Science.gov

Sample records for photon electron positron

  1. Transparency of an instantaneously created electron-positron-photon plasma

    NASA Astrophysics Data System (ADS)

    Bégué, D.; Vereshchagin, G. V.

    2014-03-01

    The problem of the expansion of a relativistic plasma generated when a large amount of energy is released in a small volume has been considered by many authors. We use the analytical solution of Bisnovatyi-Kogan and Murzina for the spherically symmetric relativistic expansion. The light curves and the spectra from transparency of an electron-positron-photon plasma are obtained. We compare our results with the work of Goodman.

  2. Positron/Electron Annihilation via the Two-Photon Pathway

    NASA Astrophysics Data System (ADS)

    Gauthier, Isabelle

    When a positron/electron pair annihilate via the two-photon pathway, the emitted photons are momentum correlated. This correlation ensures that they move along a straight line path in opposite directions. An experiment performed in 2004 by Dr. V.D. Irby measured the time interval between detection of the photons. He observed a decay in the number of counts with increasing detection time interval, which he described using a Lorentzian, the line width of which at full-width half-maximum is measured to be 120ps. The data collected by Irby is interesting because current theory predicts that because the source is so localized (the effective source width used by Irby is safely within 5rnrn) the photons should be detected within a time interval of Deltat=d/c where d is the thickness of the source. This time interval corresponds to 17ps. This thesis fits the results to an exponential, and shows that this exponentially decaying nature of the coincidence time interval is characteristic of the entanglement of the two photons. We find that the wavefunctions of the photons decoheres in space according to how long the particle pair took to decay (which is exponential), and that the probability of simultaneous detection depends on the exponential of the product of the lifetime of positronium and the detection time interval.

  3. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  4. On thermalization of electron-positron-photon plasma

    SciTech Connect

    Siutsou, I. A.; Aksenov, A. G.

    2015-12-17

    Recently a progress has been made in understanding thermalization mechanism of relativistic plasma starting from a non-equilibrium state. Relativistic Boltzmann equations were solved numerically for homogeneous isotropic plasma with collision integrals for two- and three-particle interactions calculated from the first principles by means of QED matrix elements. All particles were assumed to fulfill Boltzmann statistics. In this work we follow plasma thermalization by accounting for Bose enhancement and Pauli blocking in particle interactions. Our results show that particle in equilibrium reach Bose-Einstein distribution for photons, and Fermi-Dirac one for electrons, respectively.

  5. Photons, Electrons and Positrons Transport in 3D by Monte Carlo Techniques

    SciTech Connect

    2014-12-01

    Version 04 FOTELP-2014 is a new compact general purpose version of the previous FOTELP-2K6 code designed to simulate the transport of photons, electrons and positrons through three-dimensional material and sources geometry by Monte Carlo techniques, using subroutine package PENGEOM from the PENELOPE code under Linux-based and Windows OS. This new version includes routine ELMAG for electron and positron transport simulation in electric and magnetic fields, RESUME option and routine TIMER for obtaining starting random number and for measuring the time of simulation.

  6. Production of electron-positron pairs by a photon in the radiation-dominated universe

    SciTech Connect

    Tsaregorodtsev, L.I.

    1995-12-01

    The production of an arbitrary number of electron-positron pairs by a photon in a spatially flat Robertson-Walker universe with expansion law a(t) = a{sub o}{radical}t is considered. In Minkowski space, this process is forbidden by conservation laws. The total probability of the process and the mean number of Dirac particles produced as the result of photon decay are calculated and analyzed as functions of the primary-photon energy. The expressions obtained in this study are compared with the results of calculation of photon emission from the vacuum. The massless limit of the total probability of the process is considered. Numerical estimates are obtained for the mean number of particles produced in photon decays in the early universe. These estimates show that the production of Dirac particles in photon decays dominates over their production in photon emission from the vacuum and over their production from the vacuum of a free spinor field. 21 refs., 2 figs.

  7. Detection efficiency calculation for photons, electrons and positrons in a well detector. Part I: Analytical model

    NASA Astrophysics Data System (ADS)

    Pommé, S.

    2009-06-01

    An analytical model is presented to calculate the total detection efficiency of a well-type radiation detector for photons, electrons and positrons emitted from a radioactive source at an arbitrary position inside the well. The model is well suited to treat a typical set-up with a point source or cylindrical source and vial inside a NaI well detector, with or without lead shield surrounding it. It allows for fast absolute or relative total efficiency calibrations for a wide variety of geometrical configurations and also provides accurate input for the calculation of coincidence summing effects. Depending on its accuracy, it may even be applied in 4π-γ counting, a primary standardisation method for activity. Besides an accurate account of photon interactions, precautions are taken to simulate the special case of 511 keV annihilation quanta and to include realistic approximations for the range of (conversion) electrons and β -- and β +-particles.

  8. Interaction of nonthermal muon beam with electron-positron-photon plasma: A thermal field theory approach

    SciTech Connect

    Noorian, Zainab; Eslami, Parvin; Javidan, Kurosh

    2013-11-15

    Interaction of a muon beam with hot dense QED plasma is investigated. Plasma system contains electrons and positrons with Fermi-Dirac distribution and Bose-Einstein distributed photons while the beam particles have nonthermal distribution. The energy loss of the beam particles during the interaction with plasma is calculated to complete leading order of interaction in terms of the QED coupling constant using thermal field theory approach. The screening effects of the plasma are computed consistently using resummation of perturbation theory with hard thermal loop approximation according to the Braaten-Pisarski method. Time evolution of the plasma characteristics and also plasma identifications during the interaction are investigated. Effects of the nonthermal parameter of the beam distribution on the energy exchange and the evolution of plasma-beam system are also explained.

  9. Apparatus for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2007-06-12

    Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.

  10. Simultaneous Creation of Electron-Positron Pairs and Photons in Robertson-Walker Universes with Statically Bounded Expansion

    NASA Astrophysics Data System (ADS)

    Lotze, K.-H.

    We present, based upon quantum electrodynamics in Robertson-Walker flat universes, a thorough analysis of the creation of mutually interacting electron-positron pairs and photons from vacuum. Therefore we discuss at least qualitatively all processes contributing to the number densities of created particles up to the second order in the coupling constant. For two particular expansion laws with Minkowskian in respectively in and out regions, we obtain exact solutions to the Dirac equation and investigate in detail the process of simultaneous creation of electron-positron pairs and photons and the related attenuation effect for fermionic particles. This is done for electrons and positrons which have nonrelativistic momenta at Compton time in rapidly expanding universes. The results are compared with the zeroth-order creation of electron-positron pairs. Despite being smaller by a factor of roughly e02 /4π ≈ 1 /137, the interacting-particle creation is important mainly as a source of photons even in conformally flat universes.

  11. Two-photon processes of electron-positron pair production and annihilation. I. Kinematics and cross sections

    NASA Astrophysics Data System (ADS)

    Nagirner, D. I.

    1999-01-01

    The kinematics of electron-positron pair production and annihilation, i.e., the determination and transformation of the momenta and energies of particles and photons upon the transition from an arbitrary reference frame to the center-of-mass frame of the particles and back, is analyzed in detail. It is found that the magnitudes of the particle momenta in certain directions in pair production may be ambiguous. An interpretation of this ambiguity and a way of circumventing it are given. Invariant quantities and the most convenient variables for calculating various integrals are found. Then the differential and total cross sections are given and the mean frequencies and dispersions of the frequencies of photons produced during annihilation are calculated.

  12. Method for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2006-06-06

    A non-destructive testing method comprises providing a specimen having at least one positron emitter therein; determining a threshold energy for activating the positron emitter; and determining whether a half-life of the positron emitter is less than a selected half-life. If the half-life of the positron emitter is greater than or equal to the selected half-life, then activating the positron emitter by bombarding the specimen with photons having energies greater than the threshold energy and detecting gamma rays produced by annihilation of positrons in the specimen. If the half-life of the positron emitter is less then the selected half-life, then alternately activating the positron emitter by bombarding the specimen with photons having energies greater then the threshold energy and detecting gamma rays produced by positron annihilation within the specimen.

  13. Direct measurements of two photon exchange on lepton-proton elastic scattering using simultaneous electron-positron beams in CLAS

    NASA Astrophysics Data System (ADS)

    Adikaram, Dasuni Kalhari

    The electric (GE) and magnetic ( GM) form factors of the proton are fundamental observables which characterize its charge and magnetization distributions. There are two methods to measure the proton form factors: the Rosenbluth separation method and the polarization transfer technique. However, the ratio of the electric and magnetic form factors measured by those methods significantly disagree at momentum transfer Q2 > 1 GeV2. The most likely explanation of this discrepancy is the inclusion of two-photon exchange (TPE) amplitude contributions to the elastic electron-proton cross section which significantly changes the extraction of GE from the Rosenbluth separation measurement. The Jefferson Lab CLAS TPE experiment determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections. The primary electron beam was used to create an intense bremsstrahlung photon beam. Some of the photons were then converted to a mixed e+/ e- beam which then interacted with a liquid hydrogen target. The e+p and e-p events were detected by the CLAS (CEBAF Large Acceptance Spectrometer). The elastic cross section ratios ((sigma( e+p)/(sigma(e -p)) were measured over a wide range of virtual photon polarization epsilon and Q2. The cross section ratios displayed a strong epsilon dependence at Q2 = 1.45 GeV2. There is no significant Q2 dependence observed at epsilon = 0.45. The results are consistent with a recent measurement at the VEPP-3 lepton storage ring in Novosibirsk and with the hadronic calculation by Blunders, Melnitchouk and Tjon. The hadronic calculation resolves the disagreement between the Rosenbluth separation and polarization transfer extractions of GE/GM at Q2 up to 2 -- 3 GeV2. Applying the GLAS TPE correction to the Rosenbluth cross section measurements significantly decreases the extracted value of GE and brings it into good agreement with the polarization transfer measurement at Q2˜1.75 GeV2. Thus, these

  14. MC-PEPTITA: A Monte Carlo model for Photon, Electron and Positron Tracking In Terrestrial Atmosphere—Application for a terrestrial gamma ray flash

    NASA Astrophysics Data System (ADS)

    Sarria, D.; Blelly, P.-L.; Forme, F.

    2015-05-01

    Terrestrial gamma ray flashes are natural bursts of X and gamma rays, correlated to thunderstorms, that are likely to be produced at an altitude of about 10 to 20 km. After the emission, the flux of gamma rays is filtered and altered by the atmosphere and a small part of it may be detected by a satellite on low Earth orbit (RHESSI or Fermi, for example). Thus, only a residual part of the initial burst can be measured and most of the flux is made of scattered primary photons and of secondary emitted electrons, positrons, and photons. Trying to get information on the initial flux from the measurement is a very complex inverse problem, which can only be tackled by the use of a numerical model solving the transport of these high-energy particles. For this purpose, we developed a numerical Monte Carlo model which solves the transport in the atmosphere of both relativistic electrons/positrons and X/gamma rays. It makes it possible to track the photons, electrons, and positrons in the whole Earth environment (considering the atmosphere and the magnetic field) to get information on what affects the transport of the particles from the source region to the altitude of the satellite. We first present the MC-PEPTITA model, and then we validate it by comparison with a benchmark GEANT4 simulation with similar settings. Then, we show the results of a simulation close to Fermi event number 091214 in order to discuss some important properties of the photons and electrons/positrons that are reaching satellite altitude.

  15. Hard photon processes in electron-positron annihilation at 29 GeV

    SciTech Connect

    Gold, M.S.

    1986-11-01

    The hard photon processes ..mu mu gamma.. and hadrons + ..gamma.. in e/sup +/e/sup -/ annihilation at 29 GeV have been studied. The study is based on an integrated luminosity of 226 pb/sup -1/ taken at PEP with the Mark II detector. For the ..mu mu gamma.. process, a small fraction of non-planar events are observed with missing momentum along the beam direction. The resulting missing energy spectrum is consistent with that expected from higher order effects. The observed cross section is consistent with the predicted cross section for this process, sigma/sup exp/sigma/sup th/ = .90 +- .05 +- .06. The observed hard photon energy spectrum and mass distributions are found to be in agreement with O(..cap alpha../sup 3/) QED. The measured charge asymmetry is in good agreement with the predicted value, A/sub exp/A/sub th/ = .83 +- .25 +- .12. The ..mu gamma.. invariant mass distribution is used to place a limit on a possible excited muon coupling G..gamma../M* for excited muon masses in the range 1 < M* < 21 GeV of (G..gamma../M*)/sup 2/ < 10/sup -5/ GeV/sup -2/ at a 95% confidence level. In the hadrons + ..gamma.. process, evidence for final state radiation is found in an excess of events over that predicted from initial state radiation alone of 253 +- 54 +- 60 events. Further evidence for final state radiation is found in a large hadronic charge asymmetry A/sub Had+..gamma../= (-24.6 +- 5.5)%.

  16. Alternative positron-target design for electron-positron colliders

    SciTech Connect

    Donahue, R.J. ); Nelson, W.R. )

    1991-04-01

    Current electron-positron linear colliders are limited in luminosity by the number of positrons which can be generated from targets presently used. This paper examines the possibility of using an alternate wire-target geometry for the production of positrons via an electron-induced electromagnetic cascade shower. 39 refs., 38 figs., 5 tabs.

  17. The Clic Electron and Positron Polarized Sources

    NASA Astrophysics Data System (ADS)

    Rinolfi, L.

    2011-01-01

    The CLIC polarized electron source is based on a DC gun where the photocathode is illuminated by a laser beam. Each micro-bunch has a charge of 6 × 109 e-, a width of 100 ps and a repetition rate of 2 GHz. A peak current of 10 A in the micro-bunch is a challenge for the surface charge limit of the photo-cathode. Two options are feasible to generate the 2 GHz e- bunch train: 100 ps micro-bunches can be extracted from the photo-cathode either by a 2 GHz laser system or by generating a macro-bunch using a ~200 ns laser pulse and a subsequent RF bunching system to produce the appropriate micro-bunch structure. Recent results obtained by SLAC, for the latter case, are presented. The polarized positron source is based on a positron production scheme in which polarized photons are produced by a laser Compton scattering process. The resulting circularly-polarized gamma photons are sent onto a target, producing pairs of longitudinally polarized electrons and positrons. The Compton backscattering process occurs either in a Compton ring, where a 1 GeV electron beam interacts with circularly-polarized photons in an optical resonator or in a 1.8 GeV Compton Energy Recovery Linac (ERL) or in a 6 GeV Linac with several optical cavities. The undulator scheme is also studied. The nominal CLIC e+ bunch population is 6.7 × 109 particles per bunch at 200 MeV. The tradeoff between e+ yield and level of polarization is an important topic. The overall scheme for both polarized electron and positron beams is described.

  18. Electron- and positron-proton elastic scattering in CLAS

    SciTech Connect

    Weinstein, L. B.

    2009-09-02

    There is a significant disagreement between measurements of the proton electric form factor, G{sup p}{sub E}, using Rosenbluth separations and polarization transfer. This disagreement, if not explained, could pose a fundamental challenge to our understanding of electron scattering or proton structure. Two-photon exchange (TPE) processes, although not fully calculable, are the most likely explanation of this disagreement. We will definitively test this assertion by comparing the electron-proton and positron-proton elastic scattering cross section in the Jefferson Lab CLAS. We will make a mixed identical electron and positron tertiary beam by passing a 5.5 GeV primary electron beam through a radiator to make a photon beam and then passing the photon beam through a converter to make electron-positron pairs. Measuring the elastic cross sections simultaneously using identical lepton beams should significantly reduce systematic uncertainties.

  19. Electron- and positron-proton elastic scattering in CLAS

    SciTech Connect

    L.B. Weinstein

    2009-08-01

    There is a significant disagreement between measurements of the proton electric form factor, G{sup p}{sub E}, using Rosenbluth separations and polarization transfer. This disagreement, if not explained, could pose a fundamental challenge to our understanding of electron scattering or proton structure. Two-photon exchange (TPE) processes, although not fully calculable, are the most likely explanation of this disagreement. We will definitively test this assertion by comparing the electron-proton and positron-proton elastic scattering cross section in the Jefferson Lab CLAS. We will make a mixed identical electron and positron tertiary beam by passing a 5.5 GeV primary electron beam through a radiator to make a photon beam and then passing the photon beam through a converter to make electron-positron pairs. Measuring the elastic cross sections simultaneously using identical lepton beams should significantly reduce systematic uncertainties.

  20. The Calibration of the PEPPo Polarimeter for Electrons and Positrons

    SciTech Connect

    Adeyemi, Adeleke Hakeem; Voutier, Eric J-.M.

    2013-06-01

    The PEPPo (Polarized Electrons for Polarized Positrons) experiment at Jefferson Laboratory investigated the polarization transfer from longitudinally polarized electrons to longitudinally polarized positrons, with the aim of developing this technology for a low energy (~MeV) polarized positron source. Polarization of the positrons was measured by means of a Compton transmission polarimeter where incoming positrons transfer their polarization into circularly polarized photons that were subsequently analyzed by a thick polarized iron target. The measurement of the transmitted photon flux with respect to the orientation of the target polarization (+-) or the helicity (+-) of the incoming leptons provided the measurement of their polarization. Similar measurements with a known electron beam were also performed for calibration purposes. This presentation will describe the apparatus and calibrations performed at the injector at the Jefferson Laboratory to measure positron polarization in the momentum range 3.2-6.2 MeV/c, specifically to quantify the positron analyzing power from electron experimental data measured over a comparable momentum range.

  1. Spontaneous and induced radiation by electrons/positrons in natural and photonic crystals. Volume free electron lasers (VFELs): From microwave and optical to X-ray range

    NASA Astrophysics Data System (ADS)

    Baryshevsky, V. G.

    2015-07-01

    Spontaneous and induced radiation produced by relativistic particles passing through natural and photonic crystals has enhanced capabilities for achieving the radiation sources operating in different wavelength ranges. Use of a non-one-dimensional distributed feedback, arising through Bragg diffraction in spatially periodic systems (natural and artificial (electromagnetic, photonic) crystals), establishes the foundation for the development of volume free electron lasers/masers (VFELs/VFEMs) as well as high-energy charged particle accelerators. The analysis of basic principles of VFEL theory demonstrates the promising potential of VFELs as the basis for the development of high-power microwave and optical sources.

  2. ELECTRON-POSITRON FLOWS AROUND MAGNETARS

    SciTech Connect

    Beloborodov, Andrei M.

    2013-11-10

    The twisted magnetospheres of magnetars must sustain a persistent flow of electron-positron plasma. The flow dynamics is controlled by the radiation field around the hot neutron star. The problem of plasma motion in the self-consistent radiation field is solved using the method of virtual beams. The plasma and radiation exchange momentum via resonant scattering and self-organize into the 'radiatively locked' outflow with a well-defined, decreasing Lorentz factor. There is an extended zone around the magnetar where the plasma flow is ultra-relativistic; its Lorentz factor is self-regulated so that it can marginally scatter thermal photons. The flow becomes slow and opaque in an outer equatorial zone, where the decelerated plasma accumulates and annihilates; this region serves as a reflector for the thermal photons emitted by the neutron star. The e {sup ±} flow carries electric current, which is sustained by a moderate induced electric field. The electric field maintains a separation between the electron and positron velocities, against the will of the radiation field. The two-stream instability is then inevitable, and the induced turbulence can generate low-frequency emission. In particular, radio emission may escape around the magnetic dipole axis of the star. Most of the flow energy is converted to hard X-ray emission, which is examined in an accompanying paper.

  3. Electron-Positron Flows around Magnetars

    NASA Astrophysics Data System (ADS)

    Beloborodov, Andrei M.

    2013-11-01

    The twisted magnetospheres of magnetars must sustain a persistent flow of electron-positron plasma. The flow dynamics is controlled by the radiation field around the hot neutron star. The problem of plasma motion in the self-consistent radiation field is solved using the method of virtual beams. The plasma and radiation exchange momentum via resonant scattering and self-organize into the "radiatively locked" outflow with a well-defined, decreasing Lorentz factor. There is an extended zone around the magnetar where the plasma flow is ultra-relativistic; its Lorentz factor is self-regulated so that it can marginally scatter thermal photons. The flow becomes slow and opaque in an outer equatorial zone, where the decelerated plasma accumulates and annihilates; this region serves as a reflector for the thermal photons emitted by the neutron star. The e ± flow carries electric current, which is sustained by a moderate induced electric field. The electric field maintains a separation between the electron and positron velocities, against the will of the radiation field. The two-stream instability is then inevitable, and the induced turbulence can generate low-frequency emission. In particular, radio emission may escape around the magnetic dipole axis of the star. Most of the flow energy is converted to hard X-ray emission, which is examined in an accompanying paper.

  4. Recent Advances in Electron and Positron Sources

    SciTech Connect

    Clendenin, James E

    2000-07-20

    Recent advances in electron and positron sources have resulted in new capabilities driven in most cases by the increasing demands of advanced accelerating systems. Electron sources for brighter beams and for high average-current beams are described. The status and remaining challenges for polarized electron beams are also discussed. For positron sources, recent activity in the development of polarized positron beams for future colliders is reviewed. Finally, a new proposal for combining laser cooling with beam polarization is presented.

  5. Positron annihilation induced Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Weiss, Alex; Koymen, A. R.; Mehl, David; Jensen, K. O.; Lei, Chun; Lee, K. H.

    1990-01-01

    Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions.

  6. Electron and Positron Stopping Powers of Materials

    National Institute of Standards and Technology Data Gateway

    SRD 7 NIST Electron and Positron Stopping Powers of Materials (PC database for purchase)   The EPSTAR database provides rapid calculations of stopping powers (collisional, radiative, and total), CSDA ranges, radiation yields and density effect corrections for incident electrons or positrons with kinetic energies from 1 keV to 10 GeV, and for any chemically defined target material.

  7. Electron and positron induced processes. POSMOL 2013

    NASA Astrophysics Data System (ADS)

    Limão-Vieira, Paulo; Campeanu, Radu; Hoshino, Masamitsu; Ingólfsson, Oddur; Mason, Nigel; Nagashima, Yasuyuki; Tanuma, Hajime

    2014-09-01

    POSMOL 2013, the international meeting on electron and positron induced processes comprising the XVII International Workshop on Low-Energy Positron and Positronium Physics and the XVIII International Symposium on Electron-Molecule Collisions and Swarms, was held at Kanazawa Bunka Hall, Kanazawa, Ishikawa, Japan, from 19-21 July 2013. The XVII Workshop encompassed all aspects of positron, positronium and antiproton interactions with electrons, atoms, molecules and solid surfaces, and topics related to these, whereas the XVIII Symposium encompassed all aspects of electron interactions with molecules in both gaseous and condensed phases. Particular topics include studies of electron interactions with biomolecules, electron induced surface chemistry and the study of plasma processes. Recent research on the study of electron swarms was also highlighted. Contribution to the Topical Issue "Electron and Positron Induced Processes", edited by Michael Brunger, Radu Campeanu, Masamitsu Hoshino, Oddur Ingólfsson, Paulo Limão-Vieira, Nigel Mason, Yasuyuki Nagashima and Hajime Tanuma.

  8. Positron annihilation induced Auger electron emission

    SciTech Connect

    Weiss, A.; Jibaly, M.; Lei, Chun; Mehl, D.; Mayer, R.; Lynn, K.G.

    1988-01-01

    We report on measurements of Auger electron emission from Cu and Fe due to core hole excitations produced by the removal of core electrons by matter-antimatter annihilation. Estimates are developed of the probability of positrons annihilating with a 3p electron in these materials. Several important advantages of Positron annihilation induced Auger Electron Spectroscopy (PAES) for surface analysis are suggested. 10 refs., 2 figs.

  9. Relativistic electron-positron beams in gamma-ray bursters

    NASA Technical Reports Server (NTRS)

    Smith, I. A.; Epstein, Richard I.

    1993-01-01

    Beams of relativistic electrons and/or positrons leaving the surface of a strongly magnetized neutron star may give rise to gamma-ray bursts. The beams could be accelerated by strong, magnetically aligned electric fields that are produced by oscillations of the stellar surface. Here we investigate the particle acceleration in these electric fields, the resulting electron-positron pair cascade, and the gamma-ray emission. We find that beams of electrons and positrons moving parallel to the magnetic field are generated, with a reported differential energy distribution. These beams produce the bulk of the gamma-ray burst radiation below about 1 MeV by the resonant Compton scattering of thermal photons emitted from the stellar surface. The escaping synchrotron radiation from the cascade dominates the radiation spectrum above about 1 MeV.

  10. Nonplanar positron-acoustic Gardner solitary waves in electron-positron-ion plasmas with superthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Uddin, M. J.; Alam, M. S.; Mamun, A. A.

    2015-02-01

    Nonplanar (cylindrical and spherical) positron-acoustic (PA) Gardner solitary waves (SWs) in an unmagnetized plasma system consisting of immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated. The modified Gardner equation is derived by using the reductive perturbation technique. The effects of cylindrical and spherical geometries, superthermal parameter of hot positrons and electrons, relative temperature ratios, and relative number density ratios on the PA Gardner SWs are studied by using the numerical simulations. The implications of our results in various space and laboratory plasma environments are briefly discussed.

  11. Nonplanar positron-acoustic Gardner solitary waves in electron-positron-ion plasmas with superthermal electrons and positrons

    SciTech Connect

    Uddin, M. J. Alam, M. S.; Mamun, A. A.

    2015-02-15

    Nonplanar (cylindrical and spherical) positron-acoustic (PA) Gardner solitary waves (SWs) in an unmagnetized plasma system consisting of immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated. The modified Gardner equation is derived by using the reductive perturbation technique. The effects of cylindrical and spherical geometries, superthermal parameter of hot positrons and electrons, relative temperature ratios, and relative number density ratios on the PA Gardner SWs are studied by using the numerical simulations. The implications of our results in various space and laboratory plasma environments are briefly discussed.

  12. Electron capture from solids by positrons

    SciTech Connect

    Howell, R.

    1987-08-01

    The capture of electrons in solids is modified from that in gasses by several factors. The most important is the collective interaction of the electrons which results in a density of electron states in the solid in wide bands. Also the high density of electrons in many solids gives a high frequency of interaction as compared to gasses, and quickly destroys any electron-positron states in the metal matrix. Consequently, most positrons implanted in a metal will rapidly thermalize, and unless they reach the surface will annihilate with an electron in an uncorrelated state. Positronium formation from positrons scattered at a metal surface is analogous to ion neutralization however, most of the positronium comes from positrons passing through the surface from the bulk. The dominant motivation for studying positronium formation has been the hope that the distribution of the electrons at the surface would be obtained through the annihilation properties of positrons trapped at the surface or through analysis of the energy and angular distributions of the positronium emitted into the vacuum. These distributions have been measured and are included in this paper. 17 refs.

  13. Development and Testing of the Positron Identification By Coincident Annihilation Photons (PICAP) System

    NASA Astrophysics Data System (ADS)

    Tran, D.; Connell, J. J.; Lopate, C.; Bickford, B.

    2014-12-01

    Moderate energy positrons (~few to 10 MeV) have seldom been observed in the Heliosphere, due primarily to there not having been dedicated instruments for such measurements. Their detection would have implications in the study of Solar energetic particle events and the transport and modulation of the Solar wind and Galactic cosmic rays. The Positron Identification by Coincident Annihilation Photons (PICAP) system is designed specifically to measure these moderate energy positrons by simultaneously detecting the two 511-keV γ-ray photons that result from a positron stopping in the instrument and the subsequent electron-positron annihilation. This method is also expected to effectively discriminate positrons from protons by measuring the amount of energy deposited in the detectors (dE/dx versus residual energy). PICAP offers a low-mass, low-power option for measuring positrons, electrons, and ions in space. Following Monte Carlo modeling, a PICAP laboratory prototype, adaptable to a space-flight design, was designed, built, and tested. This instrument is comprised of (Si) solid-state detectors, plastic scintillation detectors, and high-Z BGO crystal scintillator suitable for detecting the 511-keV γ rays. The prototype underwent preliminary laboratory testing and calibration using radioactive sources for the purpose of establishing functionality. It has since been exposed to beams of energetic protons (up to ~200 MeV) at Massachusetts General Hospital's Francis H. Burr Proton Beam Therapy Center and positrons and electrons (up to ~10 MeV) at Idaho State University's Idaho Accelerator Center. The goal is to validate modeling and determine the performance of the instrument concept. We will present a summary of modeling calculations and analysis of data taken at the accelerator tests. This work is 95% supported by NASA Grant NNX10AC10G.

  14. Study of electron-positron interactions

    SciTech Connect

    Abashian, A.; Gotow, K.; Philonen, L.

    1990-09-15

    For the past seven years, this group has been interested in the study of tests of the Standard Model of Electroweak interactions. The program has centered about the AMY experiment which examines the nature of the final state products in electron-positron collisions in the center of mass energy range near 60 GeV. Results of these measurements have shown a remarkable consistency with the predictions of the minimal model of 3 quark and lepton generations and single charged and neutral intermediate bosons. No new particles or excited states have been observed nor has any evidence for departures in cross sections or angular asymmetries from expectations been observed. These conclusions have been even more firmly established by the higher energy results from the LEP and SLC colliders at center of mass energies of about 90 GeV. Our focus is shifting to the neutrino as a probe to electroweak interactions. The relative merit of attempting to observe neutrinos from point sources versus observing neutrinos generally is not easy to predict. The improved ability to interpret is offset by the probably episodic nature of the emission and irreproducibility of the results. In this phase of development, it is best to be sensitive to both sources of neutrinos. As a second phase of our program at Virginia Tech, we are studying the feasibility of detecting cosmic ray neutrinos in a proposed experiment which we have called NOVA. the results of the test setup will be instrumental in developing an optimum design. A third program we are involved in is the MEGA experiment at Los Alamos, an experiment to place a limit on the rate of muon decay to electron plus photon which is forbidden by the Standard Model.

  15. Electron--positron beam--plasma experiments

    NASA Astrophysics Data System (ADS)

    Gilbert, S. J.; Kurz, C. K.; Greaves, R. G.; Surko, C. M.

    1997-11-01

    Electron-positron plasmas possess unique properties due to inherent symmetries between the charge species. The ability to accumulate large numbers of positron.html>cold positrons in Penning-Malmberg traps has made the study of such plasmas possible in the laboratory.(R.G. Greaves, M.D. Tinkle and C.M. Surko, Phys. Plas.) 1 1439 (1994) In the first experiment of this type we studied a beam-plasma system by transmitting an electron beam through a positron plasma in a Penning trap.(R.G. Greaves and C.M. Surko, Phys. Rev. Lett.), 74 3846 (1995) These earlier measurements were obtained using a hot cathode electron source, for which the large beam energy spreads ( ~ 0.5 eV) made it impossible to explore the low energy regime of this beam-plasma system, where the strongest interaction occurs. We report new growth rate measurements obtained using a novel low-energy, cold (Δ E ≈ 0.05 eV) electron beam based on the extraction of electrons stored in a Penning trap.(S.J. Gilbert et al.), Appl. Phys. Lett., 70 1944 (1997). The measured growth rates for a transit time instability are found to be in excellent agreement with a cold fluid theory by D.H.E. Dubin over the range of accessible energies (0.1--3 eV).

  16. Positron source position sensing detector and electronics

    DOEpatents

    Burnham, Charles A.; Bradshaw, Jr., John F.; Kaufman, David E.; Chesler, David A.; Brownell, Gordon L.

    1985-01-01

    A positron source, position sensing device, particularly with medical applications, in which positron induced gamma radiation is detected using a ring of stacked, individual scintillation crystals, a plurality of photodetectors, separated from the scintillation crystals by a light guide, and high resolution position interpolation electronics. Preferably the scintillation crystals are several times more numerous than the photodetectors with each crystal being responsible for a single scintillation event from a received gamma ray. The light guide will disperse the light emitted from gamma ray absorption over several photodetectors. Processing electronics for the output of the photodetectors resolves the location of the scintillation event to a fraction of the dimension of each photodetector. Because each positron absorption results in two 180.degree. oppositely traveling gamma rays, the detection of scintillation in pairs permits location of the positron source in a manner useful for diagnostic purposes. The processing electronics simultaneously responds to the outputs of the photodetectors to locate the scintillations to the source crystal. While it is preferable that the scintillation crystal include a plurality of stacked crystal elements, the resolving power of the processing electronics is also applicable to continuous crystal scintillators.

  17. Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas

    SciTech Connect

    Uddin, M. J. Alam, M. S.; Mamun, A. A.

    2015-06-15

    A theoretical investigation is made on the positron-acoustic (PA) shock waves (SHWs) in an unmagnetized electron-positron-ion plasma containing immobile positive ions, cold mobile positrons, and hot positrons and electrons following the kappa (κ) distribution. The cold positron kinematic viscosity is taken into account, and the reductive perturbation method is used to derive the Burgers equation. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PA SHWs. It is also observed that the fundamental properties of the PA SHWs are significantly modified by the effects of different parameters associated with superthermal (κ distributed) hot positrons and electrons.

  18. Electron-positron pair production in the Aharonov-Bohm potential

    SciTech Connect

    Skarzhinsky, V.D. |; Audretsch, J.; Jasper, U.

    1996-02-01

    In the framework of QED we evaluate the cross section for electron-positron pair production by a single photon in the presence of the external Aharonov-Bohm potential in first order of perturbation theory. We analyze energy, angular, and polarization distributions at different energy regines: near the threshold and at high photon energies. {copyright} {ital 1996 The American Physical Society.}

  19. Advances in positron and electron scattering*

    NASA Astrophysics Data System (ADS)

    Limão-Vieira, Paulo; García, Gustavo; Krishnakumar, E.; Petrović, Zoran; Sullivan, James; Tanuma, Hajime

    2016-10-01

    The topical issue on Advances in Positron and Electron Scattering" combines contributions from POSMOL 2015 together with others devoted to celebrate the unprecedented scientific careers of our loyal colleagues and trusted friends Steve Buckman (Australian National University, Australia) and Michael Allan (University of Fribourg, Switzerland) on the occasion of their retirements. POSMOL 2015, the XVIII International Workshop on Low-Energy Positron and Positronium Physics and the XIX International Symposium on Electron-Molecule Collisions and Swarms, was held at Universidade NOVA de Lisboa, Lisboa, Portugal, from 17-20 July 2015. The international workshop and symposium allowed to achieve a very privileged forum of sharing and developing our scientific expertise on current aspects of positron, positronium and antiproton interactions with electrons, atoms, molecules and solid surfaces, and related topics, as well as electron interactions with molecules in both gaseous and condensed phases. Particular topics include studies of electron interactions with biomolecules, electron induced surface chemistry and the study of plasma processes. Recent developments in the study of swarms are also fully addressed.

  20. Electron-Positron Pair Production in the Deep Quantum Regime

    SciTech Connect

    Thompson, Kathleen A

    1998-10-06

    Electron-positron pair production via real and virtual photons is significant to the design of linear colliders, especially in the deep quantum regime (i.e., beamstrahlung parameter Upsilon >> 1). In this regime, pair production via a virtual photon (the trident process) can become comparable in rate to pair production via a real beamstrahlung photon. We derive characteristics of the e+e- pairs produced via the trident process, using the quasi-classical approach of Baier, Katkov, and Strakhovenko. We have also examined some of the implications of e+e- pair production for the design of very high energy (several TeV in the center of mass) linear colliders in the deep quantum regime.

  1. Studies of slow-positron production using low-energy primary electron beams.

    SciTech Connect

    Lessner, E.

    1999-04-20

    Slow-positron beams produced from negative-work-function solid-state moderators have found numerous applications in condensed matter physics. There are potential advantages in using low-energy primary electron beams for positron production, including reduced radiation damage to single-crystal moderators and reduced activation of nearby components. We present numerical calculations of positron yields and other beam parameters for various target-moderator configurations using the Argonne Wakefield Accelerator (AWA) [1] and Advanced Photon Source (APS) [2] electron linacs [3] as examples of sources for the primary electron beams. The status of experiments at these facilities is reviewed.

  2. NLC Polarized Positron Photon Beam Target Thermal Structural Modeling

    SciTech Connect

    Stein, W; Sheppard, J C

    2002-06-11

    The NLC polarized positron photon beam target is a 0.4 radiation length thick titanium target. Energy deposition from one pulse occurs over 266 nano-seconds and results in heating of the target and pressure pulses straining the material. The 22.1 MeV photon beam has a spot size of 0.75 mm and results in a maximum temperature jump of 233 C. Stresses are induced in the material from thermal expansion of the hotter material. Peak effective stresses reach 19 Ksi (1.34 x 10{sup 8} Pa), which is lower than the yield strength of a titanium alloy by a factor of six.

  3. Electron-positron pair equilibrium in strongly magnetized plasmas

    SciTech Connect

    Harding, A.K.

    1984-11-01

    Steady states of thermal electron-positron pair plasmas at mildly relativistic temperatures and in strong magnetic fields are investigated. The pair density in steady-state equilibrium, where pair production balances annihilation, is found as a function of temperature, magnetic field strength and source size, by a numerical calculation which includes pair production attenuation and Compton scattering of the photons. It is found that there is a maximum pair density for each value of temperature and field strength, and also a source size above which optically thin equilibrium states do not exist. (ESA)

  4. Propagation of solitary waves in relativistic electron-positron-ion plasmas with kappa distributed electrons and positrons

    SciTech Connect

    Shah, Asif; Mahmood, S.; Haque, Q.

    2011-11-15

    Electrostatic ion acoustic solitary waves are studied in a plasma system comprising of relativistic ions, kappa distributed electrons, and positrons. The increase in the relativistic streaming factor and positron and electron kappa parameters cause the soliton amplitude to thrive. However, the soliton amplitude diminishes as the positron concentration is increased in the system. Our results are general and may be helpful, in understanding nonlinear phenomena in the presence of kappa distibuted electrons, positrons, and relativistically streaming ions.

  5. New generation electron-positron factories

    NASA Astrophysics Data System (ADS)

    Zobov, Mikhail

    2011-09-01

    In 2010 we celebrate 50 years since commissioning of the first particle storage ring ADA in Frascati (Italy) that also became the first electron-positron collider in 1964. After that date the particle colliders have increased their intensity, luminosity and energy by several orders of magnitude. Namely, because of the high stored beam currents and high rate of useful physics events (luminosity) the modern electron-positron colliders are called "factories". However, the fundamental physics has required luminosities by 1-2 orders of magnitudes higher with respect to those presently achieved. This task can be accomplished by designing a new generation of factories exploiting the potential of a new collision scheme based on the Crab Waist (CW) collision concept recently proposed and successfully tested at Frascati. In this paper we discuss the performance and limitations of the present generation electron-positron factories and give a brief overview of new ideas and collision schemes proposed for further collider luminosity increase. In more detail we describe the CW collision concept and the results of the crab waist collision tests in DAϕNE, the Italian ϕ-factory. Finally, we briefly describe most advanced projects of the next generation factories based on the CW concept: SuperB in Italy, SuperKEKB in Japan and SuperC-Tau in Russia.

  6. Radiation damping induced electron trapping and positron creation

    NASA Astrophysics Data System (ADS)

    Gu, Yanjun; Klimo, Ondrej; Weber, Stefan; Korn, Georg

    2016-10-01

    High power laser facilities with intensities up to 1022 W /cm2 have been realized and the forthcoming installations are expected to reach 10 22 - 24 W /cm2 or even higher. At these intensities, the radiation effects and quantum electrodynamics description come into play. The emitted photon momentum becomes comparable to the momentum of the emitting electrons. In this work, we propose a regime of electron self-injection and trapping in the ultra-high intensity laser-plasma interaction. The electrons accumulated at the head of the laser pulse are injected into the pulse centre due to the strong longitudinal electrostatic field created by the high density shell. These electrons, which experience a restoring force provided by the emitted photons, can be confined in the laser pulse for a long time. The corresponding photons are produced in the region where the laser field is strong. High energy and well collimated positron bunches are produced. This regime may be beneficial for the potential experiments to be carried out on large laser facilities such as ELI. This work was supported by the project ELI: Extreme Light Infrastructure (CZ.02.1.01/0.0/0.0/15_008/0000162) from European Regional Development.

  7. Enhanced electron-positron pair production by ultra intense laser irradiating a compound target

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Xun; Ma, Yan-Yun; Yu, Tong-Pu; Zhao, Jun; Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Zhao, Yuan; Zhang, Shi-Jie; Liu, Jin-Jin; Zhuo, Hong-Bin; Shao, Fu-Qiu; Kawata, Shigeo

    2016-12-01

    High-energy-density electron-positron pairs play an increasingly important role in many potential applications. Here, we propose a scheme for enhanced positron production by an ultra intense laser irradiating a gas-Al compound target via the multi-photon Breit-Wheeler (BW) process. The laser pulse first ionizes the gas and interacts with a near-critical-density plasma, forming an electron bubble behind the laser pulse. A great deal of electrons are trapped and accelerated in the bubble, while the laser front hole-bores the Al target and deforms its front surface. A part of the laser wave is thus reflected by the inner curved target surface and collides with the accelerated electron bunch. Finally, a large number of γ photons are emitted in the forward direction via the Compton back-scattering process and the BW process is initiated. Dense electron-positron pairs are produced with a maximum density of 6.02× {{10}27} m-3. Simulation results show that the positron generation is greatly enhanced in the compound target, where the positron yield is two orders of magnitude greater than that in only the solid slab case. The influences of the laser intensity, gas density and length on the positron beam quality are also discussed, which demonstrates the feasibility of the scheme in practice.

  8. Positron annihilation lifetime spectroscopy at a superconducting electron accelerator

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Anwand, W.; Attallah, A. G.; Dornberg, G.; Elsayed, M.; Enke, D.; Hussein, A. E. M.; Krause-Rehberg, R.; Liedke, M. O.; Potzger, K.; Trinh, T. T.

    2017-01-01

    The Helmholtz-Zentrum Dresden-Rossendorf operates a superconducting linear accelerator for electrons with energies up to 35 MeV and average beam currents up to 1.6 mA. The electron beam is employed for production of several secondary beams including X-rays from bremsstrahlung production, neutrons, and positrons. The secondary positron beam after moderation feeds the Monoenergetic Positron Source (MePS) where positron annihilation lifetime (PALS) and positron annihilation Doppler-broadening experiments in materials science are performed in parallel. The adjustable repetition rate of the continuous-wave electron beams allows matching of the pulse separation to the positron lifetime in the sample under study. The energy of the positron beam can be set between 0.5 keV and 20 keV to perform depth resolved defect spectroscopy and porosity studies especially for thin films.

  9. Energy loss of relativistic electrons and positrons traversing cosmic matter

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1975-01-01

    Questions of adiabatic expansion are considered along with aspects of Compton scattering, bremsstrahlung, electronic excitation, synchrotron radiation, and electron-positron pair production. It is found that, unless the intergalactic magnetic field is very small, synchrotron radiation will dominate all other energy loss processes at ultrahigh electron and positron energies. The dependence of the loss rates on the cosmic epoch is also discussed.

  10. Optimization of positrons generation based on laser wakefield electron acceleration

    NASA Astrophysics Data System (ADS)

    Wu, Yuchi; Han, Dan; Zhang, Tiankui; Dong, Kegong; Zhu, Bin; Yan, Yonghong; Gu, Yuqiu

    2016-08-01

    Laser based positron represents a new particle source with short pulse duration and high charge density. Positron production based on laser wakefield electron acceleration (LWFA) has been investigated theoretically in this paper. Analytical expressions for positron spectra and yield have been obtained through a combination of LWFA and cascade shower theories. The maximum positron yield and corresponding converter thickness have been optimized as a function of driven laser power. Under the optimal condition, high energy (>100 MeV ) positron yield up to 5 ×1011 can be produced by high power femtosecond lasers at ELI-NP. The percentage of positrons shows that a quasineutral electron-positron jet can be generated by setting the converter thickness greater than 5 radiation lengths.

  11. Reduced explicitly correlated Hartree-Fock approach within the nuclear-electronic orbital framework: applications to positronic molecular systems.

    PubMed

    Sirjoosingh, Andrew; Pak, Michael V; Swalina, Chet; Hammes-Schiffer, Sharon

    2013-07-21

    In the application of the nuclear-electronic orbital (NEO) method to positronic systems, all electrons and the positron are treated quantum mechanically on the same level. Explicit electron-positron correlation can be included using Gaussian-type geminal functions within the variational self-consistent-field procedure. In this paper, we apply the recently developed reduced explicitly correlated Hartree-Fock (RXCHF) approach to positronic molecular systems. In the application of RXCHF to positronic systems, only a single electronic orbital is explicitly correlated to the positronic orbital. We apply NEO-RXCHF to three systems: positron-lithium, lithium positride, and positron-lithium hydride. For all three of these systems, the RXCHF approach provides accurate two-photon annihilation rates, average contact densities, electronic and positronic single-particle densities, and electron-positron contact densities. Moreover, the RXCHF approach is significantly more accurate than the original XCHF approach, in which all electronic orbitals are explicitly correlated to the positronic orbital in the same manner, because the RXCHF wavefunction is optimized to produce a highly accurate description of the short-ranged electron-positron interaction that dictates the annihilation rates and other local properties. Furthermore, RXCHF methods that neglect or approximate the electronic exchange interactions between the geminal-coupled electronic orbital and the regular electronic orbitals lead to virtually identical annihilation rates and densities as the fully antisymmetric RXCHF method but offer substantial advantages in computational tractability. Thus, NEO-RXCHF is a promising, computationally practical approach for studying larger positron-containing systems.

  12. J-PET detector system for studies of the electron-positron annihilations

    NASA Astrophysics Data System (ADS)

    Pawlik-Niedźwiecka, M.; Khreptak, O.; Gajos, A.; Wieczorek, A.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Kamińska, D.; Korcyl, G.; Kowalski, P.; Krzmień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Raczyński, L.; Rudy, Z.; Silarski, M.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2016-11-01

    Jagiellonian Positron Emission Tomograph (J-PET) has been recently constructed at the Jagiellonian University as a prototype of a cost-effective scanner for the metabolic imaging of the whole human body. J-PET detector is optimized for the measurement of momentum and polarization of photons from the electron-positron annihilations. It is built out of strips of plastic scintillators, forming three cylindrical layers. As detector of gamma quanta it will be used for studies of discrete symmetries and multiparticle entanglement of photons originating from the decays of ortho-positronium atoms.

  13. Dynamics of the positron acoustic waves in electron-positron-ion magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Ali, Rustam; Saha, Asit; Chatterjee, Prasanta

    2017-01-01

    Dynamics of the positron acoustic waves in electron-positron-ion (e-p-i) magnetoplasmas with κ-distributed hot electrons and positrons is investigated in the frameworks of the Kadomtsev-Petviashili (KP) and modified Kadomtsev-Petviashili (mKP) equations. Employing the reductive perturbation technique, the KP and mKP equations are derived. Using the bifurcation theory of planar dynamical systems, the positron acoustic solitary wave solutions, the kink and anti-kink wave solutions are obtained. Considering an external periodic perturbation in the electron-positron-ion magnetoplasmas, the perturbed KP and mKP equations are studied via some qualitative and quantitative approaches. To corroborate in the fact that the perturbed KP and mKP equations can indeed give rise to the quasiperiodic and chaotic motions, the phase plane plots, time series plots, and the Poincaré section are used. The quasiperiodic and developed chaos can be observed for the perturbed positron acoustic waves. The frequency (ω ) of the external periodic perturbation plays the role of the switching parameter in chaotic motions of the perturbed positron acoustic waves through quasiperiodic route to chaos. This work can be useful to understand the dynamics of nonlinear electromagnetic perturbations in space and laboratory plasmas consisting of κ-distributed hot electrons and positrons.

  14. Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Butterling, Maik; Anwand, Wolfgang; Cowan, Thomas E.; Hartmann, Andreas; Jungmann, Marco; Krause-Rehberg, Reinhard; Krille, Arnold; Wagner, Andreas

    2011-11-01

    A new and unique setup for Positron Annihilation Spectroscopy has been established and optimized at the superconducting linear electron accelerator ELBE at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The intense, pulsed (26 MHz) photon source (bremsstrahlung with energies up to 16 MeV) is used to generate positrons by means of pair production throughout the entire sample volume. Due to the very short gamma bunches (< 5 ps temporal length), the facility for Gamma-induced Positron Spectroscopy (GiPS) is suitable for positron lifetime spectroscopy using the accelerator's radiofrequency as time reference. Positron lifetime and Doppler broadening Spectroscopy are employed by a coincident measurement (Age-Momentum Correlation) of the time-of-arrival and energy of the annihilation photons which in turn significantly reduces the background of scattered photons resulting in spectra with high signal to background ratios. Simulations of the setup using the GEANT4 framework have been performed to yield optimum positron generation rates for various sample materials and improved background conditions.

  15. Transition radiation and coherent electron-photon scattering

    SciTech Connect

    Moran, M.J.

    1985-04-01

    Relativistic electron irradiation of thin solid targets is known to generate collimated beams of x-ray photons in the forward direction by a number of different processes. A variety of mechanisms are discussed that share common characteristics in the angular and spectral distributions of the generated photon beams. Some simple physical explanations are offered for the characteristics shared by these processes. Some examples are then given based on experimental results attained at the LLNL electron-positron accelerator. (LEW)

  16. Investigation of Positron Moderator Materials for Electron-Linac-Based Slow Positron Beamlines

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryoichi; Ohdaira, Toshiyuki; Uedono, Akira; Cho, Yang; Yoshida, Sadafumi; Ishida, Yuuki; Ohshima, Takeshi; Itoh, Hisayoshi; Chiwaki, Mitsukuni; Mikado, Tomohisa; Yamazaki, Tetsuo; Tanigawa, Shoichiro

    1998-08-01

    Positron re-emission properties were studied on moderator materials in order to improve the positron moderation system of electron-linac-based intense slow positron beamlines. The re-emitted positron fraction was measured on tungsten, SiC, GaN, SrTiO3, and hydrogen-terminated Si with a variable-energy pulsed positron beam. The results suggested that tungsten is the best material for the primary moderator of the positron beamlines while epitaxially grown n-type 6H SiC is the best material for the secondary moderator. Defect characterization by monoenergetic positron beams and surface characterization by Auger electron spectroscopy were carried out to clarify the mechanism of tungsten moderator degradation induced by high-energy electron irradiation. The characterization experiments revealed that the degradation is due to both radiation-induced vacancy clusters and surface carbon impurities. For the restoration of degraded tungsten moderators, oxygen treatment at ˜900°C is effective. Furthermore, it was found that oxygen at the tungsten surface inhibits positronium formation; as a result, it can increase the positron re-emission fraction.

  17. Electron and Positron Beam-Driven Plasma Acceleration

    NASA Astrophysics Data System (ADS)

    Hogan, Mark J.

    Particle accelerators are the ultimate microscopes. They produce high energy beams of particles — or, in some cases, generate X-ray laser pulses — to probe the fundamental particles and forces that make up the universe and to explore the building blocks of life. But it takes huge accelerators, like the Large Hadron Collider or the two-mile-long SLAC linac, to generate beams with enough energy and resolving power. If we could achieve the same thing with accelerators just a few meters long, accelerators and particle colliders could be much smaller and cheaper. Since the first theoretical work in the early 1980s, an exciting series of experiments have aimed at accelerating electrons and positrons to high energies in a much shorter distance by having them "surf" on waves of hot, ionized gas like that found in fluorescent light tubes. Electron-beam-driven experiments have measured the integrated and dynamic aspects of plasma focusing, the bright flux of high energy betatron radiation photons, particle beam refraction at the plasma-neutral-gas interface, and the structure and amplitude of the accelerating wakefield. Gradients spanning kT/m to MT/m for focusing and 100MeV/m to 50 GeV/m for acceleration have been excited in meter-long plasmas with densities of 1014-1017 cm-3, respectively. Positron-beam-driven experiments have evidenced the more complex dynamic and integrated plasma focusing, 100MeV/m to 5 GeV/m acceleration in linear and nonlinear plasma waves, and explored the dynamics of hollow channel plasma structures. Strongly beam-loaded plasma waves have accelerated beams of electrons and positrons with hundreds of pC of charge to over 5 GeV in meter scale plasmas with high efficiency and narrow energy spread. These "plasma wakefield acceleration" experiments have been mounted by a diverse group of accelerator, laser and plasma researchers from national laboratories and universities around the world. This article reviews the basic principles of plasma wakefield

  18. Electron and Positron Beam-Driven Plasma Acceleration

    NASA Astrophysics Data System (ADS)

    Hogan, Mark J.

    Particle accelerators are the ultimate microscopes. They produce high energy beams of particles — or, in some cases, generate X-ray laser pulses — to probe the fundamental particles and forces that make up the universe and to explore the building blocks of life. But it takes huge accelerators, like the Large Hadron Collider or the two-mile-long SLAC linac, to generate beams with enough energy and resolving power. If we could achieve the same thing with accelerators just a few meters long, accelerators and particle colliders could be much smaller and cheaper. Since the first theoretical work in the early 1980s, an exciting series of experiments have aimed at accelerating electrons and positrons to high energies in a much shorter distance by having them “surf” on waves of hot, ionized gas like that found in fluorescent light tubes. Electron-beam-driven experiments have measured the integrated and dynamic aspects of plasma focusing, the bright flux of high energy betatron radiation photons, particle beam refraction at the plasma-neutral-gas interface, and the structure and amplitude of the accelerating wakefield. Gradients spanning kT/m to MT/m for focusing and 100MeV/m to 50GeV/m for acceleration have been excited in meter-long plasmas with densities of 1014-1017cm-3, respectively. Positron-beam-driven experiments have evidenced the more complex dynamic and integrated plasma focusing, 100MeV/m to 5GeV/m acceleration in linear and nonlinear plasma waves, and explored the dynamics of hollow channel plasma structures. Strongly beam-loaded plasma waves have accelerated beams of electrons and positrons with hundreds of pC of charge to over 5GeV in meter scale plasmas with high efficiency and narrow energy spread. These “plasma wakefield acceleration” experiments have been mounted by a diverse group of accelerator, laser and plasma researchers from national laboratories and universities around the world. This article reviews the basic principles of plasma

  19. Recent status of A Positron-Electron Experiment (APEX)

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Pedersen, T. S.; Hergenhahn, U.; Stenson, E. V.; Paschkowski, N.; Hugenschmidt, C.

    2014-04-01

    A project is underway to generate an electron-positron plasma by using the NEPOMUC positron source at the FRM-II facility combined with a multicell-type Penning trap (PAX) and a superconducting dipole magnetic field trap (APEX). In the APEX project, proof-of principle experiments are proposed for the development of efficient injection methods of positrons by using a small dipole magnetic field trap with a permanent magnet. Plans for the APEX project and its recent status are reported.

  20. Properties of the electron cloud in a high-energy positron and electron storage ring

    SciTech Connect

    Harkay, K. C.; Rosenberg, R. A.

    2003-03-20

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in a positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.

  1. Properties of the electron cloud in a high-energy positron and electron storage ring

    DOE PAGES

    Harkay, K. C.; Rosenberg, R. A.

    2003-03-20

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in amore » positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.« less

  2. Photonic, Electronic and Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Fainstein, Pablo D.; Lima, Marco Aurelio P.; Miraglia, Jorge E.; Montenegro, Eduardo C.; Rivarola, Roberto D.

    2006-11-01

    Plenary. Electron collisions - past, present and future / J. W. McConkey. Collisions of slow highly charged ions with surfaces / J. Burgdörfer ... [et al.]. Atomic collisions studied with "reaction-microscopes" / R. Moshammer ... [et al.]. Rydberg atoms: a microscale laboratory for studying electron-molecule tnteractions / F. B. Dunning -- Collisions involvintg photons. Quantum control of photochemical reaction dynamics and molecular functions / M. Yamaki ... [et al.]. Manipulating and viewing Rydberg wavepackets / R. R. Jones. Angle-resolved photoelectrons as a probe of strong-field interactions / M. Vrakking. Ultracold Rydberg atoms in a structured environment / I. C. H. Liu and J. M. Rost. Synchrotron-radiation-based recoil ion momentum spectroscopy of laser cooled and trapped cesium atoms / L. H. Coutinho. Reconstruction of attosecond pulse trains / Y. Mairesse ... [et al.]. Selective excitation of metastable atomic states by Femto- and attosecond laser pulses / A. D. Kondorskiy. Accurate calculations of triple differential cross sections for double photoionization of the hygrogen molecule / W. Vanroose ... [et al.]. Double and triple photoionization of Li and Be / J. Colgan, M. S. Pindzola and F. Robicheaux. Few/many body dynamics in strong laser fields / J. Zanghellini and T. Brabec. Rescattering-induced effects in electron-atom scattering in the presence of a circularly polarized laser field / A. V. Flegel ... [et al.]. Multidimensional photoelectron spectroscopy / P. Lablanquie ... [et al.]. Few photon and strongly driven transitions in the XUV and beyond / P. Lambropoulos, L. A. A. Nikolopoulos and S. I. Themelis. Ionization dynamics of atomic clusters in intense laser pulses / U. Saalmann and J. M. Rost. On the second order autocorrelation of an XUV attosecond pulse train / E. P. Benis ... [et al.]. Evidence for rescattering in molecular dissociation / I. D. Williams ... [et al.]. Photoionizing ions using synchrotron radiation / R. Phaneuf. Photo double

  3. Electrons and positrons from expanding supernova envelopes in dense clouds

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.

    1985-01-01

    If antiprotons in cosmic rays are produced as secondary particles in sources, it is expected that positrons are also created by the same process. The interstellar spectra of positrons and electrons are calculated by taking into account such sources. Spectra are then compared with observations.

  4. Scattering of positrons and electrons by alkali atoms

    NASA Technical Reports Server (NTRS)

    Stein, T. S.; Kauppila, W. E.; Kwan, C. K.; Lukaszew, R. A.; Parikh, S. P.; Wan, Y. J.; Zhou, S.; Dababneh, M. S.

    1990-01-01

    Absolute total scattering cross sections (Q sub T's) were measured for positrons and electrons colliding with sodium, potassium, and rubidium in the 1 to 102 eV range, using the same apparatus and experimental approach (a beam transmission technique) for both projectiles. The present results for positron-sodium and -rubidium collisions represent the first Q sub T measurements reported for these collision systems. Features which distinguish the present comparisons between positron- and electron-alkali atom Q sub T's from those for other atoms and molecules (room-temperature gases) which have been used as targets for positrons and electrons are the proximity of the corresponding positron- and electron-alkali atom Q sub T's over the entire energy range of overlap, with an indication of a merging or near-merging of the corresponding positron and electron Q sub T's near (and above) the relatively low energy of about 40 eV, and a general tendency for the positron-alkali atom Q sub T's to be higher than the corresponding electron values as the projectile energy is decreased below about 40 eV.

  5. Nonlinear excitations for the positron acoustic shock waves in dissipative nonextensive electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Saha, Asit

    2017-03-01

    Positron acoustic shock waves (PASHWs) in unmagnetized electron-positron-ion (e-p-i) plasmas consisting of mobile cold positrons, immobile positive ions, q-nonextensive distributed electrons, and hot positrons are studied. The cold positron kinematic viscosity is considered and the reductive perturbation technique is used to derive the Burgers equation. Applying traveling wave transformation, the Burgers equation is transformed to a one dimensional dynamical system. All possible vector fields corresponding to the dynamical system are presented. We have analyzed the dynamical system with the help of potential energy, which helps to identify the stability and instability of the equilibrium points. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PASHWs. Furthermore, fully nonlinear arbitrary amplitude positron acoustic waves are also studied applying the theory of planar dynamical systems. It is also observed that the fundamental features of the small amplitude and arbitrary amplitude PASHWs are significantly affected by the effect of the physical parameters q e , q h , μ e , μ h , σ , η , and U. This work can be useful to understand the qualitative changes in the dynamics of nonlinear small amplitude and fully nonlinear arbitrary amplitude PASHWs in solar wind, ionosphere, lower part of magnetosphere, and auroral acceleration regions.

  6. Preferential positron heating and acceleration by synchrotron maser instabilities in relativistic positron-electron-proton plasmas

    NASA Technical Reports Server (NTRS)

    Hoshino, Masahiro; Arons, Jonathan

    1991-01-01

    A new process of the preferential strong heating of positrons through the ion synchrotron maser instability in positron-electron-proton magnetized plasmas is investigated using particle-in-cell simulations. It is shown that the positrons form a nonthermal power-law-like energy distribution via their gyroresonant interaction with the extraordinary modes emitted by the ions. It is noted that this process may be of significance in connection with the shock excitation of nonthermal synchrotron radiation from astrophysical systems powered by relativistic outflows from compact central objects, e.g., supernova remnants powered by pulsars and jets from active galactic nuclei.

  7. Towards laboratory produced relativistic electron-positron pair plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Meyerhofer, D. D.; Wilks, S. C.; Cauble, R.; Dollar, F.; Falk, K.; Gregori, G.; Hazi, A.; Moses, E. I.; Murphy, C. D.; Myatt, J.; Park, J.; Seely, J.; Shepherd, R.; Spitkovsky, A.; Stoeckl, C.; Szabo, C. I.; Tommasini, R.; Zulick, C.; Beiersdorfer, P.

    2011-12-01

    We review recent experimental results on the path to producing electron-positron pair plasmas using lasers. Relativistic pair-plasmas and jets are believed to exist in many astrophysical objects and are often invoked to explain energetic phenomena related to Gamma Ray Bursts and Black Holes. On earth, positrons from radioactive isotopes or accelerators are used extensively at low energies (sub-MeV) in areas related to surface science positron emission tomography and basic antimatter science. Experimental platforms capable of producing the high-temperature pair-plasma and high-flux jets required to simulate astrophysical positron conditions have so far been absent. In the past few years, we performed extensive experiments generating positrons with intense lasers where we found that relativistic electron and positron jets are produced by irradiating a solid gold target with an intense picosecond laser pulse. The positron temperatures in directions parallel and transverse to the beam both exceeded 0.5 MeV, and the density of electrons and positrons in these jets are of order 10 16 cm -3 and 10 13 cm -3, respectively. With the increasing performance of high-energy ultra-short laser pulses, we expect that a high-density, up to 10 18 cm -3, relativistic pair-plasma is achievable, a novel regime of laboratory-produced hot dense matter.

  8. Extracting the Size of the Cosmic Electron-Positron Anomaly

    NASA Astrophysics Data System (ADS)

    Auchettl, Katie; Balazs, C.

    2011-09-01

    Over the last few decades, numerous observations have hinted at an excess of high energy positrons in our locality. The most recent of these experiments has been the positron fraction measured by the PAMELA satellite and the electron plus positron spectrum as measured by the Fermi-LAT satellite. Since the release of these measurements, there have been a plethora of papers where authors invoke new physics ranging from, modification of the cosmic ray propagation, supernova remnants and dark matter annihilation. Using a Bayesian likelihood analysis, we isolate the anomalous contribution of the cosmic electron-positron flux. A significant tension was found between the electron positron related data and non-electron-positron cosmic ray fluxes. Using 219 recent cosmic ray datum, we extracted the preferred values of the selected cosmic ray propagation parameters from the non-electron-positron related measurements. Based on these parameter values we calculated background predictions with uncertainties for PAMELA and Fermi-LAT. We found a deviation between the PAMELA and Fermi-LAT data and the predicted background even when uncertainties, including systematics, were taken into account. Interpreting this as a hint of new physics, we subtracted the background from the data extracting the size, shape and uncertainty of the anomalous contribution in a model independent fashion. We briefly compared the extracted signal to some theoretical results predicting such an anomaly.

  9. Intense positron beam as a source for production of electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Stoneking, M. R.; Horn-Stanja, J.; Stenson, E. V.; Pedersen, T. Sunn; Saitoh, H.; Hergenhahn, U.; Niemann, H.; Paschkowski, N.; Hugenschmidt, C.; Piochacz, C.

    2016-10-01

    We aim to produce magnetically confined, short Debye length electron-positron plasma and test predicted properties for such systems. A first challenge is obtaining large numbers of positrons; a table-top experiment (system size 5 cm) with a temperature less than 5 eV requires about 1010 positrons to have more than 10 Debye lengths in the system. The NEPOMUC facility at the FRM II research reactor in Germany is one of the world's most intense positron sources. We report on characterization (using a retarding field energy analyzer with magnetic field gradient) of the NEPOMUC beam as delivered to the open beam port at various beam energies and in both the re-moderated and primary beam configurations in order to design optimal trapping (and accumulation) schemes for production of electron-positron plasma. The intensity of the re-moderated (primary) beam is in the range 2 -3 x 107 /s (1 - 5 x 108 /s). The re-moderated beam is currently the most promising for direct injection and confinement experiments; it has a parallel energy spread of 15 - 35% and the transverse energy spread is 6 - 15% of the parallel energy. We report on the implications for injection and trapping in a dipole magnetic field as well as plans for beam development, in situ re-moderation, and accumulation. We also report results demonstrating a difference in phosphor luminescent response to low energy positrons versus electrons.

  10. Progress toward positron-electron pair plasma experiments

    SciTech Connect

    Stenson, E. V.; Stanja, J.; Hergenhahn, U.; Saitoh, H.; Niemann, H.; Pedersen, T. Sunn; Marx, G. H.; Schweikhard, L.; Danielson, J. R.; Surko, C. M.; Hugenschmidt, C.

    2015-06-29

    Electron-positron plasmas have been of theoretical interest for decades, due to the unique plasma physics that arises from all charged particles having precisely identical mass. It is only recently, though, that developments in non-neutral plasma physics (both in linear and toroidal geometries) and in the flux of sources for cold positrons have brought the goal of conducting electron-positron pair plasma experiments within reach. The APEX/PAX collaboration is working on a number of projects in parallel toward that goal; this paper provides an overview of recent, current, and upcoming activities.

  11. Progress toward positron-electron pair plasma experiments

    NASA Astrophysics Data System (ADS)

    Stenson, E. V.; Saitoh, H.; Stanja, J.; Niemann, H.; Hergenhahn, U.; Pedersen, T. Sunn; Marx, G. H.; Schweikhard, L.; Danielson, J. R.; Surko, C. M.; Hugenschmidt, C.

    2015-06-01

    Electron-positron plasmas have been of theoretical interest for decades, due to the unique plasma physics that arises from all charged particles having precisely identical mass. It is only recently, though, that developments in non-neutral plasma physics (both in linear and toroidal geometries) and in the flux of sources for cold positrons have brought the goal of conducting electron-positron pair plasma experiments within reach. The APEX/PAX collaboration is working on a number of projects in parallel toward that goal; this paper provides an overview of recent, current, and upcoming activities.

  12. Neutrino annihilation of an electron-positron pair

    SciTech Connect

    Samsonenko, N.V.; Lal, K.C.

    1987-01-01

    In this study the authors carry out the analysis of the differential cross sections of the electron-positron pair annihilation process by simultaneously taking into account the spin effects, the interference of the charged and neutral currents, and also the possible nonzero neutrino rest mass. The differential cross sections are calculated in the COM system to first order in the weak interaction coupling constant with arbitrary electron and positron spin orientations and arbitrary neutrino and antineutrino polarizations.

  13. Electron positron pair production at RHIC and LHC

    SciTech Connect

    Cem Gueclue, M.

    2008-11-11

    The STAR Collaboration at the Relativistic Heavy Ion Collider present data on electron-positron pair production accompanied by nuclear breakup at small impact parameters where the simultaneous excitation of the two ions, mainly the giant dipole resonance GDR, can occur. We calculate the electron-positron pair production cross section relevant for the STAR experimental setup, and compare our results with the other calculations. We have also predictions for the LHC energies.

  14. Motion and energy dissipation of secondary electrons, positrons and hadrons correlated with terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Koehn, Christoph; Ebert, Ute

    2015-04-01

    Thunderstorms can emit high-energy particles, photons with energies of up to at least 40 MeV, leptons (electrons, positrons) and hadrons (neutrons and protons) with energies of tens of MeV. Some of these events have been correlated with negative lightning leaders propagating upwards in the cloud. For particular lightning events we show that photons, leptons and hadrons can reach ground altitude as well as satellite altitude, and we present the number as well as the spatial and energy distribution of photons, leptons and hadrons. We have reviewed the latest literature on cross sections for collisions of photons, leptons and hadrons with air molecules and have implemented them in our Monte Carlo code. We initialize a photon beam with the characteristic energy distribution of a TGF at thunderstorm altitude and we use the Monte Carlo model to trace these photons; we include the production of secondary electrons through photoionization, Compton scattering and pair production, the production of positrons through pair production as well as the production of neutrons and protons through photonuclear processes. Subsequently we calculate the motion and energy dissipation of these leptons and hadrons with the feedback of electrons and positrons producing new photons through Bremsstrahlung and through positron annihilation at shell electrons. Additionally we provide analytic estimates for the energy losses of photons, leptons and hadrons in the energy range between 0.03 eV and 100 MeV based on the relevant cross sections. We provide the spectral analysis of how many photons, leptons and hadrons will reach ground or satellite altitude and what their energies are, depending on the initial photon energy. This is of particular interest because of campaigns measuring fluxes of all these species at 0 and 500 km altitude without knowing the actual energies of initial electrons converting into photons within a thundercloud.

  15. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    SciTech Connect

    Adeyemi, Adeleke H.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e⁻/e⁺ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high-Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high-energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  16. Dipole configuration for confinement of positrons and electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Stenson, E. V.; Saitoh, H.; Horn-Stanja, J.; Hergenhahn, U.; Paschkowski, N.; Sunn Pedersen, T.; Stoneking, M. R.; Dickmann, M.; Singer, M.; Vohburger, S.; Hugenschmidt, C.; Schweikhard, L.; Danielson, J. R.; Surko, C. M.

    2016-10-01

    Laboratory creation and confinement of electron-positron plasmas, which are expected to exhibit atypical plasma physics characteristics, would enable tests of many theory and simulation predictions (e.g., the stabilization of anomalous transport mechanisms). This is the goal of APEX/PAX (A Positron-Electron eXperiment/Positron Accumulation eXperiment). Following demonstration of efficient (38%) E ×B injection and subsequent confinement (τ = 3-5 ms) of cold positrons in a dipole magnetic field, the system is undergoing upgrades from a supported permanent magnet to a supported HTSC (high-temperature superconductor) coil, then to a levitated HTSC coil suitable for the simultaneous confinement of electrons and positrons. This contribution will report on the design and testing of the new systems and subsystems (e.g., for cooling, excitation, and levitation) and, if available, on results of upcoming experiments using a ``rotating wall'' to generate inward particle flux deeper into the confinement region. on behalf of the APEX/PAX team and collaborators.

  17. Electron-positron pairs production in a macroscopic charged core

    NASA Astrophysics Data System (ADS)

    Ruffini, Remo; Xue, She-Sheng

    2011-02-01

    Classical and semi-classical energy states of relativistic electrons bounded by a massive and charged core with the charge-mass radio Q/M and macroscopic radius R are discussed. We show that the energies of semi-classical (bound) states can be much smaller than the negative electron mass-energy (-mc2), and energy-level crossing to negative energy continuum occurs. Electron-positron pair production takes place by quantum tunneling, if these bound states are not occupied. Electrons fill into these bound states and positrons go to infinity. We explicitly calculate the rate of pair-production, and compare it with the rates of electron-positron production by the Sauter-Euler-Heisenberg-Schwinger in a constant electric field. In addition, the pair-production rate for the electro-gravitational balance ratio Q/M=10-19 is much larger than the pair-production rate due to the Hawking processes.

  18. Simulating Terrestrial Gamma Ray Flashes due to cosmic ray shower electrons and positrons

    NASA Astrophysics Data System (ADS)

    Connell, Paul

    2017-04-01

    The University of Valencia has developed a software simulator LEPTRACK to simulate the relativistic runaway electron avalanches, RREA, that are presumed to be the cause of Terrestrial Gamma Ray Flashes and their powerful accompanying Ionization/Excitation Flashes. We show here results of LEPTRACK simulations of RREA by the interaction of MeV energy electrons/positrons and photons in cosmic ray showers traversing plausible electric field geometries expected in storm clouds. The input beams of MeV shower products were created using the CORSIKA software package from the Karlsruhe Institute of Technology. We present images, videos and plots showing the different Ionization, Excitation and gamma-ray photon density fields produced, along with their time and spatial profile evolution, which depend critically on where the line of shower particles intercept the electric field geometry. We also show a new effect of incoming positrons in the shower, which make up a significant fraction of shower products, in particular their apparent "orbiting" within a high altitude negative induced shielding charge layer, which has been conjectured to produce a signature microwave emission, as well as a short range 511 keV annihilation line. The interesting question posed is if this conjectured positron emission can be observed and correlated with TGF orbital observations to show if a TGF originates in the macro E-fields of storm clouds or the micro E-fields of lightning leaders where this positron "orbiting" is not likely to occur.

  19. Anisotropies in the flux of cosmic ray electrons and positrons

    NASA Astrophysics Data System (ADS)

    Manconi, S.; Di Mauro, M.; Donato, F.

    2017-05-01

    High energy cosmic ray electrons and positrons probe the local properties of our galaxy. In fact, regardless of the production mechanism, electromagnetic energy losses limit the typical propagation scale of GeV-TeV electrons and positrons to a few kpc. In the diffusion model, the presence of nearby and dominant sources may produce an observable dipole anisotropy in the cosmic ray fluxes. We present a detailed study on the role of anisotropies from nearby sources in the interpretation of present cosmic ray electron and positrons fluxes. Predictions for the dipole anisotropy from known astrophysical sources as Supernova Remnants (SNRs) and pulsars taken from the Green and the Australia Telescope National Facility (ATNF) catalogs are shown. The results are obtained from models compatible with the most recent AMS-02 data on electrons and positrons fluxes. In particular, anisotropies for single sources as well as for a distribution of catalog sources are discussed. We compare our results with current anisotropy upper limits from the Fermi-LAT and PAMELA experiments, showing that the search of anisotropy in the electron and positron fluxes represents a complementary tool to inspect the properties of close SNRs, as for example the Vela SNR.

  20. Interpretation of AMS-02 electrons and positrons data

    SciTech Connect

    Mauro, M. Di; Donato, F.; Fornengo, N.; Vittino, A.; Lineros, R. E-mail: donato@to.infn.it E-mail: rlineros@ific.uv.es

    2014-04-01

    We perform a combined analysis of the recent AMS-02 data on electrons, positrons, electrons plus positrons and positron fraction, in a self-consistent framework where we realize a theoretical modeling of all the astrophysical components that can contribute to the observed fluxes in the whole energy range. The primary electron contribution is modeled through the sum of an average flux from distant sources and the fluxes from the local supernova remnants in the Green catalog. The secondary electron and positron fluxes originate from interactions on the interstellar medium of primary cosmic rays, for which we derive a novel determination by using AMS-02 proton and helium data. Primary positrons and electrons from pulsar wind nebulae in the ATNF catalog are included and studied in terms of their most significant (while loosely known) properties and under different assumptions (average contribution from the whole catalog, single dominant pulsar, a few dominant pulsars). We obtain a remarkable agreement between our various modeling and the AMS-02 data for all types of analysis, demonstrating that the whole AMS-02 leptonic data admit a self-consistent interpretation in terms of astrophysical contributions.

  1. Timelike Virtual Compton Scattering from Electron-Positron Radiative Annihilation

    SciTech Connect

    Afanasev, Andrei; Brodsky, Stanley J.; Carlson, Carl E.; Mukherjee, Asmita; /Indian Inst. Tech., Mumbai

    2009-03-31

    We propose measurements of the deeply virtual Compton amplitude (DVCS) {gamma}* {yields} H{bar H}{gamma} in the timelike t = (p{sub H} + p{sub {bar H}}){sup 2} > 0 kinematic domain which is accessible at electron-positron colliders via the radiative annihilation process e{sup +}e{sup -} {yields} H{bar H}{gamma}. These processes allow the measurement of timelike deeply virtual Compton scattering for a variety of H{bar H} hadron pairs such as {pi}{sup +}{pi}{sup -}, K{sup +}K{sup -}, and D{bar D} as well as p{bar p}. As in the conventional spacelike DVCS, there are interfering coherent amplitudes contributing to the timelike processes involving C = - form factors. The interference between the amplitudes measures the phase of the C = + timelike DVCS amplitude relative to the phase of the timelike form factors and can be isolated by considering the forward-backward e{sup +} {leftrightarrow} e{sup -} asymmetry. The J = 0 fixed pole contribution which arises from the local coupling of the two photons to the quark current plays a special role. As an example we present a simple model.

  2. Timelike Virtual Compton Scattering from Electron-Positron Radiative Annihilation

    SciTech Connect

    Andrei Afanaciev,Andrei Afanasev, Stanley J. Brodsky, Carl E. Carlson, Asmita Mukherjee

    2010-02-01

    We propose measurements of the deeply virtual Compton amplitude (DVCS), gamma* to H H-bar gamma, in the timelike t = (p_{H} + p_{H-bar})^2 > 0 kinematic domain which is accessible at electron-positron colliders via the radiative annihilation process e+ e- to H H-bar gamma. These processes allow the measurement of timelike deeply virtual Compton scattering for a variety of H H-bar hadron pairs such as pi+ pi-, K+ K-, and D D-bar as well as p p-bar. As in the conventional spacelike DVCS, there are interfering coherent amplitudes contributing to the timelike processes involving C= - form factors. The interference between the amplitudes measures the phase of the C=+ timelike DVCS amplitude relative to the phase of the timelike form factors and can be isolated by considering the forward-backward e+ \\leftrightarrow e- asymmetry. The J=0 fixed pole contribution which arises from the local coupling of the two photons to the quark current plays a special role. As an example we present a simple model.

  3. Calorimetry in Medical Applications: Single-Photon Emission Computed Tomography and Positron Emission Tomography

    SciTech Connect

    Chen, C.-T.

    2006-10-27

    Positron emission tomography (PET) and single-photon emission computed tomography (SPECT), two nuclear medicine imaging modalities broadly used in clinics and research, share many common instrumentation, detector, and electronics technology platforms with calorimetry in high-energy physics, astronomy, and other physics sciences. Historically, advances made in calorimetry had played major roles in the development of novel approaches and critical technologies essential to the evolution of PET and SPECT. There have also been examples in which PET/SPECT developments had led to new techniques in calorimetry for other application areas. In recent years, several innovations have propelled advances in both calorimetry in general and PET/SPECT in particular. Examples include time-of-flight (TOF) measurements, silicon photomultipliers (SiPMs), etc.

  4. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    SciTech Connect

    Saha, Asit E-mail: prasantachatterjee1@rediffmail.com; Pal, Nikhil; Chatterjee, Prasanta E-mail: prasantachatterjee1@rediffmail.com

    2014-10-15

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  5. Photon Induced Electron Attachment.

    DTIC Science & Technology

    1984-12-01

    initial measure- ments was that high switch currents and long pulse durations appear to lead to substantially enhanced attachment rates in C3F8 ...similar conditions, but with 1.9 x 1015 C3F8 molecules/cm 3 added to the switch gas mixture. The initial current rise is comparable in both plots, but the...enhanced attachment during the switch opening time period. B. C0O Laser Excitation The photon enhanced attachment of the three gases NF3, C3F8 I and

  6. Progress toward positron-electron pair plasma experiments

    NASA Astrophysics Data System (ADS)

    Stanja, J.; Hergenhahn, U.; Niemann, H.; Paschkowski, N.; Sunn Pedersen, T.; Saitoh, H.; Stenson, E. V.; Hugenschmidt, Ch.; Marx, G. H.; Schweikhard, L.; Danielson, J. R.; Surko, C. M.

    2014-10-01

    Matter-antimatter pair plasmas have been of great theoretical and astrophysical interest for a long time. A Positron-Electron Experiment (APEX) aims for the creation and study of such a plasma in the laboratory. It will be operated at the NEPOMUC facility which provides a cold and high-intensity positron beam. To achieve at least 10 Debye length within APEX's flux surfaces the beam needs to initially pass through several stages of manipulation. Presented here is an overview of work from the APEX team. Topics include E-> × B-> beam handling for separation into multiple beams in order to reduce the energy spread of the positron beam; injection and trapping of electrons in a prototype dipole field device with a permanent magnet; and design plans for the next generation of confinement device. on behalf of the APEX/PAX Team and Collaborators.

  7. Roles of superthermal electrons and positrons on positron-acoustic solitary waves and double layers in electron-positron-ion plasmas.

    PubMed

    Alam, M S; Uddin, M J; Masud, M M; Mamun, A A

    2014-09-01

    Positron-acoustic (PA) solitary waves (SWs) and double layers (DLs) in four-component plasmas consisting of immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated both numerically and analytically by deriving Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and Gardner equations along with their DLs solutions using the reductive perturbation method. It is examined that depending on the plasma parameters, the K-dV SWs, Gardner SWs, and DLs support either compressive or rarefactive structures, whereas mK-dV SWs support only compressive structure. It is also found that the presence of superthermal (kappa distributed) hot positrons and hot electrons significantly modify the basic features of PA SWs as well as PA DLs. Besides, the critical number density ratio of hot positrons and cold positrons play an important role in the polarity of PA SWs and DLs. The implications of our results in different space as well as laboratory plasma environments are briefly discussed.

  8. Exploring positron characteristics utilizing two new positron-electron correlation schemes based on multiple electronic structure calculation methods

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Shuai; Gu, Bing-Chuan; Han, Xiao-Xi; Liu, Jian-Dang; Ye, Bang-Jiao

    2015-10-01

    We make a gradient correction to a new local density approximation form of positron-electron correlation. The positron lifetimes and affinities are then probed by using these two approximation forms based on three electronic-structure calculation methods, including the full-potential linearized augmented plane wave (FLAPW) plus local orbitals approach, the atomic superposition (ATSUP) approach, and the projector augmented wave (PAW) approach. The differences between calculated lifetimes using the FLAPW and ATSUP methods are clearly interpreted in the view of positron and electron transfers. We further find that a well-implemented PAW method can give near-perfect agreement on both the positron lifetimes and affinities with the FLAPW method, and the competitiveness of the ATSUP method against the FLAPW/PAW method is reduced within the best calculations. By comparing with the experimental data, the new introduced gradient corrected correlation form is proved to be competitive for positron lifetime and affinity calculations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11175171 and 11105139).

  9. On-ground detection of an electron-positron annihilation line from thunderclouds

    NASA Astrophysics Data System (ADS)

    Umemoto, D.; Tsuchiya, H.; Enoto, T.; Yamada, S.; Yuasa, T.; Kawaharada, M.; Kitaguchi, T.; Nakazawa, K.; Kokubun, M.; Kato, H.; Okano, M.; Tamagawa, T.; Makishima, K.

    2016-02-01

    Thunderclouds can produce bremsstrahlung gamma-ray emission, and sometimes even positrons. At 00:27:00 (UT) on 13 January 2012, an intense burst of gamma rays from a thundercloud was detected by the GROWTH experiment, located in Japan, facing the Sea of Japan. The event started with a sharp gamma-ray flash with a duration of <300 ms coincident with an intracloud discharge, followed by a decaying longer gamma-ray emission lasting for ˜60 s. The spectrum of this prolonged emission reached ˜10 MeV, and contained a distinct line emission at 508 ±3 (stat .)±5 (sys .) keV, to be identified with an electron-positron annihilation line. The line was narrow within the instrumental energy resolution (˜80 keV) , and contained 520 ±50 photons which amounted to ˜10 % of the total signal photons of 5340 ±190 detected over 0.1-10 MeV. As a result, the line equivalent width reached 280 ±40 keV, which implies a nontrivial result. The result suggests that a downward positron beam produced both the continuum and the line photons.

  10. On-ground detection of an electron-positron annihilation line from thunderclouds.

    PubMed

    Umemoto, D; Tsuchiya, H; Enoto, T; Yamada, S; Yuasa, T; Kawaharada, M; Kitaguchi, T; Nakazawa, K; Kokubun, M; Kato, H; Okano, M; Tamagawa, T; Makishima, K

    2016-02-01

    Thunderclouds can produce bremsstrahlung gamma-ray emission, and sometimes even positrons. At 00:27:00 (UT) on 13 January 2012, an intense burst of gamma rays from a thundercloud was detected by the GROWTH experiment, located in Japan, facing the Sea of Japan. The event started with a sharp gamma-ray flash with a duration of <300 ms coincident with an intracloud discharge, followed by a decaying longer gamma-ray emission lasting for ∼60 s. The spectrum of this prolonged emission reached ∼10 MeV, and contained a distinct line emission at 508±3(stat.)±5(sys.) keV, to be identified with an electron-positron annihilation line. The line was narrow within the instrumental energy resolution (∼80keV), and contained 520±50 photons which amounted to ∼10% of the total signal photons of 5340±190 detected over 0.1-10 MeV. As a result, the line equivalent width reached 280±40 keV, which implies a nontrivial result. The result suggests that a downward positron beam produced both the continuum and the line photons.

  11. Program EPICP: Electron photon interaction code, photon test module. Version 94.2

    SciTech Connect

    Cullen, D.E.

    1994-09-01

    The computer code EPICP performs Monte Carlo photon transport calculations in a simple one zone cylindrical detector. Results include deposition within the detector, transmission, reflection and lateral leakage from the detector, as well as events and energy deposition as a function of the depth into the detector. EPICP is part of the EPIC (Electron Photon Interaction Code) system. EPICP is designed to perform both normal transport calculations and diagnostic calculations involving only photons, with the objective of developing optimum algorithms for later use in EPIC. The EPIC system includes other modules that are designed to develop optimum algorithms for later use in EPIC; this includes electron and positron transport (EPICE), neutron transport (EPICN), charged particle transport (EPICC), geometry (EPICG), source sampling (EPICS). This is a modular system that once optimized can be linked together to consider a wide variety of particles, geometries, sources, etc. By design EPICP only considers photon transport. In particular it does not consider electron transport so that later EPICP and EPICE can be used to quantitatively evaluate the importance of electron transport when starting from photon sources. In this report I will merely mention where we expect the results to significantly differ from those obtained considering only photon transport from that obtained using coupled electron-photon transport.

  12. The effective penetration distance of ultrahigh-energy electrons and photons traversing a cosmic blackbody photon gas

    NASA Technical Reports Server (NTRS)

    Gould, R. J.; Rephaeli, Y.

    1978-01-01

    The effective average energy loss for an energetic (at least about 10 to the 15th power eV) particle traversing the microwave background radiation is evaluated. Electron-photon transformations by Compton scattering and pair production (in photon-photon collisions) are computed, with the energy loss considered to be carried away by the least energetic of the outgoing particles. Considering the most energetic of the outgoing particles as the high-energy particle, the relative probability and mean time for the particle to be a photon or electron (or positron) is evaluated. The effects of synchrotron losses for electrons and positrons are emphasized and compared with Compton losses to determine a critical energy (for given magnetic field) above which synchrotron losses dominate. Magnetic deflections are also treated for the case where the magnetic field is disordered, having a characteristic 'cell' size.

  13. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses.

    PubMed

    Taira, Y; Toyokawa, H; Kuroda, R; Yamamoto, N; Adachi, M; Tanaka, S; Katoh, M

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  14. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    SciTech Connect

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-15

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90 Degree-Sign collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF{sub 2} scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF{sub 2} scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  15. Search for bound-state electron+positron pair decay

    NASA Astrophysics Data System (ADS)

    Bosch, F.; Hagmann, S.; Hillenbrand, P.-M.; Lane, G. J.; Litvinov, Yu. A.; Reed, M. W.; Sanjari, M. S.; Stöhlker, Th.; Torilov, S. Yu.; Tu, X. L.; Walke, P. M.

    2016-09-01

    The heavy ion storage rings coupled to in-flight radioactive-ion beam facilities, namely the ability to produce and store for extended periods of time radioactive nuclides in high atomic charge states, for the searchof yet unobserved decay mode - bound-state electron-positron pair decay.

  16. Plasma Focusing of High Energy Density Electron and Positron Beams

    SciTech Connect

    Ng, Johnny S.T.

    2000-10-09

    We present results from the SLAC E-150 experiment on plasma focusing of high energy density electron and, for the first time, positron beams. We also present results on plasma lens-induced synchrotron radiation, longitudinal dynamics of plasma focusing, and laser- and beam-plasma interactions.

  17. Simulation of tail distributions in electron-positron circular colliders

    SciTech Connect

    Irwin, J.

    1992-02-01

    In addition to the Gaussian shaped core region, particle bunches in electron-positron circular colliders have a rarefied halo region of importance in determining beam lifetimes and backgrounds in particle detectors. A method is described which allows simulation of halo particle distributions.

  18. Simulation of tail distributions in electron-positron circular colliders

    SciTech Connect

    Irwin, J.

    1992-02-01

    In addition to the Gaussian shaped core region, particle bunches in electron-positron circular colliders have a rarefied halo region of importance in determining beam lifetimes and backgrounds in particle detectors. A method is described which allows simulation of halo particle distributions.

  19. Resonant generation of an electron–positron pair by two photons to excited Landau levels

    SciTech Connect

    Diachenko, M. M. Novak, O. P.; Kholodov, R. I.

    2015-11-15

    We consider the resonant generation of an electron–positron pair by two polarized photons to arbitrarily low Landau levels. The resonance occurs when the energy of one photon exceeds the one-photon generation threshold, and the energy of the other photon is multiple to the spacing between the levels. The cross section of the process is determined taking into account the spins of particles. The order of magnitude of the cross section is the highest when the magnetic moments of the particles are oriented along the magnetic field.

  20. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    SciTech Connect

    Abbott, D.; Adderley, P.; Adeyemi, A.; Aguilera, P.; Ali, M.; Areti, H.; Baylac, M.; Benesch, J.; Bosson, G.; Cade, B.; Camsonne, A.; Cardman, L. S.; Clark, J.; Cole, P.; Covert, S.; Cuevas, C.; Dadoun, O.; Dale, D.; Dong, H.; Dumas, J.; Fanchini, E.; Forest, T.; Forman, E.; Freyberger, A.; Froidefond, E.; Golge, S.; Grames, J.; Guèye, P.; Hansknecht, J.; Harrell, P.; Hoskins, J.; Hyde, C.; Josey, B.; Kazimi, R.; Kim, Y.; Machie, D.; Mahoney, K.; Mammei, R.; Marton, M.; McCarter, J.; McCaughan, M.; McHugh, M.; McNulty, D.; Mesick, K. E.; Michaelides, T.; Michaels, R.; Moffit, B.; Moser, D.; Muñoz Camacho, C.; Muraz, J. -F.; Opper, A.; Poelker, M.; Réal, J. -S.; Richardson, L.; Setiniyaz, S.; Stutzman, M.; Suleiman, R.; Tennant, C.; Tsai, C.; Turner, D.; Ungaro, M.; Variola, A.; Voutier, E.; Wang, Y.; Zhang, Y.

    2016-05-27

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/c, limited only by the electron beam polarization. We report that this technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  1. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    DOE PAGES

    Abbott, D.; Adderley, P.; Adeyemi, A.; ...

    2016-05-27

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/c, limited only by the electron beam polarization. We report that this technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  2. Inelastic collisions of positrons with one-valence-electron targets

    NASA Technical Reports Server (NTRS)

    Abdel-Raouf, Mohamed Assad

    1990-01-01

    The total elastic and positronium formation cross sections of the inelastic collisions between positrons and various one-valence-electron atoms, (namely hydrogen, lithium, sodium, potassium and rubidium), and one-valence-electron ions, (namely hydrogen-like, lithium-like and alkaline-earth positive ions) are determined using an elaborate modified coupled-static approximation. Special attention is devoted to the behavior of the Ps cross sections at the energy regions lying above the Ps formation thresholds.

  3. Monte carlo simulation of positron induced secondary electrons in thin carbon foils

    NASA Astrophysics Data System (ADS)

    Cai, L. H.; Yang, B.; Ling, C. C.; Beling, C. D.; Fung, S.

    2011-01-01

    Emission of secondary electrons induced by the passage of low energy positrons through thin carbon foils was studied by the Monte Carlo method. The positron and electron elastic cross sections were calculated by partial wave analysis. The inelastic positron-valence-electron was described by the energy loss function obtained from dielectric theory. The positron-core-electron interaction was modelled by the Gryzinski's excitation function. Positron transport inside the carbon foil was simulated in detail. Secondary electrons created by positrons and high energy secondary electrons through inelastic interactions were tracked through the foil. The positron transmission coefficient and secondary electron yielded in forward and backward geometry are calculated and dependences on positron energy and carbon foil thickness are discussed.

  4. Thermal and optical excitation of trapped electrons in high-density polyethylene (HDPE) studied through positron annihilation

    NASA Astrophysics Data System (ADS)

    Nahid, F.; Zhang, J. D.; Yu, T. F.; Ling, C. C.; Fung, S.; Beling, C. D.

    2011-04-01

    Positronium (Ps) formation in high-density polyethylene (HDPE) has been studied below the glass transition temperature. The formation probability increases with positron irradiation time due to an increasing number of inter-track trapped electrons becoming available for positron capture. The temperature variation of the saturated Ps level is discussed in different models. The quenching of trapped electrons by light has been studied and the optical de-trapping cross-section for different photon energies has been estimated over the visible region.

  5. Qualitative analysis of the positron-acoustic waves in electron-positron-ion plasmas with κ deformed Kaniadakis distributed electrons and hot positrons

    NASA Astrophysics Data System (ADS)

    Saha, Asit; Tamang, Jharna

    2017-08-01

    Qualitative analysis of the positron acoustic (PA) waves in a four-component plasma system consisting of static positive ions, mobile cold positron, and Kaniadakis distributed hot positrons and electrons is investigated. Using the reductive perturbation technique, the Korteweg-de Vries (K-dV) equation and the modified KdV equation are derived for the PA waves. Variations of the total energy of the conservative systems corresponding to the KdV and mKdV equations are presented. Applying numerical computations, effect of parameter (κ), number density ratio (μ1) of electrons to ions and number density (μ2) of hot positrons to ions, and speed (U) of the traveling wave are discussed on the positron acoustic solitary wave solutions of the KdV and mKdV equations. Furthermore, it is found that the parameter κ has no effect on the solitary wave solution of the KdV equation, whereas it has significant effect on the solitary wave solution of the modified KdV equation. Considering an external periodic perturbation, the perturbed dynamical systems corresponding to the KdV and mKdV equations are analyzed by employing three dimensional phase portrait analysis, time series analysis, and Poincare section. Chaotic motions of the perturbed PA waves occur through the quasiperiodic route to chaos.

  6. Pumping Electron-Positron Pairs from a Well Potential

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Liu, Jie; Fu, Li-Bin

    2016-04-01

    In the presence of very deep well potential, electrons will spontaneously occupy the empty embedded bound states and electron-positron pairs are created by means of a non-perturbative tunneling process. In this work, by slowly oscillating the width or depth, the population transfer channels are opened and closed periodically. We find and clearly show that by the non-synchronous ejections of particles, the saturation of pair number in a static super-critical well can be broken, and electrons and positrons can be pumped inexhaustibly from vacuum with a constant production rate. In the adiabatic limit, final pair number after a single cycle has quantized values as a function of the upper boundary of the oscillating, and the critical upper boundaries indicate the diving points of the bound states.

  7. Pumping Electron-Positron Pairs from a Well Potential

    PubMed Central

    Wang, Qiang; Liu, Jie; Fu, Li-bin

    2016-01-01

    In the presence of very deep well potential, electrons will spontaneously occupy the empty embedded bound states and electron-positron pairs are created by means of a non-perturbative tunneling process. In this work, by slowly oscillating the width or depth, the population transfer channels are opened and closed periodically. We find and clearly show that by the non-synchronous ejections of particles, the saturation of pair number in a static super-critical well can be broken, and electrons and positrons can be pumped inexhaustibly from vacuum with a constant production rate. In the adiabatic limit, final pair number after a single cycle has quantized values as a function of the upper boundary of the oscillating, and the critical upper boundaries indicate the diving points of the bound states. PMID:27125998

  8. Electron and Positron Scattering from C3H6 Isomers

    NASA Astrophysics Data System (ADS)

    Makochekanwa, Casten; Sueoka, Osamu; Kimura, Mineo; Hoshino, Masamitsu; Tanaka, Takahiro; Kitajima, Masashi; Tanaka, Hiroshi

    2004-09-01

    Hydrocarbons play an important role in high temperature plasmas in Tokamak fusion devices in plasma processing and many other fields [1]. In this paper we report experiments for 0.4-1000 eV electron and 0.2-1000 eV positron total cross sections (TCS) measured using a linear time-of-flight apparatus [2], and electron differential cross sections (DCS) for elastic, vibrational and electronic excitations covering the ranges 1.5 to 100 eV and 15 deg to 130 deg, measured using the crossed beam and relative flow method [3]. The continuum multiple scattering (CMS) [4] calculations have also been performed for the theoretical analysis of the observed features in our cross sections. We observe the isomer effect in both electron and positron TCSs and DCSs. The presence of a dipole moment in propene molecules shows up in enhanced forward scattering in DCSs, leading to larger TCSs and integral cross sections compared to cyclopropane at energies less than 20 eV. However, both electron and positron TCSs for these two molecules nearly equal each other above 100 eV, i.e. the molecular size effect. [1] W. L. Moragn, Adv. At. Mol. Opt. Phys. 43, 79 (2000). [2] O. Sueoka, S. Mori and A. Hamada, J. Phys. B 27, 1453 (1994). [3] H. Tanaka, L. Boesten, D. Matsunaga and T. Kudo, J. Phys. B 21, 1255 (1988). [4] M. Kimura and H. Sato, Comments At. Mol. Phys. 26, 333 (1991).

  9. High energy electron-positron experiments

    NASA Astrophysics Data System (ADS)

    Dong-Chul, Son

    We carried out e(+)e(-) experiments in two centers of mass energy regions: the AMY experiment in a 60 GeV region and the L 3 experiment in a 90 GeV region. The two experiments have both tested the Electroweak Standard model with high precision and measured the important coupling constants in QCD. The two-photon physics were also studied and new particles and related new physics were searched for. The results of AMY experiments includes those of measurements of hadronic production cross section, leptonic production cross sections, and their ratios, the forward-backward asymmetries of leptons and b-quarks and most of the data were consistent with the predictions of the Standard Model. The L 3 experiments, with the high resolution L 3 detector and many Z's recorded, have measured the mass and the widths of Z, the g(sub v) and g(sub A) of leptons, the forward-backward asymmetries of b-quarks, tau polarizations, and related the sin(sup 2)theta(sub W). They also tested the QCD and QED and searched for Higgs particles and other new particles in vain. But the L 3 observed a rather followed the L 3 searching for an unknown s-channel scalar boson but only obtained the limits on (2 J+1)(Gamma) x BR(gamma)(gamma).

  10. Monte Carlo Simulation of Pileup Effects in the Electron-Positron Annihilation Peak

    NASA Astrophysics Data System (ADS)

    do Nascimento, Eduardo; Fernández-Varea, José M.; Vanin, Vito R.; Maidana, Nora L.

    2011-08-01

    The Monte Carlo code PENELOPE is employed to simulate a typical experimental Doppler broadening coincidence spectrum (DBCS) where the energy spectrum of the photons emitted by the positrons interacting in the sample is recorded with two HPGe detectors in coincidence. The simulated spectrum reproduces well some of the structures observed in the measured DBCS, but not the prominent tails on the low- and high-energy sides of the electron-positron annihilation peak seen in the latter. Ad hoc variations of the cross sections implemented in PENELOPE did not improve the situation. A simple parameterization of the background noise in the DBCS is proposed, and the simulated spectrum is modified to account for pileup effects using this model of the background. The resulting spectrum is in good agreement with the experiment on the high-energy side of the annihilation peak.

  11. Enhancement of molecular sensitivity in positron emission tomography with quantum correlation of γ-ray photons

    SciTech Connect

    Sato, K.; Kobayashi, Y.

    2015-05-15

    Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed.

  12. Enhancement of molecular sensitivity in positron emission tomography with quantum correlation of γ-ray photons.

    PubMed

    Sato, K; Kobayashi, Y

    2015-05-01

    Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed.

  13. Enhancement of molecular sensitivity in positron emission tomography with quantum correlation of γ-ray photons

    NASA Astrophysics Data System (ADS)

    Sato, K.; Kobayashi, Y.

    2015-05-01

    Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed.

  14. Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data

    DOE PAGES

    Adikaram, D.; Rimal, D.; Weinstein, L. B.; ...

    2015-02-10

    There is a significant discrepancy between the values of the proton electric form factor, GpE, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GpE from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentummore » transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ε at Q2=1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2.« less

  15. Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data

    SciTech Connect

    Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R.; Arrington, J.; Brooks, W.; Adhikari, K.; Afanasev, A.; Amaryan, M.; Anderson, M.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A.; Bono, J.; Boiarinov, S.; Briscoe, W.; Burkert, V.; Carman, D.; Careccia, S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J.; Fradi, A.; Garillon, B.; Gilfoyle, G.; Giovanetti, K.; Girod, F.; Goetz, J.; Gohn, W.; Golovatch, E.; Gothe, R.; Griffioen, K.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S.; Hyde, C. E.; Ilieva, Y.; Ireland, D.; Ishkhanov, B.; Jenkins, D.; Jiang, H.; Jo, H.; Joo, K.; Joosten, S.; Kalantarians, N.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F.; Koirala, S.; Kubarovsky, V.; Kuhn, S.; Livingston, K.; Lu, H.; MacGregor, I.; Markov, N.; Mattione, P.; Mayer, M.; McKinnon, B.; Mestayer, M.; Meyer, C.; Mirazita, M.; Mokeev, V.; Montgomery, R.; Moody, C.; Moutarde, H.; Movsisyan, A.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A.; Park, K.; Pasyuk, E.; Pisano, S.; Pogorelko, O.; Price, J.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabati, F.; Salgado, C.; Schott, D.; Schumacher, R.; Seder, E.; Sharabian, Y.; Simonyan, A.; Skorodumina, I.; Smith, E.; Smith, G.; Sober, D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N.; Watts, D.; Wei, X.; Wood, M.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z.; Zonta, I.

    2015-02-10

    There is a significant discrepancy between the values of the proton electric form factor, GpE, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GpE from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentum transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ε at Q2=1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2.

  16. Towards a resolution of the proton form factor problem: new electron and positron scattering data.

    PubMed

    Adikaram, D; Rimal, D; Weinstein, L B; Raue, B; Khetarpal, P; Bennett, R P; Arrington, J; Brooks, W K; Adhikari, K P; Afanasev, A V; Amaryan, M J; Anderson, M D; Anefalos Pereira, S; Avakian, H; Ball, J; Battaglieri, M; Bedlinskiy, I; Biselli, A S; Bono, J; Boiarinov, S; Briscoe, W J; Burkert, V D; Carman, D S; Careccia, S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Contalbrigo, M; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dodge, G E; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Filippi, A; Fleming, J A; Fradi, A; Garillon, B; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Harrison, N; Hattawy, M; Hicks, K; Holtrop, M; Hughes, S M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Jenkins, D; Jiang, H; Jo, H S; Joo, K; Joosten, S; Kalantarians, N; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, A; Klein, F J; Koirala, S; Kubarovsky, V; Kuhn, S E; Livingston, K; Lu, H Y; MacGregor, I J D; Markov, N; Mattione, P; Mayer, M; McKinnon, B; Mestayer, M D; Meyer, C A; Mirazita, M; Mokeev, V; Montgomery, R A; Moody, C I; Moutarde, H; Movsisyan, A; Camacho, C Munoz; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Peña, C; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Sharabian, Y G; Simonyan, A; Skorodumina, I; Smith, E S; Smith, G D; Sober, D I; Sokhan, D; Sparveris, N; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tian, Ye; Trivedi, A; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Wood, M H; Zachariou, N; Zana, L; Zhang, J; Zhao, Z W; Zonta, I

    2015-02-13

    There is a significant discrepancy between the values of the proton electric form factor, G(E)(p), extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of G(E)(p) from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ϵ) and momentum transfer (Q(2)) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ϵ at Q(2)=1.45  GeV(2). This measurement is consistent with the size of the form factor discrepancy at Q(2)≈1.75  GeV(2) and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2-3  GeV(2).

  17. Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data

    NASA Astrophysics Data System (ADS)

    Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R. P.; Arrington, J.; Brooks, W. K.; Adhikari, K. P.; Afanasev, A. V.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Careccia, S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Kalantarians, N.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Peña, C.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, I.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-02-01

    There is a significant discrepancy between the values of the proton electric form factor, GEp, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GEp from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ɛ ) and momentum transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ɛ at Q2=1.45 GeV2 . This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2 - 3 GeV2 .

  18. Correlations in laser-induced electron-positron pair creation

    SciTech Connect

    Krajewska, K.; Kaminski, J. Z.

    2011-09-15

    Probability rates of electron-positron pair creation in head-on laser-beam-proton collisions are investigated, using an exact treatment of the colliding proton as a finite-mass particle. We observe that the recoil effects become more important when passing from the perturbative multiphoton regime to the nonperturbative above-threshold regime of laser-matter coupling. Thus we concentrate on the latter case. In this regime, our detailed analysis shows that energy supplied by the colliding proton makes the process more effective, and that the electrons and positrons that are created during the collision are more energetic than in the case when the momentum transfer from the proton is neglected. A number of similarities to above-threshold atomic ionization are also illustrated.

  19. Bruno Touschek: From Betatrons to Electron-Positron Colliders

    NASA Astrophysics Data System (ADS)

    Bernardini, Carlo; Pancheri, Giulia; Pellegrini, Claudio

    Bruno Touschek’s life as a physicist spanned the period from World War II to the 1970s. He was a key figure in the developments of electron-positron colliders and storage rings, and made important contributions to theoretical high energy physics. Storage rings, initially developed for high energy physics, are being widely used in many countries as synchrotron radiation sources and are a tool for research in physics, chemistry, biology, environmental sciences and cultural heritage studies. We describe Touschek’s life in Austria, where he was born, in Germany, where he participated in the construction of a betatron during WWII, and in Italy, where he proposed and led to completion the first electron-positron storage ring in 1960, in Frascati. We highlight how his central European culture influenced his lifestyle and work, and his main contributions to physics, such as the discovery of the Touschek effect and beam instabilities in the larger storage ring ADONE.

  20. Bruno Touschek: From Betatrons to Electron-Positron Colliders

    NASA Astrophysics Data System (ADS)

    Bernardini, Carlo; Pancheri, Giulia; Pellegrini, Claudio

    Bruno Touschek's life as a physicist spanned the period from World War II to the 1970s. He was a key figure in the developments of electron-positron colliders and storage rings, and made important contributions to theoretical high energy physics. Storage rings, initially developed for high energy physics, are being widely used in many countries as synchrotron radiation sources and are a tool for research in physics, chemistry, biology, environmental sciences and cultural heritage studies. We describe Touschek's life in Austria, where he was born, in Germany, where he participated in the construction of a betatron during WWII, and in Italy, where he proposed and led to completion the first electron-positron storage ring in 1960, in Frascati. We highlight how his central European culture influenced his lifestyle and work, and his main contributions to physics, such as the discovery of the Touschek effect and beam instabilities in the larger storage ring ADONE.

  1. Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma

    NASA Astrophysics Data System (ADS)

    El-Labany, S. K.; El-Taibany, W. F.; El-Samahy, A. E.; Hafez, A. M.; Atteya, A.

    2015-08-01

    Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed.

  2. Langmuir rogue waves in electron-positron plasmas

    SciTech Connect

    Moslem, W. M.

    2011-03-15

    Progress in understanding the nonlinear Langmuir rogue waves which accompany collisionless electron-positron (e-p) plasmas is presented. The nonlinearity of the system results from the nonlinear coupling between small, but finite, amplitude Langmuir waves and quasistationary density perturbations in an e-p plasma. The nonlinear Schroedinger equation is derived for the Langmuir waves' electric field envelope, accounting for small, but finite, amplitude quasistationary plasma slow motion describing the Langmuir waves' ponderomotive force. Numerical calculations reveal that the rogue structures strongly depend on the electron/positron density and temperature, as well as the group velocity of the envelope wave. The present study might be helpful to understand the excitation of nonlinear rogue pulses in astrophysical environments, such as in active galactic nuclei, in pulsar magnetospheres, in neutron stars, etc.

  3. Dynamics of electron-positron pairs in a vacuum polarized by an external radiation field

    NASA Astrophysics Data System (ADS)

    Apostol, M.

    2011-04-01

    The polarization of the vacuum under the action of an external classical field of electromagnetic radiation is investigated in the stationary regime. The electron-positron pairs interact both with the external field and with their own polarization field. For a macroscopic piece of vacuum the pairs are condensed on the low-momenta states and tend to form a quasi-localized electron-positron plasma of pairs, with single-particle states labeled by the position vector. In the polarization process under the action of a classical field of radiation the electron-positron and photon dynamics can be treated by means of classical fields. Under these circumstances, the corresponding coupled non-linear equations of motion are solved. It is shown that the pair dynamics consists of quasi-stationary single-particle states, while the polarization field reduces to a static magnetic field. The single-particle 'energy' (temporal phase) due to a monochromatic external field exhibits a spatial distribution characteristic of a stationary wave. Both the pair energy and the polarization energy are computed. Their values are extremely small, even for highly focused, reasonably high, external fields. The number of pairs is determined by the external energy. Under the action of a classical field the polarized vacuum is magnetized, and the corresponding (very low) magnetic susceptibility (the refractive index of the vacuum) is computed.

  4. Collisionless Reconnection in an Electron-Positron Plasma

    SciTech Connect

    Bessho, N.; Bhattacharjee, A.

    2005-12-09

    Electromagnetic particle-in-cell simulations of fast collisionless reconnection in a two-dimensional electron-positron plasma (without an equilibrium guide field) are presented. A generalized Ohm's law in which the Hall current cancels out exactly is given. It is suggested that the key to fast reconnection in this plasma is the localization caused by the off-diagonal components of the pressure tensors, which produce an effect analogous to a spatially localized resistivity.

  5. Non-linear Ion-Wake Excitation by Plasma Electron Wakefields of an Electron or Positron Beam for Positron Acceleration

    NASA Astrophysics Data System (ADS)

    Katsouleas, Thomas; Sahai, Aakash

    2015-11-01

    The excitation of a non-linear ion-wake by a train of non-linear electron wake of an electron and a positron beam is modeled and its use for positron acceleration is explored. The ion-wake is shown to be a driven non-linear ion-acoustic wave in the form of a cylindrical ion-soliton similar to the solution of the cKdV equation. The phases of the oscillating radial electric fields of the slowly-propagating electron wake are asymmetric in time and excite time-averaged inertial ion motion radially. The radial field of the electron compression region sucks-in the ions and the field of space-charge region of the wake expels them, driving a cylindrical ion-soliton structure with on-axis and bubble-edge density-spikes. Once formed, the channel-edge density-spike is driven radially outwards by the thermal pressure of the thermalized wake energy. Its channel-like structure due to the flat-residue left behind by the propagating ion-soliton, is independent of the energy-source driving the non-linear electron wake. We explore the use of the partially-filled channel formed by the cylindrical ion-soliton for a novel regime of positron acceleration. PIC simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration (arXiv:1504.03735). Work supported by the US Department of Energy under DE-SC0010012 and the National Science Foundation under NSF-PHY-0936278.

  6. QCD PHYSICS OPPORTUNITIES IN LOW-ENERGY ELECTRON-POSITRON ANNIHILATION

    SciTech Connect

    Brodsky, S

    2003-11-21

    I survey a number of interesting tests of quantum chromodynamics at the amplitude level which can be carried out in electron-positron annihilation and in photon-photon collisions at low energy. Some of the tests require e{sup +}e{sup -} center of mass energy as small as {radical}s = 2 GeV. Other tests which involve a spectrum of energies can be carried out advantageously at high energy facilities using the radiative return method. These include measurements of fundamental processes such as timelike form factors and transition amplitudes, timelike Compton scattering, timelike photon to meson transition amplitudes, and two-photon exclusive processes. Many of these reactions test basic principles of QCD such as hadronization at the amplitude level, factorization, and hadron helicity conservation, tools also used in the analysis of exclusive B and D decays. Measurements of the final-state polarization in hadron pair production determine the relative phase of the timelike form factors and thus strongly discriminate between analytic forms of models which fit the form factors in the spacelike region. The role of two-photon exchange amplitudes can be tested using the charge asymmetry of the e{sup +}e{sup -} {yields} B{bar B} processes. These tests can help resolve the discrepancy between the Jefferson laboratory measurements of the ratio of G{sub E} and G{sub M} proton form factors using the polarization transfer method versus measurements using the traditional Rosenbluth method. Precision measurements of the electron-positron annihilation cross section can test the generalized Crewther relation and determine whether the effective couplings defined from physical measurements show infrared fixed-point and near conformal behavior. I also discuss a number of tests of novel QCD phenomena accessible in e{sup +}e{sup -} annihilation, including near-threshold reactions, the production of baryonium, gluonium states, and pentaquarks.

  7. Electron Cloud in the Wigglers of the Positron Damping Ring of the International Linear Collider

    SciTech Connect

    Wang, L.; /SLAC

    2007-07-06

    The ILC positron damping ring comprises hundreds of meters of wiggler sections, where many more photons than in the arcs are emitted, and with the smallest beampipe aperture of the ring. A significant electron-cloud density can therefore be accumulated via photo-emission and via beam-induced multipacting. In field-free regions the electron-cloud build up may be suppressed by adding weak solenoid fields, but the electron cloud remaining in the wigglers as well as in the arc dipole magnets can still drive single-bunch and multi-bunch beam instabilities. This paper studies the electron-cloud formation in an ILC wiggler section for various scenarios, as well as its character, and possible mitigation schemes.

  8. The impact of positrons beam on the propagation of super freak waves in electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Ali Shan, S.; El-Tantawy, S. A.

    2016-07-01

    In this work, we examine the nonlinear propagation of planar ion-acoustic freak waves in an unmagnetized plasma consisting of cold positive ions and superthermal electrons subjected to cold positrons beam. For this purpose, the reductive perturbation method is used to derive a nonlinear Schrödinger equation (NLSE) for the evolution of electrostatic potential wave. We determine the domain of the plasma parameters where the rogue waves exist. The effect of the positron beam on the modulational instability of the ion-acoustic rogue waves is discussed. It is found that the region of the modulational stability is enhanced with the increase of positron beam speed and positron population. Second as positrons beam increases the nonlinearities of the plasma system, large amplitude ion acoustic rogue waves are pointed out. The present results will be helpful in providing a good fit between the theoretical analysis and real applications in future laboratory plasma experiments.

  9. The impact of positrons beam on the propagation of super freak waves in electron-positron-ion plasmas

    SciTech Connect

    Ali Shan, S.; El-Tantawy, S. A.

    2016-07-15

    In this work, we examine the nonlinear propagation of planar ion-acoustic freak waves in an unmagnetized plasma consisting of cold positive ions and superthermal electrons subjected to cold positrons beam. For this purpose, the reductive perturbation method is used to derive a nonlinear Schrödinger equation (NLSE) for the evolution of electrostatic potential wave. We determine the domain of the plasma parameters where the rogue waves exist. The effect of the positron beam on the modulational instability of the ion-acoustic rogue waves is discussed. It is found that the region of the modulational stability is enhanced with the increase of positron beam speed and positron population. Second as positrons beam increases the nonlinearities of the plasma system, large amplitude ion acoustic rogue waves are pointed out. The present results will be helpful in providing a good fit between the theoretical analysis and real applications in future laboratory plasma experiments.

  10. Polarized positrons and electrons at the linear collider

    NASA Astrophysics Data System (ADS)

    Moortgat-Pick, G.; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A. A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J. E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Dreiner, H. K.; Eberl, H.; Ellis, J.; Flöttmann, K.; Fraas, H.; Franco-Sollova, F.; Franke, F.; Freitas, A.; Goodson, J.; Gray, J.; Han, A.; Heinemeyer, S.; Hesselbach, S.; Hirose, T.; Hohenwarter-Sodek, K.; Juste, A.; Kalinowski, J.; Kernreiter, T.; Kittel, O.; Kraml, S.; Langenfeld, U.; Majerotto, W.; Martinez, A.; Martyn, H.-U.; Mikhailichenko, A.; Milstene, C.; Menges, W.; Meyners, N.; Mönig, K.; Moffeit, K.; Moretti, S.; Nachtmann, O.; Nagel, F.; Nakanishi, T.; Nauenberg, U.; Nowak, H.; Omori, T.; Osland, P.; Pankov, A. A.; Paver, N.; Pitthan, R.; Pöschl, R.; Porod, W.; Proulx, J.; Richardson, P.; Riemann, S.; Rindani, S. D.; Rizzo, T. G.; Schälicke, A.; Schüler, P.; Schwanenberger, C.; Scott, D.; Sheppard, J.; Singh, R. K.; Sopczak, A.; Spiesberger, H.; Stahl, A.; Steiner, H.; Wagner, A.; Weber, A. M.; Weiglein, G.; Wilson, G. W.; Woods, M.; Zerwas, P.; Zhang, J.; Zomer, F.

    2008-05-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  11. Experiment with a crystal-assisted positron source using 6 and 10 GeV electrons

    NASA Astrophysics Data System (ADS)

    Artru, X.; Baier, V.; Beloborodov, K.; Bochek, G.; Bogdanov, A.; Bozhenok, A.; Bukin, A.; Burdin, S.; Chehab, R.; Chevallier, M.; Cizeron, R.; Dauvergne, D.; Dimova, T.; Drozdetsky, A.; Druzhinin, V.; Dubrovin, M.; Gatignon, L.; Golubev, V.; Jejcic, A.; Keppler, P.; Kirsch, R.; Kulibaba, V.; Lautesse, Ph.; Major, J.; Maslov, N.; Poizat, J.-C.; Potylitsin, A.; Remillieux, J.; Serednyakov, S.; Shary, V.; Strakhovenko, V.; Sylvia, C.; Vnukov, I.

    2003-01-01

    Axially oriented crystals, penetrated by high-energy electrons, are powerful photon sources and, hence, intense positron sources. Such kinds of positron sources have been studied experimentally at CERN, with the tertiary electron beam of the SPS having an energy of 6 and 10 GeV. Four and eight millimeters thick tungsten crystals and a compound target made of a 4 mm crystal followed by a 4 mm amorphous disk were used with an orientation along the <1 1 1> axis. The positrons were detected by a drift chamber, partially immersed in a magnetic field. The reconstructed trajectories allowed the determination of their energy and angular spectra. Significant enhancements were observed for the crystal source when compared to the amorphous one. The gain was about 3 for the 4 mm target and about 2 for the 8 mm and the compound targets. These preliminary results are described after short presentations of the experimental set-up and of the method of track reconstruction.

  12. Threshold for Trapping Positrons in the Wake Driven by a Ultra-relativistic Electron Bunch

    SciTech Connect

    Wang, X.; Muggli, P.; Katsouleas, T.; Ischebeck, R.; Hogan, M. J.; Joshi, C.; Mori, W. B.

    2009-01-22

    We have recently proposed a new concept for generating, injecting and accelerating positrons in a plasma using a double-pulse electron bunch. Monte Carlo simulations show that the number of the positrons produced in a foil target has an exponentially decay energy spectrum. The energy threshold for the trapping of these positrons in a ultra-relativistic electron wake is investigated numerically. For a typical 28.5 GeV electron drive bunch, the trapping threshold for the positrons is a few MeV, and therefore a majority of positrons generated in the foil target are focused and accelerated by the plasma wake.

  13. Evidence of Positron Annihilation at Electronic Excitation Threshold for N2 ^*

    NASA Astrophysics Data System (ADS)

    Miller, E. G.; Edwards, J. J.; Kauppila, W. E.; Stein, T. S.; Surdutovich, E.

    2006-05-01

    We are investigating Positronium (Ps) formation for < 20 eV positrons interacting with N2 in a gas scattering cell. The technique [1] of Ps annihilation ratio spectroscopy (PsARS) is used to obtain the ratios of coincidence signals for two of the three gamma rays (S3γ) in the photon energy window 300 to 460 keV resulting from ortho-Ps decay to that for two 511 keV gamma rays (S2γ) arising from para-Ps decay and other processes. By comparing these ratios of S3 γ/S2γ for N2 to those for Ar it is found that N2 exhibits strikingly anomalous behavior near and below the Ps formation threshold. Typically, this ratio remains constant within 2 eV above the Ps threshold. For N2, this ratio decreases to zero at the threshold and an S2 γ signal remains for an energy of ˜0.3 eV below. Since N2 has an electronic excitation threshold for positron impact that opens up at ˜0.3 eV below the Ps threshold, the present results strongly suggest that the incident positron is electronically exciting N2 and then binding to the excited N2 in a temporary resonance-like state from which the bound positron annihilates with a molecular electron. ^*Research supported by NSF Grant PHY 99-88093.[1] W.E. Kauppila, E.G. Miller, H. F.M. Mohamed, K. Pipinos, T. S. Stein, and E. Surdutovich, Phys. Rev. Lett. 93, 113401 (2004).

  14. Bound free electron-positron pair production accompanied by giant dipole resonances

    SciTech Connect

    Senguel, M. Y.; Gueclue, M. C.

    2011-01-15

    At the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), for example, virtual photons produce many particles. At small impact parameters where the colliding nuclei make peripheral collisions, photon fluxes are very large and these are responsible for the multiple photonuclear interactions. Free pair productions, bound free pair productions, and nuclear Coulomb excitations are important examples of such interactions, and these processes play important roles in the beam luminosity at RHIC and LHC. Here we obtained the impact parameter dependence of bound free pair production cross sections and by using this probability we obtained bound free electron-positron pair production with nuclear breakup for heavy ion collisions at RHIC and LHC. We also compared our results to the other calculations.

  15. NLC Polarized Positron Photon Beam Target Thermal Structural Modeling(LCC-0087)

    SciTech Connect

    Stein, W.

    2003-10-07

    The NLC polarized positron photon beam target is a 0.4 radiation length thick titanium target. Energy deposition from one pulse occurs over 266 nano-seconds and results in heating of the target and pressure pulses straining the material. The 22.1 MeV photon beam has a spot size of 0.75 mm and results in a maximum temperature jump of 233 C. Stresses are induced in the material from thermal expansion of the hotter material. Peak effective stresses reach 19 Ksi (1.34 x 10{sup 8} Pa), which is lower than the yield strength of a titanium alloy by a factor of six.

  16. Acceleration of positrons by a relativistic electron beam in the presence of quantum effects

    SciTech Connect

    Niknam, A. R.; Aki, H.; Khorashadizadeh, S. M.

    2013-09-15

    Using the quantum magnetohydrodynamic model and obtaining the dispersion relation of the Cherenkov and cyclotron waves, the acceleration of positrons by a relativistic electron beam is investigated. The Cherenkov and cyclotron acceleration mechanisms of positrons are compared together. It is shown that growth rate and, therefore, the acceleration of positrons can be increased in the presence of quantum effects.

  17. Nonlinear electrostatic drift waves in dense electron-positron-ion plasmas

    SciTech Connect

    Haque, Q.; Mahmood, S.; Mushtaq, A.

    2008-08-15

    The Korteweg-de Vries-Burgers (KdVB)-type equation is obtained using the quantum hydrodynamic model in an inhomogeneous electron-positron-ion quantum magnetoplasma with neutral particles in the background. The KdV-type solitary waves, Burgers-type monotonic, and oscillatory shock like solutions are discussed in different limits. The quantum parameter is also dependent on the positron concentration in dense multicomponent plasmas. It is found that both solitary hump and dip are formed and their amplitude and width are dependent on percentage presence of positrons in electron-ion plasmas. The height of the monotonic shock is decreased with the increase of positron concentration and it is independent of the quantum parameter in electron-positron-ion magnetized quantum plasmas. However, the amplitude of the oscillatory shock is dependent on positron concentration and quantum parameter in electron-positron-ion plasmas.

  18. Positron-proton to electron-proton elastic cross section ratios from CLAS

    NASA Astrophysics Data System (ADS)

    Adikaram, Dasuni; Rimal, Dipak; Weinstein, Larry; Raue, Brian

    2014-03-01

    There is a significant discrepancy between the ratio of the electromagnetic form factors of the proton measured by the Rosenbluth and the polarization transfer technique. The most likely explanation of this discrepancy is the inclusion of two-photon exchange (TPE) amplitude contributions to the elastic electron-proton cross section. The CLAS TPE experiment measured the TPE contribution in the wide range of Q2 and ɛ range using a comparison of positron-proton to electron-proton elastic cross sections (R = σ (e+ p) / σ (e- p)). Preliminary results will be presented, along with the estimations of systematic uncertainties. A detailed comparison of new results with previous R measurements and theoretical calculations will be presented. Implications of the CLAS TPE measurements on the elastic electron-proton cross section will be also discussed.

  19. Spatial wave functions of photon and electron

    SciTech Connect

    Khokhlov, D. L.

    2010-12-01

    The quantum mechanical model of the photon and electron is considered. The photon is conceived of as a particle moving with the speed of light which is accompanied by the wave function of the photon spreading out with an infinite speed. The wave function of the electron is introduced in terms of virtual photons tied to the electron. A description of electrostatic and magnetostatic interactions is given through the wave functions of electrons. The approach provides an explanation of the results of recent experiments measuring the speed of propagation of the bound magnetic field.

  20. Optical distortions in electron/positron storage rings

    SciTech Connect

    Brown, K.L.; Donald, M.; Servranckx, R.

    1983-01-01

    We have studied the optical distortions in the PEP electron/positron storage ring for various optical configurations using the computer programs DIMAT, HARMON, PATRICIA, and TURTLE. The results are shown graphically by tracing several thousand trajectories from one interaction region to the next using TURTLE and by tracing a few selected rays several hundred turns using the programs DIMAT and PATRICIA. The results show an interesting correlation between the calculated optical cleanliness of a particular lattice configuration and the observed operating characteristics of the machine.

  1. Low-energy scattering of electrons and positrons in liquids

    NASA Technical Reports Server (NTRS)

    Schrader, D. M.

    1990-01-01

    The scattering of low energy electrons and positrons is described for the liquid phase and compared and contrasted with that for the gas phase. Similarities as well as differences are noted. The loci of scattering sites, called spurs in the liquid phase, are considered in detail. In particular, their temporal and spatial evolution is considered from the point of view of scattering. Two emphases are made: one upon the stochastic calculation of the distribution of distances required for slowing down to thermal velocities, and the other upon the calculation of cross sections for energy loss by means of quantum mechanics.

  2. Positrons for linear colliders

    SciTech Connect

    Ecklund, S.

    1987-11-01

    The requirements of a positron source for a linear collider are briefly reviewed, followed by methods of positron production and production of photons by electromagnetic cascade showers. Cross sections for the electromagnetic cascade shower processes of positron-electron pair production and Compton scattering are compared. A program used for Monte Carlo analysis of electromagnetic cascades is briefly discussed, and positron distributions obtained from several runs of the program are discussed. Photons from synchrotron radiation and from channeling are also mentioned briefly, as well as positron collection, transverse focusing techniques, and longitudinal capture. Computer ray tracing is then briefly discussed, followed by space-charge effects and thermal heating and stress due to showers. (LEW)

  3. Electronic interfaces to silicon photonics

    NASA Astrophysics Data System (ADS)

    Lentine, Anthony L.; Cox, Jonathan A.; Zortman, William A.; Savignon, Daniel J.

    2014-03-01

    We describe the interface circuits to silicon photonics modulators, optical filters, and detectors that will be required to enable silicon photonics micro-ring and micro-disk devices to be integrated in dense wavelength division multiplexing circuitry.

  4. DEPFET detectors for future electron-positron colliders

    NASA Astrophysics Data System (ADS)

    Marinas, C.

    2015-11-01

    The DEPFET Collaboration develops highly granular, ultra-thin pixel detectors for outstanding vertex reconstruction at future electron-positron collider experiments. A DEPFET sensor, by the integration of a field effect transistor on a fully depleted silicon bulk, provides simultaneous position sensitive detector capabilities and in pixel amplification. The characterization of the latest DEPFET prototypes has proven that a adequate signal-to-noise ratio and excellent single point resolution can be achieved for a sensor thickness of 50 micrometers. The close to final auxiliary ASICs have been produced and found to operate a DEPFET pixel detector of the latest generation with the required read-out speed. A complete detector concept is being developed for the Belle II experiment at the new Japanese super flavor factory. DEPFET is not only the technology of choice for the Belle II vertex detector, but also a prime candidate for the ILC. Therefore, in this contribution, the status of DEPFET R&D project is reviewed in the light of the requirements of the vertex detector at a future electron-positron collider.

  5. Small Explorer (SMEX) POsitron Electron Magnet Spectrometer (POEMS)

    NASA Technical Reports Server (NTRS)

    LHeureux, Jacques; Evenson, Paul A.; Aleman, R. (Technical Monitor)

    1995-01-01

    This report covers the activities of Louisiana State University (LSU) under subcontract 26053-EX between LSU and the Bartol Research Institute (Bartol), which began January 1, 1994. The purpose of this subcontract was for LSU to participate in and support Bartol in the work to define the SMEX (Small Explorer)/POEMS (Positron Electron Magnet Spectrometer) spaceflight mission under NASA Contract NAS5-38098 between NASA and Bartol. The conclusions of this study were that for a 1998 launch into a 600km altitude, 98 degrees, approximately sun synchronous orbit, (a) the total radiation dose would be typically a few k-rad per year, certainly less than 20 k-rad per year for the anticipated shielding and potential solar flare environment, (b) detector counting rates would be dominated by the South Atlantic Anomaly (SAA) and the horns of the Van Allen belts, (c) the galactic electron and positron 'signal' can be extracted from the albedo background and the trapped populations by detailed evaluation of the geomagnetic transmission function (cut-off) for each event, (d) POEMS could make significant contributions to magnetospheric science if sufficient downlink capacity were provided and, (e) a fully functioning, cost efficient, data processing and analysis facility design was developed for the mission. Overall, POEMS was found to be a relatively simple experiment to manifest, operate and analyze and had potential for fundamental new discoveries in cosmic, heliospheric, solar and magnetospheric science.

  6. Application of conservation laws in electron-positron annihilation

    NASA Astrophysics Data System (ADS)

    Aryal, Bijaya

    2014-03-01

    Electron-positron annihilation and creation of gamma rays involve various conservation principles. The least possible number of gamma rays produced in an annihilation event for low energy case can be generally explained using energy and momentum conservation. For this purpose, we choose a convenient frame of reference in which the system has zero linear momentum just before the annihilation event occurs. A learning activity was designed to help introductory level physics students understand and apply some of these conservation principles in the context of electron-positron annihilation. This study presents the students' spontaneous application of prior learning resources while explaining the annihilation process and predicting the least possible number of gamma rays produced in an annihilation event. Qualitative and quantitative data were gathered from students' interviews and written responses from several semesters. Data analysis has revealed students' use of macroscopic analogies during these applications. Moreover, this study has shown that analogical mechanical models seemed to improve student performance. However, a majority of the students using such models provided incorrect reasoning in their explanations.

  7. Current Issues in Electron and Positron Transport Theory

    NASA Astrophysics Data System (ADS)

    Robson, Robert

    2007-10-01

    In this paper we review the current status of transport theory for low energy electrons or positrons in gases, in the context of both kinetic theory and fluid modelling. In particular, we focus on the following issues: (i) Muliterm vs two-term representation of the velocity distribution function in solution of Boltzmann's equation; (ii) the effect of non-conservative collisions (attachment, ionization, positron annihilation) on transport properties; (iii) the enduring electron- hydrogen vibrational cross section controversy and possible implications for the Boltzmann equation itself; (iv) closure of the fluid equations and the heat flux ansatz; and (v) correct use of swarm transport coefficients in fluid modelling of low temperature plasmas. Both hydrodynamic and non-hydrodynamic examples will be given, with attention focussed on the Franck-Hertz experiment, particularly the ``window'' of fields in which oscillations of transport properties are produced, and the way in which electric and magnetic fields combine to affect transport properties. In collaboration with co-authors Z. LJ. Petrovi'c, Institute of Physics Belgrade, and R.D. White, James Cook University.

  8. Relativistic, perpendicular shocks in electron-positron plasmas

    NASA Technical Reports Server (NTRS)

    Gallant, Yves A.; Hoshino, Masahiro; Langdon, A. B.; Arons, Jonathan; Max, Claire E.

    1992-01-01

    One-dimensional particle-in-cell plasma simulations are used to examine the mechanical structure and thermalization properties of collisionless relativistic shock waves in electron-positron plasmas. Shocks propagating perpendicularly to the magnetic field direction are considered. It is shown that these shock waves exist, and that they are completely parameterized by the ratio of the upstream Poynting flux to the upstream kinetic energy flux. The way in which the Rankine-Hugoniot shock jump conditions are modified by the presence of wave fluctuations is shown, and they are used to provide a macroscopic description of these collisionless shock flows. The results of a 2D simulation that demonstrates the generality of these results beyond the assumption of the 1D case are discussed. It is suggested that the thermalization mechanism is the formation of a synchrotron maser by the coherently reflected particles in the shock front. Because the downstream medium is thermalized, it is argued that perpendicular shocks in pure electron-positron plasmas are not candidates as nonthermal particle accelerators.

  9. The effect of direct electron-positron pair production on relativistic feedback rates

    NASA Astrophysics Data System (ADS)

    Vodopiyanov, I. B.; Dwyer, J. R.; Cramer, E. S.; Lucia, R. J.; Rassoul, H. K.

    2015-01-01

    Runaway electron avalanches developing in thunderclouds in high electric field become self-sustaining due to relativistic feedback via the production of backward propagating positrons and backscattered X-rays. To date, only positrons created from pair production by gamma rays interacting with the air have been considered. In contrast, direct electron-positron pair production, also known as "trident process," occurs from the interaction of energetic runaway electrons with atomic nuclei, and so it does not require the generation of a gamma ray mediator. The positrons produced in this process contribute to relativistic feedback and become especially important when the feedback factor value approaches unity. Then the steady state flux of runaway electrons increases significantly. In certain cases, when the strong electrostatic field forms in a narrow area, the direct positrons become one of processes dominating relativistic feedback. Calculations of the direct positron production contribution to relativistic feedback are presented for different electric field configurations.

  10. Secondary electron spectra of Au and Cu under bombardment by very low energy positrons

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Weiss, A. H.; Nadesalingam, M. P.; Guagliardo, P.; Sergeant, A.; Williams, J.

    2008-03-01

    Measurements of the secondary electron energy spectra resulting from very low energy positron bombardment of a polycrystalline Au and Cu (100) surfaces are presented. The low energy part of the secondary spectra contain significant contributions from two processes: 1. annihilation induced Auger electrons that have lost energy before leaving the surface and 2. secondary electrons resulting from direct energy exchange with an incident positron. Our data indicate that the second process (direct energy exchange with the primary positron) is still important at and below 3 eV incident beam energy. Since energy conservation precludes secondary electron generation below an incident beam energy equal to the difference between the electron and positron work functions (˜3eV), the fact that we still observe significant secondary electron emission at energies at or below this value provides strong evidence that the incident positrons are falling directly into the surface state and transferring all of the energy difference to an outgoing secondary electron.

  11. FTL Quantum Models of the Photon and the Electron

    SciTech Connect

    Gauthier, Richard F.

    2007-01-30

    A photon is modeled by an uncharged superluminal quantum moving at 1.414c along an open 45-degree helical trajectory with radius R = {lambda}/2{pi} (where {lambda} is the helical pitch or wavelength). A mostly superluminal spatial model of an electron is composed of a charged pointlike quantum circulating at an extremely high frequency ( 2.5 x 1020 hz) in a closed, double-looped hehcal trajectory whose helical pitch is one Compton wavelength h/mc. The quantum has energy and momentum but not rest mass, so its speed is not limited by c. sThe quantum's speed is superluminal 57% of the time and subluminal 43% of the time, passing through c twice in each trajectory cycle. The quantum's maximum speed in the electron's rest frame is 2.515c and its minimum speed is .707c. The electron model's helical trajectory parameters are selected to produce the electron's spin ({Dirac_h}/2{pi})/2 and approximate (without small QED corrections) magnetic moment e({Dirac_h}/2{pi})/2m (the Bohr magneton {mu}B) as well as its Dirac equation-related 'jittery motion' angular frequency 2mc2/({Dirac_h}/2{pi}), amplitude ({Dirac_h}/2{pi})/2mc and internal speed c. The two possible helicities of the electron model correspond to the electron and the positron. With these models, an electron is like a closed circulating photon. The electron's inertia is proposed to be related to the electron model's circulating internal Compton momentum mc. The internal superluminalily of the photon model, the internal superluminahty/subluminality of the electron model, and the proposed approach to the electron's inertia as ''momentum at rest'' within the electron, could be relevant to possible mechanisms of superluminal communication and transportation.

  12. Electron-positron pairs in physics and astrophysics: From heavy nuclei to black holes

    NASA Astrophysics Data System (ADS)

    Ruffini, Remo; Vereshchagin, Gregory; Xue, She-Sheng

    2010-02-01

    +e- annihilation to hadronic channels, in addition to the Dirac electromagnetic channel; (B) ongoing Earth-based experiments to detect electron-positron production in strong fields by focusing coherent laser beams and by electron-beam-laser collisions; and (C) the multiyear attempts to detect electron-positron production in Coulomb fields for a large atomic number Z>137 in heavy-ion collisions. These attempts follow the classical theoretical work of Popov and Zeldovich, and Greiner and their schools. We then turn to astrophysics. We first review the basic work on the energetics and electrodynamical properties of an electromagnetic black hole and the application of the Schwinger formula around Kerr-Newman black holes as pioneered by Damour and Ruffini. We only focus on black hole masses larger than the critical mass of neutron stars, for convenience assumed to coincide with the Rhoades and Ruffini upper limit of 3.2 M⊙. In this case the electron Compton wavelength is much smaller than the space-time curvature and all previous results invariantly expressed can be applied following well established rules of the equivalence principle. We derive the corresponding rate of electron-positron pair production and introduce the concept of dyadosphere. We review the recent progress in describing the evolution of optically thick electron-positron plasma in the presence of supercritical electric field, which is relevant both in astrophysics as well as in ongoing laser beam experiments. In particular we review the recent progress based on the Vlasov-Boltzmann-Maxwell equations to study the feedback of the created electron-positron pairs on the original constant electric field. We evidence the existence of plasma oscillations and its interaction with photons leading to energy and number equipartition of photons, electrons and positrons. We finally review the recent progress obtained by using the Boltzmann equations to study the evolution of an electron-positron-photon plasma towards thermal

  13. Numerical analysis of electrostatic ion cyclotron instability in an electron-positron-ion plasma

    SciTech Connect

    Khorashadizadeh, S. M. Barati Moqadam Niyat, M.; Niknam, A. R.

    2016-06-15

    This paper presents a theoretical study of the effects of positron density on the electrostatic ion cyclotron instability in an electron-positron-ion plasma using the kinetic theory approach. It is supposed that positrons and electrons can drift parallel to the magnetic field either in the same or the opposite directions. The dispersion relation for the electrostatic ion cyclotron waves in an electron-positron-ion plasma is derived, and the numerical results are investigated. It is found that an increase in positron concentration increases the critical drift velocity for excitation of the instability in both configurations. It is also found that as the positron concentration increases the growth rate of instability decreases. In addition, it is shown that at low velocities the maximum instability growth rate for the unidirectional case is higher than the counter-streaming case; however, after a certain velocity, the maximum growth rate in the counter-streaming case dominates that of the unidirectional case.

  14. Coherent electron-positron pair production in ultra-peripheral AuAu collisions at STAR

    NASA Astrophysics Data System (ADS)

    Rehbein, Matthew; STAR Collaboration

    2016-09-01

    The focus of this study is coherent photoproduction of electron-positron pairs in 200 GeV ultraperipheral AuAu collisions detected by STAR, with an integrated luminosity of 1.9 inverse nanobarns. Because hadronic interactions are suppressed in ultra-peripheral collisions, these events provide an opportunity to study purely electromagnetic interaction in the non-perturbative regime. This presentation will provide a description of the techniques used to select exclusive electron-positron events, as well as the resulting kinematic distributions for pair invariant mass greater than 0.35 GeV, pair transverse momentum less than 0.1 GeV, and absolute value of pair pseudorapidity less than 0.8. Efficiency correction techniques will also be discussed. In previous measurements at the same energy at STAR, the shape of the transverse momentum distribution could not be fully described by the equivalent photon approximation (EPA). Measurements at the LHC indicate that the cross section is reduced by approximately 25 percent compared to the EPA. This study ultimately seeks to examine these effects in more detail at RHIC energies. Partial funding provided by DOE Grant #DE-FG02-96ER40991.

  15. Ion acoustic solitary waves in plasmas with nonextensive distributed electrons, positrons and relativistic thermal ions

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Talukder, M. R.; Sakthivel, R.

    2016-05-01

    The theoretical and numerical studies have been investigated on nonlinear propagation of weakly relativistic ion acoustic solitary waves in an unmagnetized plasma system consisting of nonextensive electrons, positrons and relativistic thermal ions. To study the characteristics of nonlinear propagation of the three-component plasma system, the reductive perturbation technique has been applied to derive the Korteweg-de Vries equation, which divulges the soliton-like solitary wave solution. The ansatz method is employed to carry out the integration of this equation. The effects of nonextensive electrons, positrons and relativistic thermal ions on phase velocity, amplitude and width of soliton and electrostatic nonlinear propagation of weakly relativistic ion acoustic solitary waves have been discussed taking different plasma parameters into consideration. The obtained results can be useful in understanding the features of small amplitude localized relativistic ion acoustic solitary waves in an unmagnetized three-component plasma system for hard thermal photon production with relativistic heavy ions collision in quark-gluon plasma as well as for astrophysical plasmas.

  16. Electron-positron collision physics: 1 MeV to 2 TeV

    SciTech Connect

    Perl, M.L.

    1988-07-01

    An overview of electron-positron collision physics is presented. It begins at 1 MeV, the energy region of positronium formation, and extends to 2 TeV, the energy region which requires an electron- positron linear collider. In addition, the concept of searching for a lepton-specific forces is discussed. 18 refs., 15 figs., 1 tab.

  17. Gamma ray pulsars. [electron-photon cascades

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1977-01-01

    Data from the SAS-2 high-energy gamma-ray experiment reveal the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma-ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields (10 to the 12th power gauss) correspond to many radiation lengths which cause electrons to emit photons by magnetic bremsstrahlung and which cause these photons to pair-produce. The cascade develops until the mean photon energy drops below the pair-production threshold which is in the gamma-ray range; at this stage, the photons break out from the source.

  18. Photon dose calculation based on electron multiple-scattering theory: primary dose deposition kernels.

    PubMed

    Wang, L; Jette, D

    1999-08-01

    The transport of the secondary electrons resulting from high-energy photon interactions is essential to energy redistribution and deposition. In order to develop an accurate dose-calculation algorithm for high-energy photons, which can predict the dose distribution in inhomogeneous media and at the beam edges, we have investigated the feasibility of applying electron transport theory [Jette, Med. Phys. 15, 123 (1988)] to photon dose calculation. In particular, the transport of and energy deposition by Compton electron and electrons and positrons resulting from pair production were studied. The primary photons are treated as the source of the secondary electrons and positrons, which are transported through the irradiated medium using Gaussian multiple-scattering theory [Jette, Med. Phys. 15, 123 (1988)]. The initial angular and kinetic energy distribution(s) of the secondary electrons (and positrons) emanating from the photon interactions are incorporated into the transport. Due to different mechanisms of creation and cross-section functions, the transport of and the energy deposition by the electrons released in these two processes are studied and modeled separately based on first principles. In this article, we focus on determining the dose distribution for an individual interaction site. We define the Compton dose deposition kernel (CDK) or the pair-production dose deposition kernel (PDK) as the dose distribution relative to the point of interaction, per unit interaction density, for a monoenergetic photon beam in an infinite homogeneous medium of unit density. The validity of this analytic modeling of dose deposition was evaluated through EGS4 Monte Carlo simulation. Quantitative agreement between these two calculations of the dose distribution and the average energy deposited per interaction was achieved. Our results demonstrate the applicability of the electron dose-calculation method to photon dose calculation.

  19. Fragmentation production of charmed hadrons in electron-positron annihilation

    SciTech Connect

    Novoselov, A. A.

    2010-10-15

    Processes involving the production of D* mesons and {Lambda}{sub c} baryons in electron-positron annihilation at the energies of 10.58 and 91.18 GeV are considered. At the energy of 10.58 GeV, the production of pairs of B mesons that is followed by their decay to charmed particles is analyzed along with direct charm production. The violation of scaling in the respective fragmentation functions is taken into account in the next-to-leading-logarithmic approximation of perturbative QCD. The required nonperturbative fragmentation functions are extracted numerically from experimental data obtained at B factories and are approximated by simple analytic expressions. It is shown that the difference in the nonperturbative fragmentation functions for transitions to mesons and baryons can readily be explained on the basis of the quark-counting rules.

  20. Design Considerations for High Energy Electron -- Positron Storage Rings

    DOE R&D Accomplishments Database

    Richter, B.

    1966-11-01

    High energy electron-positron storage rings give a way of making a new attack on the most important problems of elementary particle physics. All of us who have worked in the storage ring field designing, building, or using storage rings know this. The importance of that part of storage ring work concerning tests of quantum electrodynamics and mu meson physics is also generally appreciated by the larger physics community. However, I do not think that most of the physicists working tin the elementary particle physics field realize the importance of the contribution that storage ring experiments can make to our understanding of the strongly interacting particles. I would therefore like to spend the next few minutes discussing the sort of things that one can do with storage rings in the strongly interacting particle field.

  1. Solitary and shock waves in magnetized electron-positron plasma

    SciTech Connect

    Lu, Ding; Li, Zi-Liang; Abdukerim, Nuriman; Xie, Bai-Song

    2014-02-15

    An Ohm's law for electron-positron (EP) plasma is obtained. In the framework of EP magnetohydrodynamics, we investigate nonrelativistic nonlinear waves' solutions in a magnetized EP plasma. In the collisionless limit, quasistationary propagating solitary wave structures for the magnetic field and the plasma density are obtained. It is found that the wave amplitude increases with the Mach number and the Alfvén speed. However, the dependence on the plasma temperature is just the opposite. Moreover, for a cold EP plasma, the existence range of the solitary waves depends only on the Alfvén speed. For a hot EP plasma, the existence range depends on the Alfvén speed as well as the plasma temperature. In the presence of collision, the electromagnetic fields and the plasma density can appear as oscillatory shock structures because of the dissipation caused by the collisions. As the collision frequency increases, the oscillatory shock structure becomes more and more monotonic.

  2. Future directions in high energy electron-positron experimentation

    SciTech Connect

    Trilling, G.H.

    1988-09-01

    In this report, the possibilities of studying particle physics at the TeV scale with high energy electron-positron linear colliders are discussed. A status report on the SLC and the MARK II program is given to provide some insights on the feasibility of experiments at linear colliders. The technical issues in going from SLC to the development of TeV colliders are briefly discussed. Some of the elements of the e/sup +/e/sup -/ experimental environment which differentiate it from that in hadron colliders and give examples of processes particularly well suited to attack by e/sup +/e/sup -/ annihilation are summarized. Finally, some concluding remarks are given. 8 refs., 10 figs., 2 tabs.

  3. Langmuir oscillations in a nonthermal nonextensive electron-positron plasma

    NASA Astrophysics Data System (ADS)

    El-Taibany, W. F.; Zedan, N. A.

    2017-02-01

    The high-frequency Langmuir-type oscillations in a pure pair plasma are studied using Vlasov-Poisson's equations in the presence of hybrid nonthermal nonextensive distributed species. The characteristics of the Langmuir oscillations, Landau damping, and growing unstable modes in a nonthermal nonextensive electron-positron (EP) plasma are remarkably modified. It is found that the phase velocity of the Langmuir waves increases by decreasing (increasing) the value of nonextensive (nonthermal) parameter, q ( α). In particular, depending on the degree of nonthermality and nonextensivity, both damping and growing oscillations are predicted in the proposed EP plasma. It is seen that the Langmuir waves suffer from Landau damping in two different q regions. Furthermore, the mechanism that leads to unstable modes is established in the context of the nonthermal nonextensive formalism, yet the damping mechanism is the same developed by Landau. The present study is useful in the regions where such mixed distributions in space or laboratory plasmas exist.

  4. Electronics for the Donner 600-Crystal Positron Tomograph

    SciTech Connect

    Cahoon, J.L.; Huesman, R.H.; Derenzo, S.E.; Geyer, A.B.; Uber, D.C.; Turko, B.T.; Budinger, T.F.

    1985-10-01

    The data acquisition system, designed for the Donner 600-Crystal Positron Tomograph, is described. Coincidence timing resolution of less than five nanoseconds full width at half maximum and data rates in excess of one million events per second are achieved by using high-speed emitter coupled logic circuits, first-in first-out memory to derandomize data flow, and parallel architecture to increase throughput. These data rates allow the acquisition of adequate transmission data in a reasonable amount of time. Good timing resolution minimizes accidental coincidences and permits data rates greater than 100,000 image-forming events per second for high-speed dynamic emission tomography. Additional scatter and accidental rejection are accomplished for transmission data by using an orbiting source and a look-up table for valid events. Calibration of this complex electronic system is performed automatically under computer control. 4 refs., 5 figs.

  5. New fast beam profile monitor for electron-positron colliders

    SciTech Connect

    Bogomyagkov, A. V.; Gurko, V. F.; Zhuravlev, A. N.; Zubarev, P. V.; Kiselev, V. A.; Meshkov, O. I.; Muchnoi, N. Yu.; Selivanov, A. N.; Smaluk, V. V.; Khilchenko, A. D.

    2007-04-15

    A new fast beam profile monitor has been developed at the Budker Institute of Nuclear Physics. This monitor is based on the Hamamatsu multianode photomultiplier with 16 anode strips and provides turn-by-turn measurement of the transverse beam profile. The device is equipped with an internal memory, which has enough capacity to store 131 072 samples of the beam profile. The dynamic range of the beam profile monitor allows us to study turn-by-turn beam dynamics within the bunch charge range from 1 pC up to 10 nC. Using this instrument, we have investigated at the VEPP-4M electron-positron collider a number of beam dynamics effects which cannot be observed by other beam diagnostics tools.

  6. Double layers and solitary structures in electron-positron-ion plasma with Kappa distributed trapped electrons

    NASA Astrophysics Data System (ADS)

    Ali Shan, Shaukat; Imtiaz, Nadia

    2017-10-01

    The effect of electron trapping in an electron-positron-ion plasma is modeled with κ-distributed electrons. The trapped electron number density is truncated to some finite order of the electrostatic potential Φ. Small amplitude solitary structures with Sagdeev potential approach and reductive perturbation method (through Schamel equation) are found to be modified under the impact of superthermality index κ and trapping efficiency β. A modified Schamel equation which gives rise to the small amplitude double layers (SIADLs) is obtained. The role of various plasma parameters in particular, the superthermality index, the positron concentration, and the electron trapping efficiency on the small amplitude ion acoustic double layers (SIADLs) has been investigated. It can be inferred from this investigation that these parameters play modifying character in the formation of nonlinear structures like solitary waves and SIADLs in e-p-i plasma.

  7. Oblique propagation of electrostatic waves in a magnetized electron-positron-ion plasma with superthermal electrons

    SciTech Connect

    Alinejad, H.; Mamun, A. A.

    2011-11-15

    A theoretical investigation is carried out to understand the basic features of linear and nonlinear propagation of ion-acoustic (IA) waves subjected to an external magnetic field in an electron-positron-ion plasma which consists of a cold magnetized ion fluid, Boltzmann distributed positrons, and superthermal electrons. In the linear regime, the propagation of two possible modes (fast and slow) and their evolution are investigated. It is shown that the electron superthermality and the relative fraction of positrons cause both modes to propagate with smaller phase velocities. Also, two special cases of dispersion relation are found, which are related to the direction of the wave propagation. In the nonlinear regime, the Korteweg-de Vries (KdV) equation describing the propagation of fast and slow IA waves is derived. The latter admits a solitary wave solution with only negative potential in the weak amplitude limit. It is found that the effects of external magnetic field (obliqueness), superthermal electrons, positron concentration, and temperature ratio significantly modify the basic features of solitary waves.

  8. Acoustic solitons in a magnetized quantum electron-positron-ion plasma with relativistic degenerate electrons and positrons pressure

    NASA Astrophysics Data System (ADS)

    Abdikian, A.; Mahmood, S.

    2016-12-01

    The obliquely nonlinear acoustic solitary propagation in a relativistically quantum magnetized electron-positron (e-p) plasma in the presence of the external magnetic field as well as the stationary ions for neutralizing the plasma background was studied. By considering the dynamic of the fluid e-p quantum and by using the quantum hydrodynamics model and the standard reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived for small but finite amplitude waves and the solitary wave solution for the parameters relevant to dense astrophysical objects such as white dwarf stars is obtained. The numerical results show that the relativistic effects lead to propagate the electrostatic bell shape structures in quantum e-p plasmas like those in classical pair-ion or pair species for relativistic plasmas. It is also observed that by increasing the relativistic effects, the amplitude and width of the e-p acoustic solitary wave will decrease. In addition, the wave amplitude increases as positron density decreases in magnetized e-p plasmas. It is indicated that by increasing the strength of the magnetic field, the width of the soliton reduces and it becomes sharper. At the end, we have analytically and numerically shown that the pulse soliton solution of the ZK equation is unstable and have traced the dependence of the instability growth rate on electron density. It is found that by considering the relativistic pressure, the instability of the soliton pulse can be reduced. The results can be useful to study the obliquely nonlinear propagation of small amplitude localized structures in magnetized quantum e-p plasmas and be applicable to understand the particle and energy transport mechanism in compact stars such as white dwarfs, where the effects of relativistic electron degeneracy become important.

  9. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    SciTech Connect

    Andreev, Pavel A.

    2015-06-15

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.

  10. Gamma-ray bursts: Modeling electron-positron pair plasmas in cataclysmic astrophysical phenomena

    NASA Astrophysics Data System (ADS)

    Salmonson, Jay David

    Despite three decades of intense scientific scrutiny, gamma-ray bursts have remained one of astronomy's biggest unsolved mysteries. Recent observational breakthroughs have allowed us to learn much about these big, brief, brilliant bangs seen from across the cosmos, but their origin remains a mystery. In this work we study three progenitor models: a neutron star binary system near its last stable orbit, a charged black hole, and the collapse of a globular star cluster. All of these scenarios result in a common theme; the relativistic expansion of a super- heated electron-positron-photon plasma. Thus we study the evolution of, and emission from, this plasma as it might result from these three progenitors using numerical general relativistic hydrodynamic simulations. This emission is then compared with that of gamma-ray bursts to test the feasibility of each of these models as a gamma-ray burst progenitor.

  11. Observation of exclusive electron-positron production in hadron-hadron collisions.

    PubMed

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Budroni, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Caron, B; Carosi, R; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Cyr, D; Daronco, S; D'Auria, S; Davies, T; D'Onofrio, M; Dagenhart, D; de Barbaro, P; Cecco, S De; Deisher, A; Lentdecker, G De; Dell'orso, M; Paoli, F Delli; Demortier, L; Deng, J; Deninno, M; Pedis, D De; Derwent, P F; Giovanni, G P Di; Dionisi, C; Ruzza, B Di; Dittmann, J R; Dituro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nagano, A; Naganoma, J; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pinfold, J; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ranjan, N; Rappoccio, S; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-03-16

    We present the first observation of exclusive e(+)e(-) production in hadron-hadron collisions, using pp[over] collision data at (square root) s = 1.96 TeV taken by the run II Collider Detector at Fermilab, and corresponding to an integrated luminosity of 532 pb(-1). We require the absence of any particle signatures in the detector except for an electron and a positron candidate, each with transverse energy E(T) > 5 GeV and pseudorapidity |eta| < 2. With these criteria, 16 events are observed compared to a background expectation of 1.9+/-0.3 events. These events are consistent in cross section and properties with the QED process pp[over] --> p + e(+)e(-) + p[over] through two-photon exchange. The measured cross section is 1.6(-0.3)(+0.5)(stat) +/- 0.3(syst) pb. This agrees with the theoretical prediction of 1.71+/-0.01 pb.

  12. Investigation into electron cloud effects in the International Linear Collider positron damping ring

    SciTech Connect

    Crittenden, J. A.; Conway, J.; Dugan, G. F.; Palmer, M. A.; Rubin, D. L.; Shanks, J.; Sonnad, K. G.; Boon, L.; Harkay, K.; Ishibashi, T.; Furman, M. A.; Guiducci, S.; Pivi, M. T. F.; Wang, L.

    2014-03-01

    We report modeling results for electron cloud buildup and instability in the International Linear Collider positron damping ring. Updated optics, wiggler magnets, and vacuum chamber designs have recently been developed for the 5 GeV, 3.2-km racetrack layout. An analysis of the synchrotron radiation profile around the ring has been performed, including the effects of diffuse and specular photon scattering on the interior surfaces of the vacuum chamber. The results provide input to the cloud buildup simulations for the various magnetic field regions of the ring. The modeled cloud densities thus obtained are used in the instability threshold calculations. We conclude that the mitigation techniques employed in this model will suffice to allow operation of the damping ring at the design operational specifications

  13. Kinetic Phenomena in Transport of Electrons and Positrons in Gases caused by the Properties of Scattering Cross Sections

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran Lj; Marjanović, Srdan; Dujko, Saša; Banković, Ana; Šašić, Olivera; Bošnjaković, Danko; Stojanović, Vladimir; Malović, Gordana; Buckman, Stephen; Garcia, Gustavo; White, Ron; Sullivan, James; Brunger, Michael

    2014-04-01

    Collisions of electrons, atoms, molecules, photons and ions are the basic processes in plasmas and ionized gases in general. This is especially valid for low temperature collisional plasmas. Kinetic phenomena in transport are very sensitivitive to the shape of the cross sections and may at the same time affect the macroscopic applications. We will show how transport theory or simulation codes, phenomenology, kinetic phenomena and transport data may be used to improve our knowledge of the cross sections, our understanding of the plasma models, application of the swarm physics in ionized gases and similar applications to model and improve gas filled traps of positrons. Swarm techniques could also be a starting point in applying atomic and molecular data in models of electron or positron therapy/diagnostics in radiation related medicine.

  14. Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas

    SciTech Connect

    Ridgers, C. P.; Bell, A. R.; Brady, C. S.; Bennett, K.; Arber, T. D.; Duclous, R.; Kirk, J. G.

    2013-05-15

    In simulations of a 12.5 PW laser (focussed intensity I=4×10{sup 23}Wcm{sup −2}) striking a solid aluminum target, 10% of the laser energy is converted to gamma-rays. A dense electron-positron plasma is generated with a maximum density of 10{sup 26}m{sup −3}, seven orders of magnitude denser than pure e{sup −} e{sup +} plasmas generated with 1PW lasers. When the laser power is increased to 320 PW (I=10{sup 25}Wcm{sup −2}), 40% of the laser energy is converted to gamma-ray photons and 10% to electron-positron pairs. In both cases, there is strong feedback between the QED emission processes and the plasma physics, the defining feature of the new “QED-plasma” regime reached in these interactions.

  15. Effects of ion mobility and positron fraction on solitary waves in weak relativistic electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Lu, Ding; Li, Zi-Liang; Xie, Bai-Song

    2013-09-01

    The effects of ion mobility and positron fraction on the solitary waves of the laser field envelope and the potential of the electrostatic field in weak relativistic electron-positron-ion plasma are investigated. The parameter region for the existence of solitary waves is obtained analytically, and a reasonable choice of parameters is clarified. Both cases of mobile and immobile ions are considered. It is found that the amplitudes of solitary waves in the former case are larger compared to the latter case. For small plasma density, the localized solitary wave solutions in terms of the approximate perturbation analytical method are very consistent with those by exact numerical calculations. However, as the plasma density increases the analytical method loses its validity more and more. The influence of the positron fraction on the amplitudes of solitary waves shows a monotonous increasing relation. The implications of our results to particle acceleration are also discussed briefly.

  16. The VEPP-2000 electron-positron collider: First experiments

    SciTech Connect

    Berkaev, D. E. Shwartz, D. B.; Shatunov, P. Yu.; Rogovskii, Yu. A.; Romanov, A. L.; Koop, I. A.; Shatunov, Yu. M.; Zemlyanskii, I. M.; Lysenko, A. P.; Perevedentsev, E. A.; Stankevich, A. S.; Senchenko, A. I.; Khazin, B. I.; Anisenkov, A. V.; Gayazov, S. E.; Kozyrev, A. N.; Ryzhenenkov, A. E.; Shemyakin, D. N.; Epshtein, L. B.; Serednyakov, S. I.; and others

    2011-08-15

    In 2007, at the Institute of Nuclear Physics (Novosibirsk), the construction of the VEPP-2000 electron-positron collider was completed. The first electron beam was injected into the accelerator structure with turned-off solenoids of the final focus. This mode was used to tune all subsystems of the facility and to train the vacuum chamber using synchrotron radiation at electron currents of up to 150 mA. The VEPP-2000 structure with small beta functions and partially turned-on solenoids was used for the first testing of the 'round beams' scheme at an energy of 508 MeV. Beam-beam effects were studied in strong-weak and strong-strong modes. Measurements of the beam sizes in both cases showed a dependence corresponding to model predictions for round colliding beams. Using a modernized SND (spherical neutral detector), the first energy calibration of the VEPP-2000 collider was performed by measuring the excitation curve of the phimeson resonance; the phi-meson mass is known with high accuracy from previous experiments at VEEP-2M. In October 2009, a KMD-3 (cryogenic magnetic detector) was installed at the VEPP-2000 facility, and the physics program with both the SND and LMD-3 particle detectors was started in the energy range of 1-1.9 GeV. This first experimental season was completed in summer 2010 with precision energy calibration by resonant depolarization.

  17. Photon-Electron Interaction and Condense Beams

    SciTech Connect

    Chattopadhyay, S.

    1998-11-01

    We discuss beams of charged particles and radiation from multiple perspectives. These include fundamental acceleration and radiation mechanisms, underlying electron-photon interaction, various classical and quantum phase-space concepts and fluctuational interpretations.

  18. Ion acoustic solitons in dense magnetized plasmas with nonrelativistic and ultrarelativistic degenerate electrons and positrons

    SciTech Connect

    Sadiq, Safeer; Mahmood, S.; Haque, Q.; Ali, Munazza Zulfiqar

    2014-09-20

    The propagation of electrostatic waves in a dense magnetized electron-positron-ion (EPI) plasma with nonrelativistic and ultrarelativistic degenerate electrons and positrons is investigated. The linear dispersion relation is obtained for slow and fast electrostatic waves in the EPI plasma. The limiting cases for ion acoustic wave (slow) and ion cyclotron wave (fast) are also discussed. Using the reductive perturbation method, two-dimensional propagation of ion acoustic solitons is found for both the nonrelativistic and ultrarelativistic degenerate electrons and positrons. The effects of positron concentration, magnetic field, and mass of ions on ion acoustic solitons are shown in numerical plots. The proper form of Fermi temperature for nonrelativistic and ultrarelativistic degenerate electrons and positrons is employed, which has not been used in earlier published work. The present investigation is useful for the understanding of linear and nonlinear electrostatic wave propagation in the dense magnetized EPI plasma of compact stars. For illustration purposes, we have applied our results to a pulsar magnetosphere.

  19. Positron annihilation study for cadmium (electronic structure and enhancement effect)

    NASA Astrophysics Data System (ADS)

    Hamid, A.

    2003-12-01

    The three dimensional electron density in momentum space ρ(p) and in wave vector space n(k) was reconstructed for cadmium (Cd). The measurements were performed using the two dimensional angular correlation of annihilation radiation (2D-ACAR) technique. Enhanced contributions in the spectra were observed around 5.5 mrad, discussed in terms of a Kahana-like enhancement effect. From another viewpoint, Fermi radii were analyzed in the (λM K), (ALM) and (AHK) planes, and they showed a maximum deviation of about 4% from the free electron Fermi radius. Moreover, comparisons to a radio-frequency size effect (RFSE) experiment and theoretical band structure calculations (using augmented plane wave (APW), linear combination of atomic orbital (LCAO) and linear muffin tin orbital (LMTO) methods) were examined. The results showed a qualitative agreement with both APW and LCAO calculations. However, a favorable agreement with the APW method was determined via Fermi surface dimensions. The differences of bands' occupation of n(k) between the current work and the APW method were argued in view of positron wave function in Cd.

  20. Photonic versus electronic quantum anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Bleu, O.; Solnyshkov, D. D.; Malpuech, G.

    2017-03-01

    We derive the diagram of the topological phases accessible within a generic Hamiltonian describing quantum anomalous Hall effect for photons and electrons in honeycomb lattices in the presence of a Zeeman field and spin-orbit coupling (SOC). The two cases differ crucially by the winding number of their SOC, which is 1 for the Rashba SOC of electrons, and 2 for the photon SOC induced by the energy splitting between the TE and TM modes. As a consequence, the two models exhibit opposite Chern numbers ±2 at low field. Moreover, the photonic system shows a topological transition absent in the electronic case. If the photonic states are mixed with excitonic resonances to form interacting exciton-polaritons, the effective Zeeman field can be induced and controlled by a circularly polarized pump. This new feature allows an all-optical control of the topological phase transitions.

  1. Linear and non-linear propagation of electrostatic positron-acoustic waves and envelope solitons in 4-component quantum plasma containing relativistically degenerate electrons and positrons

    NASA Astrophysics Data System (ADS)

    Ahmad, Rashid; Gul, Nabi; Adnan, Muhammad; Tribeche, Mouloud; Khattak, Fida Younus

    2017-04-01

    A hydrodynamic model is employed to investigate the linear and non-linear propagation of electrostatic positron acoustic waves (EPAWs) in a 4-component relativistic-degenerate electron-positron-ion plasma. The plasma constituents are cold positrons, hot relativistic-degenerate electrons and positrons, and cold static ions in the background. The hot electrons and positrons are treated as inertialess, and the cold positrons provide the inertia while the restoring force comes from the hot species. A dispersion relation for low-frequency EPAWs is derived. It is observed that an increase in the relative density of hot positrons to cold positrons and relativistic effects tend to reduce the speed of the EPAWs. Employing the standard Reductive Perturbation Technique, a Korteweg de Vries (KdV)-type equation is derived, and the existence of KdV solitons is demonstrated. In this case, an increase in the relative density of hot to cold positrons and relativistic effects decreases both the amplitude and width of the solitons. Furthermore, a Non-Linear Schrödinger (NLS) equation is also derived. The variation in the group velocity shows less change with the wavenumber for the higher concentration of positrons and also with the stronger relativistic effects. The interchange in the behaviour of group velocity with the positron concentration is observed for values k > 1. The growth rate of modulation instability is derived, and its dependence on the positron concentration and relativistic effects are discussed. The relativistic effects reduce the stability region while the growth rate is enhanced while moving from weak-relativistic to ultra-relativistic cases. The hot positron concentration makes the wave modulationally stable for an extended region of the wavenumber k. The solution of the NLS equation admits the existence of both bright and dark envelope solitons. The profiles of the envelope solitons show inverse dependence on the positron concentration and on the relativistic

  2. Detection of Ga vacancies in electron irradiated GaAs by positrons

    SciTech Connect

    Hautojaervi, P.; Moser, P.; Stucky, M.; Corbel, C.; Plazaola, F.

    1986-03-24

    Positron lifetime measurements have been used to study the recovery of electron irradiated GaAs between 77 and 800 K. Below room temperature positrons are trapped by vacancies in Ga sublattices. The Ga vacancies recover between 200 and 350 K.

  3. Capture and polarization of positrons in a proposed NLC polarized positron source

    SciTech Connect

    Batygin, Yuri K

    2003-05-28

    A proposed NLC polarized positron source utilizes a 150 GeV electron beam passing through a helical undulator. The resulting flux of polarized photons is converted in a thin positron production target. Spin polarized positrons are captured using a high field flux concentrator followed by an accelerator section immersed in a solenoidal field. Positron tracking through the accelerating and focusing systems is done together with integration of spin precession. Optimization of the collection system is performed to insure high positron yield into the 6-dimensional acceptance of the subsequent pre-damping ring while keeping the high value of positron beam polarization.

  4. Wakefields generated by collisional neutrinos in neutral-electron-positron-ion plasma

    SciTech Connect

    Tinakiche, Nouara

    2015-12-15

    A classical fluid description is adopted to investigate nonlinear interaction between an electron-type neutrino beam and a relativistic collisionless unmagnetized neutral-electron-positron-ion plasma. In this work, we consider the collisions of the neutrinos with neutrals in the plasma and study their effect on the generation of wakefields in presence of a fraction of ions in a neutral-electron-positron plasma. The results obtained in the present work are interpreted and compared with previous studies.

  5. Scaling laws for positron production in laser-electron-beam collisions

    NASA Astrophysics Data System (ADS)

    Blackburn, T. G.; Ilderton, A.; Murphy, C. D.; Marklund, M.

    2017-08-01

    Showers of γ rays and positrons are produced when a high-energy electron beam collides with a superintense laser pulse. We present scaling laws for the electron-beam energy loss, the γ -ray spectrum, and the positron yield and energy that are valid in the nonlinear, radiation-reaction-dominated regime. As an application we demonstrate that by employing the collision of a >GeV electron beam with a laser pulse of intensity >5 ×1021W cm-2 , today's high-intensity laser facilities are capable of producing O (104) positrons per shot via light-by-light scattering.

  6. Two dimensional electrostatic shock waves in relativistic electron positron ion plasmas

    SciTech Connect

    Masood, W.; Rizvi, H.

    2010-05-15

    Ion-acoustic shock waves (IASWs) are studied in an unmagnetized plasma consisting of electrons, positrons and hot ions. In this regard, Kadomtsev-Petviashvili-Burgers (KPB) equation is derived using the small amplitude perturbation expansion method. The dependence of the IASWs on various plasma parameters is numerically investigated. It is observed that ratio of ion to electron temperature, kinematic viscosity, positron concentration, and the relativistic ion streaming velocity affect the structure of the IASW. Limiting case of the KPB equation is also discussed. Stability of KPB equation is also presented. The present investigation may have relevance in the study of electrostatic shock waves in relativistic electron-positron-ion plasmas.

  7. Stable confinement of electron plasma and initial results on positron injection in RT-1

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yoshida, Z.; Morikawa, J.; Yano, Y.; Kasaoka, N.; Sakamoto, W.; Nogami, T.

    2013-03-01

    The Ring Trap 1 (RT-1) device is a dipole field configuration generated by a levitated superconducting magnet. It offers very interesting opportunities for research on the fundamental properties on non-neutral plasmas, such as self-organization of charged particles in the strongly positive and negative charged particles on magnetic surfaces. When strong positron sources will be available in the future, the dipole field configuration will be potentially applicable to the formation of an electron-positron plasma. We have realized stable, long trap of toroidal pure electron plasma in RT-1; Magnetic levitation of the superconducting magnet resulted in more than 300s of confinement for electron plasma of ˜ 1011 m-3. Aiming for the confinement of positrons as a next step, we started a positron injection experiment. For the formation of positron plasma in the closed magnetic surfaces, one of the key issues to be solved is the efficient injection method of positron across closed magnetic surfaces. In contrast to linear configurations, toroidal configurations have the advantage that they are capable of trapping high energy positrons in the dipole field configuration and consider the possibility of direct trapping of positrons emitted from a 22Na source.

  8. Photon-induced near field electron microscopy

    NASA Astrophysics Data System (ADS)

    Park, Sang Tae; Zewail, Ahmed H.

    2013-09-01

    Ultrafast electron microscopy in the space and time domains utilizes a pulsed electron probe to directly map structural dynamics of nanomaterials initiated by an optical pump pulse, in imaging, di raction, spectroscopy, and their combinations. It has demonstrated its capability in the studies of phase transitions, mechanical vibrations, and chemical reactions. Moreover, electrons can directly interact with photons via the near eld component of light scattering by nanostructures, and either gain or lose light quanta discretely in energy. By energetically selecting those electrons that exchanged photon energies, we can map this photon-electron interaction, and the technique is termed photon-induced near eld electron microscopy (PINEM). Here, we give an account of the theoretical understanding of PINEM. Experimentally, nanostructures such as a sphere, cylinder, strip, and triangle have been investigated. Theoretically, time-dependent Schrodinger and Dirac equations for an electron under light are directly solved to obtain analytical solutions. The interaction probability is expressed by the mechanical work done by an optical wave on a traveling electron, which can be evaluated analytically by the near eld components of the Rayleigh scattering for small spheres and thin cylinders, and numerically by the discrete dipole approximation for other geometries. Application in visualization of plasmon elds is discussed.

  9. Third order transport coefficients for electrons and positrons in gases

    NASA Astrophysics Data System (ADS)

    Dujko, Sasa; Simonovic, Ilija; White, Ronald; Petrovic, Zoran

    2016-09-01

    Third order transport coefficients (the skewness tensor) of the electron and positron swarms, in atomic and molecular gases, are investigated. The knowledge of the skewness tensor is necessary for the conversion of the hydrodynamic transport coefficients to the arrival time and steady-state Townsend transport data as well as for the determination of the deviations of the spatial density profiles from an ideal Gaussian. In this work, we investigate the structure and symmetries along individual elements of the skewness tensor by the group projector method. Individual components of the skewness tensor are calculated using a Monte Carlo simulation technique and multi term theory for solving the Boltzmann equation. Results obtained by these two methods are in excellent agreement. We extend previous studies by considering the sensitivity of the skewness components to explicit and implicit effects of non-conservative collisions, post-ionization energy partitioning, and inelastic collisions. The errors of the two term approximation for solving the Boltzmann equation are highlighted. We also investigate the influence of a magnetic field on the skewness tensor in varying configurations of electric and magnetic fields. Among many interesting points, we have observed a strong correlation between the skewness and diffusion.

  10. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    SciTech Connect

    Xu, Tongjun; Shen, Baifei Xu, Jiancai Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-03-15

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron–positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 10{sup 21} s{sup −1}, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.

  11. The stationary non-equilibrium plasma of cosmic-ray electrons and positrons

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2016-06-01

    The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.

  12. Imaging in breast cancer: Single-photon computed tomography and positron-emission tomography

    PubMed Central

    Bénard, François; Turcotte, Éric

    2005-01-01

    Although mammography remains a key imaging method for the early detection and screening of breast cancer, the overall accuracy of this test remains low. Several radiopharmaceuticals have been proposed as adjunct imaging methods to characterize breast masses by single-photon-emission computed tomography (SPECT) and positron-emission tomography (PET). Useful in characterizing indeterminate palpable masses and in the detection of axillary metastases, these techniques are insufficiently sensitive to detect subcentimetric tumor deposits. Their role in staging nodal involvement of the axillary areas therefore currently remains limited. Several enzymes and receptors have been targeted for imaging breast cancers with PET. [18F]Fluorodeoxyglucose is particularly useful in the detection and staging of recurrent breast cancer and in assessing the response to chemotherapy. Several other ligands targeting proliferative activity, protein synthesis, and hormone and cell-membrane receptors may complement this approach by providing unique information about biological characteristics of breast cancer across primary and metastatic tumor sites. PMID:15987467

  13. Positron emission tomography and single-photon emission computed tomography in substance abuse research.

    PubMed

    Volkow, Nora D; Fowler, Joanna S; Wang, Gene-Jack

    2003-04-01

    Many advances in the conceptualization of addiction as a disease of the brain have come from the application of imaging technologies directly in the human drug abuser. New knowledge has been driven by advances in radiotracer design and chemistry and positron emission tomography (PET) and single-photon emission computed tomography (SPECT) instrumentation and the integration of these scientific tools with the tools of biochemistry, pharmacology, and medicine. This topic cuts across the medical specialties of neurology, psychiatry, oncology, and cardiology because of the high medical, social, and economic toll that drugs of abuse, including the legal drugs, cigarettes and alcohol, take on society. This article highlights recent advances in the use of PET and SPECT imaging to measure the pharmacokinetic and pharmacodynamic effects of drugs of abuse on the human brain.

  14. Neutrino emissivity from electron-positron annihilation in hot matter in a strong magnetic field

    SciTech Connect

    Amsterdamski, P.; Haensel, P. )

    1990-10-15

    The neutrino emissivity due to electron-positron annihilation in a strong magnetic field is computed. A strong magnetic field can significantly increase the neutrino emissivity at {ital T}{similar to}10{sup 9} K.

  15. Time of flight spectrometer for background-free positron annihilation induced Auger electron spectroscopy

    SciTech Connect

    Mukherjee, S.; Shastry, K.; Anto, C. V.; Joglekar, P. V.; Nadesalingam, M. P.; Xie, S.; Jiang, N.; Weiss, A. H.

    2016-03-15

    We describe a novel spectrometer designed for positron annihilation induced Auger electron spectroscopy employing a time-of-flight spectrometer. The spectrometer’s new configuration enables us to implant monoenergetic positrons with kinetic energies as low as 1.5 eV on the sample while simultaneously allowing for the detection of electrons emitted from the sample surface at kinetic energies ranging from ∼500 eV to 0 eV. The spectrometer’s unique characteristics made it possible to perform (a) first experiments demonstrating the direct transition of a positron from an unbound scattering state to a bound surface state and (b) the first experiments demonstrating that Auger electron spectra can be obtained down to 0 eV without the beam induced secondary electron background obscuring the low energy part of the spectra. Data are presented which show alternative means of estimating positron surface state binding energy and background-free Auger spectra.

  16. Time of flight spectrometer for background-free positron annihilation induced Auger electron spectroscopy.

    PubMed

    Mukherjee, S; Shastry, K; Anto, C V; Joglekar, P V; Nadesalingam, M P; Xie, S; Jiang, N; Weiss, A H

    2016-03-01

    We describe a novel spectrometer designed for positron annihilation induced Auger electron spectroscopy employing a time-of-flight spectrometer. The spectrometer's new configuration enables us to implant monoenergetic positrons with kinetic energies as low as 1.5 eV on the sample while simultaneously allowing for the detection of electrons emitted from the sample surface at kinetic energies ranging from ∼500 eV to 0 eV. The spectrometer's unique characteristics made it possible to perform (a) first experiments demonstrating the direct transition of a positron from an unbound scattering state to a bound surface state and (b) the first experiments demonstrating that Auger electron spectra can be obtained down to 0 eV without the beam induced secondary electron background obscuring the low energy part of the spectra. Data are presented which show alternative means of estimating positron surface state binding energy and background-free Auger spectra.

  17. Shock waves and double layers in a quantum electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Dip, P. R.; Hossen, M. A.; Salahuddin, M.; Mamun, A. A.

    2016-02-01

    The ion-acoustic (IA) shock waves and double layers (DLs) in an unmagnetized, dissipative, quantum electron-positron-ion (EPI) plasma (composed of a viscous heavy ion fluid, Fermi electrons and positrons) have been theoretically investigated. The higher-order Burgers and Gardner equations are derived by employing the reductive perturbation method. The basic features of the IA shock waves and the DLs are identified by analyzing the solutions of both the higher-order Burgers and Gardner equations. The ratio of the Fermi temperature of the positron to that of the electron, the Fermi pressure of electrons and positrons, the viscous force, the plasma particle number densities, etc. are found to change remarkably the basic features (viz. amplitude, width, phase speed, etc.) of the IA waves. The results of our investigation may be helpful in understanding the nonlinear features of localized IA waves propagating in quantum EPI plasmas which are ubiquitous in astrophysical, as well as laboratory, environments.

  18. Entanglement Dynamics of Electrons and Photons

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Yao; Liu, Xiao-Jing; Lu, Jing-Bin; Li, Tian-Shun; Zhang, Si-Qi; Liang, Yu; Ma, Ji; Li, Hong

    2016-12-01

    Entanglement is a fundamental feature of quantum theory as well as a key resource for quantum computing and quantum communication, but the entanglement mechanism has not been found at present. We think when the two subsystems exist interaction directly or indirectly, they can be in entanglement state. such as, in the Jaynes-Cummings model, the entanglement between the atom and the light field comes from their interaction. In this paper, we have studied the entanglement mechanism of electron-electron and photon-photon, which are from the spin-spin interaction. We found their total entanglement states are relevant both space state and spin state. When two electrons or two photons are far away, their entanglement states should be disappeared even if their spin state is entangled.

  19. Wave dispersion in a counterstreaming, relativistic thermal, magnetized, electron-positron plasma.

    PubMed

    Verdon, M W; Melrose, D B

    2011-05-01

    The dispersion equation is analyzed for waves in a strongly magnetized, electron-positron plasma in which counterstreaming electrons and positrons have a relativistic thermal distribution in their respective rest frames, for propagation parallel to the magnetic field. We derive the response tensor for the medium, demonstrate the dispersion curves for different temperatures, and discuss the differences from the cold-plasma case. Application to the case of pulsar magnetospheres is discussed. © 2011 American Physical Society

  20. Antiproton, positron, and electron imaging with a microchannel plate/phosphor detector

    NASA Astrophysics Data System (ADS)

    Andresen, G. B.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; El Nasr, S. Seif; Fajans, J.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jørgensen, L. V.; Kerrigan, S. J.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A. P.; Pusa, P.; Sarid, E.; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Yamazaki, Y.; Alpha Collaboration

    2009-12-01

    A microchannel plate (MCP)/phosphor screen assembly has been used to destructively measure the radial profile of cold, confined antiprotons, electrons, and positrons in the ALPHA experiment, with the goal of using these trapped particles for antihydrogen creation and confinement. The response of the MCP to low energy (10-200 eV, <1 eV spread) antiproton extractions is compared to that of electrons and positrons.

  1. Antiproton, positron, and electron imaging with a microchannel plate/phosphor detector

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Joergensen, L. V.; Kerrigan, S. J.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Povilus, A. P.; Cesar, C. L.; Lambo, R.; Fujiwara, M. C.; Gill, D. R.; Collaboration: ALPHA Collaboration; and others

    2009-12-15

    A microchannel plate (MCP)/phosphor screen assembly has been used to destructively measure the radial profile of cold, confined antiprotons, electrons, and positrons in the ALPHA experiment, with the goal of using these trapped particles for antihydrogen creation and confinement. The response of the MCP to low energy (10-200 eV, <1 eV spread) antiproton extractions is compared to that of electrons and positrons.

  2. An algorithm for Monte Carlo simulation of coupled electron-photon transport

    NASA Astrophysics Data System (ADS)

    Salvat, F.; Fernández-Varea, J. M.; Sempau, J.; Acosta, E.; Baró, J.

    1997-11-01

    An algorithm for Monte Carlo simulation of coupled electron-photon transport is described. Electron and positron tracks are generated by means of PENELOPE, a mixed procedure developed by Baró et al. [Nucl. Instr. and Meth. B 100 (1995) 31]. The simulation of photon transport follows the conventional, detailed method. Photons are assumed to interact via coherent and incoherent scattering, photoelectric absorption and electron-positron pair production. Photon interactions are simulated through analytical differential cross sections, derived from simple physical models and renormalized to reproduce accurate attenuation coefficients available from the literature. The combined algorithm has been implemented in a FORTRAN 77 computer code that generates electron-photon showers in arbitrary materials for the energy range from ˜1 GeV down to 1 keV or the binding energy of the L-shell of the heaviest element in the medium, whichever is the largest. The code is capable of following secondary particles that are generated within this energy range. The reliability of the algorithm and computer code is demonstrated by comparing simulation results with experimental data and with results from other Monte Carlo codes.

  3. Electronic and photonic power applications

    SciTech Connect

    Walko, R.J.; Ashley, C.S.; Brinker, C.J.; Reed, S.T.; Renschler, C.L. ); Shepodd, T.J. ); Ellefson, R.E.; Gill, J.T. ); Leonard, L.E. )

    1990-01-01

    Efficient conversion of radioactive decay to electrical power has been the goal of a number of past research efforts. One of these was the Elgin-Kidde nuclear battery. In this concept promethium-147 was used as a beta source which was then mixed with a phosphor to produce a radioluminescent (RL) source of light. The light source was coupled to silicon photovoltaic converters to create electricity. This photoelectric approach is being revisited using tritium based solid state compounds and advanced gas concepts to produce RL light sources being disclosed at this conference. Efficient conversion of the RL light energy to electrical energy imposes certain requirements on the semiconductor converter. These requirements will be discussed. Projections of power source electrical and physical characteristics will be presented based on reasonable design parameter assumptions. The words Power Supply'' usually evoke a vision of a rotating machine or chemical battery. However, today's technology is making increasing use of photonics, where information and even power can be moved through optical fibers. Brighter volumetric RL light sources open a whole new range of photonics-based applications, while solid state tritiated compounds provide the foundation for improved mechanical adaptability and safety. 4 refs., 6 figs., 1 tab.

  4. Many-body aspects of positron annihilation in the electron gas

    NASA Astrophysics Data System (ADS)

    Apaja, V.; Denk, S.; Krotscheck, E.

    2003-11-01

    We investigate positron annihilation in the electron gas as a case study for many-body theory, in particular, the Fermi-hypernetted-chain Euler-Lagrange (FHNC-EL) method. We examine several approximation schemes and show that one has to go up to the most sophisticated implementation of the theory available at the moment in order to get annihilation rates that agree reasonably well with experimental data. Even though there is basically just one number we look at, namely, the electron-positron pair-distribution function at zero distance, it is exactly this number that dictates how the full pair distribution behaves: in most cases, it falls off monotonously towards unity as the distance increases. Cases where the electron-positron pair distribution exhibits a dip are precursors to the formation of bound electron-positron pairs. The formation of electron-positron pairs is indicated by a divergence of the FHNC-EL equations; from this we can estimate the density regime where positrons must be localized. This occurs in our calculations in the range 9.4⩽rs⩽10, where rs is the dimensionless density parameter of the electron liquid.

  5. Heat Deposition in Positron Sources for ILC

    SciTech Connect

    Bharadwaj, V.; Pitthan, R.; Sheppard, J.; Vincke, H.; Wang, J.W.; /SLAC

    2006-03-15

    In the International Linear Collider (ILC) positron source, multi-GeV electrons or multi-MeV photons impinge on a metal target to produce the needed positrons in the resulting electromagnetic showers. The incoming beam power is hundreds of kilowatts. Various computer programs -- such as FLUKA or MARS -- can calculate how the incoming beam showers in the target and can track the particle showers through the positron source system. Most of the incoming energy ends up as heat in the various positron source elements. This paper presents results from such calculations and their impact on the design of a positron source for the ILC.

  6. Electronic correlations in vanadium revealed by electron-positron annihilation measurements

    NASA Astrophysics Data System (ADS)

    Weber, Josef Andreas; Benea, Diana; Appelt, Wilhelm H.; Ceeh, Hubert; Kreuzpaintner, Wolfgang; Leitner, Michael; Vollhardt, Dieter; Hugenschmidt, Christoph; Chioncel, Liviu

    2017-02-01

    The electronic structure of vanadium measured by angular correlation of electron-positron annihilation radiation (ACAR) is compared with the predictions of the combined density functional and dynamical mean-field theory (DMFT). Reconstructing the momentum density from five two-dimensional projections we were able to determine the full Fermi surface and found excellent agreement with the DMFT calculations. In particular, we show that the local, dynamic self-energy corrections contribute to the anisotropy of the momentum density and need to be included to explain the experimental results.

  7. Positron-electron autocorrelation function study of E-center in silicon

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Ching, H. M.; Beling, C. D.; Fung, S.; Ng, K. P.; Biasini, M.; Ferro, G.; Gong, M.

    2003-11-01

    Two-dimensional angular correlation of annihilation radiation (2D-ACAR) spectra have been taken for 1019cm-3 phosphorus-doped Si in the as-grown state after having been subjected to 1.8 MeV electron fluences of 1×1018 and 2×1018 cm-2. Positron annihilation lifetime spectroscopy confirms, in accordance with previous works, that positrons are saturation trapping into (VSi:P) pair defect (E-center) monovacancy sites in the electron irradiated samples. In the as-grown case, the positron-electron autocorrelation functions along the [111] and [1-10] directions, obtained through Fourier transformation of the 2D-ACAR data, reveal zero-crossings that deviate only slightly from the lattice points, in a manner consistent with positron-electron correlation effects. Conversely, in the spectra of the irradiated samples, the zero-crossing points are observed to move outward further by between 0.15 and 0.50 Å. This displacement is associated with positron annihilation with electrons in localized orbitals at the defect site. An attempt is made to extract just the component of the defect's positron-electron autocorrelation function that relates to the localized defect orbitals. In doing this features are found that correspond to the expected atomic positions at the vacancy defect site suggesting that this real-space function may provide a convenient means for obtaining a mapping of localized orbitals. The observed approximate separability of positron and electron wave-function autocorrelates leads to an estimate of 0.22 eV for the positron binding energy to the E-center.

  8. Computer simulation of electron-positron pair production by channeling radiation in amorphous converter

    NASA Astrophysics Data System (ADS)

    Abdrashitov, S. V.; Bogdanov, O. V.; Dabagov, S. B.; Pivovarov, Yu L.; Tukhfatullin, T. A.

    2016-07-01

    We consider the radiator-converter approach at 200 MeV channeled electrons (the SPARC_LAB LNF facility energies) for the case of using W crystalline radiator and W amorphous converter. A comparison of the positron production by the axial channeling radiation and the bremsstrahlung is performed. The positron stopping in the convertor is studied by means of computer simulations. It is shown that for the maximum yield of positrons the thickness of the W amorphous converter should be taken 0.35 cm in the case of using the axial channeling radiation resulting to total yield of positrons 5 10-3 e+/e- and 0.71 cm in the case of using the bremsstrahlung resulting to total yield of positrons 3.3 10-3 e+/e-.

  9. Small amplitude Kinetic Alfven waves in a superthermal electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Adnan, Muhammad; Mahmood, Sahahzad; Qamar, Anisa; Tribeche, Mouloud

    2016-11-01

    We are investigating the propagating properties of coupled Kinetic Alfven-acoustic waves in a low beta plasma having superthermal electrons and positrons. Using the standard reductive perturbation method, a nonlinear Korteweg-de Vries (KdV) type equation is derived which describes the evolution of Kinetic Alfven waves. It is found that nonlinearity and Larmor radius effects can compromise and give rise to solitary structures. The parametric role of superthermality and positron content on the characteristics of solitary wave structures is also investigated. It is found that only sub-Alfvenic and compressive solitons are supported in the present model. The present study may find applications in a low β electron-positron-ion plasma having superthermal electrons and positrons.

  10. Enigmatic electrons, photons, and ``empty`` waves

    SciTech Connect

    MacGregor, M.H.

    1995-08-22

    A spectroscopic analysis is made of electrons and photons from the standpoint of physical realism. In this conceptual framework, moving particles are portrayed as localized entities which are surrounded by ``empty`` waves. A spectroscopic model for the electron Stands as a guide for a somewhat similar, but in essential respects radically different, model for the photon. This leads in turn to a model for the ``zeron``. the quantum of the empty wave. The properties of these quanta mandate new basis states, and hence an extension of our customary framework for dealing with them. The zeron wave field of a photon differs in one important respect from the standard formalism for an electromagnetic wave. The vacuum state emerges as more than just a passive bystander. Its polarization properties provide wave stabilization, particle probability distributions, and orbit quantization. Questions with regard to special relativity are discussed.

  11. Secondary electron spectra of gold under bombardment by very low-energy positrons

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Nadesalingam, M. P.; Guagliardo, Paul; Sergeant, A. D.; Williams, J. F.; Weiss, A. H.

    2008-10-01

    Measurements of the secondary electron energy spectra resulting from very low-energy positron bombardment of a polycrystalline Au surface are presented. The low-energy part of the secondary spectra contain significant contributions from two processes: (1) annihilation-induced Auger electrons that have lost energy before leaving the surface and (2) secondary electrons resulting from direct energy exchange with an incident positron. Our data indicate that the second process (direct energy exchange with the primary positron) is still important at and below 3 eV incident beam energy. Since energy conservation precludes secondary electron generation below an incident beam energy equal to the difference between the electron and positron work functions (˜3 eV), the fact that we still observe significant secondary electron emission at energies at or below this value provides strong evidence that the incident positrons are falling directly into the surface state and transferring all of the energy difference to an outgoing secondary electron. These measurements were also used to obtain the first experimentally determined upper limit on the intensity of the spectrum of Auger-induced secondary electrons.

  12. The electron-cloud instability in the arcs of the PEP-II positron ring

    SciTech Connect

    Furman, Miguel A.; Lambertson, Glen R.

    1998-03-01

    We have applied our simulation code ''POSINST'' to evaluate, in linear approximation, the contribution to the growth rate of the electron-cloud instability (ECI) from the pumping sections and the dipole bending magnets in the arcs of the PEP-II positron ring. A key ingredient in our model is a detailed description of the secondary emission process off the TiN-coated chambers. Another important element is the analytic computation of the electric field produced by the beam, including the effects from surface charges. Space-charge forces of the electron cloud upon itself are also included, although these forces are negligible under nominal conditions. Bunch-length effects are optionally included by slicing the bunch into several kicks. We conclude that the growth rate is dominated by the pumping sections and scales linearly with the photoelectric yield Y'. For Y' = 1, our present estimate is in the range {approx} 1000-1300 s{sup -1}, depending upon the value of the photon reflectivity R. This is in the range controllable by the transverse feedback system. The contributions to the growth rate from other magnets and from other sections of the ring remain to be evaluated.

  13. Study of secondary electrons and positrons produced by Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Sarria, D.; Blelly, P.-L.; Forme, F.

    2015-12-01

    Terrestrial Gamma ray Flahes are emissions of X and gamma rays, correlated to thunderstorms. By interacting with the atmosphere, the photons produce a large number of electrons and positrons. Some of these reach altitudes above ˜ 100 km that their interactions with the atmosphere become negligible, and they are then guided by Earth's magnetic field lines, forming the so called Terrestrial Electron Beams. The GBM instrument of the Fermi Space Telescope made a particularly interesting measurement of such an event that happened the 12/09/2009. We perform Monte-Carlo simulations to study this event in detail and we focus on the resulting time histograms. In agreement with previous works, we show that the histogram measured by Fermi GBM can be reproduced from simulations. We then show that the time histogram can be decomposed into three populations of leptons, coming from the hemisphere opposite from the TGF, and mirroring back to the satellite with interactions with the atmosphere or not, and that these we can be clearly distinguished both with their pitch angles.

  14. Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas

    NASA Astrophysics Data System (ADS)

    Zhu, Xing-Long; Yu, Tong-Pu; Sheng, Zheng-Ming; Yin, Yan; Turcu, Ion Cristian Edmond; Pukhov, Alexander

    2016-12-01

    Pair production can be triggered by high-intensity lasers via the Breit-Wheeler process. However, the straightforward laser-laser colliding for copious numbers of pair creation requires light intensities several orders of magnitude higher than possible with the ongoing laser facilities. Despite the numerous proposed approaches, creating high-energy-density pair plasmas in laboratories is still challenging. Here we present an all-optical scheme for overdense pair production by two counter-propagating lasers irradiating near-critical-density plasmas at only ~1022 W cm-2. In this scheme, bright γ-rays are generated by radiation-trapped electrons oscillating in the laser fields. The dense γ-photons then collide with the focused counter-propagating lasers to initiate the multi-photon Breit-Wheeler process. Particle-in-cell simulations indicate that one may generate a high-yield (1.05 × 1011) overdense (4 × 1022 cm-3) GeV positron beam using 10 PW scale lasers. Such a bright pair source has many practical applications and could be basis for future compact high-luminosity electron-positron colliders.

  15. Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas.

    PubMed

    Zhu, Xing-Long; Yu, Tong-Pu; Sheng, Zheng-Ming; Yin, Yan; Turcu, Ion Cristian Edmond; Pukhov, Alexander

    2016-12-14

    Pair production can be triggered by high-intensity lasers via the Breit-Wheeler process. However, the straightforward laser-laser colliding for copious numbers of pair creation requires light intensities several orders of magnitude higher than possible with the ongoing laser facilities. Despite the numerous proposed approaches, creating high-energy-density pair plasmas in laboratories is still challenging. Here we present an all-optical scheme for overdense pair production by two counter-propagating lasers irradiating near-critical-density plasmas at only ∼10(22) W cm(-2). In this scheme, bright γ-rays are generated by radiation-trapped electrons oscillating in the laser fields. The dense γ-photons then collide with the focused counter-propagating lasers to initiate the multi-photon Breit-Wheeler process. Particle-in-cell simulations indicate that one may generate a high-yield (1.05 × 10(11)) overdense (4 × 10(22) cm(-3)) GeV positron beam using 10 PW scale lasers. Such a bright pair source has many practical applications and could be basis for future compact high-luminosity electron-positron colliders.

  16. The scaling of electron and positron generation in intense laser-solid interactionsa)

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Link, A.; Sentoku, Y.; Audebert, P.; Fiuza, F.; Hazi, A.; Heeter, R. F.; Hill, M.; Hobbs, L.; Kemp, A. J.; Kemp, G. E.; Kerr, S.; Meyerhofer, D. D.; Myatt, J.; Nagel, S. R.; Park, J.; Tommasini, R.; Williams, G. J.

    2015-05-01

    This paper presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (1018-1020 W cm-2). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈EL2) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has a pronounced peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. The measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.

  17. A constraint on the pair-density ratio (Z+) in an electron-positron pair wind

    NASA Technical Reports Server (NTRS)

    Moscoso, M. D.; Wheeler, J. C.

    1994-01-01

    We derive a constraint on the pair density ratio, z(sub +) = n(sub +)/n(sub p), in an electron-positron pair wind flowing away from the central region of an accretion disk around a compact object under the assumption of a coupling between electrons, positrons, and protons. The minimum rate at which positrons are injected into the annihilation volume is given by the observed annihilation flux per unit volume. This rate is then used to determine a minimum mass loss rate per unit area, M(dot)(sub *) for a given pair density ratio at the base of the streamline. The requirement that M(dot)(sub *) less than M(dot)(sub *)(sub Edd) (the mean Eddington mass loss rate per unit area) then places a lower limit on the pair density ratio, z(sub +,)(sub min). A positron annihilation line was observed in Nova Muscae 1991 by GRANAT/SIGMA. The narrow width and redshift of the line suggest that the pair production and annihilation regions are physically distinct. We hypothesize that an electron-positron pair wind transports the pairs from the production to the annihilation region and calculate z(sub +),(sub min). We then determine constraints on the physical parameters on the pair production region by comparing z(sub +),(sub min) with previous studies of two-temperature and one-temperature accretion disks with electron-positron pairs.

  18. The scaling of electron and positron generation in intense laser-solid interactions

    SciTech Connect

    Chen, Hui; Link, A.; Fiuza, F.; Hazi, A.; Heeter, R. F.; Kemp, A. J.; Kemp, G. E.; Nagel, S. R.; Park, J.; Tommasini, R.; Williams, G. J.; Sentoku, Y.; Audebert, P.; Hill, M.; Hobbs, L.; Kerr, S.; Meyerhofer, D. D.; Myatt, J.

    2015-05-15

    This paper presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (10{sup 18}–10{sup 20} W cm{sup −2}). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈E{sub L}{sup 2}) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has a pronounced peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. The measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.

  19. Simultaneous confinement of low-energy electrons and positrons in a compact magnetic mirror trap

    NASA Astrophysics Data System (ADS)

    Higaki, H.; Kaga, C.; Fukushima, K.; Okamoto, H.; Nagata, Y.; Kanai, Y.; Yamazaki, Y.

    2017-02-01

    More than 107 electrons and 105 positrons with energy less than a few eV were confined simultaneously for the first time in a compact magnetic mirror trap with plugging potentials. The exponential decay time constant of the confined positrons exceeded 70 ms at the beginning of the simultaneous confinement. Particle simulations in the early stages of the mixing process were also conducted. The results obtained in the experiments and simulations suggested that an improved setup would make it possible to investigate the unexplored field of low-energy electron–positron plasmas experimentally.

  20. Nonlinear waves in electron-positron-ion plasmas including charge separation

    NASA Astrophysics Data System (ADS)

    Mugemana, A.; Moolla, S.; Lazarus, I. J.

    2017-02-01

    Nonlinear low-frequency electrostatic waves in a magnetized, three-component plasma consisting of hot electrons, hot positrons and warm ions have been investigated. The electrons and positrons are assumed to have Boltzmann density distributions while the motion of the ions are governed by fluid equations. The system is closed with the Poisson equation. This set of equations is numerically solved for the electric field. The effects of the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle are investigated. It is shown that depending on the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle, the numerical solutions exhibit waveforms that are sinusoidal, sawtooth and spiky. The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E 0 was reduced. The results are compared with satellite observations.

  1. Study on Momentum Density of Electrons and Fermi Surface in Niobium by Positron Annihilation

    NASA Astrophysics Data System (ADS)

    Kubota, Takeshi; Kondo, Hitoshi; Watanabe, Kazuhiro; Murakami, Yasukazu; Cho, Yang-Koo; Tanigawa, Shoichiro; Kawano, Takao; Bahng, Gun-Woong

    1990-12-01

    The three dimensional electron-positron momentum density in niobium has been reconstructed from measurements of two dimensional angular correlation of positron annihilation radiations (2D-ACAR) followed by the image reconstruction technique based on a direct Fourier transformation. We determined the position of the Fermi surface sheets; \\varGamma-centered hole octahedron, multiply connected jungle-gym arms and N-centered hole ellipsoids. The Fermi surface topology is in good agreement with the theory.

  2. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Fiuza, F.; Link, A.; Hazi, A.; Hill, M.; Hoarty, D.; James, S.; Kerr, S.; Meyerhofer, D. D.; Myatt, J.; Park, J.; Sentoku, Y.; Williams, G. J.

    2015-05-01

    We report new experimental results obtained on three different laser facilities that show directed laser-driven relativistic electron-positron jets with up to 30 times larger yields than previously obtained and a quadratic (˜EL2 ) dependence of the positron yield on the laser energy. This favorable scaling stems from a combination of higher energy electrons due to increased laser intensity and the recirculation of MeV electrons in the mm-thick target. Based on this scaling, first principles simulations predict the possibility of using such electron-positron jets, produced at upcoming high-energy laser facilities, to probe the physics of relativistic collisionless shocks in the laboratory.

  3. The magnetic toroidal sector: a broad-band electron-positron pair spectrometer

    NASA Astrophysics Data System (ADS)

    Hagmann, Siegbert; Hillenbrand, Pierre-Michel; Litvinov, Yuri; Spillmann, Uwe

    2016-05-01

    At the future relativistic storage-ring HESR at FAIR the study of electron-positron pairs from non-nuclear, atomic processes will be one of the goals of the experimental program with kinematically complete experiments focusing on momentum spectroscopy of coincident emission of electrons and positrons from free-free pairs and corresponding recoil ions. The underlying production mechanisms belong to central topics of QED in strong fields. We present first results on the electron-optical properties of a magnetic toroidal sector configuration enabling coincident detection of free-free electron-positron pairs; this spectrometer is suitable for implementation into a storage ring with a supersonic jet target and covering a wide range of lepton emission into the forward hemisphere. The simulation calculations are performed using the OPERA code.

  4. Positron and electron scattering from alkane molecules. Normal- and cyclo-octane

    NASA Astrophysics Data System (ADS)

    Sueoka, O.; Makochekanwa, C.; Kimura, M.

    2006-03-01

    Total cross-sections (TCSs) for 0.2 1000 eV positrons and 0.4 1000 eV electrons colliding with normal-octane and cyclo-octane molecules have been studied using a relative measurement method. The TCS curves for positron and electron vary smoothly and compare well with other alkane molecules, in order of increasing carbon number. For positron scattering, weak humps at 1.5 2.5 eV for both normal- and cyclo-octane were observed. In the energy range lower than 2.2 eV, positron TCSs are roughly equal to or larger than electron TCSs. For electron scattering, a resonance peak at 8 eV and a shoulder at 25.0 eV were observed for both molecules. Over all the energy range, the TCS values for normal-octane are larger than those of cyclo-octane. The positron and electron TCS data for normal- and cyclo-octane molecules are briefly compared with those for normal- and cyclo-hexane.

  5. Resonance method to produce a polarisation asymmetry in electron-positron storage rings

    SciTech Connect

    Toner, W.T.

    1988-01-01

    Pulsed solenoids of a few tens of ampere turns, operated in synchronism with the ..gamma..(g-2/2) 'th harmonic of the orbit period, can be used to prevent a stored electron beam from becoming polarised through the emission of synchrotron radiation. With such low fields it is easy to arrange that only some of the stored bunches are affected. This makes it possible to produce collisions between counter-rotating electrons and positrons stored in a single ring in which the electron and positron polarisations are not equal and opposite. 8 refs.

  6. Environmental assessment for the proposed B-Factory (Asymmetric Electron Positron Collider)

    SciTech Connect

    Not Available

    1993-11-01

    This document presents the potential environmental consequences associated with the construction and operation of an Asymmetric Electron Positron Collider, also known as a B-Factory. DOE proposes to modify either the existing Positron-Electron Project at the Stanford Linear Accelerator Center (SLAC) or the Cornell Electron Storage Ring (CESR) at Cornell University. PEP and CESR provide the most technically promising and practical options for a B-Factory. A B-Factory can be constructed by modifying the existing facilities and with minor or no conventional construction. Details involved with the upgrade along with two alternatives to the proposed action are described.

  7. Observation of Exclusive Electron-Positron Production in Hadron-Hadron Collisions

    SciTech Connect

    Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.

    2006-11-01

    We present the first observation of exclusive e{sup +}e{sup -} production in hadron-hadron collisions, using p{bar p} collision data at {radical}s = 1.96 TeV taken by the Run II Collider Detector at Fermilab, and corresponding to an integrated luminosity of 532 pb{sup -1}. We require the absence of any particle signatures in the detector except for an electron and a positron candidate, each with transverse energy E{sub T} > 5 GeV and pseudorapidity |{eta}| < 2. With these criteria, 16 events are observed compared to a background expectation of 1.9 {+-} 0.3 events. These events are consistent in cross section and properties with the QED process p{bar p} {yields} p + e{sup +}e{sup -} + {bar p} through two-photon exchange. The measured cross section is 1.6{sub -0.3}{sup +0.5}(stat) {+-} 0.3(syst) pb. This agrees with the theoretical prediction of 1.71 {+-} 0.01 pb.

  8. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-L.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at the comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform: small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure

  9. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation

  10. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  11. Positron trapping at vacancies in electron-irradiated Si at low temperatures

    SciTech Connect

    Maekinen, J.; Corbel, C.; Hautojaervi, P.; Moser, P.; Pierre, F.

    1989-05-15

    Experimental results on positron trapping at vacancies in electron-irradiated silicon are presented. The positron lifetimes 273 +- 3 and 248 +- 2 ps in pure Si and heavily-phosphorus-doped Si ((P) = 10/sup 20/ cm/sup -3/) are assigned to a negative monovacancy V/sup -/ and a negative vacancy-phosphorus pair (V-P)/sup -/, respectively. In pure Si, positron trapping displays a strong negative temperature dependence, and the specific trapping rate reaches very large values (10/sup 17//sup --/10/sup 18/ s/sup -1/) at low temperatures. In Si:P the trapping rate is independent of temperature. These different temperature behaviors are attributed to different positron-trapping mechanisms, a cascade of one-phonon transitions in pure Si, and an Auger process in Si:P.

  12. Electromagnetic envelope solitons in ultrarelativistic inhomogeneous electron-positron-ion plasma

    SciTech Connect

    Du, Hong-E; Cheng, Li-Hong; Yu, Zi-Fa; Xue, Ju-Kui

    2014-08-15

    The nonlinear interaction of ultra-intense short laser beam and homogeneous/inhomogeneous electron-positron-ion (e-p-i) plasma is investigated. It is found that soliton solutions can exist in both homogeneous and inhomogeneous e-p-i plasma. The influence of the positron density, the phase velocity, the inhomogeneity nature, and the Hamiltonian of the system on the soliton structure is investigated. The evolution of envelope solitons in homogeneous e-p-i plasma is analyzed analytically by using a two-time-scale method and confirmed by numerical simulations. However, the soliton solutions can exist in inhomogeneous e-p-i plasma only when the positron density is high enough. Furthermore, the phase diagram for existing envelope soliton in positron density and phase velocity of the wave plane is obtained.

  13. The Screening Effect in Electromagnetic Production of Electron Positron Pairs in Relativistic Nucleus-Atom Collisions

    NASA Technical Reports Server (NTRS)

    Wu, Jianshi; Derrickson, J. H.; Parnell, T. A.; Strayer, M. R.

    1999-01-01

    We study the screening effects of the atomic electrons in the electromagnetic production of electron-positron pairs in relativistic nucleus-atom collisions for fixed target experiments. Our results are contrasted with those obtained in bare collisions, with particular attention given to its dependence on the beam energy and the target atom.

  14. Positron-electron decay of 28Si at an excitation energy of 50 MeV

    NASA Astrophysics Data System (ADS)

    Buda, A.; Bacelar, J. C.; Balanda, A.; van der Ploeg, H.; Sujkowski, Z.; van der Woude, A.

    1993-03-01

    The electron-position pair decay of 28Si at 50 MeV excitation produced by the isospin T=0 (α + 24Mg) and the mixed isospin T=0,1 (3He + 25Mg) reactions has been studied using a special designed Positron-Electron pair spectrometer PEPSI.

  15. Wakefields generated by collisional neutrinos in neutral-electron-positron plasma

    SciTech Connect

    Tinakiche, Nouara

    2013-02-15

    A classical fluid description is adopted to investigate nonlinear interaction between an electron-type neutrino beam and a relativistic collisionless unmagnetized neutral-electron-positron plasma. In this work, we consider the collisions of the neutrinos with neutrals in the plasma and study their effect on the generation of wakefields in this plasma.

  16. Arbitrary amplitude Langmuir solitons in a relativistic electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Lazarus, I. J.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2012-04-01

    The arbitrary amplitude Langmuir solitons are investigated in an unmagnetized, warm, relativistic plasma, consisting of electrons and positrons. Both the species are considered to have equal non-relativistic temperatures, but can have arbitrary relativistic drift speeds, and their dynamics are governed by fluid equations. Using the Sagdeev psuedo-potential approach, the effects of drift speed, Mach number, and thermal temperature on the amplitude and width of the Langmuir solitons are investigated. For the parameters considered, only rarefactive solitons are found. These solitons represent dip in electron density or electron holes in the configuration space. Existence domain of the Langmuir solitons is limited by the minimum and maximum Mach numbers for given parameters. An increase in the electron (positron) temperature leads to an increase in the Langmuir soliton amplitude and their half-widths. On the other hand, increasing the electron (positron) drift speeds results in decreasing soliton amplitudes and their half-widths. For some typical parameters corresponding to the pulsar magnetosphere, namely electron density ~106 cm-3 and electron thermal velocity of one-tenth of the velocity of light, the electric field of the Langmuir solitons can be of the order of (3-24)kV/m. The presence of such large amplitude electrostatic solitary structures may accelerate electrons and positrons and also produce fine structures of (1-5) microseconds in pulsar radio emissions.

  17. Microdosimetry of Megavoltage Photon and Electron Beams

    NASA Astrophysics Data System (ADS)

    Zellmar, Darwin Llewelyn

    Experimental techniques were developed for obtaining microdosimetric spectra on hospital-based linear accelerators. Microdosimetry spectra were measured for Cobalt-60 photons, 10 and 15 MV bremsstrahlung x-rays and 12 to 20 MeV electrons. The x-ray and electrons were produced at ultra-low dose rates (50-200 micro-gray/hour), which enabled direct measurements of lineal energy distributions with a conventional Rossi -type gas proportional counter. Extensive measurements were made to insure that the dosimetric properties of the low dose rate beams are nearly identical to those produced under high dose rate clinical conditions. Analytical procedures were developed to correct measured lineal energy spectra for pulse pileup. The lineal energy spectra for 10 MV X-rays and electrons differ significantly from Cobalt-60 photons with the dose average lineal energy (y(,D)) being lower than Cobalt-60 photons by 15 to 20% and 20 to 30%, respectively. The values of y(,D) for Cobalt gamma rays and 15 MV X-rays are comparable. The calculated spectrum assuming CSDA predicted the peak and the shoulder of the experimental spectra, but was unable to predict the exact shape.

  18. Investigations of electron helicity in optically active molecules using polarized beams of electrons and positrons

    NASA Technical Reports Server (NTRS)

    Gidley, D. W.; Rich, A.; Van House, J. C.; Zitzewitz, P. W.

    1981-01-01

    A positronium-formation experiment with a high sensitivity to a possible relation between the helicity of beta particles emitted in nuclear beta decay and the optical asymmetry of biological molecules is presented. The experiment is based on a mechanism in which the electrons in optically active molecules possess a helicity of less than 0.001, too weak to detect in radiolysis experiments, the sign of which depends on the chirality of the isomer. A helicity-dependent asymmetry is sought in the formation of the triplet ground state of positronium when a low-energy beam of polarized positrons of reversible helicity interacts with an optically active substance coating a channel electron multiplier. Asymmetries between positronium decays observed at positive and negative helicities for the same substance can thus be determined with a sensitivity of 0.0001, which represents a factor of 100 improvement over previous positronium experiments.

  19. Local electron-electron interaction strength in ferromagnetic nickel determined by spin-polarized positron annihilation

    PubMed Central

    Ceeh, Hubert; Weber, Josef Andreass; Böni, Peter; Leitner, Michael; Benea, Diana; Chioncel, Liviu; Ebert, Hubert; Minár, Jan; Vollhardt, Dieter; Hugenschmidt, Christoph

    2016-01-01

    We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV. PMID:26879249

  20. On a plasma having nonextensive electrons and positrons: Rogue and solitary wave propagation

    SciTech Connect

    El-Awady, E. I.; Moslem, W. M.

    2011-08-15

    Generation of nonlinear ion-acoustic waves in a plasma having nonextensive electrons and positrons has been studied. Two wave modes existing in such plasma are considered, namely solitary and rogue waves. The reductive perturbation method is used to obtain a Korteweg-de Vries equation describing the system. The latter admits solitary wave pulses, while the dynamics of the modulationally unstable wave packets described by the Korteweg-de Vries equation gives rise to the formation of rogue excitation that is described by a nonlinear Schroedinger equation. The dependence of both solitary and rogue waves profiles on the nonextensive parameter, positron-to-ion concentration ratio, electron-to-positron temperature ratio, and ion-to-electron temperature ratio are investigated numerically. The results from this work are expected to contribute to the in-depth understanding of the nonlinear excitations that may appear in nonextensive astrophysical plasma environments, such as galactic clusters, interstellar medium, etc.

  1. Nonlinear ion-acoustic structures in dusty plasma with superthermal electrons and positrons

    SciTech Connect

    El-Tantawy, S. A.; El-Bedwehy, N. A.; Moslem, W. M.

    2011-05-15

    Nonlinear ion-acoustic structures are investigated in an unmagnetized, four-component plasma consisting of warm ions, superthermal electrons and positrons, as well as stationary charged dust impurities. The basic set of fluid equations is reduced to modified Korteweg-de Vries equation. The latter admits both solitary waves and double layers solutions. Numerical calculations indicate that these nonlinear structures cannot exist for all physical parameters. Therefore, the existence regions for both solitary and double layers excitations have been defined precisely. Furthermore, the effects of temperature ratios of ions-to-electrons and electrons-to-positrons, positrons and dust concentrations, as well as superthermal parameters on the profiles of the nonlinear structures are investigated. Also, the acceleration and deceleration of plasma species have been highlight. It is emphasized that the present investigation may be helpful in better understanding of nonlinear structures which propagate in astrophysical environments, such as in interstellar medium.

  2. Nonlinear density excitations in electron-positron-ion plasmas with trapping in a quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Iqbal, M. J.; Masood, W.; Shah, H. A.; Tsintsadze, N. L.

    2017-01-01

    In the present work, we have investigated the effect of trapping as a microscopic phenomenon on the formation of solitary structures in the presence of a quantizing magnetic field in an electron-positron-ion (e-p-i) plasma having degenerate electrons and positrons, whereas ions are taken to be classical and cold. We have found that positron concentration, quantizing magnetic field, and finite electron temperature effects not only affect the linear dispersion characteristics of the electrostatic waves under consideration but also have a significant bearing on the propagation of solitary structures in the nonlinear regime. Importantly, the system under consideration has been found to allow the formation of compressive solitary structures only. The work presented here may be beneficial to understand the propagation of nonlinear electrostatic structures in dense astrophysical environments and in intense-laser plasma interactions.

  3. Ion acoustic shock and solitary waves in highly relativistic plasmas with nonextensive electrons and positrons

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.

    2016-01-01

    The Korteweg-de Vries Burgers (KdVB) -like equation is derived to study the characteristics of nonlinear propagation of ion acoustic solitions in a highly relativistic plasma containing relativistic ions and nonextensive distribution of electrons and positrons using the well known reductive perturbation technique. The KdVB-like equation is solved employing the Bernoulli's equation method taking unperturbed positron to electron concentration ratio, electron to positron temperature ratio, strength of nonextensivity, ion kinematic viscosity, and highly relativistic streaming factor. It is found that these parameters significantly modify the structures of the solitonic excitation. The ion acoustic shock profiles are observed due to the influence of ion kinematic viscosity. In the absence of dissipative term to the KdVB equation, compressive and rarefactive solitons are observed in case of superthermality, but only compressive solitons are found for the case of subthermality.

  4. Pulsar Wind Nebulae as a source of the observed electron and positron excess at high energy: The case of Vela-X

    NASA Astrophysics Data System (ADS)

    Della Torre, S.; Gervasi, M.; Rancoita, P. G.; Rozza, D.; Treves, A.

    2015-12-01

    We investigate, in terms of production from pulsars and their nebulae, the cosmic ray positron and electron fluxes above ∼10 GeV, observed by the AMS-02 experiment up to 1 TeV. We concentrate on the Vela-X case. Starting from the gamma-ray photon spectrum of the source, generated via synchrotron and inverse Compton processes, we estimated the electron and positron injection spectra. Several features are fixed from observations of Vela-X and unknown parameters are borrowed from the Crab nebula. The particle spectra produced in the pulsar wind nebula are then propagated up to the Solar System, using a diffusion model. Differently from previous works, the omnidirectional intensity excess for electrons and positrons is obtained as a difference between the AMS-02 data and the corresponding local interstellar spectrum. An equal amount of electron and positron excess is observed and we interpreted this excess (above ∼100 GeV in the AMS-02 data) as a supply coming from Vela-X. The particle contribution is consistent with models predicting the gamma-ray emission at the source. The input of a few more young pulsars is also allowed, while below ∼100 GeV more aged pulsars could be the main contributors.

  5. Code System for Monte Carlo Simulation of Electron and Photon Transport.

    SciTech Connect

    2015-07-01

    Version 01 PENELOPE performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials and complex quadric geometries. A mixed procedure is used for the simulation of electron and positron interactions (elastic scattering, inelastic scattering and bremsstrahlung emission), in which ‘hard’ events (i.e. those with deflection angle and/or energy loss larger than pre-selected cutoffs) are simulated in a detailed way, while ‘soft’ interactions are calculated from multiple scattering approaches. Photon interactions (Rayleigh scattering, Compton scattering, photoelectric effect and electron-positron pair production) and positron annihilation are simulated in a detailed way. PENELOPE reads the required physical information about each material (which includes tables of physical properties, interaction cross sections, relaxation data, etc.) from the input material data file. The material data file is created by means of the auxiliary program MATERIAL, which extracts atomic interaction data from the database of ASCII files. PENELOPE mailing list archives and additional information about the code can be found at http://www.nea.fr/lists/penelope.html. See Abstract for additional features.

  6. Photon/Electron Benchmarks for Intercode Comparisons

    SciTech Connect

    Hughes, Henry Grady III; Sweezy, Jeremy Ed; Lemaire, Sebastien

    2015-07-21

    The goal of this work was to improve accuracy and efficiency of two Monte-Carlo transport codes (MCNP and DIANE) with an emphasis on γ+electron physics. The approach involved intercode comparisons + measurements for gamma/e- energy deposition in a cylinder with a photon source and different materials (C, Pb) and the bombardment of 15-MeV electrons on thick targets (Al, Be, Pb). Comparisons of the codes DIANE and MCNP6 showed good agreement (differences < 3%) for gamma-electron energy deposition in a 2D cylinder, except for the first 0.1 μm of lead (difference < 10%). Comparisons with measurements showed generally good agreement, often better than 10%; best-performing codes/options are problem-dependent; and single-event discrepancies are in active use in reviewing electron elastic scattering.

  7. Enhancement models of momentum densities of annihilating electron-positron pairs: The many-body picture of natural geminals

    NASA Astrophysics Data System (ADS)

    Makkonen, Ilja; Ervasti, Mikko M.; Siro, Topi; Harju, Ari

    2014-01-01

    The correlated motion of a positron surrounded by electrons is a fundamental many-body problem. We approach this by modeling the momentum density of annihilating electron-positron pairs using the framework of reduced density matrices, natural orbitals, and natural geminals (electron-positron pair wave functions) of the quantum theory of many-particle systems. We find that an expression based on the natural geminals provides an exact, unique, and compact expression for the momentum density. The natural geminals can be used to define and to determine enhancement factors for enhancement models going beyond the independent-particle model for a better understanding of the results of positron annihilation experiments.

  8. Electron and positron scattering on rubidium at 200 eV

    SciTech Connect

    Chin, J. H.; Ratnavelu, K.; Zhou, Y.

    2014-03-05

    The recent implementation of the coupled-channels-optical method (CCOM) [1,2], in the study of the electron and positron-Rubidium(Rb) scattering at intermediate energies [3,4], shows that the continuum effect remains important as the energy increases, even to 100 eV. Here, we study the effect of the continuum in electron and positron scattering on Rb at an even higher energy namely 200 eV. The total, elastic and inelastic integral and differential cross sections are therefore calculated and compared to the available experimental [5] and theoretical data [6,7].

  9. Jet algorithms in electron-positron annihilation: perturbative higher order predictions

    NASA Astrophysics Data System (ADS)

    Weinzierl, Stefan

    2011-02-01

    This article gives results on several jet algorithms in electron-positron annihilation: Considered are the exclusive sequential recombination algorithms Durham, Geneva, Jade-E0 and Cambridge, which are typically used in electron-positron annihilation. In addition also inclusive jet algorithms are studied. Results are provided for the inclusive sequential recombination algorithms Durham, Aachen and anti- k t , as well as the infrared-safe cone algorithm SISCone. The results are obtained in perturbative QCD and are N3LO for the two-jet rates, NNLO for the three-jet rates, NLO for the four-jet rates and LO for the five-jet rates.

  10. Positron annihilation studies of the electronic structure and fermiology of the high-{Tc} superconductors

    SciTech Connect

    Smedskjaer, L.C.; Bansil, A.

    1992-09-01

    We discuss the application of the positron annihilation angular correlation (ACAR) spectroscopy for investigating the electronic structure and Fermiology of the high-T{sub c} superconductors, with focus on the YBa{sub 2}Cu{sub 3}O{sub 7} system where most of the experimental and theoretical work has to date been concentrated. Comparisons between measured 2D-ACAR positron spectra and band theory predictions show a remarkable agreement (for the normal state), indicating that the electronic structure and Fermi surface of this material is described reasonably by the conventional picture.

  11. Positron annihilation studies of the electronic structure and fermiology of the high-[Tc] superconductors

    SciTech Connect

    Smedskjaer, L.C. ); Bansil, A. . Dept. of Physics)

    1992-09-01

    We discuss the application of the positron annihilation angular correlation (ACAR) spectroscopy for investigating the electronic structure and Fermiology of the high-T[sub c] superconductors, with focus on the YBa[sub 2]Cu[sub 3]O[sub 7] system where most of the experimental and theoretical work has to date been concentrated. Comparisons between measured 2D-ACAR positron spectra and band theory predictions show a remarkable agreement (for the normal state), indicating that the electronic structure and Fermi surface of this material is described reasonably by the conventional picture.

  12. Visible and dark matter genesis and cosmic positron and electron excesses

    SciTech Connect

    Gu Peihong; Sarkar, Utpal; Zhang Xinmin

    2009-10-01

    Dark and baryonic matter contribute comparable energy density to the present universe. The dark matter may also be responsible for the cosmic positron and electron excesses. We connect these phenomena with the Dirac seesaw for neutrino masses. In our model (i) the dark matter relic density is a dark matter asymmetry generated simultaneously with the baryon asymmetry so that we can naturally understand the coincidence between the dark and baryonic matter and (ii) the dark matter mostly decays into the leptons so that its decay can interpret the anomalous cosmic rays with positron and electron excesses.

  13. Nonlinear drift solitary structures in degenerate electron-positron-ion plasma with Landau quantization

    NASA Astrophysics Data System (ADS)

    Shaukat, Muzzamal Iqbal

    2017-06-01

    In the present work, we have investigated the effect of trapping as a microscopic phenomenon on the propagation of 1 and 2D linear and nonlinear quantum drift ion acoustic waves in a spatially inhomogeneous degenerate electron-positron-ion plasma in the presence of quantizing magnetic field having degenerate electrons and positrons. We derive the linear dispersion relation and nonlinear Korteweg-deVries and Kadomtsev Petviashvili equation for drift ion acoustic waves. It is observed that the characteristics of the dispersion relation and nonlinear drift ion solitary structures have been modified significantly by the positron concentration and quantizing magnetic field. The work presented here may be beneficial to understand the propagation of drift solitary structures in dense astrophysical environments and in intense-laser plasma interactions.

  14. Ion-acoustic solitary waves in a positron beam plasma with electron trapping and nonextensivity effects

    NASA Astrophysics Data System (ADS)

    Ali Shan, S.; -Ur-Rehman, Aman; Mushtaq, A.

    2017-03-01

    Ion-acoustic solitary waves (IASWs) are investigated in a plasma having a cold positron beam fluid, electrons following a vortex-like distribution with entropic index q, and dynamic ions. Using a standard procedure, a pseudo-potential energy equation is derived. The presence of nonextensive q - distributed trapped electrons and cold positron beam has been shown to influence the small amplitude soliton structure quite significantly. From the analysis of our results, it is shown that compressive IASWs are supported in this plasma model. As the real plasma situations are observed with plasma species having a relative flow, our present analysis should be beneficial for comprehending the electrostatic solitary structures observed in fusion plasma devices and positron winds observed in astrophysical plasmas.

  15. Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ferrara, E. C.; Harding, A. K.; McEnery, J. E.; Moiseev, A. A.; Ackemann, M.

    2012-01-01

    We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting Earth's shadow, which, is offset in opposite directions for opposite charges due to Earth's magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 and 200 Ge V. We confirm that the fraction rises with energy in the 20-100 Ge V range. The three new spectral points between 100 and 200 GeV are consistent with a fraction that is continuing to rise with energy.

  16. Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; hide

    2011-01-01

    We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting the Earth's shadow, which is offset in opposite directions for opposite charges due to the Earth's magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 GeV and 200 GeV, We confirm that the fraction rises with energy in the 20-100 GeV range and determine for the first time that it continues to rise between 100 and 200 GeV,

  17. Positron Acceleration by Plasma Wakefields Driven by a Hollow Electron Beam

    NASA Astrophysics Data System (ADS)

    Jain, Neeraj; Antonsen, T. M.; Palastro, J. P.

    2015-11-01

    A scheme for positron plasma wakefield acceleration using hollow or donut-shaped electron driver beams is studied. An annular-shaped, electron-free region forms around the hollow driver beam, creating a favorable region (longitudinal field is accelerating and transverse field is focusing) for positron acceleration. For Facility for Advanced Accelerator Experimental Tests (FACET)-like parameters, the hollow beam driver produces accelerating gradients on the order of 10 GV /m . The accelerating gradient increases linearly with the total charge in the driver beam. Simulations show acceleration of a 23-GeV positron beam to 35.4 GeV with a maximum energy spread of 0.4% and very small emittance over a plasma length of 140 cm is possible.

  18. Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.

    2012-01-05

    We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting the Earth’s shadow, which is offset in opposite directions for opposite charges due to the Earth’s magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 GeV and 200 GeV. We confirm that the fraction rises with energy in the 20–100 GeV range. The three new spectral pointsmore » between 100 and 200 GeV are consistent with a fraction that is continuing to rise with energy.« less

  19. Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, M.

    2012-01-05

    We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting the Earth’s shadow, which is offset in opposite directions for opposite charges due to the Earth’s magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 GeV and 200 GeV. We confirm that the fraction rises with energy in the 20–100 GeV range. The three new spectral points between 100 and 200 GeV are consistent with a fraction that is continuing to rise with energy.

  20. Positron Acceleration by Plasma Wakefields Driven by a Hollow Electron Beam.

    PubMed

    Jain, Neeraj; Antonsen, T M; Palastro, J P

    2015-11-06

    A scheme for positron plasma wakefield acceleration using hollow or donut-shaped electron driver beams is studied. An annular-shaped, electron-free region forms around the hollow driver beam, creating a favorable region (longitudinal field is accelerating and transverse field is focusing) for positron acceleration. For Facility for Advanced Accelerator Experimental Tests (FACET)-like parameters, the hollow beam driver produces accelerating gradients on the order of 10  GV/m. The accelerating gradient increases linearly with the total charge in the driver beam. Simulations show acceleration of a 23-GeV positron beam to 35.4 GeV with a maximum energy spread of 0.4% and very small emittance over a plasma length of 140 cm is possible.

  1. Ion acoustic shock waves in plasmas with warm ions and kappa distributed electrons and positrons

    SciTech Connect

    Hussain, S.; Mahmood, S.; Hafeez Ur-Rehman

    2013-06-15

    The monotonic and oscillatory ion acoustic shock waves are investigated in electron-positron-ion plasmas (e-p-i) with warm ions (adiabatically heated) and nonthermal kappa distributed electrons and positrons. The dissipation effects are included in the model due to kinematic viscosity of the ions. Using reductive perturbation technique, the Kadomtsev-Petviashvili-Burgers (KPB) equation is derived containing dispersion, dissipation, and diffraction effects (due to perturbation in the transverse direction) in e-p-i plasmas. The analytical solution of KPB equation is obtained by employing tangent hyperbolic (Tanh) method. The analytical condition for the propagation of oscillatory and monotonic shock structures are also discussed in detail. The numerical results of two dimensional monotonic shock structures are obtained for graphical representation. The dependence of shock structures on positron equilibrium density, ion temperature, nonthermal spectral index kappa, and the kinematic viscosity of ions are also discussed.

  2. A new equation in two dimensional fast magnetoacoustic shock waves in electron-positron-ion plasmas

    SciTech Connect

    Masood, W.; Jehan, Nusrat; Mirza, Arshad M.

    2010-03-15

    Nonlinear properties of the two dimensional fast magnetoacoustic waves are studied in a three-component plasma comprising of electrons, positrons, and ions. In this regard, Kadomtsev-Petviashvili-Burger (KPB) equation is derived using the small amplitude perturbation expansion method. Under the condition that the electron and positron inertia are ignored, Burger-Kadomtsev-Petviashvili (Burger-KP) for a fast magnetoacoustic wave is derived for the first time, to the best of author's knowledge. The solutions of both KPB and Burger-KP equations are obtained using the tangent hyperbolic method. The effects of positron concentration, kinematic viscosity, and plasma beta are explored both for the KPB and the Burger-KP shock waves and the differences between the two are highlighted. The present investigation may have relevance in the study of nonlinear electromagnetic shock waves both in laboratory and astrophysical plasmas.

  3. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    NASA Astrophysics Data System (ADS)

    Kaladze, T.; Mahmood, S.

    2014-03-01

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  4. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    SciTech Connect

    Kaladze, T.; Mahmood, S.

    2014-03-15

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  5. Coupled electron-photon radiation transport

    SciTech Connect

    Lorence, L.; Kensek, R.P.; Valdez, G.D.; Drumm, C.R.; Fan, W.C.; Powell, J.L.

    2000-01-17

    Massively-parallel computers allow detailed 3D radiation transport simulations to be performed to analyze the response of complex systems to radiation. This has been recently been demonstrated with the coupled electron-photon Monte Carlo code, ITS. To enable such calculations, the combinatorial geometry capability of ITS was improved. For greater geometrical flexibility, a version of ITS is under development that can track particles in CAD geometries. Deterministic radiation transport codes that utilize an unstructured spatial mesh are also being devised. For electron transport, the authors are investigating second-order forms of the transport equations which, when discretized, yield symmetric positive definite matrices. A novel parallelization strategy, simultaneously solving for spatial and angular unknowns, has been applied to the even- and odd-parity forms of the transport equation on a 2D unstructured spatial mesh. Another second-order form, the self-adjoint angular flux transport equation, also shows promise for electron transport.

  6. Positron-impact ionization, positronium formation, and electronic excitation cross sections for diatomic molecules

    SciTech Connect

    Marler, J. P.; Surko, C. M.

    2005-12-15

    Absolute measurements are presented for the positron-impact cross sections for positronium formation, direct ionization, and total ionization of the diatomic molecules N{sub 2}, CO, and O{sub 2}, in the range of energies from threshold to 90 eV. Cross sections for the electronic excitation of the a {sup 1}{pi} and a{sup '} {sup 1}{sigma} state in N{sub 2} and the A {sup 1}{pi} state in CO near threshold are also presented. The experiment uses a cold, trap-based positron beam and the technique of studying positron scattering in a strong magnetic field. In O{sub 2}, a feature previously seen in the total ionization cross section is observed in both the positronium formation and total ionization cross sections. The possible origin of this feature and its relationship to positron-induced dissociation is discussed. In N{sub 2}, the near-threshold electronic excitation cross section is larger than that for positronium formation. This likely explains the relatively high efficiency of this molecule when used for buffer-gas positron trapping.

  7. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    DTIC Science & Technology

    2009-12-19

    coherent processes were sponsored by the NSF Quasi- monoenergetic MeV electron spectra emitted by an SiO2 plasma with (red) and without...adhering to the target surface. Aspects of this work that were directed toward neutron production were sponsored by the NRL. High-order

  8. Effect of q-nonextensive parameter and saturation time on electron density steepening in electron-positron-ion plasmas

    SciTech Connect

    Hashemzadeh, M.

    2015-11-15

    The effect of q-nonextensive parameter and saturation time on the electron density steepening in electron-positron-ion plasmas is studied by particle in cell method. Phase space diagrams show that the size of the holes, and consequently, the number of trapped particles strongly depends on the q-parameter and saturation time. Furthermore, the mechanism of the instability and exchange of energy between electron-positron and electric field is explained by the profiles of the energy density. Moreover, it is found that the q-parameter, saturation time, and electron and positron velocities affect the nonlinear evolution of the electron density which leads to the steepening of its structure. The q-nonextensive parameter or degree of nonextensivity is the relation between temperature gradient and potential energy of the system. Therefore, the deviation of q-parameter from unity indicates the degree of inhomogeneity of temperature or deviation from equilibrium. Finally, using the kinetic theory, a generalized q-dispersion relation is presented for electron-positron-ion plasma systems. It is found that the simulation results in the linear regime are in good agreement with the growth rate results obtained by the kinetic theory.

  9. Effect of q-nonextensive parameter and saturation time on electron density steepening in electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Hashemzadeh, M.

    2015-11-01

    The effect of q-nonextensive parameter and saturation time on the electron density steepening in electron-positron-ion plasmas is studied by particle in cell method. Phase space diagrams show that the size of the holes, and consequently, the number of trapped particles strongly depends on the q-parameter and saturation time. Furthermore, the mechanism of the instability and exchange of energy between electron-positron and electric field is explained by the profiles of the energy density. Moreover, it is found that the q-parameter, saturation time, and electron and positron velocities affect the nonlinear evolution of the electron density which leads to the steepening of its structure. The q-nonextensive parameter or degree of nonextensivity is the relation between temperature gradient and potential energy of the system. Therefore, the deviation of q-parameter from unity indicates the degree of inhomogeneity of temperature or deviation from equilibrium. Finally, using the kinetic theory, a generalized q-dispersion relation is presented for electron-positron-ion plasma systems. It is found that the simulation results in the linear regime are in good agreement with the growth rate results obtained by the kinetic theory.

  10. Evidence for a significant mixture of electron/positron pairs in FRII jets constrained by cocoon dynamics

    NASA Astrophysics Data System (ADS)

    Kawakatu, Nozomu; Kino, Motoki; Takahara, Fumio

    2016-03-01

    We examine the plasma composition of relativistic jets in four Fanaroff-Riley type II (FRII) radio galaxies by analysing the total cocoon pressure in terms of partial pressures of thermal and non-thermal electrons/positrons and protons. The total cocoon pressure is determined by cocoon dynamics via comparison of theoretical model with the observed cocoon shape. By inserting the observed number density of non-thermal electrons/positrons and the upper limit of thermal electron/positron number density into the equation of state, the number density of protons is constrained. We apply this method to four FRII radio galaxies (Cygnus A, 3C 219, 3C 223 and 3C 284), for which the total cocoon pressures have been already evaluated. We find that the positron-free plasma comprising protons and electrons is ruled out, when we consider plausible particle distribution functions. In other words, the mixture of positrons is required for all four FRII radio galaxies; the number density ratio of electrons/positrons to protons is larger than 2. Thus, we find that the plasma composition is independent of the jet power and the size of cocoons. We also investigate the additional contribution of thermal electrons/positrons and protons on the cocoon dynamics. When thermal electrons/positrons are absent, the cocoon is supported by the electron/proton plasma pressure, while both electron/positron pressure supported and electron/proton plasma pressure supported cocoons are allowed if the number density of thermal electrons/positrons is about 10 times larger than that of non-thermal ones.

  11. Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    NASA Astrophysics Data System (ADS)

    Aguilar, M.; Aisa, D.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bigongiari, G.; Bindi, V.; Bizzaglia, S.; Bizzarri, M.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Borsini, S.; Boschini, M. J.; Bourquin, M.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, H.; Cheng, G. M.; Chen, H. S.; Cheng, L.; Chikanian, A.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Cui, Z.; Dai, M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Di Masso, L.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Du, W. J.; Duranti, M.; D'Urso, D.; Eline, A.; Eppling, F. J.; Eronen, T.; Fan, Y. Y.; Farnesini, L.; Feng, J.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Gillard, W.; Giovacchini, F.; Goglov, P.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guandalini, C.; Guerri, I.; Guo, K. H.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Kossakowski, R.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; Kunz, S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. L.; Li, J. Q.; Li, Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, H.; Lomtadze, T.; Lu, M. J.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Majka, R.; Malinin, A.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Müller, M.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Postaci, E.; Putze, A.; Quadrani, L.; Qi, X. M.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Sbarra, C.; Schael, S.; Schmidt, S. M.; Schuckardt, D.; von Dratzig, A. Schulz; Schwering, G.; Scolieri, G.; Seo, E. S.; Shan, B. S.; Shan, Y. H.; Shi, J. Y.; Shi, X. Y.; Shi, Y. M.; Siedenburg, T.; Son, D.; Spada, F.; Spinella, F.; Sun, W.; Sun, W. H.; Tacconi, M.; Tang, C. P.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vaurynovich, S.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Wang, L. Q.; Wang, Q. L.; Wang, R. S.; Wang, X.; Wang, Z. X.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Wu, H.; Xia, X.; Xie, M.; Xie, S.; Xiong, R. Q.; Xin, G. M.; Xu, N. S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q. H.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, J. H.; Zhang, M. T.; Zhang, X. B.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; Zurbach, C.; AMS Collaboration

    2014-09-01

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ˜30 GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.

  12. Nonlinear space charge dynamics and modulational instability in the interaction of intense laser pulses with electron-positron plasmas

    NASA Astrophysics Data System (ADS)

    Hashemzadeh, M.; Niknam, A. R.

    2017-06-01

    Nonlinear space charge dynamics and modulational instability in the interaction between ultrashort, intense laser pulses and electron-positron pair plasmas are investigated taking into account the relativistic ponderomotive force and the relativistic mass of electrons and positrons. By coupling Maxwell's equations and hydrodynamic model, the electron and positron density distributions and the dispersion relation for the modulational instability are obtained. Moreover, two coupled nonlinear equations for the scalar and vector potentials are derived and numerically solved. The results show that the growth rate of instability increases with the decrease in the electron and positron temperatures. Moreover, it is shown that when the temperatures of electrons and positrons are not equal to each other, the profiles of scalar potential are similar to bright-like or dark-like solitons.

  13. Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station.

    PubMed

    Aguilar, M; Aisa, D; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Du, W J; Duranti, M; D'Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pedreschi, E; Pensotti, S; Pereira, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2014-09-19

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ∼30  GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.

  14. Linear electrostatic waves in two-temperature electron-positron plasmas

    NASA Astrophysics Data System (ADS)

    Lazarus, I. J.; Bharuthram, R.; Singh, S. V.; Pillay, S. R.; Lakhina, G. S.; Lakhina

    2012-12-01

    Linear electrostatic waves in a magnetized four-component, two-temperature electron-positron plasma are investigated, with the hot species having the Boltzmann density distribution and the dynamics of cooler species governed by fluid equations with finite temperatures. A linear dispersion relation for electrostatic waves is derived for the model and analyzed for different wave modes. Analysis of the dispersion relation for perpendicular wave propagation yields a cyclotron mode with contributions from both cooler and hot species, which in the absence of hot species goes over to the upper hybrid mode of cooler species. For parallel propagation, both electron-acoustic and electron plasma modes are obtained, whereas for a single-temperature electron-positron plasma, only electron plasma mode can exist. Dispersion characteristics of these modes at different propagation angles are studied numerically.

  15. A search for supersymmetric electrons with the Mark II detector at PEP (Positron Electron Project)

    SciTech Connect

    LeClaire, B.W.

    1987-10-01

    An experimental search for selectrons, the supersymmetric partner of the electron, has been performed at the PEP storage ring at SLAC using the Mark II detector. The experimental search done was based upon hypothetical reaction in e/sup +/e/sup -/ interactions at PEP center of mass energies of 29 GeV. In this reaction the selectrons, e-tilde, are assumed produced by the interaction of one of initial state electrons with a photon radiated from the other initial state electron. This latter electron is assumed to continue down the beam pipe undetected. The photon and electron then produce a selectron and a photino, ..gamma..-tilde, in the supersymmetric analog of Compton scattering. The photino is assumed to be the lightest supersymmetric particle, and as such, does not interact in the detector, thereby escaping detection very much like a neutrino. The selectron is assumed to immediately decay into an electron and photino. This electron is produced with large p perpendicular with respect to the beam pipe, since it must balance the transverse momentum carried off by the photinos. Thus, the experimental signature of the process is a single electron in the detector with a large unbalanced tranverse momentum. No events of this type were observed in the original search of 123 pb/sup -1/ of data, resulting in a cross section limit of less than 2.4 x 10/sup -2/ pb (at the 95% CL) within the detector acceptance. This cross section upper limit applies to any process which produces anomalous single electron events with missing transverse momentum. When interpreted as a supersymmetry search it results in a lower selectron mass limit of 22.2 GeV/c/sup 2/ for the case of massless photinos. Limits for non-zero mass photinos have been calculated. 87 refs., 67 figs., 17 tabs.

  16. Theory of photon and electron induced reactions

    SciTech Connect

    Onley, D.S.; Wright, L.E.

    1992-01-01

    During the first year and half of the current grant from the Department of Energy we have made considerable progress on the following aspects of the general investigation of electron and photon induced reactions: (1) photo- and electro-production of mesons; (2) Coulomb distortion effects on (e,e{prime}{gamma}) and (e,e{prime}) and (e,e{prime}p) in the quasi-elastic region, (3) studies involving the relativistic shell model, and (4) quark models. We will report on each of these developments in this paper.

  17. Solitons and shocks in dense astrophysical magnetoplasmas with relativistic degenerate electrons and positrons

    SciTech Connect

    Ali, S.; Ata-ur-Rahman

    2014-04-15

    The linear and nonlinear properties of the ion-acoustic (IA) waves are investigated in a relativistically degenerate magnetoplasma, whose constituents are the electrons, positrons, and ions. The electrons and positrons are assumed to obey the Fermi-Dirac statistics, whereas the cold ions are taken to be inertial and magnetized. In linear analysis, various limiting cases are discussed both analytically and numerically. However, for nonlinear studies, the well-known reductive perturbation technique is employed to derive the Zakharov-Kuznetsov and Zakharov-Kuznetsov Burgers equations in the presence of relativistically degenerate electrons and positrons. Furthermore, with the use of hyperbolic tangent method, the equations are simplified to admit the soliton and shock wave solutions. Numerically, it is shown that the amplitude, width, and phase speed associated with the localized IA solitons and shocks are significantly influenced by the various intrinsic plasma parameters relevant to our model. The present analysis can be useful for understanding the collective processes in dense astrophysical environments like neutron stars, where the electrons and positrons are expected to be relativistic and degenerate.

  18. Tuning laser produced electron-positron jets for lab-astrophysics experiment

    SciTech Connect

    Chen, Hui; Fiuza, F.; Hazi, A.; Kemp, A.; Link, A.; Pollock, B.; Marley, E.; Nagel, S. R.; Park, J.; Schneider, M.; Shepherd, R.; Tommasini, R.; Wilks, S. C.; Williams, G. J.; Barnak, D.; Chang, P-Y.; Fiksel, G.; Glebov, V.; Meyerhofer, D. D.; Myatt, J. F.; Stoeckel, C.; Nakai, M.; Arikawa, Y.; Azechi, H.; Fujioka, S.; Hosoda, H.; Kojima, S.; Miyanga, N.; Morita, T.; Moritaka, T.; Nagai, T.; Namimoto, T.; Nishimura, H.; Ozaki, T.; Sakawa, Y.; Takabe, H.; Zhang, Z.

    2015-02-23

    This paper reviews the experiments on the laser produced electron-positron jets using large laser facilities worldwide. The goal of the experiments was to optimize the parameter of the pair jets for their potential applications in laboratory-astrophysical experiment. Results on tuning the pair jet’s energy, number, emittance and magnetic collimation will be presented.

  19. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    SciTech Connect

    Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.

    2015-11-15

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  20. Roles of superthermal electrons and positrons on positron-acoustic solitary waves and double layers in electron–positron–ion plasmas

    SciTech Connect

    Alam, M. S.; Uddin, M. J.; Mamun, A. A.; Masud, M. M.

    2014-09-01

    Positron-acoustic (PA) solitary waves (SWs) and double layers (DLs) in four-component plasmas consisting of immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated both numerically and analytically by deriving Korteweg–de Vries (K-dV), modified K-dV (mK-dV), and Gardner equations along with their DLs solutions using the reductive perturbation method. It is examined that depending on the plasma parameters, the K-dV SWs, Gardner SWs, and DLs support either compressive or rarefactive structures, whereas mK-dV SWs support only compressive structure. It is also found that the presence of superthermal (kappa distributed) hot positrons and hot electrons significantly modify the basic features of PA SWs as well as PA DLs. Besides, the critical number density ratio of hot positrons and cold positrons play an important role in the polarity of PA SWs and DLs. The implications of our results in different space as well as laboratory plasma environments are briefly discussed.

  1. On the fully nonlinear acoustic waves in a plasma with positrons beam impact and superthermal electrons

    SciTech Connect

    Ali Shan, S.; El-Tantawy, S. A.; Moslem, W. M.

    2013-08-15

    Arbitrary amplitude ion-acoustic waves in an unmagnetized plasma consisting of cold positive ions, superthermal electrons, and positrons beam are reported. The basic set of fluid equations is reduced to an energy-balance like equation. The latter is numerically analyzed to examine the existence regions for solitary and shock waves. It is found that only solitary waves can propagate, however, the model cannot support shocks. The effects of superthermality and beam parameters (via, positrons concentration and streaming velocity) on the existence region, as well as solitary wave profile have been discussed.

  2. Vibrational excitation and vibrationally resolved electronic excitation cross sections of positron-H2 scattering

    NASA Astrophysics Data System (ADS)

    Zammit, Mark; Fursa, Dmitry; Savage, Jeremy; Bray, Igor

    2016-09-01

    Vibrational excitation and vibrationally resolved electronic excitation cross sections of positron-H2 scattering have been calculated using the single-centre molecular convergent close-coupling (CCC) method. The adiabatic-nuclei approximation was utilized to model the above scattering processes and obtain the vibrationally resolved positron-H2 scattering length. As previously demonstrated, the CCC results are converged and accurately account for virtual and physical positronium formation by coupling basis functions with large orbital angular momentum. Here vibrationally resolved integrated and differential cross sections are presented over a wide energy range and compared with previous calculations and available experiments. Los Alamos National Laboratory and Curtin University.

  3. Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons

    SciTech Connect

    Hugenschmidt, Christoph; Legl, Stefan

    2006-10-15

    Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter and a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1 eV at high electron energies up to E{approx_equal}1000 eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube.

  4. Low energy lepton scattering -- recent results for electron and positron interactions

    NASA Astrophysics Data System (ADS)

    Sullivan, J. P.; Vizcaino, V.; Mondal, S.; Lower, J. C.; Jones, A.; Caradonna, P.; Makochekanwa, C.; Buckman, S. J.

    2008-07-01

    The interaction of low energy electrons with atoms, molecules and materials underpin a large number of technological, environmental and biomedical processes that impact on our everyday lives. Many of these areas have been well studied over the years and in some cases a large body of important and relevant cross section data has been gathered to assist in the understanding and development of the technology or phenomena. A perfect example of this is the area of low energy gaseous electronics where microscopic cross section information for a whole host of scattering processes (vibrational and electronic excitation, dissociation, ionization) have been critical to an understanding of the macroscopic behaviour of a range of gas discharge environments -- large area plasma processing discharges being a case in point. More recently there has been a realisation that fundamental information about both low energy electron and positron interactions also have significant bearing on issues of radiation damage in biological materials. Low energy electrons have been shown to cause significant damage to DNA strands, for instance, as a result of processes such as dissociative attachment -- a process which can occur at energies down to 0 eV. These processes result from the production of copious low energy electrons (< 20 eV) when high energy ionizing radiation thermalises in the body. This realisation has provided an enormous boost to the field of low energy electron physics and spawned an enormous number of new studies of interactions with biologically relevant molecules. In a similar fashion, low energy positron interactions are thought to be fundamentally important for an understanding of the atomic and molecular processes that underpin technologies such as Positron Emission Tomography (PET). PET scans image the coincident 511 keV gamma-rays that arise form the annihilation of an electron-positron pair. During a PET scan, high energy positrons thermalise in the body through

  5. Second-order Born approximation for the ionization of molecules by electron and positron impact

    SciTech Connect

    Dal Cappello, C.; Rezkallah, Z.; Houamer, S.; Charpentier, I.; Hervieux, P. A.; Ruiz-Lopez, M. F.; Dey, R.; Roy, A. C.

    2011-09-15

    Second-order Born approximation is applied to study the ionization of molecules. The initial and final states are described by single-center wave functions. For the initial state a Gaussian wave function is used while for the ejected electron it is a distorted wave. Results of the present model are compared with recent (e,2e) experiments on the water molecule. Preliminary results are also presented for the ionization of the thymine molecule by electrons and positrons.

  6. Observation of Magnetic Resonances in Electron Clouds in a Positron Storage Ring

    SciTech Connect

    Pivi, M.T.F.; Ng, J.S.T.; Cooper, F.; Kharakh, D.; King, F.; Kirby, R.E.; Kuekan, B.; Spencer, Cherrill M.; Raubenheimer, T.O.; Wang, L.F.; /SLAC

    2011-08-24

    The first experimental observation of magnetic resonances in electron clouds is reported. The resonance was observed as a modulation in cloud intensity for uncoated as well as TiN-coated aluminum surfaces in the positron storage ring of the PEP-II collider at SLAC. Electron clouds frequently arise in accelerators of positively charged particles, and severely impact the machines performance. The TiN coating was found to be an effective remedy, reducing the cloud intensity by three orders of magnitude.

  7. Second-order Born approximation for the ionization of molecules by electron and positron impact

    NASA Astrophysics Data System (ADS)

    Dal Cappello, C.; Rezkallah, Z.; Houamer, S.; Charpentier, I.; Hervieux, P. A.; Ruiz-Lopez, M. F.; Dey, R.; Roy, A. C.

    2011-09-01

    Second-order Born approximation is applied to study the ionization of molecules. The initial and final states are described by single-center wave functions. For the initial state a Gaussian wave function is used while for the ejected electron it is a distorted wave. Results of the present model are compared with recent (e,2e) experiments on the water molecule. Preliminary results are also presented for the ionization of the thymine molecule by electrons and positrons.

  8. Electron and photon identification in the D0 experiment

    SciTech Connect

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrina, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, V. N.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M. -A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Raja, R.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2014-06-01

    The electron and photon reconstruction and identification algorithms used by the D0 Collaboration at the Fermilab Tevatron collider are described. The determination of the electron energy scale and resolution is presented. Studies of the performance of the electron and photon reconstruction and identification are summarized.

  9. Coherent pair creation as a positron source for linear colliders

    SciTech Connect

    Chen, P. ); Palmer, R.B. Brookhaven National Lab., Upton, NY )

    1992-11-01

    We propose a positron source for future linear colliders which uses the mechanism of coherent pair creation process from the collision of a high energy electron beam and a monochromatic photon beam. We show that there is a sharp spike in the pair-produced positron energy spectrum at an energy much lower than the primary beam energy. The transverse emittance is damped'', yielding final positrons with lower normalized emittance than the initial electrons. Numerical examples invoking conventional lasers and Free Electron Lasers (FEL) for the photon beams are considered.

  10. Coherent pair creation as a positron source for linear colliders

    SciTech Connect

    Chen, P.; Palmer, R.B. |

    1992-11-01

    We propose a positron source for future linear colliders which uses the mechanism of coherent pair creation process from the collision of a high energy electron beam and a monochromatic photon beam. We show that there is a sharp spike in the pair-produced positron energy spectrum at an energy much lower than the primary beam energy. The transverse emittance is ``damped``, yielding final positrons with lower normalized emittance than the initial electrons. Numerical examples invoking conventional lasers and Free Electron Lasers (FEL) for the photon beams are considered.

  11. Orientation dependence of relativistic-positron annihilation in single crystals

    SciTech Connect

    Kalashnikov, N. P.; Mazur, E. A. Olchak, A. S.

    2016-05-15

    An effect of the orientation dependence of the cross section for the single-photon annihilation of relativistic positrons with atomic electrons in a crystal is predicted. It is shown that the probability for the single-photon annihilation of a channeled positron in a crystal may be either suppressed in a crystal in relation to a homogeneous medium or, on the contrary, enhanced. The reason is that, depending on their incidence angle, the positrons may be either in the vicinity of ion planes of the crystal, where the electron density is higher, or far away from them, where the electron density is lower.

  12. Magnetic fields with photon beams: dose calculation using electron multiple-scattering theory.

    PubMed

    Jette, D

    2000-08-01

    Strong transverse magnetic fields can produce large dose enhancements and reductions in localized regions of a patient under irradiation by a photon beam. We have developed a new equation of motion for the transport of charged particles in an arbitrary magnetic field, incorporating both energy loss and multiple scattering. Key to modeling the latter process is a new concept, that of "typical scattered particles." The formulas which we have arrived at are particularly applicable to the transport of, and deposition of energy by, Compton electrons and pair-production electrons and positrons generated within a medium by a photon beam, and we have shown qualitatively how large dose enhancements and reductions can occur. A companion article examines this dose modification effect through systematic Monte Carlo simulations.

  13. Bound-free electron-positron pair production in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Şengül, M. Y.; Güçlü, M. C.; Fritzsche, S.

    2009-10-01

    The bound-free electron-positron pair production is considered for relativistic heavy ion collisions. In particular, cross sections are calculated for the pair production with the simultaneous capture of the electron into the 1s ground state of one of the ions and for energies that are relevant for the relativistic heavy ion collider and the large hadron colliders. In the framework of perturbation theory, we applied Monte Carlo integration techniques to compute the lowest-order Feynman diagrams amplitudes by using Darwin wave functions for the bound states of the electrons and Sommerfeld-Maue wave functions for the continuum states of the positrons. Calculations were performed especially for the collision of Au+Au at 100 GeV/nucleon and Pb+Pb at 3400 GeV/nucleon.

  14. Interaction of two solitary waves in quantum electron-positron-ion plasma

    SciTech Connect

    Xu Yanxia; Lin Maimai; Shi Yuren; Duan Wenshan; Liu Zongming; Chen Jianmin

    2011-05-15

    The collision between two ion-acoustic solitary waves with arbitrary colliding angle {theta} in an unmagnetized, ultracold quantum three-component e-p-i plasma has been investigated. By using the extended Poincare-Lighthill-Kuo (PLK) perturbation method, we obtain the KdV equations and the analytical phase shifts after the collision of two solitary waves in this three-component plasma. The effects of the quantum parameter H, the ratio of Fermi positron temperature to Fermi electron temperature {sigma}, the ratio of Fermi positron number density to Fermi electron number density {mu}, and the ratio of Fermi ion temperature to Fermi electron temperature {rho} on the phase shifts are studied. It is found that these parameters can significantly influence the phase shifts of the solitons.

  15. Jeans instability in a degenerate electron-positron-ion and classical dusty plasma

    NASA Astrophysics Data System (ADS)

    Rozina, Ch.; Tsintsadze, N. L.; Khadija, A.

    2017-08-01

    We follow the quantum hydrodynamic model to study the newly suggested problem of Jeans instability in collisionless self-gravitating multicomponent, dense, astrophysical quantum plasmas. Here, the quantum effects appear through the quantum diffraction and Fermi pressure, whereas the quantum statistical effects are important only for degenerate electron-positron- ion and dust being the heaviest is treated as classical. We have obtained dispersion relations for three particular plasmas; every time, Fermi pressure is found to be numerically larger than the quantum diffraction term which tends to stabilize Jeans instability even more than the Madelung term. The Jeans critical wave number and the corresponding critical mass are defined for particular plasmas. We have displayed our results numerically and have shown that the gravitational instability of quantum electron-ion-dust plasmas and electron-positron-dust plasmas is achieved by increasing both the number density and mass of the dust grains. Moreover, the degeneracy quantum corrections effectively stabilizing the Jeans instability was focused.

  16. Ion-acoustic nonlinear periodic waves in electron-positron-ion plasma

    SciTech Connect

    Chawla, J. K.; Mishra, M. K.

    2010-10-15

    Ion-acoustic nonlinear periodic waves, namely, ion-acoustic cnoidal waves have been studied in electron-positron-ion plasma. Using reductive perturbation method and appropriate boundary condition for nonlinear periodic waves, the Korteweg-de Vries (KdV) equation is derived for the system. The cnoidal wave solution of the KdV equation is discussed in detail. It is found that the frequency of the cnoidal wave is a function of its amplitude. It is also found that the positron concentration modifies the properties of the ion-acoustic cnoidal waves. The existence regions for ion-acoustic cnoidal wave in the parameters space (p,{sigma}), where p and {sigma} are the positron concentration and temperature ratio of electron to positron, are discussed in detail. In the limiting case these ion-acoustic cnoidal waves reduce to the ion-acoustic soliton solutions. The effect of other parameters on the characteristics of the nonlinear periodic waves is also discussed.

  17. Linear tearing modes in an electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Guiliang, SONG; Huishan, CAI

    2017-04-01

    The general dispersion of tearing modes due to the effects of electron inertia and resistivity in pair plasmas is derived analytically, and is discussed in two cases: \\bigtriangleup \\prime \\gg 1 and \\bigtriangleup \\prime \\ll 1, where {{Δ }}\\prime is the instability criterion of the tearing mode. It is found that the conditions under which either resistivity or electron inertia dominates depend strongly on the limit of {{Δ }}\\prime considered.

  18. Positron lifetime studies on 8 MeV electron-irradiated n-type 6H silicon carbide

    NASA Astrophysics Data System (ADS)

    Lam, C. H.; Lam, T. W.; Ling, C. C.; Fung, S.; Beling, C. D.; De-Sheng, Hang; Huimin, Weng

    2004-11-01

    The positron lifetime technique was employed to study vacancy-type defects in 8 MeV electron-irradiated n-type 6H silicon carbide. A long-lifetime component having a characteristic lifetime of 223-232 ps was observed in the irradiated sample and was attributed to the VCVSi divacancy. Other positron traps, which dominated at low temperatures, were observed to compete with the VCVSi for trapping positrons. A positron trapping model involving a positron shallow trap, a negatively charged monovacancy and the VCVSi divacancy was found to give a good description of the temperature-dependent positron lifetime data of the 1200 °C annealed sample. The identity of the monovacancy could not be unambiguously determined, but its lifetime was found to be in the range 160-172 ps.

  19. Means and method for calibrating a photon detector utilizing electron-photon coincidence

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K. (Inventor)

    1984-01-01

    An arrangement for calibrating a photon detector particularly applicable for the ultraviolet and vacuum ultraviolet regions is based on electron photon coincidence utilizing crossed electron beam atom beam collisions. Atoms are excited by electrons which lose a known amount of energy and scatter with a known remaining energy, while the excited atoms emit photons of known radiation. Electrons of the known remaining energy are separated from other electrons and are counted. Photons emitted in a direction related to the particular direction of scattered electrons are detected to serve as a standard. Each of the electrons is used to initiate the measurements of a time interval which terminates with the arrival of a photon exciting the photon detector. Only the number of time intervals related to the coincidence correlation and of electrons scattered in the particular direction with the known remaining energy and photons of a particular radiation level emitted due to the collisions of such scattered electrons are counted. The detector calibration is related to the number of counted electrons and photons.

  20. The possibilities of simultaneous detection of gamma rays, cosmic-ray electrons and positrons on the GAMMA-400 space observatory

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Aptekar, R. L.; Arkhangelskaya, I. V.; Boezio, M.; Bonvicini, V.; Dolgoshein, B. A.; Farber, M. O.; Fradkin, M. I.; Gecha, V. Ya.; Kachanov, V. A.; Kaplin, V. A.; Mazets, E. P.; Menshenin, A. L.; Picozza, P.; Prilutskii, O. F.; Rodin, V. G.; Runtso, M. F.; Spillantini, P.; Suchkov, S. I.; Topchiev, N. P.; Vacchi, A.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.

    2011-02-01

    The GAMMA-400 space observatory will provide precise measurements of gamma rays, electrons, and positrons in the energy range 0.1-3000 GeV. The good angular and energy resolutions, as well as identification capabilities (angular resolution ~0.01°, energy resolution ~1%, and proton rejection factor ~106) will allow us to study the main galactic and extragalactic sources, diffuse gamma-ray background, gamma-ray bursts, and to measure electron and positron fluxes. The peculiar characteristics of the experiment is simultaneous detection of gamma rays and cosmic-ray electrons and positrons, which can be connected with annihilation or decay of dark matter particles.

  1. Prototyping of the ILC Baseline Positron Target

    SciTech Connect

    Gronberg, J; Brooksby, C; Piggott, T; Abbott, R; Javedani, J; Cook, E

    2012-02-29

    The ILC positron system uses novel helical undulators to create a powerful photon beam from the main electron beam. This beam is passed through a titanium target to convert it into electron-positron pairs. The target is constructed as a 1 m diameter wheel spinning at 2000 RPM to smear the 1 ms ILC pulse train over 10 cm. A pulsed flux concentrating magnet is used to increase the positron capture efficiency. It is cooled to liquid nitrogen temperatures to maximize the flatness of the magnetic field over the 1 ms ILC pulse train. We report on prototyping effort on this system.

  2. Nonlinear dust-acoustic structures in space plasmas with superthermal electrons, positrons, and ions

    NASA Astrophysics Data System (ADS)

    Saberian, E.; Esfandyari-Kalejahi, A.; Afsari-Ghazi, M.

    2017-01-01

    Some features of nonlinear dust-acoustic (DA) structures are investigated in a space plasma consisting of superthermal electrons, positrons, and positive ions in the presence of negatively charged dust grains with finite-temperature by employing a pseudo-potential technique in a hydrodynamic model. For this purpose, it is assumed that the electrons, positrons, and ions obey a kappa-like (κ) distribution in the background of adiabatic dust population. In the linear analysis, it is found that the dispersion relation yield two positive DA branches, i.e., the slow and fast DA waves. The upper branch (fast DA waves) corresponds to the case in which both (negatively charged) dust particles and (positively charged) ion species oscillate in phase with electrons and positrons. On the other hand, the lower branch (slow DA waves) corresponds to the case in which only dust particles oscillate in phase with electrons and positrons, while ion species are in antiphase with them. On the other hand, the fully nonlinear analysis shows that the existence domain of solitons and their characteristics depend strongly on the dust charge, ion charge, dust temperature, and the spectral index κ. It is found that the minimum/maximum Mach number increases as the spectral index κ increases. Also, it is found that only solitons with negative polarity can propagate and that their amplitudes increase as the parameter κ increases. Furthermore, the domain of Mach number shifts to the lower values, when the value of the dust charge Z d increases. Moreover, it is found that the Mach number increases with an increase in the dust temperature. Our analysis confirms that, in space plasmas with highly charged dusts, the presence of superthermal particles (electrons, positrons, and ions) may facilitate the formation of DA solitary waves. Particularly, in two cases of hydrogen ions H+ ( Z i = 1) and doubly ionized Helium atoms He2+ ( Z i = 2), the mentioned results are the same. Additionally, the

  3. Manipulation of electronic states and photonic states in nanosilicon

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Qi; Huang, Zhong-Mei; Miao, Xin-Jian; Qin, Chao-Jian; Lv, Quan

    2014-04-01

    On different size hierarchy, period symmetry provides energy band structure, and symmetry breaking produces localized states in gap, for example nanostructures open electronic band gap by confining electrons, but defects in symmetry system produce localized electronic states in gap. The experimental results demonstrate that controlling localized states in gap by changing passivation environment can manipulate emission wavelength, such as stimulated emission at 700 nm due to oxygen passivation and enhanced electroluminescence near 1600 nm due to ytterbium passivation on nanosilicon. In same way, modulating filling fraction and period parameters in photonic crystal enlarges width of photonic band gap (PBG) by confining photons. Symmetry breaking due to defects is effective in manipulating photonic states. New applications for selecting modes in nanolaser and for building single photon source in quantum information are explored by manipulating and coupling between electronic states and photonic states.

  4. Polarized Positrons at a Future Linear Collider and the Final Focus Test Beam

    SciTech Connect

    Weidemann, A

    2004-07-28

    Having both the positron and electron beams polarized in a future linear e{sup +}e{sup -} collider is a decisive improvement for many physics studies at such a machine. The motivation for polarized positrons, and a demonstration experiment for the undulator-based production of polarized positrons are reviewed. This experiment (E-166) uses the 50 GeV Final Focus Test electron beam at SLAC with a 1 m-long helical undulator to make {approx} 10MeV polarized photons. These photons are then converted in a thin ({approx} 0.5 radiation length) target into positrons (and electrons) with about 50% polarization.

  5. Electron- and positron-molecule scattering: development of the molecular convergent close-coupling method

    NASA Astrophysics Data System (ADS)

    Zammit, Mark C.; Fursa, Dmitry V.; Savage, Jeremy S.; Bray, Igor

    2017-06-01

    Starting from first principles, this tutorial describes the development of the adiabatic-nuclei convergent close-coupling (CCC) method and its application to electron and (single-centre) positron scattering from diatomic molecules. We give full details of the single-centre expansion CCC method, namely the formulation of the molecular target structure; solving the momentum-space coupled-channel Lippmann-Schwinger equation; deriving adiabatic-nuclei cross sections and calculating V-matrix elements. Selected results are presented for electron and positron scattering from molecular hydrogen H2 and electron scattering from the vibrationally excited molecular hydrogen ion {{{H}}}2+ and its isotopologues (D2 +, {{{T}}}2+, HD+, HT+ and TD+). Convergence in both the close-coupling (target state) and projectile partial-wave expansions of fixed-nuclei electron- and positron-molecule scattering calculations is demonstrated over a broad energy-range and discussed in detail. In general, the CCC results are in good agreement with experiments.

  6. Heavy ion-acoustic rogue waves in electron-positron multi-ion plasmas

    NASA Astrophysics Data System (ADS)

    Chowdhury, N. A.; Mannan, A.; Hasan, M. M.; Mamun, A. A.

    2017-09-01

    The nonlinear propagation of heavy-ion-acoustic (HIA) waves (HIAWs) in a four-component multi-ion plasma (containing inertial heavy negative ions and light positive ions, as well as inertialess nonextensive electrons and positrons) has been theoretically investigated. The nonlinear Schrödinger (NLS) equation is derived by employing the reductive perturbation method. It is found that the NLS equation leads to the modulational instability (MI) of HIAWs, and to the formation of HIA rogue waves (HIARWs), which are due to the effects of nonlinearity and dispersion in the propagation of HIAWs. The conditions for the MI of HIAWs and the basic properties of the generated HIARWs are identified. It is observed that the striking features (viz., instability criteria, growth rate of MI, amplitude and width of HIARWs, etc.) of the HIAWs are significantly modified by the effects of nonextensivity of electrons and positrons, the ratio of light positive ion mass to heavy negative ion mass, the ratio of electron number density to light positive ion number density, the ratio of electron temperature to positron temperature, etc. The relevancy of our present investigation to the observations in space (viz., cometary comae and earth's ionosphere) and laboratory (viz., solid-high intense laser plasma interaction experiments) plasmas is pointed out.

  7. Toward tests of QED and CPT with improved electron and positron g-factor measurements

    NASA Astrophysics Data System (ADS)

    Novitski, Elise; Dorr, Joshua; Fogwell Hoogerheide, Shannon; Gabrielse, Gerald

    2013-05-01

    We describe progress toward improved measurements of the electron and positron g-factors using quantum jump spectroscopy between the lowest quantum states of either particle trapped in a 100 mK cylindrical Penning trap. In a new apparatus--designed for improved stability and a better geometry for cavity-assisted sideband cooling--we have trapped a single electron, driven and observed single cyclotron transitions, and trapped positrons in a loading trap. This should enable measurements of both g-factors with better than the 0.28 ppt precision of the best electron value (the most precise measurement of a fundamental property of an elementary particle), thereby improving the positron value by a factor of more than 15., These measurements, in combination with QED theory relating the electron g-factor to α, will improve on the most precise determination of α, the fine structure constant. The comparison of this value with an independent measurement of α is the most precise test of QED. The comparison of the e- and e+ g-factors will improve upon the best test of CPT symmetry in a lepton system. This work is supported by the NSF

  8. Compton scattering of blackbody photons by relativistic electrons

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej A.; Pjanka, Patryk

    2013-12-01

    We present simple and accurate analytical formulas for the rates of Compton scattering by relativistic electrons integrated over the energy distribution of blackbody seed photons. Both anisotropic scattering, in which blackbody photons arriving from one direction are scattered by an anisotropic electron distribution into another direction, and scattering of isotropic seed photons are considered. Compton scattering by relativistic electrons off blackbody photons from either stars or cosmic microwave background takes place, in particular, in microquasars, colliding-wind binaries, supernova remnants, interstellar medium and the vicinity of the Sun.

  9. Electron and photon emissions from gold nanoparticles irradiated by X-ray photons

    NASA Astrophysics Data System (ADS)

    Casta, R.; Champeaux, J.-P.; Moretto-Capelle, P.; Sence, M.; Cafarelli, P.

    2015-01-01

    In this paper, we develop a totally new probabilistic model for the electron and photon emission of gold nanoparticles irradiated by X-ray photons. This model allows direct applications to recent researches about the radiotherapy enhancement by gold nanoparticles in the context of cancer treatment. Our model uses, in a complete original way, simulated Auger cascade and stopping power to compute electron emission spectra, photon emission spectra and released energy inside the material of gold nanoparticles. It allows us to present new results about the electron and photon emission of gold nanoparticle irradiated by hard X-rays.

  10. Polarization tensor of a photon in an electric field

    NASA Astrophysics Data System (ADS)

    Katkov, V. M.

    2017-07-01

    The polarization operator is investigated at arbitrary photon energy in a constant and homogeneous electric field of the strength E. When the photon energy is less than the vacuum energy = eEℏ / mc , the found probability describes the absorption of a soft photon by virtual electron and positron in an electric field. At this energy, the main contribution to the probability gives the process of the absorption of a soft photon by real electron and positron produced by an electric field.

  11. Cross section for production of low-energy electron-positron pairs by relativistic heavy ions

    NASA Technical Reports Server (NTRS)

    Eby, P. B.

    1991-01-01

    Starting with the lowest-order unscreened QED matrix element for electron-positron pair production by heavy charged particles, the paper calculates the cross section for this process differential in all independent variables and valid for all pair energies small compared to the incident particle energy. Integration over the possible emission angles of one of the pair members gives an expression that is valid for low-energy pairs that can be compared with previous work based on the Weizsaecker-Williams method. Integration over the possible angles of the other pair member then yields an expression identical to one derived by Racah. The high energy-transfer limit of the expression for the cross section integrated over electron and positron angles is found to be identical to that of Kelner in the unscreened case.

  12. Feasibility study of TPC at electron positron colliders at Z pole operation

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Ruan, M.; Qi, H.; Gao, Y.

    2017-07-01

    TPC is a promising technology for the future electron positron colliders. However, its application might be limited at high event rate and high hit occupancies. In this paper, we study the feasibility of using TPC at the circular electron positron collider (CEPC) at Z pole using full simulated Z→ qbar q samples, by evaluating the local charge density and voxel occupancy at different TPC parameters. Our study shows that the TPC could be applied to the CEPC Z pole operation if back flow ion is controlled to per mille level. We also find that the distortion is considerable for the FCC-ee Z pole operation. And a few approaches are proposed to reduce the distortion.

  13. Magnetic field induced by strong transverse plasmons in ultra-relativistic electron-positron plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Li, X. Q.; Liu, S. Q.

    2012-08-01

    Context. We investigated the generation of localized magnetic fields in an ultra-relativistic non-isothermal electron-positron plasma by strong electromagnetic plasmons. Aims: The results obtained can be used to explain the origin of small-scale magnetic fields in the internal shock region of gamma-ray bursts with ultra-relativistic electron positron plasmas. Methods: The generation of magnetic fields was investigated with kinetic Vlasov Maxwell equations. Results: The self-generated magnetic field will collapse for modulation instability, leading to spatially highly intermittent magnetic fluxes, whose characteristic scale is much larger than relativistic plasma skin depth, which in turn is conducive to the generation of the long-life small-scale magnetic fields in the internal shock region of gamma-ray bursts.

  14. Monte Carlo analysis of electron-positron pair creation by powerful laser-ion impact

    SciTech Connect

    Kaminski, J. Z.; Krajewska, K.; Ehlotzky, F.

    2006-09-15

    We consider electron-positron pair creation by the impact of very powerful laser pulses with highly charged ions. In contrast to our foregoing work with rather limited angular configurations of pair creation, we extend these calculations to even higher laser intensities, and we use the Monte Carlo method to numerically analyze the rates of pair creation for arbitrary angular distributions. We also evaluate the intensity dependence of the total rates of pair creation. Thus we demonstrate that our laser-induced process shows stabilization, because beyond a specific laser power the total rates of pair creation decreases. Our analysis of the angular distributions of the created electron-positron pairs leads to the conclusion that pairs are predominantly emitted in the direction of laser pulse propagation.

  15. Self-assembled Nanomaterials for Hybrid Electronic and Photonic Systems

    DTIC Science & Technology

    2015-05-15

    Self-assembled Nanomaterials for Hybrid Electronic and Photonic Systems This grant studied DNA nanostructures and their applications in a variety of...Number of Papers published in non peer-reviewed journals: Final Report: Self-assembled Nanomaterials for Hybrid Electronic and Photonic Systems Report

  16. Dust ion acoustic solitary structures in presence of nonthermally distributed electrons and positrons

    NASA Astrophysics Data System (ADS)

    Paul, Ashesh; Bandyopadhyay, Anup; Das, K. P.

    2017-01-01

    The purpose of this paper is to extend the recent work of Paul and Bandyopadhyay [Astrophys. Space Sci. 361, 172 (2016)] on the existence of different dust ion acoustic solitary structures in an unmagnetized collisionless dusty plasma consisting of negatively charged static dust grains, adiabatic warm ions, nonthermal electrons, and isothermal positrons in a more generalized form by considering nonthermal positrons instead of isothermal positrons. The present system supports both positive and negative potential double layers, coexistence of solitary waves of both polarities, and positive potential supersolitons. The qualitative and quantitative changes in existence domains of different solitary structures, which occur in the presence of nonthermal positrons, have been presented in comparison with the results of Paul and Bandyopadhyay [Astrophys. Space Sci. 361, 172 (2016)]. The formation of supersoliton structures and their limitations has been analyzed with the help of phase portraits of the dynamical system corresponding to the dust ion acoustic solitary structures. Phase portrait analysis clearly indicates a smooth transition between solitons and supersolitons.

  17. RELATIVISTIC POSITRON-ELECTRON-ION SHEAR FLOWS AND APPLICATION TO GAMMA-RAY BURSTS

    SciTech Connect

    Liang, Edison; Fu, Wen; Smith, Ian; Roustazadeh, Parisa; Boettcher, Markus

    2013-12-20

    We present particle-in-cell simulation results of relativistic shear flows for hybrid positron-electron-ion plasmas and compare to those for pure e {sup +} e {sup –} and pure e {sup –} ion plasmas. Among the three types of relativistic shear flows, we find that only hybrid shear flow is able to energize the electrons to form a high-energy spectral peak plus a hard power law tail. Such electron spectra are needed to model the observational properties of gamma-ray bursts.

  18. AMS-02 positron excess: New bounds on dark matter models and hint for primary electron spectrum hardening

    NASA Astrophysics Data System (ADS)

    Feng, Lei; Yang, Rui-Zhi; He, Hao-Ning; Dong, Tie-Kuang; Fan, Yi-Zhong; Chang, Jin

    2014-01-01

    The data collected by ATIC, CREAM and PAMELA all display remarkable cosmic ray nuclei spectrum hardening above the magnetic rigidity ∼240 GV. One natural speculation is that the primary electron spectrum also gets hardened (possibly at ∼80 GV) and the hardening partly accounts for the electron/positron total spectrum excess discovered by ATIC, HESS and Fermi-LAT. If it is the case, the increasing behavior of the subsequent positron-to-electron ratio will get flattened and the spectrum hardening should be taken into account in the joint fit of the electron/positron data otherwise the inferred parameters will be biased. Our joint fits of the latest AMS-02 positron fraction data together with the PAMELA/Fermi-LAT electron/positron spectrum data suggest that the primary electron spectrum hardening is needed in most though not all modelings. The bounds on dark matter models have also been investigated. In the presence of spectrum hardening of primary electrons, the amount of dark-matter-originated electron/positron pairs needed in the modeling is smaller. Even with such a modification, the annihilation channel χχ→μ+μ- has been tightly constrained by the Fermi-LAT Galactic diffuse emission data. The decay channel χ→μ+μ- is found to be viable.

  19. Electron Positron Proton Spectrometer for use at Laboratory for Laser Energetics

    SciTech Connect

    Ayers, S L

    2010-04-07

    The Electron Positron Proton Spectrometer (EPPS) is mounted in a TIM (Ten-Inch Manipulator) system on the Omega-60 or Omega-EP laser facilities at the University of Rochester, Laboratory for Laser Energetics (LLE), when in use, see Fig. 1. The Spectrometer assembly, shown in Fig. 2, is constructed of a steel box containing magnets, surrounded by Lead 6% Antimony shielding with SS threaded insert, sitting on an Aluminum 6061-T6 plate.

  20. Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP

    NASA Astrophysics Data System (ADS)

    ALEPH Collaboration; DELPHI Collaboration; L3 Collaboration; OPAL Collaboration; LEP Electroweak Working Group 1

    2013-11-01

    Electroweak measurements performed with data taken at the electron-positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb-1 collected by the four LEP experiments ALEPH, DELPHI, L3 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV.

  1. Degradation of electron-irradiated polyethylene studied by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Onodera, K.; Oka, T.; Kino, Y.; Sekine, T.

    2017-01-01

    Degradation of electron beam irradiated high-density polyethylene was studied by positron annihilation lifetime spectroscopy (PALS), micro-FT-IR, and gel fraction measurements. The obtained results indicated that ortho-positronium intensity is influenced not only by the irradiation but also the post oxidation, which illustrates that PALS may be a promising tool to monitor/evaluate the degradation of polyethylene induced by irradiation and long-term storage.

  2. Theories of statistical equilibrium in electron-positron colliding-beam storage rings

    SciTech Connect

    Schonfeld, J.F.

    1985-01-01

    In this lecture I introduce you to some recent theoretical work that represents a significant and long overdue departure from the mainstream of ideas on the physics of colliding- beam storage rings. The goal of the work in question is to understand analytically - without recourse to computer simulation - the role that dissipation and noise play in the observed colliding-beam behavior of electron-positron storage rings.

  3. Oblique propagation of ion-acoustic solitary waves in a magnetized electron-positron-ion plasma

    SciTech Connect

    Ferdousi, M.; Sultana, S.; Mamun, A. A.

    2015-03-15

    The properties of obliquely propagating ion-acoustic solitary waves in the presence of ambient magnetic field have been investigated theoretically in an electron-positron-ion nonthermal plasma. The plasma nonthermality is introduced via the q-nonextensive distribution of electrons and positrons. The Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations are derived by adopting reductive perturbation method. The solution of K-dV and modified K-dV equation, which describes the solitary wave characteristics in the long wavelength limit, is obtained by steady state approach. It is seen that the electron and positron nonextensivity and external magnetic field (obliqueness) have significant effects on the characteristics of solitary waves. A critical value of nonextensivity is found for which solitary structures transit from positive to negative potential. The findings of this investigation may be used in understanding the wave propagation in laboratory and space plasmas where static external magnetic field is present.

  4. Measurement of the hadronic cross section in electron-positron annihilation

    SciTech Connect

    Clearwater, S.

    1983-11-01

    This thesis describes the most precise measurement to date of the ratio R, the hadronic cross section in lowest order electron-positron annihilation to the cross section for muon pair production in lowest order electron-positron annihilation. This experiment is of interest because R is a fundamental parameter that tests in a model independent way the basic assumptions of strong interaction theories. According to the assumptions of one of these theories the value of R is determined simply from the electric charges, spin, and color assignments of the produced quark-pairs. The experiment was carried out with the MAgnetic Calorimeter using collisions of 14.5 GeV electrons and positrons at the 2200m circumference PEP storage ring at SLAC. The MAC detector is one of the best-suited collider detectors for measuring R due to its nearly complete coverage of the full angular range. The data for this experiment were accumulated between February 1982 and April 1983 corresponding to a total event sample of about 40,000 hadronic events. About 5% of the data were taken with 14 GeV beams and the rest of the data were taken with 14.5 GeV beams. A description of particle interactions and experimental considerations is given.

  5. Nonlinear electromagnetic perturbations in a degenerate ultrarelativistic electron-positron plasma.

    PubMed

    El-Taibany, W F; Mamun, A A

    2012-02-01

    Nonlinear propagation of fast and slow magnetosonic perturbation modes in an ultrarelativistic, ultracold, degenerate (extremely dense) electron positron (EP) plasma (containing ultrarelativistic, ultracold, degenerate electron and positron fluids) has been investigated by the reductive perturbation method. The Alfvén wave velocity is modified due to the presence of the enthalpy correction in the fluid equations of motion. The degenerate EP plasma system (under consideration) supports the Korteweg-de Vries (KdV) solitons, which are associated with either fast or slow magnetosonic perturbation modes. It is found that the ultrarelativistic model leads to compressive (rarefactive) electromagnetic solitons corresponding to the fast (slow) wave mode. There are certain critical angles, θ(c), at which no soliton solution is found corresponding to the fast wave mode. For the slow mode, the magnetic-field intensity affects both the soliton amplitude and width. It is also illustrated that the basic features of the electromagnetic solitary structures, which are found to exist in such a degenerate EP plasma, are significantly modified by the effects of enthalpy correction, electron and positron degeneracy, magnetic-field strength, and the relativistic effect. The applications of the results in a pair-plasma medium, which occurs in many astrophysical objects (e.g., pulsars, white dwarfs, and neutron stars) are briefly discussed.

  6. Nonlinear Korteweg-de Vries equation for soliton propagation in relativistic electron-positron-ion plasma with thermal ions

    SciTech Connect

    Saeed, R.; Shah, Asif; Noaman-ul-Haq, Muhammad

    2010-10-15

    The nonlinear propagation of ion-acoustic solitons in relativistic electron-positron-ion plasma comprising of Boltzmannian electrons, positrons, and relativistic thermal ions has been examined. The Korteweg-de Vries equation has been derived by reductive perturbation technique. The effect of various plasma parameters on amplitude and structure of solitary wave is investigated. The pert graphical view of the results has been presented for illustration. It is observed that increase in the relativistic streaming factor causes the soliton amplitude to thrive and its width shrinks. The soliton amplitude and width decline as the ion to electron temperature ratio is increased. The increase in positron concentration results in reduction of soliton amplitude. The soliton amplitude enhances as the electron to positron temperature ratio is increased. Our results may have relevance in the understanding of astrophysical plasmas.

  7. Nonlinear Korteweg-de Vries equation for soliton propagation in relativistic electron-positron-ion plasma with thermal ions

    NASA Astrophysics Data System (ADS)

    Saeed, R.; Shah, Asif; Noaman-Ul-Haq, Muhammad

    2010-10-01

    The nonlinear propagation of ion-acoustic solitons in relativistic electron-positron-ion plasma comprising of Boltzmannian electrons, positrons, and relativistic thermal ions has been examined. The Korteweg-de Vries equation has been derived by reductive perturbation technique. The effect of various plasma parameters on amplitude and structure of solitary wave is investigated. The pert graphical view of the results has been presented for illustration. It is observed that increase in the relativistic streaming factor causes the soliton amplitude to thrive and its width shrinks. The soliton amplitude and width decline as the ion to electron temperature ratio is increased. The increase in positron concentration results in reduction of soliton amplitude. The soliton amplitude enhances as the electron to positron temperature ratio is increased. Our results may have relevance in the understanding of astrophysical plasmas.

  8. Multi-dimensional instability of obliquely propagating ion acoustic solitary waves in electron-positron-ion superthermal magnetoplasmas

    SciTech Connect

    EL-Shamy, E. F.

    2014-08-15

    The solitary structures of multi–dimensional ion-acoustic solitary waves (IASWs) have been considered in magnetoplasmas consisting of electron-positron-ion with high-energy (superthermal) electrons and positrons are investigated. Using a reductive perturbation method, a nonlinear Zakharov-Kuznetsov equation is derived. The multi-dimensional instability of obliquely propagating (with respect to the external magnetic field) IASWs has been studied by the small-k (long wavelength plane wave) expansion perturbation method. The instability condition and the growth rate of the instability have been derived. It is shown that the instability criterion and their growth rate depend on the parameter measuring the superthermality, the ion gyrofrequency, the unperturbed positrons-to-ions density ratio, the direction cosine, and the ion-to-electron temperature ratio. Clearly, the study of our model under consideration is helpful for explaining the propagation and the instability of IASWs in space observations of magnetoplasmas with superthermal electrons and positrons.

  9. Methods of optical diagnostics of electron-positron beams and interaction between plasma and high-current electron beam

    NASA Astrophysics Data System (ADS)

    Vyacheslavov, L. N.; Ivantsivskii, M. V.; Meshkov, O. I.; Popov, S. S.; Smaluk, V. V.

    2012-03-01

    Optical diagnostics is widely used, both in plasma-physics experiments and in measuring parameters of electron and positron beams in accelerators. In doing so, the approaches with the same methodological base are often applied, which is explained by similarity of certain properties of objects under study despite the fact that these fields of physics are absolutely specific and require using the specialized techniques. The possibility of close contacts and cooperation among scientists concerned with similar problems in different fields of physics contributes to the fruitful exchange of ideas and helps to overcome these problems. It is especially characteristic of the Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, which is famous for pioneering works in the field of electron-positron colliders and controlled thermonuclear fusion. The first part of this paper presents a review of optical diagnostics of the stationary beam parameters in cyclic accelerators of electrons and positrons. The only techniques considered are those that became the recognized tools at colliders and storage rings of the latest generation, without which the routine operation of the facility is difficult to imagine. The second part of the paper describes optical diagnostics used in experiments of heating the plasma by a high-current electron beam.

  10. Arbitrary amplitude dust ion acoustic solitons and double layers in the presence of nonthermal positrons and electrons

    NASA Astrophysics Data System (ADS)

    Banerjee, Gadadhar; Maitra, Sarit

    2016-12-01

    Existence of arbitrary amplitude solitons and double layers have been studied in collisionless unmagnetized multicomponent dusty plasmas with nonthermally distributed positrons and electrons by using Sagdeev's pseudopotential method. The linear dispersion relation is obtained for dust ion acoustic wave mode. The present model supports the coexistence of positive potential solitary waves and negative potential solitary waves and double layers. The criterion for the existence of solitary waves and double layers is derived in terms of Mach number limit. The effects of ion temperature and nonthermality of electrons and positrons are studied. Also the effects of positron and dust concentration on the wave propagation are observed.

  11. Undulator-based production of polarized positrons

    NASA Astrophysics Data System (ADS)

    Alexander, G.; Barley, J.; Batygin, Y.; Berridge, S.; Bharadwaj, V.; Bower, G.; Bugg, W.; Decker, F.-J.; Dollan, R.; Efremenko, Y.; Flöttmann, K.; Gharibyan, V.; Hast, C.; Iverson, R.; Kolanoski, H.; Kovermann, J. W.; Laihem, K.; Lohse, T.; McDonald, K. T.; Mikhailichenko, A. A.; Moortgat-Pick, G. A.; Pahl, P.; Pitthan, R.; Pöschl, R.; Reinherz-Aronis, E.; Riemann, S.; Schälicke, A.; Schüler, K. P.; Schweizer, T.; Scott, D.; Sheppard, J. C.; Stahl, A.; Szalata, Z.; Walz, D. R.; Weidemann, A.

    2009-11-01

    Full exploitation of the physics potential of a future International Linear Collider will require the use of polarized electron and positron beams. Experiment E166 at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which an electron beam passes through a helical undulator to generate photons (whose first-harmonic spectrum extended to 7.9 MeV) with circular polarization, which are then converted in a thin target to generate longitudinally polarized positrons and electrons. The experiment was carried out with a 1-m-long, 400-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) operated at 46.6 GeV. Measurements of the positron polarization have been performed at five positron energies from 4.5 to 7.5 MeV. In addition, the electron polarization has been determined at 6.7 MeV, and the effect of operating the undulator with a ferrofluid was also investigated. To compare the measurements with expectations, detailed simulations were made with an upgraded version of G EANT4 that includes the dominant polarization-dependent interactions of electrons, positrons, and photons with matter. The measurements agree with calculations, corresponding to 80% polarization for positrons near 6 MeV and 90% for electrons near 7 MeV.

  12. Generation of overdense and high-energy electron-positron-pair plasmas by irradiation of a thin foil with two ultraintense lasers.

    PubMed

    Chang, H X; Qiao, B; Xu, Z; Xu, X R; Zhou, C T; Yan, X Q; Wu, S Z; Borghesi, M; Zepf, M; He, X T

    2015-11-01

    A scheme for enhanced quantum electrodynamics (QED) production of electron-positron-pair plasmas is proposed that uses two ultraintense lasers irradiating a thin solid foil from opposite sides. In the scheme, under a proper matching condition, in addition to the skin-depth emission of γ-ray photons and Breit-Wheeler creation of pairs on each side of the foil, a large number of high-energy electrons and photons from one side can propagate through it and interact with the laser on the other side, leading to much enhanced γ-ray emission and pair production. More importantly, the created pairs can be collected later and confined to the center by opposite laser radiation pressures when the foil becomes transparent, resulting in the formation of unprecedentedly overdense and high-energy pair plasmas. Two-dimensional QED particle-in-cell simulations show that electron-positron-pair plasmas with overcritical density 10(22) cm(-3) and a high energy of 100s of MeV are obtained with 10 PW lasers at intensities 10(23) W/cm(2), which are of key significance for laboratory astrophysics studies.

  13. Evaluation of bremsstrahlung contribution to photon transport in coupled photon-electron problems

    NASA Astrophysics Data System (ADS)

    Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio; Salvat, Francesc

    2015-11-01

    The most accurate description of the radiation field in x-ray spectrometry requires the modeling of coupled photon-electron transport. Compton scattering and the photoelectric effect actually produce electrons as secondary particles which contribute to the photon field through conversion mechanisms like bremsstrahlung (which produces a continuous photon energy spectrum) and inner-shell impact ionization (ISII) (which gives characteristic lines). The solution of the coupled problem is time consuming because the electrons interact continuously and therefore, the number of electron collisions to be considered is always very high. This complex problem is frequently simplified by neglecting the contributions of the secondary electrons. Recent works (Fernández et al., 2013; Fernández et al., 2014) have shown the possibility to include a separately computed coupled photon-electron contribution like ISII in a photon calculation for improving such a crude approximation while preserving the speed of the pure photon transport model. By means of a similar approach and the Monte Carlo code PENELOPE (coupled photon-electron Monte Carlo), the bremsstrahlung contribution is characterized in this work. The angular distribution of the photons due to bremsstrahlung can be safely considered as isotropic, with the point of emission located at the same place of the photon collision. A new photon kernel describing the bremsstrahlung contribution is introduced: it can be included in photon transport codes (deterministic or Monte Carlo) with a minimal effort. A data library to describe the energy dependence of the bremsstrahlung emission has been generated for all elements Z=1-92 in the energy range 1-150 keV. The bremsstrahlung energy distribution for an arbitrary energy is obtained by interpolating in the database. A comparison between a PENELOPE direct simulation and the interpolated distribution using the data base shows an almost perfect agreement. The use of the data base increases

  14. Observation of Electron Cloud Instabilities and Emittance Dilution at the Cornell Electron-Positron Storage Ring Test Accelerator

    NASA Astrophysics Data System (ADS)

    Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; Dugan, G. F.; Flanagan, J.; McArdle, K. E.; Miller, M. I.; Palmer, M. A.; Ramirez, G. A.; Sonnad, K. G.; Totten, M. M.; Tucker, S. L.; Williams, H. A.

    2016-04-01

    Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnotics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud with stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains; 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.

  15. Observation of electron cloud instabilities and emittance dilution at the Cornell electron-positron Storage ring Test Accelerator

    DOE PAGES

    Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; ...

    2016-04-11

    Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnostics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud withmore » stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains, 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this study we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.« less

  16. Observation of electron cloud instabilities and emittance dilution at the Cornell electron-positron Storage ring Test Accelerator

    SciTech Connect

    Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; Dugan, G. F.; Flanagan, J.; McArdle, K. E.; Miller, M. I.; Palmer, M. A.; Ramirez, G. A.; Sonnad, K. G.; Totten, M. M.; Tucker, S. L.; Williams, H. A.

    2016-04-11

    Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnostics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud with stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains, 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this study we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.

  17. Ion-acoustic rogue waves and breathers in relativistically degenerate electron-positron plasmas

    NASA Astrophysics Data System (ADS)

    Abdikian, A.; Ismaeel, S.

    2017-08-01

    In this paper, we employ a weakly relativistic fluid model to study the nonlinear amplitude modulation of electrostatic waves in an unmagnetized electron-positron-ion plasma. It is assumed that the degeneracy pressure law for electrons and positrons follows the Chandrasekhar limit of state whereas ions are warm and classical. The hydrodynamic approach along with the perturbation method have been applied to obtain the corresponding nonlinear Schrödinger equation (NLSE) in which nonlinearity is in balance with the dispersive terms. Using the NLSE, we could evaluate the modulational instability to show that various types of localized ion acoustic excitations exist in the form of either bright-type envelope solitons or dark-type envelope solitons. The regions of the stable and unstable envelope wave have been confined punctually for various regimes. Furthermore, it is proposed that the exact solutions of the NLSE for breather waves are the rogue waves (RWs), Akhmediev breather (AB), and Kuznetsov-Ma breather (KM) soliton. In order to show that the characteristics of breather structures is influenced by the plasma parameters (namely, relativistic parameter, positron concentration, and ionic temperature), the relevant numerical analysis of the NLSE is examined. In particular, it is observed that by increasing the values of the mentioned plasma parameters, the amplitude of the RWs will be decreased. Our results help researchers to explain the formation and dynamics of nonlinear electrostatic excitations in super dense astrophysical regimes.

  18. Two dimensional planar and nonplanar ion acoustic shock waves in electron-positron-ion plasmas

    SciTech Connect

    Masood, W.; Rizvi, H.

    2009-09-15

    Two dimensional ion acoustic shock waves (IASWs) are studied in an unmagnetized plasma consisting of electrons, positrons, and adiabatically hot positive ions. This is done by deriving the nonplanar Kadomstev-Petviashvili-Burgers (KPB) equation under the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. The limiting cases of the nonplanar KPB equation are also discussed. The analytical solution of the planar KPB equation is obtained using the tangent hyperbolic method that is used as the initial profile to numerically solve the nonplanar KPB equation. It is found that the strength of IASW is maximum for spherical, intermediate for cylindrical, and minimum for planar geometry. It is observed that the positron concentration and the plasma kinematic viscosity significantly modify the shock structure. Finally, the temporal evolution of the nonplanar IASW is investigated and the results are discussed from the numerical stand point. The results of the present study may be applicable in the study of small amplitude localized electrostatic shock structures in electron-positron-ion plasmas.

  19. Optimization of combined electron and photon beams for breast cancer

    NASA Astrophysics Data System (ADS)

    Xiong, W.; Li, J.; Chen, L.; Price, R. A.; Freedman, G.; Ding, M.; Qin, L.; Yang, J.; Ma, C.-M.

    2004-05-01

    Recently, intensity-modulated radiation therapy and modulated electron radiotherapy have gathered a growing interest for the treatment of breast and head and neck tumours. In this work, we carried out a study to combine electron and photon beams to achieve differential dose distributions for multiple target volumes simultaneously. A Monte Carlo based treatment planning system was investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We compared breast treatment plans generated using this home-grown optimization and dose calculation software for different treatment techniques. Five different planning techniques have been developed for this study based on a standard photon beam whole breast treatment and an electron beam tumour bed cone down. Technique 1 includes two 6 MV tangential wedged photon beams followed by an anterior boost electron field. Technique 2 includes two 6 MV tangential intensity-modulated photon beams and the same boost electron field. Technique 3 optimizes two intensity-modulated photon beams based on a boost electron field. Technique 4 optimizes two intensity-modulated photon beams and the weight of the boost electron field. Technique 5 combines two intensity-modulated photon beams with an intensity-modulated electron field. Our results show that technique 2 can reduce hot spots both in the breast and the tumour bed compared to technique 1 (dose inhomogeneity is reduced from 34% to 28% for the target). Techniques 3, 4 and 5 can deliver a more homogeneous dose distribution to the target (with dose inhomogeneities for the target of 22%, 20% and 9%, respectively). In many cases techniques 3, 4 and 5 can reduce the dose to the lung and heart. It is concluded that combined photon and electron beam therapy may be advantageous for treating breast cancer compared to conventional treatment techniques using tangential wedged photon beams followed by a boost

  20. Ordered materials for organic electronics and photonics.

    PubMed

    O'Neill, Mary; Kelly, Stephen M

    2011-02-01

    We present a critical review of semiconducting/light emitting, liquid crystalline materials and their use in electronic and photonic devices such as transistors, photovoltaics, OLEDs and lasers. We report that annealing from the mesophase improves the order and packing of organic semiconductors to produce state-of-the-art transistors. We discuss theoretical models which predict how charge transport and light emission is affected by the liquid crystalline phase. Organic photovoltaics and OLEDs require optimization of both charge transport and optical properties and we identify the various trade-offs involved for ordered materials. We report the crosslinking of reactive mesogens to give pixellated full-colour OLEDs and distributed bi-layer photovoltaics. We show how the molecular organization inherent to the mesophase can control the polarization of light-emitting devices and the gain in organic, thin-film lasers and can also provide distributed feedback in chiral nematic mirrorless lasers. We update progress on the surface alignment of liquid crystalline semiconductors to obtain monodomain devices without defects or devices with spatially varying properties. Finally the significance of all of these developments is assessed.

  1. Measurement of electron-positron spectrum in high-energy cosmic rays in the PAMELA experiment

    NASA Astrophysics Data System (ADS)

    Karelin, A. V.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A. M.; Koldashov, S. V.; Koldobskiy, S. A.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A. A.; Mayorov, A. G.; Malakhov, V. V.; Marcelli, L.; Martucci, M.; Menn, W.; Merge, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Rossetto, L.; Simon, M.; Sparvoli, R.; Spillantini, P.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.

    2015-08-01

    At present the existing data on the cosmic ray electron energy spectra in the high energy range are fragmented, and the situation is exacerbated by their small number. In the satellite PAMELA experiment measurements at high energies are carried out by the calorimeter. The experimental data accumulated for more than 8 years of measurements, with the information of the calorimeter, the neutron detector and the scintillation counters made it possible to obtain the total spectrum of high-energy electrons and positrons in energy range 0.3-3 TeV.

  2. The Role of polarized positrons and electrons in revealing fundamental interactions at the linear collider

    SciTech Connect

    Moortgat-Pick, G.; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.; /CERN /Durham U., IPPP /Colorado U. /Tel-Aviv U. /Bangalore, Indian Inst. Sci. /Gomel State Tech. U. /SLAC /DESY /Vienna U. /Daresbury /Liverpool U. /Freiburg U. /Vienna, OAW /Wurzburg U. /Fermilab /Uppsala U. /Waseda U., RISE /Warsaw U. /Bonn U. /Aachen, Tech. Hochsch. /Cornell U., Phys. Dept.

    2005-07-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  3. Revealing Fundamental Interactions: the Role of Polarized Positrons and Electrons at the Linear Collider

    SciTech Connect

    Moortgat-Pick, G.; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.; /CERN /Durham U., IPPP /Colorado U. /Tel-Aviv U. /Bangalore, Indian Inst. Sci. /Gomel State Tech. U. /SLAC /DESY /Vienna U. /Daresbury /Liverpool U. /Freiburg U. /Vienna, OAW /Wurzburg U. /Fermilab /Uppsala U. /Waseda U., RISE /Warsaw U. /Bonn U. /Aachen, Tech. Hochsch. /Cornell U., Phys. Dept.

    2005-07-06

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  4. Cosmic ray electrons and positrons from supernova explosions of massive stars.

    PubMed

    Biermann, P L; Becker, J K; Meli, A; Rhode, W; Seo, E S; Stanev, T

    2009-08-07

    We attribute the recently discovered cosmic ray electron and cosmic ray positron excess components and their cutoffs to the acceleration in the supernova shock in the polar cap of exploding Wolf-Rayet and red supergiant stars. Considering a spherical surface at some radius around such a star, the magnetic field is radial in the polar cap as opposed to most of 4pi (the full solid angle), where the magnetic field is nearly tangential. This difference yields a flatter spectrum, and also an enhanced positron injection for the cosmic rays accelerated in the polar cap. This reasoning naturally explains the observations. Precise spectral measurements will be the test, as this predicts a simple E;{-2} spectrum for the new components in the source, steepened to E;{-3} in observations with an E;{-4} cutoff.

  5. Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas

    SciTech Connect

    Ata-ur-Rahman,; Qamar, A.; Ali, S.; Mirza, Arshad M.

    2013-04-15

    We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.

  6. A search for single electron production in electron positron annihilation at E = 29 GeV

    SciTech Connect

    Steele, T.R.

    1989-09-01

    This thesis presents experimental results from the ASP detector which took data on e{sup +}e{sup -} interactions in the PEP storage ring at SLAC. Its design was particularly suitable for searching for production of supersymmetric particles. The motivations for and phenomenology of Supersymmetry are discussed. In particular, the production of a single supersymmetric electron ( selectron'', {tilde e}) in combination with a supersymmetric photon ( photino'', {tilde {gamma}}) would result in events in which a single electron and no other particles are observed in the detector at an e{sup +}e{sup -} collider such as PEP, provided the masses of these particles are not too large. Such events would also result from the production of a single supersymmetric W-boson ( wino'', {tilde W}) in combination with a supersymmetric neutrino ( sneutrino'', {tilde {nu}}). These processes make it possible to search for electrons and winos with masses greater than the beam energy. Observation of these unusual events would distinctly indicate the production of new particles. The ASP detector was designed to be hermetic and to provide efficient event reconstruction for low multiplicity events. The detector is described and its performance is evaluated; it is found to be well-suited to this study. The data sample collected with the detector was thoroughly analyzed for evidence of single-electron events. The various possible background processes are considered and Monte Carlo calculations of the distributions from single selectron and single wino production are presented. Using this information an efficient off-line event selection process was developed, and it is described in detail. 82 refs., 41 figs., 4 tabs.

  7. High energy electrons, positrons and photonuclear reactions in petawatt laser-solid experiments

    SciTech Connect

    Cowan, T E; Hunt, A W; Johnson, J; Perry, M D; Fountain, W; Hatchett, S; Key, M H; Kuehl, T; Parnell, T; Pennington, D M; Phillips, T W; Roth, M; Takahashi, Y; Wilks, S C

    1999-09-09

    The Petawatt laser at LLNL has opened a new regime of high-energy laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes. We have observed that, in addition to the large flux of several MeV electrons ponderomotively expelled from the ultra-intense laser focus, there is a high energy component of electrons extending to -100 MeV, apparently from relativistic self-focusing and plasma acceleration in the underdense pre-formed plasma. The generation of hard bremsstrahlung cascade as these electrons traverse the solid target material, and the resulting photo-nuclear reactions, nuclear fission, and positron-electron pair production are described.

  8. Aspects of the application of positron emission tomography to engineering studies: Drawing overlays and correction for photon attenuation

    NASA Astrophysics Data System (ADS)

    O'Dwyer, M. A.; Hawkesworth, M. R.; Walker, J.

    1988-12-01

    Two important aspects of the application of positron emission tomography in engineering are: the creation of accurate but simplified engineering drawings to overlay the radiolabel tomograms as an aid to their interpretation, and the correction of important features in tomograms for attenuation in overlying metal to provide quantitative information. The practical difficulties met in producing overlays and correcting for attenuation are described, and strategies which are proving useful to overcome them are outlined. The essential starting point is the creation in computer memory of a full three-dimensional representation of all the subject of interest. After scaling, any plane through this model can then be extracted to overlay the appropriate plane through the radiolabel distribution, and all acceptable photon trajectories can be traced from each volume element containing positron emitter to give correction factors for attenuation in the materials traversed. It is shown that it is appropriate to use the total attenuation coefficients of materials in the correction and, finally, a gradient-contour routine is described for separating true signal from background prior to correction.

  9. Photon-pair shot noise in electron shot noise

    NASA Astrophysics Data System (ADS)

    Simoneau, Jean Olivier; Virally, Stéphane; Lupien, Christian; Reulet, Bertrand

    2017-02-01

    We report the measurement of the statistics of photons in the nonclassical radiation emitted by a tunnel junction. This is obtained by measuring up to the fourth cumulant of the voltage fluctuations generated by the sample. When the electron shot noise generates a squeezed electromagnetic field, the measurement provides a strong signature of the presence of photon pairs, characterized by a Fano factor of the photon flux above unity.

  10. Effects of trapped electrons on the oblique propagation of ion acoustic solitary waves in electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.

    2016-08-01

    The characteristics of the nonlinear oblique propagation of ion acoustic solitary waves in unmagnetized plasmas consisting of Boltzmann positrons, trapped electrons and ions are investigated. The modified Kadomtsev-Petviashivili ( m K P ) equation is derived employing the reductive perturbation technique. The parametric effects on phase velocity, Sagdeev potential, amplitude and width of solitons, and electrostatic ion acoustic solitary structures are graphically presented with the relevant physical explanations. This study may be useful for the better understanding of physical phenomena concerned in plasmas in which the effects of trapped electrons control the dynamics of wave.

  11. Magnetorotational instability of weakly ionized and magnetized electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Mehdian, H.; Hajisharifi, K.; Azadnia, F.; Tajik-Nezhad, S.

    2016-10-01

    The magnetorotational instability in a differential rotating weakly ionized and magnetized plasma consisting of electron, positron, ion, and neutral particles has been investigated by using the multi-fluid model. Satisfying the current neutrality and homogeneity of the system in the equilibrium state by assuming the same unperturbed angular velocity for charge species and neutrals, the general local dispersion relation (DR) has been derived by taking into account the collision effects. By analytical examination of the obtained DR in the arbitrary and high frequency regimes, the instability conditions have been found in which the presence of light positive species (positrons) plays an important role in the instability criteria. Moreover, numerical investigation shows the broadening of instability range as well as increasing the maximum growth rate of instability (especially for the small number density ratio of light to heavy positive species) in the presence of positrons. The obtained results of the present investigation will greatly contribute to the understanding of the particles' dynamics as well as dissipation mechanism in some astrophysical environments, such as the region of accretion disks surrounding the central of black holes and protoplanetary disks.

  12. Positron and electron scattering by glycine and alanine: Shape resonances and methylation effect

    NASA Astrophysics Data System (ADS)

    Nunes, Fernanda B.; Bettega, Márcio H. F.; Sanchez, Sergio d'Almeida

    2016-12-01

    We report integral cross sections (ICSs) for both positron and electron scattering by glycine and alanine amino acids. These molecules differ only by a methyl group. We computed the scattering cross sections using the Schwinger multichannel method for both glycine and alanine in different levels of approximation for both projectiles. The alanine ICSs are greater in magnitude than the glycine ICSs for both positron and electron scattering, probably due to the larger size of the molecule. In electron scattering calculations, we found two resonances for each molecule. Glycine presents one at 1.8 eV, and another centered at around 8.5 eV, in the static-exchange plus polarization (SEP) approximation. The ICS for alanine shows one resonance at 2.5 eV and another at around 9.5 eV, also in SEP approximation. The results are in good agreement with most of the data present in the literature. The comparison of the electron scattering ICSs for both molecules indicates that the methylation of glycine destabilizes the resonances, shifting them to higher energies.

  13. Positron 2D-ACAR experiments and electron-positron momentum density in YBa{sub 2}Cu{sub 3}O{sub 7-x}

    SciTech Connect

    Smedskjaer, L.C.; Welp, U.; Fang, Y.; Bailey, K.G.; Bansil, A.

    1991-12-01

    We discuss positron annihilation (2D-ACAR) measurements in the C- projection on an untwinned metallic single crystal of YBa{sub 2}Cu{sub 3}O{sub 7-x} as a function of temperature, for five temperatures ranging from 30K to 300K. The measured 2D-ACAR intensities are interpreted in terms of the electron-positron momentum density obtained within the KKR-band theory framework. The temperature dependence of the 2D-ACAR spectra is used to extract a ``background corrected`` experimental spectrum which is in remarkable accord with the corresponding band theory predictions, and displays in particular clear signatures of the electron ridge Fermi surface.

  14. Positron 2D-ACAR experiments and electron-positron momentum density in YBa sub 2 Cu sub 3 O sub 7-x

    SciTech Connect

    Smedskjaer, L.C.; Welp, U.; Fang, Y.; Bailey, K.G. ); Bansil, A. . Dept. of Physics)

    1991-12-01

    We discuss positron annihilation (2D-ACAR) measurements in the C- projection on an untwinned metallic single crystal of YBa{sub 2}Cu{sub 3}O{sub 7-x} as a function of temperature, for five temperatures ranging from 30K to 300K. The measured 2D-ACAR intensities are interpreted in terms of the electron-positron momentum density obtained within the KKR-band theory framework. The temperature dependence of the 2D-ACAR spectra is used to extract a background corrected'' experimental spectrum which is in remarkable accord with the corresponding band theory predictions, and displays in particular clear signatures of the electron ridge Fermi surface.

  15. An 8×8 Row-Column Summing Readout Electronics for Preclinical Positron Emission Tomography Scanners

    PubMed Central

    Shih, Y. C.; Sun, F. W.; MacDonald, L. R.; Otis, B. P.; Miyaoka, R. S.; McDougald, W.; Lewellen, T. K.

    2010-01-01

    This work presents a row/column summing readout electronics for an 8×8 silicon photomultiplier array. The summation circuit greatly reduces the number of electronic channels, which is desirable for pursuing higher resolution positron emission tomography scanners. By using a degenerated common source topology in the summation circuit, more fan-in is possible and therefore a greater reduction in the number of electronic channels can be achieved. The timing signal is retrieved from a common anode, which allows the use of a single fast-sampling analog to digital converter (ADC) for the timing channel and slower, lower power ADCs for the 64 spatial channels. Preliminary results of one row summation of the 8×8 readout electronics exhibited FWHM energy resolution of 17.8% and 18.3% with and without multiplexing, respectively. The measured timing resolution is 2.9ns FWHM. PMID:20729983

  16. Electron irradiated liquid encapsulated Czochralski grown undoped gallium antimonide studied by positron lifetime spectroscopy and photoluminescence

    NASA Astrophysics Data System (ADS)

    Ma, S. K.; Lui, M. K.; Ling, C. C.; Fung, S.; Beling, C. D.; Li, K. F.; Cheah, K. W.; Gong, M.; Hang, H. S.; Weng, H. M.

    2004-09-01

    Electron irradiated undoped liquid encapsulated Czochralski (LEC) grown GaSb samples were studied by positron lifetime spectroscopy (PLS) and photoluminescence (PL). In addition to the 315 ps component reported in the previous studies, another defect with a lifetime of 280 ps was also identified in the present electron irradiated samples. The bulk lifetime of the GaSb material was found to be 258 ps. The VGa,280 ps and the VGa,315 ps defects were associated with two independent Ga vacancy related defects having different microstructures. The well known 777 meV PL signal (usually band A) was also observed in the electron irradiated undoped GaSb samples. The band A intensity decreases with increasing electron irradiation dosage and it disappears after the 300 °C annealing regardless of the irradiation dosage. The origin of the band A signal is also discussed.

  17. Design Issues for the ILC Positron Source

    SciTech Connect

    Bharadwaj, V.; Batygin, Yu.K.; Pitthan, R.; Schultz, D.C.; Sheppard, J.; Vincke, H.; Wang, J.W.; Gronberg, J.; Stein, W.; /LLNL, Livermore

    2006-02-15

    A positron source for the International Linear Collider (ILC) can be designed using either a multi-GeV electron beam or a multi-MeV photon beam impinging on a metal target. The major design issues are: choice of drive beam and its generation, choice of target material, the target station, positron capture section, target vault and beam transport to the ILC positron damping ring complex. This paper lists the ILC positron source requirements and their implications for the design of the positron source. A conceptual design for the ILC is expected to be finished in the next two years. With emphasis on this timescale, source design issues and possible solutions are discussed.

  18. Helical Undulator Based Production of Polarized Positrons and Status of the E166 Experiment

    NASA Astrophysics Data System (ADS)

    Laihem, K.

    2005-08-01

    This paper describes the status of the E166 experiment. The experiment is dedicated to test the helical-undulator-based polarized positron source for the international linear collider. The physics motivation for having both electrons and positrons polarized in collision is crucial and a demonstration experiment for the undulator-based production of polarized positrons is summarized. The E166 experiment uses a 1 meter long helical undulator in the 50 GeV Final Focus Test Beam at SLAC to provide MeV photons with circular polarization. These photons are then converted in a thin (0.5 radiation length X0) target into positrons (and electrons) with about 50% degree of longitudinal polarization. In this experiment, the polarization of both photons and positrons is measured simultaneously using photon transmission polarimetry.

  19. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    SciTech Connect

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.

    2011-06-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The PAES intensity then decreases monotonically as the annealing temperature is increased to {approx}550 deg. C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M{sub 2,3}VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 deg. C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.

  20. Analytical Study of the Effect of the System Geometry on Photon Sensitivity and Depth of Interaction of Positron Emission Mammography

    PubMed Central

    Aguiar, Pablo; Lois, Cristina

    2012-01-01

    Positron emission mammography (PEM) cameras are novel-dedicated PET systems optimized to image the breast. For these cameras it is essential to achieve an optimum trade-off between sensitivity and spatial resolution and therefore the main challenge for the novel cameras is to improve the sensitivity without degrading the spatial resolution. We carry out an analytical study of the effect of the different detector geometries on the photon sensitivity and the angle of incidence of the detected photons which is related to the DOI effect and therefore to the intrinsic spatial resolution. To this end, dual head detectors were compared to box and different polygon-detector configurations. Our results showed that higher sensitivity and uniformity were found for box and polygon-detector configurations compared to dual-head cameras. Thus, the optimal configuration in terms of sensitivity is a PEM scanner based on a polygon of twelve (dodecagon) or more detectors. We have shown that this configuration is clearly superior to dual-head detectors and slightly higher than box, octagon, and hexagon detectors. Nevertheless, DOI effects are increased for this configuration compared to dual head and box scanners and therefore an accurate compensation for this effect is required. PMID:23049553

  1. Analytical study of the effect of the system geometry on photon sensitivity and depth of interaction of positron emission mammography.

    PubMed

    Aguiar, Pablo; Lois, Cristina

    2012-01-01

    Positron emission mammography (PEM) cameras are novel-dedicated PET systems optimized to image the breast. For these cameras it is essential to achieve an optimum trade-off between sensitivity and spatial resolution and therefore the main challenge for the novel cameras is to improve the sensitivity without degrading the spatial resolution. We carry out an analytical study of the effect of the different detector geometries on the photon sensitivity and the angle of incidence of the detected photons which is related to the DOI effect and therefore to the intrinsic spatial resolution. To this end, dual head detectors were compared to box and different polygon-detector configurations. Our results showed that higher sensitivity and uniformity were found for box and polygon-detector configurations compared to dual-head cameras. Thus, the optimal configuration in terms of sensitivity is a PEM scanner based on a polygon of twelve (dodecagon) or more detectors. We have shown that this configuration is clearly superior to dual-head detectors and slightly higher than box, octagon, and hexagon detectors. Nevertheless, DOI effects are increased for this configuration compared to dual head and box scanners and therefore an accurate compensation for this effect is required.

  2. Beam-Beam Study on the Upgrade of Beijing Electron Positron Collider

    SciTech Connect

    Wang, S.; Cai, Y.; /SLAC

    2006-02-10

    It is an important issue to study the beam-beam interaction in the design and performance of such a high luminosity collider as BEPCII, the upgrade of Beijing Electron Positron Collider. The weak-strong simulation is generally used during the design of a collider. For performance a large scale tune scan, the weak-strong simulation studies on beam-beam interaction were done, and the geometry effects were taken into account. The strong-strong simulation studies were done for investigating the luminosity goal and the dependence of the luminosity on the beam parameters.

  3. Shock formation in magnetised electron-positron plasmas: mechanism and timing

    NASA Astrophysics Data System (ADS)

    Stockem Novo, A.; Bret, A.; Sinha, U.

    2016-10-01

    The shock formation process in electron-positron pair plasmas is investigated in the presence of an ambient perpendicular magnetic field. In initially unmagnetised plasmas, which are dominated by the Weibel or filamentation instability, the shock formation time is a multiple of the saturation time of the linear instability. While in weakly magnetised plasmas the mechanism is still the same, higher magnetisations induce synchrotron maser modes such that the shock formation is dominated by magnetic reflection. As a consequence the formation times are reduced. The focus is on the detailed picture of the particle kinetics, in which the transition between Weibel and magneto-hydrodynamic shocks can be clearly identified.

  4. MAGNETIC FIELD GENERATION AND PARTICLE ENERGIZATION AT RELATIVISTIC SHEAR BOUNDARIES IN COLLISIONLESS ELECTRON-POSITRON PLASMAS

    SciTech Connect

    Liang, Edison; Smith, Ian; Boettcher, Markus E-mail: iansmith@rice.edu

    2013-04-01

    Using particle-in-cell simulations, we study the kinetic physics of relativistic shear flow in collisionless electron-positron (e+e-) plasmas. We find efficient magnetic field generation and particle energization at the shear boundary, driven by streaming instabilities across the shear interface and sustained by the shear flow. Nonthermal, anisotropic high-energy particles are accelerated across field lines to produce a power-law tail turning over just below the shear Lorentz factor. These results have important implications for the dissipation and radiation of jets in blazars and gamma-ray bursts.

  5. Comoving acceleration of overdense electron-positron plasma by colliding ultra-intense laser pulses

    SciTech Connect

    Liang, Edison

    2006-06-15

    Particle-in-cell (PIC) simulation results of sustained acceleration of electron-positron (e+e-) plasmas by comoving electromagnetic (EM) pulses are presented. When a thin slab of overdense e+e- plasma is irradiated with linear-polarized ultra-intense short laser pulses from both sides, the pulses are transmitted when the plasma is compressed to thinner than {approx}2 relativistic skin depths. A fraction of the plasma is then captured and efficiently accelerated by self-induced JxB forces. For 1 {mu}m laser and 10{sup 21} W cm{sup -2} intensity, the maximum energy exceeds GeV in a picosecond.

  6. Transverse instability of ion acoustic solitons in a magnetized plasma including -nonextensive electrons and positrons

    NASA Astrophysics Data System (ADS)

    Akhtar, N.; El-Taibany, W. F.; Mahmood, S.; Behery, E. E.; Khan, S. A.; Ali, S.; Hussain, S.

    2015-10-01

    > . The magnetic field has no effect on the amplitude of the IASW, whereas the obliqueness angle of the wave propagation, the ion-to-electron temperature ratio and positron-to-ion density concentration ratio affect both the amplitude and the width of the solitary wave structures. The transverse instability analysis illustrates that the one soliton solution has a constant growth rate, and it suffers from instability in the transverse direction. The relevance of the present study to astrophysical space plasmas is also discussed.

  7. Reestimation of the production spectra of cosmic ray secondary positrons and electrons in the ISM

    NASA Technical Reports Server (NTRS)

    Wong, C. M.; Ng, L. K.

    1985-01-01

    A detailed calculation of the production spectra of charged hadrons produced by interactions of cosmic rays in the interstellar medium is presented along with a thorough treatment of pion and muon decays. Newly parameterized inclusive cross sections of hadrons were used and exact kinematic limitations were taken into account. Single parametrized expressions for the production spectra of both secondary positrons and electrons in the energy range .1 to 100 GeV are presented. The results are compared with other authors' predictions. Equilibrium spectra using various models are also presented.

  8. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    NASA Astrophysics Data System (ADS)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  9. Phase-mixing of electrostatic modes in a cold magnetized electron-positron plasma

    SciTech Connect

    Maity, Chandan; Chakrabarti, Nikhil

    2013-08-15

    In a fluid description, we study space-time evolution of electrostatic oscillations in a cold magnetized electron-positron plasma. Nonlinear results up to third order, obtained by employing a simple perturbation technique, indicate phase-mixing and thus breaking of excited oscillations, and provide an expression for the phase-mixing time. It is shown that an increase in the strength of ambient magnetic field results in an increase in the phase-mixing time. The results of our investigation will be of relevance to astrophysical environments as well as laboratory experiments.

  10. Science and Technology of the TESLA Electron-Positron Linear Collider

    NASA Astrophysics Data System (ADS)

    Wagner, Albrecht

    2002-07-01

    Recent analyses of the long term future of particles physics in Asia, Europe, and the U.S.A. have led to the consensus that the next major facility to be built to unravel the secrets of the micro-cosmos is an electron-positron linear collider in the energy range of 500 to 1000 GeV. This collider should be constructed in an as timely fashion as possible to overlap with the Large Hadron Collider, under construction at CERN. Here, the scientific potential and the technological aspects of the TESLA projects, a superconducting collider with an integrated X-ray laser laboratory, are summarised.

  11. Admittance Test and Conceptual Study of a CW Positron Source for CEBAF

    SciTech Connect

    Golge, Serkan; Hyde, Charles E.; Freyberger, Arne

    2009-09-02

    A conceptual study of a Continuous Wave (CW) positron production is presented in this paper. The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLAB) operates with a CW electron beam with a well-defined emittance, time structure and energy spread. Positrons created via bremsstrahlung photons in a high-Z target emerge with a large emittance compared to incoming electron beam. An admittance study has been performed at CEBAF to estimate the maximum beam phase space area that can be transported in the LINAC and in the Arcs. A positron source is described utilizing the CEBAF injector electron beam, and directly injecting the positrons into the CEBAF LINAC.

  12. Proton form factors and two-photon exchange in elastic electron-proton scattering

    SciTech Connect

    Nikolenko, D. M.; Arrington, J.; Barkov, L. M.; Vries, H. de; Gauzshtein, V. V.; Golovin, R. A.; Gramolin, A. V.; Dmitriev, V. F.; Zhilich, V. N.; Zevakov, S. A.; Kaminsky, V. V.; Lazarenko, B. A.; Mishnev, S. I.; Muchnoi, N. Yu.; Neufeld, V. V.; Rachek, I. A.; Sadykov, R. Sh.; Stibunov, V. N.; Toporkov, D. K.; Holt, R. J.; and others

    2015-05-15

    Proton electromagnetic form factors are among the most important sources of information about the internal structure of the proton. Two different methods for measuring these form factors, the method proposed by Rosenbluth and the polarization-transfer method, yield contradictory results. It is assumed that this contradiction can be removed upon taking into account the hard part of the contribution of two-photon exchange to the cross section for elastic electron-proton scattering. This contribution can measured experimentally via a precision comparison of the cross sections for the elastic scattering of positrons and electrons on protons. Such a measurement, performed at the VEPP-3 storage ring in Novosibirsk at the beam energies of 1.6 and 1.0 GeV for positron (electron) scattering angles in the ranges of θ{sub e} = 15°–25° and 55°–75° in the first case and in the range of θ{sub e} = 65°–105° in the second case is described in the present article. Preliminary results of this experiment and their comparison with theoretical predictions are described.

  13. Positron Annihilation Induced Auger Electron Spectroscopy of Inner Shell Transitions Using Time-Of Technique

    NASA Astrophysics Data System (ADS)

    Xie, Shuping; Jiang, Neng; Weiss, A. H.

    2003-03-01

    Positron annihilation induced Auger electron spectroscopy (PAES) has been shown to have unique advantages over conventional electron collision induced Auger techniques, including the ability to eliminate the secondary electron background and selectively probe the top-most atomic layer on the sample surface. Here we report on the development of a new time-of-flight (TOF) spectrometer which combines features high efficiency magnetic transport and parrallel energy measurment with high resolution by using an innovative timing method. The new TOF-PAES system, was used to make the first quantitative comparative measurements of the Auger intensities associated with the annihilation of positrons with the deep core levels (1s) of S KLL (180eV), C KLL (270eV), N KLL (360eV), and O KLL (510eV). Experimental results of Auger probabilities at outer core level (3s, 3P) of Cu M2,3VV (60eV), M1VV (105eV) are compared with the theoretical value of Jensen and Weiss. Quantitatively study the surface adsorbate process on Cu is performed and concentration changes of surface components are obtained. These results demonstrate that TOF-PAES can be used to obtain quantitative,top-layer specific, information from chemically important elements including those with relatively deep core levels (e.g. C and O).

  14. Theoretical calculation of electron-positron momentum density in YBa 2Cu 3O 7-δ

    NASA Astrophysics Data System (ADS)

    Massidda, S.

    1990-07-01

    We present calculations of the electron-positron momentum density for the high- Tc superconductor YBa 2Cu 3O 7-δ for δ=0 and for the insulating parent compound YBa 2Cu 3O 6, based on first-principle electronic structure calculations performed within the local density approximation (LDA) using the full potential linearized augmented plane wave (FLAPW) method. Our results indicate a small overlap of the positron wave function with the CuO 2 plane electrons and, as a consequence, relatively small signals due to the related Fermi surfaces. By contrast, the present calculations show, after the folding of Umklapp terms according to Lock, Crisp and West, clear Fermi surface breaks arising from the Cu-O chain bands. No general agreement with existing experiments allows a clear definition of Fermi surface structures in the latter. A comparison of the calculated momentum with the experimental two-dimensional angular correlation of annihilation radiation (2D-ACAR) recently measured in Geneva shows an overall agreement for the insulating compound, despite the spurious LDA metallic state, and possibly suggests the importance of O vacancies in experiments performed on non-stoichiometric YBa 2Cu 3O 7-δ samples.

  15. Photon-induced near-field electron microscopy.

    PubMed

    Barwick, Brett; Flannigan, David J; Zewail, Ahmed H

    2009-12-17

    In materials science and biology, optical near-field microscopies enable spatial resolutions beyond the diffraction limit, but they cannot provide the atomic-scale imaging capabilities of electron microscopy. Given the nature of interactions between electrons and photons, and considering their connections through nanostructures, it should be possible to achieve imaging of evanescent electromagnetic fields with electron pulses when such fields are resolved in both space (nanometre and below) and time (femtosecond). Here we report the development of photon-induced near-field electron microscopy (PINEM), and the associated phenomena. We show that the precise spatiotemporal overlap of femtosecond single-electron packets with intense optical pulses at a nanostructure (individual carbon nanotube or silver nanowire in this instance) results in the direct absorption of integer multiples of photon quanta (nhomega) by the relativistic electrons accelerated to 200 keV. By energy-filtering only those electrons resulting from this absorption, it is possible to image directly in space the near-field electric field distribution, obtain the temporal behaviour of the field on the femtosecond timescale, and map its spatial polarization dependence. We believe that the observation of the photon-induced near-field effect in ultrafast electron microscopy demonstrates the potential for many applications, including those of direct space-time imaging of localized fields at interfaces and visualization of phenomena related to photonics, plasmonics and nanostructures.

  16. Rich eight-branch spectrum of the oblique propagating longitudinal waves in partially spin-polarized electron-positron-ion plasmas.

    PubMed

    Andreev, Pavel A; Iqbal, Z

    2016-03-01

    We consider the separate spin evolution of electrons and positrons in electron-positron and electron-positron-ion plasmas. We consider the oblique propagating longitudinal waves in these systems. Working in a regime of high-density n(0) ∼ 10(27) cm(-3) and high-magnetic-field B(0)=10(10) G, we report the presence of the spin-electron acoustic waves and their dispersion dependencies. In electron-positron plasmas, similarly to the electron-ion plasmas, we find one spin-electron acoustic wave (SEAW) at the propagation parallel or perpendicular to the external field and two spin-electron acoustic waves at the oblique propagation. At the parallel or perpendicular propagation of the longitudinal waves in electron-positron-ion plasmas, we find four branches: the Langmuir wave, the positron-acoustic wave, and a pair of waves having spin nature, they are the SEAW and the wave discovered in this paper, called the spin-electron-positron acoustic wave (SEPAW). At the oblique propagation we find eight longitudinal waves: the Langmuir wave, the Trivelpiece--Gould wave, a pair of positron-acoustic waves, a pair of SEAWs, and a pair of SEPAWs. Thus, for the first time, we report the existence of the second positron-acoustic wave existing at the oblique propagation and the existence of SEPAWs.

  17. Oscillating two-stream instability in a magnetized electron-positron-ion plasma

    SciTech Connect

    Tinakiche, Nouara; Annou, R.

    2015-04-15

    Oscillating two-stream instability (OTSI) in a magnetized electron-ion plasma has been thoroughly studied, e.g., in ionospheric heating experiments [C. S. Liu and V. K. Tripathi, Interaction of Electromagnetic Waves With Electron Beams and Plasmas (World Scientific, 1994); V. K. Tripathi and P. V. Siva Rama Prasad, J. Plasma Phys. 41, 13 (1989); K. Ramachandran and V. K. Tripathi, IEEE Trans. Plasma Sci. 25, 423 (1997)]. In this paper, OTSI is investigated in a magnetized electron-positron-ion plasma. The dispersion relation of the process is established. The pump field threshold, along with the maximum growth rate of the instability is assessed using the Arecibo and HAARP parameters.

  18. Oscillating two-stream instability in a magnetized electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Tinakiche, Nouara; Annou, R.

    2015-04-01

    Oscillating two-stream instability (OTSI) in a magnetized electron-ion plasma has been thoroughly studied, e.g., in ionospheric heating experiments [C. S. Liu and V. K. Tripathi, Interaction of Electromagnetic Waves With Electron Beams and Plasmas (World Scientific, 1994); V. K. Tripathi and P. V. Siva Rama Prasad, J. Plasma Phys. 41, 13 (1989); K. Ramachandran and V. K. Tripathi, IEEE Trans. Plasma Sci. 25, 423 (1997)]. In this paper, OTSI is investigated in a magnetized electron-positron-ion plasma. The dispersion relation of the process is established. The pump field threshold, along with the maximum growth rate of the instability is assessed using the Arecibo and HAARP parameters.

  19. Ion-acoustic Gardner Solitons in electron-positron-ion plasma with two-electron temperature distributions

    NASA Astrophysics Data System (ADS)

    Rehman, Momin A.; Mishra, M. K.

    2016-01-01

    The ion-acoustic solitons in collisionless plasma consisting of warm adiabatic ions, isothermal positrons, and two temperature distribution of electrons have been studied. Using reductive perturbation method, Korteweg-de Vries (K-dV), the modified K-dV (m-KdV), and Gardner equations are derived for the system. The soliton solution of the Gardner equation is discussed in detail. It is found that for a given set of parameter values, there exists a critical value of β=Tc/Th, (ratio of cold to hot electron temperature) below which only rarefactive KdV solitons exist and above it compressive KdV solitons exist. At the critical value of β, both compressive and rarefactive m-KdV solitons co-exist. We have also investigated the soliton in the parametric regime where the KdV equation is not valid to study soliton solution. In this region, it is found that below the critical concentration the system supports rarefactive Gardner solitons and above it compressive Gardner solitons are found. The effects of temperature ratio of two-electron species, cold electron concentration, positron concentration on the characteristics of solitons are also discussed.

  20. Positron-electron correlation-polarization potentials for the calculation of positron collisions with atoms and molecules*

    NASA Astrophysics Data System (ADS)

    Franz, Jan

    2017-02-01

    We present correlation-polarization potentials for the calculation of scattering cross sections of positrons with atoms and molecules. The potentials are constructed from a short-range correlation term and a long-range polarization term. For the short-range correlation term we present four different potentials that are derived from multi-component density functionals. For the long-range polarization term we employ a multi-term expansion. Quantum scattering calculations are presented for low energy collisions of positrons with two atomic targets (argon and krypton) and two molecular targets (nitrogen and methane). For collision energies below the threshold for Positronium formation our calculations of scattering cross sections are in good agreement with recent data sets from experiments and theory. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic and B. Sivaraman.

  1. Triply differential measurements of single ionization of argon by 1-keV positron and electron impact

    NASA Astrophysics Data System (ADS)

    Gavin, J.; de Lucio, O. G.; DuBois, R. D.

    2017-06-01

    By establishing coincidences between target ions and scattered projectiles, and coincidences between target ions, scattered projectiles, and ejected electrons, triply differential cross-section (TDCS) information was generated in terms of projectile energy loss and scattering angles for interactions between 1-keV positrons and electrons and Ar atoms. The conversion of the raw experimental information to the TDCS is discussed. The single-ionization TDCS exhibits two distinguishable regions (lobes) where binary and recoil interactions can be described by two peaks. A comparison of the positron and electron impact data shows that the relative intensity of both binary and recoil interactions decreases exponentially as a function of the momentum transfer and is larger when ionization is induced by positron impact, when compared with electron impact.

  2. Oblique propagation of ion acoustic shock waves in weakly and highly relativistic plasmas with nonthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.

    2016-09-01

    This work investigates the oblique nonlinear propagation of ion acoustic (IA) shock waves for both weakly and highly relativistic plasmas composed of nonthermal electrons and positrons with relativistic thermal ions. The KdVB-like equation, involving dispersive, weakly transverse dispersive, nonlinearity and dissipative coefficients, is derived employing the well known reductive perturbation method. The integration of this equation is carried out by the {tanh} method taking the stable shock formation condition into account. The effects of nonthermal electrons and positrons, nonthermal electrons with isothermal positrons, isothermal electrons with nonthermal positrons, and isothermal electrons and positrons on oblique propagation of IA shock waves in weakly relativistic regime are described. Furthermore, the effects of plasma parameters on oblique propagation of IA shock waves in highly relativistic regime are discussed and compared with weakly relativistic case. It is seen that the plasma parameters within certain limits significantly modify the structures of the IA shock waves in both cases. The results may be useful for better understanding of the interactions of charged particles with extra-galactic jets as well as astrophysical compact objects.

  3. A coincidence study of electron and positron impact ionization of Ar (3p) at 1 keV

    NASA Astrophysics Data System (ADS)

    Campeanu, Radu I.; Walters, James H. R.; Whelan, Colm T.

    2015-10-01

    Distorted-wave calculations of the triple differential cross section (TDCS) are presented for electron and positron impact ionization of Ar(3p) in coplanar asymmetric geometry at an impact energy of 1 keV and are compared with a recent experiment. The experiment indicates that the positron TDCS is generally larger than the equivalent electron TDCS. It is shown that the magnitude of the TDCS is extremely sensitive to the energy of the ejected electron and that only when the cross section is averaged over energy do we get a reasonable agreement with experiment.

  4. A coincidence study of electron and positron impact ionization of Ar (3p) at 1 keV

    NASA Astrophysics Data System (ADS)

    Campeanu, Radu I.; Walters, James H. R.; Whelan, Colm T.

    2015-10-01

    Distorted-wave calculations of the triple differential cross section (TDCS) are presented for electron and positron impact ionization of Ar(3 p) in coplanar asymmetric geometry at an impact energy of 1 keV and are compared with a recent experiment. The experiment indicates that the positron TDCS is generally larger than the equivalent electron TDCS. It is shown that the magnitude of the TDCS is extremely sensitive to the energy of the ejected electron and that only when the cross section is averaged over energy do we get a reasonable agreement with experiment.

  5. Sub electron readout noise & photon counting devices

    NASA Astrophysics Data System (ADS)

    Gach, J.-L.; Balard, Ph.; Daigle, O.; Destefanis, G.; Feautrier, Ph.; Guillaume, Ch.; Rothman, J.

    We present recent advances on ultra low noise visible detectors at Laboratoire d'Astrophysique de Marseille, photon counting and EMCCD developments in collaboration with Observatoire de haute provence, Laboratoire d'astrophysique de l'observatoire de Grenoble and Laboratoire d'Astrophysique Experimentale (Montreal). After a review of the progress with third generation Image Photon Counting Systems (IPCS), we present the OCAM camera, based on the E2V CCD220 EMCCD, part of the Opticon JRA2 programme, and the CCCP controller, a new controller for the 3DNTT instrument that reduces the clock induced charge of an EMCCD by a factor 10, making it competitive with IPCS detectors for very faint fluxes. We will finally present the RAPID project and the concept of photon counting avalanche photodiode CMOS device (in collaboration with CEA-LETI) which is foreseen to be the ultimate detector for the visible-IR range providing no readout noise, high QE and extremely fast readout.

  6. Novel Cosmic-Ray Electron and Positron Constraints on MeV Dark Matter Particles

    NASA Astrophysics Data System (ADS)

    Boudaud, Mathieu; Lavalle, Julien; Salati, Pierre

    2017-07-01

    MeV dark matter (DM) particles annihilating or decaying to electron-positron pairs cannot, in principle, be observed via local cosmic-ray (CR) measurements because of the shielding solar magnetic field. In this Letter, we take advantage of spacecraft Voyager 1's capacity for detecting interstellar CRs since it crossed the heliopause in 2012. This opens up a new avenue to probe DM in the sub-GeV energy/mass range that we exploit here for the first time. From a complete description of the transport of electrons and positrons at low energy, we derive predictions for both the secondary astrophysical background and the pair production mechanisms relevant to DM annihilation or decay down to the MeV mass range. Interestingly, we show that reacceleration may push positrons up to energies larger than the DM particle mass. We combine the constraints from the Voyager and AMS-02 data to get novel limits covering a very extended DM particle mass range, from MeV to TeV. In the MeV mass range, our limits reach annihilation cross sections of order ⟨σ v ⟩˜10-28 cm3/s . An interesting aspect is that these limits barely depend on the details of cosmic-ray propagation in the weak reacceleration case, a configuration which seems to be favored by the most recent B /C data. Though extracted from a completely different and new probe, these bounds have a strength similar to those obtained with the cosmic microwave background—they are even more stringent for p -wave annihilation.

  7. Novel Cosmic-Ray Electron and Positron Constraints on MeV Dark Matter Particles.

    PubMed

    Boudaud, Mathieu; Lavalle, Julien; Salati, Pierre

    2017-07-14

    MeV dark matter (DM) particles annihilating or decaying to electron-positron pairs cannot, in principle, be observed via local cosmic-ray (CR) measurements because of the shielding solar magnetic field. In this Letter, we take advantage of spacecraft Voyager 1's capacity for detecting interstellar CRs since it crossed the heliopause in 2012. This opens up a new avenue to probe DM in the sub-GeV energy/mass range that we exploit here for the first time. From a complete description of the transport of electrons and positrons at low energy, we derive predictions for both the secondary astrophysical background and the pair production mechanisms relevant to DM annihilation or decay down to the MeV mass range. Interestingly, we show that reacceleration may push positrons up to energies larger than the DM particle mass. We combine the constraints from the Voyager and AMS-02 data to get novel limits covering a very extended DM particle mass range, from MeV to TeV. In the MeV mass range, our limits reach annihilation cross sections of order ⟨σv⟩∼10^{-28}  cm^{3}/s. An interesting aspect is that these limits barely depend on the details of cosmic-ray propagation in the weak reacceleration case, a configuration which seems to be favored by the most recent B/C data. Though extracted from a completely different and new probe, these bounds have a strength similar to those obtained with the cosmic microwave background-they are even more stringent for p-wave annihilation.

  8. Positron Annihilation in the Bipositronium Ps2

    SciTech Connect

    Bailey, David H.; Frolov, Alexei M.

    2005-07-01

    The electron-positron-pair annihilation in the bipositronium PS2 is considered. In particular, the two-, three-, one- and zero-photon annihilation rates are determined to high accuracy. The corresponding analytical expressions are also presented. Also, a large number of bound state properties have been determined for this system.

  9. Imprints of Electron-Positron Winds on the Multiwavelength Afterglows of Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Geng, J. J.; Wu, X. F.; Huang, Y. F.; Li, L.; Dai, Z. G.

    2016-07-01

    Optical rebrightenings in the afterglows of some gamma-ray bursts (GRBs) are unexpected within the framework of the simple external shock model. While it has been suggested that the central engines of some GRBs are newly born magnetars, we aim to relate the behaviors of magnetars to the optical rebrightenings. A newly born magnetar will lose its rotational energy in the form of Poynting-flux, which may be converted into a wind of electron-positron pairs through some magnetic dissipation processes. As proposed by Dai, this wind will catch up with the GRB outflow and a long-lasting reverse shock (RS) would form. By applying this scenario to GRB afterglows, we find that the RS propagating back into the electron-positron wind can lead to an observable optical rebrightening and a simultaneous X-ray plateau (or X-ray shallow decay). In our study, we select four GRBs (i.e., GRB 080413B, GRB 090426, GRB 091029, and GRB 100814A), of which the optical afterglows are well observed and show clear rebrightenings. We find that they can be well interpreted. In our scenario, the spin-down timescale of the magnetar should be slightly smaller than the peak time of the rebrightening, which can provide a clue to the characteristics of the magnetar.

  10. The electronics system for the LBNL positron emission mammography (PEM) camera

    NASA Astrophysics Data System (ADS)

    Moses, W. W.; Young, J. W.; Baker, K.; Jones, W.; Lenox, M.; Ho, M. H.; Weng, M.

    2001-06-01

    Describes the electronics for a high-performance positron emission mammography (PEM) camera. It is based on the electronics for a human brain positron emission tomography (PET) camera (the Siemens/CTI HRRT), modified to use a detector module that incorporates a photodiode (PD) array. An application-specified integrated circuit (ASIC) services the photodetector (PD) array, amplifying its signal and identifying the crystal of interaction. Another ASIC services the photomultiplier tube (PMT), measuring its output and providing a timing signal. Field-programmable gate arrays (FPGAs) and lookup RAMs are used to apply crystal-by-crystal correction factors and measure the energy deposit and the interaction depth (based on the PD/PMT ratio). Additional FPGAs provide event multiplexing, derandomization, coincidence detection, and real-time rebinning. Embedded PC/104 microprocessors provide communication, real-time control, and configure the system. Extensive use of FPGAs make the overall design extremely flexible, allowing many different functions (or design modifications) to be realized without hardware changes. Incorporation of extensive onboard diagnostics, implemented in the FPGAs, is required by the very high level of integration and density achieved by this system.

  11. Cosmic ray electrons, positrons and the synchrotron emission of the Galaxy: consistent analysis and implications

    SciTech Connect

    Bernardo, Giuseppe Di; Evoli, Carmelo; Gaggero, Daniele; Grasso, Dario; Maccione, Luca E-mail: carmelo.evoli@desy.de E-mail: dario.grasso@pi.infn.it

    2013-03-01

    A multichannel analysis of cosmic ray electron and positron spectra and of the diffuse synchrotron emission of the Galaxy is performed by using the DRAGON code. This study is aimed at probing the interstellar electron source spectrum down to E ∼< 1GeV and at constraining several propagation parameters. We find that above 4GeV the e{sup −} source spectrum is compatible with a power-law of index ∼ 2.5. Below 4GeV instead it must be significantly suppressed and the total lepton spectrum is dominated by secondary particles. The positron spectrum and fraction measured below a few GeV are consistently reproduced only within low reacceleration models. We also constrain the scale-height z{sub t} of the cosmic-ray distribution using three independent (and, in two cases, original) arguments, showing that values of z{sub t} ∼< 2kpc are excluded. This result may have strong implications for particle dark matter searches.

  12. Dipole anisotropy in cosmic electrons and positrons: inspection on local sources

    NASA Astrophysics Data System (ADS)

    Manconi, S.; Di Mauro, M.; Donato, F.

    2017-01-01

    The cosmic electrons and positrons have been measured with unprecedented statistics up to several hundreds GeV, thus permitting to explore the role that close single sources can have in shaping the flux at different energies. In the present analysis, we consider electrons and positrons in cosmic rays to be produced by spallations of hadron fluxes with the interstellar medium, by a smooth Supernova Remnant (SNR) population, by all the ATNF catalog pulsars, and by few discrete, local SNRs. We test several source models on the e++e‑ and e+ AMS-02 flux data. For the configurations compatible with the data, we compute the dipole anisotropy in e++e‑, e+, e+/e‑ from single sources. Our study includes a dedicated analysis to the Vela SNR. We show that Fermi-LAT present data on dipole anisotropy of e++e‑ start to explore some of the models for the Vela SNR selected by AMS-02 flux data. We also investigate how the observed anisotropy could result from a combination of local sources. Our analysis shows that the search of anisotropy in the lepton fluxes up to TeV energies can be an interesting tool for the inspection of properties of close SNRs, complementary to the high precision flux data.

  13. Cosmic ray electron and positron excesses from a fourth generation heavy Majorana neutrino

    SciTech Connect

    Masina, Isabella; Sannino, Francesco E-mail: sannino@cp3-origins.net

    2011-08-01

    Unexpected features in the energy spectra of cosmic rays electrons and positrons have been recently observed by PAMELA and Fermi-LAT satellite experiments, opening to the exciting possibility of an indirect manifestation of new physics. A TeV-scale fourth lepton family is a natural extension of the Standard Model leptonic sector (also linked to the hierarchy problem in Minimal Walking Technicolor models). The heavy Majorana neutrino of this setup mixes with Standard Model charged leptons through a weak charged current interaction. Here, we first study analytically the energy spectrum of the electrons and positrons originated in the heavy Majorana neutrino decay modes, also including polarization effects. We then compare the prediction of this model with the experimental data, exploiting both the standard direct method and our recently proposed Sum Rules method. We find that the decay modes involving the tau and/or the muon charged leptons as primary decay products fit well the PAMELA and Fermi-LAT lepton excesses while there is tension with respect to the antiproton to proton fraction constrained by PAMELA.

  14. Photon gating in four-dimensional ultrafast electron microscopy.

    PubMed

    Hassan, Mohammed T; Liu, Haihua; Baskin, John Spencer; Zewail, Ahmed H

    2015-10-20

    Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanoscale structural dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon-electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a "single" light pulse. The further potential of photon-gated PINEM electrons in probing ultrafast dynamics of matter and the optical gating of electrons by invoking a "second" optical pulse has previously been proposed and examined theoretically in our group. Here, we experimentally demonstrate this photon-gating technique, and, through diffraction, visualize the phase transition dynamics in vanadium dioxide nanoparticles. With optical gating of PINEM electrons, imaging temporal resolution was improved by a factor of 3 or better, being limited only by the optical pulse widths. This work enables the combination of the high spatial resolution of electron microscopy and the ultrafast temporal response of the optical pulses, which provides a promising approach to attain the resolution of few femtoseconds and attoseconds in UEM.

  15. Application of the weighted-density approximation to the accurate description of electron-positron correlation effects in materials

    NASA Astrophysics Data System (ADS)

    Callewaert, Vincent; Saniz, Rolando; Barbiellini, Bernardo; Bansil, Arun; Partoens, Bart

    2017-08-01

    We discuss positron-annihilation lifetimes for a set of illustrative bulk materials within the framework of the weighted-density approximation (WDA). The WDA can correctly describe electron-positron correlations in strongly inhomogeneous systems, such as surfaces, where the applicability of (semi-)local approximations is limited. We analyze the WDA in detail and show that the electrons which cannot screen external charges efficiently, such as the core electrons, cannot be treated accurately via the pair correlation of the homogeneous electron gas. We discuss how this problem can be addressed by reducing the screening in the homogeneous electron gas by adding terms depending on the gradient of the electron density. Further improvements are obtained when core electrons are treated within the LDA and the valence electron using the WDA. Finally, we discuss a semiempirical WDA-based approach in which a sum rule is imposed to reproduce the experimental lifetimes.

  16. Comparison of single-electron removal processes in collisions of electrons, positrons, protons, and antiprotons with hydrogen and helium

    SciTech Connect

    Schultz, D.R. )

    1989-09-01

    We present and compare total cross sections for single-electron removal in collisions of electrons, positrons, protons, and antiprotons with atomic hydrogen and helium. These cross sections have been calculated using the classical trajectory Monte Carlo technique in the velocity range of 0.5--7.0 a.u. (6.25--1224 keV/u). The cross sections are compared at equal collision velocities and exhibit differences arising from variations in mass and sign of charge of the projectile. At low and intermediate velocities these differences are large in both the ionization and charge transfer channels. At high velocities the single-ionization cross section for each of these singly charged particles becomes equal. However, the differences in the single-charge-transfer cross sections for positron and proton impact persist to very large velocities. We extend our previous work (Phys. Rev. A 38, 1866 (1988)) to explain these mass and sign of the charge effects in single-electron removal collisions.

  17. Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography

    PubMed Central

    Foudray, A M K; Olcott, P D

    2013-01-01

    We are studying two new detector technologies that directly measure the three-dimensional coordinates of 511 keV photon interactions for high-resolution positron emission tomography (PET) systems designed for small animal and breast imaging. These detectors are based on (1) lutetium oxyorthosilicate (LSO) scintillation crystal arrays coupled to position-sensitive avalanche photodiodes (PSAPD) and (2) cadmium zinc telluride (CZT). The detectors have excellent measured 511 keV photon energy resolutions (≤12% FWHM for LSO-PSAPD and ≤3% for CZT) and good coincidence time resolutions (2 ns FWHM for LSO-PSAPD and 8 ns for CZT). The goal is to incorporate the detectors into systems that will achieve 1 mm3 spatial resolution (~1 mm3, uniform throughout the field of view (FOV)), with excellent contrast resolution as well. In order to realize 1 mm3 spatial resolution with high signal-to-noise ratio (SNR), it is necessary to significantly boost coincidence photon detection efficiency (referred to as photon sensitivity). To facilitate high photon sensitivity in the proposed PET system designs, the detector arrays are oriented ‘edge-on’ with respect to incoming 511 keV annihilation photons and arranged to form a compact FOV with detectors very close to, or in contact with, the subject tissues. In this paper, we used Monte Carlo simulation to study various factors that limit the photon sensitivity of a high-resolution PET system dedicated to small animal imaging. To optimize the photon sensitivity, we studied several possible system geometries for a fixed 8 cm transaxial and 8 cm axial FOV. We found that using rectangular-shaped detectors arranged into a cylindrical geometry does not yield the best photon sensitivity. This is due to the fact that forming rectangular-shaped detectors into a ring produces significant wedge-shaped inter-module gaps, through which Compton-scattered photons in the detector can escape. This effect limits the center point source photon

  18. Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography.

    PubMed

    Habte, F; Foudray, A M K; Olcott, P D; Levin, C S

    2007-07-07

    We are studying two new detector technologies that directly measure the three-dimensional coordinates of 511 keV photon interactions for high-resolution positron emission tomography (PET) systems designed for small animal and breast imaging. These detectors are based on (1) lutetium oxyorthosilicate (LSO) scintillation crystal arrays coupled to position-sensitive avalanche photodiodes (PSAPD) and (2) cadmium zinc telluride (CZT). The detectors have excellent measured 511 keV photon energy resolutions (photon detection efficiency (referred to as photon sensitivity). To facilitate high photon sensitivity in the proposed PET system designs, the detector arrays are oriented 'edge-on' with respect to incoming 511 keV annihilation photons and arranged to form a compact FOV with detectors very close to, or in contact with, the subject tissues. In this paper, we used Monte Carlo simulation to study various factors that limit the photon sensitivity of a high-resolution PET system dedicated to small animal imaging. To optimize the photon sensitivity, we studied several possible system geometries for a fixed 8 cm transaxial and 8 cm axial FOV. We found that using rectangular-shaped detectors arranged into a cylindrical geometry does not yield the best photon sensitivity. This is due to the fact that forming rectangular-shaped detectors into a ring produces significant wedge-shaped inter-module gaps, through which Compton-scattered photons in the detector can escape. This effect limits the center point source

  19. Effect of polarization entanglement in photon-photon scattering

    NASA Astrophysics Data System (ADS)

    Rätzel, Dennis; Wilkens, Martin; Menzel, Ralf

    2017-01-01

    It is found that the differential cross section of photon-photon scattering is a function of the degree of polarization entanglement of the two-photon state. A reduced general expression for the differential cross section of photon-photon scattering is derived by applying simple symmetry arguments. An explicit expression is obtained for the example of photon-photon scattering due to virtual electron-positron pairs in quantum electrodynamics. It is shown how the effect in this explicit example can be explained as an effect of quantum interference and that it fits with the idea of distance-dependent forces.

  20. Creation of electron-positron pairs at excited Landau levels by neutrino in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.; Rumyantsev, D. A.; Savin, V. N.

    2014-10-01

    The process of neutrino production of electron-positron pairs in a magnetic field of arbitrary strength, where electrons and positrons can be created in the states corresponding to excited Landau levels, is analyzed. The mean value of the neutrino energy loss due to the process ν → νe-e+ is calculated. The result can be applied for calculating the efficiency of the electron-positron plasma production by neutrinos in the conditions of the Kerr black hole accretion disk considered by experts as the most possible source of a short cosmological gamma burst. The presented research can also be useful for further development of the calculation technique for an analysis of quantum processes in external active medium, and in part in the conditions of moderately strong magnetic field, when taking account of the ground Landau level appears to be insufficient.

  1. Effects of magnetic field on phase-mixing of electrostatic oscillations in cold electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Pramanik, Sourav; Maity, Chandan

    2017-08-01

    Spatiotemporal evolution of nonlinear electron-positron oscillations around a homogeneous background of massive ions has been analyzed in cold electron-positron-ion (EPI) plasmas by employing a simple perturbation method, demonstrating phase-mixing and thus wave-breaking of excited oscillations at arbitrarily low amplitudes [C. Maity, Phys. Plasmas 21, 072317 (2014)]. In this work, we investigate effects of the magnetic field on the phase-mixing phenomena of electron-positron oscillations in cold EPI plasmas. A perturbative analysis of governing fluid-Maxwell's equations has been carried out up to third order to obtain a rough estimate of the phase-mixing time. It has been shown that the presence of an external ambient magnetic field may induce a delay in the process of phase-mixing of such oscillations.

  2. Scattering of Low Energy Electrons and Positrons from Hydrogenic Systems and Applications

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.

    2007-01-01

    While the electron scatters from the target, the target no longer stays in its original form. One of the first methods to take into account the distortion of the target at low incident energies is the method of polarized orbitals. In this method the wave function for the process is written using the first-order perturbation theory and the equation for the scattering function is derived from the Schradinger equation. This method has been very successful in calculating the phase shifts and therefore the cross sections at various energies. The total wave function can be used to calculate photoionization cross sections. The disadvantage of this approach is that the method is not variational and therefore does not provide bounds on the phase shifts. These difficulties can be overcome by using the Feshbach projection operator formalism. This approach has been employed for the scattering of electrons and positrons from targets. Results of various calculations will be discussed.

  3. Ion-acoustic shocks in quantum electron-positron-ion plasmas

    SciTech Connect

    Roy, K.; Misra, A. P.; Chatterjee, P.

    2008-03-15

    Nonlinear propagation of quantum ion-acoustic waves (QIAWs) in a dense quantum plasma whose constituents are electrons, positrons, and positive ions is investigated using a quantum hydrodynamic model. The standard reductive perturbation technique is used to derive the Korteweg-de Vries-Burger (KdVB) equation for QIAWs. It is shown by numerical simulation that the KdVB equation has either oscillatory or monotonic shock wave solutions depending on the system parameters H proportional to quantum diffraction, {mu}{sub i} the effect of ion kinematic viscosity, and {mu} the equilibrium electron to ion density ratio. The results may have relevance in dense astrophysical plasmas (such as neutron stars) as well as in intense laser solid density plasma experiments where the particle density is about 10{sup 25}-10{sup 28} m{sup -3}.

  4. Coupling of Photonic and Electronic Spin Catalyzed by Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Gay, Timothy

    2011-05-01

    Recent experiments involving the collisions of polarized photons or polarized electrons with simple diatomic molecules have shown novel ways in which the net spin of electrons can be converted into the net spin of photons following the collisions, or vice versa. I will discuss three recent experiments that illustrate such transformations: the production of nuclear rotational spin in nitrogen molecules excited by polarized electrons with the subsequent emission of polarized photons, the excitation by polarized electrons of rotational eigenstates of hydrogen molecules and the subsequent emission of circularly-polarized light, and the photolysis of hydrogen molecules by circularly-polarized light yielding photofragments that ``spin the wrong way.'' To our knowledge, these latter measurements represent the first observation of photofragment orientation by direct observation of the polarization of the photofragment fluoresence. Work supported by the NSF through grant PHY-0821385, the DOE through the use of the ALS at LBL, and ANSTO (Access to Major Research Facilities Programme).

  5. Two-photon absorption of few-electron heavy ions

    SciTech Connect

    Surzhykov, A.; Indelicato, P.; Santos, J. P.; Amaro, P.; Fritzsche, S.

    2011-08-15

    The two-photon absorption of few-electron ions has been studied by using second-order perturbation theory and Dirac's relativistic equation. Within this framework, the general expressions for the excitation cross sections and rates are derived including a full account of the higher-order multipole terms in the expansion of the electron-photon interaction. While these expressions can be applied to any ion, independent of its particular shell structure, detailed computations are carried out for the two-photon absorption of hydrogen-, helium-, and berylliumlike ions and are compared with the available theoretical and experimental data. The importance of relativistic and nondipole effects in the analysis and computation of induced two-photon transitions is pointed out. Moreover, we discuss the potential of these transitions for atomic parity-violation studies in the high-Z domain.

  6. Photonic analog-to-digital conversion with electronic-photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Kärtner, F. X.; Amatya, R.; Araghchini, M.; Birge, J.; Byun, H.; Chen, J.; Dahlem, M.; DiLello, N. A.; Gan, F.; Holzwarth, C. W.; Hoyt, J. L.; Ippen, E. P.; Khilo, A.; Kim, J.; Kim, M.; Motamedi, A.; Orcutt, J. S.; Park, M.; Perrott, M.; Popović, M. A.; Ram, R. J.; Smith, H. I.; Zhou, G. R.; Spector, S. J.; Lyszczarz, T. M.; Geis, M. W.; Lennon, D. M.; Yoon, J. U.; Grein, M. E.; Schulein, R. T.

    2008-02-01

    Photonic Analog-to-Digital Conversion (ADC) has a long history. The premise is that the superior noise performance of femtosecond lasers working at optical frequencies enables us to overcome the bottleneck set by jitter and bandwidth of electronic systems and components. We discuss and demonstrate strategies and devices that enable the implementation of photonic ADC systems with emerging electronic-photonic integrated circuits based on silicon photonics. Devices include 2-GHz repetition rate low noise femtosecond fiber lasers, Si-Modulators with up to 20 GHz modulation speed, 20 channel SiN-filter banks, and Ge-photodetectors. Results towards a 40GSa/sec sampling system with 8bits resolution are presented.

  7. RF cavities for the positron accumulator ring (PAR) of the Advanced Photon Source (APS)

    SciTech Connect

    Kang, Y.W.; Nassiri, A.; Bridges, J.F.; Smith, T.L.; Song, J.J.

    1995-07-01

    The cavities for the dual frequency system of the APS PAR are described. The system uses two frequencies: a 9.78MHz fundamental system for the particle accumulation and a 117.3MHz twelfth harmonic system for the bunch compression. The cavities have been built, installed, tested, and used for storing the beam in the PAR for about a year. The fundamental cavity is a reentrant coaxial type with a capacitive loading plunger and has 1.6m length. The harmonic cavity is a symmetrical reentrant coaxial type and is 0.8m long. Ferrite tuners are used for frequency tuning. During the accumulation period, the ferrite tuner of the harmonic cavity works as a damper to disable the cavity. During an injection cycle the 9.78MHz system accumulates 24 positron bunches in a bucket and the 117.3MHz system compresses the bunch into a shorter bunch. Measurements were made on the rf properties of the cavities.

  8. Assessing the effect of electron density in photon dose calculations

    SciTech Connect

    Seco, J.; Evans, P. M.

    2006-02-15

    Photon dose calculation algorithms (such as the pencil beam and collapsed cone, CC) model the attenuation of a primary photon beam in media other than water, by using pathlength scaling based on the relative mass density of the media to water. In this study, we assess if differences in the electron density between the water and media, with different atomic composition, can influence the accuracy of conventional photon dose calculations algorithms. A comparison is performed between an electron-density scaling method and the standard mass-density scaling method for (i) tissues present in the human body (such as bone, muscle, etc.), and for (ii) water-equivalent plastics, used in radiotherapy dosimetry and quality assurance. We demonstrate that the important material property that should be taken into account by photon dose algorithms is the electron density, and not the mass density. The mass-density scaling method is shown to overestimate, relative to electron-density predictions, the primary photon fluence for tissues in the human body and water-equivalent plastics, where 6%-7% and 10% differences were observed respectively for bone and air. However, in the case of patients, differences are expected to be smaller due to the large complexity of a treatment plan and of the patient anatomy and atomic composition and of the smaller thickness of bone/air that incident photon beams of a treatment plan may have to traverse. Differences have also been observed for conventional dose algorithms, such as CC, where an overestimate of the lung dose occurs, when irradiating lung tumors. The incorrect lung dose can be attributed to the incorrect modeling of the photon beam attenuation through the rib cage (thickness of 2-3 cm in bone upstream of the lung tumor) and through the lung and the oversimplified modeling of electron transport in convolution algorithms. In the present study, the overestimation of the primary photon fluence, using the mass-density scaling method, was shown

  9. Nonstoichiometry accommodation in SrTiO3 thin films studied by positron annihilation and electron microscopy

    NASA Astrophysics Data System (ADS)

    Keeble, D. J.; Wicklein, S.; Jin, L.; Jia, C. L.; Egger, W.; Dittmann, R.

    2013-05-01

    Accommodation of nonstoichiometry in SrTiO3 pulsed laser deposited (PLD) films was investigated using positron annihilation lifetime spectroscopy and (scanning) transmission electron microscopy. Increasing PLD laser fluence changed the stoichiometry from Ti to Sr deficient. Cation vacancy defects were detected, and the concentration ratio of Sr to Ti vacancies, [VSr]/[VTi], was observed to increase systematically in the Sr-deficient region, although no change in the electron microscopy lattice images was detected. Increasing Ti deficiency resulted in the accommodation of SrO layers in planar defects, and in the formation of vacancy cluster defects. A change from VTi to VSr defect positron trapping was also detected.

  10. Unsaturated Comptonization of isotropic photon spectra by relativistic electrons

    NASA Technical Reports Server (NTRS)

    Loeb, Abraham; Mckee, Christopher F.; Lahav, Ofer

    1991-01-01

    The multiple scattering approach for evaluating the transformation of an arbitrary soft photon spectrum as a result of unsaturated Compton scatterings in a medium of relativistic electrons is explored. The medium is assumed to be infinite and spatially homogeneous but may be time-dependent, and the photons are isotropic. It is shown that the distortion of a radiation spectrum can be described analytically in a compact form using the Fourier transform of the single-scattering probability. In the nonrelativistic case, the validity of the known analytical results derived from the Kompaneets (1957) equation is extended to arbitrary electron distribution functions and photon spectra. For relativistic electrons, simple expressions are obtained for the total energy that is transferred from the electrons to the photons and for the distortion in the Rayleigh-Jeans regime of a blackbody spectrum. It is demonstrated that the treatment applies to Comptonization in a relativistic jet and that Comptonization of very soft trapped photons by semirelativistic electrons in an expanding medium leads naturally to a log Gaussian spectrum, of the form observed in blazars.

  11. Constraints on dark photon from neutrino-electron scattering experiments

    NASA Astrophysics Data System (ADS)

    Bilmiş, S.; Turan, I.; Aliev, T. M.; Deniz, M.; Singh, L.; Wong, H. T.

    2015-08-01

    A possible manifestation of an additional light gauge boson A', named a dark photon, associated with a group U (1 )B -L , is studied in neutrino-electron scattering experiments. The exclusion plot on the coupling constant gB -L and the dark photon mass MA' is obtained. It is shown that the contributions of interference terms between the dark photon and the Standard Model are important. The interference effects are studied and compared with data sets from TEXONO, GEMMA, BOREXINO, and LSND, as well as CHARM II experiments. Our results provide more stringent bounds to some regions of parameter space.

  12. Observation of Polarized Positrons from an Undulator-Based Source

    NASA Astrophysics Data System (ADS)

    Alexander, G.; Barley, J.; Batygin, Y.; Berridge, S.; Bharadwaj, V.; Bower, G.; Bugg, W.; Decker, F.-J.; Dollan, R.; Efremenko, Y.; Gharibyan, V.; Hast, C.; Iverson, R.; Kolanoski, H.; Kovermann, J.; Laihem, K.; Lohse, T.; McDonald, K. T.; Mikhailichenko, A. A.; Moortgat-Pick, G. A.; Pahl, P.; Pitthan, R.; Pöschl, R.; Reinherz-Aronis, E.; Riemann, S.; Schälicke, A.; Schüler, K. P.; Schweizer, T.; Scott, D.; Sheppard, J. C.; Stahl, A.; Szalata, Z. M.; Walz, D.; Weidemann, A. W.

    2008-05-01

    An experiment (E166) at the Stanford Linear Accelerator Center has demonstrated a scheme in which a multi-GeV electron beam passed through a helical undulator to generate multi-MeV, circularly polarized photons which were then converted in a thin target to produce positrons (and electrons) with longitudinal polarization above 80% at 6 MeV. The results are in agreement with Geant4 simulations that include the dominant polarization-dependent interactions of electrons, positrons, and photons in matter.

  13. Observation of polarized positrons from an undulator-based source.

    PubMed

    Alexander, G; Barley, J; Batygin, Y; Berridge, S; Bharadwaj, V; Bower, G; Bugg, W; Decker, F-J; Dollan, R; Efremenko, Y; Gharibyan, V; Hast, C; Iverson, R; Kolanoski, H; Kovermann, J; Laihem, K; Lohse, T; McDonald, K T; Mikhailichenko, A A; Moortgat-Pick, G A; Pahl, P; Pitthan, R; Pöschl, R; Reinherz-Aronis, E; Riemann, S; Schälicke, A; Schüler, K P; Schweizer, T; Scott, D; Sheppard, J C; Stahl, A; Szalata, Z M; Walz, D; Weidemann, A W

    2008-05-30

    An experiment (E166) at the Stanford Linear Accelerator Center has demonstrated a scheme in which a multi-GeV electron beam passed through a helical undulator to generate multi-MeV, circularly polarized photons which were then converted in a thin target to produce positrons (and electrons) with longitudinal polarization above 80% at 6 MeV. The results are in agreement with GEANT4 simulations that include the dominant polarization-dependent interactions of electrons, positrons, and photons in matter.

  14. Observation of Polarized Positrons from an Undulator-Based Source

    SciTech Connect

    Alexander, G; Barley, J.; Batygin, Y.; Berridge, S.; Bharadwaj, V.; Bower, G.; Bugg, W.; Decker, F.-J.; Dollan, R.; Efremenko, Y.; Gharibyan, V.; Hast, C.; Iverson, R.; Kolanoski, H.; Kovermann, J.; Laihem, K.; Lohse, T.; McDonald, K.T.; Mikhailichenko, A.A.; Moortgat-Pick, G.A.; Pahl, P.; /Tel Aviv U. /Cornell U., Phys. Dept. /SLAC /Tennessee U. /Humboldt U., Berlin /DESY /Yerevan Phys. Inst. /Aachen, Tech. Hochsch. /DESY, Zeuthen /Princeton U. /Durham U. /Daresbury

    2008-03-06

    An experiment (E166) at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which a multi-GeV electron beam passed through a helical undulator to generate multi-MeV, circularly polarized photons which were then converted in a thin target to produce positrons (and electrons) with longitudinal polarization above 80% at 6 MeV. The results are in agreement with Geant4 simulations that include the dominant polarization-dependent interactions of electrons, positrons and photons in matter.

  15. Directly tailoring photon-electron coupling for sensitive photoconductance.

    PubMed

    Huang, Zhiming; Zhou, Wei; Huang, Jingguo; Wu, Jing; Gao, Yanqing; Qu, Yue; Chu, Junhao

    2016-03-11

    The coupling between photons and electrons is at the heart of many fundamental phenomena in nature. Despite tremendous advances in controlling electrons by photons in engineered energy-band systems, control over their coupling is still widely lacking. Here we demonstrate an unprecedented ability to couple photon-electron interactions in real space, in which the incident electromagnetic wave directly tailors energy bands of solid to generate carriers for sensitive photoconductance. By spatially coherent manipulation of metal-wrapped material system through anti-symmetric electric field of the irradiated electromagnetic wave, electrons in the metals are injected and accumulated in the induced potential well (EIW) produced in the solid. Respective positive and negative electric conductances are easily observed in n-type and p-type semiconductors into which electrons flow down from the two metallic sides under light irradiation. The photoconductivity is further confirmed by sweeping the injected electrons out of the semiconductor before recombination applied by sufficiently strong electric fields. Our work opens up new perspectives for tailoring energy bands of solids and is especially relevant to develop high effective photon detection, spin injection, and energy harvesting in optoelectronics and electronics.

  16. Directly tailoring photon-electron coupling for sensitive photoconductance

    PubMed Central

    Huang, Zhiming; Zhou, Wei; Huang, Jingguo; Wu, Jing; Gao, Yanqing; Qu, Yue; Chu, Junhao

    2016-01-01

    The coupling between photons and electrons is at the heart of many fundamental phenomena in nature. Despite tremendous advances in controlling electrons by photons in engineered energy-band systems, control over their coupling is still widely lacking. Here we demonstrate an unprecedented ability to couple photon-electron interactions in real space, in which the incident electromagnetic wave directly tailors energy bands of solid to generate carriers for sensitive photoconductance. By spatially coherent manipulation of metal-wrapped material system through anti-symmetric electric field of the irradiated electromagnetic wave, electrons in the metals are injected and accumulated in the induced potential well (EIW) produced in the solid. Respective positive and negative electric conductances are easily observed in n-type and p-type semiconductors into which electrons flow down from the two metallic sides under light irradiation. The photoconductivity is further confirmed by sweeping the injected electrons out of the semiconductor before recombination applied by sufficiently strong electric fields. Our work opens up new perspectives for tailoring energy bands of solids and is especially relevant to develop high effective photon detection, spin injection, and energy harvesting in optoelectronics and electronics. PMID:26964883

  17. Directly tailoring photon-electron coupling for sensitive photoconductance

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Zhou, Wei; Huang, Jingguo; Wu, Jing; Gao, Yanqing; Qu, Yue; Chu, Junhao

    2016-03-01

    The coupling between photons and electrons is at the heart of many fundamental phenomena in nature. Despite tremendous advances in controlling electrons by photons in engineered energy-band systems, control over their coupling is still widely lacking. Here we demonstrate an unprecedented ability to couple photon-electron interactions in real space, in which the incident electromagnetic wave directly tailors energy bands of solid to generate carriers for sensitive photoconductance. By spatially coherent manipulation of metal-wrapped material system through anti-symmetric electric field of the irradiated electromagnetic wave, electrons in the metals are injected and accumulated in the induced potential well (EIW) produced in the solid. Respective positive and negative electric conductances are easily observed in n-type and p-type semiconductors into which electrons flow down from the two metallic sides under light irradiation. The photoconductivity is further confirmed by sweeping the injected electrons out of the semiconductor before recombination applied by sufficiently strong electric fields. Our work opens up new perspectives for tailoring energy bands of solids and is especially relevant to develop high effective photon detection, spin injection, and energy harvesting in optoelectronics and electronics.

  18. Photon-phonon anti-stokes upconversion of a photonically, electronically, and thermally isolated opal

    NASA Astrophysics Data System (ADS)

    Stem, Michelle R.

    2016-05-01

    The purpose of the present research was to investigate an intense violet shift displayed by a non-toxic, natural silicate material with a highly ordered nanostructure. The material displayed an unexpected, nonlinear 2:3 photon-phonon anti-Stokes upconversion while photonically, electronically, and thermally isolated. Conducted aphotonically and at ambient temperatures, the specimen upconverted a low-power, 650 nm constant wave red laser to an internally highly dispersed 433 nm violet wavelength. The strong dispersion was largely due to nearly total internal reflection of the laser. The upconversion had an efficiency of about 78 %, based on specimen volume, with no detectable thermal variance. The 2:3 anti-Stokes upconversion displayed by this material is likely the result of a previously unknown photon-phonon evanescence response that amplified the energy of a portion of the incident laser photons. Thus, a portion of the incident laser photons were upconverted, and the material converted another portion into an amplified energy that caused the upconversion. Internal micro-lasing appeared to be a means of photon-phonon evanescent energy redistribution, enabling dispersed photonic upconversion. Additional analyses also found an unexpectedly rhythmic photonic structure in spectrophotometric scans, polariscopic color changing, and previously undocumented ultraviolet responses.

  19. Standing electromagnetic solitons in hot ultra-relativistic electron-positron plasmas

    SciTech Connect

    Heidari, E.; Aslaninejad, M.; Eshraghi, H.; Rajaee, L.

    2014-03-15

    Using a one-dimensional self-consistent fluid model, we investigate standing relativistic bright solitons in hot electron-positron plasmas. The positron dynamics is taken into account. A set of nonlinear coupled differential equations describing the evolution of electromagnetic waves in fully relativistic two-fluid plasma is derived analytically and solved numerically. As a necessary condition for the existence of standing solitons the system should be relativistic. For the case of ultra-relativistic plasma, we investigate non-drifting bright solitary waves. Detailed discussions of the acceptable solutions are presented. New single hump non-trivial symmetric solutions for the scalar potential were found, and single and multi-nodal symmetric and anti-symmetric solutions for the vector potential are presented. It is shown that for a fixed value of the fluid velocity excited modes with more zeros in the profile of the vector potential show a higher magnitude for the scalar potential. An increase in the plasma fluid velocity also increases the magnitude of the scalar potential. Furthermore, the Hamiltonian and the first integral of the system are given.

  20. Terrestrial gamma ray flashes from electron avalanches in thunderstorms - the detailed structure and time evolution of electron, photon, optical and radio emission - results from a new simulation software package

    NASA Astrophysics Data System (ADS)

    Connell, P. H.

    2013-12-01

    To design the MXGS coded mask imager of the ASIM mission to the ISS, to detect and locate TGF gamma-rays, a first order software package was written at UV to simulate the vertical expansion of gamma-ray photons from 15-20 km altitudes up to 300-600 km orbital altitudes, to make some estimate of the probable TGF spectra and diffuse beam structure that might be observed by MXGS. A new software package includes the simulation of the Runaway Electron Avalanche (REA) origin of TGFs by electron ionization and Bremsstrahlung scattering and photon emission. It uses the standard KeV-MeV scattering physics of electron and photon interactions, close range Moller electron ionization, Binary-Electron-Bethe models of electron scattering, positron Bhabha scattering and annihilation, electron excitation and photon emission. It also uses a super particle spatial mesh system to control particle-momentum flux densities, electric field evolution and exponential avalanche growth and falloff. The package takes care of all high energy scattering physics, leaving the user free to concentrate on defining the three components of scattering medium, electric-magnetic field geometry, and free electron flux field geometry whose details are the main unknown in TGF research. Results will be presented from TGF simulations using realistic electric fields expected within and above storm clouds, and will include video displays showing the evolving ionization structure of electron trajectories, the time evolution of photon flux fields, electron-positron flux fields, their important circular feedback movement in the local earth magnetic field, local molecular ion densities, and the dielectric effect of induced local electric fields. The second aim of the package is as a step in creating open source software which could evolve into a standard research software package approved by the REA-TGF research community to correctly simulate all the relevant physical processes involved in the complex phenomenon

  1. Value and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography

    SciTech Connect

    Tamaki, N.; Yonekura, Y.; Senda, M.; Yamashita, K.; Koide, H.; Saji, H.; Hashimoto, T.; Fudo, T.; Kambara, H.; Kawai, C.

    1988-07-01

    The diagnostic value of exercise /sup 201/Tl single photon emission computed tomography (SPECT) for assessing coronary artery disease (CAD) was comparatively evaluated with exercise (13N) ammonia positron emission tomography (PET). Fifty-one patients underwent both stress-delayed SPECT imaging using a rotational gamma camera and stress-rest PET imaging using a high resolution PET camera. Of 48 CAD patients, SPECT showed abnormal perfusion in 46 patients (96%), while PET detected perfusion abnormalities in 47 (98%). The sensitivity for detecting disease in individual coronary arteries (greater than 50% stenosis) was also similar for SPECT (81%) and PET (88%). When their interpretations were classified as normal, transient defect, and fixed defect in 765 myocardial segments, SPECT and PET findings were concordant in 606 segments (79%). However, 66 segments showed a fixed defect by SPECT but a transient defect by PET, whereas there were only nine segments showing a transient defect by SPECT and a fixed defect by PET. PET identified transient defects in 34% of the myocardial segments showing a fixed defect by SPECT. We conclude that both stress SPECT and PET showed high and similar sensitivities for detecting CAD and individual stenosed vessels. Since stress-delayed SPECT with single tracer injection detected fewer transient defects, it may underestimate the presence of myocardial ischemia, compared with high resolution PET imaging with two tracer injections.

  2. CO2BOLD assessment of moyamoya syndrome: Validation with single photon emission computed tomography and positron emission tomography imaging

    PubMed Central

    Pellaton, Alain; Bijlenga, Philippe; Bouchez, Laurie; Cuvinciuc, Victor; Barnaure, Isabelle; Garibotto, Valentina; Lövblad, Karl-Olof; Haller, Sven

    2016-01-01

    AIM To compare the assessment of cerebrovascular reserve (CVR) using CO2BOLD magnetic resonance imaging (MRI) vs positron emission tomography (PET) and single photon emission computed tomography (SPECT) as reference standard. METHODS Ten consecutive patients (8 women, mean age of 41 ± 26 years) with moyamoya syndrome underwent 14 pre-surgical evaluations for external-internal carotid artery bypass surgery. CVR was assessed using CO2BOLD and PET (4)/SPECT (11) with a maximum interval of 36 d, and evaluated by two experienced neuroradiologists. RESULTS The inter-rater agreement was 0.81 for SPECT (excellent), 0.43 for PET (fair) and 0.7 for CO2BOLD (good). In 9/14 cases, there was a correspondence between CO2BOLD and PET/SPECT. In 4/14 cases, CVR was over-estimated in CO2BOLD, while in 1/14 case, CVR was underestimated in CO2BOLD. The sensitivity of CO2BOLD was 86% and a specificity of 43%. CONCLUSION CO2BOLD can be used for pre-surgical assessment of CVR in patients with moyamoya syndrome and combines the advantages of absent irradiation, high availability of MRI and assessment of brain parenchyma, cerebral vessels and surrogate CVR in one stop. PMID:27928470

  3. First-principles calculations of momentum distributions of annihilating electron-positron pairs in defects in UO2

    NASA Astrophysics Data System (ADS)

    Wiktor, Julia; Jomard, Gérald; Torrent, Marc; Bertolus, Marjorie

    2017-01-01

    We performed first-principles calculations of the momentum distributions of annihilating electron-positron pairs in vacancies in uranium dioxide. Full atomic relaxation effects (due to both electronic and positronic forces) were taken into account and self-consistent two-component density functional theory schemes were used. We present one-dimensional momentum distributions (Doppler-broadened annihilation radiation line shapes) along with line-shape parameters S and W. We studied the effect of the charge state of the defect on the Doppler spectra. The effect of krypton incorporation in the vacancy was also considered and it was shown that it should be possible to observe the fission gas incorporation in defects in UO2 using positron annihilation spectroscopy. We suggest that the Doppler broadening measurements can be especially useful for studying impurities and dopants in UO2 and of mixed actinide oxides.

  4. Photon gating in four-dimensional ultrafast electron microscopy

    PubMed Central

    Hassan, Mohammed T.; Liu, Haihua; Baskin, John Spencer; Zewail, Ahmed H.

    2015-01-01

    Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanoscale structural dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon–electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a “single” light pulse. The further potential of photon-gated PINEM electrons in probing ultrafast dynamics of matter and the optical gating of electrons by invoking a “second” optical pulse has previously been proposed and examined theoretically in our group. Here, we experimentally demonstrate this photon-gating technique, and, through diffraction, visualize the phase transition dynamics in vanadium dioxide nanoparticles. With optical gating of PINEM electrons, imaging temporal resolution was improved by a factor of 3 or better, being limited only by the optical pulse widths. This work enables the combination of the high spatial resolution of electron microscopy and the ultrafast temporal response of the optical pulses, which provides a promising approach to attain the resolution of few femtoseconds and attoseconds in UEM. PMID:26438835

  5. An Electron/Photon/Relaxation Data Library for MCNP6

    SciTech Connect

    Hughes, III, H. Grady

    2015-08-07

    The capabilities of the MCNP6 Monte Carlo code in simulation of electron transport, photon transport, and atomic relaxation have recently been significantly expanded. The enhancements include not only the extension of existing data and methods to lower energies, but also the introduction of new categories of data and methods. Support of these new capabilities has required major additions to and redesign of the associated data tables. In this paper we present the first complete documentation of the contents and format of the new electron-photon-relaxation data library now available with the initial production release of MCNP6.

  6. Pulse shape optimization for electron-positron production in rotating fields

    NASA Astrophysics Data System (ADS)

    Fillion-Gourdeau, François; Hebenstreit, Florian; Gagnon, Denis; MacLean, Steve

    2017-07-01

    We optimize the pulse shape and polarization of time-dependent electric fields to maximize the production of electron-positron pairs via strong field quantum electrodynamics processes. The pulse is parametrized in Fourier space by a B -spline polynomial basis, which results in a relatively low-dimensional parameter space while still allowing for a large number of electric field modes. The optimization is performed by using a parallel implementation of the differential evolution, one of the most efficient metaheuristic algorithms. The computational performance of the numerical method and the results on pair production are compared with a local multistart optimization algorithm. These techniques allow us to determine the pulse shape and field polarization that maximize the number of produced pairs in computationally accessible regimes.

  7. Monte Carlo simulation of the inelastic scattering of electrons and positrons using optical-data models

    NASA Astrophysics Data System (ADS)

    Fernández-Varea, José M.

    1998-09-01

    The algorithms implemented in the Monte Carlo codes LEEPS and PENELOPE for the simulation of the inelastic scattering of electrons and positrons are described. Both algorithms are based on the first Born approximation, in which the inelastic cross section is proportional to the generalized oscillator strength. This quantity is obtained by extrapolating the optical oscillator strength into the non-zero momentum transfer region using suitable extension algorithms. The calculated inelastic mean free paths and stopping powers are compared to other theoretical and experimental data available from the literature. The stability of PENELOPE's mixed simulation procedure under variations of the cutoff energy, which separates hard from soft collisions, is also analyzed. Finally, angular deflections of the projectile in inelastic collisions are considered.

  8. INTEGRAL/SPI Observations of Electron-Positron Annihilation Radiation from our Galaxy

    NASA Astrophysics Data System (ADS)

    Teegarden, B. J.; Watanabe, K.; Knoedlseder, J.; Jean, P.; Lonjou, V.; Weidenspointner, G.; Skinner, G.; von Ballmoos, P.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; Schoenfelder, V.

    2004-12-01

    The spectrometer on INTEGRAL (SPI) is a coded-aperture gamma-ray telescope with moderate angular resolution (3 deg) and superior energy resolution (2 keV at 511 keV). One of it's principal science goals is the detailed study of 511 keV electron-positron annihilation from our Galaxy. The origin of this radiation remains a mystery, however current morphological studies suggest an older stellar population. There has also been recent speculation on the possibility of the existence of light (< 100 MeV) dark matter particles whose annihilation or decay could produce the observed 511 keV emission. In this paper we summarize the current results from SPI, compare them with previous results and discuss their implication on possible models for the production of the annihilation radiation. INTEGRAL is a project of ESA. This work was supported by NASA and CNES.

  9. INTEGRAL SPI Limits on Electron-Positron Annihilation Radiation from the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Teegarden, B. J.; Watanabe, K.; Jean, P.; Knödlseder, J.; Lonjou, V.; Roques, J. P.; Skinner, G. K.; von Ballmoos, P.; Weidenspointner, G.; Bazzano, A.; Butt, Y. M.; Decourchelle, A.; Fabian, A. C.; Goldwurm, A.; Güdel, M.; Hannikainen, D. C.; Hartmann, D. H.; Hornstrup, A.; Lewin, W. H. G.; Makishima, K.; Malzac, A.; Miller, J.; Parmar, A. N.; Reynolds, S. P.; Rothschild, R. E.; Schönfelder, V.; Tomsick, J. A.; Vink, J.

    2005-03-01

    The center of our Galaxy is a known strong source of electron-positron 511 keV annihilation radiation. Thus far, however, there have been no reliable detections of annihilation radiation outside of the central radian of our Galaxy. One of the primary objectives of the INTEGRAL (International Gamma-Ray Astrophysics Laboratory) mission, launched in 2002 October, is the detailed study of this radiation. The Spectrometer on INTEGRAL (SPI) is a high-resolution, coded-aperture gamma-ray telescope with an unprecedented combination of sensitivity, angular resolution, and energy resolution. We report results from the first 10 months of observation. During this period a significant fraction of the observing time was spent in or near the Galactic plane. No positive annihilation flux was detected outside of the central region (|l|>40deg) of our Galaxy. In this paper we describe the observations and data analysis methods and give limits on the 511 keV flux.

  10. INTEGRAL/SPI Observations of Electron-Positron Annihilation Radiation from our Galaxy

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Knoedlseder, J.; Jean, P.; Lonjou, V.; Weidenspointer, G.; Skinner, G.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; hide

    2005-01-01

    The spectrometer on INTEGRAL (SPI) is a coded-aperture gamma-ray telescope with moderate angular resolution (3 deg) and superior energy resolution (2 keV at 511 kev). One of it's principal science goals is the detailed study of 511 keV electron-positron annihilation from our Galaxy. The origin of this radiation remains a mystery, however current morphological studies suggest an older stellar population. There has also been recent speculation on the possibility of the existence of light (< 100 MeV) dark matter particles whose annihilation or decay could produce the observed 511 keV emission. In this paper we summarize the current results from SPI, compare them with previous results and discuss their implication on possible models for the production of the annihilation radiation.

  11. Enhanced Dark Matter Annihilation Rate for Positron and Electron Excesses from Q-Ball Decay

    SciTech Connect

    McDonald, John

    2009-10-09

    We show that Q-ball decay in Affleck-Dine baryogenesis models can account for dark matter when the annihilation cross section is sufficiently enhanced to explain the positron and electron excesses observed by PAMELA, ATIC, and PPB-BETS. For Affleck-Dine baryogenesis along a d=6 flat direction, the reheating temperature is approximately 30 GeV and the Q-ball decay temperature is in the range of 10-100 MeV. The lightest supersymmetric particles produced by Q-ball decay annihilate down to the observed dark matter density if the cross section is enhanced by a factor approx10{sup 3} relative to the thermal relic cross section.

  12. Ion acoustic solitary waves in plasmas with nonextensive electrons, Boltzmann positrons and relativistic thermal ions

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Talukder, M. R.

    2015-09-01

    This work investigates the theoretical and numerical studies on nonlinear propagation of ion acoustic solitary waves (IASWs) in an unmagnetized plasma consisting of nonextensive electrons, Boltzmann positrons and relativistic thermal ions. The Korteweg-de Vries (KdV) equation is derived by using the well known reductive perturbation method. This equation admits the soliton like solitary wave solution. The effects of phase velocity, amplitude of soliton, width of soliton and electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves have been discussed with graphical representation found in the variation of the plasma parameters. The obtained results can be helpful in understanding the features of small but finite amplitude localized relativistic ion-acoustic waves for an unmagnetized three component plasma system in astrophysical compact objects.

  13. INTEGRAL/SPI Limits on Electron-Positron Annihilation Radiation from the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Jean, P.; Knoedlseder, J.; Lonjou, V.; Roques, J. P.; Skinner, G. K.; vonBallmoos, P.; Weidenspointner, G.; Bazzano, A.

    2005-01-01

    The center of our Galaxy is a known strong source of electron-positron 511- keV annihilation radiation. Thus far, however, there have been no reliable detections of annihilation radiation outside of the central radian of our Galaxy. One of the primary objectives of the INTEGRAL (INTErnational Gamma-RAy Astrophysics Laboratory) mission, launched in Oct. 2002, is the detailed study of this radiation. The Spectrometer on INTEGRAL (SPI) is a high resolution coded-aperture gamma-ray telescope with an unprecedented combination of sensitivity, angular resolution and energy resolution. We report results from the first 10 months of observation. During this period a significant fraction of the observing time was spent in or near the Galactic Plane. No positive annihilation flux was detected outside of the central region (|l| greater than 40 degrees) of our Galaxy. In this paper we describe the observations and data analysis methods and give limits on the 511-keV flux.

  14. INTEGRAL/SPI Observations of Electron-Positron Annihilation Radiation from our Galaxy

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Knoedlseder, J.; Jean, P.; Lonjou, V.; Weidenspointer, G.; Skinner, G.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; Schoenfelder, V.

    2005-01-01

    The spectrometer on INTEGRAL (SPI) is a coded-aperture gamma-ray telescope with moderate angular resolution (3 deg) and superior energy resolution (2 keV at 511 kev). One of it's principal science goals is the detailed study of 511 keV electron-positron annihilation from our Galaxy. The origin of this radiation remains a mystery, however current morphological studies suggest an older stellar population. There has also been recent speculation on the possibility of the existence of light (< 100 MeV) dark matter particles whose annihilation or decay could produce the observed 511 keV emission. In this paper we summarize the current results from SPI, compare them with previous results and discuss their implication on possible models for the production of the annihilation radiation.

  15. Simultaneous optimization of photons and electrons for mixed beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Fix, M. K.; Joosten, A.; Henzen, D.; Frei, D.; Volken, W.; Kueng, R.; Aebersold, D. M.; Stampanoni, M. F. M.; Manser, P.

    2017-07-01

    The aim of this work is to develop and investigate an inverse treatment planning process (TPP) for mixed beam radiotherapy (MBRT) capable of performing simultaneous optimization of photon and electron apertures. A simulated annealing based direct aperture optimization (DAO) is implemented to perform simultaneous optimization of photon and electron apertures, both shaped with the photon multileaf collimator (pMLC). Validated beam models are used as input for Monte Carlo dose calculations. Consideration of photon pMLC transmission during DAO and a weight re-optimization of the apertures after deliverable dose calculation are utilized to efficiently reduce the differences between optimized and deliverable dose distributions. The TPP for MBRT is evaluated for an academic situation with a superficial and an enlarged PTV in the depth, a left chest wall case including the internal mammary chain and a squamous cell carcinoma case. Deliverable dose distributions of MBRT plans are compared to those of modulated electron radiotherapy (MERT), photon IMRT and if available to those of clinical VMAT plans. The generated MBRT plans dosimetrically outperform the MERT, photon IMRT and VMAT plans for all investigated situations. For the clinical cases of the left chest wall and the squamous cell carcinoma, the MBRT plans cover the PTV similarly or more homogeneously than the VMAT plans, while OARs are spared considerably better with average reductions of the mean dose to parallel OARs and D 2% to serial OARs by 54% and 26%, respectively. Moreover, the low dose bath expressed as V 10% to normal tissue is substantially reduced by up to 45% compared to the VMAT plans. A TPP for MBRT including simultaneous optimization is successfully implemented and the dosimetric superiority of MBRT plans over MERT, photon IMRT and VMAT plans is demonstrated for academic and clinical situations including superficial targets with and without deep-seated part.

  16. Magnetic field contribution to the last electron-photon scattering

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2010-11-01

    When the cosmic microwave photons scatter electrons just prior to the decoupling of matter and radiation, magnetic fields do contribute to the Stokes matrix as well as to the scalar, vector and tensor components of the transport equations for the brightness perturbations. The magnetized electron-photon scattering is hereby discussed in general terms by including, for the first time, the contribution of magnetic fields with arbitrary direction and in the presence of the scalar, vector and tensor modes of the geometry. The propagation of relic vectors and relic gravitons is discussed for a varying magnetic field orientation and for different photon directions. The source terms of the transport equations in the presence of the relativistic fluctuations of the geometry are also explicitly averaged over the magnetic field orientations and the problem of a consistent account of the small-scale and large-scale magnetic field is briefly outlined.

  17. Sagdeev potential approach for quantum ion-acoustic solitary waves in an electron-positron-ion plasma

    SciTech Connect

    Banerjee, Gadadhar Maitra, Sarit

    2016-06-21

    Sagdeev pseudopotential method is employed to study the arbitrary amplitude quantum ion-acoustic solitary waves in an unmagnetized electron-positron-ion plasma by using one dimensional quantum hydrodynamic model together with the Poisson equation. Sagdeev potential function is obtained in terms of electrostatic potential and analyzed with and without the effect of quantum diffraction parameter H. Effects of the parameter H on both the amplitude and width of the solitary waves have been observed. It is also observed that the positron density can affect the wave propagation.

  18. Microtrons for electron and photon radiotherapy

    SciTech Connect

    Brahme, A.; Reistad, D.

    1981-04-01

    For radiation therapy at medium and high energies the circular and the racetract microtron are ideally suited electron accelerators. The fine energy definition of the electron beam from a microtron allows the use of beam transport from one accelerator to several treatment units. This possibility makes an installation with two or more treatment rooms very interesting from an economical point of view particularly at high energies. The availability of high quality radiation modalities from the compact high energy racetrack microtron may open new possibilities in the treatment of large deep seated tumours.

  19. Electron/Photon Verification Calculations Using MCNP4B

    SciTech Connect

    D. P. Gierga; K. J. Adams

    1999-04-01

    MCNP4BW was released in February 1997 with significant enhancements to electron/photon transport methods. These enhancements have been verified against a wide range of published electron/photon experiments, spanning high energy bremsstrahlung production to electron transmission and reflection. The impact of several MCNP tally options and physics parameters was explored in detail. The agreement between experiment and simulation was usually within two standard deviations of the experimental and calculational errors. Furthermore, sub-step artifacts for bremsstrahlung production were shown to be mitigated. A detailed suite of electron depth dose calculations in water is also presented. Areas for future code development have also been explored and include the dependence of cell and detector tallies on different bremsstrahlung angular models and alternative variance reduction splitting schemes for bremsstrahlung production.

  20. Phase-mixing of Langmuir oscillations in cold electron-positron-ion plasmas

    SciTech Connect

    Maity, Chandan

    2014-07-15

    Space-time evolution of Langmuir oscillations in a cold homogeneous electron-positron-ion plasma has been analyzed by employing a straightforward perturbation expansion method, showing phase-mixing and, thus, wave-breaking of excited oscillations at arbitrary amplitudes. Within an assumption of infinitely massive ions, an approximate phase-mixing time is found to scale as ω{sub pe}t{sub mix}∼[(6/δ{sup 2})((2−α){sup 5/2}/(1−α))]{sup 1/3}, where “δ” and “α” (= n{sub 0i}/n{sub 0e}) are the amplitude of perturbation and the ratio of equilibrium ion density to equilibrium electron density, respectively, and ω{sub pe}∼√(4πn{sub 0e}e{sup 2}/m) is the electron plasma frequency. The results presented on phase-mixing of Langmuir modes in multispecies plasmas are expected to be relevant to laboratory and astrophysical environments.

  1. Integration of silicon photonics into electronic processes

    NASA Astrophysics Data System (ADS)

    Orcutt, Jason S.; Ram, Rajeev J.; Stojanović, Vladimir

    2013-02-01

    Two layer vertical coupling photonic structures can be directly fabricated on a standard SOI wafer using a combination of reactive ion etching (RIE) and proton beam irradiation followed by electrochemical etching. The top layer structures are defined by RIE on the device layer, while the bottom layer structures are defined by proton beam irradiation on the substrate. Light coupling between the structures in the two layers has been demonstrated via vertical coupling waveguides. According to simulations, the coupling efficiency mainly depends on the thickness of the two layer structure and the gap between them. In this process, the thickness of the top layer structures is fixed by the device layer thickness of the SOI wafer, which is typically 200-300 nm. The gap depends on the thickness of the oxide layer of the SOI wafer, and it can be shifted due to the natural bending of the top layer structures. The bottom layer structure thickness can vary due to different energies of proton beam. Furthermore we show the fabrication of tapered bottom waveguides, which are thin at the coupling region for higher coupling efficiency, and thick at the end for easily coupling light from an optical fiber or a focused lens.

  2. Two-photon exchange in electron-trinucleon elastic scattering

    NASA Astrophysics Data System (ADS)

    Kobushkin, A. P.; Timoshenko, Ju. V.

    2013-10-01

    We discuss two-photon exchange (TPE) in elastic electron scattering off the trinucleon systems, 3He and 3H. The calculations are done in the semirelativistic approximation with the trinucleon wave functions obtained with the Paris and CD-Bonn nucleon-nucleon potentials. An applicability area of the model is wide enough and includes the main part of kinematical domain where experimental data exist. All three TPE amplitudes (generalized form factors) for electron 3He elastic scattering are calculated. We find that the TPE amplitudes are a few times more significant in the scattering of electrons off 3He then in the electron-proton scattering.

  3. Excitation of Electronic States of Ar, H{sub 2}, and N{sub 2} by Positron Impact

    SciTech Connect

    Sullivan, J. P.; Marler, J. P.; Gilbert, S. J.; Buckman, S. J.; Surko, C. M.

    2001-08-13

    We have measured the first state-resolved, absolute cross sections for positron excitation of electronic states of an atom or molecule using a high resolution ({Delta}E{approx}25 meV FWHM) beam of positrons from a Penning-Malmberg trap. We present cross sections for the excitation of the low-lying levels of Ar, H{sub 2}, and N{sub 2} for incident positron energies between threshold and 30eV. For Ar and H{sub 2}, comparison can be made with theoretical calculations, and, in the case of H{sub 2}, the results resolve a significant discrepancy between the only two available calculations.

  4. Head on collision of multi-solitons in an electron-positron-ion plasma having superthermal electrons

    SciTech Connect

    Roy, Kaushik; Chatterjee, Prasanta Roychoudhury, Rajkumar

    2014-10-15

    The head-on collision and overtaking collision of four solitons in a plasma comprising superthermal electrons, cold ions, and Boltzmann distributed positrons are investigated using the extended Poincare-Lighthill-Kuo (PLK) together with Hirota's method. PLK method yields two separate Korteweg-de Vries (KdV) equations where solitons obtained from any KdV equation move along a direction opposite to that of solitons obtained from the other KdV equation, While Hirota's method gives multi-soliton solution for each KdV equation all of which move along the same direction where the fastest moving soliton eventually overtakes the other ones. We have considered here two soliton solutions obtained from Hirota's method. Phase shifts acquired by each soliton due to both head-on collision and overtaking collision are calculated analytically.

  5. Raman scattering of photons by the channeling electrons

    NASA Astrophysics Data System (ADS)

    Badreeva, D. R.; Kalashnikov, N. P.

    2017-07-01

    The motion of channeling particles in the accompanying coordinate system can be considered as a two-dimensional atom in the case of axial channeling. The transversal motion of the channeling particles is characterized by discrete spectrum. The occupation probability of the transversal motion levels depends on the entrance angle of the charged particles relative to the crystallographic axis. In the scattering of a photon by the ;quasi-bound; electron moving in the axial channeling regime would appear the frequencies ω which are a combination of the incident photon frequency ω0 and the frequency ωNM (ωNM is the transition frequency in transverse quantized motion of the channeling electron: ω =ω0 ±ωMN , where ℏωMN = 2γ2 ΔE⊥NM for the relativistic electron, γ2 = E / (mc2) is the Lorentz factor of the channeling electron). In the article are discussed the criteria for choosing an adequate continuous potential of the crystallographic axis and the quantum characteristics of a transversal motion of the channeling electron. The peculiarities of the Raman scattering spectrum of photons by electrons in the axial channeling regime are analyzed and the differential cross section of this process is found.

  6. Electron-photon coupling in mesoscopic quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Cottet, A.; Kontos, T.; Douçot, B.

    2015-05-01

    Understanding the interaction between cavity photons and electronic nanocircuits is crucial for the development of mesoscopic quantum electrodynamics (QED). One has to combine ingredients from atomic cavity QED, such as orbital degrees of freedom, with tunneling physics and strong cavity field inhomogeneities, specific to superconducting circuit QED. It is therefore necessary to introduce a formalism which bridges between these two domains. We develop a general method based on a photonic pseudopotential to describe the electric coupling between electrons in a nanocircuit and cavity photons. In this picture, photons can induce simultaneously orbital energy shifts, tunneling, and local orbital transitions. We study in detail the elementary example of a single quantum dot with a single normal metal reservoir, coupled to a cavity. Photon-induced tunneling terms lead to a nonuniversal relation between the cavity frequency pull and the damping pull. Our formalism can also be applied to multiple quantum dot circuits, molecular circuits, quantum point contacts, metallic tunnel junctions, and superconducting nanostructures enclosing Andreev bound states or Majorana bound states, for instance.

  7. Direct Production of Electron-Positron Pairs by 200-GeV/Nucleon Oxygen and Sulfur Ions in Nuclear Emulsion

    NASA Technical Reports Server (NTRS)

    Derrickson, J. H.; Eby, P. B.; Moon, K. H.; Parnell, T. A.; King, D. T.; Gregory, J. C.; Takahashi, Y.; Ogata, T.

    1995-01-01

    Measurements of direct Coulomb electron-positron pair production have been made on the tracks of relativistic heavy ions in nuclear track emulsion. Tracks of 0(16) and S(32) at 200 GeV/nucleon were studied. The measured total cross sections and energy and emission angle distributions for the pair members are compared to theoretical predictions. The data are consistent with some recent calculations when knock-on electron contamination is accounted for.

  8. Polarization of photons scattered by electrons in any spectral distribution

    SciTech Connect

    Chang, Zhe; Lin, Hai-Nan; Jiang, Yunguo

    2014-01-01

    On the basis of the quantum electrodynamics, we present a generic formalism of the polarization for beamed monochromatic photons scattered by electrons in any spectral distribution. The formulae reduce to the components of the Fano matrix when electrons are at rest. We mainly investigate the polarization in three scenarios, i.e., electrons at rest, isotropic electrons with a power-law spectrum, and thermal electrons. If the incident beam is polarized, the polarization is reduced significantly by isotropic electrons at large viewing angles; the degree of polarization caused by thermal electrons is about half of that caused by power-law electrons. If the incident bean is unpolarized, soft γ-rays can lead to about 15% polarization at viewing angles around π/4. For isotropic electrons, one remarkable feature is that the polarization as a function of the incident photon energy always peaks roughly at 1 MeV; this is valid for both the thermal and power-law cases. This feature can be used to distinguish the model of the inverse Compton scattering from that of the synchrotron radiation.

  9. Inhomogeneity Effects on Dose Deposition for Photon and Electron Beams

    NASA Astrophysics Data System (ADS)

    Yu, Xinsheng

    1989-03-01

    A long-standing problem in radiation therapy has been to correct the dose distributions for the presence of inhomogeneities. The availability of CT and MRI imaging for treatment planning has led to many new algorithms for making such corrections. Unfortunately, each of these methods shows a limited range of validity outside of which errors exceeding 10% may occur due to the assumptions made in the algorithm. In order for valid assumptions to be made, the physical processes involved in the perturbation effects of inhomogeneities on radiation dose deposition must be identified and understood. The work presented in this thesis is to achieve this goal. Inhomogeneity effects on photon dose deposition have been studied by means of experimental measurements and theoretical simulations. The results indicated that changes in atomic number could result in large changes in dose by perturbing the transport of the secondary electrons. Electron transport theory was then studied with the emphasis on the electron multiple scattering. The small angle approximation in the Fermi-Eyges theory and the assumption of semi-infinite slab geometry in current electron dose calculation algorithms were found to cause inaccurate prediction of dose in the vicinity of local inhomogeneities. Using the concept of mean path, a new multiray model has been derived, which is sensitive to local inhomogeneities and gives good agreement with Monte -Carlo simulations. Based on the understanding of both photon and electron transport, a new photon-electron cascade model is proposed for calculating photon dose deposition. The model explicitly includes the transport of the secondary charged particles and is applicable for the presence of inhomogeneities with different electron densities and atomic numbers.

  10. FPGA-Based Front-End Electronics for Positron Emission Tomography.

    PubMed

    Haselman, Michael; Dewitt, Don; McDougald, Wendy; Lewellen, Thomas K; Miyaoka, Robert; Hauck, Scott

    2009-02-22

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates above 100MHz. This combined with FPGA's low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for positron emission tomography (PET) scanners. Our laboratory is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics. For this next generation scanner, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper two such processes, sub-clock rate pulse timing and event localization, will be discussed in detail. We show that timing performed in the FPGA can achieve a resolution that is suitable for small-animal scanners, and will outperform the analog version given a low enough sampling period for the ADC. We will also show that the position of events in the scanner can be determined in real time using a statistical positioning based algorithm.

  11. PIC simulations of the MagnetoRotational instability in electron-positron plasmas

    NASA Astrophysics Data System (ADS)

    Inchingolo, Giannandrea; Grismayer, Thomas; Loureiro, Nuno F.; Fonseca, Ricardo A.; Silva, Luis O.

    2016-10-01

    The magnetorotational instability (MRI) is a crucial mechanism of angular momentum transport in a variety of astrophysical scenarios, as e-e+ plasmas accretion disks nearness neutron stars and black holes. The MRI has been widely studied using MHD models and simulations, in order to understand the behavior of astrophysical fluids in a state of differential rotation. When the timescale for electron and ion collisions is longer than the inflow time in the disk, the plasma is macroscopically collisionless and MHD breaks down. This is the case of the limit of weak magnetic field, i.e., as the ratio of the ion cyclotron frequency to orbital frequency becomes small. Leveraging on the recent addition of the shearing co-rotating frames equations of motion and Maxwell's equations modules in our PIC code OSIRIS 3.0, we intend to present our recent results of the analysis of MRI in electron-positron plasma in the limit of weak magnetic field. We will recall the theoretical 1D linear model of Krolik et Zweibel that describes the behavior of MRI in the limit of weak magnetic field and use it to support our results. Moving to 2D simulations, the analysis of MRI via PIC code permits to investigate also how MRI will act in comparison with other Kinetic instabilities, like mirror instability.

  12. Justifying the Vacuum as an Electron-Positron Aggregation and Experimental Falsification

    NASA Astrophysics Data System (ADS)

    Guy Grantham, R.; Montgomery, Ian G.

    2013-09-01

    Historical aether models are placed in context with the electron-positron lattice (epola) model of space due to M. Simhony. A brief outline of the model as an aggregation state of matter, intermediate to the nuclear state and the atomic aggregation state, includes reference to its derivation of physical laws and fundamental constants. The broad application of the epola model is appraised for its validation against a range of physical laws, experiments and constants. Simhony declared a specific dependence for the stability of atomic matter upon speed through the epola, suggesting a test for falsification. This theme is further developed by the same logic to suggest practical experimental and theoretical tests of the epola model. A formula for the inverse fine structure constant of space, providing the accepted CODATA value, is derived from Simhony's explanation of the Bohr - de Broglie model of the ground state electron orbital of the hydrogen atom by including a term for speed through the Cosmos. A theoretical solution of the Michelson-Morley experiment is applied as evidence for the concept. The mechanism of motion through the epola is considered further for possible implications of speed including dependency of decay rates by radio nuclides and the results of former and ongoing experiments are considered.

  13. A new measurement of cosmic-ray electrons and positrons with the Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Manfreda, Alberto; Fermi-LAT Collaboration

    2017-01-01

    We present an updated measurement of the cosmic-ray electron and positron spectrum between 7 GeV and 2 TeV, based on 7 years of data collected with the Fermi Large Area Telescope (LAT). The LAT is the first space-based instrument to directly explore the region above 1 TeV. At such high energies, the shape of the spectrum can provide useful information about the origin and propagation of cosmic-ray electrons in the nearby Galactic space. The best fit to the spectrum that we measure is given by a broken power-law, with the break located at 53 +/-8 GeV. Such break, however, is not significant when all the systematic uncertainties are taken into account. Above 50 GeV our data are well described by a single power law with a spectral index of 3.07 +/- 0.02 (stat + syst) +/- 0.06 (energy scale). An exponential cut-off lower than 1.7 TeV is excluded at 95% CL.

  14. Wave dispersion in a counterstreaming, cold, magnetized, electron-positron plasma.

    PubMed

    Verdon, M W; Melrose, D B

    2008-04-01

    The dispersion equation is analyzed for waves in a strongly magnetized, electron-positron plasma in which counterstreaming electrons are cold in their respective rest frames. For propagation parallel to the magnetic field the dispersion equation factorizes into equations for two longitudinal modes and four transverse modes. Instabilities occur in both longitudinal and transverse modes, with the most notable being at low wave numbers where a longitudinal branch has purely imaginary frequency. For oblique propagation at small angles, the modes reconnect at points where the parallel modes intersect, either deviating away from each another, or being separated by a pair of complex modes. In addition, intrinsically oblique branches of the dispersion equation appear. The results are applied to an oscillating model for a pulsar magnetosphere, in which the oscillations are purely temporal with a frequency well below relevant wave frequencies, and in which the counterstreaming becomes highly relativistic. We assume that the medium may be treated as time stationary in treating the wave dispersion and wave growth. The wave properties, including the wave frequency, vary periodically with the phase of the oscillations. The fastest growing instability is when the counterstreaming is nonrelativistic or mildly relativistic. A given wave can experience bursts of growth over many oscillations. Mode coupling associated with the cyclotron resonance may be effective in generating the observed orthogonally polarized modes at phases of the oscillation where the (relativistic) cyclotron and wave frequencies are comparable.

  15. ENERGETIC PHOTON AND ELECTRON INTERACTIONS WITH POSITIVE IONS

    SciTech Connect

    Phaneuf, Ronald A.

    2013-07-01

    The objective of this research is a deeper understanding of the complex multi-electron interactions that govern inelastic processes involving positive ions in plasma environments, such as those occurring in stellar cares and atmospheres, x-ray lasers, thermonuclear fusion reactors and materials-processing discharges. In addition to precision data on ionic structure and transition probabilities, high resolution quantitative measurements of ionization test the theoretical methods that provide critical input to computer codes used for plasma modeling and photon opacity calculations. Steadily increasing computational power and a corresponding emphasis on simulations gives heightened relevance to precise and accurate benchmark data. Photons provide a highly selective probe of the internal electronic structure of atomic and molecular systems, and a powerful means to better understand more complex electron-ion interactions.

  16. Higher-order nonlinear equations for the electron-acoustic waves in a nonextensive electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Rafat, A.; Rahman, M. M.; Alam, M. S.; Mamun, A. A.

    2015-07-01

    A precise theoretical investigation has been made on electron-acoustic (EA) Gardner solitons (GSs) and double layers (DLs) in a four-component plasma system consisting of nonextensive hot electrons and positrons, inertial cold electrons, and immobile positive ions. The well-known reductive perturbation method has been used to derive the Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and Gardner equations along with their solitary wave as well as double layer solutions. It has been found that depending on the plasma parameters, the K-dV solitons and GSs are either compressive or rarefactive, whereas the mK-dV solitons are only compressive, and Gardner DLs are only rarefactive. The analytical comparison among the K-dV solitons, mK-dV solitons, and GSs are also investigated. It has been identified that the basic properties of such EA solitons and EA DLs are significantly modified due to the effects of nonextensivity and other plasma parameters related to plasma particle number densities and to temperature of different plasma species. The results of our present investigation can be helpful for understanding the nonlinear electrostatic structures associated with EA waves in various interstellar space plasma environments and cosmological scenarios (viz. quark-gluon plasma, protoneutron stars, stellar polytropes, hadronic matter, dark-matter halos, etc.)

  17. Operating instructions for ORELA (Oak Ridge Electron Linear Accelerator) positron beam line

    SciTech Connect

    Donohue, D.L.; Hulett, L.D. Jr.; Lewis, T.A.

    1990-11-01

    This report will contain details of the construction and operation of the positron beam line. Special procedures which are performed on a less frequent basis will also be described. Appendices will contain operating instructions for experiments which make use of the positron beam and are connected to the beam line. Finally, a review of safety-related considerations will be presented.

  18. Decades of rivalry and complementary of photon and electron beams

    NASA Astrophysics Data System (ADS)

    Lin, Burn J.

    2009-12-01

    Not long after the photon beam was used to delineate circuit patterns in resist, e-beam was called for duty due to the concern of photons running out of resolution. The e-beam counterpart of proximity printing, projection printing, and direct writing quickly took shape as early as 1975. The race was on. Optical projection printing, taking advantage of a high degree of parallelism, excelled in throughput and economy for wafer patterning. However, electrons can be quickly deflected to directly write patterns. It took over mask writing. Rivalry turned into complementary for decades. Recently e-beam has a new opportunity to beat photon beam at its own game of parallelism and eliminate the problems associated with masks altogether. This presentation compares optical and e-beam imaging technically, economically, and historically, pointing to the rewards and challenges for each technology to succeed.

  19. Electronics and photonics convergence on Si CMOS platform

    NASA Astrophysics Data System (ADS)

    Wada, Kazumi

    2004-07-01

    The present paper describes Si microphotonics and its current status of electronics and photonics convergence on Si platform based on monolithic integration using CMOS (Complementary Metal Oxide Semiconductor) technologies. The Si CMOS platform is advantageous over III-V semiconductor based platform because of a short time-lag between basic research and commercialization in terms of the standardized materials and processes. To implement photonic devices on the Si CMOS platform, it is important to reduce materials diversity in current photonics devices. Low loss SiNx waveguides with sharp bends, high performance strained Ge photodetectors for C+L band, and demultiplexer/multiplexer for WDM (wavelength division multiplexing) have been successfully implemented on the Si CMOS platform. The current targets are cost-effective OADMs (optical add-drop multiplexers) for optical communication and optical clocking for Si LSIs beyond Cu-low k technologies.

  20. New limits on hidden photons from past electron beam dumps

    NASA Astrophysics Data System (ADS)

    Andreas, Sarah; Niebuhr, Carsten; Ringwald, Andreas

    2012-11-01

    Hidden sectors with light extra U(1) gauge bosons, so-called hidden photons, have recently attracted some attention because they are a common feature of physics beyond the Standard Model like string theory and supersymmetry and additionally are phenomenologically of great interest regarding recent astrophysical observations. The hidden photon is already constrained by various laboratory experiments and presently searched for in running as well as upcoming experiments. We summarize the current status of limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at the High Energy Accelerator Research Organization in Japan (KEK) and the Laboratoire de l’accelérateur linéaire (LAL, Orsay) that have so far not been considered. All our limits take into account the experimental acceptances obtained from Monte Carlo simulations.

  1. Total yield and spectra of positrons produced by channeling radiation from 0.1 ÷ 1.6 GeV electrons

    NASA Astrophysics Data System (ADS)

    Abdrashitov, S. V.; Bogdanov, O. V.; Dabagov, S. B.; Pivovarov, Yu. L.; Tukhfatullin, T. A.

    2017-07-01

    The hybrid scheme of positron source involving channeling radiation from 0.1 ÷ 1.6 GeV <1 0 0> channeled electrons in a crystalline W target (radiator) and subsequent electron-positron pair production in a downstream thick amorphous W target (converter) is investigated by means of computer simulation using the BCM-1 code. Computer simulation is carried out taking into account positron energy loss in a thick converter. Total yield of positrons as a function of the thickness of the converter as well as the energy spectrum of positrons for the chosen converter thickness are obtained. According to the calculations, the total yield of positrons produced by channeling radiation from 0.1 ÷ 1.6 GeV electrons in a 10 μm W crystal equals 0.5 ÷ 160 positrons per 103 incident electrons, respectively, with the maximum of positron energy spectrum in the energy range 1 ÷ 3 MeV. Calculations are performed within the framework of the planned experimental program at SPARC_LAB LNF.

  2. Emission of photons by positrons channeled in single crystals near an energy of 100 GeV

    SciTech Connect

    Maisheev, V. A.; Chesnokov, Yu. A. Chirkov, P. N.; Yazynin, I. A.; Bolognini, D.; Hasan, S.; Prest, M.; Vallazza, E.

    2016-05-15

    Emission by 120-GeV positrons in the channeling regime in the (011) plane of a silicon single crystal has been considered. Trajectories of positrons under different initial conditions have been calculated within the theory of nonlinear oscillations. The amplitude distribution function of channeled particles has been determined taking into account the nonlinearity of their motion. The intensity of radiation under various initial conditions has been calculated by two different methods. These results can be useful for comparison with experimental data at energies of positrons beginning with 100 GeV and higher.

  3. Electron photon verification calculations using MCNP4B

    SciTech Connect

    Gierga, D.P.; Adams, K.J.

    1998-07-01

    MCNP4B was released in February 1997 with significant enhancements to electron/photon transport methods. These enhancements have been verified against a wide range of published electron/photon experiments, spanning high energy bremsstrahlung production to electron transmission and reflection. Three sets of bremsstrahlung experiments were simulated. The first verification calculations for bremsstrahlung production used the experimental results in Faddegon for 15 MeV electrons incident on lead, aluminum, and beryllium targets. The calculated integrated bremsstrahlung yields, the bremsstrahlung energy spectra, and the mean energy of the bremsstrahlung beam were compared with experiment. The impact of several MCNP tally options and physics parameters was explored in detail. The second was the experiment of O`Dell which measured the bremsstrahlung spectra from 10 and 20.9 MeV electrons incident on a gold/tungsten target. The final set was a comparison of relative experimental spectra with calculated results for 9.66 MeV electrons incident on tungsten based on the experiment of Starfelt and Koch. The transmission experiments of Ebert were also studied, including comparisons of transmission coefficients for 10.2 MeV electrons incident on carbon, silver, and uranium foils. The agreement between experiment and simulation was usually within two standard deviations of the experimental and calculational errors.

  4. Relativistic effects in photon-induced near field electron microscopy.

    PubMed

    Park, Sang Tae; Zewail, Ahmed H

    2012-11-26

    Electrons and photons, when interacting via a nanostructure, produce a new way of imaging in space and time, termed photon-induced near field electron microscopy or PINEM [Barwick et al. Nature 2009, 462, 902]. The phenomenon was described by considering the evanescent field produced by the nanostructure, but quantification of the experimental results was achieved by solving the Schrödinger equation for the interaction of the three bodies. The question remained, is the nonrelativistic formulation sufficient for this description? Here, relativistic and nonrelativistic quantum mechanical formulations are compared for electron-photon interaction mediated by nanostructures, and it is shown that there is an exact equivalence for the two formulations. The nonrelativistic formulation was found to be valid in the relativistic regime when using in the former formulation the relativistically corrected velocity (and the corresponding values of momentum and energy). In the PINEM experiment, 200 keV electrons were utilized, giving the experimental (relativistically corrected) velocity to be 0.7c(v without relativistic correction is 0.885c). When this value (0.7c), together with those of the corresponding momentum (p(c) = mv) and energy (E(c) = (1/2)mv(2)), is used in the first order solution of the Schrödinger formulation, an exact equivalence is obtained.

  5. Effects of ion-temperature on propagation of the large-amplitude ion-acoustic solitons in degenerate electron-positron-ion plasmas

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2010-08-15

    Large-amplitude ion-acoustic solitary wave (IASW) propagation and matching criteria of existence of such waves are investigated in a degenerate dense electron-positron-ion plasma considering the ion-temperature as well as electron/positron degeneracy effects. It is shown that the ion-temperature effects play an important role in the existence criteria and allowed Mach-number range in such plasmas. Furthermore, a fundamental difference is remarked in the existence of supersonic IASW propagations between degenerate plasmas with nonrelativistic and ultrarelativistic electrons and positrons. Current study may be helpful in astrophysical as well as the laboratory inertial confinement fusion-research.

  6. Photon reconstruction in CMS

    NASA Astrophysics Data System (ADS)

    Nysten, J.

    2004-11-01

    If the mass of the Higgs boson is less than 150 GeV/ c2, the H→γγ channel will provide a clear signature at the Large Hadron Collider (LHC). An overview of the general design of photon reconstruction in the Compact Muon Solenoid (CMS) experiment is given. The handling of converted photons and rejection of neutral pions pose an additional challenge to triggering and measuring. Topics related to photon reconstruction are presented, such as an algorithm for track building of the electron and the positron coming from the photon conversion.

  7. Photon and electron collimator effects on electron output and abutting segments in energy modulated electron therapy

    SciTech Connect

    Olofsson, Lennart; Karlsson, Magnus G.; Karlsson, Mikael

    2005-10-15

    In energy modulated electron therapy a large fraction of the segments will be arranged as abutting segments where inhomogeneities in segment matching regions must be kept as small as possible. Furthermore, the output variation between different segments should be minimized and must in all cases be well predicted. For electron therapy with add-on collimators, both the electron MLC (eMLC) and the photon MLC (xMLC) contribute to these effects when an xMLC tracking technique is utilized to reduce the x-ray induced leakage. Two add-on electron collimator geometries have been analyzed using Monte Carlo simulations: One isocentric eMLC geometry with an isocentric clearance of 35 cm and air or helium in the treatment head, and one conventional proximity geometry with a clearance of 5 cm and air in the treatment head. The electron fluence output for 22.5 MeV electrons is not significantly affected by the xMLC if the shielding margins are larger than 2-3 cm. For small field sizes and 9.6 MeV electrons, the isocentric design with helium in the treatment head or shielding margins larger than 3 cm is needed to avoid a reduced electron output. Dose inhomogeneity in the matching region of electron segments is, in general, small when collimator positions are adjusted to account for divergence in the field. The effect of xMLC tracking on the electron output can be made negligible while still obtaining a substantially reduced x-ray leakage contribution. Collimator scattering effects do not interfere significantly when abutting beam techniques are properly applied.

  8. Validation of modulated electron radiotherapy delivered with photon multileaf collimation

    NASA Astrophysics Data System (ADS)

    Klein, Eric E.

    There is a challenge in radiotherapy to treat shallow targets due to the inability to provide dose heterogeneity while simultaneously minimizing dose to distal critical organs. There is a niche for Modulated Electron Radiotherapy (MERT) to complement a photon IMRT program. Disease sites such as post-mastectomy chest wall, and subcutaneous lymphoma of the scalp, etc. are better suited for modulated electrons rather than photons, or perhaps a combination. Inherent collimation systems are not conducive for electron beam delivery (in lieu of extended applicators), nor do commercial treatment planning systems model electrons collimated without applicators. The purpose of this study is to evaluate modulation of electrons by inherent photon multileaf collimators, and calculated and optimized by means of Monte Carlo. Modulated electron radiotherapy (MERT) evaluation was conducted with a Trilogy 120 leaf MLC for 6-20 MeV. To provide a sharp penumbra, modulated beams were delivered with short SSDs (70-85cm). Segment widths (SW) ranging from 1 to 10cm were configured for delivery and planning, using BEAMnrc MC code with 109 particles, and DOSXYZnrc calculations. Calculations were set with: voxel size 0.2 x 0.2 x 0.1cm3, and photon/electron transport energy cutoffs of 0.01 MeV/0.521 MeV. Dosimetry was performed with film and micro chambers. Calculated and measured data were analyzed in MatLab. Once validation of static fields was successfully completed, modulated portals (segmented and dynamic) were configured for treatment and calculations. Optimization for target coverage and OAR sparing was achieved by choosing energies according to target depth, and SW according to spatial coverage. Intensity for each segment was optimized by MC methods. Beam sharpness (penumbra) degraded with: decreasing energy and SW, and increasing SSD. PDD decreased significantly with decreasing SW. We have demonstrated excellent calculation/measurement agreement (<3mm). Equal dose profiles were

  9. Pair creation induced by transitions between electronic and positronic bound states

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Lv, Q. Z.; Li, Y. T.; Grobe, R.; Su, Q.

    2015-05-01

    We study the creation process of electron-positron pairs from the quantum electrodynamical vacuum under very strong electric fields by solving the quantum field theoretical Dirac equation on a space-time grid. We investigate the role of bound-bound state mixing in such a process, which can be studied if the external force can be modeled by a combination of a potential barrier and a potential well. By increasing the magnitude of the two potentials, discrete states that originate from the positive and negative energy continua can become quasidegenerate in the mass gap region (between -mc 2 and mc 2). We show that this bound-bound state mixing is quite different from the usual bound-continuum state mixing where the particles are created until the Pauli exclusion principle inhibits this process. In the case of bound-bound mixing the particle number exhibits a characteristic oscillatory behavior that in principle can last forever. These findings can be modeled by an effective two-state model.

  10. The beam energy feedback system for Beijing electron positron collider II linac.

    PubMed

    Wang, S; Iqbal, M; Chi, Y; Liu, R; Huang, X

    2017-03-01

    A beam-energy feedback system has been developed for the injection linac to meet the beam quality needed for the Beijing electron positron collider II storage ring. This paper describes the implementation and commissioning of this system in detail. The system consists of an energy measurement unit, application software, and an actuator unit. A non-intersecting beam energy monitor was developed to allow real-time online energy adjustment. The beam energy adjustment is achieved by adjusting the output microwave phase of the RF power source station. The phase control mechanism has also been modified, and a new control method taking the return difference of the phase shifter into account is used to improve the system's performance. This system achieves the design aim and can adjust the beam center energy with a rate of 2 Hz. With the energy feedback system, the stability of the injection rate is better; the fluctuation range is reduced from 20 mA/min to 10 mA/min, while the stability of the beam center energy is maintained within ±0.1%.

  11. Semiclassical picture for electron-positron photoproduction in strong laser fields

    NASA Astrophysics Data System (ADS)

    Meuren, Sebastian; Keitel, Christoph H.; Di Piazza, Antonino

    2016-04-01

    The nonlinear Breit-Wheeler process is studied in the presence of strong and short laser pulses. We show that for a relativistically intense plane-wave laser field many features of the momentum distribution of the produced electron-positron pair like its extension, region of highest probability and carrier-envelope phase effects can be explained from the classical evolution of the created particles in the background field. To this end an intuitive semiclassical picture based on the local constant-crossed field approximation applied on the probability-amplitude level is established and compared with the standard approach used in QED-PIC codes. The main difference is the substructure of the spectrum, which results from interference effects between macroscopically separated formation regions. In order to compare the predictions of the semiclassical approach with exact calculations, a very fast numerical scheme is introduced. It renders the calculation of the fully differential spectrum on a grid which resolves all interference fringes feasible. Finally, the difference between classical and quantum absorption of laser four-momentum in the process is pointed out and the dominance of the former is proven. As a self-consistent treatment of the quantum absorption is not feasible within existing QED-PIC approaches, our results provide reliable error estimates relevant for regimes where the laser depletion due to a developing QED cascade becomes significant.

  12. Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma.

    PubMed

    Amin, M R

    2015-09-01

    Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.

  13. Fast magnetic reconnection in low-density electron-positron plasmas

    SciTech Connect

    Bessho, Naoki; Bhattacharjee, A.

    2010-10-15

    Two-dimensional particle-in-cell simulations have been performed to study magnetic reconnection in low-density electron-positron plasmas without a guide magnetic field. Impulsive reconnection rates become of the order of unity when the background density is much smaller than 10% of the density in the initial current layer. It is demonstrated that the outflow speed is less than the upstream Alfven speed, and that the time derivative of the density must be taken into account in the definition of the reconnection rate. The reconnection electric fields in the low-density regime become much larger than the ones in the high-density regime, and it is possible to accelerate the particles to high energies more efficiently. The inertial term in the generalized Ohm's law is the most dominant term that supports a large reconnection electric field. An effective collisionless resistivity is produced and tracks the extension of the diffusion region in the late stage of the reconnection dynamics, and significant broadening of the diffusion region is observed. Because of the broadening of the diffusion region, no secondary islands, which have been considered to play a role to limit the diffusion region, are generated during the extension of the diffusion region in the outflow direction.

  14. Simulation of ultra-relativistic electrons and positrons channeling in crystals with MBN EXPLORER

    SciTech Connect

    Sushko, Gennady B.; Bezchastnov, Victor G.; Solov'yov, Ilia A.; Korol, Andrei V.; Greiner, Walter; Solov'yov, Andrey V.

    2013-11-01

    A newly developed code, implemented as a part of the MBN EXPLORER package (Solov'yov et al., 2012; (http://www.mbnexplorer.com/), 2012) [1,2] to simulate trajectories of an ultra-relativistic projectile in a crystalline medium, is presented. The motion of a projectile is treated classically by integrating the relativistic equations of motion with account for the interaction between the projectile and crystal atoms. The probabilistic element is introduced by a random choice of transverse coordinates and velocities of the projectile at the crystal entrance as well as by accounting for the random positions of the atoms due to thermal vibrations. The simulated trajectories are used for numerical analysis of the emitted radiation. Initial approbation and verification of the code have been carried out by simulating the trajectories and calculating the radiation emitted by ε=6.7 GeV and ε=855 MeV electrons and positrons in oriented Si(110) crystal and in amorphous silicon. The calculated spectra are compared with the experimental data and with predictions of the Bethe–Heitler theory for the amorphous environment.

  15. Simulation of ultra-relativistic electrons and positrons channeling in crystals with MBN EXPLORER

    NASA Astrophysics Data System (ADS)

    Sushko, Gennady B.; Bezchastnov, Victor G.; Solov'yov, Ilia A.; Korol, Andrei V.; Greiner, Walter; Solov'yov, Andrey V.

    2013-11-01

    A newly developed code, implemented as a part of the MBN EXPLORER package (Solov'yov et al., 2012; http://www.mbnexplorer.com/, 2012) [1,2] to simulate trajectories of an ultra-relativistic projectile in a crystalline medium, is presented. The motion of a projectile is treated classically by integrating the relativistic equations of motion with account for the interaction between the projectile and crystal atoms. The probabilistic element is introduced by a random choice of transverse coordinates and velocities of the projectile at the crystal entrance as well as by accounting for the random positions of the atoms due to thermal vibrations. The simulated trajectories are used for numerical analysis of the emitted radiation. Initial approbation and verification of the code have been carried out by simulating the trajectories and calculating the radiation emitted by ε=6.7 GeV and ε=855 MeV electrons and positrons in oriented Si(110) crystal and in amorphous silicon. The calculated spectra are compared with the experimental data and with predictions of the Bethe-Heitler theory for the amorphous environment.

  16. Overview of laser-driven generation of electron-positron beams

    NASA Astrophysics Data System (ADS)

    Sarri, G.; Dieckmann, M. E.; Kourakis, I.; di Piazza, A.; Reville, B.; Keitel, C. H.; Zepf, M.

    2015-08-01

    Electron-positron (e-p) plasmas are widely thought to be emitted, in the form of ultra-relativistic winds or collimated jets, by some of the most energetic or powerful objects in the Universe, such as black-holes, pulsars, and quasars. These phenomena represent an unmatched astrophysical laboratory to test physics at its limit and, given their immense distance from Earth (some even farther than several billion light years), they also provide a unique window on the very early stages of our Universe. However, due to such gigantic distances, their properties are only inferred from the indirect interpretation of their radiative signatures and from matching numerical models: their generation mechanism and dynamics still pose complicated enigmas to the scientific community. Small-scale reproductions in the laboratory would represent a fundamental step towards a deeper understanding of this exotic state of matter. Here we present recent experimental results concerning the laser-driven production of ultra-relativistic e-p beams. In particular, we focus on the possibility of generating beams that present charge neutrality and that allow for collective effects in their dynamics, necessary ingredients for the testing pair-plasma physics in the laboratory. A brief discussion of the analytical and numerical modelling of the dynamics of these plasmas is also presented in order to provide a summary of the novel plasma physics that can be accessed with these objects. Finally, general considerations on the scalability of laboratory plasmas up to astrophysical scenarios are given.

  17. Radial Electron Momentum Densities of Colloidal CdSe Nanocrystals Determined by Positron Beam Analysis

    SciTech Connect

    Denison, A B; Meulenberg, R; Eijt, S W H; Van Veen, A; Mijnarends, P E; Barbiellini, B; Bansil, A; Fischer, C; Weber, M H; Lynn, K G

    2003-07-31

    We present depth-resolved positron 2D angular correlation of annihilation radiation (2DACAR) experiments on CdSe quantum dots in the diameter range from 2.5 to 6 nm, deposited as micrometer thin layers. The average radial distribution of the valence electron momentum density (EMD) of CdSe quantum dots has been extracted, which reveals a systematic dependence upon particle size. The quantum confinement related changes and their size scaling observable at the Jones zone momentum of {approx}0.8 a.u. seem to agree with the previous coincidence Doppler study. In addition, the average radial EMD shows an increase in the low-momentum range (<0.6 a.u.) and a reduction in the high-momentum range (>1.6 a.u.) with respect to that measured on a bulk CdSe single crystal. Possible origins of these are described. First-principles calculations based on the Korringa-Kohn-Rostoker (KKR) method were performed to gain a better insight.

  18. Propagation of ultra-intense electromagnetic waves through electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Rozina, Ch.; Tsintsadze, N. L.; Jamil, M.

    2016-07-01

    A kinetic approach is used to study the propagation of ultrarelativistic (amplitude) electromagnetic waves through electron-positron-ion plasma. For our purposes, we formulate a new plasma particle distribution function in the presence of ultrarelativistically intense circularly polarized electromagnetic (EM) waves. An effective dispersion relation of constant amplitude ultrarelativistic EM wave is derived, skin depth is calculated in particular, frequency regimes and has shown numerically that the penetration depth increases with the amplitude of ultra-intense electromagnetic waves, λ s k ˜ a /1 2 , i.e., plasma will be heated more in the region of skin depth. Next, we have found that the nonlinear interaction of ultrarelativistically intense EM waves of time and space varying amplitude leads to construct kinetic nonlinear Schrödinger equation (KNSE), containing both local and non-local nonlinear terms, where nonlocal nonlinear term appears due to density perturbations of plasma species. Taking the effects of the latter into consideration, nonlinear Landau damping is discussed for KNSE, damping rate is computed, and numerically ultrarelativistic EM waves are shown to decay exponentially. The present results should be helpful to understand the specific properties of the ultrarelativistic EM waves in astrophysical plasmas, e.g., pulsars, black holes, and neutron stars.

  19. Arbitrary amplitude solitary and shock waves in an unmagnetized quantum dusty electron-positron-ion plasma

    SciTech Connect

    Rouhani, M. R.; Akbarian, A.; Mohammadi, Z.

    2013-08-15

    The behavior of quantum dust ion acoustic soliton and shocks in a plasma including inertialess quantum electrons and positrons, classical cold ions, and stationary negative dust grains are studied, using arbitrary amplitude approach. The effect of dissipation due to viscosity of ions is taken into account. The numerical analysis of Sagdeev potential for small value of quantum diffraction parameter (H) shows that for chosen plasma, only compressive solitons can exist and the existence domain of this type of solitons is decreased by increasing dust density (d). Additionally, the possibility of propagation of both subsonic and supersonic compressive solitons is investigated. It is shown that there is a critical dust density above which only supersonic solitons are observed. Moreover, increasing d leads to a reduction in the existence domain of compressive solitons and the possibility of propagation of rarefactive soliton is provided. So, rarefactive solitons are observed only due to the presence of dust particles in this model quantum plasma. Furthermore, numerical solution of governed equations for arbitrary amplitude shock waves has been investigated. It is shown that only compressive large amplitude shocks can propagate. Finally, the effects of plasma parameters on these structures are investigated. This research will be helpful in understanding the properties of dense astrophysical (i.e., white dwarfs and neutron stars) and laboratory dusty plasmas.

  20. Dynamics of laser beams in inhomogeneous electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Hong; Tang, Rong-An; Du, Hong-E.; Xue, Ju-Kui

    2015-07-01

    Nonlinear interaction of laser and electron-positron-ion plasmas is investigated by invoking the variational principle and numerical simulation, in terms of a nonlinear Schrödinger equation with inhomogeneities effect. It is shown that the plasma inhomogeneity has great influence on the laser beam dynamics. The laser beam can be self-trapped, focused, or defocused depending on the inhomogeneity character. The linearly decreasing axial plasma density makes the laser beam defocus, while the linearly increasing axial plasma density results in self-trapping of the beam. The self-focusing of the trapped beam is found in a high-density region. For the Gaussian types of density distribution, the beam field submits nonlinearly oscillating regime. The results provide an efficient way to manipulate the dynamics of laser beam propagating in plasma. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274255 and 11305132), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20136203110001), the Natural Science Foundation of Gansu Province, China (Grant No. 2011GS04358), and the Creation of Science and Technology of Northwest Normal University, China (Grant Nos. NWNU-KJCXGC-03-48 and NWNU-LKQN-12-12).

  1. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    NASA Astrophysics Data System (ADS)

    To, C. K.; Yang, B.; Beling, C. D.; Fung, S.; Ling, C. C.; Gong, M.

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2MeV electrons with fluence of 6x1017cm-2. Isochronal annealing from 100°C-800°C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300°C and 600 °C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300°C and 600°C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300°C and 700°C.

  2. Modulation and filamentation instability of ultrarelativistic electromagnetic waves in electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Rozina, Ch.; Tsintsade, N. L.; Maryam, N.; Komal, S.

    2016-11-01

    In this study, we have analytically investigated the effects of nonlinear Landau damping on the temporal growth rate of modulation and filamentation instabilities. Here, the nonlocal nonlinear Landau damping phenomena is appearing due to the nonlinear interaction between ultrarelativistic electromagnetic (UREM) wave (having wave vector normal to the beam) and electron-positron-ion plasma. We found that the ultrarelativistic ponderomotive force is linear, while usually it is nonlinear in relativistic case. We construct three dimensional kinetic nonlinear Schrödinger equation for a slowly varying spatio and temporal amplitude of UREM waves. The equations are then Fourier analyzed to obtain dispersion relation, which admit both modulation and filamentation instabilities. It is shown that nonlinear Landau damping is the main source of modulation instability, for a particular condition taking into account later one the maximum growth rate of modulation instability obtained as a function of amplitude of UREM waves and is displayed graphically. Further, it is shown that for an oscillating density profile, plane wave of uniform intensity becomes unstable and gets filamented. Growth rate of stationary state filament is found to be a function of amplitude of UREM waves and is emphasized that the maximum value of growth rate of filamentation instability is further increased in the presence of nonlinear Landau damping term. Finally, the growth rate of non stationary state filamentation instability is calculated and is shown that the characteristic growth length increases both with perpendicular wave vector and the amplitude of UREM waves.

  3. Pumped helium system for cooling positron and electron traps to 1.2 K

    NASA Astrophysics Data System (ADS)

    Wrubel, J.; Gabrielse, G.; Kolthammer, W. S.; Larochelle, P.; McConnell, R.; Richerme, P.; Grzonka, D.; Oelert, W.; Sefzick, T.; Zielinski, M.; Borbely, J. S.; George, M. C.; Hessels, E. A.; Storry, C. H.; Weel, M.; Müllers, A.; Walz, J.; Speck, A.

    2011-06-01

    Extremely precise tests of fundamental particle symmetries should be possible via laser spectroscopy of trapped antihydrogen ( H¯) atoms. H¯ atoms that can be trapped must have an energy in temperature units that is below 0.5 K—the energy depth of the deepest magnetic traps that can currently be constructed with high currents and superconducting technology. The number of atoms in a Boltzmann distribution with energies lower than this trap depth depends sharply upon the temperature of the thermal distribution. For example, ten times more atoms with energies low enough to be trapped are in a thermal distribution at a temperature of 1.2 K than for a temperature of 4.2 K. To date, H¯ atoms have only been produced within traps whose electrode temperature is 4.2 K or higher. A lower temperature apparatus is desirable if usable numbers of atoms that can be trapped are to eventually be produced. This report is about the pumped helium apparatus that cooled the trap electrodes of an H¯ apparatus to 1.2 K for the first time. Significant apparatus challenges include the need to cool a 0.8 m stack of 37 trap electrodes separated by only a mm from the substantial mass of a 4.2 K Ioffe trap and the substantial mass of a 4.2 K solenoid. Access to the interior of the cold electrodes must be maintained for antiprotons, positrons, electrons and lasers.

  4. Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma

    NASA Astrophysics Data System (ADS)

    Amin, M. R.

    2015-09-01

    Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.

  5. Parametric decays in relativistic magnetized electron-positron plasmas with relativistic temperatures

    SciTech Connect

    Lopez, Rodrigo A.; Munoz, Victor; Asenjo, Felipe A.; Alejandro Valdivia, J.

    2012-08-15

    The nonlinear evolution of a circularly polarized electromagnetic wave in an electron-positron plasma propagating along a constant background magnetic field is considered, by studying its parametric decays. Relativistic effects, of the particle motion in the wave field and of the plasma temperature, are included to obtain the dispersion relation of the decays. The exact dispersion relation of the pump wave has been previously calculated within the context of a relativistic fluid theory and presents two branches: an electromagnetic and an Alfven one. We investigate the parametric decays for the pump wave in these two branches, including the anomalous dispersion zone of the Alfven branch where the group velocity is negative. We solve the nonlinear dispersion relation for different pump wave amplitudes and plasma temperatures, finding various resonant and nonresonant wave couplings. We are able to identify these couplings and study their behavior as we modify the plasma parameters. Some of these couplings are suppressed for larger amplitudes or temperatures. We also find two kinds of modulational instabilities, one involving two sideband daughter waves and another involving a forward-propagating electroacoustic mode and a sideband daughter wave.

  6. Ion acoustic shock waves in electron-positron-ion quantum plasma

    SciTech Connect

    Masood, W.; Mirza, Arshad M.; Hanif, M.

    2008-07-15

    Ion acoustic shock waves (IASWs) are studied in an unmagnetized quantum plasma consisting of electrons, positrons, and ions employing the quantum hydrodynamic (QHD) model. Nonlinear quantum IASWs are investigated by deriving the Korteweg-deVries-Burger equation under the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. It is found that the strength of the ion acoustic shock wave is maximum for spherical, intermediate for cylindrical, and minimum for planar geometry. The temporal evolution of the shock for a quantum e-p-i plasma in a spherical geometry is also investigated. It is found that the strength and the steepness of the quantum ion acoustic shock wave increases with decreasing stretched time coordinate (representing slow time scale) |{tau}|. It is also found that an increase in the quantum Bohm potential decreases the strength as well as the steepness of the shock. The temporal evolution of the quantum ion acoustic solitons in an e-p-i plasma for cylindrical and spherical geometries is also explored by substituting the dissipative coefficient C equal to zero. The relevance of the present study with regard to the dense astrophysical environments is also pointed out.

  7. The all-sky distribution of 511 keV electron-positron annihilation emission

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.; Jean, P.; Lonjou, V.; Weidenspointner, G.; Guessoum, N.; Gillard, W.; Skinner, G.; von Ballmoos, P.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; Teegarden, B.; Schönfelder, V.; Winkler, C.

    2005-10-01

    We present a map of 511 keV electron-positron annihilation emission, based on data accumulated with the SPI spectrometer aboard ESA's INTEGRAL gamma-ray observatory, that covers approximately ~95% of the celestial sphere. Within the exposed sky area, 511 keV line emission is significantly detected towards the galactic bulge region and, at a very low level, from the galactic disk. The bulge emission is highly symmetric and is centred on the galactic centre with an extension of ~ 8° (FWHM). The emission is equally well described by models that represent the stellar bulge or halo populations. The detection significance of the bulge emission is ~ 50σ, that of the galactic disk is ~ 4σ. The disk morphology is only weakly constrained by the present data, being compatible with both the distribution of young and old stellar populations. The 511 keV line flux from the bulge and disk components is (1.05 ± 0.06) × 10-3 ph cm-2 s-1 and (0.7 ± 0.4) × 10-3 ph cm-2 s-1 respectively, corresponding to a bulge-to-disk flux ratio in the range 1-3. Assuming a positronium fraction of f_p=0.93 this translates into annihilation rates of (1.5 ± 0.1) × 1043 s-1and (0.3 ± 0.2) × 1043 s-1, respectively. The ratio of the bulge luminosity to that of the disk is in the range 3-9. We find no evidence for a point-like source in addition to the diffuse emission, down to a typical flux limit of ~10-4 ph cm-2 s-1. We also find no evidence for the positive latitude enhancement that has been reported from OSSE measurements; our 3σ upper flux limit for this feature is 1.5 × 10-4 ph cm-2 s-1. The disk emission can be attributed to the β^+-decay of the radioactive species 26 Al and 44Ti. The bulge emission arises from a different source which has only a weak or no disk component. We suggest that Type Ia supernovae and/or low-mass X-ray binaries are the prime candidates for the source of the galactic bulge positrons. Light dark matter annihilation could also explain the observed 511 ke

  8. Photon counting imaging with an electron-bombarded CCD: Towards wide-field time-correlated single photon counting (TCSPC)

    NASA Astrophysics Data System (ADS)

    Hirvonen, Liisa M.; Jiggins, Stephen; Sergent, Nicolas; Zanda, Gianmarco; Suhling, Klaus

    2015-07-01

    Single photon detecting capabilities of an electron-bombarded CCD (EBCCD), where a photon is converted into a photoelectron that is accelerated through a high voltage before hitting the CCD chip, were characterised. The photon event pulse height distribution was found to be linearly dependent on the gain voltage. Based on these results, we propose that a gain voltage sweep during exposure in an EBCCD or EBCMOS camera would allow photon arrival time determination from the photon event pulse height with sub-frame exposure time resolution. This effectively uses an electron-bombarded sensor as a parallel-processing photoelectronic time-to-amplitude converter (TAC), or a 2-dimensional streak camera. Several applications that require timing of photon arrival, including fluorescence lifetime imaging microscopy (FLIM), may benefit from this approach. Moreover, the EBCCD was used on a fluorescence microscope to image fluorescently labelled cells in single photon counting mode.

  9. A nonlinear transverse wave propagating at an angle to the magnetic field in an electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Kokrashvili, G. Z.; Pataraia, A. D.

    1983-07-01

    Reference is made to the studies by Melikidze et al. (1981) and Sakai and Kowata (1980), which dealt with a nonlinear transverse wave propagating in the direction of the magnetic field. It is noted that far from the surface of the pulsars, the lines of force of the magnetic field bend. For this reason, magnetoacoustic waves propagating at an angle to the magnetic field are investigated, and nonlinear equations are derived which describe the behavior of the amplitudes. The nonlinear waves in an electron-positron plasma in a magnetic field directed along the x axis are investigated with the aid of collisionless kinetic equations and the Maxwell equations. It is assumed that the nonperturbed distribution function is identical for the electrons and positrons and that it depends only on the x component of the momentum.

  10. Nonlinear dispersion and transverse profile of intense electromagnetic waves, propagating through electron-positron-ion hot magnetoplasma

    SciTech Connect

    Javan, N. Sepehri Homami, S. H. H.

    2015-02-15

    Self-guided nonlinear propagation of intense circularly-polarized electromagnetic waves in a hot electron-positron-ion magnetoplasma is studied. Using a relativistic fluid model, a nonlinear equation is derived, which describes the interaction of the electromagnetic wave with the plasma in the quasi-neutral approximation. Transverse Eigen modes, the nonlinear dispersion relation and the group velocity are obtained. Results show that the transverse profile in the case of magnetized plasma with cylindrical symmetry has a radially damping oscillatory form. Effect of applying external magnetic fields, existence of the electron-positron pairs, changing the amplitude of the electromagnetic wave, and its polarization on the nonlinear dispersion relation and Eigen modes are studied.

  11. The interaction of two nonplanar solitary waves in electron-positron-ion plasmas: An application in active galactic nuclei

    SciTech Connect

    EL-Labany, S. K.; Khedr, D. M.; El-Shamy, E. F.; Sabry, R.

    2013-01-15

    In the present research paper, the effect of bounded nonplanar (cylindrical and spherical) geometry on the interaction between two nonplanar electrostatic solitary waves (NESWs) in electron-positron-ion plasmas has been studied. The extended Poincare-Lighthill-Kuo method is used to obtain nonplanar phase shifts after the interaction of the two NESWs. This study is a first attempt to investigate nonplanar phase shifts and trajectories for NESWs in a two-fluid plasma (a pair-plasma) consisting of electrons and positrons, as well as immobile background positive ions in nonplanar geometry. The change of phase shifts and trajectories for NESWs due to the effect of cylindrical geometry, spherical geometry, the physical processes (either isothermal or adiabatic), and the positions of two NESWs are discussed. The present investigation may be beneficial to understand the interaction between two NESWs that may occur in active galactic nuclei.

  12. Enhancement of electron-positron pair creation due to transient excitation of field-induced bound states

    NASA Astrophysics Data System (ADS)

    Jiang, M.; Lv, Q. Z.; Sheng, Z. M.; Grobe, R.; Su, Q.

    2013-04-01

    We study the creation of electron-positron pairs induced by two spatially separated electric fields that vary periodically in time. The results are based on large-scale computer simulations of the time-dependent Dirac equation in reduced spatial dimensions. When the separation of the fields is very large, the pair creation is caused by multiphoton transitions and mainly determined by the frequency of the fields. However, for small spatial separations a coherence effect can be observed that can enhance or reduce the particle yield compared to the case of two infinitely separated fields. If the travel time for a created electron or positron between both field locations becomes comparable to the period of the oscillating fields, we observe peaks in the energy spectrum which can be explained in terms of field-induced transient bound states.

  13. Positronium formation as a three-body reaction. I. The second-order positron-electron interaction amplitude

    NASA Astrophysics Data System (ADS)

    Bolorizadeh, M. A.; Brunger, M. J.; Maddern, T.; Ghanbari Adivi, E.

    2007-03-01

    We derive the exact analytic form for the second-order positron-electron interaction term in the Faddeev three-body approach which is applicable in the nonrelativistic high energy region. Although there is no nonintegrable singularity in the six-dimensional integral form of this amplitude, here the basic difficulty arises from the presence of complex nonintegral exponents in the components included in the integrand. Consequently, three brunch cuts must be handled simultaneously. However, by using an integral representation of the gamma function, these brunch cuts are removed from the integrand. Expanding the radial parts of the initial and final wave functions further reduces the second-order positron-electron interaction term to a one-variable integral in terms of Bessel functions of the third kind. The different final closed expressions are ultimately derived in terms of the generalized hypergeometric functions for different regions of the scattering angle.

  14. Design of An 18 MW Beam Dump for 500 GeV Electron/Positron Beams at An ILC

    SciTech Connect

    Amann, John; Arnold, Ray; Seryi, Andrei; Walz, Dieter; Kulkarni, Kiran; Rai, Pravin; Satyamurthy, Polepalle; Tiwari, Vikar; Vincke, Heinz; /CERN

    2012-07-05

    This article presents a report on the progress made in designing 18 MW water based Beam Dumps for electrons or positrons for an International Linear Collider (ILC). Multi-dimensional technology issues have to be addressed for the successful design of the Beam Dump. They include calculations of power deposition by the high energy electron/positron beam bunch trains, computational fluid dynamic analysis of turbulent water flow, mechanical design, process flow analysis, hydrogen/oxygen recombiners, handling of radioactive 7Be and 3H, design of auxiliary equipment, provisions for accident scenarios, remote window exchanger, radiation shielding, etc. The progress made to date is summarized, the current status, and also the issues still to be addressed.

  15. Two-photon absorption measurements in graphene fragments: Role of electron-electron interactions

    NASA Astrophysics Data System (ADS)

    Sandhu, A.; Roberts, A.; Aryanpour, K.; Shukla, A.; Mazumdar, S.

    2012-02-01

    Many-body interactions in graphene are an active field of research. There is a clear evidence of strong electron correlation effects in other carbon based materials which have the same sp^2 hybridization as graphene. For example, in linear-polyenes, the electron-electron interactions are considered responsible for the occurrence of lowest two-photon state below the optical one-photon state. The electronic correlation in these linear systems is a strong function of the chain length. Thus, it is pertinent to question if the two-dimensional graphene fragments also exhibit strong correlation effects and how these effects scale with fragment size. Using a white light super-continuum source, we perform z-scan measurements to extract frequency-dependent two-photon absorption coefficients in symmetric molecular fragments of graphene, e.g. coronene and hexabenzocoronene. A comparison of one-photon and two-photon absorption coefficients is then used to uncover the extent of correlation effects. In the smallest fragment, coronene, our results indicate a strong signature of the Coulomb interactions. We will discuss how the importance of electron-electron interaction varies with system size and its implication for the correlation effects in graphene.

  16. TOPICAL REVIEW: RBE of low energy electrons and photons

    NASA Astrophysics Data System (ADS)

    Nikjoo, Hooshang; Lindborg, Lennart

    2010-05-01

    Relative biological effectiveness (RBE) compares the severity of damage induced by a radiation under test at a dose D relative to the reference radiation Dx for the same biological endpoint. RBE is an important parameter in estimation of risk from exposure to ionizing radiation (IR). The present work provides a review of the recently published data and the knowledge of the RBE of low energy electrons and photons. The review presents RBE values derived from experimental data and model calculations including cell inactivation, chromosome aberration, cell transformation, micronuclei formation and induction of double-strand breaks. Biophysical models, including physical features of radiation track, and microdosimetry parameters are presented, analysed and compared with experimental data. The biological effects of low energy electrons and photons are of particular interest in radiation biology as these are strongly absorbed in micrometer and sub-micrometer layers of tissue. RBE values not only depend on the electron and photon energies but also on the irradiation condition, cell type and experimental conditions.

  17. Improvement of the technique of identification of electrons and positrons with use of electromagnetic calorimeter of the CLAS detector

    SciTech Connect

    Gevorgyan, N. E.; Dashyan, N. B.; Paremuzyan, R. G.; Stepanyan, S. G.

    2010-01-01

    We study the dependence of the sensitivity of response of the electromagnetic calorimeter of CLAS plant on the momenta of electrons and positrons. We made calculation of this dependence and elaborated a method for its employment in identification of e- and e+. We have shown that the new method of selection of e- and e+ improves the quality of identification by about 10%. We used the experimental data obtained with the plant CLAS of linear accelerator at Jefferson laboratory (USA).

  18. Modulation instability of ion acoustic waves, solitons, and their interactions in nonthermal electron-positron-ion plasmas

    SciTech Connect

    Zhang Jiefang; Wang Yueyue; Wu Lei

    2009-06-15

    The propagation of ion acoustic waves in plasmas composed of ions, positrons, and nonthermally distributed electrons is investigated. By means of the reduction perturbation technique, a nonlinear Schroedinger equation is derived and the modulation instability of ion acoustic wave is analyzed, where the nonthermal parameter is found to be of significant importance. Furthermore, analytical expressions for the bright and dark solitons are obtained, and the interaction of multiple solitons is discussed.

  19. Generation of high-energy electron-positron pairs in the collision of a laser-accelerated electron beam with a multipetawatt laser

    NASA Astrophysics Data System (ADS)

    Lobet, M.; Davoine, X.; d'Humières, E.; Gremillet, L.

    2017-04-01

    Generation of electron-positron pairs via the multiphoton Breit-Wheeler process in an all-optical scheme will be made possible on forthcoming high-power laser facilities through the collision of wakefield-accelerated GeV electrons with a counter-propagating laser pulse of 1 022- 1 023 W cm-2 peak intensity. By means of integrated 3D particle-in-cell simulations, we show that the production of high-density sources of ultrarelativistic electron-positron pairs is within the reach of soon-to-be-available laser systems. Under physical conditions accessible to the dual-beam CILEX-Apollon facility, we find that the generated positrons can carry a total charge of 0.05-1 nC, with a mean energy of 100-400 MeV and an angular divergence of 0.01-0.1 rad. The variations of the positron source's properties with respect to the laser parameters are also examined.

  20. Fine-grid calculations for stellar electron and positron capture rates on Fe isotopes

    SciTech Connect

    Nabi, Jameel-Un; Tawfik, Abdel Nasser

    2013-03-15

    The acquisition of precise and reliable nuclear data is a prerequisite to success for stellar evolution and nucleosynthesis studies. Core-collapse simulators find it challenging to generate an explosion from the collapse of the core of massive stars. It is believed that a better understanding of the microphysics of core-collapse can lead to successful results. The weak interaction processes are able to trigger the collapse and control the lepton-to-baryon ratio (Y{sub e}) of the corematerial. It is suggested that the temporal variation of Y{sub e} within the core of a massive star has a pivotal role to play in the stellar evolution and a fine-tuning of this parameter at various stages of presupernova evolution is the key to generate an explosion. During the presupernova evolution of massive stars, isotopes of iron, mainly {sup 54-56}Fe, are considered to be key players in controlling Y{sub e} ratio via electron capture on these nuclides. Recently an improved microscopic calculation of weak-interaction-mediated rates for iron isotopes was introduced using the proton-neutron quasiparticle random-phase-approximation (pn-QRPA) theory. The pn-QRPA theory allows a microscopic state-by-state calculation of stellar capture rates which greatly increases the reliability of calculated rates. The results were suggestive of some fine-tuning of the Y{sub e} ratio during various phases of stellar evolution. Here we present for the first time the fine-grid calculation of the electron and positron capture rates on {sup 54-56}Fe. The sensitivity of the pn-QRPA calculated capture rates to the deformation parameter is also studied in this work. Core-collapse simulators may find this calculation suitable for interpolation purposes and for necessary incorporation in the stellar evolution codes.