echo images. For this project, an expert car- diologist went through 2,904 A4C images obtained from independent studies and assessed their condition based on a 6-scale grading system. The scores assigned by the expert ranged from 0 to 5. The distribution of scores among the 6 levels were almost uniform. The network was then trained on 80% of the data (2,345 samples). The average absolute error of the trained model in calculating the AES was 0.8 +/- 0:72. The computation time of the GPU implementation of the neural network was estimated at 5 ms per frame, which is sufficient for real-time deployment.
Ferguson, Kate R; Beavan, Sarah E; Longdell, Jevon J; Sellars, Matthew J
2016-07-08
Here, we demonstrate generating and storing entanglement in a solid-state spin-wave quantum memory with on-demand readout using the process of rephased amplified spontaneous emission (RASE). Amplified spontaneous emission (ASE), resulting from an inverted ensemble of Pr^{3+} ions doped into a Y_{2}SiO_{5} crystal, generates entanglement between collective states of the praseodymium ensemble and the output light. The ensemble is then rephased using a four-level photon echo technique. Entanglement between the ASE and its echo is confirmed and the inseparability violation preserved when the RASE is stored as a spin wave for up to 5 μs. RASE is shown to be temporally multimode with almost perfect distinguishability between two temporal modes demonstrated. These results pave the way for the use of multimode solid-state quantum memories in scalable quantum networks.
Revisiting NMR composite pulses for broadband 2H excitation
Shen, Ming; Roopchand, Rabia; Mananga, Eugene S.; Amoureux, Jean-Paul; Chen, Qun; Boutis, Gregory S.; Hu, Bingwen
2014-01-01
Quadrupolar echo NMR spectroscopy of static solids often requires RF excitation that covers spectral widths exceeding 100 kHz, which is difficult to obtain due to instrumental limitations. In this work we revisit four well-known composite pulses (COM-I, II, III and IV) for broadband excitation in deuterium quadrupolar echo spectroscopy. These composite pulses are combined with several phase cycling schemes that were previously shown to decrease finite pulse width distortions in deuterium solid-echo experiments performed with two single pulses. The simulations and experiments show that COM-II and IV composite pulses combined with an 8-step phase cycling aid in achieving broadband excitation with limited pulse width distortions. PMID:25583576
On the sizes and observable effects of dust particles in polar mesospheric winter echoes
NASA Astrophysics Data System (ADS)
Havnes, O.; Kassa, M.
2009-05-01
In the present paper, recent radar and heating experiments on the polar mesospheric winter echoes (PMWE) are analyzed with the radar overshoot model. The PMWE dust particles that influence the radar backscatter most likely have sizes around 3 nm. For dust to influence the electrons in the PMWE layers, it must be charged; therefore, we have discussed the charging of nanometer-sized particles and found that the photodetachment effect, where photons of energy less than the work function of the dust material can remove excess electrons, probably is dominant at sunlit conditions. For moderate and low electron densities, very few of the dust smaller than ˜3 nm will be charged. We suggest that the normal requirement that disturbed magnetospheric conditions with ionizing precipitation must be present to create observable PMWE is needed mainly to create sufficiently high electron densities to overcome the photodetachment effect and charge the PMWE dust particles. We have also suggested other possible effects of the photodetachment on the occurrence rate of the PMWE. We attribute the lack of PMWE-like radar scattering layers in the lower mesosphere during the summer not only to a lower level of turbulence than in winter but also to that dust particles are removed from these layers due to the upward wind draught in the summer mesospheric circulation system. It is likely that this last effect will completely shut off the PMWE-like radar layers in the lower parts of the mesosphere.
NASA Astrophysics Data System (ADS)
Vainer, Yu. G.; Naumov, A. V.; Kador, L.
2008-06-01
The energy spectrum of low-frequency vibrational modes (LFMs) in three disordered organic solids—amorphous polyisobutylene (PIB), toluene and deuterated toluene glasses, weakly doped with fluorescent chromophore molecules of tetra-tert-butylterrylene (TBT) has been measured via single-molecule (SM) spectroscopy. Analysis of the individual temperature dependences of linewidths of single TBT molecules allowed us to determine the values of the vibrational mode frequencies and the SM-LFM coupling constants for vibrations in the local environment of the molecules. The measured LFM spectra were compared with the “Boson peak” as measured in pure PIB by inelastic neutron scattering, in pure toluene glass by low-frequency Raman scattering, in doped toluene glass by nuclear inelastic scattering, and with photon echo data. The comparative analysis revealed close agreement between the spectra of the local vibrations as measured in the present study and the literature data of the Boson peak in PIB and toluene. The analysis has also the important result that weak doping of the disordered matrices with nonpolar probe molecules whose chemical composition is similar to that of the matrix molecules does not influence the observed vibrational dynamics markedly. The experimental data displaying temporal stability on the time scale of a few hours of vibrational excitation parameters in local surroundings was obtained for the first time both for polymer and molecular glass.
Determining Appropriate Coupling between User Experiences and Earth Science Data Services
NASA Astrophysics Data System (ADS)
Moghaddam-Taaheri, E.; Pilone, D.; Newman, D. J.; Mitchell, A. E.; Goff, T. D.; Baynes, K.
2012-12-01
NASA's Earth Observing System ClearingHOuse (ECHO) is a format agnostic metadata repository supporting over 3000 collections and 100M granules. ECHO exposes FTP and RESTful Data Ingest APIs in addition to both SOAP and RESTful search and order capabilities. Built on top of ECHO is a human facing search and order web application named Reverb. Reverb exposes ECHO's capabilities through an interactive, Web 2.0 application designed around searching for Earth Science data and downloading or ordering data of interest. ECHO and Reverb have supported the concept of Earth Science data services for several years but only for discovery. Invocation of these services was not a primary capability of the user experience. As more and more Earth Science data moves online and away from the concept of data ordering, progress has been made in making on demand services available for directly accessed data. These concepts have existed through access mechanisms such as OPeNDAP but are proliferating to accommodate a wider variety of services and service providers. Recently, the EOSDIS Service Interface (ESI) was defined and integrated into the ECS system. The ESI allows data providers to expose a wide variety of service capabilities including reprojection, reformatting, spatial and band subsetting, and resampling. ECHO and Reverb were tasked with making these services available to end-users in a meaningful and usable way that integrated into its existing search and ordering workflow. This presentation discusses the challenges associated with exposing disparate service capabilities while presenting a meaningful and cohesive user experience. Specifically, we'll discuss: - Benefits and challenges of tightly coupling the user interface with underlying services - Approaches to generic service descriptions - Approaches to dynamic user interfaces that better describe service capabilities while minimizing application coupling - Challenges associated with traditional WSDL / UDDI style service descriptions - Walkthrough of the solution used by ECHO and Reverb to integrate and expose ESI compliant services to our users
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veres, P.; Dermer, C. D.; Dhuga, K. S.
The magnetic field in intergalactic space gives important information about magnetogenesis in the early universe. The properties of this field can be probed by searching for radiation of secondary e {sup +} e {sup −} pairs created by TeV photons that produce GeV range radiation by Compton-scattering cosmic microwave background photons. The arrival times of the GeV “echo” photons depend strongly on the magnetic field strength and coherence length. A Monte Carlo code that accurately treats pair creation is developed to simulate the spectrum and time-dependence of the echo radiation. The extrapolation of the spectrum of powerful gamma-ray bursts (GRBs)more » like GRB 130427A to TeV energies is used to demonstrate how the intergalactic magnetic field can be constrained if it falls in the 10{sup −21}–10{sup −17} G range for a 1 Mpc coherence length.« less
NASA Astrophysics Data System (ADS)
Snyder, Jeff; Hanstock, Chris C.; Wilman, Alan H.
2009-10-01
A general in vivo magnetic resonance spectroscopy editing technique is presented to detect weakly coupled spin systems through subtraction, while preserving singlets through addition, and is applied to the specific brain metabolite γ-aminobutyric acid (GABA) at 4.7 T. The new method uses double spin echo localization (PRESS) and is based on a constant echo time difference spectroscopy approach employing subtraction of two asymmetric echo timings, which is normally only applicable to strongly coupled spin systems. By utilizing flip angle reduction of one of the two refocusing pulses in the PRESS sequence, we demonstrate that this difference method may be extended to weakly coupled systems, thereby providing a very simple yet effective editing process. The difference method is first illustrated analytically using a simple two spin weakly coupled spin system. The technique was then demonstrated for the 3.01 ppm resonance of GABA, which is obscured by the strong singlet peak of creatine in vivo. Full numerical simulations, as well as phantom and in vivo experiments were performed. The difference method used two asymmetric PRESS timings with a constant total echo time of 131 ms and a reduced 120° final pulse, providing 25% GABA yield upon subtraction compared to two short echo standard PRESS experiments. Phantom and in vivo results from human brain demonstrate efficacy of this method in agreement with numerical simulations.
Mars Express Bistatic Radar Explores Stealth
NASA Astrophysics Data System (ADS)
Simpson, Richard A.; Tyler, G. L.; Nolan, M. C.; Pätzold, M.; Häusler, B.
2006-09-01
`Stealth' is an area of approximately 2000 x 500 km (E-W by N-S), straddling Mars' equator west of Tharsis and originally mapped at λ=3.5 cm by Muhleman et al. (Science, 253, 1508-1513, 1991). The name 'Stealth' was given because of its low radar backscatter cross section in the 1991 observations. Using transmissions from Mars Express and reception at 70-m antennas of the NASA Deep Space Network (DSN), we have obtained five 'spot' measurements of oblique-incidence forward scattering from Stealth at fixed incidence angles 32°
Direct magnetic field estimation based on echo planar raw data.
Testud, Frederik; Splitthoff, Daniel Nicolas; Speck, Oliver; Hennig, Jürgen; Zaitsev, Maxim
2010-07-01
Gradient recalled echo echo planar imaging is widely used in functional magnetic resonance imaging. The fast data acquisition is, however, very sensitive to field inhomogeneities which manifest themselves as artifacts in the images. Typically used correction methods have the common deficit that the data for the correction are acquired only once at the beginning of the experiment, assuming the field inhomogeneity distribution B(0) does not change over the course of the experiment. In this paper, methods to extract the magnetic field distribution from the acquired k-space data or from the reconstructed phase image of a gradient echo planar sequence are compared and extended. A common derivation for the presented approaches provides a solid theoretical basis, enables a fair comparison and demonstrates the equivalence of the k-space and the image phase based approaches. The image phase analysis is extended here to calculate the local gradient in the readout direction and improvements are introduced to the echo shift analysis, referred to here as "k-space filtering analysis." The described methods are compared to experimentally acquired B(0) maps in phantoms and in vivo. The k-space filtering analysis presented in this work demonstrated to be the most sensitive method to detect field inhomogeneities.
Delong, Caroline M; Au, Whitlow W L; Harley, Heidi E; Roitblat, Herbert L; Pytka, Lisa
2007-08-01
Echolocating bottlenose dolphins (Tursiops truncatus) discriminate between objects on the basis of the echoes reflected by the objects. However, it is not clear which echo features are important for object discrimination. To gain insight into the salient features, the authors had a dolphin perform a match-to-sample task and then presented human listeners with echoes from the same objects used in the dolphin's task. In 2 experiments, human listeners performed as well or better than the dolphin at discriminating objects, and they reported the salient acoustic cues. The error patterns of the humans and the dolphin were compared to determine which acoustic features were likely to have been used by the dolphin. The results indicate that the dolphin did not appear to use overall echo amplitude, but that it attended to the pattern of changes in the echoes across different object orientations. Human listeners can quickly identify salient combinations of echo features that permit object discrimination, which can be used to generate hypotheses that can be tested using dolphins as subjects.
The electron Echo 6 mechanical deployment systems
NASA Technical Reports Server (NTRS)
Meyers, S. C.; Steffen, J. E.; Malcolm, P. R.; Winckler, J. R.
1984-01-01
The Echo 6 sounding rocket payload was flown on a Terrier boosted Black Brant vehicle on March 30, 1983. The experiment requirements resulted in the new design of a rocket propelled Throw Away Detector System (TADS) with onboard Doppler radar, a free-flyer forward experiment designated the Plasma Diagnostic Package (PDP), and numerous other basic systems. The design, developmental testing, and flight preparations of the payload and the mechanical deployment systems are described.
Can hand-carried ultrasound devices be extended for use by the noncardiology medical community?
Duvall, W Lane; Croft, Lori B; Goldman, Martin E
2003-07-01
Echocardiography (echo) is a powerful, noninvasive, inexpensive diagnostic imaging technique that provides important information in a variety of cardiovascular diseases. Echo provides rapid information regarding ventricular and valvular function in the clinical management of patients. Smaller, relatively inexpensive hand-carried cardiac ultrasound (HCU) devices have become commercially available, which can be used for diagnostic cardiac imaging. Because of their relative ease of use, portability, and affordable cost, these new hand-held systems have made point-of-care (bedside) echocardiography available to all medical personnel. The rate-limiting step to the widespread use of this technology is the lack of personnel with echo training at the immediate contact point with patients. Although extensive training and experience are needed to acquire and interpret a complete echo, training medical personnel to perform and interpret a limited echo (defined as a brief, diagnosis focused exam) may fully exploit the potential of echo as a point-of-care diagnostic tool and may be accomplished in a short period of time. Presently there are guidelines for independent competency in echocardiography and HCU echo established by several professional organizations and as a result of these rigorous guidelines, other noncardiology medical professionals who could practically derive the greatest benefit are discouraged and virtually precluded from utilizing echo during the initial encounter with the patient. However, there is now a growing body of literature in a diverse group of noncardiology medical personnel that demonstrates that it is possible to quickly and effectively train them to perform and interpret limited echocardiograms. Medical students, medical residents, cardiology fellows with limited experience, emergency department physicians, and surgical intensive care unit staff have all been evaluated after only brief, focused training periods, and investigators found that HCU echo provided important new information, changed therapeutic management, and was vastly superior to the physical exam alone with an acceptable overall level of accuracy. The contribution of echocardiography to the field of cardiovascular disease since its invention has been significant and the newer compact, portable, ultrasound systems have the potential to revolutionize the utilization and availability of echocardiography. To maximize integration of echo into medical practice, physicians and physician extenders could be trained to perform and interpret limited echo to complement their clinical examination and improve their diagnostic skills. The challenge is to provide practical training programs to assure competency in performing point of care echocardiograms.
BlochSolver: A GPU-optimized fast 3D MRI simulator for experimentally compatible pulse sequences
NASA Astrophysics Data System (ADS)
Kose, Ryoichi; Kose, Katsumi
2017-08-01
A magnetic resonance imaging (MRI) simulator, which reproduces MRI experiments using computers, has been developed using two graphic-processor-unit (GPU) boards (GTX 1080). The MRI simulator was developed to run according to pulse sequences used in experiments. Experiments and simulations were performed to demonstrate the usefulness of the MRI simulator for three types of pulse sequences, namely, three-dimensional (3D) gradient-echo, 3D radio-frequency spoiled gradient-echo, and gradient-echo multislice with practical matrix sizes. The results demonstrated that the calculation speed using two GPU boards was typically about 7 TFLOPS and about 14 times faster than the calculation speed using CPUs (two 18-core Xeons). We also found that MR images acquired by experiment could be reproduced using an appropriate number of subvoxels, and that 3D isotropic and two-dimensional multislice imaging experiments for practical matrix sizes could be simulated using the MRI simulator. Therefore, we concluded that such powerful MRI simulators are expected to become an indispensable tool for MRI research and development.
Auditory-tactile echo-reverberating stuttering speech corrector
NASA Astrophysics Data System (ADS)
Kuniszyk-Jozkowiak, Wieslawa; Adamczyk, Bogdan
1997-02-01
The work presents the construction of a device, which transforms speech sounds into acoustical and tactile signals of echo and reverberation. Research has been done on the influence of the echo and reverberation, which are transmitted as acoustic and tactile stimuli, on speech fluency. Introducing the echo or reverberation into the auditory feedback circuit results in a reduction of stuttering. A bit less, but still significant corrective effects are observed while using the tactile channel for transmitting the signals. The use of joined auditory and tactile channels increases the effects of their corrective influence on the stutterers' speech. The results of the experiment justify the use of the tactile channel in the stutterers' therapy.
Larry Echo Hawk: A Rising Star from Idaho.
ERIC Educational Resources Information Center
Wisecarver, Charmaine
1993-01-01
Larry Echo Hawk, Idaho attorney general and former state legislator, discusses success factors in college and law school; early experiences as an Indian lawyer; first election campaign; and his views on tribal sovereignty, state-tribal relationship, gambling, and his dual responsibility to the general public and Native American issues. (SV)
Footprints of storms on the sea: A view from spaceborne synthetic aperture radar
NASA Technical Reports Server (NTRS)
Atlas, David
1994-01-01
Synthetic aperture radar (SAR) on board Seasat observed images of stormlike echoes on the sea in 1978. The core of these images is usually an echo-free hole which is attributed to the damping of the short (30-cm) radar detectable gravity waves by the intense rain in the storm core. Although 'the beating down of waves by rain' is consistent with observations by seafarers and with the first scientific explanation of the phenomenon by Reynolds (1875), neither theory nor experiment has provided definitive support. One experiment appears to provide the key; it shows that the kenetic energy of the rain produces sufficient turbulence in a thin fresh water layer to damp 30-cm waves in 10-20 s, thus producing the echo-free hole. A sequence of positive feedbacks then serves to damp the longer waves. The angular dependence of the sea surface echo cross sections seen by Seasat SAR outside the echo-free hole indicates winds diverging from the downdraft induced by the intense rain core. The wind-generated waves and associated echoes extend out to a sharply defined gust front. The sea surface footprint thus mimics the features of a storm microburst. The variations in surface radar cross section due to a combination of rain and wind effects impacts spaceborne measurements of surface winds by scatterometry and rainfall measurements by radar. Portions of this synthesis remain speculative but serve as hypotheses for further research.
Zhang, Qinwei; Coolen, Bram F; Versluis, Maarten J; Strijkers, Gustav J; Nederveen, Aart J
2017-07-01
In this study, we present a new three-dimensional (3D), diffusion-prepared turbo spin echo sequence based on a stimulated-echo read-out (DPsti-TSE) enabling high-resolution and undistorted diffusion-weighted imaging (DWI). A dephasing gradient in the diffusion preparation module and rephasing gradients in the turbo spin echo module create stimulated echoes, which prevent signal loss caused by eddy currents. Near to perfect agreement of apparent diffusion coefficient (ADC) values between DPsti-TSE and diffusion-weighted echo planar imaging (DW-EPI) was demonstrated in both phantom transient signal experiments and phantom imaging experiments. High-resolution and undistorted DPsti-TSE was demonstrated in vivo in prostate and carotid vessel wall. 3D whole-prostate DWI was achieved with four b values in only 6 min. Undistorted ADC maps of the prostate peripheral zone were obtained at low and high imaging resolutions with no change in mean ADC values [(1.60 ± 0.10) × 10 -3 versus (1.60 ± 0.02) × 10 -3 mm 2 /s]. High-resolution 3D DWI of the carotid vessel wall was achieved in 12 min, with consistent ADC values [(1.40 ± 0.23) × 10 -3 mm 2 /s] across different subjects, as well as slice locations through the imaging volume. This study shows that DPsti-TSE can serve as a robust 3D diffusion-weighted sequence and is an attractive alternative to the traditional two-dimensional DW-EPI approaches. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Gunnarsdottir, Hrefna M.; Linscott, I. R.; Callas, J. L.; Tyler, G. L.; Cousins, M. D.
2006-09-01
Between August and December 2005, we conducted 76 oblique-incidence scattering experiments using the SRI 46-m antenna in the Stanford foothills to illuminate Mars for 20 min. periods with an unmodulated 75 cm-λ, circularly polarized wave. The direct signal and a Martian surface echo, which are separated by Doppler frequency, were received simultaneously by the one-bit receiver on board the Mars Odyssey spacecraft. Out of 45 experiments with high signal-to-noise ratios, 27 were in the northern hemisphere, while 18 were in the southern hemisphere, where preliminary data analysis is available. The surface echoes are characterized by both fluctuating amplitude and varying spectral width, which correspond roughly to the surface reflectivity and roughness, respectively. Analysis of the data is based on quasi-specular scattering theory, but interpretation of the echoes is complicated by Odyssey's reception of only the right-circular polarized (RCP) wave component, and by the high incidence angles involved (f > 60 deg.), for which the scattering theory is not well developed. Our analysis of the echoes makes use of MOLA topographic maps at a resolution of 128 points per deg. of longitude and latitude, to model the scattering surface in three dimensions along the specular track. We can account for most of the echo amplitude fluctuations by the variation in number of surface-model facets tilted to produce a specular reflection towards Odyssey, indicating that MOLA scale topography is sufficient to capture an important scattering mechanism at this wavelength. With this we have accomplished a first step in differentiating between changes in echo signal strength due to surface reflectivity and surface shape. At the same time, we obtain a measure of the small scale surface roughness by finding the maximum tilt angle away from a perfectly mirroring surface facet which contributes significantly to the echo at each time step.
Skew Projection of Echo-Detected EPR Spectra for Increased Sensitivity and Resolution
Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.
2013-01-01
The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier Transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five. PMID:23644351
Skew projection of echo-detected EPR spectra for increased sensitivity and resolution
NASA Astrophysics Data System (ADS)
Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.
2013-06-01
The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five.
Software Applications to Access Earth Science Data: Building an ECHO Client
NASA Astrophysics Data System (ADS)
Cohen, A.; Cechini, M.; Pilone, D.
2010-12-01
Historically, developing an ECHO (NASA’s Earth Observing System (EOS) ClearingHOuse) client required interaction with its SOAP API. SOAP, as a framework for web service communication has numerous advantages for Enterprise applications and Java/C# type programming languages. However, as interest has grown for quick development cycles and more intriguing “mashups,” ECHO has seen the SOAP API lose its appeal. In order to address these changing needs, ECHO has introduced two new interfaces facilitating simple access to its metadata holdings. The first interface is built upon the OpenSearch format and ESIP Federated Search framework. The second interface is built upon the Representational State Transfer (REST) architecture. Using the REST and OpenSearch APIs to access ECHO makes development with modern languages much more feasible and simpler. Client developers can leverage the simple interaction with ECHO to focus more of their time on the advanced functionality they are presenting to users. To demonstrate the simplicity of developing with the REST API, participants will be led through a hands-on experience where they will develop an ECHO client that performs the following actions: + Login + Provider discovery + Provider based dataset discovery + Dataset, Temporal, and Spatial constraint based Granule discovery + Online Data Access
Perspective: Echoes in 2D-Raman-THz spectroscopy.
Hamm, Peter; Shalit, Andrey
2017-04-07
Recently, various spectroscopic techniques have been developed, which can measure the 2D response of the inter-molecular degrees of freedom of liquids in the THz regime. By employing hybrid Raman-THz pulse sequences, the inherent experimental problems of 2D-Raman spectroscopy are circumvented completely, culminating in the recent measurement of the 2D-Raman-THz responses of water and aqueous salt solutions. This review article focuses on the possibility to observe echoes in such experiments, which would directly reveal the inhomogeneity of the typically extremely blurred THz bands of liquids, and hence the heterogeneity of local structures that are transiently formed, in particular, in a hydrogen-bonding liquid such as water. The generation mechanisms of echoes in 2D-Raman-THz spectroscopy are explained, which differ from those in "conventional" 2D-IR spectroscopy in a subtle but important manner. Subsequently, the circumstances are discussed, under which echoes are expected, revealing a physical picture of the information content of an echo. That is, the echo decay reflects the lifetime of local structures in the liquid on a length scale that equals the delocalization length of the intermolecular modes. Finally, recent experimental results are reviewed from an echo perspective.
Arora, Sanjeev; Kalishman, Summers; Thornton, Karla; Dion, Denise; Murata, Glen; Deming, Paulina; Parish, Brooke; Brown, John; Komaromy, Miriam; Colleran, Kathleen; Bankhurst, Arthur; Katzman, Joanna; Harkins, Michelle; Curet, Luis; Cosgrove, Ellen; Pak, Wesley
2013-01-01
The Extension for Community Healthcare Outcomes (ECHO) Model was developed by the University of New Mexico Health Sciences Center (UNMHSC) as a platform to deliver complex specialty medical care to underserved populations through an innovative educational model of team-based inter-disciplinary development. Using state-of-the-art telehealth technology, best practice protocols, and case based learning, ECHO trains and supports primary care providers to develop knowledge and self-efficacy on a variety of diseases. As a result, they can deliver best practice care for complex health conditions in communities where specialty care is unavailable. ECHO was first developed for the management of hepatitis C virus (HCV), optimal management of which requires consultation with multi-disciplinary experts in medical specialties, mental health and substance abuse. Few practitioners, particularly in rural and underserved areas, have the knowledge to manage its emerging treatment options, side effects, drug toxicities and treatment-induced depression. In addition data was obtained from observation of ECHO weekly clinics and database of ECHO clinic participation and patient presentations by clinical provider, evaluation of the ECHO program incorporates annual survey integrated into the ECHO annual meeting and routine surveys of community providers about workplace learning, personal and professional experiences, systems and environmental factors associated with professional practice, self-efficacy, facilitators and barriers to ECHO. The initial survey data show a significant improvement in provider knowledge, self-efficacy and professional satisfaction through participation in ECHO HCV clinics. Clinicians reported a moderate to major benefit from participation. We conclude that ECHO expands access to best practice care for underserved populations, builds communities of practice to enhance professional development and satisfaction of primary care clinicians, and expands sustainable capacity for care by building local centers of excellence. PMID:20607688
Nano-optomechanical system based on microwave frequency surface acoustic waves
NASA Astrophysics Data System (ADS)
Tadesse, Semere Ayalew
Cavity optomechnics studies the interaction of cavity confined photons with mechanical motion. The emergence of sophisticated nanofabrication technology has led to experimental demonstrations of a wide range of novel optomechanical systems that exhibit strong optomechanical coupling and allow exploration of interesting physical phenomena. Many of the studies reported so far are focused on interaction of photons with localized mechanical modes. For my doctoral research, I did experimental investigations to extend this study to propagating phonons. I used surface travelling acoustic waves as the mechanical element of my optomechanical system. The optical cavities constitute an optical racetrack resonator and photonic crystal nanocavity. This dissertation discusses implementation of this surface acoustic wave based optomechanical system and experimental demonstrations of important consequences of the optomechanical coupling. The discussion focuses on three important achievements of the research. First, microwave frequency surface acoustic wave transducers were co-integrated with an optical racetrack resonator on a piezoelectric aluminum nitride film deposited on an oxidized silicon substrate. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength was achieved. The phase and modal matching conditions in this paradigm were investigated for efficient optmechanical coupling. Second, the optomechanical coupling was pushed further into the sideband resolved regime by integrating the high frequency surface acoustic wave transducers with a photonic crystal nanocavity. This device was used to demonstrate optomecahnically induced transparency and absorption, one of the interesting consequences of cavity optomechanics. Phase coherent interaction of the acoustic wave with multiple nanocavities was also explored. In a related experiment, the photonic crystal nanoscavity was placed inside an acoustic echo-chamber, and interaction of a phonon pulse with the photonic nanocavity was investigated. Third, an effort was made to address a major limitation of the surface acoustic wave based optomechanical system - loss of acoustic energy into the oxidized silicon substrate. To circumvent this problem, the optomechanical system was implemented in a suspended aluminum nitride membrane. The system confined the optical and acoustic wave within the thickness of the membrane and led to a stronger optomechanical coupling. At the end a summary is given that highlights important features of the optmechanical system and its prospects in future fundamental research and application.
Ruschke, Stefan; Eggers, Holger; Kooijman, Hendrik; Diefenbach, Maximilian N; Baum, Thomas; Haase, Axel; Rummeny, Ernst J; Hu, Houchun H; Karampinos, Dimitrios C
2017-09-01
To propose a phase error correction scheme for monopolar time-interleaved multi-echo gradient echo water-fat imaging that allows accurate and robust complex-based quantification of the proton density fat fraction (PDFF). A three-step phase correction scheme is proposed to address a) a phase term induced by echo misalignments that can be measured with a reference scan using reversed readout polarity, b) a phase term induced by the concomitant gradient field that can be predicted from the gradient waveforms, and c) a phase offset between time-interleaved echo trains. Simulations were carried out to characterize the concomitant gradient field-induced PDFF bias and the performance estimating the phase offset between time-interleaved echo trains. Phantom experiments and in vivo liver and thigh imaging were performed to study the relevance of each of the three phase correction steps on PDFF accuracy and robustness. The simulation, phantom, and in vivo results showed in agreement with the theory an echo time-dependent PDFF bias introduced by the three phase error sources. The proposed phase correction scheme was found to provide accurate PDFF estimation independent of the employed echo time combination. Complex-based time-interleaved water-fat imaging was found to give accurate and robust PDFF measurements after applying the proposed phase error correction scheme. Magn Reson Med 78:984-996, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Towards clinical computed ultrasound tomography in echo-mode: Dynamic range artefact reduction.
Jaeger, Michael; Frenz, Martin
2015-09-01
Computed ultrasound tomography in echo-mode (CUTE) allows imaging the speed of sound inside tissue using hand-held pulse-echo ultrasound. This technique is based on measuring the changing local phase of beamformed echoes when changing the transmit beam steering angle. Phantom results have shown a spatial resolution and contrast that could qualify CUTE as a promising novel diagnostic modality in combination with B-mode ultrasound. Unfortunately, the large intensity range of several tens of dB that is encountered in clinical images poses difficulties to echo phase tracking and results in severe artefacts. In this paper we propose a modification to the original technique by which more robust echo tracking can be achieved, and we demonstrate in phantom experiments that dynamic range artefacts are largely eliminated. Dynamic range artefact reduction also allowed for the first time a clinical implementation of CUTE with sufficient contrast to reproducibly distinguish the different speed of sound in different tissue layers of the abdominal wall and the neck. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Liang, Fachun; Zheng, Hongfeng; Yu, Hao; Sun, Yuan
2016-03-01
A novel ultrasonic pulse echo method is proposed for flow pattern identification in a horizontal pipe with gas-liquid two-phase flow. A trace of echoes reflected from the pipe’s internal wall rather than the gas-liquid interface is used for flow pattern identification. Experiments were conducted in a horizontal air-water two-phase flow loop. Two ultrasonic transducers with central frequency of 5 MHz were mounted at the top and bottom of the pipe respectively. The experimental results show that the ultrasonic reflection coefficient of the wall-gas interface is much larger than that of the wall-liquid interface due to the large difference in the acoustic impedance of gas and liquid. The stratified flow, annular flow and slug flow can be successfully recognized using the attenuation ratio of the echoes. Compared with the conventional ultrasonic echo measurement method, echoes reflected from the inner surface of a pipe wall are independent of gas-liquid interface fluctuation, sound speed, and gas and liquid superficial velocities, which makes the method presented a promising technique in field practice.
Utility of hand-held echocardiography in outpatient pediatric cardiology management.
Riley, Alan; Sable, Craig; Prasad, Aparna; Spurney, Christopher; Harahsheh, Ashraf; Clauss, Sarah; Colyer, Jessica; Gierdalski, Marcin; Johnson, Ashley; Pearson, Gail D; Rosenthal, Joanna
2014-12-01
Adult patient series have shown hand-held echocardiography (echo) units (HHE) to be accurate for rapid diagnosis and triage. This is the first study to evaluate the ability of HHE to inform decision making in outpatient pediatric cardiology. New pediatric cardiology patients in outpatient clinics staffed by six pediatric cardiologists (experience 1-17 years) were prospectively enrolled if an echocardiogram (echo) was ordered during their initial visit. After history and physical examination and before a standard echo, the cardiologists performed a bedside HHE examination (GE Vscan 1.7-3.8 MHz), documented findings, and made a clinical decision. Diagnoses and decisions based on HHE were compared with final management after the standard echo. The study enrolled 101 subjects (ages 9 days to 19 years). The cardiologists considered HHE imaging adequate for decision making for 80 of the 101 subjects. For 77 of the 80 subjects with acceptable HHE imaging (68/68 normal and 9/12 abnormal standard echoes), the HHE-based primary diagnoses and decisions agreed with the final management. The sensitivity of HHE was 75 % (95 % confidence interval [CI] 43-94 %) and the positive predictive value 100 % (95 % CI 66-100 %) for pediatric heart disease. The agreement between standard echocardiography and HHE imaging was substantial (κ = 0.82). Excluding one of the least experienced cardiologists, HHE provided the basis for correct cardiac diagnoses and management for all the subjects with acceptable HHE imaging (58/58 normal and 9/9 abnormal echoes). In outpatient pediatric cardiology, HHE has potential as a tool to complement physical examination. Further investigation is needed to evaluate how value improves with clinical experience.
Bertoldi, Eduardo G; Stella, Steffan F; Rohde, Luis E; Polanczyk, Carisi A
2016-05-01
Several tests exist for diagnosing coronary artery disease, with varying accuracy and cost. We sought to provide cost-effectiveness information to aid physicians and decision-makers in selecting the most appropriate testing strategy. We used the state-transitions (Markov) model from the Brazilian public health system perspective with a lifetime horizon. Diagnostic strategies were based on exercise electrocardiography (Ex-ECG), stress echocardiography (ECHO), single-photon emission computed tomography (SPECT), computed tomography coronary angiography (CTA), or stress cardiac magnetic resonance imaging (C-MRI) as the initial test. Systematic review provided input data for test accuracy and long-term prognosis. Cost data were derived from the Brazilian public health system. Diagnostic test strategy had a small but measurable impact in quality-adjusted life-years gained. Switching from Ex-ECG to CTA-based strategies improved outcomes at an incremental cost-effectiveness ratio of 3100 international dollars per quality-adjusted life-year. ECHO-based strategies resulted in cost and effectiveness almost identical to CTA, and SPECT-based strategies were dominated because of their much higher cost. Strategies based on stress C-MRI were most effective, but the incremental cost-effectiveness ratio vs CTA was higher than the proposed willingness-to-pay threshold. Invasive strategies were dominant in the high pretest probability setting. Sensitivity analysis showed that results were sensitive to costs of CTA, ECHO, and C-MRI. Coronary CT is cost-effective for the diagnosis of coronary artery disease and should be included in the Brazilian public health system. Stress ECHO has a similar performance and is an acceptable alternative for most patients, but invasive strategies should be reserved for patients at high risk. © 2016 Wiley Periodicals, Inc.
Carlin, Leslie; Zhao, Jane; Dubin, Ruth; Taenzer, Paul; Sidrak, Hannah; Furlan, Andrea
2017-09-27
Family physicians in Canada receive little training in chronic pain management; concomitantly, they face increasing pressure to reduce their prescribing of opioids. Project ECHO Ontario Chronic Pain/Opioid Stewardship (ECHO) is a telementoring intervention for primary care practitioners that enhances their pain management skills. This qualitative study reports participants' experiences and assessment of ECHO. An opportunistic sample of multidisciplinary primary care providers attending one of three residential weekend workshops participated in focus group discussions. University or hospital facilities in Toronto, Thunder Bay, and Kingston, Ontario, Canada. Seventeen physicians and 20 allied health professionals. Six focus group discussions were conducted at three different sites during 2014 and 2015. Transcripts were analyzed using a qualitative-descriptive approach involving analytic immersion in the data, reflection, and achieving consensus around themes discerned from transcribed discussions. Findings resolved into five main themes: 1) challenges of managing chronic pain in primary care; 2) ECHO participation and improvement in patient-provider interaction and participant knowledge; 3) the diffusion of knowledge gained through ECHO to participants' colleagues and patients; 4) ECHO participation generating a sense of community; and 5) disadvantages associated with participating in ECHO. Managing patients with chronic pain in primary care can be difficult, particularly in remote or underserved practices. Project ECHO offers guidance to primary care practitioners for their most challenging patients, promotes knowledge acquisition and diffusion, and stimulates the development of a "community of practice." © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Turbulent upwelling of mid-latitude ionosphere. 1. Observational results by the MU radar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukao, Shoichiro; Shirakawa, Tatsuya; Takami, Tomoyuki
1991-03-01
In this paper, the authors present the detailed results of a series of experiments designed to study the coherent backscatter of 50-MHz radar waves from the mid-latitude F region. Data were obtained with the active phased-array MU radar in Japan and include some auxiliary E region coherent echoes as well.The strongest echoes correspond to irregularities at least 20 dB stronger than thermal backscatter at the same frequency from typical F region densities at the same range. Simultaneous observations with ionosondes show that these echoes occur during strong mid-latitude spread F. As defined by ionosondes, the latter phenomenon is certainly muchmore » more widespread than the turbulent upwelling events described here, but they believe that in some sense these correspond to the most violent mid-latitude spread F. The strongest echoes occur in large patches which display away Doppler shifts corresponding to irregularity motion upward and northward from the radar. At the edges of these patches there is often a brief period of toward Doppler before the echoing region ceases. On rare occasions comparable patches of strong away and toward Doppler are detected, although in such cases the Doppler width of the toward echoes is much narrower than that of the away echoes. The multiple beam capability at MU allowed us to track the patches in the zonal direction on two days. The patches moved east to west in both cases at velocities of 125 m/s and 185 m/s, respectively. There is a distinct tendency for the bottom contour of the scattering region to be modulated at the same period as the patch occurence frequency as well as at higher frequencies. This higher-frequency component may correspond to substructures in the large patches and to the E region coherent scatter patches which were detected simultaneously in several multiple beam experiments.« less
QPOs from Random X-ray Bursts around Rotating Black Holes
NASA Technical Reports Server (NTRS)
Kukumura, Keigo; Kazanas, Demosthenes; Stephenson, Gordon
2009-01-01
We continue our earlier studies of quasi-periodic oscillations (QPOs) in the power spectra of accreting, rapidly-rotating black holes that originate from the geometric 'light echoes' of X-ray flares occurring within the black hole ergosphere. Our present work extends our previous treatment to three-dimensional photon emission and orbits to allow for arbitrary latitudes in the positions of the distant observers and the X-ray sources in place of the mainly equatorial positions and photon orbits of the earlier consideration. Following the trajectories of a large number of photons we calculate the response functions of a given geometry and use them to produce model light curves which we subsequently analyze to compute their power spectra and autocorrelation functions. In the case of an optically-thin environment, relevant to advection-dominated accretion flows, we consistently find QPOs at frequencies of order of approximately kHz for stellar-mass black hole candidates while order of approximately mHz for typical active galactic nuclei (approximately equal to 10(exp 7) solar mass) for a wide range of viewing angles (30 degrees to 80 degrees) from X-ray sources predominantly concentrated toward the equator within the ergosphere. As in out previous treatment, here too, the QPO signal is produced by the frame-dragging of the photons by the rapidly-rotating black hole, which results in photon 'bunches' separated by constant time-lags, the result of multiple photon orbits around the hole. Our model predicts for various source/observer configurations the robust presence of a new class of QPOs, which is inevitably generic to curved spacetime structure in rotating black hole systems.
The sonar aperture and its neural representation in bats.
Heinrich, Melina; Warmbold, Alexander; Hoffmann, Susanne; Firzlaff, Uwe; Wiegrebe, Lutz
2011-10-26
As opposed to visual imaging, biosonar imaging of spatial object properties represents a challenge for the auditory system because its sensory epithelium is not arranged along space axes. For echolocating bats, object width is encoded by the amplitude of its echo (echo intensity) but also by the naturally covarying spread of angles of incidence from which the echoes impinge on the bat's ears (sonar aperture). It is unclear whether bats use the echo intensity and/or the sonar aperture to estimate an object's width. We addressed this question in a combined psychophysical and electrophysiological approach. In three virtual-object playback experiments, bats of the species Phyllostomus discolor had to discriminate simple reflections of their own echolocation calls differing in echo intensity, sonar aperture, or both. Discrimination performance for objects with physically correct covariation of sonar aperture and echo intensity ("object width") did not differ from discrimination performances when only the sonar aperture was varied. Thus, the bats were able to detect changes in object width in the absence of intensity cues. The psychophysical results are reflected in the responses of a population of units in the auditory midbrain and cortex that responded strongest to echoes from objects with a specific sonar aperture, regardless of variations in echo intensity. Neurometric functions obtained from cortical units encoding the sonar aperture are sufficient to explain the behavioral performance of the bats. These current data show that the sonar aperture is a behaviorally relevant and reliably encoded cue for object size in bat sonar.
Electrical detection of nuclear spins in organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Malissa, H.; Kavand, M.; Waters, D. P.; Lupton, J. M.; Vardeny, Z. V.; Saam, B.; Boehme, C.
2014-03-01
We present pulsed combined electrically detected electron paramagnetic and nuclear magnetic resonance experiments on MEH-PPV OLEDs. Spin dynamics in these structures are governed by hyperfine interactions between charge carriers and the surrounding hydrogen nuclei, which are abundant in these materials. Hyperfine coupling has been observed by monitoring the device current during coherent spin excitation. Electron spin echoes (ESEs) are detected by applying one additional readout pulse at the time of echo formation. This allows for the application of high-resolution spectroscopy based on ESE detection, such as electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) available for electrical detection schemes. We conduct electrically detected ESEEM and ENDOR experiments and show how hyperfine interactions in MEH-PPV with and without deuterated polymer side groups can be observed by device current measurements. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.
The Balloon-Borne Exoplanet Experiment (EchoBeach)
NASA Astrophysics Data System (ADS)
Pascale, E.
2013-09-01
The Balloon-Borne Exoplanet Experiment (EchoBeach) is a proposed sub-orbital spectroscopic instrument. Its primary scientific goal is to detect and characterize the atmospheres of transiting exoplanets in the Mid-IR part of the electromagnetic spectrum from 4 to 20 μm using a 1.6m diameter telescope. It is in this wavelength range where the contrast between the star and planet emission grows exponentially, and this spectral region is key to answering important questions about the existence and composition of exp-atmospheres. Due to the Earth atmospheric absorption and emission, bservations at these wavelength are impossible from the ground or even at aircraft altitudes, but become available to balloon-born instrumentation flying in the upper stratosphere. At present we have high fidelity Mid-IR spectra of just two exoplanets of any type. EchoBeach can greatly improve on this by observing a multitude of transiting exoplanets, well in advance of any planned space-mission.
Optimization of multiply acquired magnetic flux density B(z) using ICNE-Multiecho train in MREIT.
Nam, Hyun Soo; Kwon, Oh In
2010-05-07
The aim of magnetic resonance electrical impedance tomography (MREIT) is to visualize the electrical properties, conductivity or current density of an object by injection of current. Recently, the prolonged data acquisition time when using the injected current nonlinear encoding (ICNE) method has been advantageous for measurement of magnetic flux density data, Bz, for MREIT in the signal-to-noise ratio (SNR). However, the ICNE method results in undesirable side artifacts, such as blurring, chemical shift and phase artifacts, due to the long data acquisition under an inhomogeneous static field. In this paper, we apply the ICNE method to a gradient and spin echo (GRASE) multi-echo train pulse sequence in order to provide the multiple k-space lines during a single RF pulse period. We analyze the SNR of the measured multiple B(z) data using the proposed ICNE-Multiecho MR pulse sequence. By determining a weighting factor for B(z) data in each of the echoes, an optimized inversion formula for the magnetic flux density data is proposed for the ICNE-Multiecho MR sequence. Using the ICNE-Multiecho method, the quality of the measured magnetic flux density is considerably increased by the injection of a long current through the echo train length and by optimization of the voxel-by-voxel noise level of the B(z) value. Agarose-gel phantom experiments have demonstrated fewer artifacts and a better SNR using the ICNE-Multiecho method. Experimenting with the brain of an anesthetized dog, we collected valuable echoes by taking into account the noise level of each of the echoes and determined B(z) data by determining optimized weighting factors for the multiply acquired magnetic flux density data.
Quiet echo planar imaging for functional and diffusion MRI
Price, Anthony N.; Cordero‐Grande, Lucilio; Malik, Shaihan; Ferrazzi, Giulio; Gaspar, Andreia; Hughes, Emer J.; Christiaens, Daan; McCabe, Laura; Schneider, Torben; Rutherford, Mary A.; Hajnal, Joseph V.
2017-01-01
Purpose To develop a purpose‐built quiet echo planar imaging capability for fetal functional and diffusion scans, for which acoustic considerations often compromise efficiency and resolution as well as angular/temporal coverage. Methods The gradient waveforms in multiband‐accelerated single‐shot echo planar imaging sequences have been redesigned to minimize spectral content. This includes a sinusoidal read‐out with a single fundamental frequency, a constant phase encoding gradient, overlapping smoothed CAIPIRINHA blips, and a novel strategy to merge the crushers in diffusion MRI. These changes are then tuned in conjunction with the gradient system frequency response function. Results Maintained image quality, SNR, and quantitative diffusion values while reducing acoustic noise up to 12 dB (A) is illustrated in two adult experiments. Fetal experiments in 10 subjects covering a range of parameters depict the adaptability and increased efficiency of quiet echo planar imaging. Conclusion Purpose‐built for highly efficient multiband fetal echo planar imaging studies, the presented framework reduces acoustic noise for all echo planar imaging‐based sequences. Full optimization by tuning to the gradient frequency response functions allows for a maximally time‐efficient scan within safe limits. This allows ambitious in‐utero studies such as functional brain imaging with high spatial/temporal resolution and diffusion scans with high angular/spatial resolution to be run in a highly efficient manner at acceptable sound levels. Magn Reson Med 79:1447–1459, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28653363
Project Echo: System Calculations
NASA Technical Reports Server (NTRS)
Ruthroff, Clyde L.; Jakes, William C., Jr.
1961-01-01
The primary experimental objective of Project Echo was the transmission of radio communications between points on the earth by reflection from the balloon satellite. This paper describes system calculations made in preparation for the experiment and their adaptation to the problem of interpreting the results. The calculations include path loss computations, expected audio signal-to-noise ratios, and received signal strength based on orbital parameters.
Improved Spin-Echo-Edited NMR Diffusion Measurements
NASA Astrophysics Data System (ADS)
Otto, William H.; Larive, Cynthia K.
2001-12-01
The need for simple and robust schemes for the analysis of ligand-protein binding has resulted in the development of diffusion-based NMR techniques that can be used to assay binding in protein solutions containing a mixture of several ligands. As a means of gaining spectral selectivity in NMR diffusion measurements, a simple experiment, the gradient modified spin-echo (GOSE), has been developed to reject the resonances of coupled spins and detect only the singlets in the 1H NMR spectrum. This is accomplished by first using a spin echo to null the resonances of the coupled spins. Following the spin echo, the singlet magnetization is flipped out of the transverse plane and a dephasing gradient is applied to reduce the spectral artifacts resulting from incomplete cancellation of the J-coupled resonances. The resulting modular sequence is combined here with the BPPSTE pulse sequence; however, it could be easily incorporated into any pulse sequence where additional spectral selectivity is desired. Results obtained with the GOSE-BPPSTE pulse sequence are compared with those obtained with the BPPSTE and CPMG-BPPSTE experiments for a mixture containing the ligands resorcinol and tryptophan in a solution of human serum albumin.
Taylor, Brian A.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason
2009-01-01
The authors investigated the performance of the iterative Steiglitz–McBride (SM) algorithm on an autoregressive moving average (ARMA) model of signals from a fast, sparsely sampled, multiecho, chemical shift imaging (CSI) acquisition using simulation, phantom, ex vivo, and in vivo experiments with a focus on its potential usage in magnetic resonance (MR)-guided interventions. The ARMA signal model facilitated a rapid calculation of the chemical shift, apparent spin-spin relaxation time (T2*), and complex amplitudes of a multipeak system from a limited number of echoes (≤16). Numerical simulations of one- and two-peak systems were used to assess the accuracy and uncertainty in the calculated spectral parameters as a function of acquisition and tissue parameters. The measured uncertainties from simulation were compared to the theoretical Cramer–Rao lower bound (CRLB) for the acquisition. Measurements made in phantoms were used to validate the T2* estimates and to validate uncertainty estimates made from the CRLB. We demonstrated application to real-time MR-guided interventions ex vivo by using the technique to monitor a percutaneous ethanol injection into a bovine liver and in vivo to monitor a laser-induced thermal therapy treatment in a canine brain. Simulation results showed that the chemical shift and amplitude uncertainties reached their respective CRLB at a signal-to-noise ratio (SNR)≥5 for echo train lengths (ETLs)≥4 using a fixed echo spacing of 3.3 ms. T2* estimates from the signal model possessed higher uncertainties but reached the CRLB at larger SNRs and∕or ETLs. Highly accurate estimates for the chemical shift (<0.01 ppm) and amplitude (<1.0%) were obtained with ≥4 echoes and for T2* (<1.0%) with ≥7 echoes. We conclude that, over a reasonable range of SNR, the SM algorithm is a robust estimator of spectral parameters from fast CSI acquisitions that acquire ≤16 echoes for one- and two-peak systems. Preliminary ex vivo and in vivo experiments corroborated the results from simulation experiments and further indicate the potential of this technique for MR-guided interventional procedures with high spatiotemporal resolution ∼1.6×1.6×4 mm3 in ≤5 s. PMID:19378736
NASA Technical Reports Server (NTRS)
Nemzek, R. J.; Winckler, J. R.
1991-01-01
Electron detectors on the Echo 7 active sounding rocket experiment measured 'conjugate echoes' resulting from artificial electron beam injections. Analysis of the drift motion of the electrons after a complete bounce leads to measurements of the magnetospheric convection electric field mapped to ionospheric altitudes. The magnetospheric field was highly variable, changing by tens of mV/m on time scales of as little as hundreds of millisec. While the smallest-scale magnetospheric field irregularities were mapped out by ionospheric conductivity, larger-scale features were enhanced by up to 50 mV/m in the ionosphere. The mismatch between magnetospheric and ionspheric convection fields indicates a violation of the equipotential field line condition. The parallel fields occurred in regions roughly 10 km across and probably supported a total potential drop of 10-100 V.
Underwater Acoustic Transponders Tracking While Mapping With A Multibeam Echo-Sounder
NASA Astrophysics Data System (ADS)
de Moustier, C. P.; Franzheim, A.; Testa, W.; Burns, J. M.; Foy, R.
2010-12-01
A 160 kHz multibeam echo-sounder was used to interrogate and receive the replies from custom-built miniature underwater acoustic transponders attached to the carapace of king crabs in Womens Bay, Alaska. This new application of multibeam echo-sounders combines acoustic tracking and mapping, thus providing environmental context to the tracking information. Each transponder replies with its own coded sequence that stands out from other echoes received by the sonar. Range and bearing of the replies from multiple transponders can be obtained in a single sonar ping. The king crab experiment was done in 25-35 m of water depth, and the system was successfully tested without animals at 190 m depth. Work supported by NOAA's Undersea Research Program Grant G4768, with field work support from NOAA-NMFS/AFSC/RACE and Electronic Navigation Ltd.
Anisotropic Optical-Response of Eu-doped Yttrium Orthosilicate
NASA Technical Reports Server (NTRS)
Liu, Huimin; Santiago, Miguel; Jia, Weiyi; Zhang, Shoudu
1998-01-01
Eu-doped yttrium orthosilicate (Eu(3+) : Y2SiO5) had been a subject being investigated for coherent time-domain optical memory and information processing applications since its ultraslow optical dephasing was discovered several years ago. In this crystal the weakly allowed (7)F0 - (5)D0 transition of europium ions exhibits a sufficient long dephasing time and no spectral difli.usion on a time scale of several hours at low temperature, thus an information pattern or data can be stored as a population grating in the ground state hyperfine levels. On the other hand, the study on photon-echo relaxation shows that the dephasing time T2 of Eu (3+) and other rare-earth ions doped YAG, YAlO3 strongly depends on the intensity of the excitation pulses. In Eu (3+) :YAlO3, an exponential decay of photon-echo with T2 = 53 microseconds if the excitation pulses are weak (5 vJ/pulse) was observed. However, when the excitation pulses are strong (80 pJ/pulse) they observed a much shortened T2 with a highly nonexponential decay pattern. The conclusion they derived is that the intensity-dependent dephasing rate effects are quite general, and it depends on how much the excitation intensity varies. In this paper we use transient grating formation technique showing that a temporal lattice distortion may only occur along crystal c axis, caused by EU (3+) excitation. At high excitation level the produced exciton in conduction band may also couple to the dynamical lattice relaxation process, giving rise to an apparently much shortened dephasing time.
Wiseman, Hadas
2008-07-01
Intergenerational consequences of extensive trauma experienced by parents for the loneliness experienced by their children were explored in 52 adults (26 men and 26 women) who grew up in Holocaust survivor families. These adults, children of mothers who had survived Nazi concentration camps, were recruited from a random nonclinical Israeli sample. A narrative analysis of their recollected accounts of loneliness in childhood and adolescence yielded 4 major categories of loneliness experiences in the context of growing up in Holocaust survivor families: (a) echoes of parental intrusive traumatic memories; (b) echoes of parental numbing and detachment; (c) perceived parents' caregiving style; and (d) social comparison with other families, in particular the lack of grandparents. The echoes of the parental trauma in the recollected loneliness accounts are conceptualized as representing a sense of failed intersubjectivity in these interpersonal processes. The experiences of not being understood by others, not understanding others, and the lack of shared understanding involved in failed intersubjectivity are discussed and related to the importance of opening lines of communication between survivors and their descendents. (c) 2009 APA, all rights reserved
Synoptic analysis and hindcast of an intense bow echo in Western Europe: The 09 June 2014 storm
NASA Astrophysics Data System (ADS)
Mathias, Luca; Ermert, Volker; Kelemen, Fanni D.; Ludwig, Patrick; Pinto, Joaquim G.
2017-04-01
On Pentecost Monday of 09 June 2014, a severe mesoscale convective system (MCS) hit Belgium and Western Germany. This storm was one of the most severe thunderstorms in Germany for decades. The synoptic-scale and mesoscale characteristics of this storm are analyzed based on remote sensing data and in-situ measurements. Moreover, the forecast potential of the storm is evaluated using sensitivity experiments with a regional climate model. The key ingredients for the development of the Pentecost storm were the concurrent presence of low-level moisture, atmospheric conditional instability and wind shear. The synoptic and mesoscale analysis shows that the outflow of a decaying MCS above northern France triggered the storm, which exhibited the typical features of a bow echo like a mesovortex and rear inflow jet. This resulted in hurricane-force wind gusts (reaching 40 m/s) along a narrow swath in the Rhine-Ruhr region leading to substantial damage. Operational numerical weather predictions models mostly failed to forecast the storm, but high-resolution regional model hindcasts enable a realistic simulation of the storm. The model experiments reveal that the development of the bow echo is particularly sensitive to the initial wind field and the lower tropospheric moisture content. Correct initial and boundary conditions are therefore necessary for realistic numerical forecasts of such a bow echo event. We conclude that the Pentecost storm exhibited a comparable structure and a similar intensity to the observed bow echo systems in the United States.
Aeronomy report no. 74: The Urbana meteor-radar system; design, development, and first observations
NASA Technical Reports Server (NTRS)
Hess, G. C.; Geller, M. A.
1976-01-01
The design, development, and first observations of a high power meteor-radar system located near Urbana, Illinois are described. The roughly five-fold increase in usable echo rate compared to other facilities, along with automated digital data processing and interferometry measurement of echo arrival angles, permits unsurpassed observations of tidal structure and shorter period waves. Such observations are discussed. The technique of using echo decay rates to infer density and scale height and the method of inferring wind shear from radial acceleration are examined. An original experiment to test a theory of the Delta-region winter anomaly is presented.
The photon: Experimental emphasis on its wave-particle duality
NASA Technical Reports Server (NTRS)
Shih, Yan-Hua; Sergienko, A. V.; Rubin, Morton H.; Kiess, Thomas E.; Alley, Carroll O.
1994-01-01
Two types of Einstein-Podolsky-Rosen experiments were demonstrated recently in our laboratory. It is interesting to see that in an interference experiment (wave-like experiment) the photon exhibits its particle property, and in a beam-splitting experiment (particle-like experiment) the photon exhibits its wave property. The two-photon states are produced from Type 1 and Type 2 optical spontaneous parametric down conversion, respectively.
Refocused linewidths less than 10 Hz in 1H solid-state NMR.
Paruzzo, Federico M; Stevanato, Gabriele; Halse, Meghan E; Schlagnitweit, Judith; Mammoli, Daniele; Lesage, Anne; Emsley, Lyndon
2018-06-02
Coherence lifetimes in homonuclear dipolar decoupled 1 H solid-state NMR experiments are usually on the order of a few ms. We discover an oscillation that limits the lifetime of the coherences by recording spin-echo dephasing curves. We find that this oscillation can be removed by the application of a double spin-echo experiment, leading to coherence lifetimes of more than 45 ms in adamantane and more that 22 ms in β-AspAla, corresponding to refocused linewidths of less than 7 and 14 Hz respectively. Copyright © 2018 Elsevier Inc. All rights reserved.
Ultrafast optical control of individual quantum dot spin qubits.
De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa
2013-09-01
Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled with the spin, and these photons are then interfered. We review recent work demonstrating entanglement between a stationary spin qubit and a flying photonic qubit. These experiments utilize the polarization- and frequency-dependent spontaneous emission from the lowest charged exciton state to single spin Zeeman sublevels.
Serhal, Eva; Arena, Amanda; Sockalingam, Sanjeev; Mohri, Linda; Crawford, Allison
2018-03-01
The Project Extension for Community Healthcare Outcomes (ECHO) model expands primary care provider (PCP) capacity to manage complex diseases by sharing knowledge, disseminating best practices, and building a community of practice. The model has expanded rapidly, with over 140 ECHO projects currently established globally. We have used validated implementation frameworks, such as Damschroder's (2009) Consolidated Framework for Implementation Research (CFIR) and Proctor's (2011) taxonomy of implementation outcomes, combined with implementation experience to (1) create a set of questions to assess organizational readiness and suitability of the ECHO model and (2) provide those who have determined ECHO is the correct model with a checklist to support successful implementation. A set of considerations was created, which adapted and consolidated CFIR constructs to create ECHO-specific organizational readiness questions, as well as a process guide for implementation. Each consideration was mapped onto Proctor's (2011) implementation outcomes, and questions relating to the constructs were developed and reviewed for clarity. The Preimplementation list included 20 questions; most questions fall within Proctor's (2001) implementation outcome domains of "Appropriateness" and "Acceptability." The Process Checklist is a 26-item checklist to help launch an ECHO project; items map onto the constructs of Planning, Engaging, Executing, Reflecting, and Evaluating. Given that fidelity to the ECHO model is associated with robust outcomes, effective implementation is critical. These tools will enable programs to work through key considerations to implement a successful Project ECHO. Next steps will include validation with a diverse sample of ECHO projects.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
NASA Astrophysics Data System (ADS)
Guerry, Paul; Brown, Steven P.; Smith, Mark E.
2017-10-01
In the context of improving J coupling measurements in disordered solids, strong coupling effects have been investigated in the spin-echo and refocused INADEQUATE spin-echo (REINE) modulations of three- and four-spin systems under magic-angle-spinning (MAS), using density matrix simulations and solid-state NMR experiments on a cadmium phosphate glass. Analytical models are developed for the different modulation regimes, which are shown to be distinguishable in practice using Akaike's information criterion. REINE modulations are shown to be free of the damping that occurs for spin-echo modulations when the observed spin has the same isotropic chemical shift as its neighbour. Damping also occurs when the observed spin is bonded to a strongly-coupled pair. For mid-chain units, the presence of both direct and relayed damping makes both REINE and spin-echo modulations impossible to interpret quantitatively. We nonetheless outline how a qualitative comparison of the modulation curves can provide valuable information on disordered networks, possibly also pertaining to dynamic effects therein.
Experimental Greenberger-Horne-Zeilinger-Type Six-Photon Quantum Nonlocality.
Zhang, Chao; Huang, Yun-Feng; Wang, Zhao; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can
2015-12-31
Quantum nonlocality gives us deeper insight into quantum physics. In addition, quantum nonlocality has been further recognized as an essential resource for device-independent quantum information processing in recent years. Most experiments of nonlocality are performed using a photonic system. However, until now, photonic experiments of nonlocality have involved at most four photons. Here, for the first time, we experimentally demonstrate the six-photon quantum nonlocality in an all-versus-nothing manner based on a high-fidelity (88.4%) six-photon Greenberger-Horne-Zeilinger state. Our experiment pushes multiphoton nonlocality studies forward to the six-photon region and might provide a larger photonic system for device-independent quantum information protocols.
Searching gamma-ray bursts for gravitational lensing echoes - Implications for compact dark matter
NASA Technical Reports Server (NTRS)
Nemiroff, R. J.; Norris, J. P.; Wickramasinghe, W. A. D. T.; Horack, J. M.; Kouveliotou, C.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Paciesas, W. S.
1993-01-01
The first available 44 gamma-ray bursts (GRBs) detected by the Burst and Transient Source Experiment on board the Compton Gamma-Ray Observatory have been inspected for echo signals following shortly after the main signal. No significant echoes have been found. Echoes would have been expected were the GRBs distant enough and the universe populated with a sufficient density of compact objects composing the dark matter. Constraints on dark matter abundance and GRB redshifts from the present data are presented and discussed. Based on these preliminary results, a universe filled to critical density of compact objects between 10 exp 6.5 and 10 exp 8.1 solar masses are now marginally excluded, or the most likely cosmological distance paradigm for GRBs is not correct. We expect future constraints to be able either to test currently popular cosmological dark matter paradigms or to indicate that GRBs do not lie at cosmological distances.
Time reversal of optically carried radiofrequency signals in the microsecond range.
Linget, H; Morvan, L; Le Gouët, J-L; Louchet-Chauvet, A
2013-03-01
The time-reversal (TR) protocol we implement in an erbium-doped YSO crystal is based on photon echoes but avoids the storage of the signal to be processed. Unlike other approaches implying digitizing or highly dispersive optical fibers, the proposed scheme reaches the μs range and potentially offers high bandwidth, both required for RADAR applications. In this Letter, we demonstrate faithful reversal of arbitrary pulse sequences with 6 μs duration and 10 MHz bandwidth. To the best of our knowledge, this is the first demonstration of TR via linear filtering in a programmable material.
Cavity optomechanical coupling assisted by an atomic gas
NASA Astrophysics Data System (ADS)
Ian, H.; Gong, Z. R.; Liu, Yu-Xi; Sun, C. P.; Nori, Franco
2008-07-01
We theoretically study a cavity filled with atoms, which provides the optical-mechanical interaction between the modified cavity photonic field and a oscillating mirror at one end. We show that the cavity field “dresses” these atoms, producing two types of polaritons, effectively enhancing the radiation pressure of the cavity field upon the oscillating mirror, as well as establishing an additional squeezing mode of the oscillating mirror. This squeezing produces an adiabatic entanglement, which is absent in usual vacuum cavities, between the oscillating mirror and the rest of the system. We analyze the entanglement and quantify it using the Loschmidt echo and fidelity.
The big brown bat's perceptual dimension of target range
NASA Astrophysics Data System (ADS)
Simmons, James A.
2005-09-01
Big brown bats determine the distance to targets from echo delay, but information actually is entered onto the bat's psychological delay scale from two sources. The first is the target-ranging system itself, from the time that elapses between single-spike neural responses evoked by the broadcast and similar responses evoked by echoes at different delays. These responses register the FM sweeps of broadcasts or echoes, and the associated system of neural delay lines and coincidence detectors cross correlates the spectrograms along the time axis. The second source is the echo spectrum, which relates to shape expressed as range profile. The target-ranging system extracts this by fanning out to encompass parallel representations of many possible notch frequencies and notch widths in echoes. Bats perceive delay separations of 5-30 μs and have a resolution limit of about 2 μs, but interference amplifies small delay separations by transposing them into large changes in notch frequency, so only perception of intervals smaller than 5 μs is surprising. Experiments with phase-shifted echoes show that the psychological time scale can represent two different delays originating entirely in the time domain when they are at least as close together as 10 μs. [Work supported by NIH and ONR.
Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong
2017-10-23
Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.
Tan, Ek T.; Lee, Seung-Kyun; Weavers, Paul T.; Graziani, Dominic; Piel, Joseph E.; Shu, Yunhong; Huston, John; Bernstein, Matt A.; Foo, Thomas K.F.
2016-01-01
Purpose To investigate the effects on echo planar imaging (EPI) distortion of using high gradient slew rates (SR) of up to 700 T/m/s for in-vivo human brain imaging, with a dedicated, head-only gradient coil. Materials and Methods Simulation studies were first performed to determine the expected echo spacing and distortion reduction in EPI. A head gradient of 42-cm inner diameter and with asymmetric transverse coils was then installed in a whole-body, conventional 3T MRI system. Human subject imaging was performed on five subjects to determine the effects of EPI on echo spacing and signal dropout at various gradient slew rates. The feasibility of whole-brain imaging at 1.5 mm-isotropic spatial resolution was demonstrated with gradient-echo and spin-echo diffusion-weighted EPI. Results As compared to a whole-body gradient coil, the EPI echo spacing in the head-only gradient coil was reduced by 48%. Simulation and in vivo results, respectively, showed up to 25-26% and 19% improvement in signal dropout. Whole-brain imaging with EPI at 1.5 mm spatial resolution provided good whole-brain coverage, spatial linearity, and low spatial distortion effects. Conclusion Our results of human brain imaging with EPI using the compact head gradient coil at slew rates higher than in conventional whole-body MR systems demonstrate substantially improved image distortion, and point to a potential for benefits to non-EPI pulse sequences. PMID:26921117
Measuring Liquid-Level Utilizing Wedge Wave
Honma, Yudai; Mori, Masayuki; Ihara, Ikuo
2017-01-01
A new technique for measuring liquid-level utilizing wedge wave is presented and demonstrated through FEM simulation and a corresponding experiment. The velocities of wedge waves in the air and the water, and the sensitivities for the measurement, are compared with the simulation and the results obtained in the experiments. Combining the simulation and the measurement theory, it is verified that the foundation framework for the methods is available. The liquid-level sensing is carried out using the aluminum waveguide with a 30° wedge in the water. The liquid-level is proportional to the traveling time of the mode 1 wedge wave. The standard deviations and the uncertainties of the measurement are 0.65 mm and 0.21 mm using interface echo, and 0.39 mm and 0.12 mm utilized by end echo, which are smaller than the industry standard of 1.5 mm. The measurement resolutions are 7.68 μm using the interface echo, which is the smallest among all the guided acoustic wave-based liquid-level sensing. PMID:29267232
Demonstration of improved sensitivity of echo interferometers to gravitational acceleration
NASA Astrophysics Data System (ADS)
Mok, C.; Barrett, B.; Carew, A.; Berthiaume, R.; Beattie, S.; Kumarakrishnan, A.
2013-08-01
We have developed two configurations of an echo interferometer that rely on standing-wave excitation of a laser-cooled sample of rubidium atoms. Both configurations can be used to measure acceleration a along the axis of excitation. For a two-pulse configuration, the signal from the interferometer is modulated at the recoil frequency and exhibits a sinusoidal frequency chirp as a function of pulse spacing. In comparison, for a three-pulse stimulated-echo configuration, the signal is observed without recoil modulation and exhibits a modulation at a single frequency as a function of pulse spacing. The three-pulse configuration is less sensitive to effects of vibrations and magnetic field curvature, leading to a longer experimental time scale. For both configurations of the atom interferometer (AI), we show that a measurement of acceleration with a statistical precision of 0.5% can be realized by analyzing the shape of the echo envelope that has a temporal duration of a few microseconds. Using the two-pulse AI, we obtain measurements of acceleration that are statistically precise to 6 parts per million (ppm) on a 25 ms time scale. In comparison, using the three-pulse AI, we obtain measurements of acceleration that are statistically precise to 0.4 ppm on a time scale of 50 ms. A further statistical enhancement is achieved by analyzing the data across the echo envelope so that the statistical error is reduced to 75 parts per billion (ppb). The inhomogeneous field of a magnetized vacuum chamber limited the experimental time scale and resulted in prominent systematic effects. Extended time scales and improved signal-to-noise ratio observed in recent echo experiments using a nonmagnetic vacuum chamber suggest that echo techniques are suitable for a high-precision measurement of gravitational acceleration g. We discuss methods for reducing systematic effects and improving the signal-to-noise ratio. Simulations of both AI configurations with a time scale of 300 ms suggest that an optimized experiment with improved vibration isolation and atoms selected in the mF=0 state can result in measurements of g statistically precise to 0.3 ppb for the two-pulse AI and 0.6 ppb for the three-pulse AI.
Dimov, Alexey V; Liu, Zhe; Spincemaille, Pascal; Prince, Martin R; Du, Jiang; Wang, Yi
2018-01-01
To develop quantitative susceptibility mapping (QSM) of bone using an ultrashort echo time (UTE) gradient echo (GRE) sequence for signal acquisition and a bone-specific effective transverse relaxation rate ( R2*) to model water-fat MR signals for field mapping. Three-dimensional radial UTE data (echo times ≥ 40 μs) was acquired on a 3 Tesla scanner and fitted with a bone-specific signal model to map the chemical species and susceptibility field. Experiments were performed ex vivo on a porcine hoof and in vivo on healthy human subjects (n = 7). For water-fat separation, a bone-specific model assigning R2* decay mostly to water was compared with the standard models that assigned the same decay for both fat and water. In the ex vivo experiment, bone QSM was correlated with CT. Compared with standard models, the bone-specific R2* method significantly reduced errors in the fat fraction within the cortical bone in all tested data sets, leading to reduced artifacts in QSM. Good correlation was found between bone CT and QSM values in the porcine hoof (R 2 = 0.77). Bone QSM was successfully generated in all subjects. The QSM of bone is feasible using UTE with a conventional echo time GRE acquisition and a bone-specific R2* signal model. Magn Reson Med 79:121-128, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Fujiki, Kei
2004-01-01
The aims of this study were to clarify the geographic distribution of complete cell death in the radiofrequency ablated area in a porcine liver experiment, and to evaluate the efficacy of ultrasonography using contrast media in detecting the area of Radiofrequency-induced cell death. Radiofrequency ablation was performed at 3 sites in each liver in seven swine with a RF2000TM radiofrequency generator using an expandable type needle electrode. The ablation area was investigated histologically by Hematoxylin-Eosin staining and NADH staining. The area of radiofrequency-induced cell death was correlated to the ultrasonographic findings using contrast media, by means of contrast harmonic imaging, flash echo imaging-subtraction and flash echo imaging-power Doppler. The ablation area showed three distinct regions. Although the HE staining did not indicate necrosis, the NADH staining showed a complete loss of cellular activity in the inner and middle layers of the ablation area. However, in the outer layer cells displaying cellular integrity were intermingled with the necrotic cells, indicating that some of the cells in this layer had a chance to survive. Further, in some cases the outer layer of the ablated area had irregular margins. The flash-echo power-doppler images were accurately correlated in size and shape to the pathologically proved region of complete cell death in the radiofrequency-induced lesions. In the marginal part of the radiofrequency ablation area, cell death was incomplete. Flash echo imaging-power doppler was a useful and sensitive real time imaging technique for accurate evaluation of the region of complete cell death.
Graf, Magnus; Kresse, Benjamin; Privalov, Alexei F; Vogel, Michael
2013-01-01
We use (7)Li NMR to study lithium ion dynamics in a (Li2S)-(P2S5) glass. In particular, it is shown that a combination of (7)Li field-cycling relaxometry and (7)Li stimulated-echo experiments allows us to cover a time window extending over 10 orders of magnitude without any gaps. While the (7)Li stimulated-echo method proved suitable to measure correlation functions F2(t) of lithium ion dynamics in solids in recent years, we establish the (7)Li field-cycling technique as a versatile tool to ascertain the spectral density J2(ω) of the lithium ionic motion in this contribution. It is found that the dynamic range of (7)Li field-cycling relaxometry is 10(-9)-10(-5)s and, hence, it complements in an ideal way that of (7)Li stimulated-echo experiments, which amounts to 10(-5)-10(1)s. Transformations between time and frequency domains reveal that the field-cycling and stimulated-echo approaches yield results for the translational motion of the lithium ions that are consistent both with each other and with findings for the motional narrowing of (7)Li NMR spectra of the studied (Li2S)-(P2S5) glass. In the (7)Li field-cycling studies of the (Li2S)-(P2S5) glass, we observe the translational ionic motion at higher temperatures and the nearly constant loss at lower temperatures. For the former motion, the frequency dependence of the measured spectral density is well described by a Cole-Davidson function. For the latter phenomenon, which was considered as an universal phenomenon of disordered solids in the literature, we find an exponential temperature dependence. Copyright © 2013 Elsevier Inc. All rights reserved.
Beissner, Florian; Baudrexel, Simon; Volz, Steffen; Deichmann, Ralf
2010-08-15
Dual-echo EPI is based on the acquisition of two images with different echo times per excitation, thus allowing for the calculation of purely T2(*) weighted data. The technique can be used for the measurement of functional activation whenever the prerequisite of constant equilibrium magnetization cannot be fulfilled due to variable inter-volume delays. The latter is the case when image acquisition is triggered by physiological parameters (e.g. cardiac gating) or by the subject's response. Despite its frequent application, there is currently no standardized way of combining the information obtained from the two acquired echoes. The goal of this study was to quantify the implication of different echo combination methods (quotients of echoes and quantification of T(2)(*)) and calculation modalities, either pre-smoothing data before combination or subjecting unsmoothed combined data to masking (no masking, volume-wise masking, joint masking), on the theoretically predicted signal-to-noise ratio (SNR) of the BOLD response and on activation results of two fMRI experiments using finger tapping and visual stimulation in one group (n=5) and different motor paradigms to activate motor areas in the cortex and the brainstem in another group (n=21). A significant impact of echo combination and masking procedure was found for both SNR and activation results. The recommended choice is a direct calculation of T(2)(*) values, either using joint masking on unsmoothed data, or pre-smoothing images prior to T(2)(*) calculation. This method was most beneficial in areas close to the surface of the brain or adjacent to the ventricles and may be especially relevant to brainstem fMRI. Copyright (c) 2010 Elsevier Inc. All rights reserved.
The Fourier Transform in Chemistry-NMR, Part 3. Multiple-Pulse Experiments.
ERIC Educational Resources Information Center
Williams, Kathryn R.; King, Roy W.
1990-01-01
Described are six multipulse experiments with an emphasis on their application to common problems in chemistry. Exercises in relaxation time measurement, spin echoes, and polarization transfer are proposed. (CW)
Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy.
Segawa, Takuya F; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar
2015-07-28
The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.
PREFACE: XVIII International Youth Scientific School "Coherent Optics and Optical Spectroscopy"
NASA Astrophysics Data System (ADS)
Salakhov, M. Kh; Samartsev, V. V.; Gainutdinov, R. Kh
2015-05-01
Kazan Federal University has held the annual International Youth School "Coherent Optics and Optical Spectroscopy" since 1997. The choice of the topic is not accidental. Kazan is the home of photon echo which was predicted at Kazan Physical-Technical Institute in 1963 by Prof. U.G. Kopvil'em and V.R. Nagibarov and observed in Columbia University by N.A. Kurnit, I.D. Abella, and S.R. Hartmann in 1964. Since then, photon echo has become a powerful tool of coherent optical spectroscopy and optical information processing, which have been developed here in Kazan in close collaboration between Kazan Physical-Technical Institute and Kazan Federal University. The main subjects of the XVIII International Youth School are: Nonlinear and coherent optics; Atomic and molecular spectroscopy; Coherent laser spectroscopy; Problems of quantum optics; Quantum theory of radiation; and Nanophotonics and Scanning Probe Microscopy. The unchallenged organizers of that school are Kazan Federal University and Kazan E.K. Zavoisky Physical-Technical Institute. The rector of the School is Professor Myakzyum Salakhov, and the vice-rector is Professor Vitaly Samartsev. The International Youth Scientific School "Coherent Optics and Optical Spectroscopy" follows the global pattern of comprehensive studies of matter properties and their interaction with electromagnetic fields. Since 1997 more than 100 famous scientists from the USA, Germany, Ukraine, Belarus and Russia have given plenary lecture presentations. Here over 1000 young scientists had an opportunity to participate in lively discussions about the latest scientific news. Many young people have submitted interesting reports on photonics, quantum electronics, laser physics, quantum optics, traditional optical and laser spectroscopy, non-linear optics, material science and nanotechnology. Here we are publishing the fullsize papers prepared from the most interesting lectures and reports selected by the Program Committee of the School. The International Youth Scientific School "Coherent Optics and Optical Spectroscopy" was greatly supported by The Optical Society of America, the Russian Foundation for Basic Research, the non-profit Dynasty Foundation, the Tatarstan Academy of Science, and the Ministry of Education and Science of the Russian Federation. It is a pleasure to thank the sponsors and all the participants and contributors who made the International School meeting possible and interesting.
ERIC Educational Resources Information Center
Marshman, Emily; Singh, Chandralekha
2017-01-01
Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the…
Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores
Burris, Paul C.; Laage, Damien; Thompson, Ward H.
2016-05-20
Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this Paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D 2O is considered. An empirical mapping approach ismore » used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. Lastly, the simulated spectra indicate that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egorova, Dassia
2014-01-21
Stick-spectrum expressions for electronic two-dimensional (2D) photon-echo (PE) signal of a generic multi-level system are presented and employed to interrelate oscillations in individual peaks of 2D PE signal and the underlying properties (eigenstates and coherent dynamics) of excitonic or vibronic systems. When focusing on the identification of the origin of oscillations in the rephasing part of 2D PE it is found, in particular, that multiple frequencies in the evolution of the individual peaks do not necessarily directly reflect the underlying system dynamics. They may originate from the excited-state absorption contribution to the signal, or arise due to multi-level vibrational structuremore » of the electronic ground state, and represent a superposition of system frequencies, while the latter may evolve independently. The analytical stick-spectrum predictions are verified and illustrated by numerical calculations of 2D PE signals of an excitonic trimer and of a displaced harmonic oscillator with unequal vibrational frequencies in the two electronic states. The excitonic trimer is the smallest excitonic oligomer where excited-state absorption may represent a superposition of excited-state coherences and significantly influence the phase of the observed oscillations. The displaced oscillator is used to distinguish between the frequencies of the ground-state and of the excited-state manifolds, and to demonstrate how the location of a cross peak in 2D pattern of the PE signal “predetermines” its oscillatory behavior. Although the considered models are kept as simple as possible for clarity, the stick-spectrum analysis provides a solid general basis for interpretation of oscillatory signatures in electronic 2D PE signals of much more complex systems with multi-level character of the electronic states.« less
Burris, Paul C; Laage, Damien; Thompson, Ward H
2016-05-21
Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.
Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burris, Paul C.; Thompson, Ward H., E-mail: wthompson@ku.edu; Laage, Damien, E-mail: damien.laage@ens.fr
2016-05-21
Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D{sub 2}O is considered. An empirical mapping approach ismore » used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.« less
Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer.
Duan, Hong-Guang; Prokhorenko, Valentyn I; Cogdell, Richard J; Ashraf, Khuram; Stevens, Amy L; Thorwart, Michael; Miller, R J Dwayne
2017-08-08
During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is commonly rationalized in terms of excitons moving on a grid of biomolecular chromophores on typical timescales [Formula: see text]100 fs. Today's understanding of the energy transfer includes the fact that the excitons are delocalized over a few neighboring sites, but the role of quantum coherence is considered as irrelevant for the transfer dynamics because it typically decays within a few tens of femtoseconds. This orthodox picture of incoherent energy transfer between clusters of a few pigments sharing delocalized excitons has been challenged by ultrafast optical spectroscopy experiments with the Fenna-Matthews-Olson protein, in which interference oscillatory signals up to 1.5 ps were reported and interpreted as direct evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex at ambient temperature in aqueous solution do not provide evidence of any long-lived electronic quantum coherence, but confirm the orthodox view of rapidly decaying electronic quantum coherence on a timescale of 60 fs. Our results can be considered as generic and give no hint that electronic quantum coherence plays any biofunctional role in real photoactive biomolecular complexes. Because in this structurally well-defined protein the distances between bacteriochlorophylls are comparable to those of other light-harvesting complexes, we anticipate that this finding is general and directly applies to even larger photoactive biomolecular complexes.
Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer
NASA Astrophysics Data System (ADS)
Duan, Hong-Guang; Prokhorenko, Valentyn I.; Cogdell, Richard J.; Ashraf, Khuram; Stevens, Amy L.; Thorwart, Michael; Miller, R. J. Dwayne
2017-08-01
During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is commonly rationalized in terms of excitons moving on a grid of biomolecular chromophores on typical timescales <<100 fs. Today’s understanding of the energy transfer includes the fact that the excitons are delocalized over a few neighboring sites, but the role of quantum coherence is considered as irrelevant for the transfer dynamics because it typically decays within a few tens of femtoseconds. This orthodox picture of incoherent energy transfer between clusters of a few pigments sharing delocalized excitons has been challenged by ultrafast optical spectroscopy experiments with the Fenna-Matthews-Olson protein, in which interference oscillatory signals up to 1.5 ps were reported and interpreted as direct evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex at ambient temperature in aqueous solution do not provide evidence of any long-lived electronic quantum coherence, but confirm the orthodox view of rapidly decaying electronic quantum coherence on a timescale of 60 fs. Our results can be considered as generic and give no hint that electronic quantum coherence plays any biofunctional role in real photoactive biomolecular complexes. Because in this structurally well-defined protein the distances between bacteriochlorophylls are comparable to those of other light-harvesting complexes, we anticipate that this finding is general and directly applies to even larger photoactive biomolecular complexes.
Local Electron Density Measurements from Sounding Experiments by RPI on IMAGE
NASA Astrophysics Data System (ADS)
Proddaturi, R.; Sonwalkar, V. S.; Li, J.; Venkatasubramanian, A.; Carpenter, D.; Benson, R.; Reinisch, B.
2004-12-01
RPI sounding experiments lead to a variety of echoes, propagating in various plasma wave modes, and local resonances. Characteristic frequencies of these echoes and resonances can be used to determine the local plasma frequency and thus the local electron density. In this work we have estimated plasma frequency by two methods: (1) using upper hybrid frequency measured from the diffuse Z mode echo upper cutoff and gyro-frequency measured from a gap in the diffuse Z mode echo or from resonances at the multiples of gyrofrequency, (2) upper hybrid frequency from the diffuse Z mode and the free space cutoff frequency fR=0 from the R-X mode echo. Broadband diffuse Z-mode echoes occur 90% of the time at high latitudes (λ m>45oS) near perigee in the southern hemisphere, where fpe << fce. In the middle and low latitudes (λ m<45oS), where fpe >> fce, Z-mode echoes are narrowband and are often accompanied by Qn and Dn resonances. The free space R-X mode echoes are commonly observed at both high and low latitudes. Multiples of gyrofrequency are typically observed at mid- to low-latitude in both the northern and southern hemisphere and at high latitude in the northern hemisphere. RPI plasmagrams were analyzed for three orbits (apogee to apogee) in the year 2002. These three orbits were selected because suitable sounding programs, those that can cover Z mode bandwidth over a wide range of latitude, were used, and also because a large number of diffuse Z mode echoes were actually observed. Electron densities as low as 10 el/cc and as high as 9000 el/cc were measured. The transmission frequencies place a limitation on the upper and lower limits of measurable fpe. The measured fpe values showed good agreement with measurements made from the thermal noise but showed large deviations when compared with model fpe values. For a particular orbit on August 26, 2002, Ne measured was as low as ˜20 el/cc at higher altitudes outside the plasmasphere (λ m > 60oN, altitude >7000 km, MLT=1.89) and increased as IMAGE approached the plasmasphere. A maximum of ˜8900 el/cc was measured well within the plasmasphere (L = 1.56, λ m = 17oN, altitude =2700 km, MLT = 2.44). As the satellite left the plasmasphere, measured electron density decreased to a minimum of about 55 el/cc near the auroral zone (L = 6.83, λ m = 57oS, altitude = 6277 km, MLT=13.66) and then started to rise again. A sharper change in Ne was seen at both the inbound and outbound crossings of the plasmapause. As the satellite again entered the plasmasphere (L = 3.94, λ m = 21oS, altitude = 15500 km, MLT = 14.34) at a higher altitude the maximum value of Ne measured was lower ( ˜520 el/cc) as expected. Our results demonstrate that magnetospheric sounding experiments employing Z mode and free space modes provide a powerful means of making local plasma density measurements.
[The clinical economic analysis of the methods of ischemic heart disease diagnostics].
Kalashnikov, V Iu; Mitriagina, S N; Syrkin, A L; Poltavskaia, M G; Sorokina, E G
2007-01-01
The clinical economical analysis was applied to assess the application of different techniques of ischemic heart disease diagnostics - the electro-cardiographic monitoring, the treadmill-testing, the stress-echo cardiographic with dobutamine, the single-photon computerized axial tomography with load, the multi-spiral computerized axial tomography with coronary arteries staining in patients with different initial probability of disease occurrence. In all groups, the best value of "cost-effectiveness" had the treadmill-test. The patients with low risk needed 17.4 rubles to precise the probability of ischemic heart disease occurrence at 1%. In the group with medium and high risk this indicator was 9.4 and 24.7 rubles correspondingly. It is concluded that to precise the probability of ischemic heart disease occurrence after tredmil-test in the patients with high probability it is appropriate to use the single-photon computerized axial tomography with load and in the case of patients with low probability the multi-spiral computerized axial tomography with coronary arteries staining.
Linear LIDAR versus Geiger-mode LIDAR: impact on data properties and data quality
NASA Astrophysics Data System (ADS)
Ullrich, A.; Pfennigbauer, M.
2016-05-01
LIDAR has become the inevitable technology to provide accurate 3D data fast and reliably even in adverse measurement situations and harsh environments. It provides highly accurate point clouds with a significant number of additional valuable attributes per point. LIDAR systems based on Geiger-mode avalanche photo diode arrays, also called single photon avalanche photo diode arrays, earlier employed for military applications, now seek to enter the commercial market of 3D data acquisition, advertising higher point acquisition speeds from longer ranges compared to conventional techniques. Publications pointing out the advantages of these new systems refer to the other category of LIDAR as "linear LIDAR", as the prime receiver element for detecting the laser echo pulses - avalanche photo diodes - are used in a linear mode of operation. We analyze the differences between the two LIDAR technologies and the fundamental differences in the data they provide. The limitations imposed by physics on both approaches to LIDAR are also addressed and advantages of linear LIDAR over the photon counting approach are discussed.
Psychophysics of human echolocation.
Schörnich, Sven; Wallmeier, Ludwig; Gessele, Nikodemus; Nagy, Andreas; Schranner, Michael; Kish, Daniel; Wiegrebe, Lutz
2013-01-01
The skills of some blind humans orienting in their environment through the auditory analysis of reflections from self-generated sounds have received only little scientific attention to date. Here we present data from a series of formal psychophysical experiments with sighted subjects trained to evaluate features of a virtual echo-acoustic space, allowing for rigid and fine-grain control of the stimulus parameters. The data show how subjects shape both their vocalisations and auditory analysis of the echoes to serve specific echo-acoustic tasks. First, we show that humans can echo-acoustically discriminate target distances with a resolution of less than 1 m for reference distances above 3.4 m. For a reference distance of 1.7 m, corresponding to an echo delay of only 10 ms, distance JNDs were typically around 0.5 m. Second, we explore the interplay between the precedence effect and echolocation. We show that the strong perceptual asymmetry between lead and lag is weakened during echolocation. Finally, we show that through the auditory analysis of self-generated sounds, subjects discriminate room-size changes as small as 10%.In summary, the current data confirm the practical efficacy of human echolocation, and they provide a rigid psychophysical basis for addressing its neural foundations.
Echoes from the abyss: Tentative evidence for Planck-scale structure at black hole horizons
NASA Astrophysics Data System (ADS)
Abedi, Jahed; Dykaar, Hannah; Afshordi, Niayesh
2017-10-01
In classical general relativity (GR), an observer falling into an astrophysical black hole is not expected to experience anything dramatic as she crosses the event horizon. However, tentative resolutions to problems in quantum gravity, such as the cosmological constant problem, or the black hole information paradox, invoke significant departures from classicality in the vicinity of the horizon. It was recently pointed out that such near-horizon structures can lead to late-time echoes in the black hole merger gravitational wave signals that are otherwise indistinguishable from GR. We search for observational signatures of these echoes in the gravitational wave data released by the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), following the three black hole merger events GW150914, GW151226, and LVT151012. In particular, we look for repeating damped echoes with time delays of 8 M log M (+spin corrections, in Planck units), corresponding to Planck-scale departures from GR near their respective horizons. Accounting for the "look elsewhere" effect due to uncertainty in the echo template, we find tentative evidence for Planck-scale structure near black hole horizons at false detection probability of 1% (corresponding to 2.5 σ
Kadle, Rohini L; Phoon, Colin K L
2017-01-01
AIM To extend our previously-published experience in estimating pressure gradients (PG) via physical examination in a large patient cohort. METHODS From January 1, 1997 through December 31, 2009, an attending pediatric cardiologist compared clinical examination (EXAM) with Doppler-echo (ECHO), in 1193 patients with pulmonic stenosis (PS, including tetralogy of Fallot), aortic stenosis (AS), and ventricular septal defect (VSD). EXAM PG estimates were based primarily on a murmur’s pitch, grade, and length. ECHO peak instantaneous PG was derived from the modified Bernoulli equation. Patients were 0-38.4 years old (median 4.8). RESULTS For all patients, EXAM correlated highly with ECHO: ECHO = 0.99 (EXAM) + 3.2 mmHg; r = +0.89; P < 0.0001. Agreement was excellent (mean difference = -2.9 ± 16.1 mmHg). In 78% of all patients, agreement between EXAM and ECHO was within 15 mmHg and within 5 mmHg in 45%. Clinical estimates of PS PG were more accurate than of AS and VSD. A palpable precordial thrill and increasing loudness of the murmur predicted higher gradients (P < 0.0001). Weight did not influence accuracy. A learning curve was evident, such that the most recent quartile of patients showed ECHO = 1.01 (EXAM) + 1.9, r = +0.92, P < 0.0001; during this time, the attending pediatric cardiologist had been > 10 years in practice. CONCLUSION Clinical examination can accurately estimate PG in PS, AS, or VSD. Continual correlation of clinical findings with echocardiography can lead to highly accurate diagnostic skills. PMID:28932358
Tan, Ek T; Lee, Seung-Kyun; Weavers, Paul T; Graziani, Dominic; Piel, Joseph E; Shu, Yunhong; Huston, John; Bernstein, Matt A; Foo, Thomas K F
2016-09-01
To investigate the effects on echo planar imaging (EPI) distortion of using high gradient slew rates (SR) of up to 700 T/m/s for in vivo human brain imaging, with a dedicated, head-only gradient coil. Simulation studies were first performed to determine the expected echo spacing and distortion reduction in EPI. A head gradient of 42-cm inner diameter and with asymmetric transverse coils was then installed in a whole-body, conventional 3T magnetic resonance imaging (MRI) system. Human subject imaging was performed on five subjects to determine the effects of EPI on echo spacing and signal dropout at various gradient slew rates. The feasibility of whole-brain imaging at 1.5 mm-isotropic spatial resolution was demonstrated with gradient-echo and spin-echo diffusion-weighted EPI. As compared to a whole-body gradient coil, the EPI echo spacing in the head-only gradient coil was reduced by 48%. Simulation and in vivo results, respectively, showed up to 25-26% and 19% improvement in signal dropout. Whole-brain imaging with EPI at 1.5 mm spatial resolution provided good whole-brain coverage, spatial linearity, and low spatial distortion effects. Our results of human brain imaging with EPI using the compact head gradient coil at slew rates higher than in conventional whole-body MR systems demonstrate substantially improved image distortion, and point to a potential for benefits to non-EPI pulse sequences. J. Magn. Reson. Imaging 2016;44:653-664. © 2016 International Society for Magnetic Resonance in Medicine.
Realism in the Realized Popper's Experiment
NASA Astrophysics Data System (ADS)
Hunter, Geoffrey
2002-12-01
The realization of Karl Popper's EPR-like experiment by Shih and Kim (published 1999) produced the result that Popper hoped for: no ``action at a distance'' on one photon of an entangled pair when a measurement is made on the other photon. This experimental result is interpretable in local realistic terms: each photon has a definite position and transverse momentum most of the time; the position measurement on one photon (localization within a slit) disturbs the transverse momentum of that photon in a non-predictable way in accordance with the uncertainty principle; however, there is no effect on the other photon (the photon that is not in a slit) no action at a distance. The position measurement (localization within a slit) of the one photon destroys the coherence (entanglement) between the photons; i.e. decoherence occurs. This realistic (albeit retrodictive) interpretation of the Shih-Kim realization of what Popper called his ``crucial experiment'' is in accord with Bohr's original concept of the nature of the uncertainty principle, as being an inevitable effect of the disturbance of the measured system by the measuring apparatus. In this experiment the impact parameter of an incident photon with the centerline of the slit is an uncontrollable parameter of each individual photon scattering event; this impact parameter is variable for every incident photon, the variations being a statistical aspect of the beam of photons produced by the experimental arrangement. These experimental results are also in accord with the proposition of Einstein, Podolski and Rosen's 1935 paper: that quantum mechanics provides only a statistical, physically incomplete, theory of microscopic physical processes, for the quantum mechanical description of the experiment does not describe or explain the individual photon scattering events that are actually observed; the angle by which an individual photon is scattered is not predictable, because the photon's impact parameter with the centerline of the slit is not observable, and because the electromagnetic interaction between the photon and the matter forming the walls of the slit is not calculable.
Heterodyne-detected dispersed vibrational echo spectroscopy.
Jones, Kevin C; Ganim, Ziad; Tokmakoff, Andrei
2009-12-24
We develop heterodyned dispersed vibrational echo spectroscopy (HDVE) and demonstrate the new capabilities in biophysical applications. HDVE is a robust ultrafast technique that provides a characterization of the real and imaginary components of third-order nonlinear signals with high sensitivity and single-laser-shot capability and can be used to extract dispersed pump-probe and dispersed vibrational echo spectra. Four methods for acquiring HDVE phase and amplitude spectra were compared: Fourier transform spectral interferometry, a new phase modulation spectral interferometry technique, and combination schemes. These extraction techniques were demonstrated in the context of protein amide I spectroscopy. Experimental HDVE and heterodyned free induction decay amide I spectra were explicitly compared to conventional dispersed pump-probe, dispersed vibrational echo, and absorption spectra. The new capabilities of HDVE were demonstrated by acquiring single-shot spectra and melting curves of ubiquitin and concentration-dependent spectra of insulin suitable for extracting the binding constant for dimerization. The introduced techniques will prove particularly useful in transient experiments, studying irreversible reactions, and micromolar concentration studies of small proteins.
Coherent pump pulses in Double Electron Electron Resonance Spectroscopy
Tait, Claudia E.; Stoll, Stefan
2016-01-01
The recent introduction of shaped pulses to Double Electron Electron Resonance (DEER) spectroscopy has led to significant enhancements in sensitivity through increased excitation bandwidths and improved control over spin dynamics. The application of DEER has so far relied on the presence of an incoherent pump channel to average out most undesired coherent effects of the pump pulse(s) on the observer spins. However, in fully coherent EPR spectrometers that are increasingly used to generate shaped pulses, the presence of coherent pump pulses means that these effects need to be explicitly considered. In this paper, we examine the effects of coherent rectangular and sech/tanh pump pulses in DEER experiments with up to three pump pulses. We show that, even in the absence of significant overlap of the observer and pump pulse excitation bandwidths, coherence transfer pathways involving both types of pulses generate spin echoes of considerable intensity. These echoes introduce artefacts, which, if not identified and removed, can easily lead to misinterpretation. We demonstrate that the observed echoes can be quantitatively modelled using a simple spin quantum dynamics approach that includes instrumental transfer functions. Based on an analysis of the echo crossing artefacts, we propose efficient phase cycling schemes for their suppression. This enables the use of advanced DEER experiments, characterized by high sensitivity and increased accuracy for long-distance measurements, on novel fully coherent EPR spectrometers. PMID:27339858
Transperineal prostate biopsy with ECHO-MRI fusion. Biopsee system. Initial experience.
Romero-Selas, E; Cuadros, V; Montáns, J; Sánchez, E; López-Alcorocho, J M; Gómez-Sancha, F
2016-06-01
The aim of this study is to present our initial experience with the stereotactic echo-MRI fusion system for diagnosing prostate cancer. Between September 2014 and January 2015, we performed 50 prostate biopsies using the stereotactic echo-MRI fusion system. The 3-Tesla multiparameter MR images were superimposed using this image fusion system on 3D echo images obtained with the Biopsee system for the exact locating of areas suspected of prostate cancer. The lesions were classified using the Prostate Imaging Report and Date System. We assessed a total of 50 patients, with a mean age of 63 years (range, 45-79), a mean prostate-specific antigen level of 8 ng/mL (range, 1.9-20) and a mean prostate volume of 52mL (range, 12-118). Prostate cancer was diagnosed in 69% of the patients and intraepithelial neoplasia in 6%. The results of the biopsy were negative for 24% of the patients. The results of the biopsy and MRI were in agreement for 62% of the patients; however, 46% also had a tumour outside of the suspicious lesion. We diagnosed 46% anterior tumours and 33% apical tumours. One patient had a haematuria, another had a haematoma and a third had acute urine retention. Multiparametric prostatic MRI helps identify prostate lesions suggestive of cancer. The Biopsee echo-MRI fusion system provides for guided biopsy and increases the diagnostic performance, reducing the false negatives of classical biopsies and increasing the diagnosis of anterior tumours. Transperineal access minimises the risk of prostatic infection and sepsis. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Retinotopic mapping with Spin Echo BOLD at 7 Tesla
Olman, Cheryl A.; Van de Moortele, Pierre-Francois; Schumacher, Jennifer F.; Guy, Joe; Uğurbil, Kâmil; Yacoub, Essa
2010-01-01
For blood oxygenation level-dependent (BOLD) functional MRI experiments, contrast-to-noise ratio (CNR) increases with increasing field strength for both gradient echo (GE) and spin echo (SE) BOLD techniques. However, susceptibility artifacts and non-uniform coil sensitivity profiles complicate large field-of-view fMRI experiments (e.g., experiments covering multiple visual areas instead of focusing on a single cortical region). Here, we use SE BOLD to acquire retinotopic mapping data in early visual areas, testing the feasibility of SE BOLD experiments spanning multiple cortical areas at 7 Tesla. We also use a recently developed method for normalizing signal intensity in T1-weighted anatomical images to enable automated segmentation of the cortical gray matter for scans acquired at 7T with either surface or volume coils. We find that the CNR of the 7T GE data (average single-voxel, single-scan stimulus coherence: 0.41) is almost twice that of the 3T GE BOLD data (average coherence: 0.25), with the CNR of the SE BOLD data (average coherence: 0.23) comparable to that of the 3T GE data. Repeated measurements in individual subjects find that maps acquired with 1.8 mm resolution at 3T and 7T with GE BOLD and at 7T with SE BOLD show no systematic differences in either the area or the boundary locations for V1, V2 and V3, demonstrating the feasibility of high-resolution SE BOLD experiments with good sensitivity throughout multiple visual areas. PMID:20656431
Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan
2015-07-28
The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclearmore » modulation spectrum.« less
Lee, Sang Kwon; Chang, Yongmin; Park, Noh Hyuck; Kim, Young Hwan; Woo, Seongku
2005-04-01
To evaluate the feasibility of magnetic resonance voiding cystography (MRVC) compared with voiding cystourethrography (VCUG) for detecting and grading vesicoureteral reflux (VUR). MRVC was performed upon 20 children referred for investigation of reflux. Either coronal T1-weighted spin-echo (SE) or gradient-echo (GE) (fast multiplanar spoiled gradient-echo (FMPSPGR) or turbo fast low-angle-shot (FLASH)) images were obtained before and after transurethral administration of gadolinium solution, and immediately after voiding. The findings of MRVC were compared with those of VCUG and technetium-99m ((99m)Tc) dimercaptosuccinic acid (DMSA) single-photon emission computed tomography (SPECT) performed within 6 months of MRVC. VUR was detected in 23 ureterorenal units (16 VURs by both methods, 5 VURs by VCUG, and 2 VURs by MRVC). With VCUG as the standard of reference, the sensitivity of MRVC was 76.2%; the specificity, 90.0%; the positive predictive value, 88.9%; and the negative predictive value, 78.3%. There was concordance between two methods regarding the grade of reflux in all 16 ureterorenal units with VUR detected by both methods. Of 40 kidneys, MRVC detected findings of renal damage or reflux nephropathy in 13 kidneys, and (99m)Tc DMSA renal SPECT detected findings of reflux nephropathy in 17 kidneys. Although MRVC is shown to have less sensitivity for VUR than VCUG, MRVC may represent a method of choice offering a safer nonradiation test that can additionally evaluate the kidneys for changes related to reflux nephropathy. Copyright 2005 Wiley-Liss, Inc.
First artificial periodic inhomogeneity experiments at HAARP
NASA Astrophysics Data System (ADS)
Hysell, D. L.; McCarrick, M. J.; Fallen, C. T.; Vierinen, J.
2015-03-01
Experiments involving the generation and detection of artificial periodic inhomogeneities have been performed at the High Frequency Active Auroral Research Program (HAARP) facility. Irregularities were created using powerful X-mode HF emissions and then probed using short (10 μs) X- and O-mode pulses. Reception was performed using a portable software-defined receiver together with the crossed rhombic antenna from the local ionosonde. Echoes were observed reliably between about 85 and 140 km altitude with signal-to-noise ratios as high as about 30 dB. The Doppler shift of the echoes can be associated with the vertical neutral wind in this altitude range. Small but persistent Doppler shifts were observed. The decay time constant of the echoes is meanwhile indicative of the ambipolar diffusion coefficient which depends on the plasma temperature, composition, and neutral gas density. The measured time constants appear to be consistent with theoretical expectations and imply a methodology for measuring neutral density profiles. The significance of thermospheric vertical neutral wind and density measurements which are difficult to obtain using ground-based instruments by other means is discussed.
Beam pointing angle optimization and experiments for vehicle laser Doppler velocimetry
NASA Astrophysics Data System (ADS)
Fan, Zhe; Hu, Shuling; Zhang, Chunxi; Nie, Yanju; Li, Jun
2015-10-01
Beam pointing angle (BPA) is one of the key parameters that affects the operation performance of the laser Doppler velocimetry (LDV) system. By considering velocity sensitivity and echo power, for the first time, the optimized BPA of vehicle LDV is analyzed. Assuming mounting error is within ±1.0 deg, the reflectivity and roughness are variable for different scenarios, the optimized BPA is obtained in the range from 29 to 43 deg. Therefore, velocity sensitivity is in the range of 1.25 to 1.76 MHz/(m/s), and the percentage of normalized echo power at optimized BPA with respect to that at 0 deg is greater than 53.49%. Laboratory experiments with a rotating table are done with different BPAs of 10, 35, and 66 deg, and the results coincide with the theoretical analysis. Further, vehicle experiment with optimized BPA of 35 deg is conducted by comparison with microwave radar (accuracy of ±0.5% full scale output). The root-mean-square error of LDV's results is smaller than the Microstar II's, 0.0202 and 0.1495 m/s, corresponding to LDV and Microstar II, respectively, and the mean velocity discrepancy is 0.032 m/s. It is also proven that with the optimized BPA both high velocity sensitivity and acceptable echo power can simultaneously be guaranteed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buljubasich, Lisandro; Dente, Axel D.; Levstein, Patricia R.
2015-10-28
We performed Loschmidt echo nuclear magnetic resonance experiments to study decoherence under a scaled dipolar Hamiltonian by means of a symmetrical time-reversal pulse sequence denominated Proportionally Refocused Loschmidt (PRL) echo. The many-spin system represented by the protons in polycrystalline adamantane evolves through two steps of evolution characterized by the secular part of the dipolar Hamiltonian, scaled down with a factor |k| and opposite signs. The scaling factor can be varied continuously from 0 to 1/2, giving access to a range of complexity in the dynamics. The experimental results for the Loschmidt echoes showed a spreading of the decay rates thatmore » correlate directly to the scaling factors |k|, giving evidence that the decoherence is partially governed by the coherent dynamics. The average Hamiltonian theory was applied to give an insight into the spin dynamics during the pulse sequence. The calculations were performed for every single radio frequency block in contrast to the most widely used form. The first order of the average Hamiltonian numerically computed for an 8-spin system showed decay rates that progressively decrease as the secular dipolar Hamiltonian becomes weaker. Notably, the first order Hamiltonian term neglected by conventional calculations yielded an explanation for the ordering of the experimental decoherence rates. However, there is a strong overall decoherence observed in the experiments which is not reflected by the theoretical results. The fact that the non-inverted terms do not account for this effect is a challenging topic. A number of experiments to further explore the relation of the complete Hamiltonian with this dominant decoherence rate are proposed.« less
Time-Frequency Distribution Analyses of Ku-Band Radar Doppler Echo Signals
NASA Astrophysics Data System (ADS)
Bujaković, Dimitrije; Andrić, Milenko; Bondžulić, Boban; Mitrović, Srđan; Simić, Slobodan
2015-03-01
Real radar echo signals of a pedestrian, vehicle and group of helicopters are analyzed in order to maximize signal energy around central Doppler frequency in time-frequency plane. An optimization, preserving this concentration, is suggested based on three well-known concentration measures. Various window functions and time-frequency distributions were optimization inputs. Conducted experiments on an analytic and three real signals have shown that energy concentration significantly depends on used time-frequency distribution and window function, for all three used criteria.
Project Echo: Antenna Steering System
NASA Technical Reports Server (NTRS)
Klahn, R.; Norton, J. A.; Githens, J. A.
1961-01-01
The Project Echo communications experiment employed large, steerable,transmitting and receiving antennas at the ground terminals. It was necessary that these highly directional antennas be continuously and accurately pointed at the passing satellite. This paper describes a new type of special purpose data converter for directing narrow-beam communication antennas on the basis of predicted information. The system is capable of converting digital input data into real-time analog voltage commands with a dynamic accuracy of +/- 0.05 degree, which meets the requirements of the present antennas.
NASA Astrophysics Data System (ADS)
Chen, Jian-Hui; Deng, Hai-Xiao; Gu, Qiang; Li, Dong-Guo; Wang, Dong; Zhang, Meng; Zhao, Zhen-Tang
2009-08-01
Using the recently proposed echo-enabled harmonic generation (EEHG) free-electron laser (FEL) scheme, it is shown that operating the Shanghai deep ultraviolet FEL (SDUV-FEL) with single-stage to higher harmonics is very promising, with higher frequency up-conversion efficiency, higher harmonic selectivity and lower power requirement of the seed laser. The considerations on a proof-of-principle experiment and expected performance in SDUV-FEL are given.
Recent Results for the ECHo Experiment
NASA Astrophysics Data System (ADS)
Hassel, C.; Blaum, K.; Goodacre, T. Day; Dorrer, H.; Düllmann, Ch. E.; Eberhardt, K.; Eliseev, S.; Enss, C.; Filianin, P.; Fäßler, A.; Fleischmann, A.; Gastaldo, L.; Goncharov, M.; Hengstler, D.; Jochum, J.; Johnston, K.; Keller, M.; Kempf, S.; Kieck, T.; Köster, U.; Krantz, M.; Marsh, B.; Mokry, C.; Novikov, Yu. N.; Ranitzsch, P. C. O.; Rothe, S.; Rischka, A.; Runke, J.; Saenz, A.; Schneider, F.; Scholl, S.; Schüssler, R. X.; Simkovic, F.; Stora, T.; Thörle-Pospiech, P.; Türler, A.; Veinhard, M.; Wegner, M.; Wendt, K.; Zuber, K.
2016-08-01
The Electron Capture in ^{163}Ho experiment, ECHo, is designed to investigate the electron neutrino mass in the sub-eV range by means of the analysis of the calorimetrically measured spectrum following the electron capture (EC) in ^{163}Ho. Arrays of low-temperature metallic magnetic calorimeters (MMCs), read-out by microwave SQUID multiplexing, will be used in this experiment. With a first MMC prototype having the ^{163}Ho source ion-implanted into the absorber, we performed the first high energy resolution measurement of the EC spectrum, which demonstrated the feasibility of such an experiment. In addition to the technological challenges for the development of MMC arrays, which preserve the single pixel performance in terms of energy resolution and bandwidth, the success of the experiment relies on the availability of large ultra-pure ^{163}Ho samples, on the precise description of the expected spectrum, and on the identification and reduction of background. We present preliminary results obtained with standard MMCs developed for soft X-ray spectroscopy, maXs-20, where the ^{163}Ho ion-implantation was performed using a high-purity ^{163}Ho source produced by advanced chemical and mass separation. With these measurements, we aim at determining an upper limit for the background level due to source contamination and provide a refined description of the calorimetrically measured spectrum. We discuss the plan for a medium scale experiment, ECHo-1k, in which about 1000 mathrm {Bq} of high-purity ^{163}Ho will be ion-implanted into detector arrays. With one year of measuring time, we will be able to achieve a sensitivity on the electron neutrino mass below 20 eV/c^2 (90 % C.L.), improving the present limit by more than one order of magnitude. This experiment will guide the necessary developments to reach the sub-eV sensitivity.
A computational model for biosonar echoes from foliage
Gupta, Anupam Kumar; Lu, Ruijin; Zhu, Hongxiao
2017-01-01
Since many bat species thrive in densely vegetated habitats, echoes from foliage are likely to be of prime importance to the animals’ sensory ecology, be it as clutter that masks prey echoes or as sources of information about the environment. To better understand the characteristics of foliage echoes, a new model for the process that generates these signals has been developed. This model takes leaf size and orientation into account by representing the leaves as circular disks of varying diameter. The two added leaf parameters are of potential importance to the sensory ecology of bats, e.g., with respect to landmark recognition and flight guidance along vegetation contours. The full model is specified by a total of three parameters: leaf density, average leaf size, and average leaf orientation. It assumes that all leaf parameters are independently and identically distributed. Leaf positions were drawn from a uniform probability density function, sizes and orientations each from a Gaussian probability function. The model was found to reproduce the first-order amplitude statistics of measured example echoes and showed time-variant echo properties that depended on foliage parameters. Parameter estimation experiments using lasso regression have demonstrated that a single foliage parameter can be estimated with high accuracy if the other two parameters are known a priori. If only one parameter is known a priori, the other two can still be estimated, but with a reduced accuracy. Lasso regression did not support simultaneous estimation of all three parameters. Nevertheless, these results demonstrate that foliage echoes contain accessible information on foliage type and orientation that could play a role in supporting sensory tasks such as landmark identification and contour following in echolocating bats. PMID:28817631
A computational model for biosonar echoes from foliage.
Ming, Chen; Gupta, Anupam Kumar; Lu, Ruijin; Zhu, Hongxiao; Müller, Rolf
2017-01-01
Since many bat species thrive in densely vegetated habitats, echoes from foliage are likely to be of prime importance to the animals' sensory ecology, be it as clutter that masks prey echoes or as sources of information about the environment. To better understand the characteristics of foliage echoes, a new model for the process that generates these signals has been developed. This model takes leaf size and orientation into account by representing the leaves as circular disks of varying diameter. The two added leaf parameters are of potential importance to the sensory ecology of bats, e.g., with respect to landmark recognition and flight guidance along vegetation contours. The full model is specified by a total of three parameters: leaf density, average leaf size, and average leaf orientation. It assumes that all leaf parameters are independently and identically distributed. Leaf positions were drawn from a uniform probability density function, sizes and orientations each from a Gaussian probability function. The model was found to reproduce the first-order amplitude statistics of measured example echoes and showed time-variant echo properties that depended on foliage parameters. Parameter estimation experiments using lasso regression have demonstrated that a single foliage parameter can be estimated with high accuracy if the other two parameters are known a priori. If only one parameter is known a priori, the other two can still be estimated, but with a reduced accuracy. Lasso regression did not support simultaneous estimation of all three parameters. Nevertheless, these results demonstrate that foliage echoes contain accessible information on foliage type and orientation that could play a role in supporting sensory tasks such as landmark identification and contour following in echolocating bats.
Li, Jianqi; Wang, Yi; Jiang, Yu; Xie, Haibin; Li, Gengying
2009-09-01
An open permanent magnet system with vertical B(0) field and without self-shielding can be quite susceptible to perturbations from external magnetic sources. B(0) variation in such a system located close to a subway station was measured to be greater than 0.7 microT by both MRI and a fluxgate magnetometer. This B(0) variation caused image artifacts. A navigator echo approach that monitored and compensated the view-to-view variation in magnetic resonance signal phase was developed to correct for image artifacts. Human brain imaging experiments using a multislice gradient-echo sequence demonstrated that the ghosting and blurring artifacts associated with B(0) variations were effectively removed using the navigator method.
Detection of cat-eye effect echo based on unit APD
NASA Astrophysics Data System (ADS)
Wu, Dong-Sheng; Zhang, Peng; Hu, Wen-Gang; Ying, Jia-Ju; Liu, Jie
2016-10-01
The cat-eye effect echo of optical system can be detected based on CCD, but the detection range is limited within several kilometers. In order to achieve long-range even ultra-long-range detection, it ought to select APD as detector because of the high sensitivity of APD. The detection system of cat-eye effect echo based on unit APD is designed in paper. The implementation scheme and key technology of the detection system is presented. The detection performances of the detection system including detection range, detection probability and false alarm probability are modeled. Based on the model, the performances of the detection system are analyzed using typical parameters. The results of numerical calculation show that the echo signal-to-noise ratio is greater than six, the detection probability is greater than 99.9% and the false alarm probability is less tan 0.1% within 20 km detection range. In order to verify the detection effect, we built the experimental platform of detection system according to the design scheme and carry out the field experiments. The experimental results agree well with the results of numerical calculation, which prove that the detection system based on the unit APD is feasible to realize remote detection for cat-eye effect echo.
High-speed laser photoacoustic imaging system combined with a digital ultrasonic imaging platform
NASA Astrophysics Data System (ADS)
Zeng, Lvming; Liu, Guodong; Ji, Xuanrong; Ren, Zhong; Huang, Zhen
2009-07-01
As a new field of combined ultrasound/photoacoustic imaging in biomedical photonics research, we present and demonstrate a high-speed laser photoacoustic imaging system combined with digital ultrasound imaging platform. In the prototype system, a new B-mode digital ultrasonic imaging system is modified as the hardware platform with 384 vertical transducer elements. The centre resonance frequency of the piezoelectric transducer is 5.0 MHz with greater than 70% pulse-echo -6dB fractional bandwidth. The modular instrument of PCI-6541 is used as the hardware control centre of the testing system, which features 32 high-speed channels to build low-skew and multi-channel system. The digital photoacoustic data is transported into computer for subsequent reconstruction at 25 MHz clock frequency. Meantime, the software system for controlling and analyzing is correspondingly explored with LabVIEW language on virtual instrument platform. In the breast tissue experiment, the reconstructed image agrees well with the original sample, and the spatial resolution of the system can reach 0.2 mm with multi-element synthetic aperture focusing technique. Therefore, the system and method may have a significant value in improving early detecting level of cancer in the breast and other organs.
Report on radio observation of meteors (Iža, Slovakia)
NASA Astrophysics Data System (ADS)
Dolinský, Peter; Dorotovič, Ivan; Vidovenec, Marian
2014-02-01
During the period from 1 to 17 August 2014 meteors were experimentally registered using radio waves. This experiment was conducted in the village of Iža, Slovakia. Its main objective was to test the technical equipment intended for continuous registration of meteor echoes, which will be located in the Slovak Central Observatory in Hurbanovo. These tests are an indirect continuation of previous experiments of observation of meteor showers using the technology available in Hurbanovo at the end of the 20th and the beginning of the 21st century. The device consists of two independent receiver systems. One recorded echoes of the transmitter Graves 143.050 MHz (N47.3480° E5.5151°, France) and the second one recorded echoes of the TV transmitter Lviv 49.739583 MHz (N49.8480° E24.0369°, Ukraine). The apparatus for tracking radio echoes of the transmitter Graves consists of a 9-element Yagi antenna with vertical polarization (oriented with an elevation of 0° at azimuth 270°), the receiver Yaesu VR-5000 in CW mode, and a computer with registration using the program HROFFT v1.0.0f. The second apparatus recording the echoes of the transmitter Lviv consists of a LP (log-periodic) antenna with horizontal polarization (elevation of 0° and azimuth of 90°), the receiver ICOM R-75 in the CW mode, and also a computer with registration using HROFFT v1.0.0f. A total of about 78000 echoes have been registered during around 700 hours of registration. Probably not all of them are caused by meteors. These data were statistically processed and compared with visual observations in the IMO database. Planned own visual observations could not be performed due to unfavourable weather conditions lasting from 4 to 13 August 2014. The registered data suggest that observations were performed in the back-scatter mode in this configuration and not in the planned forward-scatter mode. Deeper analysis and longer data sets are, however, necessary to calibrate the observation system and this will be subject of our future work. A realization of a custom radio system similar to the BRAMS system is also being considered.
Parahippocampal cortex is involved in material processing via echoes in blind echolocation experts.
Milne, Jennifer L; Arnott, Stephen R; Kish, Daniel; Goodale, Melvyn A; Thaler, Lore
2015-04-01
Some blind humans use sound to navigate by emitting mouth-clicks and listening to the echoes that reflect from silent objects and surfaces in their surroundings. These echoes contain information about the size, shape, location, and material properties of objects. Here we present results from an fMRI experiment that investigated the neural activity underlying the processing of materials through echolocation. Three blind echolocation experts (as well as three blind and three sighted non-echolocating control participants) took part in the experiment. First, we made binaural sound recordings in the ears of each echolocator while he produced clicks in the presence of one of three different materials (fleece, synthetic foliage, or whiteboard), or while he made clicks in an empty room. During fMRI scanning these recordings were played back to participants. Remarkably, all participants were able to identify each of the three materials reliably, as well as the empty room. Furthermore, a whole brain analysis, in which we isolated the processing of just the reflected echoes, revealed a material-related increase in BOLD activation in a region of left parahippocampal cortex in the echolocating participants, but not in the blind or sighted control participants. Our results, in combination with previous findings about brain areas involved in material processing, are consistent with the idea that material processing by means of echolocation relies on a multi-modal material processing area in parahippocampal cortex. Copyright © 2014 Elsevier Ltd. All rights reserved.
Holdsworth, Samantha J; Yeom, Kristen W; Moseley, Michael E; Skare, S
2015-05-01
Susceptibility-weighted imaging (SWI) in neuroimaging can be challenging due to long scan times of three-dimensional (3D) gradient recalled echo (GRE), while faster techniques such as 3D interleaved echo-planar imaging (iEPI) are prone to motion artifacts. Here we outline and implement a 3D short-axis propeller echo-planar imaging (SAP-EPI) trajectory as a faster, motion-correctable approach for SWI. Experiments were conducted on a 3T MRI system. The 3D SAP-EPI, 3D iEPI, and 3D GRE SWI scans were acquired on two volunteers. Controlled motion experiments were conducted to test the motion-correction capability of 3D SAP-EPI. The 3D SAP-EPI SWI data were acquired on two pediatric patients as a potential alternative to 2D GRE used clinically. The 3D GRE images had a better target resolution (0.47 × 0.94 × 2 mm, scan time = 5 min), iEPI and SAP-EPI images (resolution = 0.94 × 0.94 × 2 mm) were acquired in a faster scan time (1:52 min) with twice the brain coverage. SAP-EPI showed motion-correction capability and some immunity to undersampling from rejected data. While 3D SAP-EPI suffers from some geometric distortion, its short scan time and motion-correction capability suggest that SAP-EPI may be a useful alternative to GRE and iEPI for use in SWI, particularly in uncooperative patients. © 2014 Wiley Periodicals, Inc.
Knoll, Florian; Raya, José G; Halloran, Rafael O; Baete, Steven; Sigmund, Eric; Bammer, Roland; Block, Tobias; Otazo, Ricardo; Sodickson, Daniel K
2015-01-01
Radial spin echo diffusion imaging allows motion-robust imaging of tissues with very low T2 values like articular cartilage with high spatial resolution and signal-to-noise ratio (SNR). However, in vivo measurements are challenging due to the significantly slower data acquisition speed of spin-echo sequences and the less efficient k-space coverage of radial sampling, which raises the demand for accelerated protocols by means of undersampling. This work introduces a new reconstruction approach for undersampled DTI. A model-based reconstruction implicitly exploits redundancies in the diffusion weighted images by reducing the number of unknowns in the optimization problem and compressed sensing is performed directly in the target quantitative domain by imposing a Total Variation (TV) constraint on the elements of the diffusion tensor. Experiments were performed for an anisotropic phantom and the knee and brain of healthy volunteers (3 and 2 volunteers, respectively). Evaluation of the new approach was conducted by comparing the results to reconstructions performed with gridding, combined parallel imaging and compressed sensing, and a recently proposed model-based approach. The experiments demonstrated improvement in terms of reduction of noise and streaking artifacts in the quantitative parameter maps as well as a reduction of angular dispersion of the primary eigenvector when using the proposed method, without introducing systematic errors into the maps. This may enable an essential reduction of the acquisition time in radial spin echo diffusion tensor imaging without degrading parameter quantification and/or SNR. PMID:25594167
Nonequilibrium Quantum Simulation in Circuit QED
NASA Astrophysics Data System (ADS)
Raftery, James John
Superconducting circuits have become a leading architecture for quantum computing and quantum simulation. In particular, the circuit QED framework leverages high coherence qubits and microwave resonators to construct systems realizing quantum optics models with exquisite precision. For example, the Jaynes-Cummings model has been the focus of significant theoretical interest as a means of generating photon-photon interactions. Lattices of such strongly correlated photons are an exciting new test bed for exploring non-equilibrium condensed matter physics such as dissipative phase transitions of light. This thesis covers a series of experiments which establish circuit QED as a powerful tool for exploring condensed matter physics with photons. The first experiment explores the use of ultra high speed arbitrary waveform generators for the direct digital synthesis of complex microwave waveforms. This new technique dramatically simplifies the classical control chain for quantum experiments and enables high bandwidth driving schemes expected to be essential for generating interesting steady-states and dynamical behavior. The last two experiments explore the rich physics of interacting photons, with an emphasis on small systems where a high degree of control is possible. The first experiment realizes a two-site system called the Jaynes-Cummings dimer, which undergoes a self-trapping transition where the strong photon-photon interactions block photon hopping between sites. The observation of this dynamical phase transition and the related dissipation-induced transition are key results of this thesis. The final experiment augments the Jaynes-Cummings dimer by redesigning the circuit to include in-situ control over photon hopping between sites using a tunable coupler. This enables the study of the dimer's localization transition in the steady-state regime.
Note: A new design for a low-temperature high-intensity helium beam source
NASA Astrophysics Data System (ADS)
Lechner, B. A. J.; Hedgeland, H.; Allison, W.; Ellis, J.; Jardine, A. P.
2013-02-01
A high-intensity supersonic beam source is a key component of any atom scattering instrument, affecting the sensitivity and energy resolution of the experiment. We present a new design for a source which can operate at temperatures as low as 11.8 K, corresponding to a beam energy of 2.5 meV. The new source improves the resolution of the Cambridge helium spin-echo spectrometer by a factor of 5.5, thus extending the accessible timescales into the nanosecond range. We describe the design of the new source and discuss experiments characterizing its performance. Spin-echo measurements of benzene/Cu(100) illustrate its merit in the study of a typical slow-moving molecular adsorbate species.
Fourier Analysis and Structure Determination. Part II: Pulse NMR and NMR Imaging.
ERIC Educational Resources Information Center
Chesick, John P.
1989-01-01
Uses simple pulse NMR experiments to discuss Fourier transforms. Studies the generation of spin echoes used in the imaging procedure. Shows that pulse NMR experiments give signals that are additions of sinusoids of differing amplitudes, frequencies, and phases. (MVL)
Zhang, Bin; Wei, Yue-Juan; Liu, Wen-Yi; Zhang, Yan-Jun; Yao, Zong; Zhao, Li-Hui; Xiong, Ji-Jun
2017-01-01
The proposed method for measuring the liquid level focuses on the ultrasonic impedance and echo energy inside a metal wall, to which the sensor is attached directly, not on ultrasonic waves that penetrate the gas–liquid medium of a container. Firstly, by analyzing the sound field distribution characteristics of the sensor in a metal wall, this paper proposes the concept of an "energy circle" and discusses how to calculate echo energy under three different states in detail. Meanwhile, an ultrasonic transmitting and receiving circuit is designed to convert the echo energy inside the energy circle into its equivalent electric power. Secondly, in order to find the two critical states of the energy circle in the process of liquid level detection, a program is designed to help with calculating two critical positions automatically. Finally, the proposed method is evaluated through a series of experiments, and the experimental results indicate that the proposed method is effective and accurate in calibration of the liquid level outside a sealed metal container. PMID:28106857
Lundell, Henrik; Alexander, Daniel C; Dyrby, Tim B
2014-08-01
Stimulated echo acquisition mode (STEAM) diffusion MRI can be advantageous over pulsed-gradient spin-echo (PGSE) for diffusion times that are long compared with T2 . It therefore has potential for biomedical diffusion imaging applications at 7T and above where T2 is short. However, gradient pulses other than the diffusion gradients in the STEAM sequence contribute much greater diffusion weighting than in PGSE and lead to a disrupted experimental design. Here, we introduce a simple compensation to the STEAM acquisition that avoids the orientational bias and disrupted experiment design that these gradient pulses can otherwise produce. The compensation is simple to implement by adjusting the gradient vectors in the diffusion pulses of the STEAM sequence, so that the net effective gradient vector including contributions from diffusion and other gradient pulses is as the experiment intends. High angular resolution diffusion imaging (HARDI) data were acquired with and without the proposed compensation. The data were processed to derive standard diffusion tensor imaging (DTI) maps, which highlight the need for the compensation. Ignoring the other gradient pulses, a bias in DTI parameters from STEAM acquisition is found, due both to confounds in the analysis and the experiment design. Retrospectively correcting the analysis with a calculation of the full B matrix can partly correct for these confounds, but an acquisition that is compensated as proposed is needed to remove the effect entirely. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.
Why did we elaborate an entangled photons experiment in our engineering school?
NASA Astrophysics Data System (ADS)
Jacubowiez, Lionel; Avignon, Thierry
2005-10-01
We will describe a simple setup experiment that allows students to create polarization-entangled photons pairs. These photon pairs are in an entangled state first described in the famous 1935 article in Phys.Rev by Einstein-Podolsky-Rosen, often called E.P.R. state. Photons pairs at 810 nm are produced in two nonlinear crystals by spontaneous parametric downconversion of photons at 405 nm emitted by a violet laser diode. The polarization state of the photons pairs is easily tunable with a half-wave plate and a Babinet compensator on the laser diode beam. After having adjusted the polarization-entangled state of the photon pairs, our students can perform a test of Bell's inequalities. They will find the amazing value for the Bell parameter between 2.3 and 2.6, depending on the quality of the adjustments of the state of polarization. The experiments described can be done in 4 or 5 hours. What is the importance of creating an entangled photons experiment for our engineering students? First of all, entanglement concept is clearly one of the most strikingly nonclassical features of quantum theory and it is playing an increasing role in present-day physics. But in this paper, we will emphasise the experimental point of view. We will try to explain why we believe that for our students this lab experiment is a unique opportunity to deal with established concepts and experimental techniques on polarization, non linear effects, phase matching, photon counting avalanche photodiodes, counting statistics, coincidences detectors. Let us recall that the first convincing experimental violations of Bell's inequalities were performed by Alain Aspect and Philippe Grangier with pairs of entangled photons at the Institut d'Optique between 1976 and 1982. Twenty five years later, due to recent advances in laser diode technology, new techniques for generation of photon pairs and avalanche photodiodes, this experiment is now part of the experimental lab courses for our students.
Toward Scalable Boson Sampling with Photon Loss
NASA Astrophysics Data System (ADS)
Wang, Hui; Li, Wei; Jiang, Xiao; He, Y.-M.; Li, Y.-H.; Ding, X.; Chen, M.-C.; Qin, J.; Peng, C.-Z.; Schneider, C.; Kamp, M.; Zhang, W.-J.; Li, H.; You, L.-X.; Wang, Z.; Dowling, J. P.; Höfling, S.; Lu, Chao-Yang; Pan, Jian-Wei
2018-06-01
Boson sampling is a well-defined task that is strongly believed to be intractable for classical computers, but can be efficiently solved by a specific quantum simulator. However, an outstanding problem for large-scale experimental boson sampling is the scalability. Here we report an experiment on boson sampling with photon loss, and demonstrate that boson sampling with a few photons lost can increase the sampling rate. Our experiment uses a quantum-dot-micropillar single-photon source demultiplexed into up to seven input ports of a 16 ×16 mode ultralow-loss photonic circuit, and we detect three-, four- and fivefold coincidence counts. We implement and validate lossy boson sampling with one and two photons lost, and obtain sampling rates of 187, 13.6, and 0.78 kHz for five-, six-, and seven-photon boson sampling with two photons lost, which is 9.4, 13.9, and 18.0 times faster than the standard boson sampling, respectively. Our experiment shows an approach to significantly enhance the sampling rate of multiphoton boson sampling.
Toward Scalable Boson Sampling with Photon Loss.
Wang, Hui; Li, Wei; Jiang, Xiao; He, Y-M; Li, Y-H; Ding, X; Chen, M-C; Qin, J; Peng, C-Z; Schneider, C; Kamp, M; Zhang, W-J; Li, H; You, L-X; Wang, Z; Dowling, J P; Höfling, S; Lu, Chao-Yang; Pan, Jian-Wei
2018-06-08
Boson sampling is a well-defined task that is strongly believed to be intractable for classical computers, but can be efficiently solved by a specific quantum simulator. However, an outstanding problem for large-scale experimental boson sampling is the scalability. Here we report an experiment on boson sampling with photon loss, and demonstrate that boson sampling with a few photons lost can increase the sampling rate. Our experiment uses a quantum-dot-micropillar single-photon source demultiplexed into up to seven input ports of a 16×16 mode ultralow-loss photonic circuit, and we detect three-, four- and fivefold coincidence counts. We implement and validate lossy boson sampling with one and two photons lost, and obtain sampling rates of 187, 13.6, and 0.78 kHz for five-, six-, and seven-photon boson sampling with two photons lost, which is 9.4, 13.9, and 18.0 times faster than the standard boson sampling, respectively. Our experiment shows an approach to significantly enhance the sampling rate of multiphoton boson sampling.
Tuning single-photon sources for telecom multi-photon experiments.
Greganti, Chiara; Schiansky, Peter; Calafell, Irati Alonso; Procopio, Lorenzo M; Rozema, Lee A; Walther, Philip
2018-02-05
Multi-photon state generation is of great interest for near-future quantum simulation and quantum computation experiments. To-date spontaneous parametric down-conversion is still the most promising process, even though two major impediments still exist: accidental photon noise (caused by the probabilistic non-linear process) and imperfect single-photon purity (arising from spectral entanglement between the photon pairs). In this work, we overcome both of these difficulties by (1) exploiting a passive temporal multiplexing scheme and (2) carefully optimizing the spectral properties of the down-converted photons using periodically-poled KTP crystals. We construct two down-conversion sources in the telecom wavelength regime, finding spectral purities of > 91%, while maintaining high four-photon count rates. We use single-photon grating spectrometers together with superconducting nanowire single-photon detectors to perform a detailed characterization of our multi-photon source. Our methods provide practical solutions to produce high-quality multi-photon states, which are in demand for many quantum photonics applications.
On the Performance of T2∗ Correction Methods for Quantification of Hepatic Fat Content
Reeder, Scott B.; Bice, Emily K.; Yu, Huanzhou; Hernando, Diego; Pineda, Angel R.
2014-01-01
Nonalcoholic fatty liver disease is the most prevalent chronic liver disease in Western societies. MRI can quantify liver fat, the hallmark feature of nonalcoholic fatty liver disease, so long as multiple confounding factors including T2∗ decay are addressed. Recently developed MRI methods that correct for T2∗ to improve the accuracy of fat quantification either assume a common T2∗ (single- T2∗) for better stability and noise performance or independently estimate the T2∗ for water and fat (dual- T2∗) for reduced bias, but with noise performance penalty. In this study, the tradeoff between bias and variance for different T2∗ correction methods is analyzed using the Cramér-Rao bound analysis for biased estimators and is validated using Monte Carlo experiments. A noise performance metric for estimation of fat fraction is proposed. Cramér-Rao bound analysis for biased estimators was used to compute the metric at different echo combinations. Optimization was performed for six echoes and typical T2∗ values. This analysis showed that all methods have better noise performance with very short first echo times and echo spacing of ∼π/2 for single- T2∗ correction, and ∼2π/3 for dual- T2∗ correction. Interestingly, when an echo spacing and first echo shift of ∼π/2 are used, methods without T2∗ correction have less than 5% bias in the estimates of fat fraction. PMID:21661045
Albert, Julian; Falge, Mirjam; Gomez, Sandra; Sola, Ignacio R; Hildenbrand, Heiko; Engel, Volker
2015-07-28
We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.
Effect of the depolarization field on coherent optical properties in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Mitsumori, Yasuyoshi; Watanabe, Shunta; Asakura, Kenta; Seki, Keisuke; Edamatsu, Keiichi; Akahane, Kouichi; Yamamoto, Naokatsu
2018-06-01
We study the photon echo spectrum of self-assembled semiconductor quantum dots using femtosecond light pulses. The spectrum shape changes from a single-peaked to a double-peaked structure as the time delay between the two excitation pulses is increased. The spectrum change is reproduced by numerical calculations, which include the depolarization field induced by the biexciton-exciton transition as well as the conventional local-field effect for the exciton-ground-state transition in a quantum dot. Our findings suggest that various optical transitions in tightly localized systems generate a depolarization field, which renormalizes the resonant frequency with a change in the polarization itself, leading to unique optical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko
2015-07-28
We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.
NASA Astrophysics Data System (ADS)
Curciarello, Francesca
2016-04-01
e+e- collider experiments at the intensity frontier are naturally suited to probe the existence of a force beyond the Standard Model between WIMPs, the most viable dark matter candidates. The mediator of this new force, known as dark photon, should be a new vector gauge boson very weakly coupled to the Standard Model photon. No significant signal has been observed so far. I will report on current limits set on the coupling factor ɛ2 between the photon and the dark photon by e+e- collider experiments.
Photon Statistics of Propagating Thermal Microwaves.
Goetz, J; Pogorzalek, S; Deppe, F; Fedorov, K G; Eder, P; Fischer, M; Wulschner, F; Xie, E; Marx, A; Gross, R
2017-03-10
In experiments with superconducting quantum circuits, characterizing the photon statistics of propagating microwave fields is a fundamental task. We quantify the n^{2}+n photon number variance of thermal microwave photons emitted from a blackbody radiator for mean photon numbers, 0.05≲n≲1.5. We probe the fields using either correlation measurements or a transmon qubit coupled to a microwave resonator. Our experiments provide a precise quantitative characterization of weak microwave states and information on the noise emitted by a Josephson parametric amplifier.
Photon Statistics of Propagating Thermal Microwaves
NASA Astrophysics Data System (ADS)
Goetz, J.; Pogorzalek, S.; Deppe, F.; Fedorov, K. G.; Eder, P.; Fischer, M.; Wulschner, F.; Xie, E.; Marx, A.; Gross, R.
2017-03-01
In experiments with superconducting quantum circuits, characterizing the photon statistics of propagating microwave fields is a fundamental task. We quantify the n2+n photon number variance of thermal microwave photons emitted from a blackbody radiator for mean photon numbers, 0.05 ≲n ≲1.5 . We probe the fields using either correlation measurements or a transmon qubit coupled to a microwave resonator. Our experiments provide a precise quantitative characterization of weak microwave states and information on the noise emitted by a Josephson parametric amplifier.
Automatic speech recognition using a predictive echo state network classifier.
Skowronski, Mark D; Harris, John G
2007-04-01
We have combined an echo state network (ESN) with a competitive state machine framework to create a classification engine called the predictive ESN classifier. We derive the expressions for training the predictive ESN classifier and show that the model was significantly more noise robust compared to a hidden Markov model in noisy speech classification experiments by 8+/-1 dB signal-to-noise ratio. The simple training algorithm and noise robustness of the predictive ESN classifier make it an attractive classification engine for automatic speech recognition.
2012-09-07
James Hansen describes the work on Project Echo s air density experiment known as the Sub-Satellite. Before launch engineers subjected the sub-satellite to many tests. Here, the sub-satellite is shown prior to tests to determine the capacity of the 30-inch Sub-Satellite to withstand the high temperature of direct sunlight in space, Langley researchers subjected it to 450 F heat test. Results indicated that the aluminum-covered Mylar plastic would effectively reflect the dangerous heat. -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 168.
All-optical central-frequency-programmable and bandwidth-tailorable radar
Zou, Weiwen; Zhang, Hao; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping
2016-01-01
Radar has been widely used for military, security, and rescue purposes, and modern radar should be reconfigurable at multi-bands and have programmable central frequencies and considerable bandwidth agility. Microwave photonics or photonics-assisted radio-frequency technology is a unique solution to providing such capabilities. Here, we demonstrate an all-optical central-frequency-programmable and bandwidth-tailorable radar architecture that provides a coherent system and utilizes one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates a wideband linearly chirped radar signal. The working bands can be flexibly tailored with the desired bandwidth at a user-preferred carrier frequency. Radar echoes are first modulated onto the pre-chirped optical pulse, which is also used for signal generation, and then stretched in time or compressed in frequency several fold based on the time-stretch principle. Thus, digitization is facilitated without loss of detection ability. We believe that our results demonstrate an innovative radar architecture with an ultra-high-range resolution. PMID:26795596
NASA Astrophysics Data System (ADS)
Larger, Laurent; Baylón-Fuentes, Antonio; Martinenghi, Romain; Udaltsov, Vladimir S.; Chembo, Yanne K.; Jacquot, Maxime
2017-01-01
Reservoir computing, originally referred to as an echo state network or a liquid state machine, is a brain-inspired paradigm for processing temporal information. It involves learning a "read-out" interpretation for nonlinear transients developed by high-dimensional dynamics when the latter is excited by the information signal to be processed. This novel computational paradigm is derived from recurrent neural network and machine learning techniques. It has recently been implemented in photonic hardware for a dynamical system, which opens the path to ultrafast brain-inspired computing. We report on a novel implementation involving an electro-optic phase-delay dynamics designed with off-the-shelf optoelectronic telecom devices, thus providing the targeted wide bandwidth. Computational efficiency is demonstrated experimentally with speech-recognition tasks. State-of-the-art speed performances reach one million words per second, with very low word error rate. Additionally, to record speed processing, our investigations have revealed computing-efficiency improvements through yet-unexplored temporal-information-processing techniques, such as simultaneous multisample injection and pitched sampling at the read-out compared to information "write-in".
Isolated Spin Qubits in SiC with a High-Fidelity Infrared Spin-to-Photon Interface
NASA Astrophysics Data System (ADS)
Christle, David J.; Klimov, Paul V.; de las Casas, Charles F.; Szász, Krisztián; Ivády, Viktor; Jokubavicius, Valdas; Ul Hassan, Jawad; Syväjärvi, Mikael; Koehl, William F.; Ohshima, Takeshi; Son, Nguyen T.; Janzén, Erik; Gali, Ádám; Awschalom, David D.
2017-04-01
The divacancies in SiC are a family of paramagnetic defects that show promise for quantum communication technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a high-fidelity spin-photon interface, which is a crucial prerequisite for such technologies, has not yet been demonstrated. Here, we demonstrate that such an interface exists in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Our data show that divacancies in 4H-SiC have minimal undesirable spin mixing, and that the optical linewidths in our current sample are already similar to those of recent remote entanglement demonstrations in other systems. Moreover, we find that 3C-SiC divacancies have a millisecond Hahn-echo spin coherence time, which is among the longest measured in a naturally isotopic solid. The presence of defects with these properties in a commercial semiconductor that can be heteroepitaxially grown as a thin film on Si shows promise for future quantum networks based on SiC defects.
Doubly-focused echos from spheres unfold into a hyperbolic umbilic diffraction catastrophe
NASA Astrophysics Data System (ADS)
Dzikowicz, Ben; Marston, Philip L.
2003-04-01
An underwater spherical target resides in an Airy field formed by reflection off a curved surface representing the sea floor or sea surface. In prior work [B. Dzikowicz and P. L. Marston, J. Acoust. Soc Am. 110, 2778 (2001)] direct returns of a tone burst from the surface reflection focused toward the target were shown to have a dependence on the target position described by an Airy function. The return echo can also be focused again by the surface onto the source and receive transducer. This gives the square of an Airy function for the case of a point target. With a finite sized target (as in the experiment) this goes over to a hyperbolic umbilic catastrophe with symmetric arguments. The arguments of the hyperbolic umbilic function are derived from only the relative return times of a transient pulse. Experiment confirms the predicted merging of transient echoes in the time domain, as well as the hyperbolic umbilic diffraction integral amplitudes for a tone burst. This method would allow for the observation of a target at a greater distance in the presence of a focusing surface. [Research supported by ONR.
The Cascading Impacts of Technology Selection: Incorporating Ruby on Rails into ECHO
NASA Astrophysics Data System (ADS)
Pilone, D.; Cechini, M.
2010-12-01
NASA’s Earth Observing System (EOS) ClearingHOuse (ECHO) is a SOA based Earth Science Data search and order system implemented in Java with one significant exception: the web client used by 98% of our users is written in Perl. After several decades of maintenance the Perl based application had reached the end of its serviceable life and ECHO was tasked with implementing a replacement. Despite a broad investment in Java, the ECHO team conducted a survey of modern development technologies including Flex, Python/Django, JSF2/Spring and Ruby on Rails. The team ultimately chose Ruby on Rails (RoR) with Cucumber for testing due to its perceived applicability to web application development and corresponding development efficiency gains. Both positive and negative impacts on the entire ECHO team, including our stakeholders, were immediate and sometimes subtle. The technology selection caused shifts in our architecture and design, development and deployment procedures, requirement definition approach, testing approach, and, somewhat surprisingly, our project team structure and software process. This presentation discusses our experiences, including technical, process, and psychological, using RoR on a production system. During this session we will discuss: - Real impacts of introducing a dynamic language to a Java team - Real and perceived efficiency advantages - Impediments to adoption and effectiveness - Impacts of transition from Test Driven Development to Behavior Driven Development - Leveraging Cucumber to provide fully executable requirement documents - Impacts on team structure and roles
Bates, Mary E; Simmons, James A
2010-08-01
Big brown bats emit FM biosonar sounds containing two principal harmonics (FM1 approximately 55-22 kHz;FM2 approximately 105-45 kHz). To examine the role of harmonics, they were selectively filtered from stimuli in electronic-echo delay discrimination experiments. Positive stimuli were delayed by 3.16 ms (55 cm simulated target range); negative stimuli were by delayed by 3.96 ms (68 cm). This large 800-micros delay difference (nearly 14 cm) was easily discriminated for echoes containing equal-strength FM1 and FM2. Performance gradually decreased as highpass filters removed progressively larger segments from FM1. For echoes with FM2 alone, performance collapsed to chance, but performance remained good for lowpass echoes containing FM1 alone. Attenuation of FM2 by 3 dB relative to FM1 also decreased performance, but shortening electronic delay of the attenuated FM2 by 48 micros counteracted amplitude-latency trading and restored performance. Bats require the auditory representations of FM1 and FM2 to be in temporal register for high delay acuity. Misalignment of neuronal responses degrades acuity, but outright removal of FM2, leaving only FM1, causes little loss of acuity. Functional asymmetry of harmonics reflects lowpass effects from beaming and atmospheric propagation, which leave FM1 intact. It may cooperate with latency shifts to aid in suppression of clutter.
Cai, Congbo; Wang, Chao; Zeng, Yiqing; Cai, Shuhui; Liang, Dong; Wu, Yawen; Chen, Zhong; Ding, Xinghao; Zhong, Jianhui
2018-04-24
An end-to-end deep convolutional neural network (CNN) based on deep residual network (ResNet) was proposed to efficiently reconstruct reliable T 2 mapping from single-shot overlapping-echo detachment (OLED) planar imaging. The training dataset was obtained from simulations that were carried out on SPROM (Simulation with PRoduct Operator Matrix) software developed by our group. The relationship between the original OLED image containing two echo signals and the corresponding T 2 mapping was learned by ResNet training. After the ResNet was trained, it was applied to reconstruct the T 2 mapping from simulation and in vivo human brain data. Although the ResNet was trained entirely on simulated data, the trained network was generalized well to real human brain data. The results from simulation and in vivo human brain experiments show that the proposed method significantly outperforms the echo-detachment-based method. Reliable T 2 mapping with higher accuracy is achieved within 30 ms after the network has been trained, while the echo-detachment-based OLED reconstruction method took approximately 2 min. The proposed method will facilitate real-time dynamic and quantitative MR imaging via OLED sequence, and deep convolutional neural network has the potential to reconstruct maps from complex MRI sequences efficiently. © 2018 International Society for Magnetic Resonance in Medicine.
A TEMPORAL MAP IN GEOSTATIONARY ORBIT: THE COVER ETCHING ON THE EchoStar XVI ARTIFACT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisberg, Joel M., E-mail: jweisber@carleton.edu; Paglen, Trevor, E-mail: trevor@paglen.com
Geostationary satellites are unique among orbital spacecraft in that they experience no appreciable atmospheric drag. After concluding their respective missions, geostationary spacecraft remain in orbit virtually in perpetuity. As such, they represent some of human civilization's longest lasting artifacts. With this in mind, the EchoStar XVI satellite, to be launched in fall 2012, will play host to a time capsule intended as a message for the deep future. Inspired in part by the Pioneer Plaque and Voyager Golden Records, the EchoStar XVI Artifact is a pair of gold-plated aluminum jackets housing a small silicon disk containing 100 photographs. The Covermore » Etching, the subject of this paper, is etched onto one of the two jackets. It is a temporal map consisting of a star chart, pulsar timings, and other information describing the epoch from which EchoStar XVI came. The pulsar sample consists of 13 rapidly rotating objects, 5 of which are especially stable, having spin periods <10 ms and extremely small spin-down rates. In this paper, we discuss our approach to the time map etched onto the cover and the scientific data shown on it, and we speculate on the uses that future scientists may have for its data. The other portions of the EchoStar XVI Artifact will be discussed elsewhere.« less
Bertoldi, Eduardo G; Stella, Steffen F; Rohde, Luis Eduardo P; Polanczyk, Carisi A
2017-05-04
The aim of this research is to evaluate the relative cost-effectiveness of functional and anatomical strategies for diagnosing stable coronary artery disease (CAD), using exercise (Ex)-ECG, stress echocardiogram (ECHO), single-photon emission CT (SPECT), coronary CT angiography (CTA) or stress cardiacmagnetic resonance (C-MRI). Decision-analytical model, comparing strategies of sequential tests for evaluating patients with possible stable angina in low, intermediate and high pretest probability of CAD, from the perspective of a developing nation's public healthcare system. Hypothetical cohort of patients with pretest probability of CAD between 20% and 70%. The primary outcome is cost per correct diagnosis of CAD. Proportion of false-positive or false-negative tests and number of unnecessary tests performed were also evaluated. Strategies using Ex-ECG as initial test were the least costly alternatives but generated more frequent false-positive initial tests and false-negative final diagnosis. Strategies based on CTA or ECHO as initial test were the most attractive and resulted in similar cost-effectiveness ratios (I$ 286 and I$ 305 per correct diagnosis, respectively). A strategy based on C-MRI was highly effective for diagnosing stable CAD, but its high cost resulted in unfavourable incremental cost-effectiveness (ICER) in moderate-risk and high-risk scenarios. Non-invasive strategies based on SPECT have been dominated. An anatomical diagnostic strategy based on CTA is a cost-effective option for CAD diagnosis. Functional strategies performed equally well when based on ECHO. C-MRI yielded acceptable ICER only at low pretest probability, and SPECT was not cost-effective in our analysis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Searching for Heavy Photons with Detached Verices in the Heavy Photon Search Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szumila-Vance, Holly
The Jefferson Lab Heavy Photon Search (HPS) experiment is searching for a hypothetical massive particle called the heavy photon which could mediate a dark electromagnetic-type force. If heavy photons kinetically mix with Standard Model photons, they may be radiated by electrons scattering from a heavy nucleus and then decay to e+e- pairs. HPS uniquely searches for heavy photons that either decay at the target or a measurable distance after. The experiment utilizes a silicon vertex tracker (SVT) for momentum and vertex reconstruction, together with an electromagnetic calorimeter for measuring particle energies and triggering events. The HPS experiment took its firstmore » data during the spring 2015 engineering run using a 1 GeV electron beam incident on a tungsten target and its second data in the spring of 2016 at a beam energy of 2.3 GeV. The 2015 run obtained two days of production data that was used for the first physics results. The analysis of the data was conducted as a blinded analysis by tuning cuts on 10% of the data. This dissertation discusses the displaced vertex search for heavy photons in the 2015 engineering run. It describes the theoretical motivation for looking for heavy photons and provides an overview of the HPS experimental design and performance. The performance details of the experiment are primarily derived from the 2015 engineering run with some discussion from the higher energy running in 2016. This dissertation further discusses the cuts used to optimize the displaced vertex search and the results of the search. The displaced vertex search did not set a limit on the heavy photon but did validate the methodology for conducting the search. Finally, we used the full data set to make projections and guide future analyses.« less
NASA Astrophysics Data System (ADS)
Fukushima, Taku; Hasegawa, Hideyuki; Kanai, Hiroshi
2011-07-01
Red blood cell (RBC) aggregation, as one of the determinants of blood viscosity, plays an important role in blood rheology, including the condition of blood. RBC aggregation is induced by the adhesion of RBCs when the electrostatic repulsion between RBCs weakens owing to increases in protein and saturated fatty acid levels in blood, excessive RBC aggregation leads to various circulatory diseases. This study was conducted to establish a noninvasive quantitative method for assessment of RBC aggregation. The power spectrum of ultrasonic RF echoes from nonaggregating RBCs, which shows the frequency property of scattering, exhibits Rayleigh behavior. On the other hand, ultrasonic RF echoes from aggregating RBCs contain the components of reflection, which have no frequency dependence. By dividing the measured power spectrum of echoes from RBCs in the lumen by that of echoes from a posterior wall of the vein in the dorsum manus, the attenuation property of the propagating medium and the frequency responses of transmitting and receiving transducers are removed from the former spectrum. RBC aggregation was assessed by the diameter of a scatterer, which was estimated by minimizing the square difference between the measured normalized power spectrum and the theoretical power spectrum. In this study, spherical scatterers with diameters of 5, 11, 15, and 30 µm were measured in basic experiments. The estimated scatterer diameters were close to the actual diameters. Furthermore, the transient change of the scatterer diameters were measured in an in vivo experiment with respect to a 24-year-old healthy male during the avascularization using a cuff. The estimated diameters (12-22 µm) of RBCs during avascularization were larger than the diameters (4-8 µm) at rest and after recirculation. These results show the possibility of the use of the proposed method for noninvasive assessment of RBC aggregation.
NASA Astrophysics Data System (ADS)
Marouf, E.; Rappaport, N.; French, R.; Simpson, R.; Kliore, A.; McGhee, C.; Schinder, P.; Anabtawi, A.
2008-12-01
Four out of six Radio Science bistatic scattering (bistatic-radar) observations of Titan's surface completed during the Cassini nominal mission yielded detectable quasi-specular 3.6 cm-λ (X-band) surface echoes, making Titan the most distant solar system object for which bistatic echoes have been successfully detected. Right circularly polarized sinusoidal signal was transmitted by Cassini and both the right and left circularly polarized (RCP and LCP) surface reflected components were observed at the 70-m stations of NASA Deep Space Network. Cassini was maneuvered continuously to track the region of Titan's surface where mirror-like (quasi-specular) reflected signals may be observed. The experiments were designed for incidence angles θ close to the Brewster, or polarization, angle of likely surface compositions. Careful measurement of the system noise temperature allowed determination of the absolute power in each polarized echo component and hence their ratio. The polarization ratio, the known observation geometry, and Fresnel reflection theory were then used to determine the dielectric constant ɛ. Three near-equatorial (~ 5 to 15° S) observations on flyby T14 inbound and outbound and on flyby T34 inbound yielded weak but clearly detectable echoes. The echoes were intermittent along the ground track, indicating mostly rough terrain occasionally interrupted by patches of relatively flat areas. For the two observations on T14, polarization ratio measurements for two localized but widely separated surface regions (~ 15° S, ~ 14 and 140° W) conducted at angles θ ~ 56° and 64°, close to the Brewster angle for ices, imply ɛ ~ 1.6 for both regions, suggesting liquid hydrocarbons although alternative interpretations are possible (Marouf et al., 2006 Fall AGU, P11A- 07). In sharp contrast, a single high latitude (~81-86° S, ~ 45-155° W) observation on T27 inbound yielded much stronger surface echoes that lasted for almost the full duration of the experiment (~ 23 minutes). The relatively more grazing incidence geometry (θ ~ 70-79°) caused the RCP component to dominate the LCP component, as expected. Nonetheless, the later was mostly detectable, allowing estimation of the corresponding polarization ratio and hence profiling of the variability of the dielectric constant along the ground track. The inferred dielectric constant ɛ appears to vary over the large surface region probed but falls generally in the range 2 to 2.5, suggesting solid hydrocarbons or hydrocarbon "sludge" surface composition close to Titan's south pole. The small observed spectral Doppler broadening suggests that the echoes originate from gently undulating surface regions with RMS slopes of order few degrees.
Extended phase graph formalism for systems with magnetization transfer and exchange
Teixeira, Rui Pedro A.G.; Hajnal, Joseph V.
2017-01-01
Purpose An extended phase graph framework (EPG‐X) for modeling systems with exchange or magnetization transfer (MT) is proposed. Theory EPG‐X models coupled two‐compartment systems by describing each compartment with separate phase graphs that exchange during evolution periods. There are two variants: EPG‐X(BM) for systems governed by the Bloch‐McConnell equations, and EPG‐X(MT) for the pulsed MT formalism. For the MT case, the “bound” protons have no transverse components, so their phase graph consists of only longitudinal states. Methods The EPG‐X model was validated against steady‐state solutions and isochromat‐based simulation of gradient‐echo sequences. Three additional test cases were investigated: (i) MT effects in multislice turbo spin‐echo; (ii) variable flip angle gradient‐echo imaging of the type used for MR fingerprinting; and (iii) water exchange in multi‐echo spin‐echo T2 relaxometry. Results EPG‐X was validated successfully against isochromat based transient simulations and known steady‐state solutions. EPG‐X(MT) simulations matched in‐vivo measurements of signal attenuation in white matter in multislice turbo spin‐echo images. Magnetic resonance fingerprinting–style experiments with a bovine serum albumin (MT) phantom showed that the data were not consistent with a single‐pool model, but EPG‐X(MT) could be used to fit the data well. The EPG‐X(BM) simulations of multi‐echo spin‐echo T2 relaxometry suggest that exchange could lead to an underestimation of the myelin‐water fraction. Conclusions The EPG‐X framework can be used for modeling both steady‐state and transient signal response of systems exhibiting exchange or MT. This may be particularly beneficial for relaxometry approaches that rely on characterizing transient rather than steady‐state sequences. Magn Reson Med 80:767–779, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:29243295
Characteristics of Moderately Deep Tropical Convection Observed by Dual-Polarimetric Radar
NASA Astrophysics Data System (ADS)
Powell, Scott
2017-04-01
Moderately deep cumulonimbus clouds (often erroneously called congestus) over the tropical warm pool play an important role in large-scale dynamics by moistening the free troposphere, thus allowing for the upscale growth of convection into mesoscale convective systems. Direct observational analysis of such convection has been limited despite a wealth of radar data collected during several field experiments in the tropics. In this study, the structure of isolated cumulonimbus clouds, particularly those in the moderately deep mode with heights of up to 8 km, as observed by RHI scans obtained with the S-PolKa radar during DYNAMO is explored. Such elements are first identified following the algorithm of Powell et al (2016); small contiguous regions of echo are considered isolated convection. Within isolated echo objects, echoes are further subdivided into core echoes, which feature vertical profiles reflectivity and differential reflectivity that is similar to convection embedded in larger cloud complexes, and fringe echoes, which contain vertical profiles of differential reflectivity that are more similar to stratiform regions. Between the surface and 4 km, reflectivities of 30-40 (10-20) dBZ are most commonly observed in isolated convective core (fringe) echoes. Convective cores in echo objects too wide to be considered isolated have a ZDR profile that peaks near the surface (with values of 0.5-1 dB common), and decays linearly to about 0.3 dB at and above an altitude of 6 km. Stratiform echoes have a minimum ZDR below of 0-0.5 dB below the bright band and a constant distribution centered on 0.5 dB above the bright band. The isolated convective core and fringe respectively possess composite vertical profiles of ZDR that resemble convective and stratiform echoes. The mode of the distribution of aspect ratios of isolated convection is approximately 2.3, but the long axis of isolated echo objects demonstrates no preferred orientation. An early attempt at illustrating composite radial velocity profiles within isolated convection is made. When the mean flow (determined from sounding data) is subtracted, a clear picture of radial velocities inside a composite representation of convection is obtained. As expected, Doppler radar data shows convergence in the lowest 1-2 km of isolated convective elements and divergence in the upper portions of the clouds. The composite velocity profiles can be used to compute crude profiles of horizontal divergence. Because the analysis uses data along radar rays (with gate size of 150 m) instead of data interpolated to a Cartesian grid, features in composited clouds can be observed at high vertical and horizontal resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grice, Warren P; Bennink, Ryan S; Evans, Philip G
A growing number of experiments make use of multiple pairs of photons generated in the process of spontaneous parametric down-conversion. We show that entanglement in unwanted degrees of freedom can adversely affect the results of these experiments. We also discuss techniques to reduce or eliminate spectral and spatial entanglement, and we present results from two-photon polarization-entangled source with almost no entanglement in these degrees of freedom. Finally, we present two methods for the generation of four-photon polarization- entangled states. In one of these methods, four-photon can be generated without the need for intermediate two-photon entanglement.
Nonlocal effects on the polarization state of a photon, induced by distant absorbers
NASA Technical Reports Server (NTRS)
Ryff, Luis Carlos B.
1994-01-01
A variant of a Franson's two-photon correlation experiment is discussed, in which the linear polarization state of one of the photons depends on the path followed in the interferometer. It is shown that although the path difference is greater than the coherence length, the photon can be found in a polarization state represented by the superposition of the polarization states associated to the paths when there is coincident detection. Since the photons, produced via parametric down-conversion, are fairly well localized in space and time, the situation in which one of the photons is detected before the other can reach the interferometer raises an intriguing point: it seems that in some cases the second photon would have to be described by two wave packets simultaneously. Unlike previous experiments, in which nonlocal effects were induced by means of polarizers of phase shifters, in the proposed experiment nonlocal effects can be induced by means of variable absorbers.
A simplified model of biosonar echoes from foliage and the properties of natural foliages.
Ming, Chen; Zhu, Hongxiao; Müller, Rolf
2017-01-01
Foliage echoes could play an important role in the sensory ecology of echolocating bats, but many aspects of their sensory information content remain to be explored. A realistic numerical model for these echoes could support the development of hypotheses for the relationship between foliage properties and echo parameters. In prior work by the authors, a simple foliage model based on circular disks distributed uniformly in space has been developed. In the current work, three key simplifications used in this model have been examined: (i) representing leaves as circular disks, (ii) neglecting shading effects between leaves, and (iii) the uniform spatial distribution of the leaves. The target strengths of individual leaves and shading between them have been examined in physical experiments, whereas the impact of the spatial leaf distribution has been studied by modifying the numerical model to include leaf distributions according to a biomimetic model for natural branching patterns (L-systems). Leaf samples from a single species (leatherleaf arrowwood) were found to match the relationship between size and target strength of the disk model fairly well, albeit with a large variability part of which could be due to unaccounted geometrical features of the leaves. Shading between leaf-sized disks did occur for distances below 50 cm and could hence impact the echoes. Echoes generated with L-system models in two distinct tree species (ginkgo and pine) showed consistently more temporal inhomogeneity in the envelope amplitudes than a reference with uniform distribution. However, these differences were small compared to effects found in response to changes in the relative orientation of simulated sonar beam and foliage. These findings support the utility of the uniform leaf distribution model and suggest that bats could use temporal inhomogeneities in the echoes to make inferences regarding the relative positioning of their sonar and a foliage.
A simplified model of biosonar echoes from foliage and the properties of natural foliages
Zhu, Hongxiao; Müller, Rolf
2017-01-01
Foliage echoes could play an important role in the sensory ecology of echolocating bats, but many aspects of their sensory information content remain to be explored. A realistic numerical model for these echoes could support the development of hypotheses for the relationship between foliage properties and echo parameters. In prior work by the authors, a simple foliage model based on circular disks distributed uniformly in space has been developed. In the current work, three key simplifications used in this model have been examined: (i) representing leaves as circular disks, (ii) neglecting shading effects between leaves, and (iii) the uniform spatial distribution of the leaves. The target strengths of individual leaves and shading between them have been examined in physical experiments, whereas the impact of the spatial leaf distribution has been studied by modifying the numerical model to include leaf distributions according to a biomimetic model for natural branching patterns (L-systems). Leaf samples from a single species (leatherleaf arrowwood) were found to match the relationship between size and target strength of the disk model fairly well, albeit with a large variability part of which could be due to unaccounted geometrical features of the leaves. Shading between leaf-sized disks did occur for distances below 50 cm and could hence impact the echoes. Echoes generated with L-system models in two distinct tree species (ginkgo and pine) showed consistently more temporal inhomogeneity in the envelope amplitudes than a reference with uniform distribution. However, these differences were small compared to effects found in response to changes in the relative orientation of simulated sonar beam and foliage. These findings support the utility of the uniform leaf distribution model and suggest that bats could use temporal inhomogeneities in the echoes to make inferences regarding the relative positioning of their sonar and a foliage. PMID:29240840
Project Echo: 960-Megacycle, 10-Kilowatt Transmitter
NASA Technical Reports Server (NTRS)
Schafer, J. P.; Brandt, R. H.
1961-01-01
A 10-kw transmitter operating at 960 to 961 Mc was used at the eastern terminus of the Project Echo communications experiment. This transmitter is located on Crawford's Hill near Holmdel, New Jersey. The 10-kw output feeds into a waveguide line leading to a 60-foot dish antenna. Exciter-driver units are available to drive the power amplifier with various modulations, such as wide-deviation FM, low-index phase modulation, single-sideband or double-sideband modulation with or without carrier, 960.05 or 961.05 Mc constant-frequency CW, and radar on-off pulses at 961.05 Mc. The main output amplifier consists primarily of a four-stage, externally-tuned-cavity, water-cooled klystron, operating at a beam voltage of 16 to 18 kv. The transmitter has been operated during many Moonbounce, tropospheric scatter, and Echo I tests with very satisfactory results. This paper describes its use before March 1, 1961.
Auditory cortex of newborn bats is prewired for echolocation.
Kössl, Manfred; Voss, Cornelia; Mora, Emanuel C; Macias, Silvio; Foeller, Elisabeth; Vater, Marianne
2012-04-10
Neuronal computation of object distance from echo delay is an essential task that echolocating bats must master for spatial orientation and the capture of prey. In the dorsal auditory cortex of bats, neurons specifically respond to combinations of short frequency-modulated components of emitted call and delayed echo. These delay-tuned neurons are thought to serve in target range calculation. It is unknown whether neuronal correlates of active space perception are established by experience-dependent plasticity or by innate mechanisms. Here we demonstrate that in the first postnatal week, before onset of echolocation and flight, dorsal auditory cortex already contains functional circuits that calculate distance from the temporal separation of a simulated pulse and echo. This innate cortical implementation of a purely computational processing mechanism for sonar ranging should enhance survival of juvenile bats when they first engage in active echolocation behaviour and flight.
Whistler mode plasma waves observed on Electron Echo 2
NASA Technical Reports Server (NTRS)
Monson, S. J.; Kellogg, P. J.; Cartwright, D. G.
1976-01-01
Observations of whistler-mode waves associated with beams of electrons injected into the ionosphere are reported. The measurements are from the plasma-wave experiments carried on the Electron Echo 2 sounding rocket launched on September 24, 1972. Over 2000 electron injections were made with durations of 8 ms and 64 ms and pitch angles from 0 to 180 deg. The electric field receivers carried on the ejected nose cone observed strong whistler waves in the range from less than 100 kHz up to the electron cyclotron frequency of 1400 kHz. The whistler characteristics fall into four distinct types depending on pitch angle and gun energy. Both frequency and amplitude showed strong dependence on time from the start of the pulse and pitch angle. Cases of enhancement at the leading edge of a gun pulse, growth during a pulse, and echoes after the end of a pulse were all observed.
Neural field theory of perceptual echo and implications for estimating brain connectivity
NASA Astrophysics Data System (ADS)
Robinson, P. A.; Pagès, J. C.; Gabay, N. C.; Babaie, T.; Mukta, K. N.
2018-04-01
Neural field theory is used to predict and analyze the phenomenon of perceptual echo in which random input stimuli at one location are correlated with electroencephalographic responses at other locations. It is shown that this echo correlation (EC) yields an estimate of the transfer function from the stimulated point to other locations. Modal analysis then explains the observed spatiotemporal structure of visually driven EC and the dominance of the alpha frequency; two eigenmodes of similar amplitude dominate the response, leading to temporal beating and a line of low correlation that runs from the crown of the head toward the ears. These effects result from mode splitting and symmetry breaking caused by interhemispheric coupling and cortical folding. It is shown how eigenmodes obtained from functional magnetic resonance imaging experiments can be combined with temporal dynamics from EC or other evoked responses to estimate the spatiotemporal transfer function between any two points and hence their effective connectivity.
Ding, Xing; He, Yu; Duan, Z-C; Gregersen, Niels; Chen, M-C; Unsleber, S; Maier, S; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei
2016-01-15
Scalable photonic quantum technologies require on-demand single-photon sources with simultaneously high levels of purity, indistinguishability, and efficiency. These key features, however, have only been demonstrated separately in previous experiments. Here, by s-shell pulsed resonant excitation of a Purcell-enhanced quantum dot-micropillar system, we deterministically generate resonance fluorescence single photons which, at π pulse excitation, have an extraction efficiency of 66%, single-photon purity of 99.1%, and photon indistinguishability of 98.5%. Such a single-photon source for the first time combines the features of high efficiency and near-perfect levels of purity and indistinguishabilty, and thus opens the way to multiphoton experiments with semiconductor quantum dots.
Classical boson sampling algorithms with superior performance to near-term experiments
NASA Astrophysics Data System (ADS)
Neville, Alex; Sparrow, Chris; Clifford, Raphaël; Johnston, Eric; Birchall, Patrick M.; Montanaro, Ashley; Laing, Anthony
2017-12-01
It is predicted that quantum computers will dramatically outperform their conventional counterparts. However, large-scale universal quantum computers are yet to be built. Boson sampling is a rudimentary quantum algorithm tailored to the platform of linear optics, which has sparked interest as a rapid way to demonstrate such quantum supremacy. Photon statistics are governed by intractable matrix functions, which suggests that sampling from the distribution obtained by injecting photons into a linear optical network could be solved more quickly by a photonic experiment than by a classical computer. The apparently low resource requirements for large boson sampling experiments have raised expectations of a near-term demonstration of quantum supremacy by boson sampling. Here we present classical boson sampling algorithms and theoretical analyses of prospects for scaling boson sampling experiments, showing that near-term quantum supremacy via boson sampling is unlikely. Our classical algorithm, based on Metropolised independence sampling, allowed the boson sampling problem to be solved for 30 photons with standard computing hardware. Compared to current experiments, a demonstration of quantum supremacy over a successful implementation of these classical methods on a supercomputer would require the number of photons and experimental components to increase by orders of magnitude, while tackling exponentially scaling photon loss.
NASA Astrophysics Data System (ADS)
Tsai, Shih-Chiao; Chen, Jenn-Shyong; Chu, Yen-Hsyang; Su, Ching-Lun; Chen, Jui-Hsiang
2018-01-01
Multi-frequency range imaging (RIM) has been operated in the Chung-Li very high-frequency (VHF) radar, located on the campus of National Central University, Taiwan, since 2008. RIM processes the echo signals with a group of closely spaced transmitting frequencies through appropriate inversion methods to obtain high-resolution distribution of echo power in the range direction. This is beneficial to the investigation of the small-scale structure embedded in dynamic atmosphere. Five transmitting frequencies were employed in the radar experiment for observation of the precipitating atmosphere during the period between 21 and 23 August 2013. Using the Capon and Fourier methods, the radar echoes were synthesized to retrieve the temporal signals at a smaller range step than the original range resolution defined by the pulse width, and such retrieved temporal signals were then processed in the Doppler frequency domain to identify the atmosphere and precipitation echoes. An analysis called conditional averaging was further executed for echo power, Doppler velocity, and spectral width to verify the potential capabilities of the retrieval processing in resolving small-scale precipitation and atmosphere structures. Point-by-point correction of range delay combined with compensation of range-weighting function effect has been performed during the retrieval of temporal signals to improve the continuity of power spectra at gate boundaries, making the small-scale structures in the power spectra more natural and reasonable. We examined stratiform and convective precipitation and demonstrated their different structured characteristics by means of the Capon-processed results. The new element in this study is the implementation of RIM on spectral analysis, especially for precipitation echoes.
NASA Astrophysics Data System (ADS)
Luo, Y.; Wang, H.; Ma, R.; Zipser, E. J.; Liu, C.
2017-12-01
This study examines the vertical structure of precipitation echoes in central Tibetan Plateau using observations collected at Naqu during the Third Tibetan Plateau Atmospheric Scientific Experiment in July-August 2014. Precipitation reaching the surface is classified into stratiform, convective, and other by analyzing the vertical profiles of reflectivity (Ze) at 30-m spacing and 3-s temporal resolution made with the vertical pointing C-band frequency-modulated continuous-wave (C-FMCW) radar. Radar echoes with non-zero surface rainfall rate are observed during 17.96% of the entire observing period. About 52.03% of the precipitation reaching the surface includes a bright band and lacks a thick layer (≥1 km) of large Ze (> 35 dBZ); these are classified as stratiform; non-stratiform echoes with Ze > 35 dBZ are classified as convective (4.99%); the remainder (42.98%) as other. Based on concurrent measurements made with a collocated disdrometer, the classified stratiform, convective, and other precipitation echoes contribute 53.84%, 23.08%, and 23.08%, respectively, to the surface rainfall amount. Distinct internal structural features of each echo type are revealed by collectively analyzing the vertical profiles of Ze, radial velocity (Vr), and spectral width (SW) observed by the C-FMCW radar. The stratiform precipitation contains a melting-layer centered at 0.97 km above ground with an average depth of 415 m. The median Ze at 0°C -15°C levels in convective regions at Naqu is weaker than those in some midlatitude continental convection and stronger than those in some tropical continents, suggesting that convective intensity measured by mixed-phase microphysical processes at Naqu is intermediate.
Novel wavelet threshold denoising method in axle press-fit zone ultrasonic detection
NASA Astrophysics Data System (ADS)
Peng, Chaoyong; Gao, Xiaorong; Peng, Jianping; Wang, Ai
2017-02-01
Axles are important part of railway locomotives and vehicles. Periodic ultrasonic inspection of axles can effectively detect and monitor axle fatigue cracks. However, in the axle press-fit zone, the complex interface contact condition reduces the signal-noise ratio (SNR). Therefore, the probability of false positives and false negatives increases. In this work, a novel wavelet threshold function is created to remove noise and suppress press-fit interface echoes in axle ultrasonic defect detection. The novel wavelet threshold function with two variables is designed to ensure the precision of optimum searching process. Based on the positive correlation between the correlation coefficient and SNR and with the experiment phenomenon that the defect and the press-fit interface echo have different axle-circumferential correlation characteristics, a discrete optimum searching process for two undetermined variables in novel wavelet threshold function is conducted. The performance of the proposed method is assessed by comparing it with traditional threshold methods using real data. The statistic results of the amplitude and the peak SNR of defect echoes show that the proposed wavelet threshold denoising method not only maintains the amplitude of defect echoes but also has a higher peak SNR.
Estimation of the rain signal in the presence of large surface clutter
NASA Technical Reports Server (NTRS)
Ahamad, Atiq; Moore, Richard K.
1994-01-01
The principal limitation for the use of a spaceborne imaging SAR as a rain radar is the surface-clutter problem. Signals may be estimated in the presence of noise by averaging large numbers of independent samples. This method was applied to obtain an estimate of the rain echo by averaging a set of N(sub c) samples of the clutter in a separate measurement and subtracting the clutter estimate from the combined estimate. The number of samples required for successful estimation (within 10-20%) for off-vertical angles of incidence appears to be prohibitively large. However, by appropriately degrading the resolution in both range and azimuth, the required number of samples can be obtained. For vertical incidence, the number of samples required for successful estimation is reasonable. In estimating the clutter it was assumed that the surface echo is the same outside the rain volume as it is within the rain volume. This may be true for the forest echo, but for convective storms over the ocean the surface echo outside the rain volume is very different from that within. It is suggested that the experiment be performed with vertical incidence over forest to overcome this limitation.
Dolphin biosonar target detection in noise: wrap up of a past experiment.
Au, Whitlow W L
2014-07-01
The target detection capability of bottlenose dolphins in the presence of artificial masking noise was first studied by Au and Penner [J. Acoust. Soc. Am. 70, 687-693 (1981)] in which the dolphins' target detection threshold was determined as a function of the ratio of the echo energy flux density and the estimated received noise spectral density. Such a metric was commonly used in human psychoacoustics despite the fact that the echo energy flux density is not compatible with noise spectral density which is averaged intensity per Hz. Since the earlier detection in noise studies, two important parameters, the dolphin integration time applicable to broadband clicks and the dolphin's auditory filter shape, were determined. The inclusion of these two parameters allows for the estimation of the received energy flux density of the masking noise so that the dolphin target detection can now be determined as a function of the ratio of the received energy of the echo over the received noise energy. Using an integration time of 264 μs and an auditory bandwidth of 16.7 kHz, the ratio of the echo energy to noise energy at the target detection threshold is approximately 1 dB.
Evaluation of Ultrasonic Fiber Structure Extraction Technique Using Autopsy Specimens of Liver
NASA Astrophysics Data System (ADS)
Yamaguchi, Tadashi; Hirai, Kazuki; Yamada, Hiroyuki; Ebara, Masaaki; Hachiya, Hiroyuki
2005-06-01
It is very important to diagnose liver cirrhosis noninvasively and correctly. In our previous studies, we proposed a processing technique to detect changes in liver tissue in vivo. In this paper, we propose the evaluation of the relationship between liver disease and echo information using autopsy specimens of a human liver in vitro. It is possible to verify the function of a processing parameter clearly and to compare the processing result and the actual human liver tissue structure by in vitro experiment. In the results of our processing technique, information that did not obey a Rayleigh distribution from the echo signal of the autopsy liver specimens was extracted depending on changes in a particular processing parameter. The fiber tissue structure of the same specimen was extracted from a number of histological images of stained tissue. We constructed 3D structures using the information extracted from the echo signal and the fiber structure of the stained tissue and compared the two. By comparing the 3D structures, it is possible to evaluate the relationship between the information that does not obey a Rayleigh distribution of the echo signal and the fibrosis structure.
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2012-05-01
The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonicselectronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-275].
EPR experiment and 2-photon interferometry: Report of a 2-photon interference experiment
NASA Technical Reports Server (NTRS)
Shih, Y. H.; Rubin, M. H.; Sergienko, A. V.
1992-01-01
After a very brief review of the historical Einstein, Podolsky, and Rosen (EPR) experiments, a new two-photon interference type EPR experiment is reported. A two-photon state was generated by optical parametric down conversion. Pairs of light quanta with degenerate frequency but divergent directions of propagation were sent to two independent Michelson interferometers. First and second order interference effectors were studied. Different than other reports, we observed that the second order interference visibility vanished when the optical path difference of the interferometers were much less than the coherence length of the pumping laser beam. However, we also observed that the second order interference behaved differently depending on whether the interferometers were set at equal or different optical path differences.
Rocket study of auroral processes
NASA Technical Reports Server (NTRS)
Arnoldy, R. L.
1981-01-01
Abstracts are presented of previously published reports analyzing data from three Echo 3 rocket flights. Particle experiments designed for the Terrier-Malmute flight, the Echo 5 flight, and the Norwegian Corbier Ferdinand 50 flight are described and their flight performance evaluated. Theoretical studies on auroral particle precipitation are reviewed according to observations made in three regions of space: (1) the region accessible to rockets and low altitude satellites (few hundred to a few thousand kilometers); (2) the region extending from 4000 to 8000 km (S3-3 satellite range); and (3) near the equatorial plane (geosynchronous satellite measurements). Questions raised about auroral arc formation are considered.
Dynamics of polymers in elongational flow studied by the neutron spin-echo technique
NASA Astrophysics Data System (ADS)
Rheinstädter, Maikel C.; Sattler, Rainer; Häußler, Wolfgang; Wagner, Christian
2010-09-01
The nanoscale fluctuation dynamics of semidilute high molecular weight polymer solutions of polyethylenoxide (PEO) in D 2O under non-equilibrium flow conditions were studied by the neutron spin-echo technique. The sample cell was in contraction flow geometry and provided a pressure driven flow with a high elongational component that stretched the polymers most efficiently. Neutron scattering experiments in dilute polymer solutions are challenging because of the low polymer concentration and corresponding small quasi-elastic signals. A relaxation process with relaxation times of about 10 ps was observed, which shows anisotropic dynamics with applied flow.
Grebenkov, Denis S
2011-02-01
A new method for computing the signal attenuation due to restricted diffusion in a linear magnetic field gradient is proposed. A fast random walk (FRW) algorithm for simulating random trajectories of diffusing spin-bearing particles is combined with gradient encoding. As random moves of a FRW are continuously adapted to local geometrical length scales, the method is efficient for simulating pulsed-gradient spin-echo experiments in hierarchical or multiscale porous media such as concrete, sandstones, sedimentary rocks and, potentially, brain or lungs. Copyright © 2010 Elsevier Inc. All rights reserved.
Ultra high energy events in ECHOS series and primary energy spectrum
NASA Technical Reports Server (NTRS)
Capdevielle, J. N.; Iwai, J.; Ogata, T.
1985-01-01
The compilation of ultra high energy jets suggests at present the existence of a bump in primary energy spectrum (with the standard concept of high energy collisions). The pseudo-rapidity distribution exhibits some typical anomalies, more than the (P sub t) behavior, which are (may be) the fingerprints of quark gluon plasma transition. The next results of Emulsion Chamber on Supersonic (ECHOS) will be in both cases determinant to confirm those tendancies, as well as an important effort of the cosmic ray community to develop in that sense a flying emulsion chamber experiment.
Optical proposals for controlled delayed-choice experiment based on weak cross-Kerr nonlinearities
NASA Astrophysics Data System (ADS)
Dong, Li; Lin, Yan-Fang; Li, Qing-Yang; Xiu, Xiao-Ming; Dong, Hai-Kuan; Gao, Ya-Jun
2017-05-01
Employing polarization modes of a photon, we propose two theoretical proposals to exhibit the wave-particle duality of the photon with the assistance of weak cross-Kerr nonlinearities. The first proposal is a classical controlled delayed-choice experiment (that is, Wheeler's delayed-choice experiment), where we can observe selectively wave property or particle property of the photon relying on the experimenter's selection, whereas the second proposal is a quantum controlled delayed-choice experiment, by which the mixture phenomenon of a wave and a particle will be exhibited. Both of them can be realized with near-unity probability and embody the charming characteristics of quantum mechanics. The employment of the mature techniques and simple operations (e.g., Homodyne measurement, classical feed forward, and single-photon transformations) provides the feasibility of the delayed-choice experiment proposals presented here.
Stress Echocardiography for the Diagnosis of Coronary Artery Disease
2010-01-01
Executive Summary In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease (CAD), an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients suspected of having CAD. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities. After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies for the diagnosis of CAD. Evidence-based analyses have been prepared for each of these five imaging modalities: cardiac magnetic resonance imaging, single photon emission computed tomography, 64-slice computed tomographic angiography, stress echocardiography, and stress echocardiography with contrast. For each technology, an economic analysis was also completed (where appropriate). A summary decision analytic model was then developed to encapsulate the data from each of these reports (available on the OHTAC and MAS website). The Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease series is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas"> www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html Single Photon Emission Computed Tomography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis Stress Echocardiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis Stress Echocardiography with Contrast for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis 64-Slice Computed Tomographic Angiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis Cardiac Magnetic Resonance Imaging for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis Pease note that two related evidence-based analyses of non-invasive cardiac imaging technologies for the assessment of myocardial viability are also available on the MAS website: Positron Emission Tomography for the Assessment of Myocardial Viability: An Evidence-Based Analysis Magnetic Resonance Imaging for the Assessment of Myocardial Viability: an Evidence-Based Analysis The Toronto Health Economics and Technology Assessment Collaborative has also produced an associated economic report entitled: The Relative Cost-effectiveness of Five Non-invasive Cardiac Imaging Technologies for Diagnosing Coronary Artery Disease in Ontario [Internet]. Available from: http://theta.utoronto.ca/reports/?id=7 Objective The objective of the analysis is to determine the diagnostic accuracy of stress echocardiography (ECHO) in the diagnosis of patients with suspected coronary artery disease (CAD) compared to coronary angiography (CA). Stress Echocardiography Stress ECHO is a non-invasive technology that images the heart using ultrasound. It is one of the most commonly employed imaging techniques for investigating a variety of cardiac abnormalities in both community and hospital settings. A complete ECHO exam includes M-mode, 2-dimensional (2-D) images and Doppler imaging. In order to diagnosis CAD and assess whether myocardial ischemia is present, images obtained at rest are compared to those obtained during or immediately after stress. The most commonly used agents used to induce stress are exercise and pharmacological agents such as dobutamine and dipyridamole. The hallmark of stress-induced myocardial ischemia is worsening of wall motion abnormalities or the development of new wall motion abnormalities. A major challenge for stress ECHO is that the interpretation of wall motion contractility and function is subjective. This leads to inter-observer variability and reduced reproducibility. Further, it is estimated that approximately 30% of patients have sub-optimal stress ECHO exams. To overcome this limitation, contrast agents for LV opacification have been developed. Although stress ECHO is a relatively easy to use technology that poses only a low risk of adverse events compared to other imaging technologies, it may potentially be overused and/or misused in CAD diagnosis. Several recent advances have been made focusing on quantitative methods for assessment, improved image quality and enhanced portability, however, evidence on the effectiveness and clinical utility of these enhancements is limited. Evidence-Based Analysis Research Questions What is the diagnostic accuracy of stress ECHO for the diagnosis of patients with suspected CAD compared to the reference standard of CA? What is the clinical utility1 of stress ECHO? Literature Search A literature search was performed on August 28, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2004 until August 21, 2009. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any relevant studies not identified through the search. Inclusion Criteria Systematic reviews, meta-analyses, randomized controlled trials, prospective observational studies, retrospective analyses Minimum sample size of 20 enrolled patients Comparison to CA (reference standard) Definition of CAD specified as either ≥50%, ≥70% or ≥75% coronary artery stenosis on CA Reporting accuracy data on individual patients (rather than accuracy data stratified by segments of the heart) English Human Exclusion Criteria Duplicate studies Non-systematic reviews, case reports Grey literature (e.g., conference abstracts) Insufficient data for independent calculation of sensitivity and specificity Use of ECHO for purposes other than diagnosis of CAD (e.g., arrhythmia, valvular disease, mitral stenosis, pre-operative risk of MI) Transesophageal ECHO since its primary use is for non-CAD indications such as endocarditis, intracardiac thrombi, valvular disorders Only resting ECHO performed Outcomes of Interest Accuracy outcomes (sensitivity, specificity, positive predictive value, negative predictive value) Costs Summary of Findings Given the vast amount of published literature on stress ECHO, it was decided to focus on the studies contained in the comprehensive 2007 review by Heijenbrok-Kal et al. (1) as a basis for the MAS evidence-based analysis. In applying our inclusion and exclusion criteria, 105 observational studies containing information on 13,035 patients were included. Six studies examined stress ECHO with adenosine, 26 with dipyridamole and 77 with dobutamine, the latter being the most commonly used pharmacological stress ECHO agent in Ontario. A further 18 studies employed exercise as the stressor.2 The prevalence of CAD ranged from 19% to 94% with a mean estimated prevalence of 70%. Based on the results of these studies the following conclusions were made: Based on the available evidence, stress ECHO is a useful imaging modality for the diagnosis of CAD in patients with suspected disease. The overall pooled sensitivity is 0.80 (95% CI: 0.77 – 0.82) and the pooled specificity is 0.84 (95% CI: 0.82 – 0.87) using CA as the reference standard. The AUC derived from the sROC curve is 0.895 and the DOR is 20.64. For pharmacological stress, the pooled sensitivity is 0.79 (95% CI: 0.71 – 0.87) and the pooled specificity is 0.85 (95% CI: 0.83 – 0.88). When exercise is employed as the stress agent, the pooled sensitivity is 0.81 (95% CI: 0.76– 0.86) and the pooled specificity is 0.79 (95% CI: 0.71 – 0.87). Although pharmacological stress and exercise stress would be indicated for different patient populations based on ability to exercise there were no significant differences in sensitivity and specificity. Based on clinical experts, diagnostic accuracy on stress ECHO depends on the patient population, the expertise of the interpreter and the quality of the image. PMID:23074412
Stress echocardiography for the diagnosis of coronary artery disease: an evidence-based analysis.
2010-01-01
In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease (CAD), an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients suspected of having CAD. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities.After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies for the diagnosis of CAD. Evidence-based analyses have been prepared for each of these five imaging modalities: cardiac magnetic resonance imaging, single photon emission computed tomography, 64-slice computed tomographic angiography, stress echocardiography, and stress echocardiography with contrast. For each technology, an economic analysis was also completed (where appropriate). A summary decision analytic model was then developed to encapsulate the data from each of these reports (available on the OHTAC and MAS website).The Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease series is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas">www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.htmlSINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY FOR THE DIAGNOSIS OF CORONARY ARTERY DISEASE: An Evidence-Based AnalysisSTRESS ECHOCARDIOGRAPHY FOR THE DIAGNOSIS OF CORONARY ARTERY DISEASE: An Evidence-Based AnalysisSTRESS ECHOCARDIOGRAPHY WITH CONTRAST FOR THE DIAGNOSIS OF CORONARY ARTERY DISEASE: An Evidence-Based Analysis64-Slice Computed Tomographic Angiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based AnalysisCARDIAC MAGNETIC RESONANCE IMAGING FOR THE DIAGNOSIS OF CORONARY ARTERY DISEASE: An Evidence-Based AnalysisPease note that two related evidence-based analyses of non-invasive cardiac imaging technologies for the assessment of myocardial viability are also available on the MAS website:POSITRON EMISSION TOMOGRAPHY FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based AnalysisMAGNETIC RESONANCE IMAGING FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: an Evidence-Based AnalysisThe Toronto Health Economics and Technology Assessment Collaborative has also produced an associated economic report entitled:The Relative Cost-effectiveness of Five Non-invasive Cardiac Imaging Technologies for Diagnosing Coronary Artery Disease in Ontario [Internet]. Available from: http://theta.utoronto.ca/reports/?id=7 OBJECTIVE: The objective of the analysis is to determine the diagnostic accuracy of stress echocardiography (ECHO) in the diagnosis of patients with suspected coronary artery disease (CAD) compared to coronary angiography (CA). STRESS ECHOCARDIOGRAPHY: Stress ECHO is a non-invasive technology that images the heart using ultrasound. It is one of the most commonly employed imaging techniques for investigating a variety of cardiac abnormalities in both community and hospital settings. A complete ECHO exam includes M-mode, 2-dimensional (2-D) images and Doppler imaging. In order to diagnosis CAD and assess whether myocardial ischemia is present, images obtained at rest are compared to those obtained during or immediately after stress. The most commonly used agents used to induce stress are exercise and pharmacological agents such as dobutamine and dipyridamole. The hallmark of stress-induced myocardial ischemia is worsening of wall motion abnormalities or the development of new wall motion abnormalities. A major challenge for stress ECHO is that the interpretation of wall motion contractility and function is subjective. This leads to inter-observer variability and reduced reproducibility. Further, it is estimated that approximately 30% of patients have sub-optimal stress ECHO exams. To overcome this limitation, contrast agents for LV opacification have been developed. Although stress ECHO is a relatively easy to use technology that poses only a low risk of adverse events compared to other imaging technologies, it may potentially be overused and/or misused in CAD diagnosis. Several recent advances have been made focusing on quantitative methods for assessment, improved image quality and enhanced portability, however, evidence on the effectiveness and clinical utility of these enhancements is limited. EVIDENCE-BASED ANALYSIS: What is the diagnostic accuracy of stress ECHO for the diagnosis of patients with suspected CAD compared to the reference standard of CA?What is the clinical utility() of stress ECHO? A literature search was performed on August 28, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2004 until August 21, 2009. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any relevant studies not identified through the search. Systematic reviews, meta-analyses, randomized controlled trials, prospective observational studies, retrospective analysesMinimum sample size of 20 enrolled patientsComparison to CA (reference standard)Definition of CAD specified as either ≥50%, ≥70% or ≥75% coronary artery stenosis on CAReporting accuracy data on individual patients (rather than accuracy data stratified by segments of the heart)EnglishHuman Duplicate studiesNon-systematic reviews, case reportsGrey literature (e.g., conference abstracts)Insufficient data for independent calculation of sensitivity and specificityUse of ECHO for purposes other than diagnosis of CAD (e.g., arrhythmia, valvular disease, mitral stenosis, pre-operative risk of MI)Transesophageal ECHO since its primary use is for non-CAD indications such as endocarditis, intracardiac thrombi, valvular disordersOnly resting ECHO performed Accuracy outcomes (sensitivity, specificity, positive predictive value, negative predictive value)Costs Given the vast amount of published literature on stress ECHO, it was decided to focus on the studies contained in the comprehensive 2007 review by Heijenbrok-Kal et al. (1) as a basis for the MAS evidence-based analysis. In applying our inclusion and exclusion criteria, 105 observational studies containing information on 13,035 patients were included. Six studies examined stress ECHO with adenosine, 26 with dipyridamole and 77 with dobutamine, the latter being the most commonly used pharmacological stress ECHO agent in Ontario. A further 18 studies employed exercise as the stressor.() The prevalence of CAD ranged from 19% to 94% with a mean estimated prevalence of 70%. Based on the results of these studies the following conclusions were made: Based on the available evidence, stress ECHO is a useful imaging modality for the diagnosis of CAD in patients with suspected disease. The overall pooled sensitivity is 0.80 (95% CI: 0.77 - 0.82) and the pooled specificity is 0.84 (95% CI: 0.82 - 0.87) using CA as the reference standard. The AUC derived from the sROC curve is 0.895 and the DOR is 20.64.For pharmacological stress, the pooled sensitivity is 0.79 (95% CI: 0.71 - 0.87) and the pooled specificity is 0.85 (95% CI: 0.83 - 0.88). When exercise is employed as the stress agent, the pooled sensitivity is 0.81 (95% CI: 0.76- 0.86) and the pooled specificity is 0.79 (95% CI: 0.71 - 0.87). Although pharmacological stress and exercise stress would be indicated for different patient populations based on ability to exercise there were no significant differences in sensitivity and specificity.Based on clinical experts, diagnostic accuracy on stress ECHO depends on the patient population, the expertise of the interpreter and the quality of the image.
A Device for Human Ultrasonic Echolocation.
Sohl-Dickstein, Jascha; Teng, Santani; Gaub, Benjamin M; Rodgers, Chris C; Li, Crystal; DeWeese, Michael R; Harper, Nicol S
2015-06-01
We present a device that combines principles of ultrasonic echolocation and spatial hearing to provide human users with environmental cues that are 1) not otherwise available to the human auditory system, and 2) richer in object and spatial information than the more heavily processed sonar cues of other assistive devices. The device consists of a wearable headset with an ultrasonic emitter and stereo microphones with affixed artificial pinnae. The goal of this study is to describe the device and evaluate the utility of the echoic information it provides. The echoes of ultrasonic pulses were recorded and time stretched to lower their frequencies into the human auditory range, then played back to the user. We tested performance among naive and experienced sighted volunteers using a set of localization experiments, in which the locations of echo-reflective surfaces were judged using these time-stretched echoes. Naive subjects were able to make laterality and distance judgments, suggesting that the echoes provide innately useful information without prior training. Naive subjects were generally unable to make elevation judgments from recorded echoes. However, trained subjects demonstrated an ability to judge elevation as well. This suggests that the device can be used effectively to examine the environment and that the human auditory system can rapidly adapt to these artificial echolocation cues. Interpreting and interacting with the external world constitutes a major challenge for persons who are blind or visually impaired. This device has the potential to aid blind people in interacting with their environment.
Research on aircraft trailing vortex detection based on laser's multiplex information echo
NASA Astrophysics Data System (ADS)
Zhao, Nan-xiang; Wu, Yong-hua; Hu, Yi-hua; Lei, Wu-hu
2010-10-01
Airfoil trailing vortex is an important reason for the crash, and vortex detection is the basic premise for the civil aeronautics boards to make the flight measures and protect civil aviation's security. So a new method of aircraft trailing vortex detection based on laser's multiplex information echo has been proposed in this paper. According to the classical aerodynamics theories, the formation mechanism of the trailing vortex from the airfoil wingtip has been analyzed, and the vortex model of Boeing 737 in the taking-off phase has also been established on the FLUENT software platform. Combining with the unique morphological structure characteristics of trailing vortex, we have discussed the vortex's possible impact on the frequency, amplitude and phase information of laser echo, and expounded the principle of detecting vortex based on fusing this information variation of laser echo. In order to prove the feasibility of this detecting technique, the field experiment of detecting the vortex of civil Boeing 737 by laser has been carried on. The experimental result has shown that the aircraft vortex could be found really in the laser scanning area, and its diffusion characteristic has been very similar to the previous simulation result. Therefore, this vortex detection means based on laser's multiplex information echo was proved to be practicable relatively in this paper. It will provide the detection and identification of aircraft's trailing vortex a new way, and have massive research value and extensive application prospect as well.
A device for human ultrasonic echolocation
Gaub, Benjamin M.; Rodgers, Chris C.; Li, Crystal; DeWeese, Michael R.; Harper, Nicol S.
2015-01-01
Objective We present a device that combines principles of ultrasonic echolocation and spatial hearing to provide human users with environmental cues that are 1) not otherwise available to the human auditory system and 2) richer in object, and spatial information than the more heavily processed sonar cues of other assistive devices. The device consists of a wearable headset with an ultrasonic emitter and stereo microphones with affixed artificial pinnae. The goal of this study is to describe the device and evaluate the utility of the echoic information it provides. Methods The echoes of ultrasonic pulses were recorded and time-stretched to lower their frequencies into the human auditory range, then played back to the user. We tested performance among naive and experienced sighted volunteers using a set of localization experiments in which the locations of echo-reflective surfaces were judged using these time stretched echoes. Results Naive subjects were able to make laterality and distance judgments, suggesting that the echoes provide innately useful information without prior training. Naive subjects were generally unable to make elevation judgments from recorded echoes. However trained subjects demonstrated an ability to judge elevation as well. Conclusion This suggests that the device can be used effectively to examine the environment and that the human auditory system can rapidly adapt to these artificial echolocation cues. Significance Interpreting and interacting with the external world constitutes a major challenge for persons who are blind or visually impaired. This device has the potential to aid blind people in interacting with their environment. PMID:25608301
Bates, Mary E.; Simmons, James A.
2010-01-01
Big brown bats emit FM biosonar sounds containing two principal harmonics (FM1∼55–22 kHz;FM2∼105–45 kHz). To examine the role of harmonics, they were selectively filtered from stimuli in electronic-echo delay discrimination experiments. Positive stimuli were delayed by 3.16 ms (55 cm simulated target range); negative stimuli were by delayed by 3.96 ms (68 cm). This large 800-μs delay difference (nearly 14 cm) was easily discriminated for echoes containing equal-strength FM1 and FM2. Performance gradually decreased as highpass filters removed progressively larger segments from FM1. For echoes with FM2 alone, performance collapsed to chance, but performance remained good for lowpass echoes containing FM1 alone. Attenuation of FM2 by 3 dB relative to FM1 also decreased performance, but shortening electronic delay of the attenuated FM2 by 48 μs counteracted amplitude-latency trading and restored performance. Bats require the auditory representations of FM1 and FM2 to be in temporal register for high delay acuity. Misalignment of neuronal responses degrades acuity, but outright removal of FM2, leaving only FM1, causes little loss of acuity. Functional asymmetry of harmonics reflects lowpass effects from beaming and atmospheric propagation, which leave FM1 intact. It may cooperate with latency shifts to aid in suppression of clutter. PMID:20707464
Skorupa, Agnieszka; Wicher, Magdalena; Banasik, Tomasz; Jamroz, Ewa; Paprocka, Justyna; Kiełtyka, Aleksandra; Sokół, Maria; Konopka, Marek
2014-05-08
The primary purpose of this work was to assess long-term in vitro reproducibility of metabolite levels measured using 1H MRS (proton magnetic resonance spectroscopy). The secondary purpose was to use the in vitro results for interpretation of 1H MRS in vivo spectra acquired from patients diagnosed with Canavan disease. 1H MRS measurements were performed in the period from April 2006 to September 2010. 118 short and 116 long echo spectra were acquired from a stable phantom during this period. Change-point analysis of the in vitro N-acetylaspartate levels was exploited in the computation of fT factor (ratio of the actual to the reference N-acetylaspartate level normalized by the reciprocity principle). This coefficient was utilized in the interpretation of in vivo spectra analyzed using absolute reference technique. The monitored time period was divided into six time intervals based on short echo in vitro data (seven time intervals based on long echo in vitro data) characterized by fT coefficient ranging from 0.97 to 1.09 (based on short echo data) and from 1.0 to 1.11 (based on long echo data). Application of this coefficient to interpretation of in vivo spectra confirmed increased N-acetylaspartate level in Canavan disease. Long-term monitoring of an MRS system reproducibility, allowing for absolute referencing of metabolite levels, facilitates interpretation of metabolic changes in white matter disorders.
NASA Astrophysics Data System (ADS)
Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang
2018-02-01
The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.
NASA Astrophysics Data System (ADS)
Schröder, Leif; Schmitz, Christian; Bachert, Peter
2004-12-01
Coupling constants of nuclear spin systems can be determined from phase modulation of multiplet resonances. Strongly coupled systems such as citrate in prostatic tissue exhibit a more complex modulation than AX connectivities, because of substantial mixing of quantum states. An extreme limit is the coupling of n isochronous spins (A n system). It is observable only for directly connected spins like the methylene protons of creatine and phosphocreatine which experience residual dipolar coupling in intact muscle tissue in vivo. We will demonstrate that phase modulation of this "pseudo-strong" system is quite simple compared to those of AB systems. Theory predicts that the spin-echo experiment yields conditions as in the case of weak interactions, in particular, the phase modulation depends linearly on the line splitting and the echo time.
Small Particle Driven Chain Disentanglements in Polymer Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senses, Erkan; Ansar, Siyam M.; Kitchens, Christopher L.
2017-04-01
Using neutron spin-echo spectroscopy, X-ray photon correlation spectroscopy and bulk rheology, we studied the effect of particle size on the single chain dynamics, particle mobility, and bulk viscosity in athermal polyethylene oxide-gold nanoparticle composites. The results reveal an ≈ 25 % increase in the reptation tube diameter with addition of nanoparticles smaller than the entanglement mesh size (≈ 5 nm), at a volume fraction of 20 %. The tube diameter remains unchanged in the composite with larger (20 nm) nanoparticles at the same loading. In both cases, the Rouse dynamics is insensitive to particle size. These results provide a directmore » experimental observation of particle size driven disentanglements that can cause non-Einstein-like viscosity trends often observed in polymer nanocomposites.« less
Solvent signal suppression for high-resolution MAS-DNP
NASA Astrophysics Data System (ADS)
Lee, Daniel; Chaudhari, Sachin R.; De Paëpe, Gaël
2017-05-01
Dynamic nuclear polarization (DNP) has become a powerful tool to substantially increase the sensitivity of high-field magic angle spinning (MAS) solid-state NMR experiments. The addition of dissolved hyperpolarizing agents usually results in the presence of solvent signals that can overlap and obscure those of interest from the analyte. Here, two methods are proposed to suppress DNP solvent signals: a Forced Echo Dephasing experiment (FEDex) and TRAnsfer of Populations in DOuble Resonance Echo Dephasing (TRAPDORED) NMR. These methods reintroduce a heteronuclear dipolar interaction that is specific to the solvent, thereby forcing a dephasing of recoupled solvent spins and leaving acquired NMR spectra free of associated resonance overlap with the analyte. The potency of these methods is demonstrated on sample types common to MAS-DNP experiments, namely a frozen solution (of L-proline) and a powdered solid (progesterone), both containing deuterated glycerol as a DNP solvent. The proposed methods are efficient, simple to implement, compatible with other NMR experiments, and extendable past spectral editing for just DNP solvents. The sensitivity gains from MAS-DNP in conjunction with FEDex or TRAPDORED then permits rapid and uninterrupted sample analysis.
Interactive Screen Experiments with Single Photons
ERIC Educational Resources Information Center
Bronner, Patrick; Strunz, Andreas; Silberhorn, Christine; Meyn, Jan-Peter
2009-01-01
Single photons are used for fundamental quantum physics experiments as well as for applications. Originally being a topic of advance courses, such experiments are increasingly a subject of undergraduate courses. We provide interactive screen experiments (ISE) for supporting the work in a real laboratory, and for students who do not have access to…
R W Wood's Experiment Done Right - A Laboratory Demonstration of the Greenhouse Effect
NASA Astrophysics Data System (ADS)
Halpern, J. B.
2016-12-01
It would not be exaggerating to say that R. W. Wood was the most respected experimental optical physicist of his time. Thus the null result of his attempt to demonstrate the greenhouse effect by comparing temperature rise in illuminated cylinders with glass or rock salt windows has echoed down through the years in climate science discussions both on the professional and public levels1. Today the web is full of videos purporting to demonstrate the greenhouse effect, but careful examination shows that they simply demonstrate heating via absorption of IR or NIR light by CO2. These experiments miss that the greenhouse effect is a result of the temperature difference between the surface and the upper troposphere as a result of which radiation from greenhouse molecules slows as the level rises. The average distance a photon emitted from a vibrationally excited CO2 molecule is about 10 m at the surface, increasing with altitude until at about 8 km the mean free path allows for radiation to space. Increasing CO2 concentrations raises this level to a higher one, which is colder, and at which the rate of radiation to space decreases. Emitting the same amount of radiation to space as before requires heating the entire system including the surface. To model the greenhouse effect we have used a 22 L bulb with a capsule heater in the center. The temperature near the heater (the surface) or above it can be monitored using a thermocouple and the CO2 mixing ratio determined using a NDIR sensor. By controlling the CO2 concentration in the bulb, the mean free path of re-radiated photons from CO2 can be controlled so that it much smaller than the bulb's diameter. We have measure rises in temperature both near the heater and at a distance from it as CO2is introduced, demonstrating the greenhouse effect. 1. R.W. Wood, London, Edinborough and Dublin Philosophical Magazine , 1909, 17, p319-320 also http://www.wmconnolley.org.uk/sci/wood_rw.1909.html
Packaging consideration of two-dimensional polymer-based photonic crystals for laser beam steering
NASA Astrophysics Data System (ADS)
Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T.
2009-02-01
In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results were also reported.
Felisberto, Paulo; Rodriguez, Orlando; Santos, Paulo; Ey, Emanuel; Jesus, Sérgio M.
2013-01-01
This paper aims at estimating the azimuth, range and depth of a cooperative broadband acoustic source with a single vector sensor in a multipath underwater environment, where the received signal is assumed to be a linear combination of echoes of the source emitted waveform. A vector sensor is a device that measures the scalar acoustic pressure field and the vectorial acoustic particle velocity field at a single location in space. The amplitudes of the echoes in the vector sensor components allow one to determine their azimuth and elevation. Assuming that the environmental conditions of the channel are known, source range and depth are obtained from the estimates of elevation and relative time delays of the different echoes using a ray-based backpropagation algorithm. The proposed method is tested using simulated data and is further applied to experimental data from the Makai'05 experiment, where 8–14 kHz chirp signals were acquired by a vector sensor array. It is shown that for short ranges, the position of the source is estimated in agreement with the geometry of the experiment. The method is low computational demanding, thus well-suited to be used in mobile and light platforms, where space and power requirements are limited. PMID:23857257
Gharehaghaji, Nahideh; Dadgar, Habib Alah
2018-01-01
The main purpose of this study was evaluate a polymer-gel-dosimeter (PGD) for three-dimensional verification of dose distributions in the lung that is called lung-equivalent gel (LEG) and then to compare its result with Monte Carlo (MC) method. In the present study, to achieve a lung density for PGD, gel is beaten until foam is obtained, and then sodium dodecyl sulfate is added as a surfactant to increase the surface tension of the gel. The foam gel was irradiated with 1 cm × 1 cm field size in the 6 MV photon beams of ONCOR SIEMENS LINAC, along the central axis of the gel. The LEG was then scanned on a 1.5 Tesla magnetic resonance imaging scanner after irradiation using a multiple-spin echo sequence. Least-square fitting the pixel values from 32 consecutive images using a single exponential decay function derived the R2 relaxation rates. Moreover, 6 and 18 MV photon beams of ONCOR SIEMENS LINAC are simulated using MCNPX MC Code. The MC model is used to calculate the depth dose water and low-density water resembling the soft tissue and lung, respectively. Percentages of dose reduction in the lung region relative to homogeneous phantom for 6 MV photon beam were 44.6%, 39%, 13%, and 7% for 0.5 cm × 0.5 cm, 1 cm × 1 cm, 2 cm × 2 cm, and 3 cm × 3 cm fields, respectively. For 18 MV photon beam, the results were found to be 82%, 69%, 46%, and 25.8% for the same field sizes, respectively. Preliminary results show good agreement between depth dose measured with the LEG and the depth dose calculated using MCNP code. Our study showed that the dose reduction with small fields in the lung was very high. Thus, inaccurate prediction of absorbed dose inside the lung and also lung/soft-tissue interfaces with small photon beams may lead to critical consequences for treatment outcome.
Mitri, F.G.; Davis, B.J.; Greenleaf, J.F.; Fatemi, M.
2010-01-01
Background Permanent prostate brachytherapy (PPB) is a common treatment for early stage prostate cancer. While the modern approach using trans-rectal ultrasound guidance has demonstrated excellent outcome, the efficacy of PPB depends on achieving complete radiation dose coverage of the prostate by obtaining a proper radiation source (seed) distribution. Currently, brachytherapy seed placement is guided by trans-rectal ultrasound imaging and fluoroscopy. A significant percentage of seeds are not detected by trans-rectal ultrasound because certain seed orientations are invisible making accurate intra-operative feedback of radiation dosimetry very difficult, if not impossible. Therefore, intra-operative correction of suboptimal seed distributions cannot easily be done with current methods. Vibro-acoustography (VA) is an imaging modality that is capable of imaging solids at any orientation, and the resulting images are speckle free. Objective and methods The purpose of this study is to compare the capabilities of VA and pulse-echo ultrasound in imaging PPB seeds at various angles and show the sensitivity of detection to seed orientation. In the VA experiment, two intersecting ultrasound beams driven at f1 = 3.00 MHz and f2 = 3.020 MHz respectively were focused on the seeds attached to a latex membrane while the amplitude of the acoustic emission produced at the difference frequency 20 kHz was detected by a low frequency hydrophone. Results Finite element simulations and results of experiments conducted under well-controlled conditions in a water tank on a series of seeds indicate that the seeds can be detected at any orientation with VA, whereas pulse-echo ultrasound is very sensitive to the seed orientation. Conclusion It is concluded that vibro-acoustography is superior to pulse-echo ultrasound for detection of PPB seeds. PMID:18538365
Detecting Dark Photons with Reactor Neutrino Experiments
NASA Astrophysics Data System (ADS)
Park, H. K.
2017-08-01
We propose to search for light U (1 ) dark photons, A', produced via kinetically mixing with ordinary photons via the Compton-like process, γ e-→A'e-, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on ɛ , the A'-γ mixing parameter, ɛ , for dark-photon masses below 1 MeV of ɛ <1.3 ×10-5 and ɛ <2.1 ×10-5, from NEOS and TEXONO experimental data, respectively. This study demonstrates the applicability of nuclear reactors as potential sources of intense fluxes of low-mass dark photons.
Towards real-time thermometry using simultaneous multislice MRI
NASA Astrophysics Data System (ADS)
Borman, P. T. S.; Bos, C.; de Boorder, T.; Raaymakers, B. W.; Moonen, C. T. W.; Crijns, S. P. M.
2016-09-01
MR-guided thermal therapies, such as high-intensity focused ultrasound (MRgHIFU) and laser-induced thermal therapy (MRgLITT) are increasingly being applied in oncology and neurology. MRI is used for guidance since it can measure temperature noninvasively based on the proton resonance frequency shift (PRFS). For therapy guidance using PRFS thermometry, high temporal resolution and large spatial coverage are desirable. We propose to use the parallel imaging technique simultaneous multislice (SMS) in combination with controlled aliasing (CAIPIRINHA) to accelerate the acquisition. We compare this with the sensitivity encoding (SENSE) acceleration technique. Two experiments were performed to validate that SMS can be used to increase the spatial coverage or the temporal resolution. The first was performed in agar gel using LITT heating and a gradient-echo sequence with echo-planar imaging (EPI), and the second was performed in bovine muscle using HIFU heating and a gradient-echo sequence without EPI. In both experiments temperature curves from an unaccelerated scan and from SMS, SENSE, and SENSE/SMS accelerated scans were compared. The precision was quantified by a standard deviation analysis of scans without heating. Both experiments showed a good agreement between the temperature curves obtained from the unaccelerated, and SMS accelerated scans, confirming that accuracy was maintained during SMS acceleration. The standard deviations of the temperature measurements obtained with SMS were significantly smaller than when SENSE was used, implying that SMS allows for higher acceleration. In the LITT and HIFU experiments SMS factors up to 4 and 3 were reached, respectively, with a loss of precision of less than a factor of 3. Based on these results we conclude that SMS acceleration of PRFS thermometry is a valuable addition to SENSE, because it allows for a higher temporal resolution or bigger spatial coverage, with a higher precision.
NASA Technical Reports Server (NTRS)
Penin, A. N.; Reutova, T. A.; Sergienko, A. V.
1992-01-01
An experiment on one-photon state localization in space using a correlation technique in Spontaneous Parametric Down Conversion (SPDC) process is discussed. Results of measurements demonstrate an idea of the Einstein-Podolsky-Rosen (EPR) paradox for coordinate and momentum variables of photon states. Results of the experiment can be explained with the help of an advanced wave technique. The experiment is based on the idea that two-photon states of optical electromagnetic fields arising in the nonlinear process of the spontaneous parametric down conversion (spontaneous parametric light scattering) can be explained by quantum mechanical theory with the help of a single wave function.
NASA Astrophysics Data System (ADS)
Penin, A. N.; Reutova, T. A.; Sergienko, A. V.
1992-02-01
An experiment on one-photon state localization in space using a correlation technique in Spontaneous Parametric Down Conversion (SPDC) process is discussed. Results of measurements demonstrate an idea of the Einstein-Podolsky-Rosen (EPR) paradox for coordinate and momentum variables of photon states. Results of the experiment can be explained with the help of an advanced wave technique. The experiment is based on the idea that two-photon states of optical electromagnetic fields arising in the nonlinear process of the spontaneous parametric down conversion (spontaneous parametric light scattering) can be explained by quantum mechanical theory with the help of a single wave function.
Generation, storage, and retrieval of nonclassical states of light using atomic ensembles
NASA Astrophysics Data System (ADS)
Eisaman, Matthew D.
This thesis presents the experimental demonstration of several novel methods for generating, storing, and retrieving nonclassical states of light using atomic ensembles, and describes applications of these methods to frequency-tunable single-photon generation, single-photon memory, quantum networks, and long-distance quantum communication. We first demonstrate emission of quantum-mechanically correlated pulses of light with a time delay between the pulses that is coherently controlled by utilizing 87Rb atoms. The experiment is based on Raman scattering, which produces correlated pairs of excited atoms and photons, followed by coherent conversion of the atomic states into a different photon field after a controllable delay. We then describe experiments demonstrating a novel approach for conditionally generating nonclassical pulses of light with controllable photon numbers, propagation direction, timing, and pulse shapes. We observe nonclassical correlations in relative photon number between correlated pairs of photons, and create few-photon light pulses with sub-Poissonian photon-number statistics via conditional detection on one field of the pair. Spatio-temporal control over the pulses is obtained by exploiting long-lived coherent memory for photon states and electromagnetically induced transparency (EIT) in an optically dense atomic medium. Finally, we demonstrate the use of EIT for the controllable generation, transmission, and storage of single photons with tunable frequency, timing, and bandwidth. To this end, we study the interaction of single photons produced in a "source" ensemble of 87Rb atoms at room temperature with another "target" ensemble. This allows us to simultaneously probe the spectral and quantum statistical properties of narrow-bandwidth single-photon pulses, revealing that their quantum nature is preserved under EIT propagation and storage. We measure the time delay associated with the reduced group velocity of the single-photon pulses and report observations of their storage and retrieval. Together these experiments utilize atomic ensembles to realize a narrow-bandwidth single-photon source, single-photon memory that preserves the quantum nature of the single photons, and a primitive quantum network comprised of two atomic-ensemble quantum memories connected by a single photon in an optical fiber. Each of these experimental demonstrations represents an essential element for the realization of long-distance quantum communication.
Whispers That Echo: Girls' Experiences and Voices in News Media Reports about STEM Education Reform
ERIC Educational Resources Information Center
Chesky, Nataly Z.; Goldstein, Rebecca A.
2016-01-01
This paper attends to the ways in which girls' voices are deployed within news media to support current discourses regarding STEM education. Newspaper reports constitute an important field of cultural production in that they construct a particular reality that contributes to public understandings of girls' lived experiences in and with STEM. Using…
Independence of Echo-Threshold and Echo-Delay in the Barn Owl
Nelson, Brian S.; Takahashi, Terry T.
2008-01-01
Despite their prevalence in nature, echoes are not perceived as events separate from the sounds arriving directly from an active source, until the echo's delay is long. We measured the head-saccades of barn owls and the responses of neurons in their auditory space-maps while presenting a long duration noise-burst and a simulated echo. Under this paradigm, there were two possible stimulus segments that could potentially signal the location of the echo. One was at the onset of the echo; the other, after the offset of the direct (leading) sound, when only the echo was present. By lengthening the echo's duration, independently of its delay, spikes and saccades were evoked by the source of the echo even at delays that normally evoked saccades to only the direct source. An echo's location thus appears to be signaled by the neural response evoked after the offset of the direct sound. PMID:18974886
Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T
2010-03-01
In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results showed a beam steering angle of 10 degree for 30 nm wavelength variation.
Wilga Photonics and Web Engineering 2011
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2011-10-01
The paper presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the SPIE-IEEE Wilga 2011 symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-225].
WILGA Photonics and Web Engineering, January 2012
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2012-05-01
The paper presents a digest of chosen technical work results shown by young researchers from technical universities during the SPIE-IEEE Wilga January 2012 Symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, new technologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics codesign, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium held two times a year is a summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of chosen Wilga references is presented [1-268].
Photonics Applications and Web Engineering: WILGA 2017
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2017-08-01
XLth Wilga Summer 2017 Symposium on Photonics Applications and Web Engineering was held on 28 May-4 June 2017. The Symposium gathered over 350 participants, mainly young researchers active in optics, optoelectronics, photonics, modern optics, mechatronics, applied physics, electronics technologies and applications. There were presented around 300 oral and poster papers in a few main topical tracks, which are traditional for Wilga, including: bio-photonics, optical sensory networks, photonics-electronics-mechatronics co-design and integration, large functional system design and maintenance, Internet of Things, measurement systems for astronomy, high energy physics experiments, and other. The paper is a traditional introduction to the 2017 WILGA Summer Symposium Proceedings, and digests some of the Symposium chosen key presentations. This year Symposium was divided to the following topical sessions/conferences: Optics, Optoelectronics and Photonics, Computational and Artificial Intelligence, Biomedical Applications, Astronomical and High Energy Physics Experiments Applications, Material Research and Engineering, and Advanced Photonics and Electronics Applications in Research and Industry.
NASA Astrophysics Data System (ADS)
Marshman, Emily; Singh, Chandralekha
2017-06-01
Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the abstract quantum theory and concrete laboratory settings and have the potential to help students develop a solid grasp of the foundational issues in quantum mechanics. Here we describe students' conceptual difficulties with these topics in the context of Mach-Zehnder interferometer experiments with single photons and how the difficulties found in written surveys and individual interviews were used as a guide in the development of a Quantum Interactive Learning Tutorial (QuILT). The QuILT uses an inquiry-based approach to learning and takes into account the conceptual difficulties found via research to help upper-level undergraduate and graduate students learn about foundational quantum mechanics concepts using the concrete quantum optics context. It strives to help students learn the basics of quantum mechanics in the context of single photon experiment, develop the ability to apply fundamental quantum principles to experimental situations in quantum optics, and explore the differences between classical and quantum ideas in a concrete context. We discuss the findings from in-class evaluations suggesting that the QuILT was effective in helping students learn these abstract concepts.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Scoccione, Andrea; Cacciani, Marco; Summa, Donato; De Rosa, Benedetto; Schween, Jan H.
2018-04-01
This paper illustrates measurements carried out by the Raman lidar BASIL in the frame of the HD(CP)2 Observational Prototype Experiment (HOPE), revealing the presence of a clear-air dark band phenomenon (i.e. a minimum in lidar backscatter echoes) in the upper portion of the convective boundary layer. The phenomenon is clearly distinguishable in the lidar backscatter echoes at 532 and 1064 nm, as well as in the particle depolarisation data. This phenomenon is attributed to the presence of lignite aerosol particles advected from the surrounding open pit mines in the vicinity of the measuring site. The paper provides evidence of the phenomenon and illustrates possible interpretations for its occurrence.
NASA Astrophysics Data System (ADS)
Afach, S.; Ayres, N. J.; Ban, G.; Bison, G.; Bodek, K.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; Griffith, W. C.; Grujić, Z. D.; Harris, P. G.; Heil, W.; Hélaine, V.; Kasprzak, M.; Kermaidic, Y.; Kirch, K.; Knowles, P.; Koch, H.-C.; Komposch, S.; Kozela, A.; Krempel, J.; Lauss, B.; Lefort, T.; Lemière, Y.; Mtchedlishvili, A.; Musgrave, M.; Naviliat-Cuncic, O.; Pendlebury, J. M.; Piegsa, F. M.; Pignol, G.; Plonka-Spehr, C.; Prashanth, P. N.; Quéméner, G.; Rawlik, M.; Rebreyend, D.; Ries, D.; Roccia, S.; Rozpedzik, D.; Schmidt-Wellenburg, P.; Severijns, N.; Thorne, J. A.; Weis, A.; Wursten, E.; Wyszynski, G.; Zejma, J.; Zenner, J.; Zsigmond, G.
2015-10-01
We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1 μ T magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1 pT /cm . This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.
Bipartite fidelity and Loschmidt echo of the bosonic conformal interface
NASA Astrophysics Data System (ADS)
Zhou, Tianci; Lin, Mao
2017-12-01
We study the quantum quench problem for a class of bosonic conformal interfaces by computing the Loschmidt echo and the bipartite fidelity. The quench can be viewed as a sudden change of boundary conditions parametrized by θ when connecting two one-dimensional critical systems. They are classified by S (θ ) matrices associated with the current scattering processes on the interface. The resulting Loschmidt echo of the quench has long time algebraic decay t-α, whose exponent also appears in the finite size bipartite fidelity as L-α/2. We perform analytic and numerical calculations of the exponent α , and find that it has a quadratic dependence on the change of θ if the prior and post-quench boundary conditions are of the same type of S , while remaining 1/4 otherwise. Possible physical realizations of these interfaces include, for instance, connecting different quantum wires (Luttinger liquids), quench of the topological phase edge states, etc., and the exponent can be detected in an x-ray edge singularity-type experiment.
NASA Astrophysics Data System (ADS)
Li, Minghui; Hayward, Gordon
2018-04-01
Over the recent decades, there has been a growing demand on reliable and robust non-destructive evaluation (NDE) of structures and components made from coarse grained materials such as alloys, stainless steels, carbon-reinforced composites and concrete; however, when inspected using ultrasound, the flaw echoes are usually contaminated by high-level, time-invariant, and correlated grain noise originating from the microstructure and grain boundaries, leading to pretty low signal-to-noise ratio (SNR) and the flaw information being obscured or completely hidden by the grain noise. In this paper, the fractal dimension analysis of the A-scan echoes is investigated as a measure of complexity of the time series to distinguish the echoes originating from the real defects and the grain noise, and then the normalized fractal dimension coefficients are applied to the amplitudes as the weighting factor to enhance the SNR and defect detection. Experiments on industrial samples of the mild steel and the stainless steel are conducted and the results confirm the great benefits of the method.
Venus Express Bistatic Radar Over Maxwell Montes
NASA Astrophysics Data System (ADS)
Simpson, R. A.; Tyler, G. L.; Haeusler, B.; Paetzold, M.
2006-12-01
Toward the end of the Magellan mission, several bistatic radar experiments were conducted using the spacecraft's linearly polarized transmissions at 13 cm wavelength. Ground reception was in right- and left- circular polarizations (RCP and LCP, respectively). Echoes from Maxwell Montes showed unusual polarization properties, which were interpreted as coming from a surface with a complex dielectric constant (Pettengill et al., Science, 272, 1628-1631, 1996). On early orbits of Venus Express (VEX) similar experiments were carried out, albeit with VEX's more conventional RCP transmissions and at lower signal-to-noise ratio than for Magellan. As expected, dielectric constants from VEX are generally higher than for other bodies (such as the Moon and Mars), based on echo power ratios (RCP/LCP). At the time of this writing, however, the expected change in polarization from preliminary coherent processing of RCP and LCP over Maxwell has not been detected.
Entangled photons from single atoms and molecules
NASA Astrophysics Data System (ADS)
Nordén, Bengt
2018-05-01
The first two-photon entanglement experiment performed 50 years ago by Kocher and Commins (KC) provided isolated pairs of entangled photons from an atomic three-state fluorescence cascade. In view of questioning of Bell's theorem, data from these experiments are re-analyzed and shown sufficiently precise to confirm quantum mechanical and dismiss semi-classical theory without need for Bell's inequalities. Polarization photon correlation anisotropy (A) is useful: A is near unity as predicted quantum mechanically and well above the semi-classic range, 0 ⩽ A ⩽ 1 / 2 . Although yet to be found, one may envisage a three-state molecule emitting entangled photon pairs, in analogy with the KC atomic system. Antibunching in fluorescence from single molecules in matrix and entangled photons from quantum dots promise it be possible. Molecules can have advantages to parametric down-conversion as the latter photon distribution is Poissonian and unsuitable for producing isolated pairs of entangled photons. Analytical molecular applications of entangled light are also envisaged.
Single spontaneous photon as a coherent beamsplitter for an atomic matter-wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomkovič, Jiří; Welte, Joachim; Oberthaler, Markus K.
2014-12-04
In free space the spontaneous emission of a single photon destroys motional coherence. Close to a mirror surface the reflection erases the which-path information and the single emitted photon can be regarded as a coherent beam splitter for an atomic matter-wavewhich can be verified by atom interferometry. Our experiment is a realization of the recoiling slit Gedanken experiment by Einstein.
Weighing Photons Using Bathroom Scales: A Thought Experiment
ERIC Educational Resources Information Center
Huggins, Elisha
2010-01-01
Jay Orear, in his introductory physics text, defined the weight of a person as the reading one gets when standing on a (properly calibrated) bathroom scale. Here we will use Jay's definition of weight in a thought experiment to measure the weight of a photon. The thought experiment uses the results of the Pound-Rebka-Snider experiments, Compton…
Using ultrasound CBE imaging without echo shift compensation for temperature estimation.
Tsui, Po-Hsiang; Chien, Yu-Ting; Liu, Hao-Li; Shu, Yu-Chen; Chen, Wen-Shiang
2012-09-01
Clinical trials have demonstrated that hyperthermia improves cancer treatments. Previous studies developed ultrasound temperature imaging methods, based on the changes in backscattered energy (CBE), to monitor temperature variations during hyperthermia. Echo shift, induced by increasing temperature, contaminates the CBE image, and its tracking and compensation should normally ensure that estimations of CBE at each pixel are correct. To obtain a simplified algorithm that would allow real-time computation of CBE images, this study evaluated the usefulness of CBE imaging without echo shift compensation in detecting distributions in temperature. Experiments on phantoms, using different scatterer concentrations, and porcine livers were conducted to acquire raw backscattered data at temperatures ranging from 37°C to 45°C. Tissue samples of pork tenderloin were ablated in vitro by microwave irradiation to evaluate the feasibility of using the CBE image without compensation to monitor tissue ablation. CBE image construction was based on a ratio map obtained from the envelope image divided by the reference envelope image at 37°C. The experimental results demonstrated that the CBE image obtained without echo shift compensation has the ability to estimate temperature variations induced during uniform heating or tissue ablation. The magnitude of the CBE as a function of temperature obtained without compensation is stronger than that with compensation, implying that the CBE image without compensation has a better sensitivity to detect temperature. These findings suggest that echo shift tracking and compensation may be unnecessary in practice, thus simplifying the algorithm required to implement real-time CBE imaging. Copyright © 2012 Elsevier B.V. All rights reserved.
Wicher, Magdalena; Banasik, Tomasz; Jamroz, Ewa; Paprocka, Justyna; Kiettyka, Aleksandra; Sokót, Maria; Konopka, Marek
2014-01-01
The primary purpose of this work was to assess long‐term in vitro reproducibility of metabolite levels measured using 1H MRS (proton magnetic resonance spectroscopy). The secondary purpose was to use the in vitro results for interpretation of ‘H MRS in vivo spectra acquired from patients diagnosed with Canavan disease. 1H MRS measurements were performed in the period from April 2006 to September 2010. 118 short and 116 long echo spectra were acquired from a stable phantom during this period. Change‐point analysis of the in vitro N‐acetylaspartate levels was exploited in the computation of fT factor (ratio of the actual to the reference N‐acetylaspartate level normalized by the reciprocity principle). This coefficient was utilized in the interpretation of in vivo spectra analyzed using absolute reference technique. The monitored time period was divided into six time intervals based on short echo in vitro data (seven time intervals based on long echo in vitro data) characterized by fT coefficient ranging from 0.97 to 1.09 (based on short echo data) and from 1.0 to 1.11 (based on long echo data). Application of this coefficient to interpretation of in vivo spectra confirmed increased N‐acetylaspartate level in Canavan disease. Long‐term monitoring of an MRS system reproducibility, allowing for absolute referencing of metabolite levels, facilitates interpretation of metabolic changes in white matter disorders. PACS numbers: 87.19.lf, 87.61.Tg, 87.64.K‐, 87.64.kj PMID:24892353
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Desch, M. D.; Marshall, J. R.; Delory, G. T.; Kolecki, J. C.; Hillard, G. B.; Kaiser, M. L.; Haberle, R. M.; Zent, A. P.; Luhmann, J. G.
2000-01-01
In 1999, the NASA/Human Exploration and Development of Space (HEDS) enterprise selected a number of payloads to fly to the Martian surface in an 03 opportunity (prior to the MPL loss). Part of a proposed experiment, ECHOS, was selected to specifically understand the electrical charging hazards from tribocharged dust in the ambient atmosphere, in dust devils, and in larger storms. It is expected that Martian dust storms become tribocharged much like terrestrial dust devils which can possess almost a million elementary charges per cubic centimeter. The ECHOS package features a set of instruments for measuring electric effects: a radio to detect AC electric fields radiating from discharges in the storm,a DC electric field system for sensing electrostatic fields from concentrations of charged dust grains, and a lander electrometer chain for determining the induced potential on its body and MAV (Mars Ascent Vehicle) during the passages of a charged dust storm. Given that electricity is a systemic process originating from wind-blown dust, we also proposed to correlate the electrical measurements with fundamental fluid/meteorological observations, including wind velocity and vorticity, temperature, and pressure. Triboelectricity will also affect local chemistry, and chemical-sensing devices were also considered a feature of the package. The primary HEDS objectives of the ECHOS sensing suite is to discover and monitor the natural electrical hazards associated with dust devils and storms, and determine their enviro-effectiveness on human systems. However, ECHOS also has a strong footprint in the overarching science objectives of the Mars Surveyor Program.
The photon identification loophole in EPRB experiments: computer models with single-wing selection
NASA Astrophysics Data System (ADS)
De Raedt, Hans; Michielsen, Kristel; Hess, Karl
2017-11-01
Recent Einstein-Podolsky-Rosen-Bohm experiments [M. Giustina et al. Phys. Rev. Lett. 115, 250401 (2015); L. K. Shalm et al. Phys. Rev. Lett. 115, 250402 (2015)] that claim to be loophole free are scrutinized. The combination of a digital computer and discrete-event simulation is used to construct a minimal but faithful model of the most perfected realization of these laboratory experiments. In contrast to prior simulations, all photon selections are strictly made, as they are in the actual experiments, at the local station and no other "post-selection" is involved. The simulation results demonstrate that a manifestly non-quantum model that identifies photons in the same local manner as in these experiments can produce correlations that are in excellent agreement with those of the quantum theoretical description of the corresponding thought experiment, in conflict with Bell's theorem which states that this is impossible. The failure of Bell's theorem is possible because of our recognition of the photon identification loophole. Such identification measurement-procedures are necessarily included in all actual experiments but are not included in the theory of Bell and his followers.
Detecting Dark Photons with Reactor Neutrino Experiments.
Park, H K
2017-08-25
We propose to search for light U(1) dark photons, A^{'}, produced via kinetically mixing with ordinary photons via the Compton-like process, γe^{-}→A^{'}e^{-}, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on ε, the A^{'}-γ mixing parameter, ε, for dark-photon masses below 1 MeV of ε<1.3×10^{-5} and ε<2.1×10^{-5}, from NEOS and TEXONO experimental data, respectively. This study demonstrates the applicability of nuclear reactors as potential sources of intense fluxes of low-mass dark photons.
On the reliability of hook echoes as tornado indicators
NASA Technical Reports Server (NTRS)
Forbes, G. S.
1981-01-01
A study of radar echoes associated with the tornadoes of the 3 April 1974 outbreak was performed to evaluate the usefulness of echo shape as an indicator of tornadic thunderstorms. The hook shape was usually successful in characterizing an echo as tornadic, with a false alarm rate of 16%. Because hook echoes were relatively rare, however, a less restrictive shape called distinctive was more successful at detecting tornadic thunderstorms, identifying 65% of the tornadic echoes. An echo had a distinctive shape if it possessed a marked appendage on its right rear flank or was in the shape of a spiral, comma or line echo wave pattern (LEWP). Characteristics of the distinctive echo are given.
Photon Physics and Plasma Research, Photonics Applications and Web Engineering, Wilga, May 2012
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2012-05-01
This paper is the third part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Photon Physics and Plasma Research. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-270].
Forming maps of targets having multiple reflectors with a biomimetic audible sonar.
Kuc, Roman
2018-05-01
A biomimetic audible sonar mimics human echolocation by emitting clicks and sensing echoes binaurally to investigate the limitations in acoustic mapping of 2.5 dimensional targets. A monaural sonar that provides only echo time-of-flight values produces biased maps that lie outside the target surfaces. Reflector bearing estimates derived from the first echoes detected by a binaural sonar are employed to form unbiased maps. Multiple echoes from a target introduce phantom-reflector artifacts into its map because later echoes are produced by reflectors at bearings different from those determined from the first echoes. In addition, overlapping echoes interfere to produce bearing errors. Addressing the causes of these bearing errors motivates a processing approach that employs template matching to extract valid echoes. Interfering echoes can mimic a valid echo and also form PR artifacts. These artifacts are eliminated by recognizing the bearing fluctuations that characterize echo interference. Removing PR artifacts produces a map that resembles the physical target shape to within the resolution capabilities of the sonar. The remaining differences between the target shape and the final map are void artifacts caused by invalid or missing echoes.
MAARSY - The new MST radar on Andøya: System description and first results
NASA Astrophysics Data System (ADS)
Latteck, Ralph; Zecha, Marius; Rapp, Markus; Stober, Gunter; Singer, Werner; Renkwitz, Toralf
2012-07-01
In 2011 the Leibniz-Institute of Atmospheric Physics in Kühlungsborn completed the installation of the Middle Atmosphere Alomar Radar System ({MAARSY}) on the North-Norwegian island Andøya. MAARSY is a 53.5 MHz monostatic radar with an active phased array antenna consisting of 433 Yagi antennas. The 3-element Yagi antennas are arranged in an equilateral triangular grid forming a circular aperture of approximately 6300 m^2. Each individual antenna is connected to its own transceiver with independent phase control and a scalable power output of up to 2 kW. This arrangement provides very high flexibility of beam forming and beam steering with a symmetric radar beam of a minimum beam width of 3.6°. The system allows classical beam swinging operation as well as experiments with simultaneous multiple beams and the use of interferometric applications for improved studies of the Arctic atmosphere from the troposphere up to the lower thermosphere with high spatio-temporal resolution. Standard observations of tropospheric winds and polar mesosphere summer echoes started immediately with an initial stage of expansion in spring 2010. Meteor head echo experiments and 3D observations of polar mesospheric winter echoes were conducted after an upgrade of the system in December 2010. Multi-beam experiments using up to 97 beams quasi-simultaneously in the mesosphere have been carried out during campaigns in summer 2011 with the completed system. We present a system description of MAARSY including beam pattern validation and show initial results from various campaigns obtained during the first 2 years of operation.
Realization of a complementary medium using dielectric photonic crystals.
Xu, Tao; Fang, Anan; Jia, Ziyuan; Ji, Liyu; Hang, Zhi Hong
2017-12-01
By exploiting the scaling invariance of photonic band diagrams, a complementary photonic crystal slab structure is realized by stacking two uniformly scaled double-zero-index dielectric photonic crystal slabs together. The space cancellation effect in complementary photonic crystals is demonstrated in both numerical simulations and microwave experiments. The refractive index dispersion of double-zero-index dielectric photonic crystal is experimentally measured. Using pure dielectrics, our photonic crystal structure will be an ideal platform to explore various intriguing properties related to a complementary medium.
Ingargiola, A.; Laurence, T. A.; Boutelle, R.; ...
2015-12-23
We introduce Photon-HDF5, an open and efficient file format to simplify exchange and long term accessibility of data from single-molecule fluorescence experiments based on photon-counting detectors such as single-photon avalanche diode (SPAD), photomultiplier tube (PMT) or arrays of such detectors. The format is based on HDF5, a widely used platform- and language-independent hierarchical file format for which user-friendly viewers are available. Photon-HDF5 can store raw photon data (timestamp, channel number, etc) from any acquisition hardware, but also setup and sample description, information on provenance, authorship and other metadata, and is flexible enough to include any kind of custom data. Themore » format specifications are hosted on a public website, which is open to contributions by the biophysics community. As an initial resource, the website provides code examples to read Photon-HDF5 files in several programming languages and a reference python library (phconvert), to create new Photon-HDF5 files and convert several existing file formats into Photon-HDF5. As a result, to encourage adoption by the academic and commercial communities, all software is released under the MIT open source license.« less
Koziol, Anna; Bordessoule, Michel; Ciavardini, Alessandra; Dawiec, Arkadiusz; Da Silva, Paulo; Desjardins, Kewin; Grybos, Pawel; Kanoute, Brahim; Laulhe, Claire; Maj, Piotr; Menneglier, Claude; Mercere, Pascal; Orsini, Fabienne; Szczygiel, Robert
2018-03-01
This paper presents the performance of a single-photon-counting hybrid pixel X-ray detector with synchrotron radiation. The camera was evaluated with respect to time-resolved experiments, namely pump-probe-probe experiments held at SOLEIL. The UFXC camera shows very good energy resolution of around 1.5 keV and allows the minimum threshold setting to be as low as 3 keV keeping the high-count-rate capabilities. Measurements of a synchrotron characteristic filling mode prove the proper separation of an isolated bunch of photons and the usability of the detector in time-resolved experiments.
Time-resolved double-slit interference pattern measurement with entangled photons
Kolenderski, Piotr; Scarcella, Carmelo; Johnsen, Kelsey D.; Hamel, Deny R.; Holloway, Catherine; Shalm, Lynden K.; Tisa, Simone; Tosi, Alberto; Resch, Kevin J.; Jennewein, Thomas
2014-01-01
The double-slit experiment strikingly demonstrates the wave-particle duality of quantum objects. In this famous experiment, particles pass one-by-one through a pair of slits and are detected on a distant screen. A distinct wave-like pattern emerges after many discrete particle impacts as if each particle is passing through both slits and interfering with itself. Here we present a temporally- and spatially-resolved measurement of the double-slit interference pattern using single photons. We send single photons through a birefringent double-slit apparatus and use a linear array of single-photon detectors to observe the developing interference pattern. The analysis of the buildup allows us to compare quantum mechanics and the corpuscular model, which aims to explain the mystery of single-particle interference. Finally, we send one photon from an entangled pair through our double-slit setup and show the dependence of the resulting interference pattern on the twin photon's measured state. Our results provide new insight into the dynamics of the buildup process in the double-slit experiment, and can be used as a valuable resource in quantum information applications. PMID:24770360
Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier
2017-01-01
Archival of experimental data in public databases has increasingly become a requirement for most funding agencies and journals. These data-sharing policies have the potential to maximize data reuse, and to enable confirmatory as well as novel studies. However, the lack of standard data formats can severely hinder data reuse. In photon-counting-based single-molecule fluorescence experiments, data is stored in a variety of vendor-specific or even setup-specific (custom) file formats, making data interchange prohibitively laborious, unless the same hardware-software combination is used. Moreover, the number of available techniques and setup configurations make it difficult to find a common standard. To address this problem, we developed Photon-HDF5 (www.photon-hdf5.org), an open data format for timestamp-based single-molecule fluorescence experiments. Building on the solid foundation of HDF5, Photon-HDF5 provides a platform- and language-independent, easy-to-use file format that is self-describing and supports rich metadata. Photon-HDF5 supports different types of measurements by separating raw data (e.g. photon-timestamps, detectors, etc) from measurement metadata. This approach allows representing several measurement types and setup configurations within the same core structure and makes possible extending the format in backward-compatible way. Complementing the format specifications, we provide open source software to create and convert Photon-HDF5 files, together with code examples in multiple languages showing how to read Photon-HDF5 files. Photon-HDF5 allows sharing data in a format suitable for long term archival, avoiding the effort to document custom binary formats and increasing interoperability with different analysis software. We encourage participation of the single-molecule community to extend interoperability and to help defining future versions of Photon-HDF5. PMID:28649160
Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier
2016-02-13
Archival of experimental data in public databases has increasingly become a requirement for most funding agencies and journals. These data-sharing policies have the potential to maximize data reuse, and to enable confirmatory as well as novel studies. However, the lack of standard data formats can severely hinder data reuse. In photon-counting-based single-molecule fluorescence experiments, data is stored in a variety of vendor-specific or even setup-specific (custom) file formats, making data interchange prohibitively laborious, unless the same hardware-software combination is used. Moreover, the number of available techniques and setup configurations make it difficult to find a common standard. To address this problem, we developed Photon-HDF5 (www.photon-hdf5.org), an open data format for timestamp-based single-molecule fluorescence experiments. Building on the solid foundation of HDF5, Photon-HDF5 provides a platform- and language-independent, easy-to-use file format that is self-describing and supports rich metadata. Photon-HDF5 supports different types of measurements by separating raw data (e.g. photon-timestamps, detectors, etc) from measurement metadata. This approach allows representing several measurement types and setup configurations within the same core structure and makes possible extending the format in backward-compatible way. Complementing the format specifications, we provide open source software to create and convert Photon-HDF5 files, together with code examples in multiple languages showing how to read Photon-HDF5 files. Photon-HDF5 allows sharing data in a format suitable for long term archival, avoiding the effort to document custom binary formats and increasing interoperability with different analysis software. We encourage participation of the single-molecule community to extend interoperability and to help defining future versions of Photon-HDF5.
NASA Astrophysics Data System (ADS)
Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier
2016-02-01
Archival of experimental data in public databases has increasingly become a requirement for most funding agencies and journals. These data-sharing policies have the potential to maximize data reuse, and to enable confirmatory as well as novel studies. However, the lack of standard data formats can severely hinder data reuse. In photon-counting-based single-molecule fluorescence experiments, data is stored in a variety of vendor-specific or even setup-specific (custom) file formats, making data interchange prohibitively laborious, unless the same hardware-software combination is used. Moreover, the number of available techniques and setup configurations make it difficult to find a common standard. To address this problem, we developed Photon-HDF5 (www.photon-hdf5.org), an open data format for timestamp-based single-molecule fluorescence experiments. Building on the solid foundation of HDF5, Photon- HDF5 provides a platform- and language-independent, easy-to-use file format that is self-describing and supports rich metadata. Photon-HDF5 supports different types of measurements by separating raw data (e.g. photon-timestamps, detectors, etc) from measurement metadata. This approach allows representing several measurement types and setup configurations within the same core structure and makes possible extending the format in backward-compatible way. Complementing the format specifications, we provide open source software to create and convert Photon- HDF5 files, together with code examples in multiple languages showing how to read Photon-HDF5 files. Photon- HDF5 allows sharing data in a format suitable for long term archival, avoiding the effort to document custom binary formats and increasing interoperability with different analysis software. We encourage participation of the single-molecule community to extend interoperability and to help defining future versions of Photon-HDF5.
Photon and a preferred frame scenario
NASA Astrophysics Data System (ADS)
Rembieliński, Jakub; Ciborowski, Jacek
2018-06-01
Structure of the space of photonic states is discussed in the context of a working hypothesis of existence of a preferred frame for photons. Two polarization experiments are proposed to test the preferred frame scenario.
Two-photon interference of polarization-entangled photons in a Franson interferometer.
Kim, Heonoh; Lee, Sang Min; Kwon, Osung; Moon, Han Seb
2017-07-18
We present two-photon interference experiments with polarization-entangled photon pairs in a polarization-based Franson-type interferometer. Although the two photons do not meet at a common beamsplitter, a phase-insensitive Hong-Ou-Mandel type two-photon interference peak and dip fringes are observed, resulting from the two-photon interference effect between two indistinguishable two-photon probability amplitudes leading to a coincidence detection. A spatial quantum beating fringe is also measured for nondegenerate photon pairs in the same interferometer, although the two-photon states have no frequency entanglement. When unentangled polarization-correlated photons are used as an input state, the polarization entanglement is successfully recovered through the interferometer via delayed compensation.
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.
2009-01-01
We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the C02 measurement from the NASA Glenn Lear 25 aircraft. The airborne lidar steps the pulsed laser's wavelength across a selected C02 line with 20 steps per scan. The line scan rate is 450 Hz and laser pulse widths are I usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric C02 column measurements using the 1571.4, 1572.02 and 1572.33 nm C02 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These nights were coordinated with DOE investigators who Hew an in-situ C02 sensor on a Cessna aircraft under the path. The increasing C02 line absorptions with altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. This spring we improved the aircraft's nadir window. During July and August 2009 we made 9 additional 2 hour long flights and measured the atmospheric C02 absorption and line shapes using the 1572.33 nm C02 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and Virginia. Strong laser signals and clear line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. The Oklahoma and east coast t1ights were coordinated with a LaRC/ITT C02 lidar on the LaRC UC-12 aircraft, a LaRC insitu C02 sensor, and the Oklahoma flights also included a JPL C02 lidar on a Twin Otter aircraft. Ed Browell and Gary Spiers led the LaRC and JPL teams. More details of the t1ights, measurements and analysis will be described in the presentation.
Development of a sonar-based object recognition system
NASA Astrophysics Data System (ADS)
Ecemis, Mustafa Ihsan
2001-02-01
Sonars are used extensively in mobile robotics for obstacle detection, ranging and avoidance. However, these range-finding applications do not exploit the full range of information carried in sonar echoes. In addition, mobile robots need robust object recognition systems. Therefore, a simple and robust object recognition system using ultrasonic sensors may have a wide range of applications in robotics. This dissertation develops and analyzes an object recognition system that uses ultrasonic sensors of the type commonly found on mobile robots. Three principal experiments are used to test the sonar recognition system: object recognition at various distances, object recognition during unconstrained motion, and softness discrimination. The hardware setup, consisting of an inexpensive Polaroid sonar and a data acquisition board, is described first. The software for ultrasound signal generation, echo detection, data collection, and data processing is then presented. Next, the dissertation describes two methods to extract information from the echoes, one in the frequency domain and the other in the time domain. The system uses the fuzzy ARTMAP neural network to recognize objects on the basis of the information content of their echoes. In order to demonstrate that the performance of the system does not depend on the specific classification method being used, the K- Nearest Neighbors (KNN) Algorithm is also implemented. KNN yields a test accuracy similar to fuzzy ARTMAP in all experiments. Finally, the dissertation describes a method for extracting features from the envelope function in order to reduce the dimension of the input vector used by the classifiers. Decreasing the size of the input vectors reduces the memory requirements of the system and makes it run faster. It is shown that this method does not affect the performance of the system dramatically and is more appropriate for some tasks. The results of these experiments demonstrate that sonar can be used to develop a low-cost, low-computation system for real-time object recognition tasks on mobile robots. This system differs from all previous approaches in that it is relatively simple, robust, fast, and inexpensive.
Characteristics of C-band meteorological radar echoes at Petrolina, Northeast Brazil
NASA Astrophysics Data System (ADS)
da Silva Aragão, Maria Regina; Correia, Magaly De Fatima; Alves de Araújo, Heráclio
2000-03-01
A unique set of C-band meteorological radar echoes is analyzed. The data were obtained in Petrolina (9°24S, 40°30W), located in the semi-arid region of Northeast Brazil, from January to June 1985. The characteristics analyzed are echo areas, types and patterns.As in other tropical areas of the world, echoes with an area100 km2 dominated, making up 53% of the total number of echoes while echoes with 100 km2
Pseudo Steady-State Free Precession for MR-Fingerprinting.
Assländer, Jakob; Glaser, Steffen J; Hennig, Jürgen
2017-03-01
This article discusses the signal behavior in the case the flip angle in steady-state free precession sequences is continuously varied as suggested for MR-fingerprinting sequences. Flip angle variations prevent the establishment of a steady state and introduce instabilities regarding to magnetic field inhomogeneities and intravoxel dephasing. We show how a pseudo steady state can be achieved, which restores the spin echo nature of steady-state free precession. Based on geometrical considerations, relationships between the flip angle, repetition and echo time are derived that suffice to the establishment of a pseudo steady state. The theory is tested with Bloch simulations as well as phantom and in vivo experiments. A typical steady-state free precession passband can be restored with the proposed conditions. The stability of the pseudo steady state is demonstrated by comparing the evolution of the signal of a single isochromat to one resulting from a spin ensemble. As confirmed by experiments, magnetization in a pseudo steady state can be described with fewer degrees of freedom compared to the original fingerprinting and the pseudo steady state results in more reliable parameter maps. The proposed conditions restore the spin-echo-like signal behavior typical for steady-state free precession in fingerprinting sequences, making this approach more robust to B 0 variations. Magn Reson Med 77:1151-1161, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
The Effect of Concomitant Fields in Fast Spin Echo Acquisition on Asymmetric MRI Gradient Systems
Tao, Shengzhen; Weavers, Paul T.; Trzasko, Joshua D.; Huston, John; Shu, Yunhong; Gray, Erin M.; Foo, Thomas K.F.; Bernstein, Matt A.
2017-01-01
Purpose To investigate the effect of the asymmetric gradient concomitant fields (CF) with zeroth and first-order spatial dependence on fast/turbo spin-echo acquisitions, and to demonstrate the effectiveness of their real-time compensation. Methods After briefly reviewing the CF produced by asymmetric gradients, the effects of the additional zeroth and first-order CFs on these systems are investigated using extended-phase graph simulations. Phantom and in vivo experiments are performed to corroborate the simulation. Experiments are performed before and after the real-time compensations using frequency tracking and gradient pre-emphasis to demonstrate their effectiveness in correcting the additional CFs. The interaction between the CFs and prescan-based correction to compensate for eddy currents is also investigated. Results It is demonstrated that, unlike the second-order CFs on conventional gradients, the additional zeroth/first-order CFs on asymmetric gradients cause substantial signal loss and dark banding in fast spin-echo acquisitions within a typical brain-scan field of view. They can confound the prescan correction for eddy currents and degrade image quality. Performing real-time compensation successfully eliminates the artifacts. Conclusions We demonstrate that the zeroth/first-order CFs specific to asymmetric gradients can cause substantial artifacts, including signal loss and dark bands for brain imaging. These effects can be corrected using real-time compensation. PMID:28643408
Ramsay, Elizabeth; Mougenot, Charles; Kazem, Mohammad; Laetsch, Theodore W; Chopra, Rajiv
2015-10-01
Because existing magnetic resonance thermometry techniques do not provide temperature information within bone, high-intensity focused ultrasound (HIFU) exposures in bone are monitored using temperature changes in adjacent soft tissues. In this study, the potential to monitor temperature changes in cortical bone using a short TE gradient echo sequence is evaluated. The feasibility of this proposed method was initially evaluated by measuring the temperature dependence of the gradient echo signal during cooling of cortical bone samples implanted with fiber-optic temperature sensors. A subsequent experiment involved heating a cortical bone sample using a clinical MR-HIFU system. A consistent relationship between temperature change and the change in magnitude signal was observed within and between cortical bone samples. For the two-dimensional gradient echo sequence implemented in this study, a least-squares linear fit determined the percentage change in signal to be (0.90 ± 0.01)%/°C. This relationship was used to estimate temperature changes observed in the HIFU experiment and these temperatures agreed well with those measured from an implanted fiber-optic sensor. This method appears capable of displaying changes related to temperature in cortical bone and could improve the safety of MR-HIFU treatments. Further investigations into the sensitivity of the technique in vivo are warranted. © 2014 Wiley Periodicals, Inc.
The role of tragus on echolocating bat, Eptesicus fuscus
NASA Astrophysics Data System (ADS)
Chiu, Chen; Moss, Cynthia
2005-04-01
Echolocating bats produce ultrasonic vocal signals and utilize the returning echoes to detect, localize and track prey, and also to avoid obstacles. The pinna and tragus, two major components of the bats external ears, play important roles in filtering returning echoes. The tragus is generally believed to play a role in vertical sound localization. The purpose of this study is to further examine how manipulation of the tragus affects a free-flying bat's prey capture and obstacle avoidance behavior. The first part of this study involved a prey capture experiment, and the bat was trained to catch the tethered mealworms in a large room. The second experiment involved obstacle avoidance, and the bat's task was to fly through the largest opening from a horizontal wire array without touching the wires. In both experiments, the bat performed the tasks under three different conditions: with intact tragus, tragus-deflection and recovery from tragus-deflection. Significantly lower performance was observed in both experiments when tragi were glued down. However, the bat adjusted quickly and returned to baseline performance a few days after the manipulation. The results suggest that tragus-deflection does have effects on both the prey capture and obstacle avoidance behavior. [Work supported by NSF.
Relationship between tornadoes and hook echoes on April 3, 1974
NASA Technical Reports Server (NTRS)
Forbes, G. S.
1975-01-01
Radar observations of tornado families occurring on April 3, 1974 are discussed. Of the 93 tornadoes included in the sample, 81% were associated with hook-like echoes with appendages at least 40 deg to the south of the echo movement. At least one tornado was associated with 62% of the hook-like echoes observed. All of the tornadoes with intensities of F 4 and F 5 were produced by hook-like echoes; the mean intensity of all tornadoes associated with this type of echo was F 3, while the mean intensity of the remaining tornadoes was F1. The tornadic hook-like echoes moved to the right of the non-tornadic echoes forming a tornado line in advance of the squall line. Some tornadoes were associated with 'spiral' echoes.
NASA Astrophysics Data System (ADS)
Vaglio-Gaudard, C.; Stoll, K.; Ravaux, S.; Lemaire, M.; Colombier, A. C.; Hudelot, J. P.; Bernard, D.; Amharrak, H.; Di Salvo, J.; Gruel, A.
2014-02-01
An experiment named AMMON is dedicated to the analysis of the neutron and photon physics of the Jules Horowitz Reactor (JHR). AMMON, performed in the EOLE zero-power experimental reactor at CEA Cadarache, is finished since April 2013. Photon heating measurements were performed with both Thermoluminescent Dosimeters (TLD-400s) and Optically-Stimulated Dosimeters (OSLDs) in three AMMON configurations. The objective is to provide data for the experimental validation of the JHR photon calculation tool. The first analysis of the photon heating measurements of the reference configuration (AMMON/REF) is presented in this paper. The reference configuration consists of an experimental zone of 7 JHR assemblies with U3Si2 - Al 27% 235U enriched fuel curved plates surrounded by a driver zone with 623 standard PWR UOx fuel pins. The photon heating has been measured in the aluminum follower of the central and peripheral assemblies, and in aluminum fillers in the rack between assemblies. The measurement analysis is based on Monte Carlo TRIPOLI-4 ® version 8.1 calculations modeling the core exact three-dimensional geometry. The JEFF nuclear data library is used for the calculation of the neutron transport and the photon emission in the AMMON/REF experiment. The photon transport is made on the basis of the EPDL97 photo-atomic library. The prompt and delayed doses deposited in dosimeters have been estimated separately. The transport of 4 (neutrons, photons, electrons and positrons) or 3 particles (photons, electrons and positrons) is simulated in the calculations for the AMMON/REF analysis, depending whether the prompt or delayed dose is calculated. The TRIPOLI-4.8.1 ® calculations makes it possible the modeling of the electromagnetic cascade shower with both electrons and positrons. The delayed dose represents about 25% of the total photon energy deposition in the dosimeters. The comparison between Calculation and Experiment brings into relief a slight systematic underestimation of the calculated global photon energy deposition: (C - E)/E = - 8% ±4.5% (1σ). A special care has been directed towards the determination of the uncertainty associated with the (C-E)/E values. The slight underestimation could be probably explained by an underestimation in the photon emission with the JEFF library.
Phase jitter in a differential phase experiment.
NASA Technical Reports Server (NTRS)
Tanenbaum, B. S.; Connolly, D. J.; Austin, G. L.
1973-01-01
Austin (1971) had concluded that, because of the 'phase jitter,' the differential phase experiment is useful over a more limited height range than the differential absorption experiment. Several observations are presented to show that this conclusion is premature. It is pointed out that the logical basis of the differential absorption experiment also requires that the O- and X-mode echoes, at a given time, come from the same irregularities. Austin's calculations are believed to contain a systematic error above 80 km.
Matsuo, Masayuki; Kanematsu, Masayuki; Itoh, Kyo; Murakami, Takamichi; Maetani, Yoji; Kondo, Hiroshi; Goshima, Satoshi; Kako, Nobuo; Hoshi, Hiroaki; Konishi, Junji; Moriyama, Noriyuki; Nakamura, Hironobu
2004-01-01
The purpose of our study was to compare the detectability of malignant hepatic tumors on ferumoxides-enhanced MRI using five gradient-recalled echo sequences at different TEs. Ferumoxides-enhanced MRIs obtained in 31 patients with 50 malignant hepatic tumors (33 hepatocellular carcinomas, 17 metastases) were reviewed retrospectively by three independent offsite radiologists. T1-weighted gradient-recalled echo images with TEs of 1.4 and 4.2 msec; T2*-weighted gradient-recalled echo images with TEs of 6, 8, and 10 msec; and T2-weighted fast spin-echo images of livers were randomly reviewed on a segment-by-segment basis. Observer performance was tested using the McNemar test and receiver operating characteristic analysis for the clustered data. Lesion-to-liver contrast-to-noise ratio was also assessed. Mean lesion-to-liver contrast-to-noise ratios were negative and lower with gradient-recalled echo at 1.4 msec than with the other sequences. Sensitivity was higher (p < 0.05) with gradient-recalled echo at 6, 8, and 10 msec and fast spin-echo sequences (75-83%) than with gradient-recalled echo sequences at 1.4 and 4.2 msec (46-48%), and was higher (p < 0.05) with gradient-recalled echo sequence at 8 msec (83%) than with gradient-recalled echo at 6 msec and fast spin-echo sequences (75-78%). Specificity was comparably high with all sequences (95-98%). The area under the receiver operating characteristic curve (A(z)) was greater (p < 0.05) with gradient-recalled echo at 6, 8, and 10 msec and fast spin-echo sequences (A(z) = 0.91-0.93) than with gradient-recalled echo sequences at 1.4 and 4.2 msec (A(z) = 0.82-0.85). In the detection of malignant hepatic tumors, gradient-recalled echo sequences at 8 msec showed the highest sensitivity and had an A(z) value and lesion-to-liver contrast-to-noise ratio comparable with values from gradient-recalled echo sequences at 6 and 10 msec and fast spin-echo sequences.
ERIC Educational Resources Information Center
Lau, Andrew J.
2013-01-01
This dissertation is an ethnography conducted with the Los Angeles-based community arts organization called Machine Project. Operating both a storefront gallery in Echo Park and as a loose association of contemporary artists, performers, curators, and designers, Machine Project seeks to make "rarefied knowledge accessible" through…
Two-Photon Ghost Image and Interference-Diffraction
NASA Technical Reports Server (NTRS)
Shih, Y. H.; Sergienko, A. V.; Pittman, T. B.; Strekalov, D. V.; Klyshko, D. N.
1996-01-01
One of the most surprising consequences of quantum mechanics is entanglement of two or more distance particles. The two-particle entangled state was mathematically formulated by Schrodinger. Based on this unusual quantum behavior, EPR defined their 'physical reality' and then asked the question: 'Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?' One may not appreciate EPR's criterion of physical reality and insist that 'no elementary quantum phenomenon is a phenomenon until it is a recorded phenomenon'. Optical spontaneous parametric down conversion (SPDC) is the most effective mechanism to generate an EPR type entangled two-photon state. In SPDC, an optical beam, called the pump, is incident on a birefringent crystal. The pump is intense enough so that nonlinear effects lead to the conversion of pump photons into pairs of photons, historically called signal and idler. Technically, the SPDC is said to be type-1 or type-2, depending on whether the signal and idler beams have parallel or orthogonal polarization. The SPDC conversion efficiency is typically on the order of 10(exp -9) to 10(exp -11), depending on the SPDC nonlinear material. The signal and idler intensities are extremely low, only single photon detection devices can register them. The quantum entanglement nature of SPDC has been demonstrated in EPR-Bohm experiments and Bell's inequality measurements. The following two experiments were recently performed in our laboratory, which are more closely related to the original 1935 EPR gedankenezperiment. The first experiment is a two-photon optical imaging type experiment, which has been named 'ghost image' by the physics community. The signal and idler beams of SPDC are sent in different directions, so that the detection of the signal and idler photons can be performed by two distant photon counting detectors. An aperture object (mask) is placed in front of the signal photon detector and illuminated by the signal beam through a convex lens. Surprisingly, an image of this aperture is observed in the idler beam, by scanning the idler photon detector in the transverse plane of the idler beam, if we are sure that the idler photon detector 'catches' the 'twin brother' of the signal, which can be easily performed by a coincidence measurement. This effect is even more striking when we found that the object-lens-image relationship satisfies the Gaussian thin lens equation. The second experiment demonstrates two-photon 'ghost' interference-diffraction. The experimental set up is similar to the image experiment, except that rather than a lens and an aperture it is a Young's double-slit (or a single-slit) inserted into the path of the signal beam. We could not find any interference (or diffraction) pattern behind the slit. Surprisingly, an interference (or diffraction) pattern is observed when scanning the detector in the idler beam, if we are sure that the idler photon detector 'catches' the 'twin brother' of the signal.
High-Efficiency Plug-and-Play Source of Heralded Single Photons
NASA Astrophysics Data System (ADS)
Montaut, Nicola; Sansoni, Linda; Meyer-Scott, Evan; Ricken, Raimund; Quiring, Viktor; Herrmann, Harald; Silberhorn, Christine
2017-08-01
Reliable generation of single photons is of key importance for fundamental physical experiments and to demonstrate quantum protocols. Waveguide-based photon-pair sources have shown great promise in this regard due to their large spectral tunability, high generation rates, and long temporal coherence of the photon wave packet. However, integrating such sources with fiber-optic networks often results in a strong degradation of performance. We answer this challenge by presenting an alignment-free source of photon pairs in the telecommunications band that maintains heralding efficiency >50 % even after fiber pigtailing, photon separation, and pump suppression. The source combines this outstanding performance in heralding efficiency with a compact, stable, and easy-to-use "plug-and-play" package: one simply connects a laser to the input and detectors to the output, and the source is ready to use. This high performance can be achieved even outside the lab without the need for alignment which makes the source extremely useful for any experiment or demonstration needing heralded single photons.
Electrically driven quantum light emission in electromechanically tuneable photonic crystal cavities
NASA Astrophysics Data System (ADS)
Petruzzella, M.; Pagliano, F. M.; Zobenica, Ž.; Birindelli, S.; Cotrufo, M.; van Otten, F. W. M.; van der Heijden, R. W.; Fiore, A.
2017-12-01
A single quantum dot deterministically coupled to a photonic crystal environment constitutes an indispensable elementary unit to both generate and manipulate single-photons in next-generation quantum photonic circuits. To date, the scaling of the number of these quantum nodes on a fully integrated chip has been prevented by the use of optical pumping strategies that require a bulky off-chip laser along with the lack of methods to control the energies of nano-cavities and emitters. Here, we concurrently overcome these limitations by demonstrating electrical injection of single excitonic lines within a nano-electro-mechanically tuneable photonic crystal cavity. When an electrically driven dot line is brought into resonance with a photonic crystal mode, its emission rate is enhanced. Anti-bunching experiments reveal the quantum nature of these on-demand sources emitting in the telecom range. These results represent an important step forward in the realization of integrated quantum optics experiments featuring multiple electrically triggered Purcell-enhanced single-photon sources embedded in a reconfigurable semiconductor architecture.
Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P
2014-01-01
In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.
Photonics: how to get familiar with it
NASA Astrophysics Data System (ADS)
Senderáková, Dagmar; Mesaros, Vladimir; Strba, Anton
2010-12-01
Year 2010 brought the 50th anniversary of laser. Our century seems to be called the photon-century. Light in our lives plays both pervasive and primordial role. To describe the new role of today "interdisciplinary optics" a new term - photonics appeared. The term was coined in 1967 by Pierre Aigrain, a French scientist, who defined photonics as the science of the harnessing of light. Photonics encompasses the generation of light, the detection of light, the management of light through guidance, manipulation, and amplification, and most importantly, its utilisation for the benefit of mankind. Number of photonics applications proves its importance. On one side, there is a demand for skilled people with photonics training. On the other side, nearly everyone is affected by science in a way and it would be useful to have at least a basic understanding of scientific principles. However, it is not a brand-new idea, an effort to popularise new scientific achievements has still been present. The contribution is based on experience of popularising photonics to high school students and attracting undergraduate University students for basis of optics via photonics. The aim of it is to share and exchange experience.
Photon-HDF5: An Open File Format for Timestamp-Based Single-Molecule Fluorescence Experiments.
Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier
2016-01-05
We introduce Photon-HDF5, an open and efficient file format to simplify exchange and long-term accessibility of data from single-molecule fluorescence experiments based on photon-counting detectors such as single-photon avalanche diode, photomultiplier tube, or arrays of such detectors. The format is based on HDF5, a widely used platform- and language-independent hierarchical file format for which user-friendly viewers are available. Photon-HDF5 can store raw photon data (timestamp, channel number, etc.) from any acquisition hardware, but also setup and sample description, information on provenance, authorship and other metadata, and is flexible enough to include any kind of custom data. The format specifications are hosted on a public website, which is open to contributions by the biophysics community. As an initial resource, the website provides code examples to read Photon-HDF5 files in several programming languages and a reference Python library (phconvert), to create new Photon-HDF5 files and convert several existing file formats into Photon-HDF5. To encourage adoption by the academic and commercial communities, all software is released under the MIT open source license. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Quantum interference of electrically generated single photons from a quantum dot.
Patel, Raj B; Bennett, Anthony J; Cooper, Ken; Atkinson, Paola; Nicoll, Christine A; Ritchie, David A; Shields, Andrew J
2010-07-09
Quantum interference lies at the foundation of many protocols for scalable quantum computing and communication with linear optics. To observe these effects the light source must emit photons that are indistinguishable. From a technological standpoint, it would be beneficial to have electrical control over the emission. Here we report of an electrically driven single-photon source emitting indistinguishable photons. The device consists of a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode. Indistinguishability of consecutive photons is tested in a two-photon interference experiment under two modes of operation, continuous and pulsed current injection. We also present a complete theory based on the interference of photons with a Lorentzian spectrum which we compare to both our continuous wave and pulsed experiments. In the former case, a visibility was measured limited only by the timing resolution of our detection system. In the case of pulsed injection, we employ a two-pulse voltage sequence which suppresses multi-photon emission and allows us to carry out temporal filtering of photons which have undergone dephasing. The characteristic Hong-Ou-Mandel 'dip' is measured, resulting in a visibility of 64 +/- 4%.
Photon-HDF5: An Open File Format for Timestamp-Based Single-Molecule Fluorescence Experiments
Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier
2016-01-01
We introduce Photon-HDF5, an open and efficient file format to simplify exchange and long-term accessibility of data from single-molecule fluorescence experiments based on photon-counting detectors such as single-photon avalanche diode, photomultiplier tube, or arrays of such detectors. The format is based on HDF5, a widely used platform- and language-independent hierarchical file format for which user-friendly viewers are available. Photon-HDF5 can store raw photon data (timestamp, channel number, etc.) from any acquisition hardware, but also setup and sample description, information on provenance, authorship and other metadata, and is flexible enough to include any kind of custom data. The format specifications are hosted on a public website, which is open to contributions by the biophysics community. As an initial resource, the website provides code examples to read Photon-HDF5 files in several programming languages and a reference Python library (phconvert), to create new Photon-HDF5 files and convert several existing file formats into Photon-HDF5. To encourage adoption by the academic and commercial communities, all software is released under the MIT open source license. PMID:26745406
Relativity, entanglement and the physical reality of the photon
NASA Astrophysics Data System (ADS)
Tiwari, S. C.
2002-04-01
Recent experiments on the classic Einstein-Podolsky-Rosen (EPR) setting claim to test the compatibility between nonlocal quantum entanglement and the (special) theory of relativity. Confirmation of quantum theory has led to the interpretation that Einstein's image of physical reality for each photon in the EPR pair cannot be maintained. A detailed critique on two representative experiments is presented following the original EPR notion of local realism. It is argued that relativity does not enter into the picture, however for the Bell-Bohm version of local realism in terms of hidden variables such experiments are significant. Of the two alternatives, namely incompleteness of quantum theory for describing an individual quantum system, and the ensemble view, it is only the former that has been ruled out by the experiments. An alternative approach gives a statistical ensemble interpretation of the observed data, and the significant conclusion that these experiments do not deny physical reality of the photon is obtained. After discussing the need for a photon model, a vortex structure is proposed based on the space-time invariant property-spin, and pure gauge fields. To test the prime role of spin for photons and the angular-momentum interpretation of electromagnetic fields, experimental schemes feasible in modern laboratories are suggested.
NASA Astrophysics Data System (ADS)
Bonivento, Walter M.
2018-02-01
This paper describes the basic ideas and the first simulation results of a new electro-magnetic calorimeter concept, named SplitCal, aimed at optimising the measurement of photon direction in fixed-target experiment configuration, with high photon detection efficiency. This calorimeter was designed for the invariant mass reconstruction of axion-like particles decaying into two photons in the mass range 200 MeV to 1 GeV for the proposed proton beam dump experiment SHiP at CERN. Preliminary results indicate that angular resolutions better than obtained by past experiments can be achieved with this design. An implementation of this concept with real technologies is under study.
7 Tesla compatible in-bore display for functional magnetic resonance imaging.
Groebner, Jens; Berger, Moritz Cornelius; Umathum, Reiner; Bock, Michael; Rauschenberg, Jaane
2013-08-01
A liquid crystal display was modified for use inside a 7 T MR magnet. SNR measurements were performed using different imaging sequences with the monitor absent, present, or activated. fMRI with a volunteer was conducted using a visual stimulus. SNR was reduced by 3.7%/7.9% in echo planar/fast-spin echo images when the monitor was on which can be explained by the limited shielding of the coated front window (40 dB). In the fMRI experiments, activated regions in the visual cortex were clearly visible. The monitor provided excellent resolution at minor SNR reduction in EPI images, and is thus suitable for fMRI at ultra-high field.
NASA Astrophysics Data System (ADS)
Marouf, E.; Flasar, M.; French, R.; Kliore, A.; Nagy, A.; Rappaport, N.; McGhee, C.; Schinder, P.; Simpson, R.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Kahan, D.; Kern, A.; Rochblatt, D.
2006-12-01
Cassini conducted the first two Radio Science bistatic scattering observations of Titan's surface on March 18 (T12) and May 20 (T14), 2006. The experiment was designed to search for mirror-like (quasi-specular) reflections from relatively flat surface regions. Three sinusoidal signals (0.94, 3.6, and 13 cm-wavelength; Ka-, X-, and S-band) transmitted by Cassini were used to illuminate and continuously track the region on Titan's surface where specular reflection is expected. The signals received at the Earth receiving stations (70-m for X and S, 34-m for Ka) of the NASA Deep Space Network were then searched for a surface echo. The transmitted signals are right circularly polarized (RCP). Both same sense (RCP) and opposite sense (LCP) polarized received components were recorded. The receivers were tuned to account for the rapidly time varying Doppler shift of the echo center frequency and the data was recorded in a 16 kHz bandwidth. Special procedures were implemented to calibrate the system noise temperature of both polarization channels, hence ensure accurate measurement of the absolute signal power. The observation geometry captured surface scattering over roughly 50 to 70 degrees incidence angle, close to the Brewster angle range of water ice and liquid and solid hydrocarbons. No strong specular echo was detectable over most of the T12 ingress track (about 40 m duration) or the T14 ingress (28 m) and egress (31 m) tracks, likely indicating very rough terrain over most regions probed (about 15 deg South latitude). However, for limited time periods (2 to 6 m), weak X- band RCP and LCP echo components are clearly detectable on both the T14 ingress and egress sides (about 140 and 14 deg west longitude, respectively). An S-band RCP echo component is also marginally detectable, but not an LCP component. No Ka-band echo is detectable, likely because of strong atmospheric gaseous absorption. The detected X-band echo appears to originate form relatively flat surface regions of less than about 100 km spatial extent. Remarkably, for both the ingress and egress locations, the measured echo polarization ratio implies a similar surface dielectric constant of about 1.6, suggesting liquid hydrocarbons (although other porous material of unknown nature can not be excluded at this time). The results suggest that the footprint of the radio beam on Titan's surface likely swept across localized regions of liquid hydrocarbons that are several tens of kilometers in extent (lakes?) embedded within an otherwise very rough surface terrain.
Ellingson, Benjamin M.; Lai, Albert; Nguyen, Huytram N.; Nghiemphu, Phioanh L.; Pope, Whitney B.; Cloughesy, Timothy F.
2015-01-01
Purpose Evaluation of nonenhancing tumor (NET) burden is an important, yet challenging part of brain tumor response assessment. The current study focuses on using dual echo turbo spin echo MRI as a means of quickly estimating tissue T2, which can be used to objectively define NET burden. Experimental Design A series of experiments were performed to establish the use of T2 maps for defining NET burden. First, variation in T2 was determined using ACR water phantoms in 16 scanners evaluated over 3 years. Next, sensitivity and specificity of T2 maps for delineating NET from other tissues was examined. Then, T2-defined NET was used to predict survival in separate subsets of glioblastoma patients treated with radiation therapy, concurrent radiation and chemotherapy, or bevacizumab at recurrence. Results Variability in T2 in the ACR phantom was 3-5%. In training data, ROC analysis suggested that 125ms < T2 < 250ms could delineate NET with a sensitivity >90% and specificity >65%. Using this criterion, NET burden after completion of radiation therapy alone, or concurrent radiation therapy and chemotherapy, was shown to be predictive of survival (Cox, P<0.05), and the change in NET volume before and after bevacizumab therapy in recurrent glioblastoma was also a predictive of survival (P<0.05). Conclusions T2 maps using dual echo data are feasible, stable, and can be used to objectively define NET burden for use in brain tumor characterization, prognosis, and response assessment. The use of effective T2 maps for defining NET burden should be validated in a randomized clinical trial. PMID:25901082
Scaling of echolocation call parameters in bats.
Jones, G
1999-12-01
I investigated the scaling of echolocation call parameters (frequency, duration and repetition rate) in bats in a functional context. Low-duty-cycle bats operate with search phase cycles of usually less than 20 %. They process echoes in the time domain and are therefore intolerant of pulse-echo overlap. High-duty-cycle (>30 %) species use Doppler shift compensation, and they separate pulse and echo in the frequency domain. Call frequency scales negatively with body mass in at least five bat families. Pulse duration scales positively with mass in low-duty-cycle quasi-constant-frequency (QCF) species because the large aerial-hawking species that emit these signals fly fast in open habitats. They therefore detect distant targets and experience pulse-echo overlap later than do smaller bats. Pulse duration also scales positively with mass in the Hipposideridae, which show at least partial Doppler shift compensation. Pulse repetition rate corresponds closely with wingbeat frequency in QCF bat species that fly relatively slowly. Larger, fast-flying species often skip pulses when detecting distant targets. There is probably a trade-off between call intensity and repetition rate because 'whispering' bats (and hipposiderids) produce several calls per predicted wingbeat and because batches of calls are emitted per wingbeat during terminal buzzes. Severe atmospheric attenuation at high frequencies limits the range of high-frequency calls. Low-duty-cycle bats that call at high frequencies must therefore use short pulses to avoid pulse-echo overlap. Rhinolophids escape this constraint by Doppler shift compensation and, importantly, can exploit advantages associated with the emission of both high-frequency and long-duration calls. Low frequencies are unsuited for the detection of small prey, and low repetition rates may limit prey detection rates. Echolocation parameters may therefore constrain maximum body size in aerial-hawking bats.
Calibration methods and performance evaluation for pnCCDs in experiments with FEL radiation
NASA Astrophysics Data System (ADS)
Kimmel, N.; Andritschke, R.; Englert, L.; Epp, S.; Hartmann, A.; Hartmann, R.; Hauser, G.; Holl, P.; Ordavo, I.; Richter, R.; Strüder, L.; Ullrich, J.
2011-06-01
Measurement campaigns of the Max-Planck Advanced Study Group (ASG) in cooperation with the Center for Free Electron Laser Science (CFEL) at DESY-FLASH and SLAC-LCLS have established pnCCDs as universal photon imaging spectrometers in the energy range from 90 eV to 2 keV. In the CFEL-ASG multi purpose chamber (CAMP), pnCCD detector modules are an integral part of the design with the ability to detect photons at very small scattering angles. In order to fully exploit the spectroscopic and intensity imaging capability of pnCCDs, it is essentially important to translate the unprocessed raw data into units of photon counts for any given position on the detection area. We have studied the performance of pnCCDs in FEL experiments and laboratory test setups for the range of signal intensities from a few X-ray photons per signal frame to 100 or more photons with an energy of 2 keV per pixel. Based on these measurement results, we were able to characterize the response of pnCCDs over the experimentally relevant photon energy and intensity range. The obtained calibration results are directly relevant for the physics data analysis. The accumulated knowledge of the detector performance was implemented in guidelines for detector calibration methods which are suitable for the specific requirements in photon science experiments at Free Electron Lasers. We discuss the achievable accuracy of photon energy and photon count measurements before and after the application of calibration data. Charge spreading due to illumination of small spots with high photon rates is discussed with respect to the charge handling capacity of a pixel and the effect of the charge spreading process on the resulting signal patterns.
Quantum imaging with undetected photons.
Lemos, Gabriela Barreto; Borish, Victoria; Cole, Garrett D; Ramelow, Sven; Lapkiewicz, Radek; Zeilinger, Anton
2014-08-28
Information is central to quantum mechanics. In particular, quantum interference occurs only if there exists no information to distinguish between the superposed states. The mere possibility of obtaining information that could distinguish between overlapping states inhibits quantum interference. Here we introduce and experimentally demonstrate a quantum imaging concept based on induced coherence without induced emission. Our experiment uses two separate down-conversion nonlinear crystals (numbered NL1 and NL2), each illuminated by the same pump laser, creating one pair of photons (denoted idler and signal). If the photon pair is created in NL1, one photon (the idler) passes through the object to be imaged and is overlapped with the idler amplitude created in NL2, its source thus being undefined. Interference of the signal amplitudes coming from the two crystals then reveals the image of the object. The photons that pass through the imaged object (idler photons from NL1) are never detected, while we obtain images exclusively with the signal photons (from NL1 and NL2), which do not interact with the object. Our experiment is fundamentally different from previous quantum imaging techniques, such as interaction-free imaging or ghost imaging, because now the photons used to illuminate the object do not have to be detected at all and no coincidence detection is necessary. This enables the probe wavelength to be chosen in a range for which suitable detectors are not available. To illustrate this, we show images of objects that are either opaque or invisible to the detected photons. Our experiment is a prototype in quantum information--knowledge can be extracted by, and about, a photon that is never detected.
Neutron resonance spin-echo upgrade at the three-axis spectrometer FLEXX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groitl, F., E-mail: felix.groitl@psi.ch; Quintero-Castro, D. L.; Habicht, K.
2015-02-15
We describe the upgrade of the neutron resonance spin-echo setup at the cold neutron triple-axis spectrometer FLEXX at the BER II neutron source at the Helmholtz-Zentrum Berlin. The parameters of redesigned key components are discussed, including the radio frequency (RF) spin-flip coils, the magnetic shield, and the zero field coupling coils. The RF-flippers with larger beam windows allow for an improved neutron flux transfer from the source to the sample and further to the analyzer. The larger beam cross sections permit higher coil inclination angles and enable measurements on dispersive excitations with a larger slope of the dispersion. Due tomore » the compact design of the spin-echo units in combination with the increased coil tilt angles, the accessible momentum-range in the Larmor diffraction mode is substantially enlarged. In combination with the redesigned components of the FLEXX spectrometer, including the guide, the S-bender polarizer, the double focusing monochromator, and a Heusler crystal analyzer, the count rate increased by a factor of 15.5, and the neutron beam polarization is enhanced. The improved performance extends the range of feasible experiments, both for inelastic scattering on excitation lifetimes in single crystals, and for high-resolution Larmor diffraction. The experimental characterization of the instrument components demonstrates the reliable performance of the new neutron resonance spin-echo option, now available for the scientific community at FLEXX.« less
High duty cycle echolocation and prey detection by bats.
Lazure, Louis; Fenton, M Brock
2011-04-01
There are two very different approaches to laryngeal echolocation in bats. Although most bats separate pulse and echo in time by signalling at low duty cycles (LDCs), almost 20% of species produce calls at high duty cycles (HDCs) and separate pulse and echo in frequency. HDC echolocators are sensitive to Doppler shifts. HDC echolocation is well suited to detecting fluttering targets such as flying insects against a cluttered background. We used two complementary experiments to evaluate the relative effectiveness of LDC and HDC echolocation for detecting fluttering prey. We measured echoes from fluttering targets by broadcasting artificial bat calls, and found that echo amplitude was greatest for sounds similar to those used in HDC echolocation. We also collected field recordings of syntopic LDC and HDC bats approaching an insect-like fluttering target and found that HDC bats approached the target more often (18.6% of passes) than LDC bats (1.2% of passes). Our results suggest that some echolocation call characteristics, particularly duty cycle and pulse duration, translate into improved ability to detect fluttering targets in clutter, and that HDC echolocation confers a superior ability to detect fluttering prey in the forest understory compared with LDC echolocation. The prevalence of moths in the diets of HDC bats, which is often used as support for the allotonic frequency hypothesis, can therefore be partly explained by the better flutter detection ability of HDC bats.
Zhang, Bin; Song, Wen-Ai; Wei, Yue-Juan; Zhang, Dong-Song; Liu, Wen-Yi
2017-06-15
By simulating the sound field of a round piston transducer with the Kirchhoff integral theorem and analyzing the shape of ultrasound beams and propagation characteristics in a metal container wall, this study presents a model for calculating the echo sound pressure by using the Kirchhoff paraxial approximation theory, based on which and according to different ultrasonic impedance between gas and liquid media, a method for detecting the liquid level from outside of sealed containers is proposed. Then, the proposed method is evaluated through two groups of experiments. In the first group, three kinds of liquid media with different ultrasonic impedance are used as detected objects; the echo sound pressure is calculated by using the proposed model under conditions of four sets of different wall thicknesses. The changing characteristics of the echo sound pressure in the entire detection process are analyzed, and the effects of different ultrasonic impedance of liquids on the echo sound pressure are compared. In the second group, taking water as an example, two transducers with different radii are selected to measure the liquid level under four sets of wall thickness. Combining with sound field characteristics, the influence of different size transducers on the pressure calculation and detection resolution are discussed and analyzed. Finally, the experimental results indicate that measurement uncertainly is better than ±5 mm, which meets the industrial inspection requirements.
Zhang, Bin; Song, Wen-Ai; Wei, Yue-Juan; Zhang, Dong-Song; Liu, Wen-Yi
2017-01-01
By simulating the sound field of a round piston transducer with the Kirchhoff integral theorem and analyzing the shape of ultrasound beams and propagation characteristics in a metal container wall, this study presents a model for calculating the echo sound pressure by using the Kirchhoff paraxial approximation theory, based on which and according to different ultrasonic impedance between gas and liquid media, a method for detecting the liquid level from outside of sealed containers is proposed. Then, the proposed method is evaluated through two groups of experiments. In the first group, three kinds of liquid media with different ultrasonic impedance are used as detected objects; the echo sound pressure is calculated by using the proposed model under conditions of four sets of different wall thicknesses. The changing characteristics of the echo sound pressure in the entire detection process are analyzed, and the effects of different ultrasonic impedance of liquids on the echo sound pressure are compared. In the second group, taking water as an example, two transducers with different radii are selected to measure the liquid level under four sets of wall thickness. Combining with sound field characteristics, the influence of different size transducers on the pressure calculation and detection resolution are discussed and analyzed. Finally, the experimental results indicate that measurement uncertainly is better than ±5 mm, which meets the industrial inspection requirements. PMID:28617326
In vivo Proton Electron Double Resonance Imaging of Mice with Fast Spin Echo Pulse Sequence
Sun, Ziqi; Li, Haihong; Petryakov, Sergey; Samouilov, Alex; Zweier, Jay L.
2011-01-01
Purpose To develop and evaluate a 2D fast spin echo (FSE) pulse sequence for enhancing temporal resolution and reducing tissue heating for in vivo proton electron double resonance imaging (PEDRI) of mice. Materials and Methods A four-compartment phantom containing 2 mM TEMPONE was imaged at 20.1 mT using 2D FSE-PEDRI and regular gradient echo (GRE)-PEDRI pulse sequences. Control mice were infused with TEMPONE over ∼1 min followed by time-course imaging using the 2D FSE-PEDRI sequence at intervals of 10 – 30 s between image acquisitions. The average signal intensity from the time-course images was analyzed using a first-order kinetics model. Results Phantom experiments demonstrated that EPR power deposition can be greatly reduced using the FSE-PEDRI pulse sequence compared to the conventional gradient echo pulse sequence. High temporal resolution was achieved at ∼4 s per image acquisition using the FSE-PEDRI sequence with a good image SNR in the range of 233-266 in the phantom study. The TEMPONE half-life measured in vivo was ∼72 s. Conclusion Thus, the FSE-PEDRI pulse sequence enables fast in vivo functional imaging of free radical probes in small animals greatly reducing EPR irradiation time with decreased power deposition and provides increased temporal resolution. PMID:22147559
NASA Astrophysics Data System (ADS)
Sparks, Nathan Andrew
The CBELSA/TAPS experiment at the electron accelerator ELSA, in Bonn, Germany, was used in order to study the photoproduction of neutral pions off the proton with a linearly polarized photon beam; Neutral pions were reconstructed through their dominant decay mode into two photons. The photons were detected in a barrel/forward electromagnetic calorimeter system which covered 99% of the 4pi solid angle. The Crystal Barrel CsI(Tl) calorimeter detected photons at polar angles from 30° to 168°, while TAPS, a BaF2 spectrometer, covered forward polar angles from 5.8° to 30° and served as a fast trigger; Both calorimeters had complete azimuthal angular coverage. Coherent bremsstrahlung of electrons in a diamond radiator was used to produce a linearly polarized beam of photons with a coherent peak at 1305 or 1610 MeV. The analysis of these two datasets allowed for the measurement of the photon beam asymmetry in the beam photon energy range of 920 to 1680 MeV. For the first time, these results cover the very forward polar angles of the neutral pion. The measurements are compared to the SAID, MAID, and BnGa models and to previous measurements. These new measurements of the photon beam asymmetry contribute to the ongoing experimentally-driven exploration of the N and Delta resonances. The study of strange baryons provides a link between the strong interaction physics of the excited nucleons and the heavy flavor baryons. The upcoming GlueX experiment at Jefferson Lab is expected to provide an opportunity to examine strange baryons in much greater detail than ever before. GEANT-based Monte Carlo simulations of Cascade baryons at the GlueX experiment were conducted in order to better understand the capabilities of this experiment. A proposal, "An initial study of mesons and baryons containing strange quarks with GlueX", was submitted to the 40th Jefferson Lab Program Advisory Committee (PAC), in part, supported by these Cascade baryon simulations. 200 days of additional beam time were approved, with the proposal receiving an A scientific rating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki
We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion.
The Environmental Protection Agency's Enforcement and Compliance History Online (ECHO) website provides customizable and downloadable information about environmental inspections, violations, and enforcement actions for EPA-regulated facilities, like power plants and factories. ECHO advances public information by sharing data related to facility compliance with and regulatory agency activity related to air, hazardous waste, clean water, and drinking water regulations. ECHO offers many user-friendly options to explore data, including:1. Facility Search (http://echo.epa.gov/facilities/facility-search?mediaSelected=all): ECHO information is searchable by varied criteria, including location, facility type, and compliance status related to the Clean Air Act, Clean Water Act, Resource Conservation and Recovery Act, and Safe Drinking Water Act. Search results are customizable and downloadable.2. Comparative Maps (http://echo.epa.gov/maps/state-comparative-maps) and State Dashboards (http://echo.epa.gov/trends/comparative-maps-dashboards/state-air-dashboard): These tools offer aggregated information about facility compliance status and regulatory agency compliance monitoring and enforcement activity at the national and state level.3. Bulk Data Downloads (http://echo.epa.gov/resources/echo-data/data-downloads): One of ECHO's most popular features is the ability to work offline by downloading large data sets. Users can take advantage of the ECHO Exporter, which provides su
Echo characteristics of two salmon species
NASA Astrophysics Data System (ADS)
Nealson, Patrick A.; Horne, John K.; Burwen, Debby L.
2005-04-01
The Alaska Department of Fish and Game relies on split-beam hydroacoustic techniques to estimate Chinook salmon (Oncorhynchus tshawytscha) returns to the Kenai River. Chinook counts are periodically confounded by large numbers of smaller sockeye salmon (O. nerka). Echo target-strength has been used to distinguish fish length classes, but was too variable to separate Kenai River chinook and sockeye distributions. To evaluate the efficacy of alternate echo metrics, controlled acoustic measurements of tethered chinook and sockeye salmon were collected at 200 kHz. Echo returns were digitally sampled at 48 kHz. A suite of descriptive metrics were collected from a series of 1,000 echoes per fish. Measurements of echo width were least variable at the -3 dB power point. Initial results show echo elongation and ping-to-ping variability in echo envelope width were significantly greater for chinook than for sockeye salmon. Chinook were also observed to return multiple discrete peaks from a single broadcast echo. These characteristics were attributed to the physical width of chinook exceeding half of the broadcast echo pulse width at certain orientations. Echo phase variability, correlation coefficient and fractal dimension distributions did not demonstrate significant discriminatory power between the two species. [Work supported by ADF&G, ONR.
NASA Technical Reports Server (NTRS)
Buchner, S.; LaBel, K.; Barth, J.; Campbell, A.
2005-01-01
Space experiments are occasionally launched to study the effects of radiation on electronic and photonic devices. This begs the following questions: Are space experiments necessary? Do the costs justify the benefits? How does one judge success of space experiment? What have we learned from past space experiments? How does one design a space experiment? This viewgraph presentation provides information on the usefulness of space and ground tests for simulating radiation damage to spacecraft components.
Two-Photon Entanglement and EPR Experiments Using Type-2 Spontaneous Parametric Down Conversion
NASA Technical Reports Server (NTRS)
Sergienko, A. V.; Shih, Y. H.; Pittman, T. B.; Rubin, M. H.
1996-01-01
Simultaneous entanglement in spin and space-time of a two-photon quantum state generated in type-2 spontaneous parametric down-conversion is demonstrated by the observation of quantum interference with 98% visibility in a simple beam-splitter (Hanburry Brown-Twiss) anticorrelation experiment. The nonlocal cancellation of two-photon probability amplitudes as a result of this double entanglement allows us to demonstrate two different types of Bell's inequality violations in one experimental setup.
Experimental Ten-Photon Entanglement.
Wang, Xi-Lin; Chen, Luo-Kan; Li, W; Huang, H-L; Liu, C; Chen, C; Luo, Y-H; Su, Z-E; Wu, D; Li, Z-D; Lu, H; Hu, Y; Jiang, X; Peng, C-Z; Li, L; Liu, N-L; Chen, Yu-Ao; Lu, Chao-Yang; Pan, Jian-Wei
2016-11-18
We report the first experimental demonstration of quantum entanglement among ten spatially separated single photons. A near-optimal entangled photon-pair source was developed with simultaneously a source brightness of ∼12 MHz/W, a collection efficiency of ∼70%, and an indistinguishability of ∼91% between independent photons, which was used for a step-by-step engineering of multiphoton entanglement. Under a pump power of 0.57 W, the ten-photon count rate was increased by about 2 orders of magnitude compared to previous experiments, while maintaining a state fidelity sufficiently high for proving the genuine ten-particle entanglement. Our work created a state-of-the-art platform for multiphoton experiments, and enabled technologies for challenging optical quantum information tasks, such as the realization of Shor's error correction code and high-efficiency scattershot boson sampling.
ERIC Educational Resources Information Center
Saito, Eisuke; Hien, Do Thi; Hang, Khong Thi Diem
2010-01-01
This article explores the case of a Vietnamese teacher whose conception of teaching changed greatly following a short but intensive series of lessons based on the Japanese experiences with atomic bombs. The following three issues are considered: 1) what types of efforts teachers should make to increase the depth of their lessons, on the basis of…
A Three-Dimensional DOSY HMQC Experiment for the High-Resolution Analysis of Complex Mixtures
NASA Astrophysics Data System (ADS)
Barjat, Hervé; Morris, Gareth A.; Swanson, Alistair G.
1998-03-01
A three-dimensional experiment is described in which NMR signals are separated according to their proton chemical shift,13C chemical shift, and diffusion coefficient. The sequence is built up from a stimulated echo sequence with bipolar field gradient pulses and a conventional decoupled HMQC sequence. Results are presented for a model mixture of quinine, camphene, and geraniol in deuteriomethanol.
Generation of Single Photons and Entangled Photon Pairs from a Quantum Dot
NASA Astrophysics Data System (ADS)
Yamamoto, Y.; Pelton, M.; Santori, C.; Solomon, G. S.
2002-10-01
Current quantum cryptography systems are limited by the Poissonian photon statistics of a standard light source: a security loophole is opened up by the possibility of multiple-photon pulses. By replacing the source with a single-photon emitter, transmission rates of secure information can be improved. A single photon source is also essential to implement a linear optics quantum computer. We have investigated the use of single self-assembled InAs/GaAs quantum dots as such single-photon sources, and have seen a hundred-fold reduction in the multi-photon probability as compared to Poissonian pulses. An extension of our experiment should also allow for the generation of triggered, polarizationentangled photon pairs.
Shemesh, Noam; Alvarez, Gonzalo A; Frydman, Lucio
2013-12-01
Noninvasive measurements of microstructure in materials, cells, and in biological tissues, constitute a unique capability of gradient-assisted NMR. Diffusion-diffraction MR approaches pioneered by Callaghan demonstrated this ability; Oscillating-Gradient Spin-Echo (OGSE) methodologies tackle the demanding gradient amplitudes required for observing diffraction patterns by utilizing constant-frequency oscillating gradient pairs that probe the diffusion spectrum, D(ω). Here we present a new class of diffusion MR experiments, termed Non-uniform Oscillating-Gradient Spin-Echo (NOGSE), which dynamically probe multiple frequencies of the diffusion spectral density at once, thus affording direct microstructural information on the compartment's dimension. The NOGSE methodology applies N constant-amplitude gradient oscillations; N-1 of these oscillations are spaced by a characteristic time x, followed by a single gradient oscillation characterized by a time y, such that the diffusion dynamics is probed while keeping (N-1)x+y≡TNOGSE constant. These constant-time, fixed-gradient-amplitude, multi-frequency attributes render NOGSE particularly useful for probing small compartment dimensions with relatively weak gradients - alleviating difficulties associated with probing D(ω) frequency-by-frequency or with varying relaxation weightings, as in other diffusion-monitoring experiments. Analytical descriptions of the NOGSE signal are given, and the sequence's ability to extract small compartment sizes with a sensitivity towards length to the sixth power, is demonstrated using a microstructural phantom. Excellent agreement between theory and experiments was evidenced even upon applying weak gradient amplitudes. An MR imaging version of NOGSE was also implemented in ex vivo pig spinal cords and mouse brains, affording maps based on compartment sizes. The effects of size distributions on NOGSE are also briefly analyzed. Copyright © 2013 Elsevier Inc. All rights reserved.
Skinner, Jack T; Robison, Ryan K; Elder, Christopher P; Newton, Allen T; Damon, Bruce M; Quarles, C Chad
2014-12-01
Perfusion-based changes in MR signal intensity can occur in response to the introduction of exogenous contrast agents and endogenous tissue properties (e.g. blood oxygenation). MR measurements aimed at capturing these changes often implement single-shot echo planar imaging (ssEPI). In recent years ssEPI readouts have been combined with parallel imaging (PI) to allow fast dynamic multi-slice imaging as well as the incorporation of multiple echoes. A multiple spin- and gradient-echo (SAGE) EPI acquisition has recently been developed to allow measurement of transverse relaxation rate (R2 and R2(*)) changes in dynamic susceptibility contrast (DSC)-MRI experiments in the brain. With SAGE EPI, the use of PI can influence image quality, temporal resolution, and achievable echo times. The effect of PI on dynamic SAGE measurements, however, has not been evaluated. In this work, a SAGE EPI acquisition utilizing SENSE PI and partial Fourier (PF) acceleration was developed and evaluated. Voxel-wise measures of R2 and R2(*) in healthy brain were compared using SAGE EPI and conventional non-EPI multiple echo acquisitions with varying SENSE and PF acceleration. A conservative SENSE factor of 2 with PF factor of 0.73 was found to provide accurate measures of R2 and R2(*) in white (WM) (rR2=[0.55-0.79], rR2*=[0.47-0.71]) and gray (GM) matter (rR2=[0.26-0.59], rR2*=[0.39-0.74]) across subjects. The combined use of SENSE and PF allowed the first dynamic SAGE EPI measurements in muscle, with a SENSE factor of 3 and PF factor of 0.6 providing reliable relaxation rate estimates when compared to multi-echo methods. Application of the optimized SAGE protocol in DSC-MRI of high-grade glioma patients provided T1 leakage-corrected estimates of CBV and CBF as well as mean vessel diameter (mVD) and simultaneous measures of DCE-MRI parameters K(trans) and ve. Likewise, application of SAGE in a muscle reperfusion model allowed dynamic measures of R2', a parameter that has been shown to correlate with muscle oxy-hemoglobin saturation. Copyright © 2014 Elsevier Inc. All rights reserved.
Modeling of cortical signals using echo state networks
NASA Astrophysics Data System (ADS)
Zhou, Hanying; Wang, Yongji; Huang, Jiangshuai
2009-10-01
Diverse modeling frameworks have been utilized with the ultimate goal of translating brain cortical signals into prediction of visible behavior. The inputs to these models are usually multidimensional neural recordings collected from relevant regions of a monkey's brain while the outputs are the associated behavior which is typically the 2-D or 3-D hand position of a primate. Here our task is to set up a proper model in order to figure out the move trajectories by input the neural signals which are simultaneously collected in the experiment. In this paper, we propose to use Echo State Networks (ESN) to map the neural firing activities into hand positions. ESN is a newly developed recurrent neural network(RNN) model. Besides its dynamic property and short term memory just as other recurrent neural networks have, it has a special echo state property which endows it with the ability to model nonlinear dynamic systems powerfully. What distinguished it from transitional recurrent neural networks most significantly is its special learning method. In this paper we train this net with a refined version of its typical training method and get a better model.
El Mkami, Hassane; Ward, Richard; Bowman, Andrew; Owen-Hughes, Tom; Norman, David G.
2014-01-01
Pulsed electron–electron double resonance (PELDOR) coupled with site-directed spin labeling is a powerful technique for the elucidation of protein or nucleic acid, macromolecular structure and interactions. The intrinsic high sensitivity of electron paramagnetic resonance enables measurement on small quantities of bio-macromolecules, however short relaxation times impose a limit on the sensitivity and size of distances that can be measured using this technique. The persistence of the electron spin-echo, in the PELDOR experiment, is one of the most crucial limitations to distance measurement. At a temperature of around 50 K one of the predominant factors affecting persistence of an echo, and as such, the sensitivity and measurable distance between spin labels, is the electron spin echo dephasing time (Tm). It has become normal practice to use deuterated solvents to extend Tm and recently it has been demonstrated that deuteration of the underlying protein significantly extends Tm. Here we examine the spatial effect of segmental deuteration of the underlying protein, and also explore the concentration and temperature dependence of highly deuterated systems. PMID:25310878
Afach, S; Ayres, N J; Ban, G; Bison, G; Bodek, K; Chowdhuri, Z; Daum, M; Fertl, M; Franke, B; Griffith, W C; Grujić, Z D; Harris, P G; Heil, W; Hélaine, V; Kasprzak, M; Kermaidic, Y; Kirch, K; Knowles, P; Koch, H-C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Musgrave, M; Naviliat-Cuncic, O; Pendlebury, J M; Piegsa, F M; Pignol, G; Plonka-Spehr, C; Prashanth, P N; Quéméner, G; Rawlik, M; Rebreyend, D; Ries, D; Roccia, S; Rozpedzik, D; Schmidt-Wellenburg, P; Severijns, N; Thorne, J A; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zenner, J; Zsigmond, G
2015-10-16
We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1 μT magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1 pT/cm. This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.
NASA Astrophysics Data System (ADS)
Hemsing, E.; Dunning, M.; Hast, C.; Raubenheimer, T. O.; Weathersby, S.; Xiang, D.
2014-07-01
X-ray free-electron lasers are enabling access to new science by producing ultrafast and intense x rays that give researchers unparalleled power and precision in examining the fundamental nature of matter. In the quest for fully coherent x rays, the echo-enabled harmonic generation technique is one of the most promising methods. In this technique, coherent radiation at the high harmonic frequencies of two seed lasers is generated from the recoherence of electron beam phase space memory. Here we report on the generation of highly coherent and stable vacuum ultraviolet radiation at the 15th harmonic of an infrared seed laser with this technique. The experiment demonstrates two distinct advantages that are intrinsic to the highly nonlinear phase space gymnastics of echo-enabled harmonic generation in a new regime, i.e., high frequency up-conversion efficiency and insensitivity to electron beam phase space imperfections. Our results allow comparison and confirmation of predictive models and scaling laws, and mark a significant step towards fully coherent x-ray free-electron lasers that will open new scientific research.
NASA Astrophysics Data System (ADS)
Dahlberg, Peter D.; Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S.
2015-09-01
Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850∗ states of LH2 in each of the 3 samples with a lifetime of ˜40-60 fs.
Lee, D K; Song, Y K; Park, B W; Cho, H P; Yeom, J S; Cho, G; Cho, H
2018-04-15
To evaluate the robustness of MR transverse relaxation times of trabecular bone from spin-echo and gradient-echo acquisitions at multiple spatial resolutions of 7 T. The effects of MRI resolutions to T 2 and T2* of trabecular bone were numerically evaluated by Monte Carlo simulations. T 2 , T2*, and trabecular structural indices from multislice multi-echo and UTE acquisitions were measured in defatted human distal femoral condyles on a 7 T scanner. Reference structural indices were extracted from high-resolution microcomputed tomography images. For bovine knee trabecular samples with intact bone marrow, T 2 and T2* were measured by degrading spatial resolutions on a 7 T system. In the defatted trabecular experiment, both T 2 and T2* values showed strong ( |r| > 0.80) correlations with trabecular spacing and number, at a high spatial resolution of 125 µm 3 . The correlations for MR image-segmentation-derived structural indices were significantly degraded ( |r| < 0.50) at spatial resolutions of 250 and 500 µm 3 . The correlations for T2* rapidly dropped ( |r| < 0.50) at a spatial resolution of 500 µm 3 , whereas those for T 2 remained consistently high ( |r| > 0.85). In the bovine trabecular experiments with intact marrow, low-resolution (approximately 1 mm 3 , 2 minutes) T 2 values did not shorten ( |r| > 0.95 with respect to approximately 0.4 mm 3 , 11 minutes) and maintained consistent correlations ( |r| > 0.70) with respect to trabecular spacing (turbo spin echo, 22.5 minutes). T 2 measurements of trabeculae at 7 T are robust with degrading spatial resolution and may be preferable in assessing trabecular spacing index with reduced scan time, when high-resolution 3D micro-MRI is difficult to obtain. © 2018 International Society for Magnetic Resonance in Medicine.
The Dolphin Sonar: Excellent Capabilities In Spite of Some Mediocre Properties
NASA Astrophysics Data System (ADS)
Au, Whitlow W. L.
2004-11-01
Dolphin sonar research has been conducted for several decades and much has been learned about the capabilities of echolocating dolphins to detect, discriminate and recognize underwater targets. The results of these research projects suggest that dolphins possess the most sophisticated of all sonar for short ranges and shallow water where reverberation and clutter echoes are high. The critical feature of the dolphin sonar is the capability of discriminating and recognizing complex targets in a highly reverberant and noisy environment. The dolphin's detection threshold in reverberation occurs at a echo-to reverberation ratio of approximately 4 dB. Echolocating dolphins also have the capability to make fine discriminate of target properties such as wall thickness difference of water-filled cylinders and material differences in metallic plates. The high-resolution property of the animal's echolocation signals and the high dynamic range of its auditory system are important factors in their outstanding discrimination capabilities. In the wall thickness discrimination of cylinder experiment, time differences between echo highlights at small as 500-600 ns can be resolved by echolocating dolphins. Measurements of the targets used in the metallic plate composition experiment suggest that dolphins attended to echo components that were 20-30 dB below the maximum level for a specific target. It is interesting to realize that some of the properties of the dolphin sonar system are fairly mediocre, yet the total performance of the system is often outstanding. When compared to some technological sonar, the energy content of the dolphin sonar signal is not very high, the transmission and receiving beamwidths are fairly large, and the auditory filters are not very narrow. Yet the dolphin sonar has demonstrated excellent capabilities in spite the mediocre features of its "hardware." Reasons why dolphins can perform complex sonar task will be discussed in light of the "equipment" they possess.
NASA Astrophysics Data System (ADS)
MacGibbon, J.; Whitehead, J. D.; From, W. R.
1989-03-01
Angle-of-arrival measurements were obtained for first echoes (those directly reflected from the ionosphere) and second echoes (those twice reflected from the ionosphere with an intermediate reflection from the ground). Unexpectedly, the off-vertical angle-of-arrival of the second echo was found to be consistently less than that of the first echo for much of the time. It is suggested that rapid phase variations caused by the change in the tilt of the ionosphere prevented recognition of the second echo by the present radar system for echoes reflected from rough terrain.
Allen, R W; Harnsberger, H R; Shelton, C; King, B; Bell, D A; Miller, R; Parkin, J L; Apfelbaum, R I; Parker, D
1996-08-01
To determine whether unenhanced high-resolution T2-weighted fast spin-echo MR imaging provides an acceptable and less expensive alternative to contrast-enhanced conventional T1-weighted spin-echo MR techniques in the diagnosis of acoustic schwannoma. We reviewed in a blinded fashion the records of 25 patients with pathologically documented acoustic schwannoma and of 25 control subjects, all of whom had undergone both enhanced conventional spin-echo MR imaging and unenhanced fast spin-echo MR imaging of the cerebellopontine angle/internal auditory canal region. The patients were imaged with the use of a quadrature head receiver coil for the conventional spin-echo sequences and dual 3-inch phased-array receiver coils for the fast spin-echo sequences. The size of the acoustic schwannomas ranged from 2 to 40 mm in maximum dimension. The mean maximum diameter was 12 mm, and 12 neoplasms were less than 10 mm in diameter. Acoustic schwannoma was correctly diagnosed on 98% of the fast spin-echo images and on 100% of the enhanced conventional spin-echo images. Statistical analysis of the data using the kappa coefficient demonstrated agreement beyond chance between these two imaging techniques for the diagnosis of acoustic schwannoma. There is no statistically significant difference in the sensitivity and specificity of unenhanced high-resolution fast spin-echo imaging and enhance T1-weighted conventional spin-echo imaging in the detection of acoustic schwannoma. We believe that the unenhanced high-resolution fast spin-echo technique provides a cost-effective method for the diagnosis of acoustic schwannoma.
Combined in-situ and ground-based observations of quasi-periodic radar echoes
NASA Astrophysics Data System (ADS)
Pfaff, R.; Kudeki, E.; Larsen, M.; Clemmons, J.; Earle, G.
A series of combined rocket/radar investigation of the electrodynamics and neutralplasma coupling associated with sporadic-E layers and quasi-periodic backscatter radar echoes has been carried out from launch sites at both Puerto Rico and the Wallops Flight Facility, Virginia (USA) between 1998-2001. The instrumented rockets consisted of main and sub-payloads and were launched while strong quasiperiodic VHF echoes were observed simultaneously with the Univ. of Illinois 50 MHz backscatter radar. The rocket apogee was purposely limited so that the payloads would dwell in the sporadic-E region (90-115 km). The main payload included vector DC and AC electric field detectors, a DC magnetometer, an ion mass spectrometer, an ionization gauge, and spaced-electric field receivers to measure the wavelength and phase velocity of the unstable plasma waves. The sub-payload was instrumented to measure DC and wave electric fields and plasma density. In one case, a separate rocket was launched a few minutes later which released luminous TMA trails to measure the neutral wind, its velocity shear, and embedded neutral structures. In this experiment, the payloads successfully pierced a well-defined, 2-3 km thick metallic sporadic-E layer of approximately 10**5 e/cc near 103 km altitude. In-situ DC electric field measurements revealed ~5mV/m ambient meridional fields above and below the layer with 1-2 mV/m amplitude, large scale structures superimposed. The wavelengths of these structures were approximately 2-4 km and may be related to the seat of the quasiperiodic echoes. Intense (~5 mV/m), higher frequency (shorter scale) broadband waves were also observed in-situ, both above and below the layer, consistent with the VHF backscatter observations during the time of the launch. Neither the large scale nor short scale plasma waves appeared to be distinctly organized by the sporadic-E density layer. The TMA release showed large amplitude (~ 100 m/s) meridional winds near 102-105 km, with the most intense shears directly below these altitudes, where the short scale electric field fluctuations were most intense. We summarize the observations from the different experiments and discuss them in the context of current theories regarding quasi-periodic echoes.
Combined In-situ and Ground-based Observations of Quasi-periodic Radar Echoes
NASA Astrophysics Data System (ADS)
Pfaff, R.; Kudeki, E.; Larsen, M.; Clemmons, J.; Earle, G.
A series of combined rocket/radar investigation of the electrodynamics and neutral- plasma coupling associated with sporadic-E layers and quasi-periodic backscatter radar echoes has been carried out from launch sites at both Puerto Rico and the Wallops Flight Facility, Virginia (USA) between 1998-2001. The instrumented rock- ets consisted of main and sub-payloads and were launched while strong quasi- periodic VHF echoes were observed simultaneously with the Univ. of Illinois 50 MHz backscatter radar. The rocket apogee was purposely limited so that the payloads would dwell in the sporadic-E region (90-115 km). The main payload included vector DC and AC electric field detectors, a DC magnetometer, an ion mass spectrometer, an ioniza- tion gauge, and spaced-electric field receivers to measure the wavelength and phase velocity of the unstable plasma waves. The sub-payload was instrumented to measure DC and wave electric fields and plasma density. In one case, a separate rocket was launched a few minutes later which released luminous TMA trails to measure the neu- tral wind, its velocity shear, and embedded neutral structures. In this experiment, the payloads successfully pierced a well-defined, 2-3 km thick metallic sporadic-E layer of approximately 10**5 e/cc near 103 km altitude. In-situ DC electric field measure- ments revealed ~5mV/m ambient meridional fields above and below the layer with 1-2 mV/m amplitude, large scale structures superimposed. The wavelengths of these structures were approximately 2-4 km and may be related to the seat of the quasi- periodic echoes. Intense (~5 mV/m), higher frequency (shorter scale) broadband waves were also observed in-situ, both above and below the layer, consistent with the VHF backscatter observations during the time of the launch. Neither the large scale nor short scale plasma waves appeared to be distinctly organized by the sporadic-E den- sity layer. The TMA release showed large amplitude (~ 100 m/s) meridional winds near 102-105 km, with the most intense shears directly below these altitudes, where the short scale electric field fluctuations were most intense. We summarize the ob- servations from the different experiments and discuss them in the context of current theories regarding quasi-periodic echoes.
Quantum correlation of fiber-based telecom-band photon pairs through standard loss and random media.
Sua, Yong Meng; Malowicki, John; Lee, Kim Fook
2014-08-15
We study quantum correlation and interference of fiber-based telecom-band photon pairs with one photon of the pair experiencing multiple scattering in a random medium. We measure joint probability of two-photon detection for signal photon in a normal channel and idler photon in a channel, which is subjected to two independent conditions: standard loss (neutral density filter) and random media. We observe that both conditions degrade the correlation of signal and idler photons, and depolarization of the idler photon in random medium can enhance two-photon interference at certain relative polarization angles. Our theoretical calculation on two-photon polarization correlation and interference as a function of mean free path is in agreement with our experiment data. We conclude that quantum correlation of a polarization-entangled photon pair is better preserved than a polarization-correlated photon pair as one photon of the pair scatters through a random medium.
Single-photon interference experiment for high schools
NASA Astrophysics Data System (ADS)
Bondani, Maria
2014-07-01
We follow the reductio ad absurdum reasoning described in the book "Sneaking a Look at God's Cards" by Giancarlo Ghirardi to demonstrate the wave-particle duality of light in a Mach-Zehnder interferometric setup analog to the conventional Young double-slit experiment. We aim at showing the double nature of light by measuring the existence of interference fringes down to the single-photon level. The setup includes a strongly attenuated laser, polarizing beam splitters, half-waveplates, polarizers and single-photon detectors.
The Geoscience Laser Altimeter System (GLAS) for the ICESAT Mission
NASA Technical Reports Server (NTRS)
Abshire, James B.; Sun, Xia-Li; Ketchum, Eleanor A.; Afzal, Robert S.; Millar, Pamela S.; Smith, David E. (Technical Monitor)
2000-01-01
The Laser In space Technology Experiment, Shuttle Laser Altimeter and the Mars Observer Laser Altimeter have demonstrated accurate measurements of atmospheric backscatter and Surface heights from space. The recent MOLA measurements of the Mars surface have 40 cm vertical resolution and have reduced the global uncertainty in Mars topography from a few km to about 5 m. The Geoscience Laser Altimeter System (GLAS) is a next generation lidar for Earth orbit being developed as part of NASA's Icesat Mission. The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, establish a grid of accurate height profiles of the Earth's land topography, and profile the vertical backscatter of clouds and aerosols on a global scale. GLAS is being developed to fly on a small dedicated spacecraft in a polar orbit with a 590 630 km altitude at inclination of 94 degrees. GLAS is scheduled to launch in the summer 2001 and to operate continuously for a minimum of 3 years with a goal of 5 years. The primary mission for GLAS is to measure the seasonal and annual changes in the heights of the Greenland and Antarctic ice sheets. GLAS will continuously measure the vertical distance from orbit to the Earth's surface with 1064 nm pulses from a ND:YAG laser at a 40 Hz rate. Each 5 nsec wide laser pulse is used to produce a single range measurement, and the laser spots have 66 m diameter and about 170 m center-center spacings. When over land GLAS will profile the heights of the topography and vegetation. The GLAS receiver uses a 1 m diameter telescope and a Si APD detector. The detector signal is sampled by an all digital receiver which records each surface echo waveform with I nsec resolution and a stored echo record lengths of either 200, 400, or 600 samples. Analysis of the echo waveforms within the instrument permits discrimination between cloud and surface echoes. Ground based echo analysis permits precise ranging, determining the roughness or slopes of the surface as well as the vertical distributions of vegetation illuminated by the laser. Accurate knowledge of the laser beam's pointing angle is needed to prevent height biases when over sloped surfaces. For surfaces with 2 deg. slopes, knowledge of pointing angle of the beam's centroid to about 8 urad is needed to achieve 10 cm height accuracy. GLAS uses a stellar reference system (SRS) to determine the pointing angle of each laser firing relative to inertial space. The SRS uses a high precision star camera oriented toward local zenith and a gyroscope to determine the inertial orientation of the SRS optical bench. The far field pattern of each laser is measured pulse relative to the star camera with a laser reference system (LRS). Optically measuring each laser far field pattern relative to the orientation of the star camera and gyroscope permits the precise pointing angle of each laser pulse to be determined. GLAS will also determine the vertical distributions of clouds and aerosols by measuring the vertical profile of laser energy backscattered by the atmosphere at both 1064 and 532 nm. The 1064 nm measurements use the Si APD detector and profile the height and vertical structure of thicker clouds. The measurements at 532 nm use new highly sensitive photon counting, detectors, and measure the height distributions of very thin Clouds and aerosol layers. With averaging these can be used to determine the height of the planetary boundary layer. The instrument design and expected performance will be discussed.
Luthra, Suman A; Utz, Marcel; Gorman, Eric M; Pikal, Michael J; Munson, Eric J; Lubach, Joseph W
2012-01-01
In this study, changes in the local conformation of aspartame were observed in annealed lyophilized glasses by monitoring changes in the distance between two labeled sites using C-(2)H rotational-echo double-resonance (REDOR) nuclear magnetic resonance (NMR) spectroscopy. Confirmation that the REDOR experiments were producing accurate distance measurement was ensured by measuring the (13)C-(15)N distance in glycine. The experiment was further verified by measuring the REDOR dephasing curve on (13)C-(2)H methionine. (13)C-(2)H REDOR dephasing curves were then measured on lyophilized aspartame-disaccharide formulations. In aspartame-sucrose formulation, the internuclear distances increased upon annealing, which correlated with decreased chemical reactivity. By contrast, annealing had only a minimal effect on the dephasing curve in aspartame-trehalose formulation. The results show that stability is a function of both mobility and local structure (conformation), even in a small molecule system such as lyophilized aspartame-sucrose. Copyright © 2011 Wiley-Liss, Inc.
How Can Dolphins Recognize Fish According to Their Echoes? A Statistical Analysis of Fish Echoes
Yovel, Yossi; Au, Whitlow W. L.
2010-01-01
Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders). In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification. PMID:21124908
How can dolphins recognize fish according to their echoes? A statistical analysis of fish echoes.
Yovel, Yossi; Au, Whitlow W L
2010-11-19
Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders). In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification.
The Solar Flux Dependence of Ionospheric 150 km Radar Echoes and Implications
NASA Astrophysics Data System (ADS)
Patra, A. K.; Pavan Chaitanya, P.; St.-Maurice, J.-P.; Otsuka, Y.; Yokoyama, T.; Yamamoto, M.
2017-11-01
Radar echoes from the daytime equatorial ionospheric F1 region, popularly known as "150 km echoes," have challenged ionospheric plasma physicists for several decades. Recent theoretical simulations showed that enhanced photoelectron fluxes can amplify the amplitude of plasma waves, generating spectra similar to those of the radar echoes, implying that larger solar fluxes should produce more frequent and stronger 150 km echoes. Inspired by this proposal, we studied the occurrence and intensity dependence of the echoes on the EUV flux observed by SOHO over several years. The occurrence and intensity of the echoes were found to have an inverse relationship with this EUV flux measurement. The multiyear trend is independent of the variability often observed over successive days with nearly identical EUV fluxes. These results imply that the relationship between the echoes and EUV flux is more complex. We propose that gravity waves modulate the amplitude of 150 km echoes through changes in the variations in plasma density and photoelectron fluxes associated with the gravity wave-induced neutral density modulations.
Chemically non-equilibrated QGP and thermal photon elliptic flow
NASA Astrophysics Data System (ADS)
Monnai, Akihiko
2016-07-01
It has been discovered in recent heavy-ion experiments that elliptic and triangular flow of direct photons are underpredicted by most hydrodynamic models. I discuss possible enhancement mechanisms based on late chemical equilibration of the QGP and in-medium modification of parton distributions. Numerical hydrodynamic analyses indicate that they suppress early photon emission and visibly enhance thermal photon elliptic flow.
Astronomy and Space Technologies, Photonics Applications and Web Engineering, Wilga, May 2012
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2012-05-01
This paper is the first part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with photonics and electronics applications in astronomy and space technologies. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-275].
NASA Astrophysics Data System (ADS)
Lohmann, S.; Sortica, M. A.; Paneta, V.; Primetzhofer, D.
2018-02-01
We present a systematic analysis of the photon emission observed due to impact of pulsed keV ion beams in time-of-flight medium energy ion scattering (ToF-MEIS) experiments. Hereby, hydrogen, helium and neon ions served as projectiles and thin gold and titanium nitride films on different substrates were employed as target materials. The present experimental evidence indicates that a significant fraction of the photons has energies of around 10 eV, i.e. on the order of typical valence and conduction band transitions in solids. Furthermore, the scaling properties of the photon emission with respect to several experimental parameters were studied. A dependence of the photon yield on the projectile velocity was observed in all experiments. The photon yield exhibits a dependence on the film thickness and the scattering angle, which can be explained by photon production along the path of the incident ion through the material. Additionally, a strong dependence on the projectile type was found with the photon emission being higher for heavier projectiles. This difference is larger than the respective difference in electronic stopping cross section. The photon yield shows a strong material dependence, and according to a comparison of SiO2 and Si seems to be subject to matrix effects.
NASA Astrophysics Data System (ADS)
Moreno, Omar; Heavy Photon Search Collaboration
2017-01-01
The Heavy Photon Search (HPS) experiment at Jefferson Lab is searching for a new U(1) vector boson (``heavy photon'',``dark photon'' or A') in the mass range of 20-500 MeV/c2. An A' in this mass range is theoretically favorable and may also mediate dark matter interactions. The A' couples to the ordinary photon through kinetic mixing, which induces their coupling to electric charge. Since heavy photons couple to electrons, they can be produced through a process analogous to bremsstrahlung, subsequently decaying to an e+e- , which can be observed as a narrow resonance above the dominant QED trident background. For suitably small couplings, heavy photons travel detectable distances before decaying, providing a second signature. Using the CEBAF electron beam at Jefferson Lab incident on a thin tungsten target, along with a compact, large acceptance forward spectrometer consisting of a silicon vertex tracker and lead tungstate electromagnetic calorimeter, HPS is accessing unexplored regions in the mass-coupling phase space. The HPS engineering run took place in spring of 2015 using a 1.056 GeV, 50 nA beam and collected 1165 nb-1 (7.29 mC) of data. This talk will present the results of a resonance search for a heavy photon using the engineering run data.
Barkhofen, Sonja; Bartley, Tim J; Sansoni, Linda; Kruse, Regina; Hamilton, Craig S; Jex, Igor; Silberhorn, Christine
2017-01-13
Sampling the distribution of bosons that have undergone a random unitary evolution is strongly believed to be a computationally hard problem. Key to outperforming classical simulations of this task is to increase both the number of input photons and the size of the network. We propose driven boson sampling, in which photons are input within the network itself, as a means to approach this goal. We show that the mean number of photons entering a boson sampling experiment can exceed one photon per input mode, while maintaining the required complexity, potentially leading to less stringent requirements on the input states for such experiments. When using heralded single-photon sources based on parametric down-conversion, this approach offers an ∼e-fold enhancement in the input state generation rate over scattershot boson sampling, reaching the scaling limit for such sources. This approach also offers a dramatic increase in the signal-to-noise ratio with respect to higher-order photon generation from such probabilistic sources, which removes the need for photon number resolution during the heralding process as the size of the system increases.
Optical decoherence studies of Tm3 +:Y3Ga5O12
NASA Astrophysics Data System (ADS)
Thiel, C. W.; Sinclair, N.; Tittel, W.; Cone, R. L.
2014-12-01
Decoherence of the 795 nm 3H6 to 3H4 transition in 1 %Tm3 +:Y3Ga5O12 (Tm:YGG) is studied at temperatures as low as 1.2 K. The temperature, magnetic field, frequency, and time scale (spectral diffusion) dependence of the optical coherence lifetime is measured. Our results show that the coherence lifetime is impacted less by spectral diffusion than other known thulium-doped materials. Photon echo excitation and spectral hole burning methods reveal uniform decoherence properties and the possibility to produce full transparency for persistent spectral holes across the entire 56 GHz inhomogeneous bandwidth of the optical transition. Temperature-dependent decoherence is well described by elastic Raman scattering of phonons with an additional weaker component that may arise from a low density of glass-like dynamic disorder modes (two-level systems). Analysis of the observed behavior suggests that an optical coherence lifetime approaching 1 ms may be possible in this system at temperatures below 1 K for crystals grown with optimized properties. Overall, we find that Tm:YGG has superior decoherence properties compared to other Tm-doped crystals and is a promising candidate for applications that rely on long coherence lifetimes, such as optical quantum memories and photonic signal processing.
The characteristics simulation of FMCW laser backscattering signals
NASA Astrophysics Data System (ADS)
Liu, Bohu; Song, Chengtian; Duan, Yabo
2018-04-01
A Monte Carlo simulation model of FMCW laser transmission in a smoke interference environment was established in this paper. The aerosol extinction coefficient and scattering coefficient changed dynamically in the simulation according to the smoke concentration variation, aerosol particle distributions and photon spatial positions. The simulation results showed that the smoke backscattering interference produced a number of amplitude peaks in the beat signal spectrum; the SNR of target echo signal to smoke interference was related to the transmitted laser wavelength and the aerosol particle size distribution; a better SNR could be obtained when the laser wavelength was in the range of 560-1660 nm. The characteristics of FMCW laser backscattering signals generated by simulation are consistent with the theoretical analysis. Therefore, this study was greatly helpful for improving the ability of identifying target and anti-interference in the further research.
Ben-Eliezer, Noam; Solomon, Eddy; Harel, Elad; Nevo, Nava; Frydman, Lucio
2012-12-01
An approach has been recently introduced for acquiring arbitrary 2D NMR spectra or images in a single scan, based on the use of frequency-swept RF pulses for the sequential excitation and acquisition of the spins response. This spatiotemporal-encoding (SPEN) approach enables a unique, voxel-by-voxel refocusing of all frequency shifts in the sample, for all instants throughout the data acquisition. The present study investigates the use of this full-refocusing aspect of SPEN-based imaging in the multi-shot MRI of objects, subject to sizable field inhomogeneities that complicate conventional imaging approaches. 2D MRI experiments were performed at 7 T on phantoms and on mice in vivo, focusing on imaging in proximity to metallic objects. Fully refocused SPEN-based spin echo imaging sequences were implemented, using both Cartesian and back-projection trajectories, and compared with k-space encoded spin echo imaging schemes collected on identical samples under equal bandwidths and acquisition timing conditions. In all cases assayed, the fully refocused spatiotemporally encoded experiments evidenced a ca. 50 % reduction in signal dephasing in the proximity of the metal, as compared to analogous results stemming from the k-space encoded spin echo counterparts. The results in this study suggest that SPEN-based acquisition schemes carry the potential to overcome strong field inhomogeneities, of the kind that currently preclude high-field, high-resolution tissue characterizations in the neighborhood of metallic implants.
Echolocation behavior in big brown bats is not impaired after intense broadband noise exposures.
Hom, Kelsey N; Linnenschmidt, Meike; Simmons, James A; Simmons, Andrea Megela
2016-10-15
Echolocating bats emit trains of intense ultrasonic biosonar pulses and listen to weaker echoes returning from objects in their environment. Identification and categorization of echoes are crucial for orientation and prey capture. Bats are social animals and often fly in groups in which they are exposed to their own emissions and to those from other bats, as well as to echoes from multiple surrounding objects. Sound pressure levels in these noisy conditions can exceed 110 dB, with no obvious deleterious effects on echolocation performance. Psychophysical experiments show that big brown bats (Eptesicus fuscus) do not experience temporary threshold shifts after exposure to intense broadband ultrasonic noise, but it is not known if they make fine-scale adjustments in their pulse emissions to compensate for any effects of the noise. We investigated whether big brown bats adapt the number, temporal patterning or relative amplitude of their emitted pulses while flying through an acoustically cluttered corridor after exposure to intense broadband noise (frequency range 10-100 kHz; sound exposure level 152 dB). Under these conditions, four bats made no significant changes in navigation errors or in pulse number, timing and amplitude 20 min, 24 h or 48 h after noise exposure. These data suggest that big brown bats remain able to perform difficult echolocation tasks after exposure to ecologically realistic levels of broadband noise. © 2016. Published by The Company of Biologists Ltd.
Young's double-slit interference with two-color biphotons.
Zhang, De-Jian; Wu, Shuang; Li, Hong-Guo; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige
2017-12-12
In classical optics, Young's double-slit experiment with colored coherent light gives rise to individual interference fringes for each light frequency, referring to single-photon interference. However, two-photon double-slit interference has been widely studied only for wavelength-degenerate biphoton, known as subwavelength quantum lithography. In this work, we report double-slit interference experiments with two-color biphoton. Different from the degenerate case, the experimental results depend on the measurement methods. From a two-axis coincidence measurement pattern we can extract complete interference information about two colors. The conceptual model provides an intuitional picture of the in-phase and out-of-phase photon correlations and a complete quantum understanding about the which-path information of two colored photons.
Search for Chameleon Scalar Fields with the Axion Dark Matter Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rybka, G.; Hotz, M.; Rosenberg, L. J
2010-07-30
Scalar fields with a 'chameleon' property, in which the effective particle mass is a function of its local environment, are common to many theories beyond the standard model and could be responsible for dark energy. If these fields couple weakly to the photon, they could be detectable through the afterglow effect of photon-chameleon-photon transitions. The ADMX experiment was used in the first chameleon search with a microwave cavity to set a new limit on scalar chameleon-photon coupling {beta}{sub {gamma}}excluding values between 2x10{sup 9} and 5x10{sup 14} for effective chameleon masses between 1.9510 and 1.9525 {mu}eV.
Importance of axion-like particles for very-high-energy astrophysics
NASA Astrophysics Data System (ADS)
Roncadelli, Marco; De Angelis, Alessandro; Galanti, Giorgio
2012-07-01
Several extensions ol the Standard Model predict the existence ol Axion-Like Particles (ALPs), very light spin-zero bosons with a two-photon coupling. ALPs can give rise to observable effects in very-high-energy astrophysics. Above roughly 100 GeV the horizon of the observable Universe progressively shrinks as the energy increases, due to scattering of beam photons off background photons in the optical and infrared bands, which produces e+ e- pairs. In the presence of large-scale magnetic fields photons emitted by a blazar can oscillate into ALPs on the way to us and back into photons before reaching the Earth. Since ALPs do not interact with background photons, the effective mean free path of beam photons increases, enhancing the photon survival probability. While the absorption probability increases with energy, photon-ALP oscillations are energy-independent, and so the survival probability increases with energy compared to standard expectations. We have performed a systematic analysis of this effect, interpreting the present data on very-high-energy photons from blazars. Our predictions can be tested with presently operating Cherenkov Telescopes like H.E.S.S., MAGIC, VERITAS and CANGAROO III as well as with detectors like ARGO-YBJ and MILAGRO and with the planned Cherenkov Telescope Array and the HAWC γ-ray observatory. ALPs with the right properties to produce the above effects can possibly be discovered by the GammeV experiment at FERMILAB and surely by the planned photon regeneration experiment ALPS at DESY.
Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agio, Mario
2002-12-31
This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group.more » The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.« less
Resonant production of dark photons in positron beam dump experiments
NASA Astrophysics Data System (ADS)
Nardi, Enrico; Carvajal, Cristian D. R.; Ghoshal, Anish; Meloni, Davide; Raggi, Mauro
2018-05-01
Positrons beam dump experiments have unique features to search for very narrow resonances coupled superweakly to e+e- pairs. Due to the continued loss of energy from soft photon bremsstrahlung, in the first few radiation lengths of the dump a positron beam can continuously scan for resonant production of new resonances via e+ annihilation off an atomic e- in the target. In the case of a dark photon A' kinetically mixed with the photon, this production mode is of first order in the electromagnetic coupling α , and thus parametrically enhanced with respect to the O (α2)e+e-→γ A' production mode and to the O (α3)A' bremsstrahlung in e- -nucleon scattering so far considered. If the lifetime is sufficiently long to allow the A' to exit the dump, A'→e+e- decays could be easily detected and distinguished from backgrounds. We explore the foreseeable sensitivity of the Frascati PADME experiment in searching with this technique for the 17 MeV dark photon invoked to explain the
Upgrade of beamline BL08B at Taiwan Light Source from a photon-BPM to a double-grating SGM beamline.
Yuh, Jih Young; Lin, Shan Wei; Huang, Liang Jen; Fung, Hok Sum; Lee, Long Life; Chen, Yu Joung; Cheng, Chiu Ping; Chin, Yi Ying; Lin, Hong Ji
2015-09-01
During the last 20 years, beamline BL08B has been upgraded step by step from a photon beam-position monitor (BPM) to a testing beamline and a single-grating beamline that enables experiments to record X-ray photo-emission spectra (XPS) and X-ray absorption spectra (XAS) for research in solar physics, organic semiconductor materials and spinel oxides, with soft X-ray photon energies in the range 300-1000 eV. Demands for photon energy to extend to the extreme ultraviolet region for applications in nano-fabrication and topological thin films are increasing. The basic spherical-grating monochromator beamline was again upgraded by adding a second grating that delivers photons of energy from 80 to 420 eV. Four end-stations were designed for experiments with XPS, XAS, interstellar photoprocess systems (IPS) and extreme-ultraviolet lithography (EUVL) in the scheduled beam time. The data from these experiments show a large count rate in core levels probed and excellent statistics on background normalization in the L-edge adsorption spectrum.
Experimental validation of photon-heating calculation for the Jules Horowitz Reactor
NASA Astrophysics Data System (ADS)
Lemaire, M.; Vaglio-Gaudard, C.; Lyoussi, A.; Reynard-Carette, C.; Di Salvo, J.; Gruel, A.
2015-04-01
The Jules Horowitz Reactor (JHR) is the next Material-Testing Reactor (MTR) under construction at CEA Cadarache. High values of photon heating (up to 20 W/g) are expected in this MTR. As temperature is a key parameter for material behavior, the accuracy of photon-heating calculation in the different JHR structures is an important stake with regard to JHR safety and performances. In order to experimentally validate the calculation of photon heating in the JHR, an integral experiment called AMMON was carried out in the critical mock-up EOLE at CEA Cadarache to help ascertain the calculation bias and its associated uncertainty. Nuclear heating was measured in different JHR-representative AMMON core configurations using ThermoLuminescent Detectors (TLDs) and Optically Stimulated Luminescent Detectors (OSLDs). This article presents the interpretation methodology and the calculation/experiment (C/E) ratio for all the TLD and OSLD measurements conducted in AMMON. It then deals with representativeness elements of the AMMON experiment regarding the JHR and establishes the calculation biases (and its associated uncertainty) applicable to photon-heating calculation for the JHR.
NASA Astrophysics Data System (ADS)
Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa
2018-02-01
The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.
Estimation of Characteristics of Echo Envelope Using RF Echo Signal from the Liver
NASA Astrophysics Data System (ADS)
Yamaguchi, Tadashi; Hachiya, Hiroyuki; Kamiyama, Naohisa; Ikeda, Kazuki; Moriyasu, Norifumi
2001-05-01
To realize quantitative diagnosis of liver cirrhosis, we have been analyzing the probability density function (PDF) of echo amplitude using B-mode images. However, the B-mode image is affected by the various signal and image processing techniques used in the diagnosis equipment, so a detailed and quantitative analysis is very difficult. In this paper, we analyze the PDF of echo amplitude using RF echo signal and B-mode images of normal and cirrhotic livers, and compare both results to examine the validity of the RF echo signal.
Band Gap Optimization Design of Photonic Crystals Material
NASA Astrophysics Data System (ADS)
Yu, Y.; Yu, B.; Gao, X.
2017-12-01
The photonic crystal has a fundamental characteristic - photonic band gap, which can prevent light to spread in the crystals. This paper studies the width variation of band gaps of two-dimension square lattice photonic crystals by changing the geometrical shape of the unit cells’ inner medium column. Using the finite element method, we conduct numerical experiments on MATLAB 2012a and COMSOL 3.5. By shortening the radius in vertical axis and rotating the medium column, we design a new unit cell, with a 0.3*3.85e-7 vertical radius and a 15 degree deviation to the horizontal axis. The new cell has a gap 1.51 percent wider than the circle medium structure in TE gap and creates a 0.0124 wide TM gap. Besides, the experiment shows the first TM gap is partially overlapped by the second TE gap in gap pictures. This is helpful to format the absolute photonic band gaps and provides favorable theoretical basis for designing photonic communication material.
ISO 19115 Experiences in NASA's Earth Observing System (EOS) ClearingHOuse (ECHO)
NASA Astrophysics Data System (ADS)
Cechini, M. F.; Mitchell, A.
2011-12-01
Metadata is an important entity in the process of cataloging, discovering, and describing earth science data. As science research and the gathered data increases in complexity, so does the complexity and importance of descriptive metadata. To meet these growing needs, the metadata models required utilize richer and more mature metadata attributes. Categorizing, standardizing, and promulgating these metadata models to a politically, geographically, and scientifically diverse community is a difficult process. An integral component of metadata management within NASA's Earth Observing System Data and Information System (EOSDIS) is the Earth Observing System (EOS) ClearingHOuse (ECHO). ECHO is the core metadata repository for the EOSDIS data centers providing a centralized mechanism for metadata and data discovery and retrieval. ECHO has undertaken an internal restructuring to meet the changing needs of scientists, the consistent advancement in technology, and the advent of new standards such as ISO 19115. These improvements were based on the following tenets for data discovery and retrieval: + There exists a set of 'core' metadata fields recommended for data discovery. + There exists a set of users who will require the entire metadata record for advanced analysis. + There exists a set of users who will require a 'core' set metadata fields for discovery only. + There will never be a cessation of new formats or a total retirement of all old formats. + Users should be presented metadata in a consistent format of their choosing. In order to address the previously listed items, ECHO's new metadata processing paradigm utilizes the following approach: + Identify a cross-format set of 'core' metadata fields necessary for discovery. + Implement format-specific indexers to extract the 'core' metadata fields into an optimized query capability. + Archive the original metadata in its entirety for presentation to users requiring the full record. + Provide on-demand translation of 'core' metadata to any supported result format. Lessons learned by the ECHO team while implementing its new metadata approach to support usage of the ISO 19115 standard will be presented. These lessons learned highlight some discovered strengths and weaknesses in the ISO 19115 standard as it is introduced to an existing metadata processing system.
Nonlinear theory of transverse beam echoes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Tanaji; Li, Yuan Shen
Transverse beam echoes can be excited with a single dipole kick followed by a single quadrupole kick. They have been used to measure diffusion in hadron beams and have other diagnostic capabilities. Here we develop theories of the transverse echo nonlinear in both the dipole and quadrupole kick strengths. The theories predict the maximum echo amplitudes and the optimum strength parameters. We find that the echo amplitude increases with smaller beam emittance and the asymptotic echo amplitude can exceed half the initial dipole kick amplitude. We show that multiple echoes can be observed provided the dipole kick is large enough.more » The spectrum of the echo pulse can be used to determine the nonlinear detuning parameter with small amplitude dipole kicks. Simulations are performed to check the theoretical predictions. In the useful ranges of dipole and quadrupole strengths, they are shown to be in reasonable agreement.« less
Nonlinear theory of transverse beam echoes
Sen, Tanaji; Li, Yuan Shen
2018-02-23
Transverse beam echoes can be excited with a single dipole kick followed by a single quadrupole kick. They have been used to measure diffusion in hadron beams and have other diagnostic capabilities. Here we develop theories of the transverse echo nonlinear in both the dipole and quadrupole kick strengths. The theories predict the maximum echo amplitudes and the optimum strength parameters. We find that the echo amplitude increases with smaller beam emittance and the asymptotic echo amplitude can exceed half the initial dipole kick amplitude. We show that multiple echoes can be observed provided the dipole kick is large enough.more » The spectrum of the echo pulse can be used to determine the nonlinear detuning parameter with small amplitude dipole kicks. Simulations are performed to check the theoretical predictions. In the useful ranges of dipole and quadrupole strengths, they are shown to be in reasonable agreement.« less
The relationship between fireballs and HRO Long Echos
NASA Astrophysics Data System (ADS)
Yanagida, E.; Amikura, S.
Ham-band Radio Observation (HRO) is one of the major methods used to observe meteor activity in Japan. We receive certain types of meteor echoes. One of the types is the long-lasting echo called a ``Long Echo''. We have the impression that Long Echoes correspond to fireballs. The present research found this relation and tried to identify fireball data from visual observations with Long Echo data of the 2002 Leonids, Geminids, and Quadrantids. From these data, we found that the identification percentage tended to be higher for fainter magnitudes, but that the percentage is small, the percentages of each meteor stream being less than 30 %. From these results, this research found that we could not simply say that brighter meteors were received as Long Echoes. It depends on the geocentric velocity of the meteor stream, with a possibility that Long Echoes correspond to darker as well as brighter fireballs.
Removing the echoes from terahertz pulse reflection system and sample
NASA Astrophysics Data System (ADS)
Liu, Haishun; Zhang, Zhenwei; Zhang, Cunlin
2018-01-01
Due to the echoes both from terahertz (THz) pulse reflection system and sample, the THz primary pulse will be distorted. The system echoes include two types. One preceding the main peak probably is caused by ultrafast laser pulse and the other at the back of the primary pulse is caused by the Fabry-Perot (F-P) etalon effect of detector. We attempt to remove the corresponding echoes by using two kinds of deconvolution. A Si wafer of 400μm was selected as the tested sample. Firstly, the method of double Gaussian filter (DGF) decnvolution was used to remove the systematic echoes, and then another deconvolution technique was employed to eliminate the two obvious echoes of the sample. The ultimate results indicated: although the combination of two deconvolution techniques could not entirely remove the echoes of sample and system, the echoes were largely reduced.
NASA Astrophysics Data System (ADS)
From, W. R.; MacGibbon, J.; Whitehead, J. D.
1989-03-01
Angles of arrival of first echoes (those directly reflected from the ionosphere) and second echoes (those twice reflected from the ionosphere with an intermediate reflection from the ground) were measured. It is easy to show that under specified conditions the off-vertical angle of arrival of the second echo ought to be twice that of the first echo. It is consistently found to be less than this for much of the time. Several possibilities are canvassed, but none provide a convincing explanation. The place on the Earth from which the second echo was reflected was nearly always the sea or flat ground. Apparently, rapid phase variations, as the tilt of the ionosphere changed, prevented recognition of the second echo by this particular radar system for echoes reflected from rough terrain.
Voices, Places and Conversations about Service Learning: Making Connections.
ERIC Educational Resources Information Center
Oliver, Helen T.
This paper defines service-learning by college students in the context of institutional purpose, mission, and curriculum while simultaneously defining community and echoing conversations about student service-learning experiences. These issues include: (1) voices--institutional purpose and mission and founding principles; (2) places--the student,…
A novel computational approach towards the certification of large-scale boson sampling
NASA Astrophysics Data System (ADS)
Huh, Joonsuk
Recent proposals of boson sampling and the corresponding experiments exhibit the possible disproof of extended Church-Turning Thesis. Furthermore, the application of boson sampling to molecular computation has been suggested theoretically. Till now, however, only small-scale experiments with a few photons have been successfully performed. The boson sampling experiments of 20-30 photons are expected to reveal the computational superiority of the quantum device. A novel theoretical proposal for the large-scale boson sampling using microwave photons is highly promising due to the deterministic photon sources and the scalability. Therefore, the certification protocol of large-scale boson sampling experiments should be presented to complete the exciting story. We propose, in this presentation, a computational protocol towards the certification of large-scale boson sampling. The correlations of paired photon modes and the time-dependent characteristic functional with its Fourier component can show the fingerprint of large-scale boson sampling. This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(NRF-2015R1A6A3A04059773), the ICT R&D program of MSIP/IITP [2015-019, Fundamental Research Toward Secure Quantum Communication] and Mueunjae Institute for Chemistry (MIC) postdoctoral fellowship.
Signatures of Hong-Ou-Mandel interference at microwave frequencies
NASA Astrophysics Data System (ADS)
Woolley, M. J.; Lang, C.; Eichler, C.; Wallraff, A.; Blais, A.
2013-10-01
Two-photon quantum interference at a beam splitter, commonly known as Hong-Ou-Mandel interference, is a fundamental demonstration of the quantum mechanical nature of electromagnetic fields and a key component of various quantum information processing protocols. The phenomenon was recently demonstrated with microwave-frequency photons by Lang et al (2013 Nature Phys. 9 345-8). This experiment employed circuit QED systems as sources of microwave photons, and was based on the measurement of second-order cross-correlation and auto-correlation functions of the microwave fields at the outputs of the beam splitter using linear detectors. Here we present the calculation of these correlation functions for the cases of inputs corresponding to: (i) trains of pulsed Gaussian or Lorentzian single microwave photons and (ii) resonant fluorescent microwave fields from continuously driven circuit QED systems. In both cases, the signature of two-photon quantum interference is a suppression of the second-order cross-correlation function for small delays. The experiment described in Lang et al (2013) was performed with trains of Lorentzian single photons, and very good agreement with experimental data is obtained. The results are relevant not only to interference experiments using circuit QED systems, but any such setup with highly controllable sources and time-resolved detection.
Tague, Lauren; Wiggs, Justin; Li, Qianxi; McCarter, Robert; Sherwin, Elizabeth; Weinberg, Jacqueline; Sable, Craig
2018-05-17
Left ventricular hypertrophy (LVH) is a common finding on pediatric electrocardiography (ECG) leading to many referrals for echocardiography (echo). This study utilizes a novel analytics tool that combines ECG and echo databases to evaluate ECG as a screening tool for LVH. SQL Server 2012 data warehouse incorporated ECG and echo databases for all patients from a single institution from 2006 to 2016. Customized queries identified patients 0-18 years old with LVH on ECG and an echo performed within 24 h. Using data visualization (Tableau) and analytic (Stata 14) software, ECG and echo findings were compared. Of 437,699 encounters, 4637 met inclusion criteria. ECG had high sensitivity (≥ 90%) but poor specificity (43%), and low positive predictive value (< 20%) for echo abnormalities. ECG performed only 11-22% better than chance (AROC = 0.50). 83% of subjects with LVH on ECG had normal left ventricle (LV) structure and size on echo. African-Americans with LVH were least likely to have an abnormal echo. There was a low correlation between V 6 R on ECG and echo-derived Z score of left ventricle diastolic diameter (r = 0.14) and LV mass index (r = 0.24). The data analytics client was able to mine a database of ECG and echo reports, comparing LVH by ECG and LV measurements and qualitative findings by echo, identifying an abnormal LV by echo in only 17% of cases with LVH on ECG. This novel tool is useful for rapid data mining for both clinical and research endeavors.
The Future of ECHO: Evaluating Open Source Possibilities
NASA Astrophysics Data System (ADS)
Pilone, D.; Gilman, J.; Baynes, K.; Mitchell, A. E.
2012-12-01
NASA's Earth Observing System ClearingHOuse (ECHO) is a format agnostic metadata repository supporting over 3000 collections and 100M science granules. ECHO exposes FTP and RESTful Data Ingest APIs in addition to both SOAP and RESTful search and order capabilities. Built on top of ECHO is a human facing search and order web application named Reverb. ECHO processes hundreds of orders, tens of thousands of searches, and 1-2M ingest actions each week. As ECHO's holdings, metadata format support, and visibility have increased, the ECHO team has received requests by non-NASA entities for copies of ECHO that can be run locally against their data holdings. ESDIS and the ECHO Team have begun investigations into various deployment and Open Sourcing models that can balance the real constraints faced by the ECHO project with the benefits of providing ECHO capabilities to a broader set of users and providers. This talk will discuss several release and Open Source models being investigated by the ECHO team along with the impacts those models are expected to have on the project. We discuss: - Addressing complex deployment or setup issues for potential users - Models of vetting code contributions - Balancing external (public) user requests versus our primary partners - Preparing project code for public release, including navigating licensing issues related to leveraged libraries - Dealing with non-free project dependencies such as commercial databases - Dealing with sensitive aspects of project code such as database passwords, authentication approaches, security through obscurity, etc. - Ongoing support for the released code including increased testing demands, bug fixes, security fixes, and new features.
Efficient Classical Algorithm for Boson Sampling with Partially Distinguishable Photons
NASA Astrophysics Data System (ADS)
Renema, J. J.; Menssen, A.; Clements, W. R.; Triginer, G.; Kolthammer, W. S.; Walmsley, I. A.
2018-06-01
We demonstrate how boson sampling with photons of partial distinguishability can be expressed in terms of interference of fewer photons. We use this observation to propose a classical algorithm to simulate the output of a boson sampler fed with photons of partial distinguishability. We find conditions for which this algorithm is efficient, which gives a lower limit on the required indistinguishability to demonstrate a quantum advantage. Under these conditions, adding more photons only polynomially increases the computational cost to simulate a boson sampling experiment.
Entangled-photon compressive ghost imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zerom, Petros; Chan, Kam Wai Clifford; Howell, John C.
2011-12-15
We have experimentally demonstrated high-resolution compressive ghost imaging at the single-photon level using entangled photons produced by a spontaneous parametric down-conversion source and using single-pixel detectors. For a given mean-squared error, the number of photons needed to reconstruct a two-dimensional image is found to be much smaller than that in quantum ghost imaging experiments employing a raster scan. This procedure not only shortens the data acquisition time, but also suggests a more economical use of photons for low-light-level and quantum image formation.
Echo tracker/range finder for radars and sonars
NASA Technical Reports Server (NTRS)
Constantinides, N. J. (Inventor)
1982-01-01
An echo tracker/range finder or altimeter is described. The pulse repetition frequency (PFR) of a predetermined plurality of transmitted pulses is adjusted so that echo pulses received from a reflecting object are positioned between transmitted pulses and divided their interpulse time interval into two time intervals having a predetermined ratio with respect to each other. The invention described provides a means whereby the arrival time of a plurality of echo pulses is defined as the time at which a composite echo pulse formed of a sum of the individual echo pulses has the highest amplitude. The invention is applicable to radar systems, sonar systems, or any other kind of system in which pulses are transmitted and echoes received therefrom.
NASA Astrophysics Data System (ADS)
Nilsen, Ian A.; Osborne, Derek G.; White, Aaron M.; Anna, Jessica M.; Kubarych, Kevin J.
2014-10-01
Using rapidly acquired spectral diffusion, a recently developed variation of heterodyne detected infrared photon echo spectroscopy, we observe ˜3 ps solvent independent spectral diffusion of benzene chromium tricarbonyl (C6H6Cr(CO)3, BCT) in a series of nonpolar linear alkane solvents. The spectral dynamics is attributed to low-barrier internal torsional motion. This tripod complex has two stable minima corresponding to staggered and eclipsed conformations, which differ in energy by roughly half of kBT. The solvent independence is due to the relative size of the rotor compared with the solvent molecules, which create a solvent cage in which torsional motion occurs largely free from solvent damping. Since the one-dimensional transition state is computed to be only 0.03 kBT above the higher energy eclipsed conformation, this model system offers an unusual, nearly barrierless reaction, which nevertheless is characterized by torsional coordinate dependent vibrational frequencies. Hence, by studying the spectral diffusion of the tripod carbonyls, it is possible to gain insight into the fundamental dynamics of internal rotational motion, and we find some evidence for the importance of non-diffusive ballistic motion even in the room-temperature liquid environment. Using several different approaches to describe equilibrium kinetics, as well as the influence of reactive dynamics on spectroscopic observables, we provide evidence that the low-barrier torsional motion of BCT provides an excellent test case for detailed studies of the links between chemical exchange and linear and nonlinear vibrational spectroscopy.
ECHO Data Partners Join Forces to Federate Access to Resources
NASA Astrophysics Data System (ADS)
Kendall, J.; Macie, M.
2003-12-01
During the past year the NASA's Earth Science Data and Information System (ESDIS) project has been collaborating with various Earth science data and client providers to design and implement the EOS Clearinghouse (ECHO). ECHO is an open, interoperable metadata clearinghouse and order broker system. ECHO functions as a repository of information intended to streamline access to digital data and services provided by NASA's Earth Science Enterprise and the extended Earth science community. In a unique partnership, ECHO data providers are working to extend their services in the digital era, to reflect current trends in scientific and educational communications. The multi-organization, inter-disciplinary content of ECHO provides a valuable new service to a growing number of Earth science applications and interdisciplinary research efforts. As such, ECHO is expected to attract a wide audience. In this poster, we highlight the contributions of current ECHO data partners and provide information for prospective data partners on how the project supports the incorporation of new collections and effective long-term asset management that is directly under the control of the organizations who contribute resources to ECHO.
Barry, Robert L.; Klassen, L. Martyn; Williams, Joy M.; Menon, Ravi S.
2008-01-01
A troublesome source of physiological noise in functional magnetic resonance imaging (fMRI) is due to the spatio-temporal modulation of the magnetic field in the brain caused by normal subject respiration. fMRI data acquired using echo-planar imaging is very sensitive to these respiratory-induced frequency offsets, which cause significant geometric distortions in images. Because these effects increase with main magnetic field, they can nullify the gains in statistical power expected by the use of higher magnetic fields. As a study of existing navigator correction techniques for echo-planar fMRI has shown that further improvements can be made in the suppression of respiratory-induced physiological noise, a new hybrid two-dimensional (2D) navigator is proposed. Using a priori knowledge of the slow spatial variations of these induced frequency offsets, 2D field maps are constructed for each shot using spatial frequencies between ±0.5 cm−1 in k-space. For multi-shot fMRI experiments, we estimate that the improvement of hybrid 2D navigator correction over the best performance of one-dimensional navigator echo correction translates into a 15% increase in the volume of activation, 6% and 10% increases in the maximum and average t-statistics, respectively, for regions with high t-statistics, and 71% and 56% increases in the maximum and average t-statistics, respectively, in regions with low t-statistics due to contamination by residual physiological noise. PMID:18024159
Tokuda, Junichi; Morikawa, Shigehiro; Dohi, Takeyoshi; Hata, Nobuhiko
2004-01-01
Image registration in magnetic resonance (MR) image-guided liver therapy enhances surgical guidance by fusing preoperative multimodality images with intraoperative images, or by fusing intramodality images to correlate serial intraoperative images to monitor the effect of therapy. The objective of this paper is to describe the application of navigator echo and projection profile matching to fast two-dimensional image registration for MR-guided liver therapy. We obtain navigator echoes along the read-out and phase-encoding directions by using modified gradient echo imaging. This registration is made possible by masking out the liver profile from the image and performing profile matching with cross-correlation or mutual information as similarity measures. The set of experiments include a phantom study with a 2.0-T experimental MR scanner, and a volunteer and a clinical study with a 0.5-T open-configuration MR scanner, and these evaluate the accuracy and effectiveness of this method for liver therapy. Both the phantom and volunteer study indicate that this method can perform registration in 34 ms with root-mean-square error of 1.6 mm when the given misalignment of a liver is 30 mm. The clinical studies demonstrate that the method can track liver motion of up to approximately 40 mm. Matching profiles with cross-correlation information perform better than with mutual information in terms of robustness and speed. The proposed image registration method has potential clinical impact on and advantages for MR-guided liver therapy.
Electron and photon identification in the D0 experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abazov, V. M.; Abbott, B.; Acharya, B. S.
2014-06-01
The electron and photon reconstruction and identification algorithms used by the D0 Collaboration at the Fermilab Tevatron collider are described. The determination of the electron energy scale and resolution is presented. Studies of the performance of the electron and photon reconstruction and identification are summarized.
NASA Astrophysics Data System (ADS)
Sumriddetchkajorn, Sarun
2015-01-01
Throughout my experience in photonics engineering, this article shows that photonics is indeed a key technology enabler for enhancing our competitiveness. In particular, I snapshot the achievements of NECTEC research teams in implementing devices and systems suitable for healthcare, homeland security, agriculture, and industry.
Comparison of Observations of Sporadic-E Layers in the Nighttime and Daytime Mid-Latitude Ionosphere
NASA Technical Reports Server (NTRS)
Pfaff, R.; Freudenreich, H.; Rowland, D.; Klenzing, J.; Clemmons, J.; Larsen, M.; Kudeki, E.; Franke, S.; Urbina, J.; Bullett, T.
2012-01-01
A comparison of numerous rocket experiments to investigate mid-latitude sporadic-E layers is presented. Electric field and plasma density data gathered on sounding rockets launched in the presence of sporadic-E layers and QP radar echoes reveal a complex electrodynamics including both DC parameters and plasma waves detected over a large range of scales. We show both DC and wave electric fields and discuss their relationship to intense sporadic-E layers in both nighttime and daytime conditions. Where available, neutral wind observations provide the complete electrodynamic picture revealing an essential source of free energy that both sets up the layers and drives them unstable. Electric field data from the nighttime experiments reveal the presence of km-scale waves as well as well-defined packets of broadband (10's of meters to meters) irregularities. What is surprising is that in both the nighttime and daytime experiments, neither the large scale nor short scale waves appear to be distinctly organized by the sporadic-E density layer itself. The observations are discussed in the context of current theories regarding sporadic-E layer generation and quasi-periodic echoes.
Nuclear relaxation and critical fluctuations in membranes containing cholesterol
NASA Astrophysics Data System (ADS)
McConnell, Harden
2009-04-01
Nuclear resonance frequencies in bilayer membranes depend on lipid composition. Our calculations describe the combined effects of composition fluctuations and diffusion on nuclear relaxation near a miscibility critical point. Both tracer and gradient diffusion are included. The calculations involve correlation functions and a correlation length ξ =ξ0T/(T -Tc), where T -Tc is temperature above the critical temperature and ξ0 is a parameter of molecular length. Several correlation functions are examined, each of which is related in some degree to the Ising model correlation function. These correlation functions are used in the calculation of transverse deuterium relaxation rates in magic angle spinning and quadrupole echo experiments. The calculations are compared with experiments that report maxima in deuterium and proton nuclear relaxation rates at the critical temperature [Veatch et al., Proc. Nat. Acad. Sci. U.S.A. 104, 17650 (2007)]. One Ising-model-related correlation function yields a maximum 1/T2 relaxation rate at the critical temperature for both magic angle spinning and quadrupole echo experiments. The calculated rates at the critical temperature are close to the experimental rates. The rate maxima involve relatively rapid tracer diffusion in a static composition gradient over distances of up to 10-100 nm.
On the uncertainty in single molecule fluorescent lifetime and energy emission measurements
NASA Technical Reports Server (NTRS)
Brown, Emery N.; Zhang, Zhenhua; Mccollom, Alex D.
1995-01-01
Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least square methods agree and are optimal when the number of detected photons is large however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67% of those can be noise and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous poisson processes, we derive the exact joint arrival time probably density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. the ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background nose and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.
On the Uncertainty in Single Molecule Fluorescent Lifetime and Energy Emission Measurements
NASA Technical Reports Server (NTRS)
Brown, Emery N.; Zhang, Zhenhua; McCollom, Alex D.
1996-01-01
Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least squares methods agree and are optimal when the number of detected photons is large, however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67 percent of those can be noise, and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous Poisson processes, we derive the exact joint arrival time probability density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. The ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background noise and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.
Large-scale quantum photonic circuits in silicon
NASA Astrophysics Data System (ADS)
Harris, Nicholas C.; Bunandar, Darius; Pant, Mihir; Steinbrecher, Greg R.; Mower, Jacob; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Englund, Dirk
2016-08-01
Quantum information science offers inherently more powerful methods for communication, computation, and precision measurement that take advantage of quantum superposition and entanglement. In recent years, theoretical and experimental advances in quantum computing and simulation with photons have spurred great interest in developing large photonic entangled states that challenge today's classical computers. As experiments have increased in complexity, there has been an increasing need to transition bulk optics experiments to integrated photonics platforms to control more spatial modes with higher fidelity and phase stability. The silicon-on-insulator (SOI) nanophotonics platform offers new possibilities for quantum optics, including the integration of bright, nonclassical light sources, based on the large third-order nonlinearity (χ(3)) of silicon, alongside quantum state manipulation circuits with thousands of optical elements, all on a single phase-stable chip. How large do these photonic systems need to be? Recent theoretical work on Boson Sampling suggests that even the problem of sampling from e30 identical photons, having passed through an interferometer of hundreds of modes, becomes challenging for classical computers. While experiments of this size are still challenging, the SOI platform has the required component density to enable low-loss and programmable interferometers for manipulating hundreds of spatial modes. Here, we discuss the SOI nanophotonics platform for quantum photonic circuits with hundreds-to-thousands of optical elements and the associated challenges. We compare SOI to competing technologies in terms of requirements for quantum optical systems. We review recent results on large-scale quantum state evolution circuits and strategies for realizing high-fidelity heralded gates with imperfect, practical systems. Next, we review recent results on silicon photonics-based photon-pair sources and device architectures, and we discuss a path towards large-scale source integration. Finally, we review monolithic integration strategies for single-photon detectors and their essential role in on-chip feed forward operations.
Rosenfeld, Daniel E.; Nishida, Jun; Yan, Chang; Gengeliczki, Zsolt; Smith, Brian J.; Fayer, Michael D.
2012-01-01
The structural dynamics of thin films consisting of tricarbonyl (1,10-phenanthroline)rhenium chloride (RePhen(CO)3Cl) linked to an alkyl silane monolayer through a triazole linker synthesized on silica-on-calcium-fluoride substrates are investigated using ultrafast infrared (IR) techniques. Ultrafast 2D IR vibrational echo experiments and polarization selective heterodyne detected transient grating (HDTG) measurements, as well as polarization dependent FT-IR and AFM experiments are employed to study the samples. The vibrational echo experiments measure spectral diffusion, while the HDTG experiments measure the vibrational excited state population relaxation and investigate the vibrational transition dipole orientational anisotropy decay. To investigate the anticipated impact of vibrational excitation transfer, which can be caused by the high concentration of RePhen(CO)3Cl in the monolayer, a concentration dependence of the spectral diffusion is measured. To generate a range of concentrations, mixed monolayers consisting of both hydrogen terminated and triazole/RePhen(CO)3Cl terminated alkyl silanes are synthesized. It is found that the measured rate of spectral diffusion is independent of concentration, with all samples showing spectral diffusion of 37 ± 6 ps. To definitively test for vibrational excitation transfer, polarization selective HDTG experiments are conducted. Excitation transfer will cause anisotropy decay. Polarization resolved heterodyne detected transient grating spectroscopy is sensitive to anisotropy decay (depolarization) caused by excitation transfer and molecular reorientation. The HDTG experiments show no evidence of anisotropy decay on the appropriate time scale, demonstrating the absence of excitation transfer the RePhen(CO)3Cl. Therefore the influence of excitation transfer on spectral diffusion is inconsequential in these samples, and the vibrational echo measurements of spectral diffusion report solely on structural dynamics. A small amount of very fast (~2 ps time scale) anisotropy decay is observed. The decay is concentration independent, and is assigned to wobbling-in-a-cone orientational motions of the RePhen(CO)3Cl. Theoretical calculations reported previously for experiments on a single concentration of the same type of sample suggested the presence of some vibrational excitation transfer and excitation transfer induced spectral diffusion. Possible reasons for the experimentally observed lack of excitation transfer in these high concentration samples are discussed. PMID:23259027
Multi-photon absorption limits to heralded single photon sources
Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.
2013-01-01
Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400
Choi, Eui-Young; Shim, Jaemin; Kim, Sung-Ai; Shim, Chi Young; Yoon, Se-Jung; Kang, Seok-Min; Choi, Donghoon; Ha, Jong-Won; Rim, Se-Joong; Jang, Yangsoo; Chung, Namsik
2007-11-01
The present study sought to determine if echo-Doppler-derived pulmonary vascular resistance (PVR echo), net-atrioventricular compliance (Cn) and tricuspid peak systolic annular velocity (Sa), as parameters of right ventricular function, have value in predicting exercise capacity in patients with mitral stenosis (MS). Thirty-two patients with moderate or severe MS without left ventricular systolic dysfunction were studied. After comprehensive echo-Doppler measurements, including PVR echo, tricuspid Sa and left-sided Cn, supine bicycle exercise echo and concomitant respiratory gas analysis were performed. Measurements during 5 cardiac cycles representing the mean heart rate were averaged. Increment of resting PVR(echo) (r=-0.416, p=0.018) and decrement of resting Sa (r=0.433, p=0.013) and Cn (r=0.469, p=0.007) were significantly associated with decrease in %VO(2) peak. The predictive accuracy for %VO2 peak could increase by combining these parameters as Sa/PVR echo (r=0.500, p=0.004) or Cn. (Sa/PVR echo) (r=0.572, p=0.001) independent of mitral valve area, mean diastolic pressure gradients or presence of atrial fibrillation. Measurement of PVR echo, Cn and Sa might provide important information about the exercise capacity of patients with MS.
Multiple echo multi-shot diffusion sequence.
Chabert, Steren; Galindo, César; Tejos, Cristian; Uribe, Sergio A
2014-04-01
To measure both transversal relaxation time (T2 ) and diffusion coefficients within a single scan using a multi-shot approach. Both measurements have drawn interest in many applications, especially in skeletal muscle studies, which have short T2 values. Multiple echo single-shot schemes have been proposed to obtain those variables simultaneously within a single scan, resulting in a reduction of the scanning time. However, one problem with those approaches is the associated long echo read-out. Consequently, the minimum achievable echo time tends to be long, limiting the application of these sequences to tissues with relatively long T2 . To address this problem, we propose to extend the multi-echo sequences using a multi-shot approach, so that to allow shorter echo times. A multi-shot dual-echo EPI sequence with diffusion gradients and echo navigators was modified to include independent diffusion gradients in any of the two echoes. The multi-shot approach allows us to drastically reduce echo times. Results showed a good agreement for the T2 and mean diffusivity measurements with gold standard sequences in phantoms and in vivo data of calf muscles from healthy volunteers. A fast and accurate method is proposed to measure T2 and diffusion coefficients simultaneously, tested in vitro and in healthy volunteers. Copyright © 2013 Wiley Periodicals, Inc.
Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths.
Bruno, N; Martin, A; Guerreiro, T; Sanguinetti, B; Thew, R T
2014-07-14
We report on the generation of indistinguishable photon pairs at telecom wavelengths based on a type-II parametric down conversion process in a periodically poled potassium titanyl phosphate (PPKTP) crystal. The phase matching, pump laser characteristics and coupling geometry are optimised to obtain spectrally uncorrelated photons with high coupling efficiencies. Four photons are generated by a counter-propagating pump in the same crystal and anlysed via two photon interference experiments between photons from each pair source as well as joint spectral and g((2)) measurements. We obtain a spectral purity of 0.91 and coupling efficiencies around 90% for all four photons without any filtering. These pure indistinguishable photon sources at telecom wavelengths are perfectly adapted for quantum network demonstrations and other multi-photon protocols.
Perspective: Photonic flatbands
NASA Astrophysics Data System (ADS)
Leykam, Daniel; Flach, Sergej
2018-07-01
Flatbands are receiving increasing theoretical and experimental attention in the field of photonics, in particular in the field of photonic lattices. Flatband photonic lattices consist of arrays of coupled waveguides or resonators where the peculiar lattice geometry results in at least one completely flat or dispersionless band in its photonic band structure. Although bearing a strong resemblance to structural slow light, this independent research direction is instead inspired by analogies with "frustrated" condensed matter systems. In this Perspective, we critically analyze the research carried out to date, discuss how this exotic physics may lead to novel photonic device applications, and chart promising future directions in theory and experiment.
High-efficiency multiphoton boson sampling
NASA Astrophysics Data System (ADS)
Wang, Hui; He, Yu; Li, Yu-Huai; Su, Zu-En; Li, Bo; Huang, He-Liang; Ding, Xing; Chen, Ming-Cheng; Liu, Chang; Qin, Jian; Li, Jin-Peng; He, Yu-Ming; Schneider, Christian; Kamp, Martin; Peng, Cheng-Zhi; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei
2017-06-01
Boson sampling is considered as a strong candidate to demonstrate 'quantum computational supremacy' over classical computers. However, previous proof-of-principle experiments suffered from small photon number and low sampling rates owing to the inefficiencies of the single-photon sources and multiport optical interferometers. Here, we develop two central components for high-performance boson sampling: robust multiphoton interferometers with 99% transmission rate and actively demultiplexed single-photon sources based on a quantum dot-micropillar with simultaneously high efficiency, purity and indistinguishability. We implement and validate three-, four- and five-photon boson sampling, and achieve sampling rates of 4.96 kHz, 151 Hz and 4 Hz, respectively, which are over 24,000 times faster than previous experiments. Our architecture can be scaled up for a larger number of photons and with higher sampling rates to compete with classical computers, and might provide experimental evidence against the extended Church-Turing thesis.
NASA Astrophysics Data System (ADS)
Navascués, Miguel
2014-02-01
In 2003, Leggett introduced his model of crypto-nonlocality based on considerations on the reality of photon polarization [A. J. Leggett, Found. Phys. 33, 1469 (2003), 10.1023/A:1026096313729]. In this paper, we prove that, contrary to hints in subsequent literature, crypto-nonlocality does not follow naturally from the postulate that polarization is a realistic variable. More explicitly, consider physical theories where (a) faster-than-light communication is impossible, (b) all physical photon states have a definite polarization, and (c) given two separate photons, if we measure one of them and post-select on the result, the measurement statistics of the remaining system correspond to a photon state. We show that the outcomes of any two-photon polarization experiment in these theories must follow the statistics generated by measuring a separable two-qubit quantum state. Consequently, in such experiments any instance of entanglement detection—and not necessarily a Leggett inequality violation—can be regarded as a refutation of this class of theories.
NASA Technical Reports Server (NTRS)
To, Wing H.
2005-01-01
Quantum optical experiments require all the components involved to be extremely stable relative to each other. The stability can be "measured" by using an interferometric experiment. A pair of coherent photons produced by parametric down-conversion could be chosen to be orthogonally polarized initially. By rotating the polarization of one of the wave packets, they can be recombined at a beam splitter such that interference will occur. Theoretically, the interference will create four terms in the wave function. Two terms with both photons going to the same detector, and two terms will have the photons each going to different detectors. However, the latter will cancel each other out, thus no photons will arrive at the two detectors simultaneously under ideal conditions. The stability Of the test-bed can then be inferred by the dependence of coincidence count on the rotation angle.
Compassion's Echo: Experiential Learning about India
ERIC Educational Resources Information Center
Sider, Kenneth
2008-01-01
A real-life experience is a "moving force" that can be part of the elementary social studies curriculum. This article discusses an experiential learning about India and describes how the author integrates the arts and service learning in his third grade classroom. It also describes class activities that enhance social studies curriculum…
Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations
Kettinger, Ádám; Hill, Christopher; Vidnyánszky, Zoltán; Windischberger, Christian; Nagy, Zoltán
2016-01-01
Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize sensitivity for detecting the BOLD signal. Several methods have also been proposed for the combination of data with different echo times. The aim of the present study was to investigate whether these advanced echo combination methods provide advantages over the simple averaging of echoes when state-of-the-art group-level random-effect analyses are performed. Both resting-state and task-based dual-echo fMRI data were collected from 27 healthy adult individuals (14 male, mean age = 25.75 years) using standard echo-planar acquisition methods at 3T. Both resting-state and task-based data were subjected to a standard image pre-processing pipeline. Subsequently the two echoes were combined as a weighted average, using four different strategies for calculating the weights: (1) simple arithmetic averaging, (2) BOLD sensitivity weighting, (3) temporal-signal-to-noise ratio weighting and (4) temporal BOLD sensitivity weighting. Our results clearly show that the simple averaging of data with the different echoes is sufficient. Advanced echo combination methods may provide advantages on a single-subject level but when considering random-effects group level statistics they provide no benefit regarding sensitivity (i.e., group-level t-values) compared to the simple echo-averaging approach. One possible reason for the lack of clear advantages may be that apart from increasing the average BOLD sensitivity at the single-subject level, the advanced weighted averaging methods also inflate the inter-subject variance. As the echo combination methods provide very similar results, the recommendation is to choose between them depending on the availability of time for collecting additional resting-state data or whether subject-level or group-level analyses are planned. PMID:28018165
Punn, Rajesh; Hanisch, Debra; Motonaga, Kara S; Rosenthal, David N; Ceresnak, Scott R; Dubin, Anne M
2016-02-01
Cardiac resynchronization therapy indications and management are well described in adults. Echocardiography (ECHO) has been used to optimize mechanical synchrony in these patients; however, there are issues with reproducibility and time intensity. Pediatric patients add challenges, with diverse substrates and limited capacity for cooperation. Electrocardiographic (ECG) methods to assess electrical synchrony are expeditious but have not been extensively studied in children. We sought to compare ECHO and ECG CRT optimization in children. Prospective, pediatric, single-center cross-over trial comparing ECHO and ECG optimization with CRT. Patients were assigned to undergo either ECHO or ECG optimization, followed for 6 months, and crossed-over to the other assignment for another 6 months. ECHO pulsed-wave tissue Doppler and 12-lead ECG were obtained for 5 VV delays. ECG optimization was defined as the shortest QRSD and ECHO optimization as the lowest dyssynchrony index. ECHOs/ECGs were interpreted by readers blinded to optimization technique. After each 6 month period, these data were collected: ejection fraction, velocimetry-derived cardiac index, quality of life, ECHO-derived stroke distance, M-mode dyssynchrony, study cost, and time. Outcomes for each optimization method were compared. From June 2012 to December 2013, 19 patients enrolled. Mean age was 9.1 ± 4.3 years; 14 (74%) had structural heart disease. The mean time for optimization was shorter using ECG than ECHO (9 ± 1 min vs. 68 ± 13 min, P < 0.01). Mean cost for charges was $4,400 ± 700 less for ECG. No other outcome differed between groups. ECHO optimization of synchrony was not superior to ECG optimization in this pilot study. ECG optimization required less time and cost than ECHO optimization. © 2015 Wiley Periodicals, Inc.
Lim, Han Chuen; Yoshizawa, Akio; Tsuchida, Hidemi; Kikuchi, Kazuro
2008-09-15
We present a theoretical model for the distribution of polarization-entangled photon-pairs produced via spontaneous parametric down-conversion within a local-area fiber network. This model allows an entanglement distributor who plays the role of a service provider to determine the photon-pair generation rate giving highest two-photon interference fringe visibility for any pair of users, when given user-specific parameters. Usefulness of this model is illustrated in an example and confirmed in an experiment, where polarization-entangled photon-pairs are distributed over 82 km and 132 km of dispersion-managed optical fiber. Experimentally observed visibilities and entanglement fidelities are in good agreement with theoretically predicted values.
NASA Astrophysics Data System (ADS)
Beattie, T.; Lolos, G. J.; Papandreou, Z.; Semenov, A. Yu.; Teigrob, L. A.
2015-08-01
Large-area, multi-pixel photon counters will be used for the electromagnetic Barrel Calorimeter of the GlueX experiment at Jefferson Lab. These photo sensors are based on a 3 ×3 mm2 cell populated by 50 μm pixels, with 16 such cells tiled in a 4 ×4 arrangement in the array. The 16 cells are summed electronically and the signals are amplified. The photon detection efficiency of a group of first-article units at room temperature under conditions similar to those of the experiment was extracted to be (28 ±2(stat) ±2(syst))%, by employing an analysis methodology based on Poisson statistics carried out on the summed energy signals from the units.
White, Clare; McIlfatrick, Sonja; Dunwoody, Lynn; Watson, Max
2015-12-01
Project ECHO (Extension for Community Healthcare Outcomes) uses teleconferencing technology to support and train healthcare providers (HCPs) remotely, and has improved care across the USA. A 6-month pilot was trialled in a community palliative care nursing setting to determine if ECHO would be effective in the UK in providing education and support to community hospice nurses (CHN). The pilot involved weekly 2 hour sessions of teaching and case-based discussions facilitated by hospice staff linking with nine teams of CHN using video conferencing technology. A mixed-methods prospective longitudinal cohort study was used to evaluate the pilot. Each CHN provided demographic data, and completed a written knowledge assessment and a self-efficacy tool before and after the pilot. Two focus groups were also performed after the pilot. 28 CHNs completed the evaluation. Mean knowledge score improved significantly from 71.3% to 82.7% (p=0.0005) as did overall self-efficacy scores following the ECHO pilot. Pre-ECHO (p=0.036) and Retro-Pretest ECHO (p=0.0005) self-efficacy were significantly lower than post-ECHO. There was no significant difference between Pretest and Retro-Pretest ECHO self-efficacy (p=0.063). 96% recorded gains in learning, and 90% felt that ECHO had improved the care they provided for patients. 83% would recommend ECHO to other HCPs. 70% stated the technology used in ECHO had given them access to education that would have been hard to access due to geography. This study supports the use of Project ECHO for CHNs in the UK by demonstrating how a 6-month pilot improved knowledge and self-efficacy. As a low-cost high-impact model, ECHO provides an affordable solution to addressing growing need. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
2010-01-06
Micropulsation [10] The induced magnetic field variation was monitored by the fluxgate magnetometer located at Gakona, AK. The 1 sec resolution data...minutes on and 1 minute off, were explored. The experiments were monitored using the digisonde and magnetometer located at the HAARP facility. The...were explored. The experiments were monitored using the digisonde and magnetometer located at the HAARP facility. The results show that the
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2012-05-01
This paper is the fourth part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Optoelectronic Devices, Sensors, Communication and Multimedia (Video and Audio) technologies. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-270].
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2012-05-01
This paper is the fifth part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Biomedical, Artificial Intelligence and DNA Computing technologies. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-270].
Theory and optical design of x-ray echo spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvyd'ko, Yuri
X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate opticalmore » design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.« less
Dolphin "packet" use during long-range echolocation tasks.
Finneran, James J
2013-03-01
When echolocating, dolphins typically emit a single broadband "click," then wait to receive the echo before emitting another click. However, previous studies have shown that during long-range echolocation tasks, they may instead emit a burst, or "packet," of several clicks, then wait for the packet of echoes to return before emitting another packet of clicks. The reasons for the use of packets are unknown. In this study, packet use was examined by having trained bottlenose dolphins perform long-range echolocation tasks. The tasks featured "phantom" echoes produced by capturing the dolphin's outgoing echolocation clicks, convolving the clicks with an impulse response to create an echo waveform, and then broadcasting the delayed, scaled echo to the dolphin. Dolphins were trained to report the presence of phantom echoes or a change in phantom echoes. Target range varied from 25 to 800 m. At ranges below 75 m, the dolphins rarely used packets. As the range increased beyond 75 m, two of the three dolphins increasingly produced packets, while the third dolphin instead utilized very high click repetition rates. The use of click packets appeared to be governed more by echo delay (target range) than echo amplitude.
Theory and optical design of x-ray echo spectrometers
Shvyd'ko, Yuri
2017-08-02
X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate opticalmore » design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.« less
Psychoacoustic influences of the echoing environments of prehistoric art
NASA Astrophysics Data System (ADS)
Waller, Steven J.
2002-11-01
Cave paintings and ancient petroglyphs around the world are typically found in echo rich locations such as caves, canyons, and rocky cliff faces. Analysis of field data shows that echo decibel levels at a large number of prehistoric art sites are higher than those at nondecorated locations. The selection of these echoing environments by the artists appears not to be a mere coincidence. This paper considers the perception of an echoed sound as a psychoacoustic event that would have been inexplicable to ancient humans. A variety of ancient legends from cultures on several continents attribute the phenomenon of echoes to supernatural beings. These legends, together with the quantitative data, strongly implicate echoing as relevant to the artists of the past. The notion that the echoes were caused by spirits within the rock would explain not only the unusual locations of prehistoric art, but also the perplexing subject matter. For example, the common theme of hoofed animal imagery could have been inspired by echoes of percussion noises perceived as hoof beats. Further systematic acoustical studies of prehistoric art sites is warranted. Conservation of the natural acoustic properties of rock art environments--a previously unrecognized need--is urged.
Measuring temporal summation in visual detection with a single-photon source.
Holmes, Rebecca; Victora, Michelle; Wang, Ranxiao Frances; Kwiat, Paul G
2017-11-01
Temporal summation is an important feature of the visual system which combines visual signals that arrive at different times. Previous research estimated complete summation to last for 100ms for stimuli judged "just detectable." We measured the full range of temporal summation for much weaker stimuli using a new paradigm and a novel light source, developed in the field of quantum optics for generating small numbers of photons with precise timing characteristics and reduced variance in photon number. Dark-adapted participants judged whether a light was presented to the left or right of their fixation in each trial. In Experiment 1, stimuli contained a stream of photons delivered at a constant rate while the duration was systematically varied. Accuracy should increase with duration as long as the later photons can be integrated with the proceeding ones into a single signal. The temporal integration window was estimated as the point that performance no longer improved, and was found to be 650ms on average. In Experiment 2, the duration of the visual stimuli was kept short (100ms or <30ms) while the number of photons was varied to explore the efficiency of summation over the integration window compared to Experiment 1. There was some indication that temporal summation remains efficient over the integration window, although there is variation between individuals. The relatively long integration window measured in this study may be relevant to studies of the absolute visual threshold, i.e., tests of single-photon vision, where "single" photons should be separated by greater than the integration window to avoid summation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Measuring the Velocity of Cosmic Photons
NASA Astrophysics Data System (ADS)
Vazquez, Gerardo Arturo
2018-01-01
The position of the JWST in space—close to the L2 point at a distance of 1.5 million kilometers from Earth—allows us a unique chance to measure the speed of cosmic photons through a double detection in two different telescopes. The speed of cosmic photons has been considered constant as a matter of principle, but in the same way, the energy lost by these photons could have a contribution due to a different nature such as dark matter. In this work, an experiment to measure the speed of photons is proposed based on the detection on two different telescopes located at a considerable distance. Some of the most important results of this experiment could be variations of the speed of light as it passes through dark matter and, as a consequence, the ability to map dark matter in the universe. Although JWST is not in the direction to measure the difference in time of 5 seconds, the fact that it can move up to a 50 arc degree angle will allow us to measure a difference in detection between 3 to 4.5 seconds. The observations needed to do this experiment should come from the detection of gamma ray bursts and then, the simultaneous detection by the sudden pointing of JWST plus a secondary telescope—on ground or in space—to catch the afterglow of the GRB in longer wavelengths. The new technology in telescopes will allow us to catch a difference in magnitude between both telescopes or even to measure single photon detection in time in order to accomplish the purpose of the experiment.
Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber
Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido
2016-01-01
We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons. PMID:27170160
Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee
2008-07-01
In a false killer whale Pseudorca crassidens, echo perception thresholds were measured using a go/no-go psychophysical paradigm and one-up-one-down staircase procedure. Computer controlled echoes were electronically synthesized pulses that were played back through a transducer and triggered by whale emitted biosonar pulses. The echo amplitudes were proportional to biosonar pulse amplitudes; echo levels were specified in terms of the attenuation of the echo sound pressure level near the animal's head relative to the source level of the biosonar pulses. With increasing echo delay, the thresholds (echo attenuation factor) decreased from -49.3 dB at 2 ms to -79.5 dB at 16 ms, with a regression slope of -9.5 dB per delay doubling (-31.5 dB per delay decade). At the longer delays, the threshold remained nearly constant around -80.4 dB. Levels of emitted pulses slightly increased with delay prolongation (threshold decrease), with a regression slope of 3.2 dB per delay doubling (10.7 dB per delay decade). The echo threshold dependence on delay is interpreted as a release from forward masking by the preceding emitted pulse. This release may compensate for the echo level decrease with distance, thus keeping the echo sensation level for the animal near constant within a certain distance range.
Single-photon-level quantum image memory based on cold atomic ensembles
Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can
2013-01-01
A quantum memory is a key component for quantum networks, which will enable the distribution of quantum information. Its successful development requires storage of single-photon light. Encoding photons with spatial shape through higher-dimensional states significantly increases their information-carrying capability and network capacity. However, constructing such quantum memories is challenging. Here we report the first experimental realization of a true single-photon-carrying orbital angular momentum stored via electromagnetically induced transparency in a cold atomic ensemble. Our experiments show that the non-classical pair correlation between trigger photon and retrieved photon is retained, and the spatial structure of input and retrieved photons exhibits strong similarity. More importantly, we demonstrate that single-photon coherence is preserved during storage. The ability to store spatial structure at the single-photon level opens the possibility for high-dimensional quantum memories. PMID:24084711
Semi-Automated Air-Coupled Impact-Echo Method for Large-Scale Parkade Structure.
Epp, Tyler; Svecova, Dagmar; Cha, Young-Jin
2018-03-29
Structural Health Monitoring (SHM) has moved to data-dense systems, utilizing numerous sensor types to monitor infrastructure, such as bridges and dams, more regularly. One of the issues faced in this endeavour is the scale of the inspected structures and the time it takes to carry out testing. Installing automated systems that can provide measurements in a timely manner is one way of overcoming these obstacles. This study proposes an Artificial Neural Network (ANN) application that determines intact and damaged locations from a small training sample of impact-echo data, using air-coupled microphones from a reinforced concrete beam in lab conditions and data collected from a field experiment in a parking garage. The impact-echo testing in the field is carried out in a semi-autonomous manner to expedite the front end of the in situ damage detection testing. The use of an ANN removes the need for a user-defined cutoff value for the classification of intact and damaged locations when a least-square distance approach is used. It is postulated that this may contribute significantly to testing time reduction when monitoring large-scale civil Reinforced Concrete (RC) structures.
Evoked potential application to study of echolocation in cetaceans
NASA Astrophysics Data System (ADS)
Supin, Alexander Ya.; Nactigall, Paul E.; Pawloski, Jeffrey; Au, Whitlow W. L.
2002-05-01
The evoked-potential (EP) method is effective in studies of hearing capabilities of cetaceans. However, until now EP studies in cetaceans were performed only in conditions of passive hearing by recording EP to external stimuli. Can this method be applied to study active echolocation in odontocetes? To answer this question, auditory brainstem evoked responses (ABR) were recorded in a false killer whale while the animal echolocated a target within an experiment in which the animal reported the target present or absent. The ABR collection was triggered by echolocation clicks. In these conditions, the recorded ABR pattern contained a duplicate set of waves. A comparison of ABR wave delays recorded during echolocation with those recorded during regular external stimulation has shown that the first set of waves is a response to the emitted click whereas the second one is a response to the echo. Both responses, to the emitted click and to the echo, were of comparable amplitude in spite of the intensity difference of these two sounds of more than 40 dB near the animal's head. This finding indicates some mechanisms releasing responses to echoes from masking by loud emitted clicks. The evoked-potential method may be productive to investigate these mechanisms.
Semi-Automated Air-Coupled Impact-Echo Method for Large-Scale Parkade Structure
Epp, Tyler; Svecova, Dagmar; Cha, Young-Jin
2018-01-01
Structural Health Monitoring (SHM) has moved to data-dense systems, utilizing numerous sensor types to monitor infrastructure, such as bridges and dams, more regularly. One of the issues faced in this endeavour is the scale of the inspected structures and the time it takes to carry out testing. Installing automated systems that can provide measurements in a timely manner is one way of overcoming these obstacles. This study proposes an Artificial Neural Network (ANN) application that determines intact and damaged locations from a small training sample of impact-echo data, using air-coupled microphones from a reinforced concrete beam in lab conditions and data collected from a field experiment in a parking garage. The impact-echo testing in the field is carried out in a semi-autonomous manner to expedite the front end of the in situ damage detection testing. The use of an ANN removes the need for a user-defined cutoff value for the classification of intact and damaged locations when a least-square distance approach is used. It is postulated that this may contribute significantly to testing time reduction when monitoring large-scale civil Reinforced Concrete (RC) structures. PMID:29596332
Application of Medical Magnetic Resonance Imaging for Particle Concentration Measurement
NASA Astrophysics Data System (ADS)
Borup, Daniel; Elkins, Christopher; Eaton, John
2014-11-01
Particle transport and deposition in internal flows is important in a range of applications such as dust aggregation in turbine engines and aerosolized medicine deposition in human airways. Unlike optical techniques, Magnetic Resonance Imaging (MRI) is well suited for complex applications in which optical access is not possible. Here we present efforts to measure 3D particle concentration distribution using MRI. Glass particles dispersed in water flow reduce MRI signal from a spin-echo or gradient-echo scanning sequence by decreasing spin density and dephasing the spins present in the fluid. A preliminary experiment was conducted with a particle streak injected at the centerline of a turbulent round pipe flow with a U bend. Measurements confirmed that signal strength was related to particle concentration and showed the effects of gravitational settling and turbulent dispersion. Next, measurements of samples in a mixing chamber were taken. Particle volume fraction was varied and sensitivity to particle/fluid velocity was investigated. These results give a relationship between MRI signal, particle volume fraction, MRI sequence echo time, and spin relaxation parameters that can be used to measure local particle volume fraction in other turbulent flows of interest.
Chirp echo Fourier transform EPR-detected NMR
NASA Astrophysics Data System (ADS)
Wili, Nino; Jeschke, Gunnar
2018-04-01
A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies.
Chen, Ying; Liao, Yupeng; Yuan, Lisha; Liu, Hui; Yun, Seong Dae; Shah, Nadim Joni; Chen, Zhong; Zhong, Jianhui
2017-04-01
Single-shot spatiotemporally encoded (SPEN) MRI is a novel fast imaging method capable of retaining the time efficiency of single-shot echo planar imaging (EPI) but with distortion artifacts significantly reduced. Akin to EPI, the phase inconsistencies between mismatched even and odd echoes also result in the so-called Nyquist ghosts. However, the characteristic of the SPEN signals provides the possibility of obtaining ghost-free images directly from even and odd echoes respectively, without acquiring additional reference scans. In this paper, a theoretical analysis of the Nyquist ghosts manifested in single-shot SPEN MRI is presented, a one-dimensional correction scheme is put forward capable of maintaining definition of image features without blurring when the phase inconsistency along SPEN encoding direction is negligible, and a technique is introduced for convenient and robust correction of data from multi-channel receiver coils. The effectiveness of the proposed processing pipeline is validated by a series of experiments conducted on simulation data, in vivo rats and healthy human brains. The robustness of the method is further verified by implementing distortion correction on ghost corrected data. Copyright © 2016. Published by Elsevier Inc.
Generalized sidelobe canceler beamforming applied to medical ultrasound imaging
NASA Astrophysics Data System (ADS)
Li, Jiake; Chen, Xiaodong; Wang, Yi; Shi, Yifeng; Yu, Daoyin
2017-03-01
A generalized sidelobe canceler (GSC) approach is proposed for medical ultrasound imaging. The approach uses a set of adaptive weights instead of traditional non-adaptive weights, thus suppressing the interference and noise signal of echo data. In order to verify the validity of the proposed approach, Field II is applied to obtain the echo data of synthetic aperture (SA) for 13 scattering points and circular cysts. The performance of GSC is compared with SA using boxcar weights and Hamming weights, and is quantified by the full width at half maximum (FWHM) and peak signal-to-noise ratio (PSNR). Imaging of scattering point utilizing SA, SA (hamming), GSC provides FWHMs of 1.13411, 1.68910, 0.36195 mm and PSNRs of 60.65, 57.51, 66.72 dB, respectively. The simulation results of circular cyst also show that GSC can perform better lateral resolution than non-adaptive beamformers. Finally, an experiment is conducted on the basis of actual echo data of an ultrasound system, the imaging result after SA, SA (hamming), GSC provides PWHMs of 2.55778, 3.66776, 1.01346 mm at z = 75.6 mm, and 2.65430, 3.76428, 1.27889 mm at z = 77.3 mm, respectively.
Geoscience Laser Altimeter System (GLAS) for the ICESat Mission
NASA Technical Reports Server (NTRS)
Abshire, James B.; Sun, Xiaoli; Ketchum, Eleanor A.; Millar, Pamela S.; Riris, Haris
2002-01-01
The Geoscience Laser Altimeter System (GLAS) is a new generation lidar and is the primary science payload for NASA's ICESat Mission. The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, establish a grid of accurate height profiles of the Earth's land topography, and profile the vertical distribution of clouds and aerosols on a global scale. GLAS will be integrated onto a small spacecraft built by Ball Aerospace, and will be launched into a polar orbit with a 590-630 km altitude at an inclination of 94 degrees. ICESat is is currently planned to launch in winter 2002/03 and GLAS is designed to operate continuously in space for a minimum of 3 years. GLAS will measure the vertical distance from orbit to the Earth's surface with pulses from a ND:YAG laser at a 40 Hz rate. Each 6 nsec wide 1064 nm laser pulse is used to produce a single range measurement. On the surface, the laser footprints have 66 m diameter and approx. 170 m center-center spacings. The GLAS receiver uses a I m diameter telescope to detect laser backscatter and a Si APD to detect the 1064 nm signals. The detector's output is sampled by a digital ranging receiver, which records each transmitted pulse and surface echo waveform with 1 nsec (15 cm) resolution. Each echo pulse is digitized and is reported to ground with a record length of from 200 to 544 samples, depending on the spacecraft's location . The GLAS location and epoch times are measured by a precision GPS receiver carried on the ICESat spacecraft. Initial processing of the echo waveforms within GLAS permits discrimination between cloud and surface echoes for selecting appropriate waveform samples. This selection is guided by an on-board DEM which is used to set the boundaries for the echo pulse search algorithm. Subsequent ground-based echo pulse analysis, along with GPS-based clock frequency estimates, permit final determination of the range to the surface, degree of pulse spreading, and vertical distribution of any vegetation illuminated by the laser. Accurate knowledge of the laser beam's pointing angle is needed to prevent height biases when measuring over tilted surfaces, such as near the boundaries of ice sheets. For surfaces with 2 deg. slopes, knowledge of pointing angle of the beam's centroid angle to better than 10 urad is needed. GLAS uses a stellar reference system (SRS) to measure the pointing angle of each laser firing relative to inertial space. The SRS uses a high precision star camera oriented toward local zenith and a gyroscope to determine the inertial orientation of the SRS optical bench. The far field pattern of each laser is measured pulse relative to the star camera with a laser reference system (LRS). GLAS will also measure the vertical distributions of clouds and aerosols by recording the vertical profiles of laser pulse backscatter at both 1064 and 532 nm. The 1064 rim measurements use the Si APD detector and will be used to measure the height and echo pulse shape from thicker clouds. The lidar receiver at 532 nm uses a narrow bandwidth etalon filter and highly sensitive photon counting detectors. The 532 nm backscatter profiles will be used to measure the vertical extent of thinner clouds and the atmospheric boundary layer. The GLAS instrument component development is complete and the instrument is undergoing final testing and qualification at NASA-Goddard. The GLAS "as-built" characteristics and its expected measurement performance will be discussed.
Superconducting Qubit Optical Transducer (SQOT)
2015-08-05
2 2.2 Qubit- Photon Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 System...and a high Q will make this challenging. 3 2.2 QUBIT- PHOTON ENTANGLEMENT The parametric interaction enables interconversion between the microwave and...to observe entanglement between a qubit and optical photon and similar to experiments demonstrated solely in the microwave domain [4]: 1. Start with
ERIC Educational Resources Information Center
Hobson, Art
2012-01-01
Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…
Artifact reduction in the CSPAD detectors used for LCLS experiments.
Pietrini, Alberto; Nettelblad, Carl
2017-09-01
The existence of noise and column-wise artifacts in the CSPAD-140K detector and in a module of the CSPAD-2.3M large camera, respectively, is reported for the L730 and L867 experiments performed at the CXI Instrument at the Linac Coherent Light Source (LCLS), in low-flux and low signal-to-noise ratio regime. Possible remedies are discussed and an additional step in the preprocessing of data is introduced, which consists of performing a median subtraction along the columns of the detector modules. Thus, we reduce the overall variation in the photon count distribution, lowering the mean false-positive photon detection rate by about 4% (from 5.57 × 10 -5 to 5.32 × 10 -5 photon counts pixel -1 frame -1 in L867, cxi86715) and 7% (from 1.70 × 10 -3 to 1.58 × 10 -3 photon counts pixel -1 frame -1 in L730, cxi73013), and the standard deviation in false-positive photon count per shot by 15% and 35%, while not making our average photon detection threshold more stringent. Such improvements in detector noise reduction and artifact removal constitute a step forward in the development of flash X-ray imaging techniques for high-resolution, low-signal and in serial nano-crystallography experiments at X-ray free-electron laser facilities.
The Heavy Photon Search beamline and its performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baltzell, N.; Egiyan, H.; Ehrhart, M.
The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the emore » $^+$e$^-$ decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO$$_4$$ electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 $$\\mu$$m above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This study describes the beam line and its performance during that data taking.« less
The Heavy Photon Search beamline and its performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baltzell, N.; Egiyan, H.; Ehrhart, M.
The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the e+e- decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO 4 electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed justmore » 10 cm downstream of the target with the sensor edges only 500 μm above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This paper describes the beam line and its performance during that data taking.« less
Search for dark photons using data from CRESST-II Phase 2
NASA Astrophysics Data System (ADS)
Gütlein, A.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Defay, X.; Erb, A.; Feilitzsch, F. v.; Ferreiro Iachellini, N.; Gorla, P.; Hauff, D.; Jochum, J.; Kiefer, M.; Kluck, H.; Kraus, H.; Lanfranchi, J.-C.; Loebell, J.; Mancuso, M.; Münster, A.; Pagliarone, C.; Petricca, F.; Potzel, W.; Pröbst, F.; Puig, R.; Reindl, F.; Schäffner, K.; Schieck, J.; Schönert, S.; Seidel, W.; Stahlberg, M.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Trinh Thi, H. H.; Türkoǧlu, C.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.; Zöller, A.
2017-09-01
Understanding the nature and origin of dark matter is one of the most important challenges for modern particle physics. During the previous decade the sensitivities of direct dark matter searches have improved by several orders of magnitude. These experiments focus their work mainly on the search for dark-matter particles interacting with nuclei (e.g. Weakly Interacting Massive Particles, WIMPs). However, there exists a large variety of different candidates for dark-matter particles. One of these candidates, the so-called dark photon, is a long-lived vector boson with a kinetic mixing to the standard-model photon. In this work we present the preliminary results of our search for dark photons. Using data from the direct dark matter search CRESST-II Phase 2 we can improve the existing constraints for the kinetic mixing for dark-photon masses between 0.3 and 0.5 keV/c2. In addition, we also present projected sensitivities for the next phases of the CRESST-III experiment showing great potential to improve the sensitivity for dark-photon masses below 1 keV.
The Heavy Photon Search beamline and its performance
Baltzell, N.; Egiyan, H.; Ehrhart, M.; ...
2017-07-01
The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the emore » $^+$e$^-$ decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO$$_4$$ electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 $$\\mu$$m above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This study describes the beam line and its performance during that data taking.« less
DAEδALUS and dark matter detection
Kahn, Yonatan; Krnjaic, Gordan; Thaler, Jesse; ...
2015-03-05
Among laboratory probes of dark matter, fixed-target neutrino experiments are particularly well suited to search for light weakly coupled dark sectors. Here in this paper, we show that the DAEδALUS source setup$-$an 800 MeV proton beam impinging on a target of graphite and copper$-$can improve the present LSND bound on dark photon models by an order of magnitude over much of the accessible parameter space for light dark matter when paired with a suitable neutrino detector such as LENA. Interestingly, both DAEδALUS and LSND are sensitive to dark matter produced from off-shell dark photons. We show for the first timemore » that LSND can be competitive with searches for visible dark photon decays and that fixed-target experiments have sensitivity to a much larger range of heavy dark photon masses than previously thought. We review the mechanism for dark matter production and detection through a dark photon mediator, discuss the beam-off and beam-on backgrounds, and present the sensitivity in dark photon kinetic mixing for both the DAEδALUS/LENA setup and LSND in both the on- and off-shell regimes.« less
Measurements of high energy photons in Z-pinch experiments on primary test stand
NASA Astrophysics Data System (ADS)
Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin
2015-08-01
High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 1010 cm-2 (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.
Measurements of high energy photons in Z-pinch experiments on primary test stand.
Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin
2015-08-01
High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10(10) cm(-2) (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.
Simultaneous Quantitative MRI Mapping of T1, T2* and Magnetic Susceptibility with Multi-Echo MP2RAGE
Kober, Tobias; Möller, Harald E.; Schäfer, Andreas
2017-01-01
The knowledge of relaxation times is essential for understanding the biophysical mechanisms underlying contrast in magnetic resonance imaging. Quantitative experiments, while offering major advantages in terms of reproducibility, may benefit from simultaneous acquisitions. In this work, we demonstrate the possibility of simultaneously recording relaxation-time and susceptibility maps with a prototype Multi-Echo (ME) Magnetization-Prepared 2 RApid Gradient Echoes (MP2RAGE) sequence. T1 maps can be obtained using the MP2RAGE sequence, which is relatively insensitive to inhomogeneities of the radio-frequency transmit field, B1+. As an extension, multiple gradient echoes can be acquired in each of the MP2RAGE readout blocks, which permits the calculation of T2* and susceptibility maps. We used computer simulations to explore the effects of the parameters on the precision and accuracy of the mapping. In vivo parameter maps up to 0.6 mm nominal resolution were acquired at 7 T in 19 healthy volunteers. Voxel-by-voxel correlations and the test-retest reproducibility were used to assess the reliability of the results. When using optimized paramenters, T1 maps obtained with ME-MP2RAGE and standard MP2RAGE showed excellent agreement for the whole range of values found in brain tissues. Simultaneously obtained T2* and susceptibility maps were of comparable quality as Fast Low-Angle SHot (FLASH) results. The acquisition times were more favorable for the ME-MP2RAGE (≈ 19 min) sequence as opposed to the sum of MP2RAGE (≈ 12 min) and FLASH (≈ 10 min) acquisitions. Without relevant sacrifice in accuracy, precision or flexibility, the multi-echo version may yield advantages in terms of reduced acquisition time and intrinsic co-registration, provided that an appropriate optimization of the acquisition parameters is performed. PMID:28081157
Mariappan, Yogesh K.; Dzyubak, Bogdan; Glaser, Kevin J.; Venkatesh, Sudhakar K.; Sirlin, Claude B.; Hooker, Jonathan; McGee, Kiaran P.
2017-01-01
Purpose To (a) evaluate modified spin-echo (SE) magnetic resonance (MR) elastographic sequences for acquiring MR images with improved signal-to-noise ratio (SNR) in patients in whom the standard gradient-echo (GRE) MR elastographic sequence yields low hepatic signal intensity and (b) compare the stiffness values obtained with these sequences with those obtained with the conventional GRE sequence. Materials and Methods This HIPAA-compliant retrospective study was approved by the institutional review board; the requirement to obtain informed consent was waived. Data obtained with modified SE and SE echo-planar imaging (EPI) MR elastographic pulse sequences with short echo times were compared with those obtained with the conventional GRE MR elastographic sequence in two patient cohorts, one that exhibited adequate liver signal intensity and one that exhibited low liver signal intensity. Shear stiffness values obtained with the three sequences in 130 patients with successful GRE-based examinations were retrospectively tested for statistical equivalence by using a 5% margin. In 47 patients in whom GRE examinations were considered to have failed because of low SNR, the SNR and confidence level with the SE-based sequences were compared with those with the GRE sequence. Results The results of this study helped confirm the equivalence of SE MR elastography and SE-EPI MR elastography to GRE MR elastography (P = .0212 and P = .0001, respectively). The SE and SE-EPI MR elastographic sequences provided substantially improved SNR and stiffness inversion confidence level in 47 patients in whom GRE MR elastography had failed. Conclusion Modified SE-based MR elastographic sequences provide higher SNR MR elastographic data and reliable stiffness measurements; thus, they enable quantification of stiffness in patients in whom the conventional GRE MR elastographic sequence failed owing to low signal intensity. The equivalence of the three sequences indicates that the current diagnostic thresholds are applicable to SE MR elastographic sequences for assessing liver fibrosis. © RSNA, 2016 PMID:27509543
A fast 1-D detector for imaging and time resolved SAXS experiments
NASA Astrophysics Data System (ADS)
Menk, R. H.; Arfelli, F.; Bernstorff, S.; Pontoni, D.; Sarvestani, A.; Besch, H. J.; Walenta, A. H.
1999-02-01
A one-dimensional test detector on the principle of a highly segmented ionization chamber with shielding grid (Frisch grid) was developed to evaluate if this kind of detector is suitable for advanced small-angle X-ray scattering (SAXS) experiments. At present it consists of 128 pixels which can be read out within 0.2 ms with a noise floor of 2000 e-ENC. A quantum efficiency of 80% for a photon energy of 8 keV was achieved. This leads to DQE values of 80% for photon fluxes above 1000 photons/pixel and integration time. The shielding grid is based on the principles of the recently invented MCAT structure and the GEM structure which also allows electron amplification in the gas. In the case of the MCAT structure, an energy resolution of 20% at 5.9 keV was observed. The gas amplification mode enables imaging with this integrating detector on a subphoton noise level with respect to the integration time. Preliminary experiments of saturation behavior show that this kind of detector digests a photon flux density up to 10 12 photons/mm 2 s and operates linearly. A spatial resolution of at least three line pairs/mm was obtained. All these features show that this type of detector is well suited for time-resolved SAXS experiments as well as high flux imaging applications.
NASA Technical Reports Server (NTRS)
Rhim, W. K.; Burum, D. P.; Elleman, D. D.
1977-01-01
Adiabatic demagnetization (ADRF) can be achieved in a dipolar coupled nuclear spin system in solids by applying a string of short RF pulses and gradually modulating the pulse amplitudes or pulse angles. This letter reports an adiabatic inverse polarization effect in solids and a rotary spin echo phenomenon observed in liquids when the pulse angle is gradually changed across integral multiples of pi during a string of RF pulses. The RF pulse sequence used is illustrated along with the NMR signal from a CaF2 single crystal as observed between the RF pulses and the rotary spin echo signal observed in liquid C6F6 for n = 2. The observed effects are explained qualitatively on the basis of average Hamiltonian theory.
A Portable Double-Slit Quantum Eraser with Individual Photons
ERIC Educational Resources Information Center
Dimitrova, T. L.; Weis, A.
2011-01-01
The double-slit experiment has played an important role in physics, from supporting the wave theory of light, via the discussions of the wave-particle duality of light (and matter) to the foundations of modern quantum optics. Today it keeps playing an active role in the context of quantum optics experiments involving single photons. In this paper,…
Indistinguishable near-infrared single photons from an individual organic molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trebbia, Jean-Baptiste; Tamarat, Philippe; Lounis, Brahim
2010-12-15
By using the zero-phonon line emission of an individual organic molecule, we realized a source of indistinguishable single photons in the near infrared. A Hong-Ou-Mandel interference experiment is performed and a two-photon coalescence probability higher than 50% at 2 K is obtained. The contribution of the temperature-dependent dephasing processes to the two-photon interference contrast is studied. We show that the molecule delivers nearly ideal indistinguishable single photons at the lowest temperatures when the dephasing is nearly lifetime limited. This source is used to generate postselected polarization-entangled photon pairs as a test bench for applications in quantum information.
The photons payload, G-494: A learning experience
NASA Technical Reports Server (NTRS)
Harris, F. R.; Gattinger, R. L.; Creutzberg, F.; Llewellyn, E. J.
1988-01-01
PHOTONS (Photometric Thermospheric Oxygen Nightglow Study) is an optical remote sensing payload developed for Get Away Special (GAS) flight by the National Research Council of Canada. The device is extremely sensitive and is suitable for making measurements of low intensity, aeronomically generated atmospheric emissions in the nadir and the limb and of Shuttle ram glow. The unit uses a sealed canister and UV transmitting viewing ports. During the flight of STS 61-C, PHOTONS received one hour of operation and aeronomic observations were made. Good diagnostic data were obtained and the science part of the experiment malfunctioned. Post flight inspection revealed that the payload was in perfect working order except for total failure of the photomultiplier detectors. The experiment and the payload are described and the flight results are discussed along with the cause of the malfunctions. It is shown that enough was learned from the flight diagnostic data and about the cause of the malfunction to conclude that the engineering flight was successful and that subsequent flight of the PHOTONS payload will be productive.
NASA Technical Reports Server (NTRS)
Fujita, T. T.
1976-01-01
Radar echoes of a storm at John F. Kennedy International Airport are examined. Results regarding the phenomena presented suggest the existence of downburst cells. These cells are characterized by spearhead echoes. About 2% of the echoes in the New York area were spearhead echoes. The detection and identification of downburst cells, their potential hazard to approaching and landing aircraft, and communication of this information to the pilots of those aircraft are discussed.
Posse, Stefan
2011-01-01
The rapid development of fMRI was paralleled early on by the adaptation of MR spectroscopic imaging (MRSI) methods to quantify water relaxation changes during brain activation. This review describes the evolution of multi-echo acquisition from high-speed MRSI to multi-echo EPI and beyond. It highlights milestones in the development of multi-echo acquisition methods, such as the discovery of considerable gains in fMRI sensitivity when combining echo images, advances in quantification of the BOLD effect using analytical biophysical modeling and interleaved multi-region shimming. The review conveys the insight gained from combining fMRI and MRSI methods and concludes with recent trends in ultra-fast fMRI, which will significantly increase temporal resolution of multi-echo acquisition. PMID:22056458
Real-time monitoring of Lévy flights in a single quantum system
NASA Astrophysics Data System (ADS)
Issler, M.; Höller, J.; Imamoǧlu, A.
2016-02-01
Lévy flights are random walks where the dynamics is dominated by rare events. Even though they have been studied in vastly different physical systems, their observation in a single quantum system has remained elusive. Here we analyze a periodically driven open central spin system and demonstrate theoretically that the dynamics of the spin environment exhibits Lévy flights. For the particular realization in a single-electron charged quantum dot driven by periodic resonant laser pulses, we use Monte Carlo simulations to confirm that the long waiting times between successive nuclear spin-flip events are governed by a power-law distribution; the corresponding exponent η =-3 /2 can be directly measured in real time by observing the waiting time distribution of successive photon emission events. Remarkably, the dominant intrinsic limitation of the scheme arising from nuclear quadrupole coupling can be minimized by adjusting the magnetic field or by implementing spin echo.
NASA Astrophysics Data System (ADS)
Minnegaliev, M. M.; Dyakonov, I. V.; Gerasimov, K. I.; Kalinkin, A. A.; Kulik, S. P.; Moiseev, S. A.; Saygin, M. Yu; Urmancheev, R. V.
2018-04-01
We produced optical waveguides in the 167Er3+:7 LiYF4 crystal with diameters ranging from 30 to 100 μm by using the depressed-cladding approach with femtosecond laser. Stationary and coherent spectroscopy was performed on the 809 nm optical transitions between the hyperfine sublevels of 4I15/2 and 4I9/2 multiplets of 167Er3+ ions both inside and outside of waveguides. It was found that the spectra of 167Er3+ were slightly broadened and shifted inside the waveguides compared to the bulk crystal spectra. We managed to observe a two-pulse photon echo on this transition and determined phase relaxation times for each waveguide. The experimental results show that the created crystal waveguides doped by rare-earth ions can be used in optical quantum memory and integrated quantum schemes.
Isotropic 3-D T2-weighted spin-echo for abdominal and pelvic MRI in children.
Dias, Sílvia Costa; Ølsen, Oystein E
2012-11-01
MRI has a fundamental role in paediatric imaging. The T2-weighted fast/turbo spin-echo sequence is important because it has high signal-to-noise ratio compared to gradient-echo sequences. It is usually acquired as 2-D sections in one or more planes. Volumetric spin-echo has until recently only been possible with very long echo times due to blurring of the soft-tissue contrast with long echo trains. A new 3-D spin-echo sequence uses variable flip angles to overcome this problem. It may reproduce useful soft-tissue contrast, with improved spatial resolution. Its isotropic capability allows subsequent reconstruction in standard, curved or arbitrary planes. It may be particularly useful for visualisation of small lesions, or if large lesions distort the usual anatomical relations. We present clinical examples, describe the technical parameters and discuss some potential artefacts and optimisation of image quality.
The acoustics of the echo cornet
NASA Astrophysics Data System (ADS)
Pyle, Robert W., Jr.; Klaus, Sabine K.
2002-11-01
The echo cornet was an instrument produced by a number of makers in several countries from about the middle of the nineteenth to the early twentieth centuries. It consists of an ordinary three-valve cornet to which a fourth valve has been added, downstream of the three normal valves. The extra valve diverts the airstream from the normal bell to an ''echo'' bell that gives a muted tone quality. Although the air column through the echo bell is typically 15 cm longer than the path through the normal bell, there is no appreciable change of playing pitch when the echo bell is in use. Acoustic input impedance and impulse response measurements and consideration of the standing-wave pattern within the echo bell show how this can be so. Acoustically, the echo bell is more closely related to hand-stopping on the French horn than to the mutes commonly used on the trumpet and cornet.
NASA Technical Reports Server (NTRS)
Thompson, T. W.; Moore, H. J.
1990-01-01
Researchers developed a radar-echo model for Mars based on 12.6 cm continuous wave radio transmissions backscattered from the planet. The model broadly matches the variations in depolarized and polarized total radar cross sections with longitude observed by Goldstone in 1986 along 7 degrees S. and yields echo spectra that are generally similiar to the observed spectra. Radar map units in the model include an extensive cratered uplands unit with weak depolarized echo cross sections, average thermal inertias, moderate normal refelectivities, and moderate rms slopes; the volcanic units of Tharsis, Elysium, and Amazonis regions with strong depolarized echo cross sections, low thermal inertia, low normal reflectivities, and large rms slopes; and the northern planes units with moderate to strong depolarized echo cross sections, moderate to very high thermal inertias, moderate to large normal reflectivities, and moderate rms slopes. The relevance of the model to the interpretation of radar echoes from Mars is discussed.
Hargreaves, Brian
2012-01-01
Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185
Recent constraints on axion-photon and axion-electron coupling with the CAST experiment
Ruz, J.; Vogel, J. K.; Pivovaroff, M. J.
2015-03-24
The CERN Axion Solar Telescope (CAST) is a helioscope looking for axions arising from the solar core plasma and arriving to Earth. The experiment, located in Geneva (Switzerland) is able to follow the Sun during sunrise and sunset. Four x-ray detectors mounted on both ends of the magnet wait for photons from axion-to-photon conversion due to the Primakoff effect. Up to date, with the completion of Phases I and II, CAST has been looking for axions that could be produced in the Sun by both, hadronic and non-hadronic mechanisms.
NASA Astrophysics Data System (ADS)
Guzzo, M.; Kas, J. J.; Sottile, F.; Silly, M. G.; Sirotti, F.; Rehr, J. J.; Reining, L.
2012-09-01
We present experimental data and theoretical results for valence-band satellites in semiconductors, using the prototypical example of bulk silicon. In a previous publication we introduced a new approach that allows us to describe satellites in valence photoemission spectroscopy, in good agreement with experiment. Here we give more details; we show how the the spectra change with photon energy, and how the theory explains this behaviour. We also describe how we include several effects which are important to obtain a correct comparison between theory and experiment, such as secondary electrons and photon cross sections. In particular the inclusion of extrinsic losses and their dependence on the photon energy are key to the description of the energy dependence of spectra.
Narrow bandwidth Laser-Plasma Accelerator driven Thomson photon source development
NASA Astrophysics Data System (ADS)
Geddes, C. G. R.; Tsai, H.-E.; Otero, G.; Liu, X.; van Tilborg, J.; Toth, Cs.; Vay, J.-L.; Lehe, R.; Schroeder, C. B.; Esarey, E.; Friedman, A.; Grote, D. P.; Leemans, W. P.
2017-10-01
Compact, high-quality photon sources at MeV energies can be provided by Thomson scattering of a laser from the electron beam of a Laser-Plasma Accelerator (LPA). Recent experiments and simulations demonstrate controllable LPAs in the energy range appropriate to MeV sources. Simulations indicate that high flux with narrow energy spread can be achieved via control of the scattering laser pulse shape and laser guiding, and that undesired background bremsstrahlung can be mitigated by plasma based deceleration of the electron beam after photon production. Construction of experiments and laser capabilities to combine these elements will be presented, along with initial operations, towards a compact photon source system. Work supported by US DOE NNSA DNN R&D and by Sc. HEP under contract DE-AC02-05CH11231.
Spying on photons with photons: quantum interference and information
NASA Astrophysics Data System (ADS)
Ataman, Stefan
2016-07-01
The quest to have both which-path knowledge and interference fringes in a double-slit experiment dates back to the inception of quantum mechanics (QM) and to the famous Einstein-Bohr debates. In this paper we propose and discuss an experiment able to spy on one photon's path with another photon. We modify the quantum state inside the interferometer as opposed to the traditional physical modification of the "wave-like" or "particle-like" experimental setup. We are able to show that it is the ability to harvest or not which-path information that finally limits the visibility of the interference pattern and not the "wave-like" or "particle-like" experimental setups. Remarkably, a full "particle-like" experimental setup is able to show interference fringes with 100% visibility if the quantum state is carefully engineered.
Data analysis of photon beam position at PLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, J.; Shin, S., E-mail: tlssh@postech.ac.kr; Huang, Jung-Yun
In the third generation light source, photon beam position stability is critical issue on user experiment. Generally photon beam position monitors have been developed for the detection of the real photon beam position and the position is controlled by feedback system in order to keep the reference photon beam position. In the PLS-II, photon beam position stability for front end of particular beam line, in which photon beam position monitor is installed, has been obtained less than rms 1μm for user service period. Nevertheless, detail analysis for photon beam position data in order to demonstrate the performance of photon beammore » position monitor is necessary, since it can be suffers from various unknown noises. (for instance, a back ground contamination due to upstream or downstream dipole radiation, undulator gap dependence, etc.) In this paper, we will describe the start to end study for photon beam position stability and the Singular Value Decomposition (SVD) analysis to demonstrate the reliability on photon beam position data.« less
Analysis and control of the photon beam position at PLS-II
Ko, J.; Kim, I.-Y.; Kim, C.; Kim, D.-T.; Huang, J.-Y.; Shin, S.
2016-01-01
At third-generation light sources, the photon beam position stability is a critical issue for user experiments. In general, photon beam position monitors are developed to detect the real photon beam position, and the position is controlled by a feedback system in order to maintain the reference photon beam position. At Pohang Light Source II, a photon beam position stability of less than 1 µm r.m.s. was achieved for a user service period in the beamline, where the photon beam position monitor is installed. Nevertheless, a detailed analysis of the photon beam position data was necessary in order to ensure the performance of the photon beam position monitor, since it can suffer from various unknown types of noise, such as background contamination due to upstream or downstream dipole radiation, and undulator gap dependence. This paper reports the results of a start-to-end study of the photon beam position stability and a singular value decomposition analysis to confirm the reliability of the photon beam position data. PMID:26917132
Bose-Einstein condensation of paraxial light
NASA Astrophysics Data System (ADS)
Klaers, J.; Schmitt, J.; Damm, T.; Vewinger, F.; Weitz, M.
2011-10-01
Photons, due to the virtually vanishing photon-photon interaction, constitute to very good approximation an ideal Bose gas, but owing to the vanishing chemical potential a (free) photon gas does not show Bose-Einstein condensation. However, this is not necessarily true for a lower-dimensional photon gas. By means of a fluorescence induced thermalization process in an optical microcavity one can achieve a thermal photon gas with freely adjustable chemical potential. Experimentally, we have observed thermalization and subsequently Bose-Einstein condensation of the photon gas at room temperature. In this paper, we give a detailed description of the experiment, which is based on a dye-filled optical microcavity, acting as a white-wall box for photons. Thermalization is achieved in a photon number-conserving way by photon scattering off the dye molecules, and the cavity mirrors both provide an effective photon mass and a confining potential-key prerequisites for the Bose-Einstein condensation of photons. The experimental results are in good agreement with both a statistical and a simple rate equation model, describing the properties of the thermalized photon gas.
Time-Bin-Encoded Boson Sampling with a Single-Photon Device.
He, Yu; Ding, X; Su, Z-E; Huang, H-L; Qin, J; Wang, C; Unsleber, S; Chen, C; Wang, H; He, Y-M; Wang, X-L; Zhang, W-J; Chen, S-J; Schneider, C; Kamp, M; You, L-X; Wang, Z; Höfling, S; Lu, Chao-Yang; Pan, Jian-Wei
2017-05-12
Boson sampling is a problem strongly believed to be intractable for classical computers, but can be naturally solved on a specialized photonic quantum simulator. Here, we implement the first time-bin-encoded boson sampling using a highly indistinguishable (∼94%) single-photon source based on a single quantum-dot-micropillar device. The protocol requires only one single-photon source, two detectors, and a loop-based interferometer for an arbitrary number of photons. The single-photon pulse train is time-bin encoded and deterministically injected into an electrically programmable multimode network. The observed three- and four-photon boson sampling rates are 18.8 and 0.2 Hz, respectively, which are more than 100 times faster than previous experiments based on parametric down-conversion.
Gamma ray pulsars. [electron-photon cascades
NASA Technical Reports Server (NTRS)
Oegelman, H.; Ayasli, S.; Hacinliyan, A.
1977-01-01
Data from the SAS-2 high-energy gamma-ray experiment reveal the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma-ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields (10 to the 12th power gauss) correspond to many radiation lengths which cause electrons to emit photons by magnetic bremsstrahlung and which cause these photons to pair-produce. The cascade develops until the mean photon energy drops below the pair-production threshold which is in the gamma-ray range; at this stage, the photons break out from the source.
Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee
2011-09-01
Auditory evoked potentials (AEP) were recorded during echolocation in a false killer whale Pseudorca crassidens. An electronically synthesized and played-back (simulated) echo was triggered by an emitted biosonar pulse, and its intensity was proportional to that of the emitted click. The delay and transfer factor of the echo relative to the emitted click was controlled by the operator. The echo delay varied from 2 to 16 ms (by two-fold steps), and the transfer factor varied within ranges from -45 to -30 dB at the 2-ms delay to -60 to -45 dB at the 16-ms delay. Echo-related AEPs featured amplitude dependence both on echo delay at a constant transfer factor (the longer the delay, the higher amplitude) and on echo transfer factor at a constant delay (the higher transfer factor, the higher amplitude). Conjunctional variation of the echo transfer factor and delay kept the AEP amplitude constant when the delay to transfer factor trade was from -7.1 to -8.4 dB per delay doubling. The results confirm the hypothesis that partial forward masking of the echoes by the preceding emitted sonar pulses serves as a time-varying automatic gain control in the auditory system of echolocating odontocetes. © 2011 Acoustical Society of America
Echo-level compensation and delay tuning in the auditory cortex of the mustached bat.
Macías, Silvio; Mora, Emanuel C; Hechavarría, Julio C; Kössl, Manfred
2016-06-01
During echolocation, bats continuously perform audio-motor adjustments to optimize detection efficiency. It has been demonstrated that bats adjust the amplitude of their biosonar vocalizations (known as 'pulses') to stabilize the amplitude of the returning echo. Here, we investigated this echo-level compensation behaviour by swinging mustached bats on a pendulum towards a reflective surface. In such a situation, the bats lower the amplitude of their emitted pulses to maintain the amplitude of incoming echoes at a constant level as they approach a target. We report that cortical auditory neurons that encode target distance have receptive fields that are optimized for dealing with echo-level compensation. In most cortical delay-tuned neurons, the echo amplitude eliciting the maximum response matches the echo amplitudes measured from the bats' biosonar vocalizations while they are swung in a pendulum. In addition, neurons tuned to short target distances are maximally responsive to low pulse amplitudes while neurons tuned to long target distances respond maximally to high pulse amplitudes. Our results suggest that bats dynamically adjust biosonar pulse amplitude to match the encoding of target range and to keep the amplitude of the returning echo within the bounds of the cortical map of echo delays. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
π0 Reconstruction using the Muon Piston Calorimeter Extension
NASA Astrophysics Data System (ADS)
Dixit, Dhruv; Phenix Collaboration
2015-10-01
The Muon-Piston Calorimeter Extension (MPC-EX) is a new detector in the PHENIX experiment at the Relativistic Heavy Ion Collider that was installed for the recent Run 15 of the experiment. In polarized p+p and polarized p+A collisions, an important measurement is the yield and momentum distribution of direct photons. Unaffected by the strong force, direct photons traverse the dense medium in the collision zone mostly unchanged, thereby providing information about the initial stages of the collision. However, there is a huge background of photons from other sources, primarily π0 which decay into two photons. The opening angle between the decay photons becomes smaller with higher energies of the original π0. For energies greater than ~20 GeV, the Muon Piston Calorimeter (MPC) cannot distinguish the two decay photons from a single photon, as their showers merge. The MPC-EX, an 8-layer tungsten and silicon sensor sandwich in front of the MPC, can measure and image the shower development, and help distinguish between direct photons and π0 decay photons up to higher energies than the MPC alone. We will describe the MPC-EX detector and its readout, and present the calibration procedures applied to the data in order to obtain the π0 spectrum. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).
Echo scintillation Index affected by cat-eye target's caliber with Cassegrain lens
NASA Astrophysics Data System (ADS)
Shan, Cong-miao; Sun, Hua-yan; Zhao, Yan-zhong; Zheng, Yong-hui
2015-10-01
The optical aperture of cat-eye target has the aperture averaging effect to the active detecting laser of active laser detection system, which can be used to identify optical targets. The echo scintillation characteristics of the transmission-type lens target have been studied in previous work. Discussing the differences of the echo scintillation characteristics between the transmission-type lens target and Cassegrain lens target can be helpful to targets classified. In this paper, the echo scintillation characteristics of Cat-eye target's caliber with Cassegrain lens has been discussed . By using the flashing theory of spherical wave in the weak atmospheric turbulence, the annular aperture filter function and the Kolmogorov power spectrum, the analytic expression of the scintillation index of the cat-eye target echo of the horizontal path two-way transmission was given when the light is normal incidence. Then the impact of turbulence inner and outer scale to the echo scintillation index and the analytic expression of the echo scintillation index at the receiving aperture were presented using the modified Hill spectrum and the modified Von Karman spectrum. Echo scintillation index shows the tendency of decreasing with the target aperture increases and different ratios of the inner and outer aperture diameter show the different echo scintillation index curves. This conclusion has a certain significance for target recognition in the active laser detection system that can largely determine the target type by largely determining the scope of the cat-eye target which depending on echo scintillation index.
Echo decorrelation imaging of ex vivo HIFU and bulk ultrasound ablation using image-treat arrays
NASA Astrophysics Data System (ADS)
Fosnight, Tyler R.; Hooi, Fong Ming; Colbert, Sadie B.; Keil, Ryan D.; Barthe, Peter G.; Mast, T. Douglas
2017-03-01
In this study, the ability of ultrasound echo decorrelation imaging to map and predict heat-induced cell death was tested using bulk ultrasound thermal ablation, high intensity focused ultrasound (HIFU) thermal ablation, and pulse-echo imaging of ex vivo liver tissue by a custom image-treat array. Tissue was sonicated at 5.0 MHz using either pulses of unfocused ultrasound (N=12) (7.5 s, 50.9-101.8 W/cm2 in situ spatial-peak, temporal-peak intensity) for bulk ablation or focused ultrasound (N=21) (1 s, 284-769 W/cm2 in situ spatial-peak, temporal-peak intensity and focus depth of 10 mm) for HIFU ablation. Echo decorrelation and integrated backscatter (IBS) maps were formed from radiofrequency pulse-echo images captured at 118 frames per second during 5.0 s rest periods, beginning 1.1 s after each sonication pulse. Tissue samples were frozen at -80˚C, sectioned, vitally stained, imaged, and semi-automatically segmented for receiver operating characteristic (ROC) analysis. ROC curves were constructed to assess prediction performance for echo decorrelation and IBS. Logarithmically scaled mean echo decorrelation in non-ablated and ablated tissue regions before and after electronic noise and motion correction were compared. Ablation prediction by echo decorrelation and IBS was significant for both focused and bulk ultrasound ablation. The log10-scaled mean echo decorrelation was significantly greater in regions of ablation for both HIFU and bulk ultrasound ablation. Echo decorrelation due to electronic noise and motion was significantly reduced by correction. These results suggest that ultrasound echo decorrelation imaging is a promising approach for real-time prediction of heat-induced cell death for guidance and monitoring of clinical thermal ablation, including radiofrequency ablation and HIFU.
Mock ECHO: A Simulation-Based Medical Education Method.
Fowler, Rebecca C; Katzman, Joanna G; Comerci, George D; Shelley, Brian M; Duhigg, Daniel; Olivas, Cynthia; Arnold, Thomas; Kalishman, Summers; Monnette, Rebecca; Arora, Sanjeev
2018-04-16
This study was designed to develop a deeper understanding of the learning and social processes that take place during the simulation-based medical education for practicing providers as part of the Project ECHO® model, known as Mock ECHO training. The ECHO model is utilized to expand access to care of common and complex diseases by supporting the education of primary care providers with an interprofessional team of specialists via videoconferencing networks. Mock ECHO trainings are conducted through a train the trainer model targeted at leaders replicating the ECHO model at their organizations. Trainers conduct simulated teleECHO clinics while participants gain skills to improve communication and self-efficacy. Three focus groups, conducted between May 2015 and January 2016 with a total of 26 participants, were deductively analyzed to identify common themes related to simulation-based medical education and interdisciplinary education. Principal themes generated from the analysis included (a) the role of empathy in community development, (b) the value of training tools as guides for learning, (c) Mock ECHO design components to optimize learning, (d) the role of interdisciplinary education to build community and improve care delivery, (e) improving care integration through collaboration, and (f) development of soft skills to facilitate learning. Mock ECHO trainings offer clinicians the freedom to learn in a noncritical environment while emphasizing real-time multidirectional feedback and encouraging knowledge and skill transfer. The success of the ECHO model depends on training interprofessional healthcare providers in behaviors needed to lead a teleECHO clinic and to collaborate in the educational process. While building a community of practice, Mock ECHO provides a safe opportunity for a diverse group of clinician experts to practice learned skills and receive feedback from coparticipants and facilitators.
Magnetic susceptibility induced echo time shifts: Is there a bias in age-related fMRI studies?
Ngo, Giang-Chau; Wong, Chelsea N.; Guo, Steve; Paine, Thomas; Kramer, Arthur F.; Sutton, Bradley P.
2016-01-01
Purpose To evaluate the potential for bias in functional MRI (fMRI) aging studies resulting from age-related differences in magnetic field distributions which can impact echo time and functional contrast. Materials and Methods Magnetic field maps were taken on 31 younger adults (age: 22 ± 2.9 years) and 46 older adults (age: 66 ± 4.5 years) on a 3 T scanner. Using the spatial gradients of the magnetic field map for each participant, an echo planar imaging (EPI) trajectory was simulated. The effective echo time, time at which the k-space trajectory is the closest to the center of k-space, was calculated. This was used to examine both within-subject and across-age-group differences in the effective echo time maps. The Blood Oxygenation Level Dependent (BOLD) percent signal change resulting from those echo time shifts was also calculated to determine their impact on fMRI aging studies. Result For a single subject, the effective echo time varied as much as ± 5 ms across the brain. An unpaired t-test between the effective echo time across age group resulted in significant differences in several regions of the brain (p<0.01). The difference in echo time was only approximately 1 ms, however which is not expected to have an important impact on BOLD fMRI percent signal change (< 4%). Conclusion Susceptibility-induced magnetic field gradients induce local echo time shifts in gradient echo fMRI images, which can cause variable BOLD sensitivity across the brain. However, the age-related differences in BOLD signal are expected to be small for an fMRI study at 3 T. PMID:27299727
Hiwatashi, A; Yoshiura, T; Togao, O; Yamashita, K; Kikuchi, K; Kobayashi, K; Ohga, M; Sonoda, S; Honda, H; Obara, M
2014-01-01
3D turbo field echo with diffusion-sensitized driven-equilibrium preparation is a non-echo-planar technique for DWI, which enables high-resolution DWI without field inhomogeneity-related image distortion. The purpose of this study was to evaluate the feasibility of diffusion-sensitized driven-equilibrium turbo field echo in evaluating diffusivity in the normal pituitary gland. First, validation of diffusion-sensitized driven-equilibrium turbo field echo was attempted by comparing it with echo-planar DWI. Five healthy volunteers were imaged by using diffusion-sensitized driven-equilibrium turbo field echo and echo-planar DWI. The imaging voxel size was 1.5 × 1.5 × 1.5 mm(3) for diffusion-sensitized driven-equilibrium turbo field echo and 1.5 × 1.9 × 3.0 mm(3) for echo-planar DWI. ADCs measured by the 2 methods in 15 regions of interests (6 in gray matter and 9 in white matter) were compared by using the Pearson correlation coefficient. The ADC in the pituitary anterior lobe was then measured in 10 volunteers by using diffusion-sensitized driven-equilibrium turbo field echo, and the results were compared with those in the pons and vermis by using a paired t test. The ADCs from the 2 methods showed a strong correlation (r = 0.79; P < .0001), confirming the accuracy of the ADC measurement with the diffusion-sensitized driven-equilibrium sequence. The ADCs in the normal pituitary gland were 1.37 ± 0.13 × 10(-3) mm(2)/s, which were significantly higher than those in the pons (1.01 ± 0.24 × 10(-3) mm(2)/s) and the vermis (0.89 ± 0.25 × 10(-3) mm(2)/s, P < .01). We demonstrated that diffusion-sensitized driven-equilibrium turbo field echo is feasible in assessing ADC in the pituitary gland.
Ravi, Prasad; Ashwath, Ravi; Strainic, James; Li, Hong; Steinberg, Jon; Snyder, Christopher
2016-01-01
Left axis deviation (LAD) on the electrocardiogram (ECG) is associated with congenital heart disease (CHD), prompting the clinician to order further testing when evaluating a patient with this finding. The purpose is to (1) compare the physical examination (PE) by a pediatric cardiologist to echocardiogram (ECHO) findings in patients with LAD on resting ECG and (2) assess cost of performing ECHO on all patients with LAD on ECG. An IRB approved, retrospective cohort study was performed on patients with LAD (QRS axis ≥0° to -90°) on ECG between 01/02 and 12/12. age >0.25 and <18 years, non-postoperative, and PE and ECHO by pediatric cardiologist. A decision tree model analyzed cost of ECHO in patients with LAD and normal/abnormal PE. Cost of complete ECHO ($239.00) was obtained from 2014 Medicare reimbursement rates. A total of 146 patients met inclusion criteria with 46.5% (68) having normal PE and ECHO, 1.4% (2) having normal PE and abnormal ECHO, 47.3% (69) having abnormal PE and ECHO, and 4.8% (7) having an abnormal PE and normal ECHO. Sensitivity and specificity of PE for detecting abnormalities in this population was 97% and 90%. Positive and negative predictive value of PE was 91% and 97.5%. In patients with normal PE, the cost to identify an ECHO abnormality was $8365, and $263 for those with abnormal PE. In presence of LAD on ECG, the sensitivity, specificity, and positive and negative predictive values of PE by a pediatric cardiologist are excellent at identifying CHD. Performing an ECHO on patients with LAD on ECG is only cost effective in the presence of an abnormal PE. In the presence of normal PE, there is a possibility of missing incidental structural cardiac disease in approximately 2% if an ECHO is not performed. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Jackson, George L.; LaBel, Kenneth A.; Marshall, Cheryl; Barth, Janet; Seidleck, Christina; Marshall, Paul
1998-01-01
NASA Goddard Spare Flight Center's (GSFC) Dual Rate 1773 (DR1773) Experiment on the Microelectronic and Photonic Test Bed (MPTB) has provided valuable information on the performance of the AS 1773 fiber optic data bus in the space radiation environment. Correlation of preliminary experiment data to ground based radiation test results show the AS 1773 bus is employable in future spacecraft applications requiring radiation tolerant communication links.
Searching for dark absorption with direct detection experiments
Bloch, Itay M.; Essig, Rouven; Tobioka, Kohsaku; ...
2017-06-16
We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB formore » silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond known stellar cooling bounds. However, projected sensitivities of the upcoming SuperCDMS SNOLAB using germanium can go beyond these and even probe parameter space consistent with possible hints from the white dwarf luminosity function. We find similar results for dark photons from the sun. For all cases, direct-detection experiments can have unprecedented sensitivity to dark-sector particles.« less
Searching for dark absorption with direct detection experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloch, Itay M.; Essig, Rouven; Tobioka, Kohsaku
We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB formore » silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond known stellar cooling bounds. However, projected sensitivities of the upcoming SuperCDMS SNOLAB using germanium can go beyond these and even probe parameter space consistent with possible hints from the white dwarf luminosity function. We find similar results for dark photons from the sun. For all cases, direct-detection experiments can have unprecedented sensitivity to dark-sector particles.« less
Emergent Issues when Researching Trauma: A Confessional Tale
ERIC Educational Resources Information Center
Connolly, Kate; Reilly, Rosemary C.
2007-01-01
This article examines the impact of conducting narrative research focusing on trauma and healing. It is told through three voices: the study participants who experienced the trauma, the researcher who shared her personal experiences conducting this research, and an academic colleague who acted as a reflective echo making sense of and normalizing…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, S; Wloch, J; Pirkola, M
Purpose: Quantitative fat-water segmentation is important not only because of the clinical utility of fat-suppressed MRI images in better detecting lesions of clinical significance (in the midst of bright fat signal) but also because of the possible physical need, in which CT-like images based on the materials’ photon attenuation properties may have to be generated from MR images; particularly, as in the case of MR-only radiation oncology environment to obtain radiation dose calculation or as in the case of hybrid PET/MR modality to obtain attenuation correction map for the quantitative PET reconstruction. The majority of such fat-water quantitative segmentations havemore » been performed by utilizing the Dixon’s method and its variations, which have to enforce the proper settings (often predefined) of echo time (TE) in the pulse sequences. Therefore, such methods have been unable to be directly combined with those ultrashort TE (UTE) sequences that, taking the advantage of very low TE values (∼ 10’s microsecond), might be beneficial to directly detect bones. Recently, an RF pulse-based method (http://dx.doi.org/10.1016/j.mri.2015.11.006), termed as PROD pulse method, was introduced as a method of quantitative fat-water segmentation that does not have to depend on predefined TE settings. Here, the clinical feasibility of this method is verified in brain tumor patients by combining the PROD pulse with several sequences. Methods: In a clinical 3T MRI, the PROD pulse was combined with turbo spin echo (e.g. TR=1500, TE=16 or 60, ETL=15) or turbo field echo (e.g. TR=5.6, TE=2.8, ETL=12) sequences without specifying TE values. Results: The fat-water segmentation was possible without having to set specific TE values. Conclusion: The PROD pulse method is clinically feasible. Although not yet combined with UTE sequences in our laboratory, the method is potentially compatible with UTE sequences, and thus, might be useful to directly segment fat, water, bone and air.« less
Flexible Two-Photon Interference Fringes with Thermal Light.
Cao, De-Zhong; Ren, Cheng; Ni, Jin-Yang; Zhang, Yan; Zhang, Su-Heng; Wang, Kaige
2017-05-16
Flexible interference patterning is an important tool for adaptable measurement precisions. We report on experimental results of controllable two-photon interference fringes with thermal light in an incoherent rotational shearing interferometer. The two incoherent beams in the interferometer are orthogonally polarized, and their wavefront distributions differ only in an angle of rotation. The spacings and directions of the two-photon interference fringes vary with the rotation angle, as illustrated in three cases of two-photon correlation measurements in experiment.